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Résumé long en français

Motivation

Les découvertes scientifiques sur l’évolution du changement climatique sont
effrayantes. Il ne reste que peu de temps pour lutter efficacement con-
tre le changement climatique. Si la transformation durable de l’économie
n’est pas accélérée considérablement, les dynamiques de changement clima-
tique risquent de devenir incontrôlables pour l’homme. Cela veut dire qu’il
est nécessaire d’accélérer le développement de technologies vertes ainsi que
de promouvoir le remplacement du système de production et consomma-
tion en vigueur, basé sur l’épuisement de ressources naturelles, par des so-
lutions durables. Une telle transformation en profondeur peut passer par
des redistributions et des disruptions des structures établies, associées à
des dévalorisations de capacités et d’actifs matériels. L’Accord de Paris est
l’illustration d’une volonté politique d’agir, mais le processus de changement
technologique est lent et les efforts déployés sont insuffisants pour atteindre
les objectifs climatiques.

Cette thèse cherche une explication économique aux raisons de la lenteur
des changements et des stratégies visant à faciliter la transformation tech-
nologique. Elle a pour sujets d’étude l’accélération, le gouvernance et
les conséquences économiques de transformations technologiques. Des
recherches empiriques ont montré que les modèles de transition tech-
nologique d’ampleur varient selon les pays, les technologies et les secteurs
industriels. Les processus de transition socio-technologiques sont complexes
et rien ne garantit que leurs résultats soient optimaux. De petits événements
historiques peuvent avoir des conséquences permanentes s’ils sont renforcés
par des rendements croissants. L’accumulation de capacités technologiques,
tangibles et intangibles, les infrastructures en vigueur et les routines com-
portementales peuvent entraîner un verrouillage technologique.

Dans cette thèse, je développe une analyse économique des différences ob-
servées. Je propose une théorie des capacités appliquée à la technologie
et à l’apprentissage technologique. Cette théorie explique les différences
d’adoption de nouvelles technologies par les entreprises. Elle s’appuie sur
un modèle macroéconomique multi-agents.

Le modèle est une extension des technologies hétérogènes du modèle multi-
agents Eurace@unibi, appliquée aux technologies vertes. Le modèle initial,
Eurace@unibi, est un modèle exhaustif qui peut être utilisé pour simuler
une macroéconomie complète. Le modèle est empiriquement validé et a été
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utilisé dans de nombreuses précédentes études. Le modèle étendu, appelé
Eurace@unibi-eco est l’un des produits de cette thèse.

Le modèle est utilisé pour simuler les dynamiques d’une course entre
des technologies concurrentes dans laquelle une nouvelle technologie verte
pourrait remplacer la technologie conventionnelle établie. Les dynamiques
de concurrence dépendent des évolutions des capacités technologiques et
des caractéristiques des technologies rivales. Les résultats des simulations
peuvent expliquer la vitesse, la trajectoire et la stabilité d’une transition tech-
nologique. Dans des simulations, je teste le potentiel de mesures de politique
permettant d’accélérer et de stabiliser le processus de transition.

La thèse est composée d’une introduction, de trois principaux chapitres
et d’une conclusion. Dans l’introduction, j’explique les motivations sous-
jacentes à ces recherches ainsi que leur contexte général et la méthodologie
choisie dans cette thèse. La série de chapitres généralise progressivement
la perspective théorique sur les connaissances technologiques et leur perti-
nence pour les dynamiques de transition. Chacun des chapitres est un article
de recherche indépendant comprenant une partie théorique et une étude de
simulation utilisant Eurace@unibi-eco. En plus, la thèse contient une docu-
mentation exhaustive du modèle de simulation. Par la suite, les trois princi-
paux chapitres sont introduits dans plus de détails.

Chapitre 2: Comment accélérer la diffusion des technologies
vertes? Changement technologique guidé, en présence d’une ca-
pacité d’absorption coévolutive

La dépendance au sentier peut expliquer la diffusion lente des technologies
vertes. Les entreprises investissement dans du capital, qui diffère selon le
type de technologie, et accumulent un savoir-faire technique spécifique à la
technologie employée. Il ne peut pas être acquis sur le marché et les en-
treprises ne peuvent l’apprendre que par la pratique. La progression de
l’apprentissage dépend de l’intensité avec laquelle une entreprise utilise un
type de technologie spécifique. L’adoption de la technologie constitue une
source d’avantages hétérogènes au niveau de l’entreprise.

La dépendance au sentier provient des connaissances accumulées qui se
manifestent dans la productivité du capital offert sur le marché ainsi
que dans les capacités technologiques des entreprises. Des rendements
décroissants découlent de l’innovation endogène et de l’apprentissage par
la pratique. Un équipement initial inférieur pour des connaissances tech-
nologiques données constitue une barrière à la diffusion de nouvelles tech-
nologies. Ce chapitre propose une courte introduction éclairant comment ces
mécanismes sont implémentés dans l’extension aux technologies vertes du
modèle multi-agents Eurace@unibi.

Le modèle est utilisé pour générer un échantillon de courbes de diffusion.
Je montre comment l’évolution des connaissances technologiques relatives
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peut expliquer les formes des courbes. Au cours du temps, l’économie con-
verge vers l’un des deux régimes technologiques possibles caractérisé par
l’utilisation d’une seule des deux technologies. Je montre que l’incertitude
technologique est économiquement coûteuse si des ressources de recherche
et développements et de l’apprentissage par la pratique sont gaspillées dans
une technologie qui s’avère être obsolète à long terme.

Dans une expérience de simulation de mesures de politique, j’analyse com-
ment l’efficacité des politiques de diffusion dépend du type et de l’intensité
des obstacles à la diffusion. Des taxes environnementales peuvent com-
penser efficacement un désavantage de productivité inférieure. Des subven-
tions peuvent fonctionner si des capacités technologiques insuffisantes em-
pêchent les entreprises d’adopter une technologie suffisamment mature.

Cette étude contribue à la littérature sur le changement technologique dirigé
en proposant une théorie de capacité d’absorption coécolutive. Le problème
d’une transition durable est présenté en tant qu’un problème de coordination
entre adoptants hétérogènes de technologies. C’est une nouvelle approche
méthodologique et théorique dans la littérature économique sur le change-
ment climatique.

Chapitre 3: La transférabilité des capacités technologiques et la
stabilité de voies de transition: Une explication de la diffusion
basée sur l’apprentissage

Dans ce chapitre, j’examine les effets de la transférabilité des compétences
d’une technologie à l’autre sur les décisions d’adoption de ces technolo-
gies par des entreprises individuelles. J’étudie les implications de la dif-
fusion pour la trajectoire émergente au niveau macroéconomique. Pour
qu’une technologie soit utilisée efficacement, les entreprises ont besoin d’un
savoir-faire spécifique au type de technologie utilisée. Les employé.e.s
des entreprises accumulent le savoir-faire en travaillant avec des machines
d’un type technologique spécifique. Le savoir-faire peut-être transféré si
les technologies sont similaires. Une innovation radicale se caractérise par
un changement de type technologie et une transférabilité des compétences
faible.

En m’appuyant sur la littérature empirique et théorique au sujet de
l’innovation, je propose un modèle de l’apprentissage technologique avec
des fondations microéconomiques. Dans une simulation avec le modèle
étendu Eurace@unibi-eco, je montre que la transférabilité des compétences
a des effets ambigus. Une transférabilité forte accélère initialement la dif-
fusion, mais elle est associée à de l’incertitude technologique et retarde la
spécialisation technologique à long terme. Pour les entreprises, il est plus
facile d’adopter une nouvelle technologie, mais il est également aussi facile
de revenir au type de technologie antérieur.
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Dans la littérature existante, les modèles microéconomiques d’apprentissage
au niveau des entreprises sont rares. J’introduis une théorie de
l’apprentissage et je montre ses implications pour les formes émergentes
de diffusion au niveau macroéconomique. Ce type d’analyse et les résul-
tats avancés sont une nouveauté dans la littérature sur le changement tech-
nologique macroéconomique.

Chapitre 4: Voies de transition et caractéristiques des technolo-
gies concurrentes: Une taxonomie des technologies et une ex-
périence politique

Dans les deux premiers chapitres, j’ai montré que les caractéristiques de tech-
nologies concurrentes et les facteurs extérieurs peuvent contribuer à une ex-
plication des formes des courbes de diffusion. Les courbes de diffusion sont
une représentation formelle des trajectoires de transition. Empiriquement,
les trajectoires de transitions varient entre les pays, les secteurs industriels,
les entreprises et entre technologies différentes. Parfois, les nouvelles tech-
nologies sont adoptées rapidement. Parfois, ce processus est très instable et
associé à des perturbations de la structure du marché. Dans d’autres cas, il
arrive que des économies ou des industries soient bloquées avec la technolo-
gie en place. La compréhension de ces trajectoires différentes est importante
lorsqu’il s’agit de proposer des mesures de diffusion efficaces et de dévelop-
per une intuition des effets macroéconomiques d’une transition approfondie.

Dans ce chapitre, je développe une taxonomie visant à caractériser des tech-
nologies concurrentes. Cette taxonomie est basée sur une collection de faits
stylisés, eux-mêmes tirés d’une revue de la littérature sur la diffusion tech-
nologique et les transitions sociotechniques historiques et contemporaines.
Cette taxonomie est liée à une perspective multicouche de la théorie de la
transition. La perspective multicouche est un cadre conceptuel fréquemment
utilisé dans le domaine de la recherche sur la transition sociotechnique (Köh-
ler et al., 2019; Lachman, 2013). Ce cadre conceptualise les transitions en
tant que processus co-évolutionnels dynamiques dans lesquels des technolo-
gies de niche émergentes finissent par remplacer le régime sociotechnique en
place. Les conditions externes sont favorables ou défavorables aux technolo-
gies entrantes.

Cette typologie reflète les qualités d’une technologie compte tenu des cir-
constances sociotechniques extérieures ainsi que de la maturité relative de la
nouvelle technologie émergente. Les interactions dans le processus de spé-
cialisation technologique dépendent de la transférabilité des capacités tech-
nologiques et des infrastructures de soutien accumulées. Cette taxonomie
est une généralisation du concept de technologie présent dans le modèle
Eurace@unibi-eco. Je montre comment les caractéristiques de technologies
concurrentes peuvent expliquer les trajectoires de transitions émergentes et
je commente des exemples empiriques.
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Des mesures de politique économique peuvent affecter les circonstances ex-
térieures à la concurrence entre différentes technologies. Dans une expéri-
ence de simulation avec le modèle Eurace@unibi-eco, je montre comment
des instruments politiques ciblant le marché peuvent accélérer et stabiliser
une trajectoire de transition technologique. La performance de ces instru-
ments diffère et dépend des caractéristiques des technologies concurrentes.

Les résultats des simulations contribuent à la compréhension de pourquoi les
trajectoires de transition et l’efficacité des politiques varient selon les pays,
les industries et les groupes de technologie. Ces aperçus sont importants
pour l’élaboration de mesures. Le manque de formalisation et l’imprécision
des concepts sont des faiblesses majeures dans les études sur les transitions
sociotechniques. Dans ce chapitre, je propose un cadre théorique qui peut
être utilisé pour systématiser et formaliser des données empiriques.

Publications

Au moment de la rédaction de cette thèse, le chapitre 2 a été accepté pour
publication par le journal Energy Economics (Hötte, 2019e). Les chapitre 3
et 4 ont été soumis et en attente de décision. Les résultats présentés dans
les chapitres sont publiés dans des documents de travail exhaustifs (Hötte,
2019b,f), dans un rapport technique de description détaillée (Hötte, 2019d) et
dans deux publication de données pour assurer la transparence et la repro-
ductibilité des résultats (Hötte, 2019a,c,g).
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Chapter 1

General introduction: Facilitation
of change

Things do change. The only question is that since things are deteriorat-
ing so quickly, will society and man’s habits change quickly enough?

(Isaac Asimov)

1.1 Motivation

Why is it important to study the facilitation of (technological) change? The
latest scientific observations on the dynamics of climate change are alarm-
ing. The acceleration of socio-technical change to carbon-neutral systems of
production and consumption might be an existential question. This thesis
searches for an economic approach to facilitate such transition process.

Steffen et al. (2018) have shown the human impact already led to a shift in
the climate trajectory out of the stable cyclical dynamics (interglacial limit cy-
cle) that characterize the oscillations between two glacial states. The direc-
tion of the future Earth trajectory is uncertain, but a significant risk exists that
the earth is tipped into a trajectory with catastrophic and potentially life-
threatening consequences for human societies. If anthropogenic emissions
are not radically reduced, global warming continues and certain thresholds
in the earth system are crossed, an irreversible series of tipping cascades of
warming dynamics may be triggered. These cascades can drive the dynam-
ics of climate change out of human control. Global warming would move
into self-reinforcing dynamics, resulting in a significantly higher tempera-
ture than in the entire Holocene and significant sea-level rise. Such a state
is also known as Hothouse Earth. Steffen et al. (2018) have shown the exis-
tence of threshold levels in the global temperature that must not be crossed
if the irreversible shift into a Hothouse Earth trajectory wants to be avoided.
The authors have also shown that the threshold may be two degrees or even
lower. To remind, the Intended Nationally Determined Contributions (INDC)
agreed upon in the Paris Agreement 2015 collectively imply a median warm-
ing of 2.6-3.1 degrees Celsius by the end of the century (Rogelj et al., 2016).
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Human activity had and has a measurable impact on the direction of the fu-
ture trajectory. There are alternative pathways of active Earth stewardship that
provide adequate living conditions. It is up to humans to choose which path-
way is taken and how to cope with changing climatic conditions. If radical
action is not undertaken today, the time window for effective climate change
mitigation will be closed and we incur the risk of shifting into an irreversible
Hothouse Earth trajectory (Hagedorn et al., 2019; IPCC, 2018).

In August 2018, students of the Fridays for Future movement around the
globe began leaving school to express their anger at the lack of action in ef-
fectively combating climate change (Warren, 2019). Since January 2019, tens
of thousands of scientists worldwide have expressed their support: “Con-
cerns of young protesters are justified” (Hagedorn et al., 2019). Climate change
is an existential threat, but action is slow.

The existential dimension of climate change calls for two types of change in
economic behavior. First, the climate is changing. This requires the rapid,
reactive adaptation of techno-economic systems of human civilization to new
climatic conditions. Second, active change is needed to transform the econ-
omy to carbon-neutrality and even negative net emissions in the second half
of the century if existential climate risks shall be avoided.1 The technological
solutions are available and known, but their widespread diffusion is slug-
gish. The Paris Agreement was an expression of the political will to change,
but this is not sufficient given the gap between proclaimed targets and un-
dertaken action.

In this thesis, I examine how processes of technological change pass off. I
search for economic explanations why it appears to be so difficult to change.
This thesis develops a macroeconomic understanding for the sluggishness of
technology diffusion and seeks to identify levers to accelerate socio-technical
change.

1.1.1 Two-sided uncertainty: Reasons to ask questions dif-
ferently

What is the economic approach to the problem of climate change? "Climate
Change: The Ultimate Challenge for Economics" is the title of a recent essay writ-
ten by W.D. Nordhaus in which he summarizes the main achievements, ap-
proaches and open challenges of roughly 40 years of research on the nexus of
climate change and economics (Nordhaus, 2019). To date, many efforts in cli-
mate economics are dedicated to the study of the trade-off between the costs

1Throughout this thesis, I refer to carbon emissions and natural resource depletion as a
short cut to avoid a more complex explanation of sustainability. Earth stewardship as postu-
lated by Steffen et al. (2018) goes beyond and acknowledges the concept of interdependent
planetary boundaries (Rockström et al., 2009). This underlines the complexity and uncer-
tainty associated with human interventions in the climate dynamics. It does not have an
impact on the theoretical findings of this thesis but underlines that one should be cautious
when bringing the term sustainable technology to data.
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of emission reduction, so-called abatement costs, and the benefits of avoided
damage. This theoretical perspective on the economics of climate change im-
poses two major premises: Abatement costs and benefits are known or can
be reliably estimated for a time horizon of at least several decades. These
two premises have formed the working basis for numerous studies rang-
ing from the controversies about appropriate discount rates (Drupp et al.,
2018; Pindyck, 2013), the incorporation of technological change (Popp, 2019;
Popp et al., 2010) or the challenges to come up with reliable damage functions
(Auffhammer, 2018).

In this thesis, I adopt another agenda. I do not search for optimal temperature
levels. Instead, I ask why it seems to be so difficult to live more sustainably?
More formally, I search for the foundations of abatement costs. Abatement
costs are the costs of switching to another type of technology whereby the
term technology has a very broad meaning. In transition theory, it is defined
as a means to fulfill a societal function (Geels, 2004). Hence, technology does
not only refer to techniques and physical artifacts but also to its functionality
and use. I acknowledge that the relevance of this perspective is based on the
normative assumption that it is desirable to govern the process of change (cf.
Köhler et al., 2019). I take it as given that a technology transition is in the
course of happening, either because it is politically and societally desired to
combat climate change or because it is externally enforced through changing
climatic, economic or technological conditions. The theoretical results of this
thesis can be straightforwardly applied to other topics like digitization, de-
velopment and globalization. Green technologies are only one example, but
an example where the relevance of the research question is pressing.

The guiding question of this thesis is: How to facilitate a technology transition?
The word facilitation means to make it easy to change. It goes beyond a mere
acceleration which relates only to the technological dimension. It imposes
economic and societal constraints. A transition is not easy if it raises much
opposition because it is extremely costly or disrupts established structures.
Facilitation also has a communicative and social-psychological dimension.
It had been shown that resistance to change at the individual level is easier
to be overcome if future pathways and their associated trade-offs are eluci-
dated clearly and negotiated in a transparent way (Rosenbloom, 2017; Wat-
son, 1971). In this thesis, I study the techno-economic dimension of transition
processes and their side effects at a macroeconomic, theoretical level.2

I adopt this alternative perspective on climate economics for four major rea-
sons that are theoretically and ethically motivated. First, reliable estimates of
long-term damage and abatement costs are difficult, if not practically infeasi-
ble, to obtain. Many economic assumptions about pathways of technological
progress and climate change, substitutability in production and consumption

2By techno-economic I mean the dimension of change that is reflected in economic vari-
ables. That can be technology-related indicators as productivity or market shares. Broader
patterns of societal change can be reflected in market structures and consumer preferences.
These broader dimensions of socio-technical change will not be considered here.
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behavior, ethical and economic preferences need to be made. These assump-
tions come on top of a series of uncertainties along the pathway from esti-
mated life-cycle emissions and other environmental impacts from human ac-
tivities, temperature trajectories, adaptive capacities of and interactions with
ecological and geophysical systems. And finally, these dynamics need to be
translated into economic damages (cf. Auffhammer, 2018; Farmer et al., 2015;
Pindyck, 2013; Steffen et al., 2018).3

Second, even if it would be theoretically and practically feasible to come up
with reliable estimates, how much does it help to know the optimal tempera-
ture level if the pathway how to get there is opaque? Given the gap between
proclaimed mitigation targets of the Paris Agreement and the INDC, the tran-
sition needs to be radically accelerated.

Third, both the impact of climate change but also technology transitions are
non-linear (Stern, 2016). The crossing of tipping points in the climate system
is irreversible and global warming dynamics may become self-reinforcing.
Beyond these tipping points, the control of the temperature level in marginal
levels is infeasible. Also technological change is non-linear and subject to ir-
reversibilities and tipping points. Increasing returns and technological lock-
in are well documented in the theoretical and empirical innovation literature
(e.g. Arthur, 1989; Safarzyńska et al., 2012; Unruh, 2000). Both the dynamics
of climate change and the dynamics of technological change are critical deter-
minants of damage and abatement cost functions. Climate change damages
are a function of simulated climate dynamics. Abatement costs depend on
the technology-dependent substitutability of resource-intensive production
and consumption patterns (e.g. Popp et al., 2010; Sarr and Noailly, 2017).
Acknowledging the two-sided of non-linearity in the underlying dynamics,
marginal costs and benefits are (most likely) non-linear too. This impedes
attempts in marginal cost-benefit analysis and makes the results extremely
sensitive to the underlying assumptions. A pragmatic approach to deal with
the increased complexity and uncertainty is to ask other questions, i.e. ques-
tions that concern the governance of the process instead of evaluating the
optimality of the outcome of emerging dynamics.

The fourth reason for adopting this agenda is related to the boundaries of so-
cial science that is aimed to be politically relevant. The estimation of marginal

3This statement should not undermine the relevance of climate-economic modeling in
general. At the local level, these estimates are critically important to evaluate local and
sectoral adaptation needs taking climate change as an exogenous shock. The aggregation to
global, long-term developments and the incorporation of mutual climate-economy feedbacks
are much more difficult. Any normative statement about the relative, quantitatively justified
economic desirability of specific emission trajectories and temperature targets is extremely
vulnerable to technical assumptions and undermines the credibility of a whole branch of
research (e.g Auffhammer, 2018; Pindyck, 2013). An example is the prominent controversy
about discount rates (cf. Nordhaus, 2007). When acknowledging - normatively - the desir-
ability of a sustainability transition to reduce existential risks, economic optimality becomes
a question of political feasibility that demands a more complex understanding of social wel-
fare.
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costs and damages is subject to ethical assumptions about inter- and in-
tragenerational justice and substitutability (Dasgupta, 2008; Devarajan and
Fisher, 1981). Focusing on the facilitation of a contemporaneous transition al-
lows circumventing these assumptions and makes the normative dimension
of the research objective transparent. The critical normative assumption, that
needs to be made, is the desirability of a (sustainability) transition. Whether
or not it is desirable, should be decided by society and policymakers. This
thesis contributes to the understanding how it might be achieved.4 Searching
for ways to facilitate a transition can be also seen as a concession to those who
have reservations against it. It is an attempt to understand (heterogeneous)
barriers to change and to make it easy to overcome them.

Nonetheless, the agenda of this thesis has theoretical implications for the
welfare-oriented perspective of traditional climate economics: Working on
the foundations of socio-technological change is a step forward in the endog-
enization of abatement and damage costs. Knowing and stimulating the de-
terminants of change has an impact on abatement costs if it becomes cheaper
to abate emissions. It has also an impact on damage costs if technological
strategies help to adapt to changing climatic conditions. The analytical dif-
ference is a modification of the objective function. The new objective is the
acceleration of a transition given a set of technical and political feasibility
constraints.

Steffen et al. (2018) have shown that human activity already led to a shift
in the climate system. The outcome of the current trajectory is uncertain,
but they have also shown that the future pathway can be shaped. Taking
these insights as given allows circumventing theoretical discussions about
the desirability of different levels of change, that are practically infeasible
to evaluate over the relevant time horizon and likely beyond human con-
trol. Designing processes of change is important to accelerate the transition
to low-carbon technologies, but it is also insightful for adaptation to climate
change and applications in other contexts like digitization or globalization.

Change is a basic principle of economic evolution, but individual, societal,
organizational and economic reactions to change are ambiguous. Change
is perceived as desirable if it is incremental. Incremental change is associ-
ated with phrases of improvement, “excitement” and growth. But it is sub-
ject to resistance if it discontinues established principles and its outcome is
uncertain and difficult to envision. This ambiguous reaction has been ob-
served in social psychology, organizational research, sociology and different
fields of innovation economics (e.g. Feygina et al., 2010; Pardo del Val and
Martínez Fuentes, 2003; Watson, 1971; Wells and Nieuwenhuis, 2012). This
thesis develops an economic interpretation of the resistance to and drivers

4I admit that the theoretical justification of this research agenda is much easier to jus-
tify under the technical assumption of a two-sided non-linearity of technology and climate
change when the existence of marginal trade-offs is questionable. Under this setting, the
analytical problem is (possibly) reducible to the choice of discount rates but becomes inter-
esting when political feasibility constraints are included.
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of change. An understanding of both is critical to provide guidance for the
technology challenges societies are faced today.

1.1.2 Different questions require different methods

Technology transitions are inherently complex. Transitions are processes of
large-scale system changes in which established ways of consumption, pro-
duction and (economic) thinking are replaced by an emergent alternative.
This does not only relate to the techniques that are used to produce final
goods. It also relates to the way how technological and societal problems are
defined, how technological and political practitioners search for solutions
and it refers to the type of material and non-material inputs that are used to
develop solutions. Dosi (1982) refers to this bundle of features as a technolog-
ical paradigm.

Sociology of technology goes even further and defines the incumbent tech-
nological system as socio-technical regime that is manifested in technology,
market and industry structures, consumer practices, culture and symbolic
meaning, knowledge and policy (Geels, 2002; Kemp, 1994). Transitions from
one regime to another are often associated with structural changes in con-
sumption patterns, institutional and organizational structures. They may be
subject to technological lock-in effects and increasing returns to scale, my-
opic behavior, group dynamics and the imperfect spread of information (Sa-
farzyńska et al., 2012).

The multi-dimensional coevolution of technology, societal and institutional
structures is widely acknowledged in the empirical and theoretical transition
literature (cf. Geels, 2004; Köhler et al., 2019; Safarzyńska et al., 2012). Mutu-
ally reinforcing dynamics from multi-dimensional feedbacks are sources of
increasing returns. Small, hardly predictable events in one dimension of the
socio-technical evolution do not necessarily average out in the presence of
increasing returns. These small events may tip the technological evolution
into a direction that is not necessarily optimal (Arthur, 1989; Geels, 2002).
The cumulative effects of self-reinforcing dynamics may result in a techno-
logical lock-in that is difficult to escape and one of the major challenges in
the low-carbon transformation of the economy (Kemp, 1994; Unruh, 2000).

These properties make transitions inherently complex, i.e. the emerging out-
come can not necessarily be deduced from observed, single events. Acknowl-
edging complexity and associated uncertainty requires a revision of the ap-
plied methodology (Safarzyńska et al., 2012) and the epistemic perspective of
studies of technological change. In an interview, W. Brian Arthur described
the conceptual and epistemic difference between complexity theory and de-
ductive approaches as follows (Arthur, 1999):

Complexity theory is really a movement of the sciences. Standard sci-
ences tend to see the world as mechanistic. That sort of science puts
things under a finer and finer microscope. [...] The movement that
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started complexity looks in the other direction. It’s asking, how do things
assemble themselves? How do patterns emerge from these interacting el-
ements? Complexity is looking at interacting elements and asking how
they form patterns and how the patterns unfold. It’s important to point
out that the patterns may never be finished. They’re open-ended.

(W. Brian Arthur)

This quote describes one major aim of this thesis: It is about gaining an un-
derstanding of the dynamic interplay of technology, its users and emerging
macroeconomic patterns. One key insight of the complexity perspective is
that the final outcome is difficult if not even infeasible to manage and hardly
measurable in continuous metrics (see also Knudsen, 2005). That is why I fo-
cus on the process of emergence, instead of the outcome. Understanding the
process and factors of dynamic influence might help to identify intervention
points that may alter the direction and pace of the technological evolution
and might allow governing macroeconomic side effects.

In this thesis, I use a macroeconomic, agent-based model (ABM) that can
capture these coevolutionary dynamics of technology diffusion and develop-
ment. The model is used to gain an understanding of replacement dynamics
in which an incumbent, fossil-fuel-based technology is replaced by a climate-
friendly alternative.5

ABMs are computational simulation programs. In an economic context, an
agent represents an entity that acts and interacts in the economy. Typical
agents are consumption and capital goods firms, households, banks and a
government. An agent executes specific functions such as the purchasing
of goods, production and investment decisions or imposes specific policies.
Functions of agents are written as explicit routines in the simulation program
that is stepwise executed in a predetermined order. Agents interact through
the exchange of goods, information and money. These interactions are explic-
itly modeled through mutual updates in the set of variables that represent an
agent. These behavioral functions may incorporate stochastic elements at the
micro- and/ or macroeconomic level (Tesfatsion, 2006). For example, inno-
vation success in the R&D sector or purchasing decisions of consumers may
entail stochastic noise.

ABMs are typically run multiple times and the simulated time-series data
can be statistically analyzed. It is a particular feature of these models that the
dynamics triggered by small stochastic events at the micro level do not nec-
essarily average out and can be the source of emergent, macroeconomic fluc-
tuations. Over the years, the field of agent-based computational economics
(ACE) advanced considerably. Improvements in empirical validation tech-
niques, computational methods and standards in the analysis of simulated
data increased the recognition of this class of models as a serious tool for
macroeconomic analyses. An overview of recent advances in macroeconomic

5The model can be also applied to other contexts of directed technological change than
climate policy, for example, digitization, economic development and catch-up.
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ACE and the peculiarities of this class of models in macroeconomic analyses
can be found in Dawid and Gatti (2018).

Why are ABMs suitable for transition studies? Transition processes are char-
acterized by multi-dimensional interactions of heterogeneous actors. Agents
suffer from limited foresight and use simplified heuristic rules in their deci-
sion making, but they learn and adapt over time. The interplay of uncoordi-
nated behavior and heterogeneity at the micro-level and uncertainties asso-
ciated with innovative processes make it challenging to study transitions by
the use of analytical, equilibrium-based models that are prevalent in the ma-
jority of climate economic models (Balint et al., 2017). The complex, dynamic
processes of technology transitions can be incorporated into ABMs which
qualifies this methodology as a particularly suited means of analysis (Ciarli
and Savona, 2019; Dawid, 2006; Safarzyńska et al., 2012).

In search for complementary modeling tools in climate economics (cf. Farmer
et al., 2015; Pindyck, 2013; Stern, 2016) and facilitated by methodological
advances in computational economics, the field of agent-based climate eco-
nomics was rapidly growing in recent years (e.g. Balbi and Giupponi, 2009;
Balint et al., 2017; Ciarli and Savona, 2019; Lamperti et al., 2018b; Monas-
terolo and Raberto, 2019). The model developed in this thesis aligns with
this research. It is a green technology extension of the macroeconomic ABM
Eurace@unibi (Dawid et al., 2019b).

One distinctive feature of the Eurace@unibi model is the explicit represen-
tation of technological skills. Skills and technological learning are key
drivers of the dynamics of technological change. In this thesis, I extended
the representation of technology in the baseline model by a module that
allows studying the evolution of heterogeneous, competing technologies
and technology-specific learning processes at the level of heterogeneous,
technology-adopting firms.

The extended model, called Eurace@unibi-eco, and the analyses made with
this model are conceptually different from other (agent-based) approaches to
climate economics. It is not aimed to study mutual climate-economy feed-
backs or (at least not primarily) to evaluate the cost-effectiveness of different
climate policies. Instead, it is aimed to open the ”black box of technology“
a little bit further and to understand how emerging patterns of transitions
unfold.

The macroeconomic structure of the modeling approach allows studying the
technological evolution and associated economic side effects reflected in the
aggregate output, productivity, market structure and the distributional out-
come. These side effects are important to evaluate the degree of disruptive-
ness of technological change.
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1.1.3 How does this thesis embed in the literature?

Before outlining the content of this thesis in detail, it is worth acknowledging
the theoretical and methodological antecedents of this work. The research
question and the methodology in this thesis are different from the neoclas-
sical, equilibrium-based studies in climate economics and directed techno-
logical change, but this thesis does also have many overlaps. This thesis is
inspired by and builds on theories and thoughts of past and ongoing research
on endogenous growth, technological change, innovation and technological
learning.

Debates on the role of technology for future resource dynamics date back to
the early days of system dynamics. In the 1972s, Meadows et al.’s Limits to
growth was the first systematic, computational approach to analyze the dy-
namic interplay between growth and resource exploitation trajectories. The
authors showed that their scenarios are very sensitive to the assumptions of
technological progress.

Early attempts to take account of technology in simulation and cli-
mate assessment models included technological improvements as quasi-
autonomous processes or exogenous backstop technology shocks (see for
an overview Löschel, 2002; Sarr and Noailly, 2017). This is a useful sim-
plification to improve the predictions of climate-economic models, but this
approach presumes that future technological pathways can be reliably esti-
mated. Moreover, these approaches do not explain the sources of technologi-
cal change and help to identify the scope for policy to influence the pace and
direction of technological development (Köhler et al., 2006).

In this context, the distinction between different types of technology is crit-
ical. Theories of directed technological change are based on the idea of in-
duced innovation acknowledging that relative prices may influence the allo-
cation of R&D efforts and steer the direction of research (Popp et al., 2010).

A major research gap, that was addressed in the early 2000s, is the lack of
micro-foundations that link the activities of individuals to the process of tech-
nological development. A major contribution was Acemoglu’s (2002) model
of directed technical change that built the foundation of a series of follow-
up works that incorporated endogenous directed technological change into
the macroeconomic analysis of climate policy (e.g. Acemoglu et al., 2012;
Hart, 2019; Lemoine, 2018). These theoretical refinements were addressed
in a surge of empirical studies aimed to gain a deeper understanding of the
nexus of climate policy and innovation (Popp, 2019).

These theories search for explanations of the origins of technological devel-
opment. But technological innovations are only one side of the coin. Tech-
nologies do not only need to be developed. Technologies also need to diffuse
to have an impact. A second stream of research on the nexus of technology
and climate change has elaborated the reasons why diffusion can be sluggish
and how this might be stimulated by policy. Typical reasons for sluggish
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diffusion are, for example, investment cycles, the imperfect spread of infor-
mation and/or heterogeneous benefits of adoption. An overview of theoret-
ical approaches and empirical approaches to the study of green technology
diffusion and its relation to climate policy is provided by Allan et al. (2014).

Technology development and technology diffusion are inherently linked.
Technology diffusion increases the market size of a technology and the
amount of R&D resources available. Higher R&D investments stimulate
innovation and technical improvements. On the side of technology users,
learning effects may improve the effective usability of a technology. Both
may stimulate the demand further. These self-reinforcing dynamics are dif-
ficult to capture analytically. Small events may have extreme effects. Hetero-
geneity and interactions at the mirco-level need to be understood to explain
how emergent patterns in the technological evolution (Dawid, 2006). Mutual
feedbacks may also have a qualitative dimension. Feedback from technology
users influences the direction and type of improvement that is pursued by
developers. Innovations may alter user practices and the meaning of technol-
ogy in users’ everyday life (Di Stefano et al., 2012; Geels, 2004; Safarzyńska
et al., 2012). In this thesis, I will not address this qualitative dimension of
mutual feedback. However, this is partly a matter of interpretation.6

The methodological basis of this dissertation was laid by a whole genera-
tion of computational economists. Their seminal work created a new pow-
erful toolbox for economic analysis that enables and supports new and more
heterodox ways of economic reasoning. Methodological improvements in
model calibration, validation and technical tools of simulation and analysis
contributed to the wider acceptance of ACE as a new paradigm in economic
theory. Good overviews of the methodological debates, developments and
foundations of ACE are provided by the Handbooks of Computational Eco-
nomics Volume 2 and 4 (Hommes and LeBaron, 2018; Tesfatsion and Judd,
2006). This thesis benefited substantially from these early contributions, par-
ticularly those in agent-based macroeconomics (Dawid and Gatti, 2018).

Within the broad field of ACE, this thesis profited particularly from the
achievements of a large-scale European research project with the name EU-
RACE - ’An Agent-based Software Platform for European Policy Design with Het-
erogeneous Interacting Agents: New Insights from a Bottom-Up Approach to Eco-
nomic Modeling and Simulation’. Within this project (2006-2009), a group
of economists and computer scientists developed an agent-based macroe-
conomic simulation toolbox consisting of software, programming environ-
ments and a large-scale, empirically calibrated macroeconomic simulation
model that can be used for different types of economic policy analysis (Deis-
senberg et al., 2008).

6But it becomes critical if the theoretical concepts used in this thesis are brought to empir-
ical data. The eco-innovation concept might be a useful approach to reducing the definition
of a green technology to its environmental performance compared to the status quo (cf. Ren-
nings, 2000). However, this is an intrinsically dynamic definition that is not easy to bring to
data across a longer time horizon.
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The Eurace@unibi model, that is the methodological basis of this dissertation,
is one of the outcomes of this project. It provides a macroeconomic environ-
ment that is constructed from the bottom-up. Macroeconomic aggregate vari-
ables and dynamics are explicitly deduced from the interactive and adaptive
behavior of heterogeneous agents. This provides a modeling environment
that is well suited to study processes of learning, adaptation to change but
also macroeconomic, distributional and structural consequences associated
with technological change (Dawid et al., 2019b).

1.2 Outlook on this thesis

A transition to climate-friendly technology can be thought as a large scale
substitution process in which an incumbent technology is replaced by a new
one. The aim of this thesis is to understand the mechanisms that drive the
process of technology substitution and its macroeconomic side effects. This
understanding is crucial for the development of political instruments that
accelerate the transition to green technologies and smoothen disruptive con-
sequences.

1.2.1 Major contributions

The general contributions of this thesis can be grouped into a methodologi-
cal and theoretical part. Methodologically, I contribute an agent-based evolu-
tionary approach to study technology transitions at the macroeconomic level.
The potential of evolutionary, economic ABMs in the nexus of climate and
innovation economics has been extensively discussed in recent years (Balint
et al., 2017; Ciarli and Savona, 2019; Farmer et al., 2015; Safarzyńska et al.,
2012; Stern, 2016) and an increasing number of climate-economic ABM be-
came available (see Balint et al., 2017; Ciarli and Savona, 2019, for a review).
But the full potential of the flexible and microeconomically granulate mod-
eling framework of ABMs to address the complex nexus of socio-technical
transitions and the economic implications of climate change is still far from
being exploited. The approach introduced in this thesis addresses one par-
ticular aspect of climate economics. That is technological change.

Technological change is studied with a green technology extension of the
Eurace@unibi model that forms a major methodological contribution of this
thesis. I extended the original model in mainly five dimensions. (1) I intro-
duced two heterogeneous types of production technology. One of them is
interpreted as a green technology, the other is called conventional. Firms’ pro-
duction technology is two-dimensional. A tangible dimension is embodied
in physical capital goods that are traded on a market. A second intangible
dimension is embodied in the technological capabilities of firms. These ca-
pabilities are not tradable. (2) Technological capabilities are modeled as the
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aggregate of firm’s employees who are endowed with evolving technology-
specific skills. These skills are needed to work effectively with a specific type
of capital goods. Skills are learned during work. The pace of learning is de-
pendent on the type of physical capital that is used by the firm where the
household is working. (3) Firms decide whether to invest in green or con-
ventional capital dependent on the technological capabilities of employees,
available technology options and the market environment. (4) An environ-
mental accounting keeps track of the environmental impact of final goods
sector. (5) A policy module allows to investigate the impact of different dif-
fusion policies.7

The key difference compared to the original model is the heterogeneity of
technology and the associated amendments in the type-dependent process
of learning and investment. The model extension allows to study topics of
directed technological change, innovation diffusion and technology substitu-
tion processes. A key feature of the model is endogenous, technology-specific
absorptive capacity of heterogeneous technology adopters that evolves
through learning.

The comprehensive, macroeconomic framework of the Eurace@unibi-eco
model introduced in this thesis is well suited for transition studies for mainly
two reasons. First, the granulate nature of agents’ decision making rou-
tines allows a detailed view of individual adoption behavior of heteroge-
neous agents. Technology-adopting firms are differently endowed with
technology-specific skills. These skills are learned over time and enable firms
to make effective use of new technology. This explicit representation of tech-
nological capabilities allows investigating sluggish processes of green tech-
nology diffusion and evolving heterogeneity of firms’ capacities to cope with
changing technological environments.

Second, the comprehensive and consistent link between the behavior of in-
dividual agents and emergent patterns at the macroeconomic level allows
investigating the economic consequences of transitions. For example, it is
possible to study the impact of different transition patterns on aggregate out-
put, productivity growth, market structure and even the distributional con-
sequences. This allows developing consistent explanations for the emergence
of new technology, agents’ responses and macroeconomic evolution.

The second major contribution of this thesis is a theoretical one. The time
for effective climate change mitigation is short. In this thesis, I study and
evaluate pathways along which a technology transition might evolve. Recent
studies in climate science are sufficiently alarming to justify the urgent need
for radically transforming patterns of consumption and production (Steffen
et al., 2018). The need is widely recognized by policymakers, but adopted
measures are insufficient (Hagedorn et al., 2019; Rogelj et al., 2016).

7A comprehensive documentation of the model extension is available in the supplemen-
tary material I. A summarized comparison of the extended model to the original version can
be found in table 2.A.1.
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This thesis searches for explanations why the transition appears to be so dif-
ficult. It focuses on aspects of feasibility, acceleration and governance of a tran-
sition from an economic perspective. This perspective raises different ques-
tions compared to the theoretical contributions that search for optimal policy.
Given the deep uncertainty about climate change effects and the dynamics
of socio-technical change, this is a pragmatic approach that seeks to improve
the understanding of socio-technical abatement pathways and their technical
and societal feasibility.

In this thesis, I do not study mutual climate-economy feedbacks but use the
climate-induced need for technological change to motivate the research ques-
tions and to reject the assumption of technological neutrality. However, the
proposed theory of technological change and the model are general and can
be straightforwardly applied to other topics of directed technological change,
e.g. digitization, economic development and convergence.

1.2.2 Structure and outlook

This thesis is composed of this general introduction, three main chapters and
a short conclusion. The three main chapters focus on different aspects of
socio-technical transitions. The series of chapters incrementally generalizes
the theoretical perspective on technological knowledge and its relevance for
transition dynamics.

Each of the chapters is a self-contained research article that consists of a the-
ory part and a simulation study using Eurace@unibi-eco. Each chapter has a
separate appendix that includes all necessary information to ensure the self-
containedness. The model descriptions in the chapters are kept as short as
possible. In addition to the main chapters, this thesis contains two sections
with supplementary material (SM) that provides a more comprehensive, self-
contained model documentation (SM I) and some technical detail about the
statistical analyses in chapter 3 and 4 (SM II). The documentation has been
published as an independent working paper (Hötte, 2019d). It explains the
full model and elucidates in detail the link of the model extension to the un-
derlying baseline model Eurace@unibi (Dawid et al., 2019b).

As a stylized model, the process of a technology transition can be thought as
a dynamical system composed of two interdependent dynamical functions,
νg and πg with νg having values in [0, 1]. A diffusion curve, represented by
νg, describes the share of green technology use in relation to a conventional
incumbent. If the green technology g is not used, νg = 0. This is the ini-
tial state when the green technology is not yet available, but this may also
describe a situation in which the economy is locked in the incumbent tech-
nology. A green transition has occurred, if νg = 1, i.e. if only the green
technology is used. The diffusion curve

νg = f (πg, t)
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is a function of time t and the relative superiority of the green technology πg.

The relative use of a technology in the economy changes over time when
depreciating physical artifacts are replaced by newer versions or if the econ-
omy grows and new capacities are installed. When agents are faced with in-
vestment decisions, they may choose between different technology options.
Their choice is dependent on the relative superiority of a technology type, i.e.

∂νg

∂t
= g(πg)

where πg as relative superiority of the green technology.8 If the green tech-
nology is superior compared to the incumbent, it is adopted and the share of
green technology use increases, i.e. ∂νg

∂πg > 0 if νg < 1 and πg is sufficiently
high.

The relative superiority πg is a bundle of features that determine the relative
profitability of using green technology. For example, πg may reflect the rela-
tive productivity of green machinery. It can also capture input costs required
to use or produce green or conventional machinery, regulatory compliance
costs or consumer preferences for products produced with green machinery.
In this thesis, I study the determinants that influence the evolution of the
relative superiority. Throughout the chapters, I incrementally introduce dif-
ferent groups of variables that matter. These groups of variables can be used
to describe competing technologies.

In chapter 2, I introduce a first group represented by relative, cumulative
endowments with technology-specific knowledge κg. Technology-specific
knowledge is embodied in technical innovations, physical installments and
productivity but also in technology users’ skills. These skills are learned by
using a specific technology and allow to make effective use of a technology
type. Relative knowledge is one determinant of πg with ∂πg

∂κg > 0. For ex-
ample, if the technical productivity of green capital or if users’ relative skill
endowments are high, the realized relative performance of green capital is
also high. The evolution of κg over time t is dependent on the market share
of green technology νg, i.e. ∂κg

∂t = `(νg, ·). The higher the market share, the
faster is the pace of relative knowledge accumulation. If a technology is used
intensively, its users learn how to use it. A higher market share does also
coincide with a higher availability of financial resources that are invested in
R&D that contributes to the technical improvement of a technology. In chap-
ter 2, I study the role of initial endowments with κg for the process of technol-
ogy diffusion. Lower endowments with cumulative knowledge stocks may
be a barrier to diffusion for new technologies.

The evolution of relative technological knowledge ∂κg

∂t = `(νg, χ) is also de-
pendent on the properties χ of competing technologies. These properties
χ affect the pace at which relative technological knowledge is accumulated.

8Note that many relevant aspects, e.g. depreciation rates and stochasticity, are neglected
in this stylized model for the sake of a simpler representation.
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For example, some technologies are easy to learn and knowledge is accu-
mulated fast. Technologies may be also described by the similarity to their
competitors. If technologies are similar, accumulated technological knowl-
edge is applicable to both technology types. These properties moderate the
influence of νg on the pace of relative knowledge accumulation. If the sim-
ilarity is high, both knowledge stocks grow if one technology is used and
the relative endowment with knowledge κg changes only slowly. These prop-
erties describe cross-technology interactions in the learning process and are
studied in chapter 3. This second group of variables, called interactive proper-
ties χ, determines the pace at which relative endowments with technological
knowledge diverges. The divergence coincides with a divergence in the rel-
ative superiority of competing technologies. This is a driver of technological
specialization in the economy.

Taking chapter 2 and 3 together, the evolution of technological knowledge
can be described by a dynamic function

∂κg

∂t
= `(νg(πg, t), χ).

Relative technological knowledge κg is not the only determinant of the rel-
ative superiority πg. Technologies are used in a specific economic and soci-
etal context that determines the value of specific properties of a technology.
For example, an environmentally friendly technology is only more valuable
than a conventional one, if the society has a preference for a sound environ-
mental quality. A technology, that saves material input requirements, is only
valuable if material inputs are costly. Preferences and input costs can not be
influenced directly by technology users and developers. These exogenous
properties ξ, introduced in chapter 4, make up the third group of variables
that influence the dynamics of transition.

The dynamical system composed of these three groups of properties can be
described by

νg = f (πg, t) and πg = h(κg(νg, χ, t), ξ, t)

and the differential equations introduced above.

This is a deterministic representation that is aimed to introduce the main
concepts but neglects stochasticity. In reality and throughout the analyses in
this thesis, the dynamical system entails stochastic elements at the microeco-
nomic level which may tip the technological evolution into one or the other
direction. In the following, I explain how the conceptual aspects are opera-
tionalized in the three main chapters of this dissertation.
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Chapter 2: How to accelerate green technology diffusion? Directed techno-
logical change in the presence of coevolving absorptive capacity

In this chapter, I study the evolution of technological knowledge and investi-
gate the role of different types of diffusion barriers. In the terminology of the
framework above, I study ∂νg

∂κg and the feedback effects of νg on the evolution
of κg as source of path dependence of technological change.

Path dependence is one explanation for the sluggish diffusion of green tech-
nologies. Heterogeneous firms acquire capital that differs by technology type
and build up type-specific technological know-how needed to use capital ef-
ficiently. Type-specific know-how can not be bought on the market but needs
to be learned. The learning process is dependent on the intensity to which
a firm is using a specific type of technology. It is a source of heterogeneous
benefits of technology adoption at the firm level.

Path dependence emerges from cumulative stocks of technological knowl-
edge manifested in the productivity of supplied capital and firms’ capabili-
ties. Increasing returns arise from induced innovation and learning by do-
ing. Relatively lower endowments of technological knowledge are a barrier
to diffusion for new technologies. This chapter gives a short introduction to
the implementation of these mechanisms as a green technology extension in
the Eurace@unibi model.

The model is used to generate a sample of simulated diffusion curves. I show
how the evolution of relative stocks of technological knowledge can explain
the shape of these curves. Over time, the economy converges to one of two
possible technological regimes in which only one of the two technologies is
used. Technological uncertainty is macroeconomically costly if learning and
R&D resources are wasted for a technology that is obsolete in the long run.

In an experiment, I analyze how the effectiveness of diffusion policies de-
pends on the type and strength of barriers. Environmental taxes can out-
weigh lower productivity and subsidies perform better if lacking capabilities
hinder firms to adopt a sufficiently mature technology.

This paper contributes a theory of coevolving absorptive capacity to the liter-
ature on directed technological change. The problem of sustainability transi-
tions is reframed as a coordination problem among heterogeneous adopters.
This is a methodologically and theoretically new approach in climate eco-
nomics.

Chapter 3: Skill transferability and the stability of transition pathways - A
learning-based explanation for patterns of diffusion

In the first paper, I have shown that the accumulation of technology-specific
know-how at the firm-level drives the stabilization of a diffusion process and
reduces uncertainty about the future technological state. Learning is one
key mechanism of the technological specialization process. In this chapter,
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I study the determinants of technological learning that were called interactive
properties χ in the conceptual model above.

More specifically, I address the effects of skill transferability for technology
adoption behavior at the firm-level. Technological know-how is necessary
to make effective use of new machinery. Firms accumulate know-how when
working with specific machinery. Technological know-how can be transfer-
able across technology types if competing technology types are sufficiently
similar. Radical innovation differs by technology type and the transferability
of knowledge is low.

Based on the empirical and theoretical innovation literature, I introduce the
microfoundations of technological learning in the Eurace@unibi-eco model. In
a simulation study, I show that a high transferability of skills has ambiguous
effects. It accelerates the diffusion process initially but comes with the cost
of technological uncertainty and retarded specialization in the long run. For
firms, it is easy to adopt new technology, but it is also easy to switch back to
the incumbent type.

In the existing literature, microeconomic models of technological learning at
the firm-level are scarce. This paper introduces a formal theory of learning
and shows its implications for emerging, macroeconomic patterns of diffu-
sion. This type of analysis and the results are a novelty in the literature on
macroeconomic technological change.

Chapter 4: Pathways of transition and the characteristics of competing
technology: A taxonomy of technologies and a policy experiment

In the first papers, I have shown that the characteristics of competing tech-
nologies and external conditions help to explain the shape of diffusion
curves. Diffusion curves are a formal representation of transition pathways.
Empirically, pathways of transition differ across countries and technologies.
Sometimes, new technologies are rapidly taken up, sometimes these pro-
cesses are very unstable and associated with disruptions in the market struc-
ture. In other cases, economies or industries are locked in the incumbent
technology.

Technology diffusion is not only dependent on the relative endowment with
technological knowledge κg and its accumulation. The relative performance
of a specific technology option also depends on external conditions ξ. Un-
derstanding the reasons for observed differences in transition patterns can
be important to develop effective transition policies and to gain an intuition
for the macroeconomic side effects.

In the this chapter, I propose a unifying framework that reconciles the dif-
ferent concepts introduced in the preceding chapters and develop a taxon-
omy to characterize technologies. The taxonomy is linked to the multi-level
perspective (MLP) of transition theory which is a widely used conceptual
framework for historical and empirical transition studies (cf. Köhler et al.,
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2019; Lachman, 2013). This framework conceptualizes transitions as dynamic
coevolutionary processes in which emergent niche technologies possibly re-
place an incumbent socio-technical regime. External conditions of the so-
called socio-technical landscape operate in favor of or against entrant tech-
nologies.

The typology, introduced in this chapter, reflects the properties of technol-
ogy in a landscape and the relative maturity of an emergent niche technol-
ogy. Interactions in the process of technological specialization depend on the
transferability of accumulated complementary skills and infrastructure. This
is a generalization of the technology concept of the Eurace@unibi-eco model
and an economic interpretation of the MLP. I illustrate how the characteris-
tics of competing technologies can explain emergent transition pathways and
discuss empirical examples.

Policies may alter the external landscape conditions of the technology race.
In a policy experiment, I demonstrate how different market-based instru-
ments can be used to speed up and stabilize a transition pathway. Taxes and
subsidies perform differently conditional on the characteristics of competing
technologies.

The simulation results help understanding why transition pathways and the
effectiveness of policies differ across countries and technology groups. These
insights are crucial for policy design. The lack of formalization and vague-
ness is a weakness in existing approaches to transition studies (Lachman,
2013). This paper adds a theoretical framework for transition studies that
can be used to systematize and formalize empirical data and to think about
technology transitions in economic termini.

1.2.3 Associated publications

At the time of writing this thesis, a slightly different version of chapter 2 has
been (online) published by Energy Economics (Hötte, 2019e). Chapter 3 and
4 have been submitted to journals and the decisions are pending. Compre-
hensive versions of the results presented in the chapters are published in two
working papers (Hötte, 2019b,f), in one technical paper, that documents the
model (Hötte, 2019d), and three data publications to ensure transparency and
reproducibility of the analyses (Hötte, 2019a,c,g).
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Chapter 2

How to accelerate green technology
diffusion? Directed technological
change in the presence of
coevolving absorptive capacity

2.1 Introduction

Climate change is an existential threat to human conditions of living. The
time window to limit global warming to a manageable level is closing. If
a certain temperature threshold is crossed, an irreversible cascade of tip-
ping points in the climate system may be triggered that drives the warm-
ing dynamics out of human control. Steffen et al. (2018) have shown that
this threshold may be two degrees or even lower. The Paris Agreement im-
plies a median warming of 2.6-3.1 degrees (Rogelj et al., 2016). To reduce
the risk of triggering catastrophic irreversibilities, the development and dif-
fusion of climate-friendly technologies need to be accelerated (cf. Hagedorn
et al., 2019; IPCC, 2018; Steffen et al., 2018).

Many of the technological solutions are known and available on the market
(Hagedorn et al., 2019; IPCC, 2018). Some of these technologies are even su-
perior, e.g. if they improve energy efficiency or save material input costs.
But diffusion is sluggish. In some cases, an initial diffusion is even reversed,
although the technology is superior in the long run. Path dependence is an
explanation for sluggish diffusion and technological lock-in in inferior tech-
nologies (Cowan, 1990; David, 1985; Geels and Schot, 2007; Høyer, 2008; Un-
ruh, 2000). A microeconomic source of path dependence is the dependency
of R&D activity and adoption decisions on current endowments with tech-
nological knowledge (Allan et al., 2014; Dosi, 1982; Sarr and Noailly, 2017).

In this paper, path dependence at the microeconomic level is integrated into
a macroeconomic model of directed technological change. This systematic
approach helps to understand how green transitions can be accelerated.
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Based on empirical and theoretical insights of the evolutionary innovation
and macroeconomic directed technological change literature, a microeco-
nomic model of technological learning is developed. Capabilities of firms
are accumulated over time during production. The model is implemented
as an eco-technology extension of the macroeconomic agent-based model
(ABM) Eurace@unibi (Dawid et al., 2019b; Hötte, 2019d). Evolving capabil-
ities of heterogeneous firms determine whether firms can profitably adopt
clean technologies.

Path dependence is decomposed into supply- and demand-side diffusion
barriers embodied in the productivity of supplied capital goods and absorp-
tive capacity of heterogeneous adopters. Absorptive capacity is the capabil-
ity to make effective use of a specific technology.

Technology is heterogeneous by type (green or brown). Firms choose be-
tween types when acquiring capital goods and build up type-specific tech-
nological know-how needed to exploit the productive potential of capital.
Path dependence arises from cumulative knowledge stocks manifested in the
productivity of supplied capital and firms’ capabilities. Increasing returns
in knowledge accumulation arise from positive feedback loops of market-
induced innovation and learning by doing.

The extended model is used to simulate a technology race between a con-
ventional incumbent and a green entrant technology. The utilization of the
incumbent technology requires costly inputs of a natural resource. The green
technology is superior because it allows adopters to save input costs, but it
suffers from barriers to diffusion embodied in lower productivity of supplied
capital and lacking technology-specific capabilities of adopters.

Lower productivity of the entrant is a supply-side barrier to diffusion because
codified technological knowledge embodied in the productivity of the capital
goods can be bought on the market. Lacking capabilities are demand-side dif-
fusion barriers. Capabilities, interpreted as tacit knowledge, can not be bought
on the market but are learned during technology utilization (cf. Cowan et al.,
2000).

In the simulations, the entry conditions for the green technology are suffi-
ciently favorable that the green technology initially diffuses. Initial diffusion
is not necessarily stable and depends on the dynamics of competition, inno-
vation and learning. Whether a green transition occurs is probabilistic. In an
experiment, it is shown how the two types of diffusion barriers influence the
probability and pattern of diffusion.

Four key results are derived from this first analysis:

1. The convergence to a stable technological state is driven by endogenous
innovation and technological learning. Both weaken or strengthen the
firm-specific profitability of green technology adoption. This is a mech-
anism of “endogenous recreation” of a technological regime (cf. Geels and
Schot, 2007).



Chapter 2. How to accelerate green technology diffusion 26

2. Despite the initial superiority, the success of diffusion is not certain.
In the presence of increasing returns to diffusion, “small events” at the
micro-level do not necessarily average out and may have a lasting im-
pact on the technological trajectory (Arthur, 1989).

3. Path dependence may cause a lock-in in an inferior technology. In the
beginning, the incumbent technology dominates the market. Scale ef-
fects in learning and innovation may dominate and the initial superior-
ity of the green, entrant is offset.

4. The macroeconomic performance is sensitive to the stability of the dif-
fusion process. Technological uncertainty is macroeconomically costly.
Potential adopters and technology developers possibly waste learning
and R&D resources in a technology that is obsolete in the long run.

The analysis does also show that relative prices and the relative performance
of technology types matter. This is a starting point for market-based climate
policies. In a policy experiment, it is shown that the performance of differ-
ent policy instruments is conditional on the type and strength of diffusion
barriers.

If barriers are supply-sided, taxes on the natural resource input compensate
for the disadvantage of lower productivity. If barriers are demand-sided and
adopters’ have a lower absorptive capacity for green capital, subsidies per-
form well. Subsidies paid as a price support for green products strengthen
increasing returns and contribute to the stabilization of the emergent techno-
logical regime. This may be associated with a market concentration process
because the technological catch-up of late adopters is impeded by the policy.
Investment subsidies effectively stimulate green technology uptake but may
increase technological uncertainty if path dependence is strong.

The optimal stringency and instrument-mix of policy are sensitive to the type
and strength of diffusion barriers. Policies that are not sufficiently strict to
trigger a permanent transition increase technological uncertainty. This leads
to a misallocation of learning and R&D resources and undermines the tech-
nological specialization. Sufficiently strict policies can facilitate the coordi-
nation among economic agents and accelerate the specialization in the new
technology. This can reduce the costs of technological learning significantly.

A novelty of this study is the coevolutionary approach to endogenous inno-
vation and coevolving, heterogeneous absorptive capacity. Previous studies
have focused on diffusion barriers at the supply side and policy-induced in-
novation (cf. Balint et al., 2017; Löschel, 2002; Popp et al., 2010). In this paper,
it is shown that the distinction between the types of adoption barriers can
be important to understand the differential effectiveness of different political
instruments.

In the majority of previous macroeconomic studies, directed technological
change is considered as an allocation problem with a focus on the alloca-
tion of R&D resources (cf. Acemoglu et al., 2012; Balint et al., 2017; Haas
and Jaeger, 2005; Lemoine, 2018). Here, the incorporation of heterogeneous
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agents re-frames the study of directed technological change and sustainabil-
ity transitions as coordination problems. Coordinated adoption behavior
in the presence of self-reinforcing learning and innovation dynamics con-
tributes to the stabilization of transition pathways. This feature is enabled by
the modeling approach based on heterogeneous interacting agents.

The remainder of the paper is structured as follows: In section 2.2, the paper
is motivated by a survey of the related literature. In section 2.3, the main
features of the eco-technology extension of the Eurace@unibi model and the
design of experiments are introduced. The results of the baseline simula-
tion and a series of experiments on the technological starting conditions of
the entrant technology are presented in section 2.4. It is discussed how the
mechanisms underlying the simulated diffusion curves can explain diverse
empirically observed patterns of diffusion. Section 2.5 is dedicated to the
policy experiments. Section 2.6 concludes.

2.2 Background

On the theoretical level, this paper links the macroeconomic literature on
endogenous and directed technological change with evolutionary, microeco-
nomic studies of technological learning. It focuses on the interplay between
technological change and the effectiveness of climate policy.

Methodologically, the paper belongs to the field of evolutionary, agent-based
macroeconomic analyses of climate policy.

2.2.1 Directed technological change as evolutionary process

Two aspects are important for the understanding of directed technological
change. First, technological change is endogenous, i.e. it is driven by goal-
oriented R&D and adoption decisions. Second, technological change is non-
neutral and the choice between different technology types depends on their
relative performance (Balint et al., 2017; Löschel, 2002; Pizer and Popp, 2008;
Popp et al., 2010).

In the evolutionary literature of innovation and technological change, adap-
tive behavior and interactions at the microeconomic level are a source of
emerging patterns of innovation, diffusion and technological change at the
macro level (Balint et al., 2017; Farmer et al., 2015).

Technological change is driven by the coevolution technological develop-
ment and learning of interacting agents subject to bounded rationality and
group dynamics. Path dependence and lock-in effects may occur (Sa-
farzyńska et al., 2012).

The economic environment influences the decisions of investors whether an
invention is introduced on the market (Dosi, 1991; Foxon and Andersen,
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2009) and captures regulatory, infrastructural, technological and behavioral
aspects (Safarzyńska et al., 2012).

In this study, the economic environment is understood as all factors that en-
able or hinder firms to adopt climate-friendly production techniques. Poten-
tial adopters are faced with firm-, industry- or region-specific challenges that
arise from accumulated infrastructures, technological capabilities and behav-
ioral routines (Arundel and Kemp, 2009). Absorptive capacity describes firms’
ability to make use of specific technological novelties (Cohen and Levinthal,
1990). It influences the perception and value of a technological solution, and
may be a source of heterogeneous adoption patterns (Allan et al., 2014).

Here, absorptive capacity is interpreted as firms’ tacit knowledge required to
use a specific technology effectively. These capabilities are tacit because they
can not be traded on the market (Cowan et al., 2000). Tacit knowledge is het-
erogeneous across firms. Insufficient capabilities and limited transferability
of capabilities across technology types can be a barrier to adoption (Arundel
and Kemp, 2009).

The decisive property of absorptive capacity and addoption barriers is
the cumulative nature, not the conceptual coverage. The accumulation of
technology-specific capabilities depends on the extent to which a specific
technology type is used. This is a microeconomic source of increasing re-
turns to adoption (Arthur, 1989; Dosi and Nelson, 2010).

2.2.2 Technological change in macroeconomic models of cli-
mate change

The dynamics of technological change are critical for the effectiveness and
costs of climate policy. A comprehensive overview of early approaches to in-
corporate directed technological change into climate economics and simula-
tion models is provided by Grübler et al. (2002) and Löschel (2002). In early
approaches, directed technological change is quasi-autonomous and expla-
nations about the origins of green technology development was lacking.

Acemoglu (2002) closed this gap and integrated a microeconomically
founded theory of the R&D market into an analytical, macroeconomic gen-
eral equilibrium framework. This work built the basis for a subsequent
climate-economic applications and studies of innovation-led transitions to
green technology (Acemoglu et al., 2012; Lamperti et al., n.d.; Lemoine, 2018).

This study uses an ABM and focuses on the role of a heterogeneous popu-
lation of green technology adopters with evolving absorptive capacity. Un-
certainty, interactions of boundedly rational, heterogeneous agents and the
emergence of multiple equilibria are critical for the analysis of technological
change in the long run (Farmer et al., 2015; Pindyck, 2013). ABMs offer a tool
to account for these aspects.
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Seminal approaches in macroeconomic agent-based climate policy modeling
were made by Gerst et al. (2013); Lamperti et al. (2018b); Rengs et al. (2015);
Wolf et al. (2013). Their models focus on different aspects related to the nexus
of climate, the economy and policy. Haas and Jaeger (2005) and Wolf et al.
(2013) modeled technological change as a process of imitation and mutation
which is interpreted as innovation, and endogenous dynamics of differential
R&D investments.

The ENGAGE model, proposed by Gerst et al. (2013), focuses on the energy
sector. Technological change from learning by doing and accumulated R&D
efforts is manifested in energy efficiency and productivity improvements of
capital goods.

Rengs et al. (2015) focuses on the evolution of consumer behavior and the
interplay of Veblen- and snob-effects steering the development of consumers’
preferences for sustainable products.

A very recent contribution is the integrated assessment approach introduced
by Lamperti et al. (2018a). It captures coevolutionary features of the economy
and potential feedbacks from climate change. Endogenous growth emerges
from different types of incremental innovation. The authors analyzed how
different policies affect the probability of a green transition (Lamperti et al.,
2018b).

Monasterolo and Raberto (2019) extended a behavioral Stock-Flow consistent
model by an energy module to study the effect of phasing out of fossil fuel
subsidies on energy transition dynamics.

In contrast to the existing (agent-based) climate economic modeling ap-
proaches, the model used in this paper focuses on the demand side of tech-
nology and the evolution of absorptive capacity of heterogeneous adopters.

2.3 The model

The model is an extension of the ABM Eurace@unibi (cf. Dawid et al., 2019b).
The Eurace@unibi model simulates an artificial, stock-flow consistent macroe-
conomy with heterogeneous interacting agents. It is able to reproduce a se-
ries of micro- and macroeconomic stylized facts. In previous studies, the
model was used to study the impacts of different macroeconomic policy in-
terventions (e.g. Dawid and Gemkow, 2013; Dawid et al., 2014, 2018b,c).

In the following subsections, I sketch the main structure of Eurace@unibi and
introduce the eco-technology extension of the model schematically. A concise
technical introduction to the model extension including the relevant equa-
tions is available in the appendix 2.A.

The Eurace@unibi baseline model is extensively documented in Dawid et al.
(2019b). A self-contained description of the eco-technology extension and its
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linkage to the baseline model is available in the supplementary material (SM)
I. The full code of the model is available in a data publication (Hötte, 2019a).

2.3.1 Overview of the macroeconomic structure

The Eurace@unibi model represents a macroeconomy composed of different
groups of heterogeneous agents that are linked by their trans- and interac-
tions on different markets and by mutual flows of information. The most
relevant agents are depicted in figure 2.1. Heterogeneous households supply
labor on the labor market to consumption goods (CG) producing firms. They
spend their income for consumption and savings. Households differ by in-
come and skill endowment b. CG firms use labor L and capital K to produce
a homogeneous consumption good. Employees of a firm need to know-how
to use capital goods for production. This know-how is captured by employ-
ees’ specific skill level. The average skill level of a firm’s workforce is a proxy
for the technological capabilities B of the firm. Capital or investment goods
(IG) are supplied by two heterogeneous IG firms, each representing a specific
technology type. Each of them supplies a range of vintages with different
productivity levels A. Probabilistic, incremental innovation enables IG firms
to bring more productive capital goods to the market.

FIGURE 2.1: Macroeconomic structure of Eurace@unibi-eco

Capital producers

Households

Banks

Indicators

Firms

C

G
Innovation

Supply

Skills

Work

Consumption

Saving

Credit supply

Capital stock

Workforce
Env.

impact

Produc-

tivity

Diffusion

Production

Credit taker

Capital

market

Labor

market

Goods

market

Credit&

closure

Technology

A

B

K

L

K

∆A

L

∆b

Sketch of the most important model elements, i.e. agents and mar-
kets. G: green (C: conventional) capital goods producer. A: produc-
tivity of capital K, B: firms capabilities embodied in labor L. Arrows

indicate market transactions and direction of influence.

Capital goods differ by productivity and technology type. One of the two IG
producers supplies a climate-friendly, green technology, the other supplies an
environmentally harmful, conventional alternative. Both IG producers invest
part of their revenue in R&D activities. Monthly R&D spendings positively
affect the probability of innovation success. Successful innovation is associ-
ated with an upwards shift of the IG producer-specific technological frontier.
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If an IG producer successfully innovates, the productivity of supplied capital
is multiplied by a factor of (1 + ∆A).

Dependent on the productive properties of capital and firms’ technological
capabilities, CG firms make investment decisions and buy capital goods on
the capital market.

Technology in the model is interpreted as the bundle of the productivity char-
acteristics of capital, firms’ technological capabilities and the type of capital
(green or conventional). Firms’ production technology is decisive for their
productivity and environmental performance. On the aggregate level, tech-
nology is a core indicator to study diffusion patterns and the economic and
environmental performance.

Firms can apply for credit from banks to cover current expenditures and to
finance investment if their own financial means are insufficient. The financial
market is used as a technical tool to ensure the macroeconomic and financial
closure of the model.

A government (not shown in figure 2.1) has a re-distributive and regulatory
function. It collects income from taxes and pays unemployment benefits. The
government may also impose different (climate) policies.

Firms’ market exit is endogenous. Firms that are unable to repay loans
go bankrupt and exit the market. New firms are founded at random and
build up production capacities out of an initial monetary budget (see Hart-
ing (2019)).

The transactions between the agents are stock-flow consistent. Agents be-
have boundedly rational, have limited foresight and incomplete informa-
tion. Decision making, information updating processes and routines are
asynchronous. This is a source of stickiness of prices, wages and production
decisions.

Asynchrony means that some routines are executed in a daily, monthly or
yearly frequency, other routines are event-based. For example, firms’ credit
demand routine is only executed if own financial means are insufficient. The
asynchrony of production and consumption routines implies that there is no
instantaneous market clearing.

2.3.2 The eco-technology extension of Eurace@unibi

The model extension focuses on endogenous innovation dynamics of com-
peting technologies supplied by two representative capital good producers.

Competitive innovation dynamics are modeled as a technology race between
an incumbent, conventional technology c and an entrant, green technology g.
The use of the conventional technology is environmentally harmful and re-
quires costly material and energy inputs.
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The green technology is environmentally neutral and allows adopters to re-
duce material input costs. It is potentially technologically superior in the
long run. More generally, technological superiority is a reduction in unit
production costs. This reduction is enabled by radical innovation and not
achievable by the incumbent technology.1

In this study, the radical innovation of the market entrant is interpreted as a
stylized version of input-saving eco-innovation defined as a change in (pro-
duction) routines that is less environmentally harmful than the incumbent
alternative and input cost saving (Arundel and Kemp, 2009).

Technology The most decisive part of the model is the representation of
firms’ production technology. Firms use labor and capital as physical inputs.
At the firm level, technology is presented as a two-dimensional bundle of
intangible knowledge stocks embodied in these two inputs.

Codified knowledge is represented by the aggregate, average productivity
Aig

i,t =
1

Kig
i,t

∑v∈Kig
i,t

kv
i,t Av of a firm’s technology-specific capital stock Kig

i,t com-

posed of single capital stock items kv
i,t of technology type ig = c, g.2 The

productivity Av of a capital good kv is fix, but the composition of the capital
stock at the firm level may change as a result of investment and deprecia-
tion.3 The index v indicates a specific vintage with the properties (Av,1(v))
where 1(v) is the indicator for technology type ig. It takes the value one if
the vintage is conventional, and zero otherwise. v simultaneously indicates
the theoretical productivity and the technology type.

Tacit knowledge is represented by technological capabilities Big
i,t = ∑h∈Li,t

big
h,t

of CG firm i where big
h,t are the technology-specific skills of employees h ∈ Li,t

in time t. Technology-specific skills are needed to make effective use of the

1In a more general interpretation, this can be any type of technology or machine that
complements one unit of labor, but its use is cheaper than the use of the pre-existing alterna-
tive. It can be a reduction of material or energy input requirements or regulatory compliance
costs. In another context, the reduction could also be understood as the replacement of cer-
tain occupations or tasks that are complementary to other, non-machine-replaceable tasks.
Examples are energy saving, computer and automation technologies, open source software,
digital payment systems or clean vehicles that satisfy pollution standards. It may also apply
to shifts in consumer preferences if certain product characteristics can only be satisfied by
the incumbent technology if costly technical “add-ons” are implemented.

2If not explicitly defined differently, throughout the paper superscript indices indicate
qualitative information about the type of a variable, e.g. the vintage v or technology type
ig. Subscript indices refer to the agent or time dimension t associated with the variable. For
example, ig in the superscript refers to the technology type. If it is used in the subscript, it
indicates that this variable is associated with the capital producer ig.

3Kig
i,t is the used capital stock of type ig. The total used capital stock Ki,t = ∑v kv

i,t is com-
posed of different vintages and different technology types ig = c, g. Firms do not necessarily
produce at full capacity. If estimated demand is insufficient, firms use only the most cost-
effective capital stock items. Learning and the environmental impact are dependent on the
used capital stock. More technical detail is available in the appendix 2.A.
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productivity embodied in a capital good Av. Employees need to know-how
to use a specific type of capital efficiently.

Codified and tacit knowledge are technology-specific. An employee who
knows how to use conventional capital does not necessarily know how to
use the green alternative, but she can learn it if she accumulates experience
when working with it. Employees are learning by doing.

The codified knowledge embodied in a capital vintage is uniform for all
firms, but the tacit knowledge is firm-specific. It is interpreted as a firm’s
absorptive capacity for a specific technology. Henceforth, the bundle of cod-
ified and tacit technological knowledge of firms is referred as to effective pro-
ductivity AE f fv

i,t .

The effective productivity is bounded above by the availability of matching
technological capabilities, hence AE f fv

i,t = min[Av, Big
i,t] with index v as pointer

to a specific vintage in the firm’s capital stock.

The theoretical productivity Av of a capital good is a static property and uni-
form for all firms. In contrast, effective productivity is firm-specific and the
source of heterogeneous benefits of adoption. The effective productivity of a
given vintage v may change over time due to learning.

Barriers to diffusion Barriers to diffusion are embedded in the two dimen-
sions of technology. Lacking capabilities Big

i,t can be a demand-sided barrier
to green technology adoption even if the technology is superior in terms of
input costs. A supply-sided diffusion barrier is associated with technical per-
formance of the capital good itself. If such a barrier is present, green capital
goods are technologically less mature and have a relatively lower productiv-
ity Av.

These barriers are stylized aggregates of different types of diffusion barriers
documented in the empirical literature on eco-innovation (cf. Arundel and
Kemp, 2009; Carlsson and Stankiewicz, 1991; Triguero et al., 2013). Diffu-
sion barriers can be the source of a technological lock-in in the conventional
technology.

Two types of learning dynamics influence the evolution of diffusion barriers.

First, employees are learning by doing. CG firms buy capital goods from IG
firms and add the newly bought capital goods to their capital stock Ki,t =
∑v kv

i,t. Employees learn dependent on the type of production machinery
they use at work. The more time they spend on working with technology
type ig and the better the productive quality of the capital equipment of type
ig at the firm level, the faster employees accumulate the corresponding skills
big

h,t.

Second, IG firms are learning by searching. Endogenous innovation in the IG
sector affects the codified part of technological knowledge embodied in the
productivity level of supplied capital. IG firms invest a fraction of monthly
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FIGURE 2.2: Innovation, learning and diffusion schematically
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profits in R&D. Monthly R&D spendings positively affect the probability to
innovate successfully and launch a new, more productive capital vintage on
the market. Higher profits in sector ig are associated with a faster pace of
technological progress in this sector.

A stylized representation of technology, the learning mechanism and the role
of technology for the macroeconomic outcome is shown in figure 2.2. The
formal implementation including equations is explained in more detail in
the appendix 2.A.

Green technology producer’s market entry On the day of market entry t0,
the green technology becomes available as investment option for CG firms.
At this time, the capital stocks of all CG firms consist only of conventional
capital. Workers have only worked with conventional capital.

The entrant technology is subject to diffusion barriers. These barriers are
effective in two ways. At the day of market entry t0, the entrant IG firm g
produces at a lower technological frontier AV

g,t0
where V indicates the most

productive vintage supplied by an IG firm. Vintages supplied by the green
entrant have lower productivity than those supplied by the incumbent.

Further, the green technology is new to firms and employees have not yet
learned how to use the new technology. They have a relatively lower endow-
ment with technology-specific know-how bg

h,t0
for green capital utilization.

To ensure comparability across simulation runs, the market entry conditions
of the green technology are normalized in relation to the incumbent c in t0.
Supplied productivity of the green producer is initialized by

AV
g,t0

= (1− βA) · AV
c,t0

(2.1)
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where βA ∈ [0, 1) is the percentage technological disadvantage of green tech-
nology at the day of market entry.

It is assumed, that the market entry of the green technology was associated
with a technological breakthrough that enables the rapid development of a
full range of varieties of green capital that differ by productivity (cf. ap-
pendix 2.A.4).

Using the terminology of the transition literature, the entering technology is
a radical innovation that was developed in the “protected space” of a market
niche. A technological breakthrough or external pressure on the incumbent
enables the new technology to enter the market at the “regime level” (Geels
and Schot, 2007).4

The green capital is supplied at the same prices as incumbent capital in t0,
but the price per productivity unit is higher due to the assumed technological
disadvantage.

The initialization of technology-specific skills for green capital utilization is
similar. Households’ endowment with green skills is scaled in relation to its
skills for conventional technology use, i.e.

bg
h,t0

= (1− βb) · bc
h,t0

. (2.2)

The parameter βb ∈ [0, 1) describes a technological knowledge gap. It deter-
mines the extent to which workers’ skills for green technology use are lower
compared to their conventional skills.

2.3.3 Simulation settings and experiments

The simulations are run with H = 1600 households, two IG firms, two pri-
vate banks and up to I = 120 CG firms. Because CG firms can enter or exit
the market, the number of CG firms can vary over time. At the initialization
period, the number of active CG firms was determined by the calibration
process and is 74.5 The simulations are run for T = 15000 iterations corre-
sponding to approximately 62.5 years interpreting one iteration as a working
day and a year to consist of 240 working days.

The runs were repeated 210 times to generate a sufficiently large sample of
simulated economic data that can be analyzed. At the beginning of the simu-
lations, the conventional technology is incumbent. After t0 = 600 iterations,

4Empirical historical examples for niche markets that were the source of radical innova-
tions are for example the army, NASA, organic farming or early developments for renewable
energy technologies. The forces that govern the technological development in market niches
differ from the market forces at the regime level. Pressure on the regime technology may
be caused by e.g. regulation, environmental consequences, changing consumer values or oil
price shocks (Geels, 2002; Geels and Schot, 2007; Safarzyńska et al., 2012).

5The number 74 is a result of the calibration procedure of the initial population. The
model is run for a given number of periods until a snapshot of the population is used as
initial population for the simulation exercise.
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TABLE 2.1: Empirical stylized facts for model design and vali-
dation

Macroeconomic stylized facts:
Growth rates: Quantitative matching of aggregate output growth rate.
Business cycle volatility: Evaluated by the variance of cyclical component of band-
pass filtered time series data of aggregate output.
Persistence of fluctuations: Autocorrelation of output fluctuations.
Cross-correlation of economic key indicators with output fluctuations: Pro-cyclical con-
sumption, investment, employment and vacancies. Anti-cyclical wages, mark-ups
and unemployment.
Relative magnitude of fluctuations: Investment is more volatile than output, output is
more volatile than consumption. Vacancies are more volatile than unemployment,
unemployment is more volatile than output.
Phillips curve: Negative relationship between unemployment and inflation.
Beveridge curve: Negative relationship between unemployment and vacancies.

Stylized facts of innovation:
Uncertainty: Probabilistic technological progress and uncertain market success (cf.
Dosi, 1988; Nelson and Winter, 1977; Windrum, 1999).
Incremental nature of innovation: Incremental upwards shift in the technological
frontier within a technological trajectory (cf. Dosi, 1988).
Embodied technology: Technology is intangible, but embodied in physical capital
goods and skill sets of labor (cf. Romer, 1990; Windrum, 1999).
Tacit knowledge: Technology has a tacit dimension that is not tradable and deter-
mines the absorptive capacity of firms (cf. Dawid, 2006; Di Stefano et al., 2012; Dosi,
1991; Windrum, 1999).
Heterogeneous benefits of adoption: Firms are heterogeneous in their capability to
make productive use of new technology (cf. Allan et al., 2014; Nelson and Winter,
1977).
Knowledge spillovers: Learning spillovers from accumulated knowledge (“standing
on the shoulders of giants”) and spillovers across technology types in learning
(transferable skills) (cf. Allan et al., 2014; Gillingham et al., 2008; Pizer and Popp,
2008).
Creative destruction and obsolescence: Technology-specific knowledge of the long-
term inferior technology is obsolete and worthless (cf. Klimek et al., 2012; Köhler
et al., 2006).
Vintage structure as adoption barrier: Pre-existing capital inhibits the adoption of rad-
ical innovation (cf. Ambec et al., 2013; Kemp and Volpi, 2008; Metcalfe, 1988).

The macroeconomic validation scenario are a selection of criteria used
and described in more detail in Dawid et al. (2018b). More informa-
tion about the validation procedure and a demonstration how the cri-

teria are matched by the model is provided in the appendix 2.B.

the green capital supplier enters the market. On the day of market entry,
the green technology is assumed to be technically less mature. The green IG
firm produces at a βA = 5% lower frontier productivity AV

g,t0
. Additionally,

the employees of adopting CG firms have a βb = 5% lower level of green
technology-specific skills bg

h,t0
.

Later, these assumptions are relaxed in a series of experiments about drivers
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and barriers to diffusion, and their interplay with innovation oriented cli-
mate policy. In this analysis, it is assumed that there are moderate cross-
technology spillovers in the learning process. Part of the knowledge that is
learned during the utilization of a technology type is transferable to the use
of other technology. Transferable skills are those that coevolve with tech-
nological progress, but are independent of the technology type, for exam-
ple, computer skills. An in-depth analysis of the role of learning spillovers
for technology choice and the evolution of market structure is subject to the
analysis in chapter 3.

To justify the model’s suitability as a tool for economic analysis, the model’s
link to the observed economic reality needs to be demonstrated. This is done
by an indirect calibration approach (cf. Fagiolo et al., 2017). The model is cali-
brated such that it reproduces empirical stylized facts as for example growth
rates, auto- and cross correlation patterns of GDP, output, unemployment,
investment and consumption aggregates.

An overview of the macroeconomic patterns that are matched by the model is
provided in table 2.1. A more detailed explanation of these criteria, technical
details and test results is provided in 2.B. Most of the parameter values are
taken from the original Eurace@unibi model. More detail on the calibration of
the original model can be found in Dawid et al. (2018b).

Table 2.1 also provides an overview of stylized facts of innovation that have
been used for the technological conceptualization of the model. It is briefly
mentioned how the model satisfies these criteria. More comprehensive in-
formation can be found in Hötte (2019b) and the SM I.

2.4 Results

In a series of experiments, the coevolution of diffusion, knowledge stocks
and the relative technological superiority of the green and brown technol-
ogy is studied. The coevolutionary process has an impact on the pathway of
transition and its macroeconomic side effects.

In this section, I describe the core features of the baseline scenario. Subse-
quently, I present the results of an experiment on the strength of barriers and
explain how the observed patterns coincide with empirical observations.

In the next section, it is analyzed how market-based policies can accelerate
the process of a green transition.

2.4.1 The baseline scenario: Two possible technological
regimes

In the simulations, entry barriers are sufficiently low such that the green tech-
nology outperforms the conventional in terms of effective using costs. Initial
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adoption rates are high and the green technology incrementally diffuses.

Technology diffusion is measured by the aggregate share of conventional

capital that is used in t. It is given by νc
t =

∑i Kc
i,t

∑i Ki,t
with Kig

i,t as amount of

capital of type ig = c, g that used by firm i in t and Ki,t = Kc
i,t + Kg

i,t.
6 By de-

sign, the share of conventional technology use is 100% on the day of market
entry, i.e. νc

t0
= 1.

Figure 2.3 illustrates the evolution νc
t . On the left-hand side, νc

t is shown as an
average across runs. On the right-hand side, it is shown for single simulation
runs. It can be seen that the average across runs hides a pattern of divergence
and uncertainty in the technology choice.

The disaggregated plot illustrates that the phase of initial green technology
uptake is not necessarily sustainable. In the beginning, in almost all runs, the
νc

t decreases, but in roughly half (49%) of the considered cases initial diffu-
sion reverses after some time and νc

t converges to a lock-in state with roughly
100% utilization of conventional capital.

In some of the runs, the direction of the diffusion process changes several
times. The model has stochastic elements. For example, innovation success is
probabilistically dependent on past R&D spendings. Households’ consump-
tion choice is influenced by prices, but based on a probabilistic multinomial
logit function. The same holds for the matching process on the labor market.
These stochastic elements have an influence on technology supply, the eco-
nomic performance of CG firms and, as a consequence, on their investment
activity and adoption behavior. More information is provided in the SM I.

The final technological state is interpreted as “technological regime” defined
by the dominance of a technology type measured at the intensive margin.

Definition
A technological regime is defined as set of runs that match the threshold con-
dition of 50%, i.e. reco = {r ∈ R/{rswitch}|νc

T,r < .5} and rconv = {r ∈
R/{rswitch}|νc

T,r ≥ .5}. r is a single run out of the full set of runs R and rswitch

is a special case introduced below. A regime shift or green transition is defined
as situation where the incumbent conventional technology is replaced by the entrant

green until the end of simulation time, i.e. ν
g
T =

∑i Kg
i,T

∑i Ki,T
> .5.

The diffusion curves reveal that the divergence is even stronger and a more
rigorous definition could be applied since the technology share converges to
one of the extreme values of 100% or 0%. Using these definitions, 98 (107)

6An alternative indicator is the productivity weighted share of green capital in produc-
tion. Which indicator to use is a matter of priority setting in the analysis. Given the type
of production technology (Leontief) and assumptions about the learning process, the un-
weighted measure is more informative about the environmental performance of the econ-
omy, about employees exposure to a specific technology type and its implications for learn-
ing.
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FIGURE 2.3: Diffusion curves
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(B) Disaggregation

2.3a shows the average νc
t of all simulation runs, 2.3b shows νc

r,t for
each single run r.

out of 210 runs are defined as eco (conv) regimes. The remaining 5 runs are
classified as switch scenarios that are discussed in further detail below.

The disaggregated diffusion curves (2.3) reveal that initial adoption is not
necessarily stable. In some cases, the fallback towards conventional technol-
ogy is subject to a second reversal towards green technology.

Four questions arise from these observations:

1. What are the drivers for the convergence to stable states?

2. Why is the technological regime shift probabilistic?

3. Why is an ongoing diffusion process reversed in some cases?

4. What are the macroeconomic implications of different diffusion pat-
terns?

To address the third and fourth question, an additional technological regime
type is introduced. It is called switch regime characterized by a diffusion
pattern that exhibits high volatility during the simulation.

Definition
Switch regimes are identified by two criteria: (a) The level of conventional (green)
technology utilization did not converge, i.e. it is less than 90% in T, i.e. a :=
(ν

ig
T,r < 90%), ig ∈ {c, g}. (b) The final level of ν

ig
T,r is higher or equal 90%, but its

minimum level within the second half of simulation time fell below 25%, i.e. b :=
(ν

ig
T,r ≥ .9 ∧mint∈[thal f ,T] ν

ig
t,r < .25), ig ∈ {c, g}. In these scenarios, the variation

of νc
t is high for a long time which is an indication for late or lack of technological

convergence.
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The selection criteria identify those runs that are characterized by a long
lasting uncertainty about the final technological state. Henceforth, this phe-
nomenon is referred to as technological uncertainty. The switch scenarios oc-
cur relatively rarely. In this set of simulations it happened only in 5 out of
210 runs. Insights that are drawn about rswitch should be interpreted as hints
to interesting aspects rather than generally valid regularities. In the subse-
quent section, the results are represented as aggregates within a technological
regime.

The technological evolution The stabilization of final states is reflected in
the bifurcation-like pattern that is observable in the diffusion curve and in
the evolution of relative knowledge shown in figure 2.4. Relative knowledge
stocks are measured as ratio of the average level of green over conventional
technology-specific skills βt = bg

t /bc
t and the ratio of the frontier produc-

tivity of the two technologies αt = AV
g,t/AV

c,t. The divergence is driven by
endogenous learning dynamics.

In the initial phase, the skill related disadvantage is increasing in all regimes.
The vintage structure of firms’ capital stock consists entirely of conventional
machinery on the day of market entry. Employees pace of green learning
depends on the technology that is used in production. The high initial share
of conventional machinery retards the accumulation of green skills even if
the green technology is incrementally taken up. In contrast, the difference in
the frontier productivity exhibits an immediate divergence between the two
regimes.

FIGURE 2.4: Relative technological knowledge
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Evolution of relative stocks of codified (αt) and tacit knowledge (βt)
measured as average across r ∈ {reco, rconv, rswitch}. The different
regimes are indicated by different line shapes (�: eco, *: conv, ⊕:

switch).

The role of relative knowledge stocks dominates the evolution of relative
nominal capital prices. The relative, nominal price for capital of the dominant
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technology increases which is a result of adaptive mark-up pricing. More de-
manded technology becomes nominally more expensive. However, technical
progress in the dominant sector is relatively faster as a result of endogenous
R&D investments. The relative price per productivity unit decreases for the
dominant technology. Faster progress offsets the increase in relative nominal
prices (see figure in the appendix 2.C.2).

Macroeconomic side effects Comparing the different technological
regimes, allows to draw conclusions about macroeconomic side effects of the
transition.

FIGURE 2.5: Output and number of firms
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These figures show the evolution of output and the number of active
firms. The different shapes indicate different regime types (�: eco, *:

conv, ⊕: switch).

A comparison time series of macroeconomic indicators exhibit differences
across technological regimes. In figure 2.5, the time series of log aggregate
output and the number of active firms are shown. The significance of differ-
ences across scenario types is confirmed by series of Wilcoxon rank sum tests
comparing the outcome within subsets for different phases of the diffusion
process (cf. table 2.C.1 and Hötte (2019b)).

As illustrated in figure 2.5a, the green and conventional regimes do not ex-
hibit remarkable differences in aggregate output in the long run. This does
not hold in the initial phase, defined as the first 10 years after market entry.
The green regimes are characterized by significantly lower output, which is
not visible in the time series plot but indicated by the Wilcoxon test (avail-
able in Hötte, 2019b). This is interpreted as learning costs. Firms have a lower
productivity when they have to learn how to use new technology. This is
only a temporary effect that diminishes by the end of the simulation time.
Learning costs are an evolutionary interpretation of abatement costs. These
costs arise during the switch to an alternative, less mature and less routinized
technology.
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Remarkable is the significantly worse performance of the switch regime. Ag-
gregate output is significantly lower during the whole simulation horizon.
This observation illustrates the costs of technological uncertainty. Uncer-
tainty retards technological specialization. R&D and learning resources are
invested in a technology that is obsolete in the long run. The negative ef-
fect of technological uncertainty is confirmed by a regression analysis of the
growth rate goutput

t in percentage points on the volatility of the diffusion pro-
cess σν

t measured as variance of νc
t across a time window of 2.5 years. The

result is shown in equation (3). Time clustered standard errors are shown in
parentheses.

goutput
t =1.7614∗∗∗ −.0640∗∗∗ · σν

t +εt (2.3)
(.0397) (.0066)

The volatility is associated with lower economic growth. This finding is ro-
bust across different model configurations including different sets of con-
trol variables. Additional analyses are available in the data publication. In
capter 3 and chapter 4, it is shown that the volatility of the diffusion process
depends on the characteristics of the competing technology. The macroeco-
nomic side effects depend on the types of technologies that compete.

The time series of the number of active firms indicates intensified competi-
tion after the green technology entered the market (cf. figure 2.5b). This leads
to a series of market exits. After some time, the situation stabilizes and new
firms incrementally enter the market. The market entries are a probabilistic
process with an exogenously determined entry probability and should not
be over-interpreted. But the exit dynamics are fully endogenized and in-
formative about firms’ ability to adapt (cf. I). In the green regimes, a second
surge of market exits is observable. When the economy stabilizes at the green
regime, those firms that were not able to adapt to the changing technological
environment are not any longer competitive and exit the market.

The lack of specialization in the switch regimes allows a larger variety of
firms to co-exist. Additional macroeconomic indicators and a short discus-
sion of these indicators can be found in figure 2.C.3 in the appendix. Further
discussion and additional test statistics and figures can found in the accom-
panying working paper Hötte (2019b).

Discussion The four questions outlined above can be answered as follows:

1. Endogenous accumulation of tacit and codified technological knowl-
edge leads to an increasing divergence in the relative performance of
technologies. This stabilizes the transition process and leads to the con-
vergence towards the final technological state.

2. Some of the economic processes in the model are probabilistic. This
affects firms’ investment behavior and the productivity of supplied
technology. In the presence of increasing returns to diffusion, “small
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events” do not necessarily average out and have a lasting impact on
the technological trajectory (cf. Arthur, 1989).

3. Increasing returns in learning are a source of path dependence. In the
initial phase, the capital stock of CG firms is entirely composed of con-
ventional capital. This slows down the accumulation of skills that are
required to make use of the green technology even if it is incrementally
adopted. Dependent on the interplay with the stochastic elements, this
may lead to a technological lock-in.

4. Both stable regimes perform similarly in the long run. This is partly due
to the parametrization. In the early diffusion phase, the green regimes
are subject to learning costs in terms of lower productivity and output.
This difference vanishes in the long run if the regime converges to a
stable state. Learning costs are more pronounced if the technological
pathway is uncertain and producers enduringly switch between tech-
nology types. Technological uncertainty is costly because learning re-
sources are misallocated and the specialization is retarded. The initial
surge of green technology diffusion is associated with stronger compe-
tition among CG firms. This leads to a series of market exits. The exit
dynamics are stronger if the economy converges to the green regime
because a second market cleansing occurs. Firms that failed to adopt
the new technology go bankrupt.

Is the transition to green technology costly? The answer developed in this
study is: It depends on the pathway of transition and the type of technology.

A controversy in studies on green directed technological change is the exis-
tence and extent of macroeconomic abatement costs. The arguments range
from distortions in the technology choice (Popp et al., 2010), the incorpora-
tion of damage functions (Stern, 2008) to innovative dynamics triggered by
environmental regulation (Ambec et al., 2013). This study does not address
the question whether the transition to green technologies is economically su-
perior in the long run.7

Instead, it focuses on the pathway of transition. In these simulations, both
technologies perform similarly in the long run if the pathway of diffusion is
stable. The shape of the transition curve is decisive for the macroeconomic
outcome. If the pathway of diffusion is associated with high uncertainty, a
misallocation of learning resources in a technology that is obsolete in the long
run undermines the specialization and the pace of productivity growth. This
also reduces the competitive pressure on firms. It may protect jobs at large
incumbents, but is costly in terms of long term growth.

7Recent studies on climate change sufficiently indicate that the switch to green technolo-
gies is an existential question (IPCC, 2018; Steffen et al., 2018). That should be sufficient as
motivation to foster a green transition.
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2.4.2 Barriers to diffusion

What is marginal impact of barriers on the transition probability? To ad-
dress this question, a series of Monte Carlo (MC) experiments with randomly
drawn levels of βA and βb is run.

The strength of diffusion barriers

Barriers can be prohibitively high that green transitions do effectively not
occur. To obtain a balanced sample of both regimes, βA and βb are drawn
uniformly at random from an interval [0, .15] that is sufficiently low.

The distribution of the random draws in t0 is shown in figure 2.6 on the left-
hand side. In the middle figure, it is shown how the endogenously evolving
difference in technological knowledge has emerged until the end of the sim-
ulation time T. Two clusters in the opposite corners of the plot have formed.

FIGURE 2.6: Distribution of βA and βb at different times
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� (*) indicates that the final technological regime is eco (conv).

Compared to the baseline scenario, the diffusion barriers are higher on aver-
age. This reduces the frequency of observed transitions to 37%. A Wilcoxon
test confirms that the transition occurs more frequently if initial diffusion
barriers are low (cf. 2.C.2). Observations about the macroeconomic and tech-
nological time series patterns are qualitatively similar to those of the baseline
scenario. The divergence of relative technological knowledge stabilizes the
transition process and technological uncertainty is costly. Time series plots
and a short discussion can be found in the SM of (Hötte, 2019b).

The MC setting allows studying the role of entry barriers by a regression
analysis. The results of an OLS and binary Probit model are shown in table
2.2. The aggregate νc

T is regressed on initial conditions and a set of controls.8

8The binary specification captures the binary nature of the response variable. The share
of conventional capital that is used in the last period is roughly 100% or 0%, but there is
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TABLE 2.2: Regression of the transition probability on diffusion
barriers

Dependent variable: νc
T .

OLS Probit
(1) (2) (3) (4) (5) (6)

(Intercept) .2754*** .2676*** -.0103 -.1351 -36.47 -2.6088***
(.0605) (.0437) (.0550) (.0884) (45.16) (.3805)

βb .0448*** .0377*** .0188 .0202 .1896***
(.0065) (.0052) (.0200) (.0202) (.0317)

βA .0548*** .0507*** .1136*** .1167*** .2716***
(.0052) (.0047) (.0152) (.0153) (.0382)

(βb)2 .0026* .0025*
(.0012) (.0012)

(βA)2 -.0023** -.0024**
(.0009) (.0009)

βb · βA -.0035*** -.0035***
(.0010) (.0010)

+controls
Adj./ps.R2 .1814 .3492 .4769 .5316 .5316 .4761
AIC 237.67 197.02 125.15 131.88 136.64 142.61
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

Share of conventional capital νc
T regressed on the macroeconomic

level on diffusion barriers βA, βb, measured in percentage points, and
initial macroeconomic conditions. Columns (1)-(5): OLS, column (6):

binary Probit model.

The barriers βA and βb both enter with positive coefficients and are econom-
ically and statistically significant across different model specifications. Pos-
itive coefficients indicate a higher share of conventional capital in T and a
negative association with the transition probability.

Robustness tests using the percentage difference in skill and productivity lev-
els measured at later snapshots in time and more disaggregated firm data
confirm that these relationships hold at different aggregations and across
time.

What can be said about the magnitude of effects? In columns (1)-(5), the
results of different OLS models are shown. Column (6) presents the results
of a binary Probit model. It is consistently found that the supply-side barrier
βA enters with a larger coefficient and exhibits a stronger association with the
transition dynamics than the demand-side barrier βb. Also, its explanatory
power measured by the R2 is higher. Including both barriers in simple linear
terms helps to explain roughly half of the variation.

The coefficients of the linear OLS model can be interpreted as marginal effect
on the probability of technological lock-in. In the linear model, a change by
one percentage point in βA (βb) is associated with a 5% (3.8%) higher share
of conventional capital utilization.

little variation between them. The variation in the control variables beyond the randomized
entry conditions arises from the period until the day of market entry t ∈ [0, 600]. The initial
population in t = 0 is identical in all 210 simulation runs. In all specifications, smoothed
values of the dependent variables are used, i.e. one-year averages.
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But the relationship between the barriers and the transition likelihood is non-
linear. The value range used in this experiment is truncated and barriers
can be prohibitively high to prevent a transition. In columns (4) and (5), the
results of a regression model that includes quadratic and interaction terms of
βA and βb.9

The effectiveness of βA as a barrier to diffusion is diminishing. The opposite
is found for βb.10 The macroeconomic controls are not significant. This is
not surprising because the variation between the simulation runs is low. The
simulations are initialized with identical populations and the variation in the
controls stems from the first 600 iterations until the day of market entry.

Which firms are early adopters?

This question is addressed by a regression of the share of νc
i,t1

of individual
firms i in t1 = 1800, i.e. 5 years after market entry. At this time, diffusion at
the intensive margin is low and the variation is high. The aggregate νc

i,t1
is

81.26%. The median firm uses 100% conventional capital. But there are also
firms that use only green capital. The standard deviation of νc

i,t is 29.22%.

The results reveal insights into the macroeconomic diffusion process and into
the relationship between firm characteristics and early green technology up-
take at the micro level. The regression results are shown in table 2.3.

Both barriers hinder green technology uptake. The coefficients of βA and
βb are statistically significant and enter with positive coefficients. Quantita-
tively, the barriers are less significant compared to the analysis above. Both
barriers have a diminishing effect reflected by the negative coefficients of the
squared terms in columns (4) and (5).

Compared to the previous regression on the emerging regime, lacking skills
have higher relative explanatory power for early green technology uptake. In
relation to βA, the economic significance of βb and its explanatory power cap-
tured by the R2 in column (1) is higher compared to the previous regression.
This is reflected in the relative coefficients compared to βA and the higher R2

in column (2). The interaction term (βAβb) is statistically significant and has
a negative coefficient.

9I refrain from an in-depth study of the functional form of the relationship between dif-
ferent barriers and diffusion for mainly two reasons. First, the effect of the barriers on the
pattern of diffusion is sensitive to the assumptions on the shape of the endogenous inno-
vation and learning function. These functions are set in a plausible, but stylized way and
the outcome should not be over-interpreted in quantitative terms. In economic reality, the
mechanisms that determine technological learning and the success of innovation are likely
to vary strongly across different technological fields due to different patterns of innovation,
learning and cross-technology spillovers. Second, the better fit of more complex functional
forms comes at the cost of lower ease of interpretation and expected lower generalizability,
also referred as to bias-variance trade-off (cf. Bishop, 2006). The regressions should underline
the qualitative insights derived of this study.

10A more comprehensive discussion of these results and interactions between βA and βb

is available in Hötte (2019b).
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TABLE 2.3: Firm-level egression to identify early adopters

Dependent variable: νc
i,t1

OLS Probit
(1) (2) (3) (4) (5) (6)

(Intercept) .5461*** .6054*** .3921*** .1027*** -.8139*** -11.48***
(.0042) (.0033) (.0040) (.0057) (.1539)) (2.005)

βb .0329*** .0291*** .0684*** .0685*** .2171***
(.0005) (.0004) (.0013) (.0013) (.0231)

βA .0307*** .0274*** .0875*** .0881*** .3882***
(.0004) (.0003) (.0010) (.0010) (.0181)

(βb)2 -.0009*** -.0009*** .0070***
(.0001) (.0001) (.0018)

(βA)2 -.0020*** -.0020*** -.0053***
(.0001) (.0001) (.0012)

βb · βA -.0038*** -.0038*** -.0148***
(.0001) (.0001) (.0021)

Bc
i,t0

-.7317*** -6.898**
(.1647) (2.151)

Ac
i,t0

1.448*** 12.67***
(.0883) (1.167)

#employeesi,t0 .0006 -.0038
(.0014) (.0173)

Outputi,t0 -.0251 .2390
(.0264) (.3180)

Agei,t0 .0003* .0015
(.0001) (.0014)

Pricei,t0 .3637*** 4.201**
(.0983) (1.329)

UnitCostsi,t0 -.0203 -.2407
(.0148) (.1807)

Adj./ps.R2 .2634 .2893 .4911 .6371 .6480 .5451
AIC 5349 541.00 -4454.08 -9509.46 -9972.83 6049.5
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

Share conventional capital utilization at firms νc
i,t in t1 = 1800 on bar-

riers and initial firm characteristics. Columns: (1)-(5) OLS, (6) binary
probit.

Firms with a high general endowment of tacit knowledge Bc
i,t0

on the day of
market entry, tend to adopt earlier. Above average Bc

i,t0
is an indicator for a

high-skilled workforce at the firm. High skilled employees are assumed to
have higher ability and to learn faster in the Eurace@unibi economy irrespec-
tive of the type of skills that needs to be learned.11

The stock variables reflect the general, but not technology-specific endow-
ment of a firm with human capital and technology. The stock of codified
knowledge is negatively associated with the likelihood to be an early adopter.
On the day of market entry, firms do only have conventional capital and a
high level of Ac

i,t indicates that a firm is operating at a high productivity level.

11By design of the model, skills are symmetrically scaled down by βb, i.e. each firm has a
similar skill ratio in the beginning. But firms are heterogeneous in absolute levels skill and
productivity endowment.
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It may also indicate investments in new machines shortly before the green
technology becomes available. Both are impediments to early green technol-
ogy uptake. The negative association with diffusion suggests that firms with
more productive capital stock are less likely to be early adopters.

Firms with high adoption rates in t1 charge significantly higher prices
(Pricei,t0) in t0, but are not characterized by significant differences in firm size
(#employeesi,t0 , outputi,t0) and production efficiency (UnitCostsi,t0). Price set-
ting in the Eurace@unibi is based on estimated demand functions and a profit
maximization rationale taking account of production efficiency and desired
output. Price differences that are not due to differences in efficiency or firm
size arise from heterogeneous expectations. If prices are too low, firms pos-
sibly underestimate their demand potential. Excess demand may be an in-
centive to expand capacity by investments in new machinery. Firms with too
high prices have overestimated their demand potential and are more likely to
reduce capacity. Higher investment activity triggers green technology adop-
tion during the early surge of diffusion.

2.4.3 The empirical content of the model

The simulation results provide an explanation for two empirical patterns that
are central in diffusion studies, s-shapes and path dependence. Many studies
refer to an s-shaped pattern that is explained by different potential reasons
such as the spread of information and heterogeneous benefits from technol-
ogy adoption (Allan et al., 2014; Kemp and Volpi, 2008; Nelson and Winter,
1977; Pizer and Popp, 2008; Rogers, 2010).

But the s-shaped pattern does not hold in general. It is often observed when
successful diffusion is measured at the extensive margin, i.e. the binary entry
whether the technology was adopted or not. In a comprehensive, empiri-
cal historical study, Comin et al. (2006) measured diffusion at the intensive
margin and found very heterogeneous patterns of diffusion curves. In some
cases, the authors confirmed the s-shape, in other cases, they observed con-
cave or even inverted u-shaped patterns.

The authors argue the different patterns to be (partly) explainable by the
types of technologies under consideration and by the circumstances of adop-
tion. Inverted U-forms are observed when a technology initially diffuses but
is driven out of the market by a competing alternative in the long run (Geels
and Schot, 2007).

The proposed model sheds light on the dynamic interplay of learning and
endogenous innovation of two competing alternatives. Learning and inno-
vation are key to understand the evolution of substitutability and superiority
of competing technologies.

A second central pattern in the diffusion literature is path dependence. Possi-
ble sources of path dependence are learning and network externalities, the in-
stitutional environment, habits, search and information frictions (e.g. Arthur,
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1988; Dosi, 1982, 1991; Safarzyńska et al., 2012; Unruh, 2000). Here, path de-
pendence of technological change is reflected in two stocks of technological
knowledge, i.e. technology-specific skills and productivity.

The perceived, relative profitability of a technology determines whether it
is chosen by adopters. The relative difference in the endowment with tacit
and codified technological knowledge is informative about the relative prof-

itability. The bifurcation-like patterns of relative knowledge stocks αt =
AV

c,t
AV

g,t

and βt =
Bc

t
Bg

t
coincide with the convergence towards the final technological

regime and explain path dependence of diffusion.

An important observation is the inverted u-shape in those runs that (1) end
up in the conventional regime but experienced a short period of diffusion,
and (2) the switching regimes that exhibit wave-like patterns with two or
more substantial peaks in the diffusion curve. In these cases, the green tech-
nology initially diffuses. After some time, competitive pricing dynamics be-
come active and the green and conventional technology compete for market
share. Additionally, endogenous learning dependent on the pre-existing cap-
ital infrastructure is working against green technology.

Endogenous learning is only one type of path dependence, but the simula-
tions show that path dependence may be sufficiently strong that even after
initial diffusion of an initially superior technology the diffusion process is re-
verted. In such a case, the diffusion curve is u-shaped. Comin et al. (2006)
argue that inverted u-shapes may occur in those cases where the diffusing
technology is replaced by a superior substitute. Empirical examples for races
between technologies to become the dominant design are the competition be-
tween different propulsion engines for cars in the early 20th-century (Høyer,
2008), different types of nuclear power reactors (Cowan, 1990) or the QW-
ERTY keyboard (David, 1985). The diffusion curve of the “losing” technology
exhibits an inverted u-shaped pattern.

Learning costs during the early phase of technological transition can be an
explanation for the “Modern Productivity Paradox” discussed by David (1990).
The author argues that one source of delay in the transmission of produc-
tivity gains from new technologies to aggregate factor productivity growth
arises from path dependence in the ability to exploit the full productive po-
tential of new technologies.

2.5 What is the scope for green technology diffu-
sion policies?

Above, the dynamic interplay between long- and short-term technological
performance is discussed as driver of diffusion dynamics. The entrant tech-
nology is only superior in the long run if initial disadvantages of lower tech-
nological knowledge are overcome. Can policy help to overcome diffusion
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barriers and is the effectiveness sensitive to the strength and type of diffusion
barriers?

To answer these questions, an experiment on different market-based policies
is run. The considered policy instruments are a tax on the resource input and
two types of subsidies. The tax θ is imposed as value added tax on mate-
rial inputs making the use of conventional capital more costly. An invest-
ment subsidy ςi reduces the price for green capital goods by a fixed factor.
A consumption subsidy ςc is implemented as firm-specific price support for
eco-friendly produced final goods. The level of support is linearly scaled by
the relative amount of green capital goods ν

g
i,t that is used by the firm. The

government seeks to balance its budget. If expenditures for subsidies ex-
ceed the tax revenue, other taxes e.g. on income are increased such that the
budget is balanced in the long run. The formal implementation of policies is
documented in the appendix 2.A.5.

2.5.1 The impact of policies on the technological evolution

To explore the interplay of policy and barriers, a set of MC simulations is
run with randomly drawn levels of βA, βb, and policies. The diffusion barri-
ers are drawn from the same interval (βA, βb ∈ [0, .15]) as above (see 2.4.2).
The intervals for the subsidies and the eco-tax had been set such that the
average levels of the different subsidies are similarly effective as diffusion
stimulus.12 The intervals are θ ∈ [0, 1], ςi ∈ [0, 1] and ςc ∈ [0, .025]. The
initial conditions are summarized in table 2.C.4 in the appendix 2.C.3. 210
simulations are run à 15000 iterations. The simulation results of the MC ex-
periment above (2.4.2) serve as no-policy baseline. In figure 2.7, time series
of technological and macroeconomic core indicators are shown. The colored
(gray) lines represent the policy experiment (baseline scenario). The time
series are disaggregated by the type of technological regime without the ad-
ditional distinction of switch-regimes. Measuring diffusion at the extensive
margin the presence of policy exhibits a strong effect. The relative frequency
of observed technological transitions is increased from 27% to 59%, i.e. 123
out of 210 simulation runs. The effect of the policy on diffusion appears to
be strongest in the beginning. Even if path dependence leads to a reversal
to conventional technology, the share of green technology utilization is sig-
nificantly higher in an early phase of diffusion (cf. figure 2.7a and 2.7b and
appendix 2.C.3).

The time series of relative productivity αt and relative skill endowments βt
are shown in figure 2.7d and 2.7e. In comparison to the benchmark scenario,
the divergence between different regimes is less pronounced. Moreover, a
descriptive comparison of the average initial diffusion barriers computed

12Note that the diffusion effectiveness does not necessarily coincide with the environ-
mental effectiveness which is also responsive to output and productivity growth (cf. Hötte,
2019b).
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FIGURE 2.7: Technological and macroeconomic time series
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Technological and macroeconomic characteristics of the policy exper-
iment with random barriers in comparison to the baseline scenario
without policy but randomly drawn barriers (gray). Different line

types represent different regimes (�: eco, *: conv).

within green (conventional) runs shows that, on average, the diffusion bar-
riers in the policy scenario are higher (lower) (cf. 2.C.4). This can be inter-
preted as an upwards shift of the threshold level of diffusion barriers that
is prohibitively high and prevents green transitions. Diffusion barriers and
policies operate in opposite directions. Barriers inhibit and policies stimulate
the diffusion of green technology. The diffusion policy increases the intensity
of competition in situations where the green technology is only competitive
with policy support. This might result in increased technological uncertainty
with negative effects on productivity growth in the short run.13

13A longer discussion can be found in Hötte (2019b).
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2.5.2 Is the effectiveness of policy conditional on the
strength and type of diffusion barriers?

To shed light on the relationship between the transition probability and the
interplay of barriers and policy, a regression analysis of νc

i,T is run. The ex-
planatory variables are βA, βb, the policies θ, ςi, ςc and firm-specific controls.
The results are shown in table 2.4. Columns (1)-(5) show the coefficients of
different model specifications in an OLS model. Column (6) shows addition-
ally the results of a binary Probit model.14

Columns (1)-(3) show the results of different regressions of νc
i,T on the pol-

icy instruments and barriers in isolation, ignoring the potential interaction
of both. The coefficients of the variables deviate from those where interac-
tion terms of policy and barrier strength had been included. This finding
motivates to consider the interaction in more detail. The observations can be
summarized as follows.

The eco-tax θ is only effective as a diffusion stimulus in the presence of
supply-side barriers βA. The coefficients of θ and the interaction term
βbθ are not significant or have an only weakly significant negative as-
sociation with the transition probability.

The consumption subsidy ςc has a strong positive association with the tran-
sition probability indicated by the negative coefficients of ςc in all
model specifications. Its effectiveness is increasing in the strength of
both types of diffusion barriers. The interaction with the supply-side
barrier βA is statistically and economically less significant.

The investment subsidy ςi has an ambiguous effect on the transition prob-
ability. In the absence of diffusion barriers, i.e. when the interaction
terms βAςi = βbςi = 0, the association of ςi with the transition proba-
bility is negative (cf. column (4)-(6)). Its overall effect on the transition
probability can only be positive if βA and βb are sufficiently large. The
interaction with βA is quantitatively stronger and statistically more sig-
nificant.

Summing up, all policy instruments may stimulate a green transition. Their
effectiveness is conditional on the type and strength of diffusion barriers.

2.5.3 How can the differential effectiveness of policies be ex-
plained?

The effects of the political instruments on the relative superiority of a tech-
nology type and on the investment decision of firms differ over time. The
tax θ imposes an additional cost burden on firms that are using conventional
capital. It is proportional to the price of the environmental resource. Early

14Explanatory notes can be found in 2.C.4.
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TABLE 2.4: Regression of the transition probability on diffusion
policies

Dependent variable: νc
i,T at firm level in T = 15000

OLS Probit
(1) (2) (3) (4) (5) (6)

(Intercept) .7522*** .0025 .2553*** -.0463 1.572*** 2.496
(.01490) (.0181) (.0198) (.0298) (.4231) (1.6710)

θ -.0019*** -0.0027*** -.0005 -.0006 .0027.
(.0002) (.0001) (.0004) (.0004) (.0015)

ςc -0.1426*** -0.1337*** -.0498*** -.0533*** -.1592**
(.0063) (.0054) (.0140) (.0140) (.0582)

ςi .0006 -0.0041** .0262*** .0259*** .1753***
(.0017) (.0014) (.0039) (.0039) (.0160)

βA .0224*** .0228*** .0478*** .0507*** .1797***
(.0028) (.0027) (.0035) (.0036) (.0142)

(βA)2 .0010*** .0015*** .0015*** .0014*** .0067***
(.0002) (.0002) (.0002) (.0002) (.0007)

βb .0371*** .0524*** .0592*** .0598*** .1879***
(.0037) (.0035) (.0042) (.0042) (.0162)

(βb)2 -.0026*** -0.0030*** -.0031*** -.0031*** -.0098***
(.0002) (.0002) (.0002) (.0002) (.0008)

(βbβA) .0015*** .0006*** .0013*** .0012*** .0097***
(.0002) (.0002) (.0002) (.0002) (.0008)

(βbθ) 7e-05* 7e-05* .0001
(3e-05) (3e-05) (.0001)

(βbςc) -.0090*** -.0086*** -.0462***
(.0012) (.0012) (.0049)

(βbςi) -.0007* -.0008* -.0061***
(.0003) (.0003) (.0012)

(βAθ) -.0003*** -.0003*** -.0017***
(3e-05) (3e-05) (.0001)

(βAςc) -.0017 -.0023* -.0084.
(.0010) (.0010) (.0047)

(βAςi) -.0026*** -.0027*** -.0184***
(.0003) (.0003) (.0013)

Adj./ps.R2 .0568 .2994 .3596 .3828 .3851 .3433
AIC 15172 11896 10907 10506 10470 10020
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

νc
i,T on diffusion barriers, policy parameters and initial conditions.

Columns: (1)-(5) OLS, (6) binary probit. The policy parameters and
barriers are measured in percentage points. The coefficients of firm
level control variables are not significant except from the stock of

skills Bc
i,t which is diffusion inhibiting but not very dominant.

after market entry, it increases marginal production costs because the share
of conventional capital use is high. Firms that incrementally switch to green
technology reduce the tax burden and costs for the natural resource input.
This effectively compensates for the incurred disadvantage if firms adopt
less productive green capital. This type of production-cost balancing is per-
manent.
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In contrast, the investment subsidy ςi operates through the channel of one-
time investment costs. It reduces the price for green capital but does not
provide a permanent compensation for higher production costs that arise
from an inferior productivity performance. Its effectiveness is not sensitive
to the composition of the capital stock. The other two instruments (relatively)
reward firms that switch to green technology with lower input costs or higher
mark-ups. In chapter 3 and 4, it was shown that this can be associated with
delayed technological convergence and higher technological uncertainty.

The level of support by ςc is most sensitive to the composition of νc
t . It is paid

as price support for green products which is proportional to the amount of
green capital that was used in production. The level of support is low in the
beginning but becomes stronger if firms incrementally adopt. If the green
technology does not diffuse, its effect diminishes. This has a stabilizing effect
on the diffusion pattern. If initial green technology uptake is sufficiently high
to trigger the transition, the support by ςc becomes stronger. This reinforces
the ongoing diffusion process.

From the perspective of a firm, the two types of barriers have different dy-
namic implications for the investment decision. The skill barrier βb is dy-
namic. In their investment decision, firms anticipate the effect of incremental
learning. Firms also anticipate the increasing level of support by ςc when in-
crementally replacing conventional by green capital. The consumption sub-
sidy is most effective in the long run. In contrast, the productivity barrier βA

is static. Less productive capital goods that are adopted remain in the capital
stock until being depreciated. The tax is static, too. It permanently compen-
sates for the disadvantage of lower productivity. The investment subsidy is
least sensitive to the dynamic effects of the diffusion process. In this study,
it had not been tested how expectations, time preferences and depreciation
rates interact with the different types of policies. This is left for future work.

2.5.4 How do different policies affect the firm population?

The policies operate through different channels that are differently important
at different stages of the diffusion process. This does not only affect the dif-
fusion process but may also have an impact for the characteristics of the firm
population. Figure 2.7f-2.7i shows the time series of the number of active
firms, monthly aggregate output, firm size and unit costs.

The first years after t0 are characterized by a surge of market exits (cf. figure
2.7g). The policies cause a downward shift in the threshold level of diffu-
sion barriers that prevent a transition. Hence, in the presence of policy, a
transition may occur even if the conditions are unfavorable. This is associ-
ated with technological uncertainty, learning costs and slow down in output
growth during the first 5− 10 years (cf. figure 2.7f).

After some time, the technological regime stabilizes and the surge of market
exits stops. This effect is stronger in the policy experiment. The exits are
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followed by an increase in the firm size (cf. 2.7h). Hence, the market becomes
more concentrated with fewer, but larger firms. In the benchmark scenario
and in the lock-in regime, the growth of the average firm size is stopped. In
the policy experiment, the concentration process continues.

Additional regression analyses of the firm size as a measure for firm size
and unit costs as a proxy for production efficiency reveal that the effects of
policy differ across instruments, time and indicator variables. The results
and additional explanations are provided in the appendix 2.C.3.

In the long run, ςi is associated with a larger average firm size measured by
the number of employees. Firms produce with Leontief technology. This im-
plies that the number of used capital stock items is one-to-one proportional to
the number of employees. It provides an incentive to build up additional ca-
pacity. Firms that invest more take relatively more advantage of the subsidy.
The capacity expansion effect triggered by ςi is independent of the emerging
technological regime but stronger in the transition regimes.

In the lock-in regimes, θ has a weak positive effect on the firm size. In a
preceding analysis, it was observed that θ contributes to the surge of mar-
ket exits in the early phase after market entry. It imposes an additional cost
burden on firms and makes it more difficult to survive. The lower number
of firms is one driver of the evolution of the firm size. Firms estimate their
demand potential in consideration of the number of competitors. A larger
number of competitors is associated with smaller firms ceteris paribus.

If the economy converges to the green regime, ςc provides a competitive ad-
vantage for firms that have early invested in green capital. Two effects make
it difficult for late adopters to catch up. First, they still have a high share of
conventional capital which undermines the pace of learning when switching
to green technology. Second, the price support ςc is dependent on the share
of green capital. Early adopters with a higher share of green capital benefit
more. The consumption goods market is characterized by price competition.
Firms that receive higher price support can charge lower profit-maximizing
prices. Part of their profit margin is paid as a subsidy. This makes it difficult
for late adopters with a lower ν

g
i,t to sustain on the market. In the lock-in

regimes, the effect of the consumption subsidy vanishes. It becomes neutral
because it is proportional to ν

g
i,t which converges to zero.

2.5.5 Summary and discussion

Three core insights can be derived from the policy experiment:

1. The policy can increase the transition probability. Policies stimulate
the initial green technology uptake. If initial uptake is sufficiently
high, path dependence embodied in relative technological knowledge
is overcome and the green technology permanent diffuses.
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The effect of the policy as diffusion stimulus may come with the cost of
higher technological uncertainty. If policies are not sufficiently strict to
trigger a permanent transition, it retards specialization effects in con-
ventional technology when the economy relapses to the conventional
regime. Retarded specialization has a negative effect on productivity
and economic performance. When using relative indicators for the en-
vironmental performance measure, an insufficiently strict policy may
be detrimental because lower production efficiency is associated with a
worse environmental performance per unit of output.15

2. The effectiveness of different instruments is conditional on the type and
strength of diffusion barriers. A tax imposed on the natural resource
input required for the use of conventional machinery may offset the
disadvantage if firms adopt technically less mature and less produc-
tive green technology. It is not effective if lacking skills hinder firms
to adopt. If barriers are sufficiently low, it might be even detrimental
because it imposes a cost burden on firms when the penetration of con-
ventional capital is still high. This undermines the financial capacities
and slows down investment activities in superior green technology.

The effectiveness of the consumption subsidy is increasing in the
strength of both types of barriers. This effect is stronger if the barrier
is demand-sided, i.e. when lacking skills hinder firms to adopt green
technology. It is an instrument that stabilizes an ongoing diffusion pro-
cess and is not distorting if the economy is locked in. An investment
subsidy operates via an instantaneous price mechanism in firms’ in-
vestment decisions. Its effectiveness is independent of the type of bar-
riers.

3. Policies affect firms asymmetrically. The initial phase after the market
entry of the green capital producer is characterized by strengthened
competition and a surge of market exits. This effect is more pronounced
in the policy experiment. The policy countervails the effect of diffusion
barriers which intensifies the technology race in situations where the
green technology would not sustain without policy support.

If the green technology wins the race, firms that successfully adopt
green capital benefit most from the subsidies. If a transition occurs
late adopters have difficulties to survive on the market. They do not
only technologically have to catch up, but also take less advantage of
the consumption subsidy. The investment subsidy provides an incen-
tive to build up capacity. This effect is independent of the success of a
technological regime shift.

15The environmental effect in absolute terms compared to the baseline is a matter of cal-
ibration. The worse economic performance in uncertain environments may offset the ef-
ficiency effect. Here, the calibration is chosen such that the economic performance across
different regimes in the policy and benchmark scenario does not substantially differ but this
is also a matter of the choice of other characteristics of the competing technologies. More
information is available in chapter 3 and 4 and in the comprehensive working paper (Hötte,
2019f).
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Many approaches in the existing literature on economic climate policy are
based on equilibrium models with homogeneous agents and focus on di-
rect and indirect price mechanisms that stimulate the substitution of conven-
tional by green capital. The nexus of climate policy and directed techno-
logical change is represented as an allocation problem. The introduction of
heterogeneous and interacting agents in the presence of increasing returns to
adoption re-frames directed technological change as a problem of coordina-
tion in the process of learning and specialization (cf. Jaeger, 2013).

This different setting has implications for the design of policy. Policymakers
can provide incentives to strengthen the coordination in technological de-
velopment and learning. Policies are most effective if they are sufficiently
strict given a specific set of diffusion barriers. The Eurace@unibi provides a
macroeconomic test environment for policies and to control for the economic
side effects. It was shown that the entry of the green technology is associated
with intensified competition, a series of market exits, increased unemploy-
ment and a phase of low growth. The policy has reinforced this effect.

It was also shown that the performance of different market-based climate
policies is conditional on the type and strength of barriers. Taxes help to over-
come supply-sided diffusion barriers that are embodied in the productivity
of capital goods. Tradable, innovation-induced knowledge embedded in pro-
ductivity is typically the way how directed technological change is modeled
in innovation and climate economics (cf. Löschel, 2002; Popp et al., 2010).16

In the model in this paper, productivity embedded in capital goods is only
one side of the coin. Diffusion barriers may also take the form of lacking tacit
knowledge that is required to make use of the technology. Endogenous in-
novation and the accumulation of codified knowledge is a “by-product” of
increased adoption. The coevolution strengthens and stabilizes the conver-
gence to the final technological state.

The economic outcome of the transition process is conditional on the evolu-
tion of the two types of knowledge stocks. The resulting pace of technologi-
cal specialization is higher if agents behave coordinately and all learning and
R&D resources are allocated to only one of the two technology types. An
effective and economically viable design of policy in terms of strength and
instrument-mix is sensitive to the type of diffusion barriers.

2.6 Concluding remarks

In this article, a microeconomic model of technological learning of heteroge-
neous firms as a driver of directed technological change is introduced. The

16Approaches based on learning curves typically focus less on the causal mechanisms that
drive the accumulation of knowledge and are of main interest in the directed technological
change literature.
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microfoundations of the model base on insights of the empirical and theoret-
ical literature on technological knowledge, learning and absorptive capacity.
This microeconomic model implemented in an eco-technology extension of
the macroeconomic ABM Eurace@unibi that is used to study transition path-
ways in a technology race between an incumbent, conventional technology
and a market-entering climate-friendly alternative. The market entrant is
superior because it allows saving resource input costs, but suffers from dif-
fusion barriers embodied in lower productivity and lacking capabilities of
heterogeneous firms. In a policy experiment, the implications of different
types of diffusion barriers for the design of market-based climate policy are
derived. The analyses have shown that technological superiority in terms
of permanent variable cost reductions is not sufficient to ensure long term
diffusion. If diffusion barriers are high, path dependence in technological
learning and endogenous innovation may dominate and the process of ini-
tial green technology uptake can be even reversed.

Directed technological change is represented as a coordination problem
among heterogeneous agents. The economic outcome and the transition
probability is dependent on the coevolution of supplied technology and ab-
sorptive capacity of adopting firms. A key insight from this perspective is
that technological uncertainty is costly.

Market-based policies can help to overcome diffusion barriers but, depen-
dent on the type of diffusion barriers, different instruments perform differ-
ently well. Taxes effectively compensate disadvantages related to the pro-
ductivity of the green alternative. Subsidies help if lacking non-tradable ca-
pabilities at the firm level impede the diffusion process.

For the design of policy, the heterogeneous nature of diffusion barriers is
important. Conditional on the strength of barriers, policies need to be suf-
ficiently strict to provide an effective mechanism of coordination. Lack of
coordination causes technological uncertainty. This is economically unfavor-
able because learning and R&D resources are possibly wasted for the devel-
opment of a technology type that is obsolete in the long run.

One core limitation of the model are the assumptions about cross-sectoral
knowledge spillovers in the learning process. The assumptions about learn-
ing spillovers are justified by qualitative insights from the literature. Here,
spillovers only exist in the learning by doing process, but spillovers may be
also relevant in the R&D sector. Empirical studies on innovation networks
and spillovers confirm the importance of technological similarity for diffu-
sion (cf. Acemoglu et al., 2016; Carvalho and Voigtländer, 2014). Spillovers
may affect the process of relative knowledge accumulation. This is the topic
of the subsequent chapter 3.

Qualitative case studies and sector-based quantitative insights (cf. 2.4.3) sup-
port the model’s validity. It is challenging to find robust quantitative and
cross-technology sector consistent measures for the concepts of technologi-
cal knowledge introduced in this paper, and for the clear distinction between
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different types of technologies. These measures would be required for a gen-
eral empirical validation of this model. This work is left for future research.
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2.A Model documentation

In this section, the formal implementation of the eco-technology extension
of the Eurace@unibi model is introduced. For an introduction to the baseline
model itself, its calibration and applications in economic policy analysis, the
interested reader is referred to articles of the original developers of the model
(e.g. Dawid et al., 2019b; Harting, 2019). A concise but self-contained intro-
duction to the eco-technology extension of the model is available in the SM
I. The most relevant changes and extensions compared to the baseline model
are summarized in table 2.A.1.

TABLE 2.A.1: Overview of the eco-technology extension of Eu-
race@unibi.

Extensions of the Eurace@unibi model
Static properties
Technology
IG firms Price competition among two IG firms, each representing a

different technology type ig = {c, g} with c as conventional
and g as green type.

CG firms Environmental impact and resource use associated with uti-
lization of non-green capital and type-specific technological
capabilities Big

i of CG firms i ∈ I.
Households Type-specific capabilities big

h of household h ∈ H to work ef-
fectively with production capital of her employer.

Dynamics
Innovation
IG firms Endogenous, probabilistic technological improvements in IG

sectors dependent on sectoral R&D investments.
Diffusion
CG firms Technology adoption decision based on relative expected

profitability which is dependent on firms’ technology type-
specific capabilities.

Learning
Households Learning is dependent on the type of technology they are us-

ing at work. Employees as “carrier” of tacit part of evolving
technological knowledge of firms.

Policy
Government Innovation and climate policy measures: Material input

taxes, subsidies for eco-innovation adoption and clean pro-
duction.

In the subsequent subsections, I introduce the relevant parts of the model
extension in technical detail. These are the CG firms’ production technology
highlighting the difference between the theoretical and effective productivity
of capital, and employees’ learning function.
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2.A.1 Consumption goods firms’ production technology

CG firms produce homogeneous consumption goods with a constant returns
to scale Leontief technology combining labor, capital and natural resource
inputs if conventional capital is used. Labor is hired on the labor market.
Capital goods are accumulated in a stock that can be expanded by investment
and depreciates over time. The capital stock is composed of various items
that can differ by productivity and technology type. It is important to note
the vintage approach. Newer machines are in tendency more productive, and
capital stock items can be either green or conventional.

The variable Kv
i,t indicates the quantity of capital goods of type v with the

characteristics (Av,1(v)) within the firm’s current capital stock Ki,t. For-
mally, the amount of capital of type v is given by Kv

i,t := {k ∈ Ki,t|Av(k) =

Av,1(k) = 1(v)}. Further, I use the notation Kig
i,t when referring to the part

of the capital stock that is composed of vintages of technology type ig, i.e.
Kc

i,t = ∑v 1(v) · Kv
i,t and Kg

i,t = ∑v(1− 1(v)) · Kv
i,t = Ki,t − Kc

i,t where 1(v) is
the technology type identifier taking the value one (zero) if the vintage v is
of conventional (green) type.

The exploitation of the productivity of a given vintage at the firm level is
constrained by the firm’s technological capabilities Big

i,t. This capability may

differ across technology types. The effective productivity AE f fv
i,t of a capital

good v in time t is given by

AE f fv
i,t = min

[
Av, Big

i,t
]

(2.4)

where Av is the theoretical productivity and Big
i,t is the average specific skill

level of firm i’s employees.

Technology-specific skills are accumulated over time, hence the effective pro-
ductivity of a capital stock item AE f fv

i,t changes over time and varies across
firms. The skill-dependent exploitation of productivity imposes a barrier to
the adoption of new technology. It takes time until workers have learned
how to use new machinery while their skills may be sufficient to exploit the
productivity of older vintages.

Total feasible output Qi,t of firm i in t is given by

Qi,t =
V

∑
v=1

(
min

[
Kv

i,t, max
[
0, Li,t −

V

∑
k=v+1

Kk
i,t
]]
· AE f fv

i,t

)
(2.5)

where Li,t is the number of employees, and ∑V
v=1 Kv

i,t is the firm’s ordered cap-
ital stock composed of V different capital stock items. Ordered refers to the
running order of capital that is determined by the cost-effectiveness of capital
goods. It may occur that firms do not utilize their full capacity. For example
when the available amount of labor or demand for consumption goods are
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insufficient and using costs of capital goods exceed the expected marginal
revenue it is not profitable to produce with full capacity. In such case, most
cost-effective capital goods are used first.

Firms can only use as much capital as workers are available in the firm to op-
erate the machines. This is captured by the term max

[
0, Li,t −∑V

k=v+1 Kk
i,t
]
.17

The cost effectiveness ζv
i,t is given by the marginal product AE f fv

i,t divided by
using costs. Variable using costs consist of wage wi,t and, if it is a conven-
tional capital good, unit costs of the natural resource input ceco

t . The cost-
effectiveness is given by

ζv
i,t =

AE f fv
i,t

wi,t + 1(v) · ceco
t

(2.6)

where 1(v) indicates the capital type.18

The decision about the production quantity is based on demand estimations
and inventory stocks. Based on estimated demand curves, firms determine
the profit-maximizing price-quantity combination. Because the estimation
can be imperfect and prices cannot be immediately adjusted, the consump-
tion goods market does not necessarily clear (see for additional detail Dawid
et al., 2019b).

Production costs of a firm are composed of wage payments and expendi-
tures for natural resource inputs required for each conventional vintage that
is used. Total resource costs are given by the resource unit price ceco

t mul-
tiplied with the total amount of conventional capital that is used in current
production, i.e.

Ceco
i,t = ceco

t ·
V

∑
v=1

1(v) · Kv
i,t. (2.7)

with V as the set of vintages that are actually utilized for production in t. The
natural resource input costs ceco

t = e · p̃eco
t are composed of the user price p̃eco

t
for the input multiplied with an efficiency parameter e.19

The utilization of conventional capital is associated with the degradation of
an environmental resource. The damage is proportional to the number of
conventional capital units that are used in production. If conventional capi-
tal becomes more productive, a relative decoupling takes place. The environ-
mental damage per unit of output decreases.

17The process of hiring new employees is explained in the references of the original model.
18In case of equality of a vintage’s cost-effectiveness, the vintages are ordered by produc-

tivity and in case of further equality the green vintage is used first.
19The real price of the natural resource is assumed to be constant, i.e. it is exogenously

given and grows at the same rate as the average wage in the economy. Hence, on average,
the ratio between variable labor and resource input costs is held constant. Note that this
does only hold on average because wages may be different across firms.
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The composition of firms’ capital stock changes by depreciation and invest-
ment. In their investment decision, firms have to decide about the technology
type, productivity level and the number of capital goods to buy. This deci-
sion is based on the estimated net present value. In the computation, firms
take account of the expected price and wage developments and anticipate
technology-specific learning of their employees.

Investment and production expenditures have to be financed in advance. If
the firm’s own financial means on the bank account are not sufficient, it ap-
plies for credit from private banks. A formal explanation of the firms’ invest-
ment decision and the environmental impact is available in the comprehen-
sive model documentation in the general appendix I.

2.A.2 Employees’ technological learning

Households act as consumers, savers, and employees. The consumption de-
cision is based on a multinomial logit function in which the purchasing prob-
ability negatively depends on the price of the good (see Dawid et al., 2019b).

Technological learning is embedded in the evolution of households’
technology-specific skills. Technology-specific skills big

h,t of employee h are
learned during work. The speed of learning depends on the technological
properties of the capital stock that is used by the employer and h’s learning
ability. The ability depends on the household’s (fix) general skills χh. It mod-
erates the speed of learning. This is explained in more detail in chapter 3 and
in the SM I.

There are two ways of how technology-specific skills are accumulated.
Households learn by using a specific technology type ψ

ig
h,t. Part of the tech-

nological knowledge learned is transferable across types and contributes to
the stock of technology-specific skills of the alternative technology type in-
dexed by −ig with ig 6= −ig and ig,−ig ∈ {c, g}.

The evolution of the technology-specific skill level big
h,t is given by

big
h,t+1 = big

h,t + χh ·max
[
(χspill · ψ−ig

h,t ), ψ
ig
h,t

]
(2.8)

with χspill ∈ [0, 1] as spillover intensity or degree of transferability of techno-
logical knowledge.

The pace of learning ψ
ig
h,t is dependent on the intensity of learning ν

ig
h,t and the

degree of technological novelty ∆big
h,t. It is given by

ψ
ig
h,t = max

[
χint, ν

ig
h,t

]
· ∆big

h,t. (2.9)
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with χint ∈ [0, 1] as lower bound. The intensity of learning in a specific tech-
nology category ig is dependent on the relative amount of technology ig that

is used ν
ig
h,t =

Kig
h,t

Kh,t
.

This is interpreted as intensity of effort or time invested in learning a specific
type of skills (cf. Cohen and Levinthal, 1990). Learning skills of technology
type ig is faster if the relative amount of this type in the used capital stock
is higher. The relative amount is assumed to reflect which relative time the
employee is working with a technology type and learning by doing. The
fixed parameter χint ∈ [0, 1] imposes a minimum level on the sensitivity of
learning progress to the intensity of effort.20

Employees learn only if “there is something new to learn”. ∆big
h,t =

max[0, (Aig
h,t − big

h,t)] represents the learning potential. The learning poten-

tial is given by the gap between the average productivity level Aig
h,t of h’s

employer and its current skill level. The larger the gap is, the larger is the
“amount” of technological knowledge the employee may learn and the faster
is the pace of learning. This assumption reflects a notion from the learning
curve literature that employees learn faster if they are exposed to novel tech-
nological environments (Thompson, 2012).

Aig
h,t is the average productivity of vintages of type ig in the capital stock of

h’s employer. Aig
h,t imposes an upper bound on learning by doing. However,

the skill level big
h,t may exceed Aig

h, if χspill · φ−ig
h,t is sufficiently high and the

employee learns from spillovers.

2.A.3 Capital goods and innovation

Each IG firm ig ∈ {c, g} offers a range of capital vintages indexed by
v = {1, ..., V} that differ by productivity. The index v = 1 refers to the least
productive vintage supplied by firm ig and v = V to the most productive.
The incumbent firm c produces conventional, the entrant firm g produces
green capital goods.

The productivity Av of vintages offered by IG firm ig at time t depends on
its current technological frontier. The frontier AV

ig,t corresponds to the pro-
ductivity level of the most productive vintage indexed with V. If an IG firm
successfully innovates, its technological frontier is shifted upwards and the
firm is able to offer a new and more productive vintage with the productivity

AV
ig,t+1 = (1 + ∆A) · AV

ig,t. (2.10)

20Note that this representation slightly differs from the model version introduced in the
SM I.
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Productivity enhancements are discrete steps given by ∆A · AV
ig,t where the

factor ∆A is uniform across IG sectors, but the productivity enhancement in
absolute terms depends on the current level of the frontier. Hence, there is a
positive externality from existing technological knowledge.

The success of innovation is probabilistic and IG firms are able to influence
the probability of success by investment in R&D. The probability of success
Pig,t is given by

Pig,t[success] = p̄ · (1 + R̂&Dig,t)
η (2.11)

where p̄ is a fix minimum probability of innovation success. It can be in-
terpreted as technological knowledge that is generated independently of the
market for example in public research institutions or by inventors that are in-
dependent of the market. R̂&Dig,t is ig’s R&D intensity in the current month.

The parameter η ∈ (0, 1] determines the returns to R&D.

Capital goods are produced with a constant returns linear production func-
tion using labor as the only input. For reasons of simplification, their labor
demand is not integrated into the labor market. Hence, capacity constraints
are assumed away.

IG firms use an adaptive mark-up pricing based on observations about past
market shares and profits and their previous pricing behavior. IG firms’ rev-
enue is used to cover labor costs for IG production. Remaining profits are
partly invested in R&D and partly paid as dividends to shareholders. These
routines are formally explained in the comprehensive model documentation
in the SM I.

2.A.4 Green technology producer’s market entry

On the day of market entry t0, the green IG firm g starts supplying the first,
least productive vintage with the productivity A1

g,t0
= (1− βA) · A1

c,t0
. βA ∈

[0, 1) is the percentage technological disadvantage of green technology on
the day of market entry.

The market entry was associated with a technological breakthrough that
enables the rapid development of further varieties of green capital. A
whole supply array becomes successively available. Half a year after the
day of market entry, the next and incrementally more productive vintage
is added to the array of available vintages. It has the productivity level
A2

g,t = (1 + ∆A) · A1
g,t = (1− βA) · A2

c,t0
.21

This procedure repeats every sixth month until the maximum number of the
supplied vintages is reached. Thereafter, additional technological progress
happens through the innovation procedure as introduced above (see 2.A.3).

21Six months can be referred as to “rapid” in comparison to the innovation probability
that ranges typically around 3% (endogenous) which corresponds to approximately one in-
novation every five years.
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Note that the initial supply array is proportional to the supply array of the
conventional producer in t0. The green vintages are supplied at the same
prices as vintages of the incumbent in t0, but the price per productivity unit is
higher due to the assumed technological disadvantage.

2.A.5 Policy

The government can use a tax on natural resource inputs and two different
subsidies to stimulate the diffusion of green technologies.

The policy instruments are implemented as follows:

• An environmental tax θ is imposed as a value added tax on material in-
puts. This makes the use of conventional capital relatively more costly
for CG firms,

p̃eco
i,t = (1 + θ) · peco

t . (2.12)

Because the environmental impact of production is proportional to the
use of material inputs, this tax can also be seen as a tax on the environ-
mental externality. Alternatively, different levels of the tax can inter-
preted as different degrees of technological superiority of the entrant
technology.

• An investment subsidy ςi reduces the the price for green capital goods,

p̃v
t = (1− ςi) · pv

t . (2.13)

• The government may also pay a green consumption price support ςc

for environmentally sound produced CG, i.e.

p̃i,t =
(

1− ν
g
i,t · ς

c
)
· pi,t (2.14)

This subsidy is directly paid to firms and is proportional to the share of

green capital used in current production ν
g
i,t =

Kg
i,t

Ki,t
. The price support

allows CG firms to achieve a higher mark-ups when producing in an
environmentally friendly way.22

The tax and the subsidy rates are initialized at a fix level at the day of market
entry. The government seeks to balance its budget and adjusts other taxes
accordingly, i.e. if the budget balance is negative, non-environmental taxes
are increased and vice versa if the balance is positive.

22Note that the consumption subsidy is analogous to a higher willingness to pay of con-
sumers for green products.
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2.A.6 Additional notes on the parameter settings

In these simulations, moderate spillovers in the learning process are assumed
captured by χint = χspill = .5. The technological knowledge required for the
effective use of a certain technology is often partly transferable (cf. Cohen
and Levinthal, 1990). For example, skills such as programming or basic en-
gineering knowledge are usable independently of the type of capital that is
used, but technological knowledge about the technical details of a combus-
tion machine has little use in the production of wind energy.

Studies on corporate learning suggest employees being exposed to changes
in their working environment to learn faster which justifies the assumption
that the speed of learning is positively dependent on the degree to which
a technology is new to employees with a fix minimum pace of learning cap-
tured by χint > 0 (Thompson, 2012). Further, these parameters are sector and
technology dependent, but sectoral heterogeneity is not within the scope of
the present analysis. The choice of the values for barriers and learning pa-
rameters is based on a series of sensitivity tests. These values are set such
that the probability of a green transition is roughly 50%.

Initial conditions are determined in a series of training simulations. The model
is based on a calibrated version of the Eurace@unibi model and an initial pop-
ulation is taken from previous applications. The initial population reflects
the initial distribution of skills and wealth across households and firms and
the firm size distribution. However, the introduction of the additional mod-
ule made a partial recalibration of the model necessary. Starting with an
initial population, the model was run for different parameter settings until
stable economic processes have emerged. At that time, the population was
saved and used as initial input to the model. This explains, for example, the
arbitrarily seeming number of 74 firms.23

23The number of periods until the day of market entry was set such that the economy is
on a stable path of development, but sufficiently small that the divergence across runs is not
too large. The deviations across different runs that emerge during this time are of minor
importance. The number of 210 simulation runs was chosen such that it factorizes with the
number of available cores of the computer that was used for the simulations.
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2.B Stylized facts and empirical calibration

The model is supposed to serve as tool for the economic analysis of green
technology diffusion and scenario exploration. In order to justify the model’s
suitability for this objective, the model needs to be empirically validated.
In this section, the model’s ability to match economic stylized facts that are
established in the literature. Below, I introduce stylized facts of innovative
processes that were used to design the model. Stylized facts of innovation
that serve for model validation are discussed in the main text body of this
article.

2.B.1 Economic stylized facts for model validation

In this subsection, an overview of micro- and macroeconomic stylized facts
that are reproduced by the model is provided. The selection of validation
criteria follows the approach used in Dawid et al. (2018b). The authors dis-
cuss and motivate the use of specific stylized facts more comprehensively
pointing to their counterparts in the empirical literature. Here, I give only a
short overview and show a subset of validation criteria to demonstrate the
models ability to reproduce empirically observed economic regularities and
is expected to provide an appropriate tool for economic scenario exploration
and policy analysis. All data and the corresponding R code is provided in
the online documentation to allow the reader to reproduce the results. The
results presented below refer to the simulation results of the baseline sce-
nario (cf. section 2.4.1). The references to the empirical counterparts of the
stylized facts are discussed in more detail in Dawid et al. (2018b). Here, I
demonstrate that extended model behaves in a similar way as the original
Eurace@unibi model.

1. The model is able to reproduce growth rates, business cycle volatility
and persistence patterns similar to those documented in the empirical
literature (cf. Dawid et al., 2018b). The average growth rate of the 210
simulation runs accounts for .0156 and an average standard deviation
of .0011.24 The average growth rate is slightly lower than empirically
documented values, but this is merely a matter of scaling of productiv-
ity progress parameters in the model, but does not qualitatively change
the results. The variation across different simulation runs is low and
indicates robustness of the model simulations.

2. Business cycle volatility is evaluated by the size of the cyclical compo-
nent. It is measured as average of the absolute size of the percentage
deviation of the time series from its bandpass filtered trend data. The

24These values are the arithmetic mean of 210 run specific average growth rates com-
puted as geometric mean in bandpass filtered time series across 15000 iterations representing
roughly 60 years. The standard deviation is the average standard deviation of run specific
deviations over time. The variation across runs in means (standard deviations) accounts for
.0010 (.0011).
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average size of a business cycle accounts for .0013, i.e. aggregate output
variates on average by 0.1 percent. The standard deviation of the vari-
ation accounts for .0017. Again, the variation across runs, i.e. the stan-
dard deviation of per-run average size of the business cycle (standard
deviation) is low accounting for .0004 (.0005). The model reproduces
slightly less volatile patterns than the original model. As discussed in
the text, this is intended and caused by the design of functions that have
a smoothing effect. These are, for example, routines that refuel resid-
ual financial flows back to the economy through lump-sum payments
implemented via dividends, R&D budgets or governmental budget al-
location and allow to smoothen effects of cyclical volatility. The aim of
this study is the understanding of the relevance of knowledge accumu-
lation processes for technology diffusion. Stronger cyclical dynamics
would make this analysis more difficult and are left for future investi-
gations.

3. Co-movement of key variables with the business cycle is shown in ta-
ble 2.B.1 by a representation of the cross correlation structure of macroe-
conomic key variables and business cycle dynamics. The values in the
table indicate the correlation of the cyclical part of bandpass filtered
time series data with the business cycle measured as output fluctua-
tions for different time lags. The table confirms the pro-cyclical behav-
ior consumption, investment, employment and vacancies. Anti-cyclical
behavior is observed for wages, mark-ups and unemployment.

4. The relative magnitude of fluctuations of macroeconomic variables
differs in their extent. In figure 2.B.1a, I show the relative magnitude
of the percentage variation in the cyclical argument of the bandpass
filtered time series of output, consumption and investment. The plot
covers a 10-year time period close to the end of simulation time and
shows the time series of a randomly drawn single simulation run.25 In
line with the empirical literature, investment exhibits a higher volatil-
ity than consumption and output. Moreover, the figure reveals the lag
structure of the three variables, i.e. production responds to a positive
consumption shock with a time lag and an output shock precedes a
boom in investment. In figure 2.B.1b, an analogous plot is shown for
the relative magnitude of variations in output, vacancies and unem-
ployment.

5. Labor market properties can be summarized by a Beveridge and
Phillips curve. The model reproduces a Beveridge curve (figure 2.B.2b)
which illustrates the relationship between unemployment and vacan-
cies, i.e. higher unemployment is associated with a lower vacancy rate.
The Phillips curve shown in figure 2.B.2a shows the relationship be-
tween unemployment and inflation. The figures on show these curves

25All material to reproduce these plots are provided in the online documentation. The late
snapshot in time is chosen because the technological transition has completed. Preliminary
analyses have shown that the observed patterns are consistent across time.
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for a single randomly selected run for a 20 year snapshot in the first and
second half of the simulation horizon.

TABLE 2.B.1: Simulated cross correlation patterns

t-4 t-3 t-2 t-1 0 t+1 t+2 t+3 t+4

Output -.126 .233 .609 .894 1.00 .894 .609 .233 -.126
(.084) (.066) (.036) (.010) (.000) (.010) (.036) (.066) (.084)

Consumption -.470 -.468 -.330 -.070 .249 .536 .705 .709 .555
(.065) (.066) (.068) (.066) (.061) (.062) (.063) (.062) (.062)

Unemployment .150 -.205 -.583 -.875 -.992 -.896 -.619 -.247 .113
(.082) (.066) (.042) (.024) (.022) (.023) (.039) (.064) (.081)

Vacancies -.150 .011 .204 .379 .489 .501 .414 .258 .079
(.063) (.060) (.081) (.113) (.134) (.134) (.116) (.088) (.068)

Price .010 .135 .253 .330 .345 .294 .193 .072 -.039
(.106) (.122) (.144) (.158) (.155) (.136) (.111) (.099) (.105)

Wage .082 .097 .098 .075 .029 -.034 -.099 -.151 -.177
(.091) (.093) (.098) (.101) (.101) (.101) (.104) (.110) (.114)

Debt -.129 -.025 .102 .216 .286 .294 .241 .149 .047
(.124) (.130) (.126) (.114) (.100) (.090) (.090) (.095) (.010)

Inflation -.351 -.328 -.216 -.044 .139 .278 .338 .310 .218
(.099) (.091) (.087) (.096) (.113) (.121) (.115) (.101) (.090)

Productivity .107 -.016 -.155 -.270 -.326 -.305 -.216 -.089 .037
(.111) (.096) (.104) (.131) (.150) (.148) (.126) (.099) (.089)

Investment -.231 -.161 -.053 .071 .179 .245 .256 .215 .143
(.087) (.086) (.097) (.110) (.116) (.111) (.097) (.083) (.083)

Price eco -.141 -.272 -.345 -.336 -.248 -.111 .031 .137 .185
(.104) (.118) (.129) (.127) (.114) (.103) (.102) (.106) (.105)

Mark ups -.170 .065 .315 .510 .595 .549 .391 .173 -.037
(.107) (.107) (.137) (.174) (.190) (.174) (.135) (.098) (.097)

This table shows cross correlation patterns in the volatility of macroe-
conomic time series with (lagged) business cycle dynamics, i.e. varia-
tion in aggregate output. All variables are measured as cyclical argu-
ment of the underlying time series. The first row corresponds to the
autocorrelation of a business cycle. The presented values are averages
of the run-wise correlations. In parentheses, I the standard deviation

across simulation runs is shown.

These presented stylized facts are only a fraction of the stylized facts that
can be reproduced by the Eurace@unibi model as discussed in Dawid et al.
(2018a). Here, I restrict the analysis to the facts shown above to give the
reader an insight to the macroeconomic dynamics and interactions that are
simulated by the model. Purpose of this short discussion is to motivate
why the model is expected to deliver simulation results that can be plausibly
linked to the observed economic reality.
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FIGURE 2.B.1: Relative volatility of macroeconomic indicators
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These plots show the relative magnitude of fluctuations captured by
the cyclical argument of macroeconomic bandpass filtered time series
and measured as percentage. The shown series cover a 10 year period
at the end of the simulation horizon of a randomly drawn single run

out of the set of 210 simulation runs.

FIGURE 2.B.2: Beveridge and Phillips curve.
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(B) Beveridge

These figures show a Phillips and Beveridge curve for a randomly
drawn simulation run. The data accounts for unsmoothed time se-
ries data covering the whole simulation period of roughly 60 years.

Outliers are removed from the data.

2.B.2 Stylized facts of (eco-)innovation

The Eurace@unibi-eco model is designed and validated along a number of
stylized facts that can be derived from the empirical insights discussed
above.

It can be distinguished between characteristics of (eco-)innovation that
served as priors for the model design and observed patterns that are used for
validation. In this subsection, an overview stylized facts of (eco-)innovation
is given and it is briefly explained how these aspects are incorporated in the
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Eurace@unibi-eco model. The observed patterns related to ex-post model val-
idation are discussed in the main article (esp. 2.4.3).

1. Uncertainty and the stochastic nature of innovation:
Innovation processes are subject to different types of uncertainty, in
particular uncertainty with regard to success in the research process
at the inventor’s stage, uncertainty about the market value of success-
ful innovation, and uncertainty on the adopters level about the bene-
fits and optimal timing of adoption (cf. Dosi, 1988; Nelson and Winter,
1977; Windrum, 1999). In Eurace@unibi, innovation success is proba-
bilistic, the pricing of the innovative outcome follows an adaptive pro-
cess of learning about the market value of the innovative outcome, and
adopters’ decisions are based on estimations about the evolution of the
uncertain market environment rather than optimality calculations.

2. Incremental nature of innovation:
“Standing on the shoulders of giants”, inventors build on previous
knowledge when researching for technological novelties (cf. Dosi,
1988). In Eurace@unibi, IG firms incrementally shift upwards their tech-
nological frontier through innovation.

3. Technological change is (partly) embodied in capital:
Technology is the means that transforms specific inputs into a valuable
output good. Part of these means is embodied in the type of produc-
tion capital that can be bought on the market. This can be the techni-
cal characteristics of physical machinery, but it can also be a codified
type of technical knowledge that can be bought on the market as hu-
man capital. If other types of capital are used in production, technol-
ogy is changed (e.g. Romer, 1990; Windrum, 1999). This is captured in
Eurace@unibi-eco where technological change in the quantitative (pro-
ductivity growth) and qualitative (technology type) dimension is chan-
neled through the adoption of new capital goods.

4. Tacit knowledge as second dimension of technology:
The non-capital type of technology is referred as to know-how. Techno-
logical change does not only occur through the replacement of capital,
but might also refer to non-tradable, tacit knowledge that is applied in
the utilization of inputs that can be bought on the market. Tacit knowl-
edge accumulates through learning processes and not via market trans-
actions. At the firm level, tacit knowledge and technological learning
imposes a trade-off between static and dynamic efficiency when the
adoption of a superior technology is hindered if the required level of
technological capabilities is not yet available but would be accumulated
after adoption (cf. Dawid, 2006; Di Stefano et al., 2012; Dosi, 1991; Win-
drum, 1999). Tacit knowledge is represented in the Eurace@unibi model
in the form of evolving technology-specific skills of a firm’s workforce
that are needed to effectively use capital goods.

5. Heterogeneity of innovation adopters: Costs and benefits of innova-
tion adoption can be heterogeneous. This can be due to heterogeneous
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preferences and experiences, different adoption costs dependent on ca-
pabilities and the compatibility with current endowments (Allan et al.,
2014; Nelson and Winter, 1977). In the model, this is captured by the
heterogeneity of CG firms in terms of capabilities, expectations, capital
endowments and financial capacities.

6. Spillovers and knowledge externalities:
Spillovers and knowledge externalities are positive externalities that
arise from and during the development and diffusion of a new technol-
ogy. These spillovers occur via different channels, and typically refer
to the public good nature of technological knowledge or to the process
of corporate learning that is either associated with the influx of exter-
nally acquired technological knowledge via labor mobility or by learn-
ing that is triggered by the exposure to a technological novelty. (Allan
et al., 2014; Gillingham et al., 2008; Pizer and Popp, 2008). In the model,
spillovers do not refer to knowledge flows in R&D processes, and are
only captured by the spillovers in the evolution of tacit knowledge, i.e.
cross-technology spillovers in learning and the dependence of learning
on the technical characteristics of production capital, and additionally
via labor mobility.

7. Creative destruction and technological obsolescence: Creative de-
struction and/ or technological obsolescence refer to the phenomenon
of replacement of an incumbent technology by a new one. This pro-
cess is associated with a loss in the value of the old technology, equip-
ment and skills that are complementary to the old, but not or only im-
perfectly transferable to the utilization of the new technology (Klimek
et al., 2012; Köhler et al., 2006). This feature enters the model in the
way of technology-specific skills. When firms adopt an other technol-
ogy type, their capabilities in the utilization of the replaced technology
are not required any longer and experience a loss in value.

8. Sunk costs and the vintage structure of capital as adoption barrier:
Investment and the adjustment of capital is not instantaneous. Rather,
firms invest at certain points in time and the undertaken investment is
available for the firm until it is fully depreciated. After being paid once,
investment costs are considered as sunk-costs. Besides variable costs
of capital utilization, relative costs and benefits of different investment
opportunities are not relevant for the firm’s production planning. This
may inhibit the adoption of a new technology even if is superior (Am-
bec et al., 2013; Dosi, 1991; Kemp and Volpi, 2008; Metcalfe, 1988). The
Eurace@unibi-eco model applies a vintage capital approach, i.e. firms
have a capital stock that is composed of different vintages of capital
that depreciate over time and undertake new investments at a given
periodicity if old capital needs to be replaced or a capacity expansion is
intended.
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2.C Simulation results

2.C.1 Baseline scenario

FIGURE 2.C.1: Environmental performance indicators

●●●
●

●

●

●
●

●

●

●

●
●●

●
●●●●●●●

●
●

●

●
●

●
●

●
●●●

●●
●●●●

●●●●●●●
●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

0

500

1000

1500

3000 6000 9000 12000
Periods

A
gg

re
ga

te
 e

nv
iro

nm
en

ta
l i

m
pa

ct

(A) Aggregate environmental im-
pact

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●●●
●●●●●●●

●
●

●
●●●●●●●●●●

●
●

●●●●●●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●●

0.0

0.1

0.2

0.3

0.4

3000 6000 9000 12000
Periods

A
ve

ra
ge

 e
co

−
ef

fic
ie

nc
y
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These figures show the evolution of the aggregate environmental im-
pact and ecoefficiency as environmental impact per unit of output.
The line types indicate different scenario types (�: eco, *: conv, ⊕:

switch).

The figures on the aggregate environmental impact and eco-efficiency reveal
that there is a relative decoupling of environmental damage and production
activities. The level in figure 2.C.1a stabilizes even if no transition to the green
technology takes place. This is due to improved production efficiency and in
consequence a reduction of emissions per unit of output (cf. figure 2.C.1b).
However, the improvement in terms of eco-efficiency is fully outweighed by
an increase in the total quantity of output. This phenomenon is also known
as rebound effect (cf. Arundel and Kemp, 2009).

Figure 2.C.2 shows the evolution of relative nominal prices for capital goods
and prices that are normalized by the supplied productivity level. Nominal
prices evolve as expected, i.e. the more demanded technology becomes rel-
atively more expensive which is a result of the adaptive pricing mechanism
in the capital goods market. When considering not nominal prices normal-
ized by the offered productivity level the pattern is reversed. In this setting
the growth in the productivity performance outweighs the demand induced
price increase of the more demanded technology. These plots confirm that
the endogenous technological evolution dominates the market demand in-
duced scarcity effect that underlies the upward trend of the nominal price
ratio in favor of the more demanded technology.

The divergence between green and conventional technological regimes is not
only reflected in technology utilization, but also in capital prices, skills and
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FIGURE 2.C.2: Capital price indicators
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The different line shapes indicate the scenario type (i.e. �: eco, *:
conv, ⊕: switch). Figure 2.C.2a shows the evolution of the ratio of
prices paid for the most productive vintages supplied by the conven-
tional and green producer. Figure 2.C.2b shows the evolution of the

price-per-productivity-unit ratio.

technological development. The endogenous nature of technological inno-
vation is the dominating force that governs the process of divergence of the
two technological regimes. A more detailed discussion of price indicators
and the relative pace of learning and technological innovation is provided in
the accompanying working paper Hötte (2019b).

The Wilcoxon test confirm the significance of differences between the switch
and the other two scenarios. In the beginning, before the green capital pro-
ducer enters the market, the differences are not significant but a considerable
divergence is observable in later periods. Even though there are learning
costs in terms of lower aggregate output in the switch scenario, the unem-
ployment rate is lower which is due to lower average productivity. Unit costs
are higher, firms charge higher prices but lower mark-ups. This additionally
lowers the opportunities of investments and higher prices are reflected in
lower real wages. In the switch scenario, firms have more employees on av-
erage but produce a lower quantity of output.
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FIGURE 2.C.3: Macroeconomic and technological indicators

●●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

6

8

10

12

14

16

3000 6000 9000 12000
Periods

U
ne

m
pl

oy
m

en
t r

at
e

(A) Unemployment
rate

●●
●●

●●
●●

●
●●

●●

●
●

●●

●

●●●
●

●

●●
●

●
●

●

●●

●●●
●

●●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

−0.050

−0.025

0.000

0.025

0.050

3000 6000 9000 12000
Periods

B
ud

ge
t b

al
an

ce
 in

 %
 G

D
P

(B) Gov. budget bal-
ance (% GDP)

●●
●

●
●●●

●●
●●●●

●●●●●●
●

●●
●●

●●●
●●

●●●
●●●●

●
●●

●
●●

●●●●●
●●●●●

●
●

●
●●

●
●

●
●●

0.0900

0.0925

0.0950

0.0975

0.1000

3000 6000 9000 12000
Periods

R
ea

l p
ric

e 
of

 n
at

ur
al

 r
es

ou
rc

e 

(C) cecot /w̄t

●●
●

●

●●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

18

19

20

21

3000 6000 9000 12000
Periods

# 
em

pl
oy

ee
s

(D) Avg. # employees

●●●●

●
●●●●●

●
●●

●●
●

●
●

●
●

●
●

●
●●

●●
●

●●
●●●●●

●●●
●●

●●●

●

●
●●●●●●●●

●●
●

●
●

●
●

●
●

3.8

4.0

4.2

4.4

4.6

3000 6000 9000 12000
Periods

F
ir

m
 a

vg
. o

ut
pu

t

(E) Avg. output

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●

1.0

1.5

2.0

2.5

3.0

3000 6000 9000 12000
Periods

F
ir

m
 a

vg
. p

ric
e

(F) Avg. price by firms

●
●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●
●●

●●●●
●●●

●●●
●

●●
●

●
●

●

●●
●

10

15

20

25

30

35

3000 6000 9000 12000
Periods

E
ffe

ct
iv

e 
in

ve
st

m
en

t b
y 

fir
m

s

(G) Avg. effective in-
vestment

●

●●
●●

●

●
●

●●
●●●●

●●
●●

●
●

●●
●●●

●
●●●

●
●●●

●●●●
●●●●

●
●

●●
●●●

●●

●●●
●●

●●●

●●

●
●

0.00

0.25

0.50

3000 6000 9000 12000
Periods

A
ct

ua
l m

ar
k 

up

(H) Avg. mark up

●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

●●
●

●
●

●
●

●
●●

●●●

1.0

1.5

2.0

2.5

3000 6000 9000 12000
Periods

U
ni

t c
os

ts

(I) Avg. unit costs

These figures show the time series of macroeconomic and firm-level
key indicators for the macroeconomic and technological evolution.
The different shapes indidicate the technological regime type (�: eco,
*: conv,⊕: switch). The jumpy behavior (esp. for the number of active
firms) of the blue curve is due to the small number of runs within the

set of switching regimes.
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TABLE 2.C.1: Wilcoxon test on equality of means comparing
regimes (baseline)

Mean (Std) p-value
t eco conv switch eco, conv eco, switch conv, switch
Share conv. capital use
[0, 600] 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) NA NA NA
[0, 15000] .1991 (.0777) .9583 (.0463) .6720 (.1195) <2.2e-16 .00018 .00020
Monthly output
[0, 600] 8.067 (.0023) 8.067 (.0022) 8.068 (.0024) .7334 .9084 .9326
[0, 15000] 8.509 (.1035) 8.522 (.0868) 8.322 (.0640) .3981 .0006 .0003
Unemployment rate
[0, 600] 7.472 (.2187) 7.456 (.2024) 7.397 (.2138) .8357 .6730 .6120
[0, 15000] 12.18 (6.611) 11.95 (5.604) 8.089 (.4756) .4430 .0009 .0006
Eco-price-wage-ratio
[0, 600] .0952 (2.5e-5) .0952 (3.6e-5) .0952 (1.8e-5) .6930 .9939 .7353
[0, 15000] .0951 (5.6e-5) .0951 (4.6e-5) .0952 (1.8e-5) .5549 .0054 .0063

The means are computed as average over the subset of periods for
each single simulation run. The time interval t ∈ [0, 600] corresponds
to the time before market entry, the interval t ∈ [0, 150000] for the
sample average. Test on other time intervals are not presented here,

but are available in the accompanying data publication.
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2.C.2 Random barrier experiment

TABLE 2.C.2: Initialization of diffusion barriers

t Mean (Std) Mean (Std) Mean (Std) p-value*
Frontier gap conv eco
600 .064 (.043) .082 (.041) .032 (.027) 2.3e-16
15000 .117 (.373) .531 (.322) -.594 (.304) <2e-16
Skill gap conv eco
600 .077 (.046) .089 (.042) .052 (.032) 4.8e-10
15000 .117 (.373) .393 (.085) -.360 (.084) <2.3e-16

Initial mean and standard deviation of randomized entry barriers dif-
ferentiated by regime type. The p-value in the last column indicates
the significance of difference between the two scenarios derived from

a two-sided Wilcoxon test on equality of means.

TABLE 2.C.3: Wilcoxon test on equality of means comparing
regimes

Mean (Std) p-value Mean (Std) p-value
t eco conv eco, conv eco conv eco, conv

Share conventional capital used Eco-price-wage-ratio
[601, 3000] .6337 (.1830) .9595 (.0844) <2.2e-16 .0951 (6.8e-5) .0952 (5.0e-5) .3544
[3001, 5400] .1549 (.1903) .9486 (.1371) <2.2e-16 .0951 (8.7e-5) .0951 (6.6e-5) .0011
[5401, 15000] .0278 (.0455) .9922 (.0520) <2.2e-16 .0951 (4.9e-5) .0951 (4.7e-5) .1846
[0, 15000] .1840 (.0763) .9803 (.0616) <2.2e-16 .0951 (4.3e-5) .0951 (3.8e-5) .0137

% frontier gap % skill gap
[601, 3000] -.0414 (.0586) .1142 (.0677) <2.2e-16 .0425 (.0338) .1147 (.0454) <2.2e-16
[3001, 5400] -.1702 (.1209) .1740 (.1154) <2.2e-16 -.0485 (.0550) .1590 (.0596) <2.2e-16
[5401, 15000] -.4132 (.2310) .3731 (.2208) <2.2e-16 -.2408 (.0780) .2964 (.0764) <2.2e-16
[0, 15000] -.2970 (.1677) .2881 (.1608) <2.2e-16 -.1530 (.0595) .2371 (.0617) <2.2e-16

Monthly output Unemployment rate
[601, 3000] 8.118 (.0203) 8.120 (.0177) .2065 8.089 (.6501) 8.608 (.7857) 2.9e-8
[3001, 5400] 8.272 (.0664) 8.263 (.0572) .3618 10.59 (3.292) 9.121 (1.825) .0002
[5401, 15000] 8.722 (.1306) 8.681 (.1340) .0335 14.71 (9.688) 11.78 (4.641) .0525
[0, 15000] 8.527 (.0916) 8.500 (.0933) .04593 12.70 (6.597) 10.67 (3.191) .0420

# active firms
[601, 3000] 71.52 (1.298) 71.56 (1.150) .5416
[3001, 5400] 70.62 (2.035) 71.26 (2.000) .02798
[5401, 15000] 73.11 (4.209) 74.52 (2.910) .0427
[0, 15000] 72.50 (2.788) 73.51 (2.095) .0192

Means are computed as average over the subset of periods and
disaggregated by run. The time interval [601, 3000] ([3001, 5400],
[5401, 15000]) corresponds to the first ten (10− 20, > 20) years after
market entry. The interval [0, 150000] accounts for the sample aver-

age.

2.C.3 Policy experiment

Initialization

The initializations of the random parameters are summarized in table 2.C.4.
On the left-hand side, the initial conditions for the full set of simulations
are shown. The remaining columns represent the initializations of the runs
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within the subsets of ex-post classified technological regimes. The p-value in
the last column indicates whether the difference in initial conditions between
conventional and green regimes is significant tested by a two-sided Wilcoxon
test. On average, βA (ςc) is significantly lower (higher) in the subset of green
regimes. This is an indication that the interactions among policies and barri-
ers might be important to understand the effectiveness of the other political
instruments.

TABLE 2.C.4: Initialization of policies and diffusion barriers

conv eco
Mean (Std) Mean (Std) Mean (Std) p-value

βA .077 (.043) .102 (.035) .059 (.039) 1.3e-12
βb .076 (.044) .081 (.042) .072 (.045) .194
θ .515 (.291) .476 (.276) .543 (.297) .090
ςc .013 (.007) .011 (.007) .014 (.007) .002
ςi .052 (.028) .050 (.029) .053 (.027) .443

The four columns on the right-hand side show the initialization by
regime type, i.e. eco and conv.

Additional test statistics on the significance of differences between the policy
and the benchmark scenario disaggregated by type of the emerging regime
is available in the accompanying data publication.

Additional information about the evolution of policy effects over time

An evaluation of policy effects over time is made by a regression analysis of
the diffusion measure and other firm-level variables on policy instruments,
barriers and firm-level controls. To capture systematic differences across dif-
ferent technological regimes, a dummy variable 1eco and its policy interaction
terms are included in the regression.26

Table 2.C.5 shows the results of a regression analysis of the νc
i,t measured 5, 10

and 35 years after market entry (t ∈ {1800, 3000, 9000}) on the different poli-
cies, barriers and firm-level controls. The table has to be read as follows. The
coefficient of 1eco shows fix differences between the different technological
regimes. To get the marginal impact of a tax on νc

i,t in the transition regime,
the coefficient of θ and 1

ecoθ have to be added. Five years after market en-
try, all instruments are associated with a significantly lower share of conven-
tional capital utilization.

The different instruments have different impacts on the shape of the diffu-
sion curve and the impact differs depending on the type of the emerging
regime. Ten years after market entry in t = 3000, all instruments still have
a net negative association with νc

i,t. In the transition regimes, the effect of θ
is stronger, but the effect of the subsidies is weaker. 35 years after market

26Additional technical information and a short discussion about the choice of this regres-
sion model is provided below.
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TABLE 2.C.5: Regression of dynamic and conditional side ef-
fects of policy

Dep. var: νc
i,t, #employeesi,t, UnitCostsi,t

νc
i,t #employeesi,t UnitCostsi,t

t 1,800 3,000 9,000 1,800 3,000 9,000 1,800 3,000 9,000

1
eco -.0281* -.3125*** -.8967*** 1.483*** 2.400*** -.2193 -.0483*** .0486*** .1709***

(.0136) (.0157) (.0106) (.2982) (.3836) (.4530) (.0050) (.0059) (.0147)
θ -.0010*** -.0015*** .0003** .0004 .0058. .0111** -2e-5 -3e-5 5e-5

(.0001) (.00012) (8e-5) (.0023) (.0030) (.0035) (4e-5) (5e-5) (.0001)
ςi -.0093*** -.0165*** -.0056*** .0153 .0037 .1083*** -.0015*** .0019*** -.0071***

(.0010) (.0011) (.0008) (.0215) (.0277) (.0327) (.0004) (.0004) (.0011)
ςc -.0477*** -.0743*** .0054 .2661 .3676 -.0536 -.0027. .0270*** -.0112*

(.0041) (.0047) (.0032) (.0897) (.1153) (.1362) (.0015) (.0018) (.0044)
1

ecoθ -.0014*** -.0011*** -.0005*** -.0027 -.0104** -.0055 .0004*** .0003*** -.0002
(.0001) (.0002) (.0001) (.0030) (.0039) (.0046) (5e-5) (6e-5) (.0002)

1
ecoςi -.0063*** .0069*** .0089*** -.1445*** -.2515*** .4090*** .0011* -.0048*** -.0307***

(.0014) (.0017) (.0011) (.0316) (.0406) (.0479) (.0005) (.0006) (.0016)
1

ecoςc -.0012 .0468*** .0106* -.3515** -.4362** .9063*** .0228*** -.0154*** .0121*
(.0056) (.0065) (.0044) (.1222) (.1572) (.1857) (.0020) (.0024) (.0060)

R2 .6795 .6738 .8987 .6413 .5316 .2039 .4137 .3664 .1757
AIC -4124 -961.3 -9609 63870 69421 73091 -26497 -22569 -2478
Mean .6011 .4582 .4722 22.98 23.25 23.04 1.075 1.252 1.785
Std. (.0034) (.0039) (.0047) (.0695) (.0783) (.0709) (.0009) (.0010) (.0023)
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1. R2: for OLS heterosked. adjusted.

OLS regression of νc
i,t, #employeesi,t, UnitCostsi,t measured at firm

level in t ∈ {1800, 3000, 9000} on firm level controls and the differ-
ent political instruments and its interaction terms with a dummy 1

eco

that indicates whether a green transition occurred until T. 1
eco cap-

tures systematic differences across technological regimes. The coeffi-
cients of the firm level controls are not shown here, but are available

in an accompanying data publication.

entry, the θ has a net positive coefficient in the conventional, and negative
in the green regimes. More conventional (green) capital is used in the con-
ventional (green) regimes. Hence, both instruments have contributed to the
technological divergence. The opposite is true for ςi.

In another series of regressions, it is analyzed how the different policy instru-
ments affect the firm size measured as the number of employees and produc-
tion efficiency of firms captured by unit costs. The same model configuration
is used as introduced above. The dependent variable is evaluated 5, 10 and
35 years after the day of market entry. The coefficients of the policy instru-
ments and their interaction with the type dummy 1

eco are summarized in
table 2.C.5.

The regressions of #employeesi,t in t = 3000 and t = 9000 reveal that the
increase in the average firm size that occurs in the transition regimes is al-
leviated by subsidies. At this early phase, the policy instruments have no
significant relationship with the firm size if the economy is locked in. Unit
costs are differently affected, dependent on the type of emerging regime. All
policy instruments increase unit costs in the transition regime in t = 3000.
This is largely explainable by increased learning costs.

In t = 3000, i.e. ten years after market entry, this situation has stabilized. In
the lock-in regimes, a positive association between both subsidies and unit
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production costs is observed (cf. 2.C.5). The subsidies have stimulated the
initial uptake of green technology. If firms switch back to conventional capi-
tal, they have the burden of green capital that undermines their speed of spe-
cialization in the conventional technology. The opposite effect is observed in
the eco-regimes where the higher green capital penetration, in the beginning,
accelerates the technological specialization.

2.C.4 Technical notes on statistical procedures

Data preprocessing and controls

The simulated time series data is monthly data. The data that is used for the
regression analyses is one-year average data averaging across the 12 monthly
observations in the intervals [600, 720], [1800, 1920] and [14780, 15000] for ini-
tial conditions, early adopters and the final state. For reasons of simplifi-
cation, the firm data is treated as pooled cross-sectional data ignoring firm
entries and exits.

The firm level controls that are included in the regression analyses, but are
not explicitly shown in table 2.4 and 2.C.5 are the level of skills and produc-
tivity of the conventional technology, firm output, age and the price. νc

i,t0
,

#employeesi,t0 and UnitCostsi,t0 . In table 2.C.5 also barriers to diffusion are
included in the model but not shown. Further, the number of employees and
unit costs are also used as dependent variables. In this case, all controls are
used except the dependent variable itself. All controls are measured in t0.
For all variables in the regression model, one-year average data is used.

Model selection

The main model selection criterion for the regressions presented in the arti-
cle is ease of interpretation. Multiple other model configurations with differ-
ent types of interaction and squared terms of barriers and policies had been
tested and also different types of link functions. Some of these experiments
are available in the accompanying data publication. The simple OLS version
was found to deliver robust results and is easy to interpret.

Moreover, it should be kept in mind that this is a simulation model with
many degrees of freedom. The exact shape of the non-linear relationship
between diffusion barriers, policies and the transition probability is of little
explanatory value because the empirical analogue is lacking. The chosen
versions are sufficient to retrieve the most important structural relationships
in the model and to illustrate the story of this paper.
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Effectiveness of policies over time

In section 2.5.1 and 2.5.4, the results of a regression of νc
i,t, #employeesi,t and

UnitCostsi,t at different snapshot in time are introduced.

There might be concern about the inclusion of the dummy variable. The
dummy variable is aimed to capture systematic differences between differ-
ent types of technological regimes. One might be concerned about the endo-
geneity of the dummy variable and reverse causality in the regression model
of νc

i,t. In fact, these concerns cannot be ruled out. Alternative modeling ap-
proaches (instrumental variable and finite mixture models) had been tested,
but these models suffer from other pitfalls. For example, it is not easy to
find an instrument that is correlated with 1

eco but not with the error term in
the second stage regression. Mixture models are subject to a high number of
degrees of freedom in the exact modeling choice. This makes it difficult to
identify a robust functional form that is sufficiently general for the different
data sets and allows the comparison over time.

The OLS model is mainly chosen for reasons of simplification, ease of com-
parison, interpretation and communication. Tests with other models did not
yield substantially different results. Hence, for the purpose of underlining
the theoretical findings that are derived in this study, the model seems to be
sufficient even if the author is aware of the weakness of the statistical method.
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Chapter 3

Skill transferability and the
stability of transition pathways: A
learning-based explanation for
patterns of diffusion

3.1 Introduction

Two major technological challenges characterize the dawn of the 21st cen-
tury, climate change and digitization. To reduce the existential risk of trig-
gering irreversible dynamics of a self-reinforcing climate change, the transi-
tion to green technology needs to be accelerated (IPCC, 2018; Rogelj et al.,
2016; Steffen et al., 2018). Digitization has the potential to alter established
modes of production and occupations obsolete (Brynjolfsson and McAfee,
2012). Both technology trends are large scale substitution processes in which
an incumbent technology is replaced by a new one. Both trends are likely
to be associated with disruptive consequences in terms of distribution at the
level of individual households, firms, regional and national economies.

Disruption is caused when occupational skill requirements and the valua-
tion of tangible and intangible assets change in a short time (Grübler, 1991).
To design effective policies to accelerate a green transition and to attenuate
disruptive side effects, it is important to know the factors that influence the
pace and pattern of transitions and its macroeconomic consequences (cf. Sa-
farzyńska et al., 2012).

These topics are addressed in this study. A theory of evolving substitutability
is developed that links the characteristics of competing technologies with
different pathways of transition. The theory is based on a microeconomic
model of technological learning. It is a bottom-up approach to the multi-layer
perspective in transition studies (cf. Geels, 2002; Geels and Schot, 2007).

This study builds on a model of two competing technologies (green and
brown) with endogenous learning dynamics. Technology diffusion is stud-
ied as a co-evolutionary transition process where an incumbent conventional
technology is possibly replaced by a green entrant. The model is a refined
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version of the eco-technology extension of the macroeconomic agent-based
model (ABM) Eurace@unibi introduced in the first chapter 2.

In the macroeconomic simulation model, technology is embodied in sub-
stitutable capital goods that differ by technology type. Technology-specific
skills are required to make effective use of capital. The skill requirement
imposes a limit to substitution between technology types. A learning func-
tion describes the process of skill accumulation at the level of heterogeneous
firms. The microfoundations of the function are based on insights from dif-
ferent branches of the empirical and theoretical literature on technological
capabilities, learning, and technological change. The relative pace of accumu-
lation of technology-specific skills depends on the technological similarity
and difficulty of competing technologies.

An important output of the model is a sample of simulated diffusion curves
that is statistically analyzed. Endogenous learning and endogenous innova-
tion influence the evolution of substitutability in the long run.

If the accumulation of technology-specific skills and supplied productivity
sufficiently diverges, the economy converges to one of two stable states in
which one of the two technologies clearly dominates. This is interpreted as
technological regime (cf. Arthur, 1989; Dosi, 1982). In the long run, techno-
logical change may dominate the role of relative prices in input substitution
decisions. Delayed technological convergence is associated with technologi-
cal uncertainty. It is costly because R&D and learning resources are invested
in a technology type that is obsolete in the long run.

It is shown that the success, pace, and stability of the diffusion process is
sensitive to the characteristics of competing technologies. A market enter-
ing technology has the chance to diffuse if it is sufficiently superior when it
becomes available.

An incumbent technology is typically endowed with larger accumulated
knowledge stocks reflecting a relatively higher maturity. This can be an
adoption barrier that might be prohibitively high such that it prevents the
diffusion of the entrant technology. It can be a source of path dependence in
the process of knowledge accumulation. The macroeconomic coordination
among heterogeneous agents in the process of technological learning is im-
portant for the stability and pace of technology transitions. It is also shown
that the stability has an effect on the macroeconomic outcome.

Two results are worth to be highlighted here: (1) The transferability of tech-
nological knowledge facilitates initial diffusion but comes at the cost of long
term stability of the transition process. If technological knowledge is highly
transferable, it is relatively easy for technology adopters to switch to green
technology. At the same time, it is easy to switch back if relative prices or the
relative performance of the technologies change.

In contrast, a low transferability of skills across technology types reinforces
path dependence rooted in cumulative knowledge stocks.
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(2) The transferability of technological knowledge may have implications for
the disruptiveness of technological change and the emerging market struc-
ture. If knowledge is easily transferable, large incumbent firms can incre-
mentally replace parts of their technology with the green alternative without
having struggle with the incompatibility of systems.

In contrast, technologies that require radically different capabilities make it
difficult to incrementally switch to an alternative technological system. The
insights of this study improve the understanding of transition processes. This
might be valuable for the design of effective diffusion policies that are re-
sponsive to the pecularities of specific technologies, markets and user popu-
lations.

This study contributes to the existing literature in mainly three ways. First,
a microeconomically founded function of technological learning at the firm-
level is introduced and embedded into a macroeconomic model. To the best
of my knowledge, this is the first model that links the properties of competing
technologies with the process of technological learning by adopters to study
emergent patterns of directed technological change.

Second, this study is a bottom-up approach to study technology transitions.
It is shown, how different pathways of transition can be explained on the
basis of technological characteristics and their implications for the process of
technological learning. This is a new perspective for the systematic analysis
and comparison of technology transitions in different countries and indus-
tries.

Third, methodologically, this work expands the literature on macroeconomic,
agent-based analyses on directed technological change and technology tran-
sitions. The modeling framework allows to evaluate the reationship between
learning pathways and the macroeconomic performance.

In the next section, an overview of the related literature on the nature of
technological capabilities and its link to the transition literature is provided.
In section 3.3, the model of technological learning and the mechanisms of
technological competition are introduced. In section 3.4, it is shown how the
shape of the pathway of transition and its macroeconomic side effects depend
on the properties of competing technologies. In section 3.5, it is discussed
how the simulation results can be integrated into a general characterization
of technologies and how this relates to the transition literature. Section 3.6
concludes.

3.2 Related literature

The microfoundations of technological learning are based on insights from
management literature on the acquisition of technological capabilities to ab-
sorb technological novelties. In this section, an overview of this literature
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is given. The model is embedded in a broader concept of macroeconomic,
directed technological change.

3.2.1 Technological knowledge and learning in the literature

Technological knowledge and human capital as enabling factors to adopt
new technology and sources of endogenous growth have a long tradition
in economics (e.g. Nelson and Phelps, 1966; Romer, 1990). Motivated by in-
creasing concerns about climate change and the distributional consequences
of skill-biased technical development, the interest in the directional nature of
technological change became increasingly important (e.g. Acemoglu, 2002;
Löschel, 2002). Different types of technology are modeled as different types
of knowledge that are required to develop and use different types of capital
goods.

Technological knowledge can be acquired via type-specific R&D investments
or learning by doing (Löschel, 2002; Popp et al., 2010). The majority of
macroeconomic studies on directed technological change in the endogenous
growth literature focus on technology suppliers and the allocation of R&D
investments across different technology types. Changing resource endow-
ments and factor prices, possibly manipulated by policy, are the mecha-
nism that determines the allocation of R&D and the direction of technolog-
ical change. These models are used to study distributional consequences if
changes in the relative endowment with skilled and unskilled labor alter rel-
ative factor prices and the expected profits of R&D investments in specific
types of technology (Acemoglu, 2002). In climate economics, the effect of cli-
mate policy or resource scarcity on relative factor prices and the associated
effects on relative profitability of R&D in climate-friendly technology (Ace-
moglu et al., 2012; Löschel, 2002; Popp et al., 2010).

In this paper, the dimension of co-evolving absorptive capacity is added ac-
knowledging that technology diffusion may be sluggish. Sluggishness and
adoption lags are major topics in the diffusion literature (e.g. Kemp and
Volpi, 2008; Metcalfe, 1988; Pizer and Popp, 2008). Micro-level reasons for
sluggish diffusion range from incomplete information, to heterogeneous ben-
efits of adoption, investment cycles and learning-by-doing effects on the side
of suppliers and adopters (Allan et al., 2014).

An aggregate approach to explain initially slow technology uptake is based
on learning curves. In learning curves, it is assumed that the usability of
specific technologies improves by cumulative experience measured as time,
installed capacity or R&D expenditures (e.g Gillingham et al., 2008; Thomp-
son, 2012; Wiesenthal et al., 2012). Learning is represented as a self-enforcing
mechanism of diffusion of a specific technology. However, learning curves
of single technologies say little about initial technology selection, substitu-
tion dynamics and possible interdependencies among competing alterna-
tives. McNerney et al. (2011) consider technologies as composites of different
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components. They find that similarities of different technologies in the pro-
cess of technological development can be important to explain the pace of
learning.

Interactions across technologies at the sectoral level can be analyzed using
similarity metrics derived from production and innovation networks (Ace-
moglu et al., 2016; Antony and Grebel, 2012; Boehm et al., 2016; Carvalho,
2014). Input-output flows between industries capture cross-sectoral interde-
pendencies. Boehm et al. (2016) argue that similarities in input-output use
can be used to identify the sectors in which firms have core competencies. Core
competencies are technology-specific knowledge. Similarly, Carvalho and
Voigtländer (2014) interprets the capability to productively combine inputs
as technology. Technological similarity facilitates the adoption of a new in-
put when adopters can make use of pre-existing technological knowledge.

Analogous observations have been made on the basis of overlapping citation
links in patent documents. The portfolio of cited patents reveals qualitative
information about the technological knowledge of the patent owner (Jaffe
and De Rassenfosse, 2017). Acemoglu (2002) and Huang (2017) have used
patent similarity metrics to predict the direction of future research. Antony
and Grebel (2012) used patent portfolios at the firm-level to derive measures
for the absorptive capacity of technological knowledge that is developed in
other technological sectors.

The terms technological capabilities and knowledge are also used in the evo-
lutionary and management literature. However, there is no consensus about
the definition of technological knowledge and its use in economic theory (cf.
Cowan et al., 2000; Johnson et al., 2002; Kogut and Zander, 1992; Teece and
Pisano, 1994; Thompson, 2012). Often, the distinction between know-what and
know-how is made. The former is closely linked to information that is to some
degree transferable across firms and has public good properties. The latter is
understood as a type of non-transferable procedural knowledge that is tied
to a specific firm or organization (Cowan et al., 2000). Procedural knowl-
edge enables a firm to make productive use of given inputs to deliver a final
product to the market.

Technological capabilities of firms are partly embodied in a firms’ workforce
and its organizational structure (cf. Kogut and Zander, 1992). Important
characteristics of technological capabilities are their cumulative nature and
their tacit, non-transferable dimension. Kogut and Zander (1992) argue that
the learning of new capabilities of a firm is dependent on the compatibility
with its current capabilities.

The compatibility of technological capabilities is a microeconomic determi-
nant of path dependence at the industry and sector level (e.g. Dosi and Nel-
son, 2010). From the perspective of a firm, technological change manifests
in the appearance of technical novelties and changing market environments.
The adaptiveness of procedural knowledge to changing circumstances (dy-
namic capabilities) is decisive for firms’ capacity to cope with new technology
(Teece and Pisano, 1994).
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Vona et al. (2015) link the insights on firms’ capacity to deal with changing
market environments with the characteristics of individual skills of employ-
ees. In an empirical study, they found that industries are more likely to suc-
cessfully and quickly adopt green technologies in response to environmental
regulations if the industry has a high share of occupations that require adap-
tive and flexible skills. Using the classification scheme of employees’ skills de-
veloped by Autor et al. (2003), Vona and Consoli (2014) argue that adaptive,
non-routine skills are particularly important in phases of technological tran-
sitions. In transition phases, technological knowledge is not yet translated
into specialized codes and skills that can be traded on the (labor) market in
the form of specific occupations or training programs.

Four stylized facts on technological learning can be derived from these in-
sights:

1. Technological capabilities of industries (firms) are embedded in the
technological skills of firms (employees).

2. Technological capabilities are technology-specific and their accumulation
depends on the type of production technology that is used in an indus-
try (firm).

3. A new technology is easier to adopt if previously accumulated know-
how is compatible with the new capabilities required to make effective
use of the new technology.

4. The accumulation of technology-specific capabilities is decisive for the
direction of technological change and the stabilization of a technologi-
cal regime.

These observations motivate the microeconomic foundations of a model of
technological learning. The model is used to study the competitive process
of technology substitution and emergent macroeconomic patterns of directed
technological change.

3.2.2 Technology transitions

Macroeconomic directed technological change is the result of one or more
transition processes. A technological transition occurs if a new technology
enters the market, diffuses and gradually replaces an incumbent alternative
(Geels, 2002). It is associated with a technological regime shift. A technological
regime is reflected in the prevalent technological paradigm that is defined as a
set of prevalent cognitive, regulatory and normative rules. It reflects shared
heuristics and beliefs of a community of technological practitioners (Dosi,
1982; Nelson and Winter, 1977).1

1The technical paradigm is more narrowly defined and represents the mindset of engi-
neers and their way of defining a technological problem and its solution.
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Transitions are large-scale system changes that are associated with structural
changes in consumption patterns, institutional and organizational structures.
The processes are often subject to technological lock-in effects and increasing
returns to scale, myopic behavior, group dynamics and the imperfect spread
of information (Safarzyńska et al., 2012).

A common approach to study transitions is the multi-level perspective. A
socio-technical system is composed of three levels, i.e. the niche-, regime-
and landscape level. Incumbent technologies dominate at the regime level.
New technologies are developed at the niche-level. Niches are markets with
specialized needs and provide a protected space for experimentation and
learning. Technologies are developed and used within the context of a land-
scape layer that represents external forces (e.g. customer needs, natural re-
source availability, regulations, complementary technologies). These forces
are external to technology users and developers.

If the landscape changes and the dominant technology at the regime level
is not able to adapt to new circumstances, a niche technology may enter
the regime level. It possibly replaces the incumbent alternative if it outper-
forms the incumbent alternative within the new environment (Geels, 2002).
A prominent example are energy transitions in the context of climate change.
Fossil fuel energy determines the technological regime and is challenged
by different types of renewables originally developed in protected market
niches (Safarzyńska et al., 2012; Unruh, 2000).

Transition processes are characterized by multi-level interactions. Challenges
for policies that aim to stimulate a sustainable transition are increasing re-
turns to scale and technological lock-in effects, group dynamics, bounded
rationality, and the co-evolutionary emergence of institutions, infrastructure,
and behavior. The term co-evolution refers to the mutual behavioral influ-
ence of evolutionary subsystems such as industries, social groups or regional
economic systems (Safarzyńska et al., 2012).

The analysis in this paper is based on a macroeconomic agent-based simu-
lation model. Agent-based models offer an analytical and methodological
framework that allows simulating the co-evolutionary nature of technology
transitions and their underlying dynamics (Dawid, 2006; Farmer et al., 2015).

Sustainability transitions within agent-based macroeconomic frameworks
had been studied by Gerst et al. (2013); Hötte (2019b); Lamperti et al. (2018b);
Rengs et al. (2015); Wolf et al. (2013). Acemoglu et al. (2012); Lemoine (2018)
have studied (climate-friendly) directed technological change within an an-
alytical framework. This study differs from previous studies by its explicit
focus on learning dynamics in the presence of heterogeneous absorptive ca-
pacity.

Aim of this paper is to improve the qualitative understanding of the condi-
tions of transition success
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3.3 The Model

In this section, a conceptual description of technology and technological ca-
pabilities is given. These concepts are part of the agent-based macroeconomic
framework that serves as emulator of a virtual, fully fledged economy. The
most relevant parts of the technical implementation of the technology mod-
ule are formally explained. A comprehensive and formal introduction to the
complete model can be found in the supplementary material (SM) I.

3.3.1 The concept of technology

Technology is the ability of producers to combine inputs such that an eco-
nomically valuable output is produced. In this paper, a race between two
mutually substitutive production technologies. One of the two technologies
is incumbent. It can possibly be replaced by a new entrant technology, called
green technology. Both technologies can be used by firms to produce an out-
put that is equally valued by consumers but requires different types of in-
puts. In figure 3.1, the concept of technology and learning is shown as a
flowchart for the two-technology case of a climate-friendly, green g that com-
petes with an incumbent conventional c alternative. The framework is not re-
stricted to this example and can straightforwardly be applied to other exam-
ples of competing technologies. Time indices are dropped in this schematic
introduction.

Each of the two types of production technology is represented by two intan-
gible, cumulative stock variables. These stocks are interpreted as codified A
and tacit B technological knowledge. These intangible stocks embodied in
physical production inputs labor L and capital K and accumulated by differ-
ent mechanisms.

Codified technological knowledge is embodied in the technical properties of
the capital stock and is acquired on the capital goods market by investments.
Innovation and technical progress in the capital goods market are driven by
endogenous innovation. The productive properties are called theoretical pro-
ductivity A of capital K.

To make effective use of codified knowledge embodied in machines, firms’
employees need to have the appropriate technology-specific skills. These
skills are called tacit technological knowledge B. Tacit knowledge is firm-
specific, i.e. firms may be differently productive even if they use the same
type of physical capital. In contrast to codified knowledge that can be bought
on the capital market, tacit knowledge is not tradable and is accumulated
through a learning process. Employees who are working with a specific type
of capital learn over time how to use it. Employees’ knowledge as an ag-
gregate represents the stock of tacit technological knowledge of a firm. The
relative pace of learning a specific type of skills depends on the relative time
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of working with a specific technology type. This is captured by ντ which is
the share of technology type τ = c, g that is used in current production.

Theoretically, capabilities of individual employees could be acquired on the
labor market, but ex-ante, the endowment with technology-specific skills it
is not fully transparent to the firm. It is assumed that individual, technology-
specific skills are not observable for firms. Firms can only observe a general
education level and the productive outcome of the aggregate workforce. This
enables the firm to draw conclusions about its aggregate stock of tacit knowl-
edge Bτ.

Technology is heterogeneous by type τ = c, g and represented by different
stocks of codified and tacit knowledge. If technologies are similar, part of the
knowledge is transferable to the use of the other technology type. This is a
cross-technology spillover effect in the learning process of employees.

FIGURE 3.1: Illustration of the learning mechanism
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Firms’ technological capabilities consist of two technology type-
specific bundles of knowledge, i.e. tacit Bτ and codified Aτ , τ =
c, g. Investment in capital Kτ affects the theoretical productivity
Aτ and the type-composition ντ , τ = c, g of a firm’s capital stock.
Technology-specific skills Bτ are learned during work dependent on
the quality Aτ and the composition ντ of the capital stock. Green (red)
colored arrays track the flow of endogenous innovation in the capi-
tal market ∆Aτ and endogenous learning of employees ∆bτ . Dashed

arrays indicate learning spillovers across technology types.

In this study, a two technology race between one incumbent and one entrant
technology is considered. A static property of the entrant technology is its
technical superiority. It allows the adopter to save a fraction of variable in-
put costs. In the case of green technologies, this is interpreted as natural
resource input that is required to operate conventional capital. One unit of
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the resource is needed to use one unit of conventional capital. The concep-
tual framework can be generalized to other types and a larger number of
competing technological alternatives.

A key assumption is that the cost savings cannot be achieved in the same way
by the incumbent alternative. The green entrant is technically superior in
terms of resource efficiency but suffers from lower cumulative stocks of tacit
and codified “green” technological knowledge. At the time of market entry
t0, the green alternative is technologically less productive, i.e. Ag

t0
< Ac

t0
.

Firms and employees have, compared to the incumbent technology, not yet
developed the capabilities to use the green technology efficiently, i.e. Bg

t0
<

Bc
t0

.

Firms can acquire different types of capital and substitute them for each
other. Substitutability between technology types is limited by the transfer-
ability of tacit technological knowledge across types. Hence, employees who
know how to make productive use of conventional capital do not necessar-
ily know how to use the climate-friendly alternative. The cross-technology
transferability is higher if the two technologies are similar.

Firms are active in a fully-fledged, competitive macroeconomy that is com-
posed of individual households, capital goods producers and a financial sys-
tem including banks and a stylized financial market. The macroeconomic
background is introduced in more detail in Dawid et al. (2019b). More de-
tail about the green technology extension can be found in the SM I. In the
following section, the formal representation of technology is introduced in
more detail.

3.3.2 Technological learning and spillovers

Technological learning at the macroeconomic level is the aggregate of learn-
ing by individual employees working in heterogeneous firms. Firms’ learn-
ing is reflected in the improvements of firms’ effective productivity in using
technology type τ = c, g. This is embodied in the bundle of codified and tacit
knowledge (Aτ

i,t, Bτ
i,t) of firm i in time t. Codified technological knowledge is

represented as average productivity of the firm’s capital stock items of tech-
nology type τ. Tacit knowledge is given by the average technology-specific
skill level of the firm’s employees.

Consumption goods firms’ production technology

The effective productivity of firms determines how effectively a firm can
transform inputs into final consumption goods Qi,t. Production inputs are
a stock of capital Ki,t, a stock of employees Li,t and, in case of conventional
capital, natural resource inputs. Inputs are combined in a constant returns
to scale Leontief production function. The adjustment of labor and capital is
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sluggish. Capital stepwise depreciates and is stepwise expanded by invest-
ment. Similarly, a firm can dismiss only a given fraction of employees and if
hiring new employees (in discrete units) it is not certain whether the firm is
able to fill all vacancies immediately (see for more detail Dawid et al., 2019b).

The capital stock is composed of different vintages v of capital that may dif-
fer by productivity Av and technology type τ ∈ {c, g}. The properties of a
vintage are given by (Av,1(v)) where 1(v) indicates the technology type. It
takes the values 1(v) = 1 (0) for conventional (green) capital. Formally, the
amount of capital goods of a certain vintage v within the total capital stock
Ki,t of firm i in time t is given by Kv

i,t := {k ∈ Ki,t|Av(k) = Av,1(k) = 1(v)} ⊆
Ki,t. Moreover, the notation Kc

i,t (Kg
i,t) is used for the sum of capital stock items

of type c (g) that are used for production in t.

Theoretically, vintages are perfectly substitutable across technology types.
But in practice, the exploitation of the productivity of a given vintage at the
firm-level is constrained by its stock tacit knowledge. The effective produc-
tivity AE f fv

i,t of a capital good v is given by

AE f fv
i,t = min

[
Av, Bτ

i,t
]
. (3.1)

The theoretical productivity Av of a specific capital vintage is constant and
uniform across firms. Tacit knowledge (know-how) required for the ex-
ploitation of the productive value differs across employees, across firms, and
changes over time when a firm’s employees learn. The effective productivity
of a given capital good with the properties (Av,1(v)) is specific to the firm i
and time t.

This leads to the production function of firm i in t given by

Qi,t =
V

∑
v=1

(
AE f fv

i,t ·min
[
Kv

i,t, max
[
0, Li,t −

V

∑
k=v+1

Kk
i,t
]])

(3.2)

where Li,t is the number of employees, and ∑V
v=1 Kv

i,t is the firm’s ordered cap-
ital stock composed of V different capital stock items. The term max

[
0, Li,t −

∑V
k=v+1 Kk

i,t
]

captures the fact that firms can only use as much capital as work-
ers are available in the firm to operate the machines. Ordered capital refers to
the running order of capital that is determined by the cost effectiveness of
capital goods. Firms do not necessarily produce at full capacity. This occurs
when the firm does not have sufficient employees to use the full capacity or
expected demand is lower than the maximal output and using costs of cap-
ital exceed the expected revenue. In such a case, most cost-effective capital
goods are used first.

The cost effectiveness ζv
i,t is given by the amount of output AE f fv

i,t producible
by a given vintage v divided by its using costs, i.e. wage wi,t and, if it is
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a conventional capital good, unit energy and material costs ceco
t .2 Formally,

this can be written as

ζv
i,t =

AE f fv
i,t

wi,t + 1(v) · ceco
t

. (3.3)

The decision of firms about the quantity to produce is dependent on demand
estimations and inventory stocks. Based on estimated demand curves, firms
determine the profit-maximizing price-quantity combination. Because the
estimation is imperfect in most cases and prices cannot be immediately ad-
justed, the consumption goods market does not necessarily clear. Further in-
formation on the production decision and market environment can be found
in Dawid et al. (2019b).

Accumulation of tacit and codified knowledge

Codified knowledge at the firm-level is acquired by investments in capital
goods. The productive properties Av of capital contribute to the firm’s stock
of codified knowledge Aτ

i,t of type τ. It is given by the average productivity
of used capital goods of type τ, i.e. Aτ

i,t =
1

Kτ
i,t

∑v∈Kτ
i,t
(Kv

i,t · Av) where Kτ
i,t is

the amount of capital of type τ that is used in current production.

Two representative capital producers supply a range of vintages that differ
by productivity level Av and technology type τ. The firm has to choose the
optimal combination of the investment quantity, productivity level and tech-
nology type. This decision is based on the firms’ expectations about the
marginal profit of the different options. The firm computes and compares
the net present values of different quantity-productivity-type combinations
taking account of expected demand, prices, costs, skill developments and
financial constraints.3 More detail on the investment decision and capital
supply is provided in the SM I.

Tacit knowledge Bτ
i,t = 1

Li,t
∑l∈Li,t

bτ
l,t is embodied in the capabilities of the

firm’s employees. Employees l ∈ Li,t are characterized by their learning abil-
ity and two types of technology-specific skills. Workers’ ability to learn is
captured by a time-invariant general skill level bgen

l of employees. It deter-
mines the speed of learning. General skills are similar to human capital in
macroeconomic models with neutral technological change (cf. Nelson and
Phelps, 1966). It is reflected in e.g. educational attainment.

The two types of technology-specific skills bτ
l,t represent the employee’s ca-

pability to work productively with a specific type of capital τ ∈ {c, g}. These
skills are stock variables that increase by stepwise updates that represent a
learning process. The learning process is dependent on the learning ability

2In case of equality of a vintage’s cost effectiveness the vintages are ordered by produc-
tivity and in case of further equality the green vintage is used first.

3For reasons of reducing the computational complexity, the set of investment options is
limited.
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χ
gen
l and the technological properties of the capital stock used in firm i where

the employee is working. There are two sources of learning. Employees are
learning by doing when working with a specific technology type and they
can learn via cross-technology spillovers.

Skills are updated from period to period in discrete steps. The size of the
updating step ∆bτ

l,t+1 = bτ
l,t+1 − bτ

l,t is given by

∆bτ
l,t+1 = χ

gen
l ·

([(
ψτ

l,t
)(1+χdist)

(
ψ−τ

l,t

)(1−χdist)
]1/2

− 1

)
. (3.4)

ψτ
l,t ≥ 1 represents “amount” of knowledge learned in one period during

the utilization of technology type τ. Part of this knowledge is transferable
across technologies. It contributes to the accumulation of skills of the alter-
native technology type −τ with τ 6= −τ and τ,−τ ∈ {c, g}. The parameter
χdist ∈ [0, 1] describes the technological distance between the two technolo-
gies which is a source of state dependence. The functional form is inspired
by models on state-dependent technological change (cf. Acemoglu, 2002).

The skill update by learning by doing ψτ
l,t is dependent on the technical dif-

ficulty of the technologies χint, the relative amount of effort ντ
l,t and the tech-

nical novelty. More complex technologies are more difficult to learn and re-
quire a higher amount of effort, or a higher intensity of learning. The updating
step also depends on the technical novelty max[0, (Aτ

i,t − bτ
l,t)] of capital τ

which reflects the potential amount of knowledge an employee l can learn.
The updating step is given by

ψτ
l,t = 1 +

(
ντ

l,t
)χint
·max[0, (Aτ

i,t − bτ
l,t)]. (3.5)

The relative intensity of learning in a specific technology category τ is depen-
dent on the relative amount of technology τ that is used ντ

i,t = (Kτ
i,t/Ki,t) in

the firm. This can be understood as a proxy for the amount of time invested
in the learning to use a specific type of machinery (cf. Cohen and Levinthal,
1990). Learning in category τ is faster if the relative amount of this type in
the used capital stock higher.

The parameter χint captures marginal returns. In the baseline scenario, I as-
sume weakly decreasing marginal returns in the learning process, i.e. the
first hour of learning is more effective than the last one. A conceptual inter-
pretation of χint is the difficulty of learning. If χint is close to zero, employees
learn how to use the machinery irrespectively of the time invested in work-
ing with the machine. If technologies are more difficult to learn, the learning
progress is more sensitive to the amount of time invested in learning.

max[0, (Aτ
i,t − bτ

l,t)] represents the technical novelty. It is given by the gap
between the codified technological knowledge of the employer Aτ

i,t and the
employee’s current skill level bτ

l,t. A larger gap indicates a larger amount
of potential technological knowledge that can be learned and is associated
with a faster pace of learning. This accounts for the fact that employees learn
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only when they are exposed to (codified) technological knowledge they that
is new to them, i.e. if there is something new to learn (cf. Thompson, 2012).

Firms cannot observe the skill endowment of individual employees, but ob-
serve the effectiveness of the production process. They know the amount of
inputs and the amount of output and draw conclusions about their aggregate
stock of tacit knowledge Bτ

i,t.

Learning in a nutshell

There is a difference between the codified knowledge that is existing in the
economy and the codified knowledge that is adopted but both are interrelated.

Existing knowledge is exogenous to CG firms. It is embodied in the pro-
ductivity level of supplied capital goods. It rises by endogenous innovation
(“learning by searching”) driven by sector-specific R&D investments. CG
firms only indirectly influence the pace by their investment decisions because
R&D investments in an IG sector τ are dependent on τ’s profits.

Adopted codified knowledge is firm-specific and corresponds to the techno-
logical knowledge that is actually used in production. It is embodied in
a firm’s capital stock and accumulated by investments. Adopted codified
knowledge and tacit knowledge together constitute the productivity of a
technology type.

Three factors determine the speed of learning by doing:

1. The learning intensity ντ
i,t = Kτ

i,t/Ki,t determines how intensively em-
ployees are working with a specific type of technology. Increasing re-
turns in the learning process χint are related to the difficulty of learning.
If χint = 0, workers learn independently of the extent to which they are
using a certain type of capital. If χint > 1, returns to learning are in-
creasing in the relative extent to which employees are working with a
technology type.

2. The quality of the learning environment is captured by the technical nov-
elty max[0, Aτ

l,t − bτ
l,t] of individual workers l. Employees learn faster if

capital goods are technically new to them.

3. Spillovers or the transferability of technological knowledge are negatively
dependent on the technological distance χdist. If the distance is low,
technologies are similar and knowledge is transferable across technol-
ogy types. Learning in one technology class contributes to the stock of
know-how in the other class.

The relative speed of learning and innovation is sensitive to the investment
decisions of the firm. It is decisive whether a technology type survives on the
market and stabilizes the technological regime.
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3.3.3 Simulations and experiments

A technology race between an incumbent conventional and green entrant
technology is simulated. The two technologies are characterized by ini-
tial diffusion barriers, technical superiority and interactive properties of the
learning process χint and χdist. The simulations allow isolating the influence
of technological distances χdist and difficulty in learning χint on individual
technology adoption and the emerging pathways of transition.

The entrant technology suffers from diffusion barriers in terms of lower accu-
mulated knowledge stocks. Green capital goods become available at a given
time t0. In t0, green capital goods are technologically less mature than the in-
cumbent alternatives. The entrant capital producer supplies capital goods
that are less productive than those supplied by the incumbent. In other
words, g produces at a lower technological frontier, i.e. AV

g,t0
= (1− βA)AV

c,t0
.

Employees l and firms have less experience in using the entrant technology
represented as bg

l,t0
= (1− βb)bc

l,t0
. The parameters βA, βb > 0 describe the

relative disadvantage and are interpreted as diffusion barriers. The entrant
technology is possibly superior in the long run because its utilization does
not require the costly natural resource input.

The simulations are subject to stochasticity. For example, capital producers’
innovation success, the matching mechanism at the labor market and con-
sumers’ consumption decision are probabilistic (see Dawid et al., 2019b) and
the SM I. In the experiments presented below, sets of 210 simulation runs are
generated and the simulated time series data are statistically analyzed. One
simulation run consists of 15000 iterations which corresponds to a time hori-
zon of approximately 60 years. One iteration represents to a working day
and 240 working days constitute a year.

During the simulation horizon, both technologies compete for market share.
Finally, the economy converges to a state in which only one of the two tech-
nologies is used. The dominance of the green (conventional) technology is
called green (conventional) technological regime.

Increasing returns to learning and market-induced endogenous innovation
reinforce the process of technological convergence within a single simulation
run. Convergence is interpreted as stabilization of a technological regime.

Which of the two technologies succeeds depends on the type and strength of
diffusion barriers in relation to the technical superiority of the entrant and
the characteristics of the learning process. If barriers are sufficiently strong,
path dependence in technological learning may reverse the process of ini-
tial green technology diffusion that is triggered by its input-cost superiority.
The economy is locked in the incumbent technological regime. If barriers
are weak, firms incrementally substitute conventional for green capital. A
technological transition takes place. A more detailed discussion of the role of
diffusion barriers and diffusion policies can be found in chapter 2 and a more
comprehensive discussion is provided in Hötte (2019b).
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Two different types of experiments are run.

1. To compare the effects of different degrees of state dependence, time se-
ries simulated with different discrete levels of the learning parameters
χdist ∈ {0, .5, 1} and χint ∈ {0, .5, 2} are compared.

2. To make a statistical analysis of the effect of the learning parameters on
the micro- and macroeconomic outcome, a Monte Carlo analysis draw-
ing random values of the learning parameters from a uniform distribu-
tion on the interval χdist ∈ [0, 1] and χint ∈ [0, 2] is done.

The experiments are evaluated in comparison to a baseline scenario. In all
experiments, the conditions of market entry are set such that it is ex-ante
not clear which of the two competing technologies will finally dominate the
market.

3.4 Results

Three major questions are addressed in this analysis.

• How does the success and pattern of diffusion depend on the techno-
logical similarity and on the ease of learning?

• What are the drivers of technological convergence and how do these
relate to the stability of the diffusion process?

• Which macroeconomic side effects occur and can the effects be at-
tributed to the characteristics of competing technologies?

These questions are addressed by an analysis of simulated time series data.
The core indicator to evaluate the diffusion success is the share of conven-
tional technology utilization at the firm-level νc

i,t = Kc
i,t/Ki,t. It describes the

share of conventional capital that is used for production in t by firm i. It
measures diffusion at the intensive margin. It can be aggregated across firms
to obtain a macroeconomic diffusion curve νc

t . The stability of the diffusion
process is evaluated by the standard deviation σν

i,t of the diffusion measure in
percentage points. It is calculated over a moving time window of 2.5 years.4

A diffusion process is called unstable if firms switch between the two technol-
ogy types.

In the preceding chapter 2 on barriers to technology diffusion it was found
that relative stocks of technological knowledge αt = Ac

t /Ag
t and βt = Bc

t /Bg
t

represent a source of path dependence in technological change. Both stocks
are endogenously accumulated dependent on the relative profits in the IG
sector and relative intensity of technology use. If knowledge stocks diverge,
the economy becomes increasingly locked in the relatively more productive

4Further information about its computation and relation to other measures of conver-
gence is available in SM II.
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technology irrespective of relative factor input costs. Relative knowledge
stocks help to describe the technological state of the economy.

3.4.1 Baseline scenario

A benchmark scenario with intermediate levels of χint = χdist = .5 and mod-
erate diffusion barriers βA = βb = .03 serves as reference case. The simula-
tion settings are used to generate a sample of diffusion curves and macroe-
conomic time series data. It is briefly described to give an overview of the
typical processes that occur during the simulation horizon.

The simulated diffusion curves show a pattern of technological divergence.
The economy converges to one of two possible technological states, either
with almost 100% or 0% green technology utilization at the end of simulation
time. The final states are called technological regimes and are classified by the
share of conventional technology used νc

T in T = 15000. A regime is called
green (conventional) if νc

T < .5 (νc
T ≥ .5). This is illustrated in the time series of

the diffusion curves for each single run in the appendix 3.A.1b. In 142 out of
200 simulation runs the economy converges to a green technological regime
corresponding to a transition probability of 71%.

Independent of the resulting technological state, the curves exhibit a phase of
initial technology uptake triggered by the technical superiority of the green
technology. The initial uptake is not necessarily permanent. In some of the
simulation runs, initial diffusion is reversed by the effects of path depen-
dence resulting from technological legacy.

Multiple reversions in the slope of the diffusion curve may occur until the
economy converges to one of the two technological states.This is depen-
dent on the dynamics of adoption and competition on the IG market and
the stochastic elements in the innovation process. Further information about
the main technological and macroeconomic properties of the simulations and
the empirical model validation criteria is provided in the appendix 3.A.1 and
Hötte (2019f), respectively.

3.4.2 The technological distance

In this experiment, the relationship between the technological distance and
the stability of the diffusion process is illustrated and the macroeconomic
side effects are briefly discussed. Three extreme cases of perfect, intermedi-
ate and no spillovers, i.e. χdist ∈ {0, .5, 1} are compared. The technological
difficulty is fixed at χint = .5.
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FIGURE 3.1: Diffusion curves (baseline)
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These figures show the diffusion process measured by the share of
conventional capital used νc

t . The time series in the middle are disag-
gregated by the type of technological regime. Different line shapes in-
dicate regime types (�: eco, *: conv). Darker color indicates a higher

distance χdist ∈ {0, .5, 1}.

Patterns of diffusion

In figure 3.1, the time series of different diffusion indicators for the different
spillover levels are shown. The lines are disaggregated by parameter value
and in figure 3.1b by the technological regime. Throughout this article, dif-
ferent line shapes and colors indicate different technological regimes. Darker
color indicates a higher technological distance.

Figure 3.1a shows the evolution of the diffusion measure for different pa-
rameter levels without a disaggregation by the technological regime. This
aggregate measure is informative about the relationship between the level of
spillovers and the probability of a technological regime shift.

The relationship between the χdist and the transition frequency has an in-
verted u-shape. The observed frequency of transition accounts for 36% if
χdist = 1 and 66% if spillovers are perfect, i.e. χdist = 0. With 71%, the
transition frequency is highest for the intermediate level of spillovers, i.e.
χdist = .5.

Figure 3.1b shows the time series of νc
t for two different subsets of simulation

runs that are classified by the final technological regime. Green color indi-
cates the subset of transition regimes identified by ν

g
T > .5. The darkness

of color indicates the parameter value. The distinction between the different
regimes shows that initial green technology adoption, irrespectively of the fi-
nal regime, is highest if spillovers are perfect. But this initial adoption lead in
the case of perfect spillovers is not necessarily permanent. Soon after the ini-
tial phase of diffusion, the effects of path dependence become effective. This
undermines the convergence to green technology in the transition regimes
measured by the pace at which νc

t approaches zero.
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In the lock-in regimes, the economy relapses back to conventional technol-
ogy despite the average νc

t fell below 32% around t = 3000, i.e. roughly 10
years after market entry. In some cases, path dependence dominates and the
economy relapses into the conventional regime. These returns occur most
often if spillovers are high. The statistical significance of these observations
is confirmed by a series of Wilcoxon tests comparing different time intervals.
The statistics are available in the appendix of Hötte (2019f).

In figure 3.2, the time series of νc
t for the single simulation runs within the

aggregated subsets of green and conventional regimes are shown. Compar-
ing the plot for the highest distance level (3.2a) with the figure for the case
of perfect spillovers (3.2c), it can be seen that the diffusion curves in the case
of perfect spillovers exhibit much higher, enduring volatility. It is not even
clear whether the curves converge at all.

FIGURE 3.2: Diffusion curves by spillover intensity
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(B) χdist = 0.5
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These figures illustrate show diffusion curves νc
t of all 210 single

simulation runs within the different parameter subsets with χdist =
{.0, .5, 1}.

A measure for the pace of convergence and the diffusion volatility is the stan-
dard deviation σν

i,t of the diffusion measure νc
i,t (figure 3.1c). A high deviance

is an indicator of technological uncertainty and a high number of changes
in the direction of diffusion. It is a measure of the pace of convergence.
The lower σν

i,t is, the faster the economy converges to a stable technological
regime. Shortly after the day of market entry, the deviation jumps upwards
which is caused by high adoption rates in the beginning. It settles down in
the subsequent years, but it remains highest for the case of perfect spillovers.
This is an indication of technological instability.

If the technological distance is small it is easy to adopt new technology, but
it is also easy to switch back to the incumbent technology type.

Previous analyses have shown that the relative technological performance
is decisive for the stabilization of the technological evolution (cf. chapter
2 and (Hötte, 2019b)). The convergence to a stable technological state with
one clearly dominating technology is accompanied by the divergence of rela-
tive stocks of technological knowledge measured as ratio of the technological
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FIGURE 3.3: Relative technological knowledge by spillover in-
tensity
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The different line shapes and colors indicate different regime types
(�: eco, *: conv). Darker color indicates a higher level of χdist.

frontier αt = (AV
c,t/AV

g,t) and ratio of skill endowments βt = (bc
t /bg

t ) shown
in figure 3.3. The evolution of βt reveals the mechanism through which the
distance parameter operates. The divergence of the curves between the two
technological regimes is stronger if the distance is high.

If spillovers are perfect, the curve of relative tacit knowledge βt does not di-
verge because learning in one technology category equally contributes to the
stocks of tacit knowledge of both technology types. In this case, the con-
vergence to a stable technological state is mainly driven by market induced
innovation if the frontier of the dominant technology type grows relatively
faster.

Other technological indicators on relative real and nominal capital prices,
the degree of technological novelty reflect the same pattern. An overview of
these indicators is available in the appendix of Hötte (2019f) and comprehen-
sively discussed in Hötte (2019b).

Macroeconomic effects

Spillovers and the stability of the diffusion process have implications for the
market structure and the macroeconomic performance. In table 3.1 the results
of a pooled OLS regression analysis of different macroeconomic indicators
are shown. To take account of the panel-like structure of the data, two-way
clustered standard errors on run-time are used. This analysis illustrates the
relationship between the diffusion volatility, the different assumptions about
the technological distance and the regime shift.

Row 3 of the table shows that technological uncertainty is costly in terms
of aggregate log output, but lower unemployment. It is associated with a
smaller number of firms, but lower market concentration measured by the
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Herfindahl-index. The effect of the uncertainty dominates the influence of
the parameter dummies on the market structure and unemployment.

A higher distance has ambiguous effects. Its effect is dependent on the occur-
rence of a transition. If the transition occurs, it facilitates the specialization
in the new technology and has a positive association with output. In the
transition regimes, it has a statistically weak positive association with mar-
ket concentration and a negative with the number of active firms. A higher
distance reinforces path dependence. This makes it difficult for late adopters
to catch up.

TABLE 3.1: Regression to explain macroeconomic side effects

Output # firms Herfindahl Unempl.
(Intercept) 8.619*** 72.66*** 159.9*** 11.42***

(.0141) (.2382) (.4990) (.3572)
I(eco) .0058 .4936. -.0213 .4215

(.0108) (.2673) (.5854) (.4195)
σν

t -.0686*** -.3178*** -.3517*** -.6036***
(.0026) (.0274) (.0389) (.0389)

I(0.5) -.0338* .2637 -.4736 -.2593
(.0134) (.3464) (.7489) (.4884)

I(1.0) -.0592*** .2363 .3808 .1745
(.0115) (.2984) (.7312) (.4872)

I(eco) · I(0.5) .0403* -.4813 1.955. 1.182
(.0169) (.4364) (1.013) (.7277)

I(eco) · I(1.0) .0532** -.8698. 2.766* 1.452
(.0174) (.4714) (1.330) (.9674)

R2 .29 .0476 .0165 .0647
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

This table shows the results of a pooled OLS regression with two-way
clustered standard errors. Dependent variables: log monthly out-
put, the number of active firms, the Herfindahl-Index (multiplied by
10,000) and the unemployment rate. Explanatory variables: dummy
for the regime type I(eco), dummies for the different parameter set-
tings I(χdist), the standard deviation of the diffusion measure σν

t and
regime-parameter interaction terms. More information is available in

the appendix 3.B.

If the transition does not occur, the distance has a negative association with
output. Reinforced path dependence operates in the opposite direction. Trig-
gered by the initial superiority of the green technology, diffusion in the first
10 years after market entry is high (cf. figure 3.1). Path dependence makes
the switch back to the conventional technology expensive. The share of green
technology in firms’ capital stock undermines the pace of specialization in the
incumbent, conventional technology. This is associated with lower produc-
tivity. No significant relationships between χdist and the market concentra-
tion are observed.
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These observations are also reflected in a set of time series figures. The regres-
sion results are qualitatively and quantitatively robust across different model
specifications. The figures and a short discussion, and further information
about robustness checks and alternative model specifications are available in
SM II.

Note that the comparison of transition and lock-in regimes is sensitive to the
assumptions about initial diffusion barriers. In this experiment, diffusion
barriers are relatively low. Higher diffusion barriers tend to be associated
with higher transition costs but reduce uncertainty if the economy is locked
in.

3.4.3 The ease of learning

The pace of relative technological learning is also dependent on the techno-
logical difficulty χint. If a technology is very easy to learn, i.e. χint = 0, the
learning progress is independent of the time invested in learning. The more
difficult a technology is, the more sensitive is the progress to the relative time
invested in learning. In an additional experiment that is not presented here,
it was shown that the difficulty is only of minor importance in the presence
of cross-technology spillovers (cf. Hötte, 2019f).

The impact of difficulty on learning speed is most critical in times when firms
are transitioning to alternative technology. During a phase of technology
change, a trade-off in the allocation of the learning time exists. This trade-off
is more pronounced when a technology is difficult to learn. A technology
that is easier to learn is associated with lower technology switching costs.
This may have an ambiguous effect on green technology diffusion. It is easier
to switch to green technology, but it is also easier to switch back. Whether in-
creasing returns to learning stabilize an ongoing diffusion process, depends
on the extent to which the green technology is adopted in the first years.

The adoption in the early phase is facilitated by cross-technology spillovers
reflected in a lower distance χdist. If the transferability is sufficiently low,
increasing returns to learning contribute to the stabilization of the technolog-
ical regimes. This is discussed in more detail in (Hötte, 2019f).

3.4.4 Interactions of spillovers and the ease of learning

The interaction effect of spillovers and the difficulty of learning on the tran-
sition probability is illustrated as a transition boundary shown in figure 3.4a.
A transition boundary can be understood as a dividing line in the space of
χint and χdist that separates green from conventional regimes.

This boundary is derived from the data of a Monte-Carlo experiment with
learning parameters that are randomly drawn from a uniform distribution,
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i.e. χdist ∈ {0, 1} and χint ∈ {0, 2}.5 The vertical (horizontal) axis represents
the distance χdist (difficulty χint). The points in the plot represent single sim-
ulation runs and the corresponding parameter setting. Colors indicate the
resulting technological regime. The boundary line is derived by a k-nearest
neighbors non-parametric clustering function trained on the prediction of
the resulting technological regime using the learning parameters as input.6

Points whose color does not coincide with the color in the decision area are
misclassified.

The transition boundary separates a u-shaped cluster of lock-in regimes in
the upper left corner of the figure. This is a region with a high technological
distance and moderate difficulty to learn. This pattern can be explained by
the transition dynamics and the influence of the parameters on the knowl-
edge accumulation process.

In all simulation runs, the green technology initially diffuses. This is trig-
gered by its technical superiority of the green technology. Whether the dif-
fusion is permanent is dependent on the degree of state dependence of the
learning process. In the initial phase, the incumbent technology has a domi-
nant position in the capital stock of firms. Employees continue to accumulate
conventional skills. If technologies are similar, this also contributes to the
stock of green skills.

The decision region for green regimes has an ambiguous relationship with
technological difficulty. If the technology is very easy to learn, i.e. learning
is independent of νc, a transition is more likely. On the other hand, increas-
ing returns in the learning function also have a positive association with the
transition probability. In this case, increasing returns strengthen the special-
ization in green technology during the initial surge of green technology dif-
fusion. This makes a relapse into the conventional regime less likely. This
effect is conditional on a sufficiently high green-technology uptake in the be-
ginning.

The transition probability

A regression analysis of the diffusion measure νc
i evaluated at firm-level at

the end of the simulation horizon T on the learning parameters and a set of
micro- and macroeconomic controls confirms the observations made before.
The data of control variables is demeaned and scaled to facilitate the compar-
ison of coefficients. νc

i is almost binary in T taking the values zero or one. It is
interpreted as measure for the inverse of the transition probability.7 A higher

5A technical explanation of this experiment is available in the appendix 3.4.4 and a short
discussion of the results can be found in Hötte (2019f).

6Further information about its computation is available in SM II.
7This interpretation of the diffusion measure and the association of other micro- and

macroeconomic control variables with the transition probability is discussed chapter 2 and
more comprehensively in Hötte (2019b).
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FIGURE 3.4: Transition patterns and technological learning
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Figure 3.4a and 3.4c show a decision boundary derived by a k-nearest
neighbors clustering algorithm with k = 25 in the space of learning
parameters (χdist, χint) and critical stocks of technological knowledge
α∗, β∗. Further information about the clustering and the derivation of

critical knowledge stocks is available in SM II.

technological distance χdist is associated with a lower transition probability
(1− νc

i ).

In contrast, returns to scale in the learning process χint are positively related
to the transition probability. The relationship is quantitatively weaker than
the technological distance. The role of the other control variables is explained
in Hötte (2019f) and a more comprehensive discussion of their role for the dif-
fusion process can be found in Hötte (2019b). Additional information about
the data preprocessing, the model specification and model selection is avail-
able in the technical notes in SM II. The coefficient of the interaction term
(χint · χdist) is negative, but quantitatively small. This indicates that the nega-
tive association of the distance with technology diffusion is weaker if returns
to learning are high.

The positive effect of χint on technology diffusion might be conditional on
the strength of diffusion barriers. Increasing returns in the learning process
favor the dominant technology. If entry barriers for the green technology
are sufficiently low, the green technology rapidly achieves a sufficiently high
diffusion level to benefit from increasing returns.

The pace of convergence

To study is the relationship between state dependence in technological learn-
ing and the stability of the diffusion process, a set of additional indicators is
introduced. The volatility is measured by the variance (σν

i )
2 of νc

i,t computed
over the full time horizon. In addition, the duration t∗i until the diffusion
process becomes stable is measured. t∗i is defined as the point in time when
the last change of the sign of the slope of the diffusion curve νc

i,t is observed.
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TABLE 3.2: Firm-level regression analysis of transition pattern

νc
i νc

i t∗i
(

A+
i /A−i

)∗ (
B+

i /B−i
)∗

(σν
i )

2

OLS Probit IV IV IV IV
(Intercept) .3563*** -.4136*** 5054*** 1.106*** 1.105*** 8.15***

(.0053) (.0163) (632.9) (.0102) (.0068) (2.123)
χdist .1000*** .2867*** -425.6* .0614*** .0568*** -2.471***

(.007) (.0215) (177.9) (.0107) (.0068) (.3588)
χint -.0743*** -.2217*** 542.8** .0284** .0267*** .1888

(.0053) (.0167) (196.3) (.0098) (.0068) (.3227)
χdist · χint -.0290*** -.0780*** .0275

(.0053) (.0163) (.1327)
I(eco) -4560*** -.1581*** -.1584*** -.3138

(1005) (.0158) (.0104) (3.448)
I(eco) · χdist 612** -.0744*** -.0692*** 3.877***

(220.2) (.0158) (.0101) (.4156)
I(eco) · χint -5540** -.0478*** -.0367***

(197.3) (.0137) (.0098)
AV

c .0755*** .2195*** -68.88 .2271
(.0088) (.0268) (77.37) (.2726)

Bc
i -.0184** -.0552** 97.38. .1602

(.0057) (.0175) (50.73) (.1565)
outputi -121.1** -.0062* -.0040** -.1550

(38.24) (.0028) (.0015) (.1264)
pricei 113.5** -.0055** .0331

(38.45) (.002) (.1066)
# f irms -.0525*** -.1736*** 140.9* .0051*** .1761

(.0054) (.017) (70.05) (.0015) (.2327)
peco/wr -.0610*** -.1805*** 141.9** -.0094** .5617***

(.0096) (.0288) (50.75) (.0029) (.1489)
R2 .1543 .2048 .0894 .1005 .1254 .0781
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νc
i evaluated at the

end of simulation. Column 3 illustrates a regression of the duration t∗i
until the firm-level adoption curve stabilizes. The results in column 3-
6 are the results of an instrumental variable regression with the type
dummy I(eco) as endogenous variable. Further info is provided in

the main text and appendix A of Hötte (2019f).

After t∗i , νc
i,t starts converging to one of the two possible technological states.

A low level of t∗i suggests technological certainty, i.e. at an early point in time
the technological trajectory is clarified and a process of stabilization and spe-
cialization begins.

These indicators are used in a regression analysis similar to the analysis
above. A dummy variable for the type of the technological regime I(eco)
is included to capture fix differences and differences in the interaction pat-
terns across the two technological regimes. It takes the value 1 if a transition
took place. To rule out possible endogeneity of the type dummy, i.e. possi-
ble correlatedness of the error term and the regime type, the type dummy is
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included through an instrumental variable regression.8

State dependence in learning has an ambiguous relationship with the time
until technological stabilization t∗i . Whether the association is positive or
negative is conditional on the transition. In general, the stabilization is ear-
lier if a transition occurs. This is in line with figure 3.4b showing that the
diffusion volatility in the subset of green regimes is high in the beginning,
but rapidly diminishes in the later phase. In contrast, in the subset of lock-in
regimes, the volatility decreases more slowly. A Wilcoxon test confirms the
significance of the difference (cf. Hötte (2019f)).

If a transition occurs, a higher distance retards the technological specializa-
tion. The distance increases the strength of path dependence. If the distance
is high, it is more difficult for firms to overcome the relative disadvantage in
terms of lower knowledge stocks when beginning to use green technology.
This is associated with a higher diffusion volatility in the transition regimes.

In contrast, the distance has an accelerating effect on the time of convergence
if the economy is locked in. χdist exacerbates the effect of initial diffusion
barriers. The opposite holds true for the difficulty of learning χint. The re-
tarding effect in the lock-in case can be (again) explained by the high tech-
nology uptake in the early diffusion phase. This retards the relapse into the
conventional regime.

Sources of stability

The divergence of relative knowledge stocks is a driver of technological con-
vergence. To understand the link between relative performance measured
by relative knowledge stocks and state dependence in learning, I introduce a
measure for technological thresholds.

The threshold levels are illustrated in figure 3.4c. The black line in the figure
is interpreted as transition boundary beyond which the technological path
has stabilized. The vertical (horizontal) axis represents the relative techno-
logical frontier AV

c,t∗/AV
g,t∗ (skill endowment Bc

t∗/Bg
t∗) evaluated in the aggre-

gate t∗. In this figure, relative knowledge stocks are used as training input for
a k-nearest neighbors clustering algorithm to derive a transition boundary.
The boundary serves only for the purpose of illustration here.9 Apparently,
relative knowledge stocks have a high explanatory power for the resulting
technological regime because the number of mis-classified simulation runs is
low.

The relationship between these performance thresholds and state depen-
dence in technological learning is illustrated by a regression analysis shown

8Technical and explanatory detail about the IV approach and alternative model specifica-
tions can be found in SM II. Test statistics and the results of alternative model specifications
are available online in Hötte (2019g).

9Technical detail can found in SM II.
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in columns (4) and (5) in table 3.2. These are levels of relative technologi-
cal performance evaluated at t∗i .

(
A+

i /A−i
)∗ (
(

B+
i /B−i

)∗) measure the relative
stock of codified (tacit) knowledge at firm-level in time t∗i . + (−) indicates the
technology type that is dominant in T. The regression indicates that the di-
vergence in the relative technological performance is less (more) pronounced
in the presence of state dependence of learning in transition (lock-in) regimes.
This makes the technology race for the green technology more difficult. It
might be an explanation why the diffusion volatility measured by (σν

i )
2 is

increasing in the distance if a transition occurs. A short discussion of these
findings can be found in Hötte (2019f).

The variance (σν
i )

2 is an indicator for technological stability. The variance
(σν

i )
2 is a measure for the volatility of the diffusion process computed over

the whole simulation horizon. It is an indicator of firms’ switching behavior
between green and conventional technologies. In the lock-in regimes, the re-
gression indicates that a higher distance is associated with higher stability. In
the case of a transition, it may increase technological uncertainty. A higher
distance exacerbates the effect of barriers. This retards the technological spe-
cialization in the transition process.

The qualitative findings are robust across a large variety of alternative model
specifications. The results of some of these alternative specifications are
available in the accompanying data publication (Hötte, 2019g) and a longer
discussion can be found in the accompanying working paper (Hötte, 2019f).

3.5 Discussion

The three questions formulated in section 3.4 can be answered as follows:

How does the success and pattern of diffusion depend on state dependence
of technological learning? The transition probability is ambiguously
related to the state dependence of learning. A high transferability of
knowledge reduces state dependence and facilitates the adoption of
new technology. But it may also operate in the opposite direction. If
relative performance changes, firms may easily switch back to the con-
ventional technology if spillovers are high. A higher the degree of state
dependence is associated with less volatile diffusion curves.

What are the drivers of technological convergence and how do these relate
to the stability of the diffusion process? Diverging stocks of relative
codified and tacit technological knowledge contribute to the conver-
gence to a stable technological state. A higher technological distance is
associated with a more pronounced divergence. If the divergence in rel-
ative stocks of knowledge is sufficiently high, the economy is locked-in
in a stable technological regime.
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Which macroeconomic side effects occur and can the effects be attributed
to the characteristics of competing technologies? Retarded techno-
logical specialization is a result of technological uncertainty. This is
macroeconomically is costly. Other effects depend on the success of a
transition. If a transition occurs, a higher distance facilitates the spe-
cialization, but makes it difficult for late adopters to catch up. This may
lead to a higher market concentration. It has an opposite effect if the
economy is locked-in.

Technological distances and the difficulty of learning can be used to charac-
terize competing technologies. This characterization is dependent on the eco-
nomic context given by an industry, region, etc. and the incumbent type of
technology therein. The technological distance can be interpreted as a mea-
sure for the disruptiveness of the market entering technology in relation to
the incumbent technology. Differences in the ease of learning and the techno-
logical distance may be an explanation for heterogeneity of diffusion patterns
across countries, sectors, and firms (cf. Allan et al., 2014).

It is also a way how theories about the task-content of technological change
can be linked to patterns of diffusion (e.g. Autor et al., 2003). The technologi-
cal knowledge embodied in non-routine can be transferred across technology
types. For example, Vona et al. (2015) have shown that firms that have a high
share of occupations characterized by non-routine tasks do less struggle to
cope with technological change.

An alternative approach to link the proposed characterization to economic
data is the concept of technological distances (cf. Boehm et al., 2016; Car-
valho and Voigtländer, 2014; Jaffe and De Rassenfosse, 2017). Carvalho and
Voigtländer (2014) have shown that the adoption of new technology in a
given industry is more likely if the distance is small.

Transferability is associated with technological flexibility and adaptiveness.
If external conditions change, the switch to an new, market entering tech-
nology might become superior. Switching to new technology is easier if the
transferability of skills is high. But this may come with the cost of stability
and specialization. This can be also interpreted as trade-off between exploita-
tion and exploration.

The divergence in the endowments with technology-specific knowledge sta-
bilizes the process of technology diffusion. Relatively higher endowments
with technology-specific skills are a barrier to diffusion for market entering
technologies. Accumulated skills reflect the experience and maturity of a
technology. This barrier is easier to be overcome if technologies are suffi-
ciently similar and if accumulated knowledge (but also infrastructure etc.)
can be transfered to the utilization of the new technology type.

This analysis was applied to the case of green technology diffusion but the
framework and the simulation model can be straightforwardly applied to
other technologies.
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3.6 Concluding remarks and outlook

In this paper, a technology race between an entrant and an incumbent tech-
nology is studied using an eco-technology extended version of the macroeco-
nomic ABM Eurace@unibi. Based on a synthesis of the theoretical and empir-
ical literature of economics, management and technology studies, a microe-
conomic model of technological learning is developed. It is implemented in
the Eurace@unibi-eco model and describes the accumulation of technology-
specific absorptive capacity at the firm-level. Competing technologies are
characterized by their technological similarity and difficulty. It is shown that
the characteristics of the two competing technologies and the pace of relative
knowledge accumulation are decisive to understand the technological and
economic evolution of transitions.

The core insights of the simulation study can be summarized as follows:

1. The technological distance between competing technologies describes
how well technological know-how can be transferred across technology
types. It facilitates initial technology uptake undermines the pace of
specialization and stabilization within a technological regime. If tech-
nologies are similar, it is easy for technology users to switch to new
technology. But it is also easy to switch back if relative prices or the
relative technological performance of supplied technology change. An
enduring phase of switching between two technologies is interpreted as
technological uncertainty. It is macroeconomically costly because learn-
ing and R&D resources are wasted if they are invested in a technology
that is obsolete in the long run. Increasing returns in the learning pro-
cess are interpreted as a measure for technological difficulty may con-
tribute to the stabilization of a technological regime.

2. Relative endowments with codified and tacit technological knowledge
are embodied in the productivity performance of supplied capital and
adopters’ absorptive capacity. Diffusion barriers for the entrant are re-
flected in lower stocks of technological knowledge. If the two compet-
ing technologies are dissimilar, the cross-technology transferability of
tacit knowledge is low and adopters struggle with the acquisition of
required know-how (tacit knowledge). External conditions such as re-
source prices can be an important trigger for the diffusion process. This
can be the starting point for market-based green diffusion policies.

If technologies are dissimilar and the green technology successfully
penetrates the market, it is difficult for late adopters to catch up. This
may be associated with a higher market concentration.

This study is subject to two major limitations. First, symmetric technologies
were studied. In reality, competing technologies may be differently difficult
to learn and flows of knowledge across different sectors may be asymmetric.
This might be particularly relevant if more than two technologies are consid-
ered and flows of multiple interdependent sectors contribute to knowledge
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accumulation in one technology class. An extension to asymmetric flows is
left for future investigation and is a promising field for empirical research.

Second, this study is restricted to the study of the transferability of
technology-specific skills at the level of individual firms assuming that in-
tended research in the R&D sector is pulled by the demand of adopters. As-
sumptions about the expectations of agents are reduced to a minimum. It
will be interesting to expand the analysis to spillovers in the R&D sector and
to incorporate a more sophisticated modeling of expectations.
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3.A Simulation results

3.A.1 Baseline

Here, only some general features of the simulated time series data are shown.
Information about the empirical validation and more detail on this baseline
simulations is available in the appendix A I and appendix A of Hötte (2019f).
A longer discussion of a similar simulation is provided in Hötte (2019b). A
difference to the simuations in chapter 2 and Hötte (2019b) is given by lower
diffusion barriers of the green technology and another specification of the
learning function.The simulation model, the simulated data and a selection
of results of descriptive statistics is available in a separate data publication
(Hötte, 2019g).

In figure 3.A.1, the time series are disaggregated into green, conventional and
so-called switching regimes. A simulation run is classified as switching regime if
the diffusion process is characterized by multiple reversions of its direction.
This is associated with uncertainty about the final technological state. The
time series data illustrate that “technological uncertainty” is costly. It is associ-
ated with wasted resources because R&D and learning time are invested in
a technology that becomes obsolete in the long run. This leads to a delayed
technological specialization, lower productivity and lower aggregate output
compared to the green or conventional regimes with a more clear-cut techno-
logical path selection (cf. figure 3.A.1). A two sided Wilcoxon test indicates
that the differences between green and conventional regimes are significant
(see appendix A of Hötte (2019f).
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FIGURE 3.A.1: Macroeconomic and technological indicators
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3.A.2 Interactions between spillovers and the ease of learn-
ing

TABLE 3.A.1: Initialization of learning parameters

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

χint .9937 (.5985) 1.051 (.6040) .8908 (.5783) .0793
χdist .4792 (.2954) .4230 (.2768) .5803 (.3026) .0003

The column at the left hand side shows the mean (standard devia-
tion) of the initialization across all runs. The other two columns show
the average initial conditions within the subsets of green and conven-
tional regimes. The last column indicates the p-value of a two-sided
Wilcoxon signed rank test for equality of means of initial conditions

in both subsets.

In the Monte-Carlo experiment in section , the learning parameters are drawn
at random, i.e. χdist ∈ [0, 1] and χint ∈ [0, 2]. Diffusion barriers at the day of
market entry are fixed at a level of 3% (βA = βb = .03) as before. 135 out of
210 simulation runs converge to a green regime, corresponding to a transition
probability of 64%.

In table 3.A.1, means and standard deviation of the initialization are sum-
marized as aggregate and disaggregated by regime subsets. The p-value in
the last column indicates whether the difference in means between the two
regime types is significant. The average mean of the distance χdist is signifi-
cantly lower in the subset of green regimes. The difference in the χint is only
weakly significant at a 10% level. Some general descriptive information of
these simulations is provided in the appendix of Hötte (2019f).

3.B Technical notes on statistical procedures

In section 3.4.2, the results of a regression of macroeconomic indicators on
χdist-dummy variables, a regime type dummy and the standard deviation of
the diffusion measure σν

t are shown. σν
t captures qualitative properties of

different phases of the diffusion process. These qualitative properties differ
from pure time effects. A high σν

t indicates that the prevalent technological
regime is instable and firms switch between different technology types or are
heterogeneous in their investment strategies.

The data exhibits a panel structure with group clusters. The unit of observa-
tion is a single run and the time index is given by the number of periods. The
regression is a pooled OLS regression and aimed to reveal structural rela-
tionships and correlations between the parameter settings and the outcome.
Standard errors are clustered by run and time indices using the R-function
coefftest(x, vcov=vcovHC(x,type="HC0")) of the lmtest package (Zeileis
and Hothorn, 2002).
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Robustness was tested by different panel methods, i.e. random effects and a
between estimator. The results of these models are quantitatively and quali-
tatively consistent, but partly differ in the significance levels of coefficients.

Fixed effects and first difference models eliminate the fix differences of the
type and parameter dummy that is constant within each run-time indexed
subset, but confirm the dominance, significance and qualitative nature of the
influence of σν

t . Alternative functional forms of the regression model confirm
the robustness of the qualitative insights of this analysis. The results and
the statistical code is available online in the accompanying data publication
(Hötte, 2019g).
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Chapter 4

Pathways of transition and the
characteristics of competing
technologies: A taxonomy and a
policy experiment

4.1 Introduction

To reduce the risk of crossing irreversible tipping points in the climate sys-
tem, the transition to carbon-neutral technologies needs to be accelerated
(cf. IPCC, 2018; Steffen et al., 2018). Technology transitions are processes
in which an emergent, entrant technology diffuses and replaces the preva-
lent technological solution (Geels, 2002). Empirically observed diffusion and
transition patterns are diverse and differ across technology types (Adner and
Kapoor, 2016; Comin et al., 2006; Geels and Schot, 2007) and across countries,
sectors and firms (Geels et al., 2016; Vona et al., 2015). The purpose of this pa-
per is to explain these differences based on a characterization of competing
technologies and a simulation experiment using the macroeconomic, agent-
based model (ABM) Eurace@unibi-eco.

The characterization is based on a typology to classify different transition
patterns proposed by Geels and Schot (2007). This typology is derived from
the multi-level perspective (MLP) which is a common methodological frame-
work in transition studies (Köhler et al., 2019; Lachman, 2013). MLP de-
composes a socio-technical system into a landscape, regime and niche level.
The landscape captures external conditions such as resource prices, regula-
tion or consumer preferences. A technological regime is determined by the
dominant technological solution to fulfill a societal function. It is stabilized
by norms, institutions, infrastructures and technological know-how that are
built up over time. If the socio-technical landscape changes, the regime may
come under pressure. This opens a window of opportunity for emergent
niche technologies to challenge the regime if they are sufficiently superior
given the new landscape conditions (Geels and Schot, 2007).
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In this paper, I propose an economic operationalization of the concepts of
MLP. Competing technologies are characterized by cumulative stock vari-
ables, exogenous and interactive properties. The entrant technology is a radical
innovation that is technically superior because it allows its users to overcome
a technical limitation of the incumbent technology. The economic valuation
of the technical superiority is an exogenous property because it is beyond the
direct influence of technology adopters and users. It is an inherent feature of
a specific technology type but whether this feature is economically valuable
depends on the socio-technical landscape (reflecting e.g. resource endow-
ments, oil prices, cultural values, etc.).

Stock variables reflect the relative maturity of a technology. The incum-
bent technology benefits from larger experience and endowments with sup-
porting factors accumulated by intended research, learning-by-doing, in-
vestments and routinization. In transition terminology, the accumulation is
called “endogenous renewal” and stabilizes the incumbent regime (Geels and
Schot, 2007).

If technologies are similar, part of the accumulated technological knowledge
and supporting factors required to operate the incumbent are transferable
to the utilization of the entrant technology (cf. Boehm et al., 2016; Jaffe and
De Rassenfosse, 2017). Transferability is an interactive property because it
affects the relative pace of technological specialization. It may also explain
the disruptiveness of technological change.

This conceptual framework is motivated by empirical and theoretical styl-
ized facts from the literature. It is a first step to write the concepts of MLP
in analytical economic terms. The characterization is reflected in the formal
implementation of technology in the macroeconomic ABM Eurace@unibi-eco
introduced in the preceding chapters. The formalization of a technology race
in the model shows how these groups of properties can be presented in the
analytical terms of a macroeconomic model.

The model is used to simulate a technology race between an incumbent con-
ventional technology and an emergent, green market entrant. One outcome
of the simulations is a sample of transition curves and macroeconomic time
series that are statistically analyzed. In the simulations, transitions are stud-
ied from the bottom-up perspective of heterogeneous, technology adopting
firms and their learning abilities as explained in the chapters before. The
simulations allow disentangling the interplay of single drivers and barriers
of transition at the micro- and macroeconomic level. It is shown that the
shape of transition pathways can be explained by the characteristics of com-
peting technologies. Macroeconomic side effects and disruptions in the mar-
ket structure differ across pathways of transition.

Policy can change the external conditions of the socio-technical landscape in
favor of the entrant technology. In an experiment, three different market-
based policies are tested. A tax on the use of conventional technology (e.g. a
carbon tax) makes the utilization of the entrant technology relatively cheaper.
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An investment subsidy reduces the price for green capital goods. Both cap-
ital and resource prices are exogenous to users and reflect the availability of
resources. A price support reduces the price for consumer goods produced
with green machinery. It is analog to a higher willingness to pay for green
products.

It is shown that these policies may reinforce and stabilize an ongoing diffu-
sion process, but increase technological uncertainty if the economy is locked
in the incumbent regime.

Interactions between diffusion policies and technological characteristics re-
veal qualitative differences in the way how different market-based policies
operate. For example, the consumption subsidy is only effective if the two
competing technologies are sufficiently similar. In contrast, a tax that makes
the utilization of the incumbent technology more expensive works well for
dissimilar technologies.

The insights of this study help to understand the reasons for the heterogene-
ity of diffusion patterns. This understanding is crucial for the development
of appropriate and effective transition policies conditional on the properties
of available technology options. The evaluation of economic side effects may
bring clarity about future technological pathways and facilitates an informed
debate about sustainability transitions (Rosenbloom, 2017). This is important
for policymakers and might help addressing socio-psychological resistance
to change (Watson, 1971). Moreover, the characterization of competing tech-
nologies may also provide a theoretical basis for empirical work.

This study focuses on technology diffusion at the production side. The theo-
retical concepts are generalizable to the consumer side but this is beyond the
scope of this study.

This work contributes mainly to three branches of literature. First, it is a the-
oretical approach to formalize concepts used in MLP. It draws a link between
transition research and macroeconomic theory (Köhler et al., 2019). MLP had
been criticized for its vagueness of the concepts that lack unambiguous em-
pirical counterparts. Its complexity makes it difficult to disentangle single
drivers of interactive dynamics of transition (Köhler et al., 2019; Lachman,
2013). The proposed characterization is an economic operationalization of
multi-level interactions that are introduced by Geels and Schot (2007) to ex-
plain different shapes of transition pathways.

Second, the macroeconomic ABM approach allows to differentiate systemat-
ically between different types of technology and processes of learning. This
granulate view is, to the best of my knowledge, a novelty in the literature
on climate economics. It is an approach to formalize the technological chal-
lenges of a sustainability transition that differ across economic systems (e.g.
industries or countries).

Third, it contributes methodologically and theoretically a new perspective
to the branch of macroeconomic literature on directed technological change.
It is a methodologically new approach to distinguish different technology
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types systematically and to link this distinction to microeconomic behavior
of technology substitution. Assumptions about the substitutability of tech-
nologies are critical for the pace, costs and distributional consequences of
directed technological change (cf. Acemoglu, 2002; Lemoine, 2018; Nijkamp
et al., 2005). In the majority of existing studies, substitution elasticities are
estimated or taken from the literature but a consistent microeconomic expla-
nation based on observable properties of technologies and absorbing firms is
yet to come. Moreover, the agent-based framework allows studying the im-
portance of coordination for processes of learning in a population of hetero-
geneous adopters (cf. Jaeger, 2013). This deviates from aggregate approaches
(e.g. Acemoglu et al., 2012; Lemoine, 2018) and allows a more granulate view
on coevolving market structures, patterns of redistribution and the costs of
coordination failures.

This paper is structured as follows. First, on the basis of a literature review,
empirical stylized facts of transition and technology diffusion patterns are
elaborated and linked to transition theory. In section 4.3, these insights are
synthesized as dynamic characterization of competing technologies. The link
to the formalization of technology in Eurace@unibi-eco is explained in section
3.3. In section 4.5, a simulation experiment is used to study the interplay be-
tween the characteristics of technology and emerging pathways of transition
and the results of a policy experiment are discussed. Section 4.6 concludes.

4.2 Diverse pathways of transition - empirical
stylized facts

Processes of sustainable transitions and (clean) technology diffusion differ
across countries, sectors and firms and across technology types. Here, I will
provide a short selection of empirical observations to derive four stylized
facts (SF) of transitions.

The conceptual difference between technology diffusion and transition pro-
cesses is the substitutive nature of a transition. A transition is a large-scale
substitution process in which an incumbent, dominant technological solu-
tion to fulfill a societal function is replaced by an emergent alternative (Geels,
2002). In contrast, diffusion does - at least theoretically - not necessarily in-
volve an incumbent that is replaced. Often, diffusion studies seek to explain
aggregate or firm-level productivity growth, technological catch-up or prod-
uct diffusion in consumer markets.1

1This conceptual distinction is not always clearly articulated in the existing literature
and the terms are used interchangeably. But it is empirically questionable whether the term
diffusion makes sense without consideration of an incumbent even if it is ignored in the
majority theoretical models of technology diffusion (cf. Allan et al., 2014).



Chapter 4. Pathways of transition 121

TABLE 4.1: Empirical stylized facts of technology transitions

Stylized fact Key references
1 The relative endowment (“relative maturity”)

with technology-specific knowledge and tangi-
ble assets influences individual adoption behav-
ior.

Aghion et al. (2016); Deche-
zleprêtre et al. (2011); Geels
(2005); Jiang and Lu (2018);
Lema and Lema (2012); Wells
and Nieuwenhuis (2012)

2 Cross-technology interactions in the accumula-
tion of supporting factors (e.g. complemen-
tary skills, infrastructures, technologies) influ-
ence the pace of technological specialization re-
flected in the realized relative performance of
competing technologies.

Adner and Kapoor (2016);
Aghion et al. (2016); Carvalho
and Voigtländer (2014); Wessel-
ing et al. (2015)

3 External shocks (e.g. regulation, preference
shifts, input price shocks, technological break-
throughs) may trigger the market entry of a tech-
nology that competes to replace the incumbent.

Belz (2004); Høyer (2008); Jones
and Bouamane (2011, 2012);
Ma and Sauerborn (2006); Popp
(2019); Popp et al. (2010)

4 The characteristics of competing technologies
determine the degree of disruption which is re-
flected in economic and distributional side ef-
fects of the transition process e.g. in the market
structure and reallocation of income and wealth.

Consoli et al. (2016); Tushman
and Anderson (1986); Vona et al.
(2015); Wesseling et al. (2015)

At the country-level, Dechezleprêtre et al. (2011) illustrated differences in
the cross-country diffusion of environmentally friendly innovations mea-
sured by patent applications. Comin et al. (2006) have shown that histori-
cal technology diffusion rates differ considerably across adopting countries
and technology types. They disproved the general validity of the s-shaped
pattern of diffusion (cf. Allan et al., 2014) and identified country-specific ag-
gregate indicators for the stage of technological development as a potential
explanation for cross-country differences. Adner and Kapoor (2016) have
shown that the characteristics of both the entrant and incumbent and dy-
namic cross-technology interactions in the innovation process need to be con-
sidered to understand the heterogeneity of diffusion patterns.

The adoption of electric vehicles (EV) and renewable energy technologies
(RET) is a further example of country-level heterogeneity. For example, the
energy sector and automotive industry in India and China are rapid adopters
of green technology (Fu and Zhang, 2011; Jiang and Lu, 2018; Lema and
Lema, 2012). Firms and the government, are aware that it is more difficult to
compete with Western market leaders in mature, highly specialized incum-
bent technologies (Jiang and Lu, 2018). Supported by national policy, Indian
and Chinese car manufacturers began early to switch to EV and stopped the
built-up of a conventional car industry (Lema and Lema, 2012; Tyfield and
Zuev, 2018). Another example is RET in South Asia and Africa. The lack-
ing availability and reliability of fossil-fuel-based electricity systems are pos-
itively associated with the diffusion of (decentralized) RET (Lema and Lema,
2012; Pfeiffer and Mulder, 2013). In both examples, the low maturity of the
incumbent technology is part of the explanation for the rapid take-off of clean
entrant technologies.
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In contrast, major developed countries struggle with path dependence.
Much of the accumulated infrastructure and technological knowledge base
is built upon a fossil-fuel dominated technological paradigm (Unruh, 2000).
Driven by effective policies, Germany became one of the technological lead-
ers in the development solar PV and wind technologies (Pan et al., 2017; Quit-
zow, 2015) but a profound transition of the energy sector is long in coming
(Geels et al., 2016; Kemfert et al., 2018). The reasons can be found in accu-
mulated infrastructure but also cultural rules, societal resistance and inap-
propriate institutional frameworks to integrate renewable energies into the
market (Geels et al., 2016; Nordensvärd and Urban, 2015; Pahle, 2010).

The German automobile industry is highly competitive, innovative and
deeply entrenched in the production network. German manufacturers built
up a competitive specialization in the production of vehicles with internal
combustion engines (ICE) and dominate global export markets. But both the
industry and the government failed to initiate the transition to low carbon
technologies in time (Altenburg et al., 2015). These observations indicate that
the transition to green technologies is challenging if firms accumulated high
technological expertise in carbon-intensive incumbent technologies. Wells
and Nieuwenhuis (2012) and Wesseling et al. (2015) considered firm-level
strategies in the automobile sector and showed that the compatibility with
the pre-existing specialization may also influence the choice across different
types of low carbon propulsion technologies in response to regulation.

These observations motivate stylized fact number one:

Stylized fact 1
The relative endowment (“relative maturity”) with technology-specific knowledge
and tangible assets influences individual adoption behavior.

This stylized fact is also reflected in the history of EV and renewable energy
technologies RET. During the formative phase of the current transportation
and energy system, RET and EV were fair competitors, but cumulative learn-
ing, innovation, infrastructural and regulatory adjustments and the evolu-
tion of consumer habits and norms contributed to the emergence of fossil-
fuel energy and ICE vehicles as a dominant technological regime (e.g. Geels,
2005; Høyer, 2008; Jones and Bouamane, 2011, 2012). Spillovers between the
electricity generation and transportation sector mutually contributed to the
realized cost-effectiveness in the two sectors and reinforced the fossil fossil-
fuel-based trajectory of technological development (Unruh, 2000).2

The relative endowment with technology-specific knowledge is a property
that relates to both the diffusing technology (and its suppliers) and the ab-
sorbing market. That is one explanation why the pattern of diffusion of

2Unruh (2000) and Grübler (1991) elaborate these spillovers further. Spillovers arise from
overlaps in supply chains and networks, applications and endogenous innovation in com-
plementary industries (e.g. in the petrochemical industry), institutional and political sup-
port and societal interest groups that contribute to the formation of norms and values, and
from education systems that shape the type of available skills at the labor market.
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the same technology may differ across industries and firms. Marimon et al.
(2011) studied the adoption behavior of environmental management systems
and observed considerable differences in the adoption rate across different
sectors of economic activity. Oliveira and Martins (2010) make a comparison
of e-business adoption behavior across industries. They find that the pace of
adoption but also the relative importance of drivers of adoption differ signif-
icantly across industrial sectors.

At the level of individual firms within the same sector and the same regional
market, Aghion et al. (2016) documented path dependence in the automo-
bile sector. The authors have shown that the composition of accumulated
technological knowledge embodied in firms’ patents can explain the type of
subsequent innovation. Firms with a higher share of patents for environ-
mentally friendly technologies are more likely to carry out green innovation.
Similarly, Wesseling et al. (2015) showed that type of pre-existing technolog-
ical expertise affects the future technology choice of automobile producers
in the US in response to regulation. Firms followed technological pathways
that are similar to their pre-existing type of technological capabilities.

Firm-level relative endowment with technology-specific knowledge may ex-
plain the direction of future technological specialization. Using input-output
data, Carvalho and Voigtländer (2014) has shown that the adoption of pro-
duction inputs adoption is positively dependent on the technological similar-
ity between the input producing sector and absorbing firms. Acemoglu et al.
(2016); Boehm et al. (2016); Huang et al. (2018); Oikawa (2017) made concep-
tually similar observations. The similarity is positively related to knowledge
spillovers across sectors and technology fields in learning processes (Jaffe
and De Rassenfosse, 2017).

Adner and Kapoor (2016) re-examined the s-shaped pattern of diffusion
curves in the semiconductor industry. The authors considered interactions
between the incumbent and entrant technology in the innovation process.
They focus on the characteristics of a technological novelty and its interac-
tion with pre-existing technology and the (co)evolution complementary fac-
tors. They illustrated that the pace of diffusion is retarded if an innovation is
competence-destroying, if technological bottlenecks in the supportive inno-
vation system arise or if external developments improve the realized, firm-
specific performance of the incumbent. The authors emphasize the impor-
tance of interactions between both the entrant and the incumbent technology.
This leads to stylized fact number two:

Stylized fact 2
Cross-technology interactions in the accumulation of supporting factors (e.g. com-
plementary skills, infrastructures, technologies) influence the pace of technological
specialization reflected in the realized relative performance of competing technolo-
gies.

Many basic (green) technologies have their origins in the late 19th century.
Examples are the emergence of RET, EVs and organic food (Behera et al.,
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2012; Belz, 2004; Høyer, 2008; Jones and Bouamane, 2011, 2012; Ma and
Sauerborn, 2006; Neukirch, 2009).3 Early deployment took place in niche
markets characterized by very specific consumer preferences or governmen-
tal procurement programs. These niches provided a protected space that al-
lowed these technologies to mature free from the pressure of price and per-
formance competition with conventional technologies that provide a similar
output (e.g. electricity, propulsion technology, food in the examples above).
External shocks (e.g. preference shifts, regulation, price shocks) allowed
these innovations to challenge the dominant position of the incumbent. The
interest of entrepreneurs and policymakers to commercialize RET and EV
at the mass market rose in the aftermath of the oil price shock in the 70s.
The oil price shock coincided with an increasing awareness for the finiteness
of resources and the environmental issues, that became part of the political
agenda. Prices, political support and regulation were key drivers of a new
surge of entrepreneurial and innovative activities in RET and EV technology
(Geels et al., 2011, 2016; Høyer, 2008; Jones and Bouamane, 2011, 2012; Popp,
2019; Popp et al., 2010). Parallels can be found in the history of organic farm-
ing but the dynamics were to a larger extent driven by changing consumer
preferences reflected in a higher willingness to pay and incrementally in reg-
ulations, support policies, labels and standardization (Behera et al., 2012;
Belz, 2004; Lockeretz, 2007; Ma and Sauerborn, 2006; Reganold and Wachter,
2016).

These observations from different technology histories lead to stylized fact
number three:

Stylized fact 3
External shocks (e.g. regulation, preference shifts, input price shocks, technological
breakthroughs) may trigger the market entry of a technology that competes to replace
the incumbent.

Other technologies gained momentum through a technological breakthrough
even though it took time until the incumbent was replaced. Prominent his-
torical examples are the transition from sailing to steamships (Geels and
Schot, 2007) or the transition from mainframe to integrated circuit computers
(Malerba et al., 1999).

Transitions and technological change can be accompanied by changes in the
market structure and the redistribution of income and wealth. These effects
are observable at the labor market, across firms within the same industry
and across industries. Whether and to which extent these side effects occur
is dependent on the capacity of employees, firms and industries to cope with
new technology.

3Here, I refer to organic food as a product innovation that is explicitly labeled in distinc-
tion to conventional agriculture. In fact, at the turn of the 20th century, the majority of food
production was organic. And also today, many farms in developed and developing coun-
tries, rely on practices of organic farming without being certified and selling their products
as organic food (Reganold and Wachter, 2016).
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Vona et al. (2015) and Consoli et al. (2016) have empirically documented that
the adoption and effective utilization of green technologies is associated with
structural changes at the labor market. Occupations and skills needed for the
adoption and operation of green technologies differ from those demanded
for the incumbent. Following the propositions of the literature on skill-biased
technological change (esp. Acemoglu, 2002; Autor et al., 2003), the authors
argue that this might be associated with a redistribution of income. Rela-
tive wages for green skills and occupations increase at the expense of the in-
cumbent. Vona et al. (2015) did also find that the pre-existing “skill-profile”
of industries determines the pace and ease to which industries adopt green
technologies in response to environmental regulations. Industries that are
characterized by a high share of employees with green skills adopt green
technologies more effectively.

Tushman and Anderson (1986) have shown that the compatibility of pre-
existing knowledge with the utilization of new technologies can explain
changes in the market structure. Competence destroying innovations, i.e.
those that require radically different types of knowledge, tend to be intro-
duced to the market by entrant and not by incumbent firms. This leads to
a reallocation of market shares within the same product group. Wesseling
et al. (2015) adopted the framework of competence-destroying innovations
and investigated responses of automobile firms to the technology-forcing
Zero Emission Vehicle mandate in California. They illustrated a systematic
relationship between the strategic response of firms and the compatibility of
firms’ pre-existing competences with the technical requirements needed to
meet the mandate. Firms’ whose pre-existing knowledge appears to be least
compatible with the new standards exhibited the most opposing behavior
and missed the entry to the low-emission vehicle market.

These observations lead to stylized fact number four:

Stylized fact 4
The characteristics of competing technologies determine the degree of disruption
which is reflected in economic and distributional side effects of the transition pro-
cess e.g. in the market structure and reallocation of income and wealth.

The four stylized facts are summarized in table 4.1.

4.3 MLP and a dynamic characterization of com-
peting technologies

4.3.1 Pathways of transition - theory

A common theoretical framework to study technology transitions is the
multi-level perspective (MLP) (Köhler et al., 2019; Lachman, 2013; Smith
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et al., 2010). In MLP, socio-technical systems are decomposed into three in-
teracting levels, called landscape, regime and niche.

The regime describes a dominant technical solution to fulfill a societal func-
tion (Geels, 2002; Geels and Schot, 2007; Kemp, 1994). It is associated with a
technological paradigm that determines how technology users and develop-
ers define technological problems and search for solutions (Dosi, 1982; Nel-
son and Winter, 1977). A regime is dynamically stabilized by incremental
technical improvements, the accumulation of experience, the built-up of sup-
porting infrastructure, regulation and the deepening societal and economic
entrenchment.

The landscape-level reflects external conditions into which a technological
regime is embedded. These conditions are e.g. consumer preferences, reg-
ulations, resource endowments, prices and general technology trends. These
conditions are beyond the influence of technology developers and users.

Internal problems of the regime or changes in the landscape may put the
regime under pressure. This creates a window of opportunity for alterna-
tive technologies to replace the existing regime. The alternative technology
emerges from a market niche with specific demand characteristics or govern-
mental procurement that protect the technological development in the niche
from competitive forces at the regime level. Transitions from niche to the
regime are driven by the enactment of different societal groups and interac-
tions among different levels (Geels, 2002).

MLP provides a framework for the systematic, empirical and theoretical
study of technology transitions. It was used to study historical and cur-
rent transitions in different technology fields (e.g. Berkeley et al., 2017; Geels,
2002; Geels et al., 2011; Kemp, 1994; Köhler et al., 2019; Safarzyńska et al.,
2012; Wells and Nieuwenhuis, 2012; Yuan et al., 2012) and also for cross-
country comparisons (Geels et al., 2016).

The transition from one socio-technical regime to another evolves along a
technological trajectory (Dosi, 1982). Geels and Schot (2007) proposed a ty-
pology to distinguish different transition pathways. Their typology is depen-
dent on the timing and nature of multi-level interaction.

Different pathways have implications for the power relations and degree of
disruption of technological change. In this paper, I abstract from the role of
societal groups and actors and focus on technology users. It is an economic
approach to study technology transitions. Users are neutral with regard to
the type of technology but have endogenously, accumulated vested inter-
ests that are embodied in physical capital and intangible knowledge. The
technology choice is conditional on the relative, effective performance of a
technology given the existing stock of physical and intangible assets.
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4.3.2 A characterization of competing technologies

Based on the empirical stylized facts and the MLP, competing technologies
can be described by three groups of properties. These properties have differ-
ent implications for the evolutionary dynamics of a transition process.

Exogenous properties reflect the landscape conditions that surround an
evolutionary process of technological competition. Exogenous prop-
erties are, for example, prices of input requirements for the utilization
of a technology, consumers’ willingness to pay for specific output char-
acteristics, production and provision costs of the technology of broader
landscape conditions. These conditions determine the economic valua-
tion of specific properties of a technology.

For example, a fuel-saving technology is not valuable if fuel is for free.
Organic food is not superior in the market if consumers do not have a
specific preference or if the production process is not regulated.

These conditions are beyond the control of technology developers and
follow dynamics that are independent of technology race. They are
considered as given in daily decision making of technology users and
developers (Geels, 2002).

Stock variables are stocks of technological knowledge and supporting fac-
tors. They are accumulated by intended research and investment and
as a byproduct of learning by using. Stock variables contribute to the
dynamic stabilization of the dominant technology (Geels, 2002). The ra-
tio of stocks accumulated in the different sectors describes the relative
maturity of the entrant compared to the incumbent.

For example, the stabilization of automobility based on ICE vehicles as
dominant technological regime in passenger transportation arose from
the accumulation of supporting factors such as regulatory adjustments,
complementary infrastructures, incremental technical performance im-
provements and technical skills of manufacturers (Geels, 2005). Alter-
native transportation technologies that might possibly replace ICE mo-
bility have to compete with this ongoingly evolving stock of techno-
logical knowledge. After the oil price shock in the 70s, the low ini-
tial technical maturity and lack of supporting infrastructures combined
with adaptive innovations in fuel efficiency and exhaust filters of con-
ventional cars dampened the optimism to launch EV as an alternative
(Geels et al., 2011; Høyer, 2008; Wells and Nieuwenhuis, 2012).

Interactive properties influence the accumulation process of relative stock
variables and the pace of technological divergence. Technological path-
ways diverge if the relative technological maturity diverges. This oc-
curs if the accumulation of stock variables is faster in one technology
compared to the other. Interactive properties can be operationalized
as technological similarity between the niche and incumbent and as
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technological difficulty. The similarity has implications for the transfer-
ability of accumulated stock variables to the utilization of the emergent
niche technology. The higher the technological difficulty, the more diffi-
cult is the accumulation of technological knowledge and the more diffi-
cult is the catch-up for technological latecomers (Cohen and Levinthal,
1990; Lema and Lema, 2012). A higher difficulty is associated with
higher returns to specialization.4

For example, the production of both electric and ICE vehicles is very
complex. It requires a high level of technology-specific capabilities and
a large number of technology-specific intermediate inputs. At the same
time, both propulsion technologies are very dissimilar. For example,
the production and maintenance of batteries for EV and combustion
engines require different technological skill-sets and different material
inputs (Høyer, 2008; Wells and Nieuwenhuis, 2012). This makes it dif-
ficult for companies to specialize in both technologies simultaneously.
Empirically, it was observed that the technological frontrunners in the
ICE sector struggle with the adoption of EV technology and explored
(with limited success) fuel cells or biofuels as climate-friendly alterna-
tive. Fuel cells and biofuels are technologically much more compati-
ble with the pre-existing ICE specialization. Early adopters of EV tech-
nologies are either market entrants or not operating at the technological
performance frontier of ICE technology (Altenburg et al., 2015; Berke-
ley et al., 2017; Ehret and Dignum, 2012; Wells and Nieuwenhuis, 2012;
Wesseling et al., 2015).

Geels and Schot (2007) discussed how the nature of multi-level interaction,
i.e. the type of pressure from the landscape and the interaction between the
entrant and incumbent technology are related to observed pathways of tran-
sition. Whether an emergent entrant technology can successfully replace the
incumbent depends on the timing, i.e. relative maturity of the entrant and the
pressure on the incumbent caused by a changing landscape.5 These concepts
are embodied in the Eurace@unibi-eco model.

4In the terminology of Geels and Schot (2007), these properties describe the nature of
interaction between the regime and niche level, i.e. whether the new technology is symbiotic,
substitutive, disruptive or reinforcing (cf. Geels and Schot, 2007).

5The characteristics are not independent of the landscape. For example, the metrics im-
posed on exogenous properties of technologies are a question of valuation that is dependent
on consumer preferences and resource endowments. A technology is only valuable if it ful-
fills a societal purpose (cf. Geels, 2002).
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4.4 A macroeconomic ABM of technology transi-
tions

In this section, I give a concise conceptual introduction to the macroeconomic
ABM Eurace@unibi-eco and the representation of technology. A comprehen-
sive and formal documentation of the model is available in the supplemen-
tary material (SM) I.

4.4.1 The model

The model is an extended version of the macroeconomic ABM Eurace@unibi
(Dawid et al., 2019b). The extended model is illustrated in figure 4.1. It can
be used to simulate a whole closed macroeconomy covering markets for con-
sumption and capital goods, labor, credit and finance. Heterogeneous agents
interact on these markets and exchange goods, labor and information.

FIGURE 4.1: Macroeconomic structure of Eurace@unibi-eco
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Blocks represent a group of agents and their role in the economy. Cir-
cles in the middle between show the markets as places where agents
interact. Gray (magenta) arrays indicate monetary or physical (im-
material) flows. The block on the right-hand side contains the main
macroeconomic indicators that have been studied. This flowchart is
the same as in the previeous chapters. It is based on Dawid et al.

(2011).

Heterogeneous firms produce a final consumption good that is offered at the
goods market. Households act as consumers and supply labor to firms. Their
wage income is spent for consumption and saving at private banks or it is
invested in an index fund at the financial market. Capital producers offer
capital goods to firms and invest in R&D to increase the productivity of sup-
plied capital. The model is financially stock-flow consistent, i.e. each agent
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has a bank account and financial flows between agents are mutually settled.
Private banks manage the bank accounts and give credit to firms if firms’
own financial means are insufficient to finance current expenditures and in-
vestment. The model also has a central bank that can influence the economy
through monetary policy.

The routines of the agents in the economy are executed stepwise and fol-
low different time schedules. One iteration in the model corresponds to one
working day. Some routines are executed on a regular frequency, e.g. daily,
weekly or monthly, others are event-based. For example, firms only demand
credit if their financial means are insufficient and households’ labor market
routines are only executed when they are unemployed. The model is empiri-
cally validated, i.e. it is able to reproduce a number of micro- and macroeco-
nomic empirical stylized facts. In previous studies, the baseline model had
been used in different policy studies focusing on different aspects of eco-
nomic policy, e.g. labor markets, economic cohesion, monetary policy or eco-
nomic stimuli (e.g. Dawid and Gemkow, 2013; Dawid et al., 2018b, 2019a,b;
Harting, 2019; van der Hoog and Dawid, 2017).

The most relevant agents for this study are firms, capital good producers and
households. Firms produce final goods using capital K and labor L as inputs.
Capital is heterogeneous by technology type ig and supplied by two com-
peting capital producers ig = c, g. One of the producers c is incumbent in
the market and offers conventional capital goods. Their use is environmen-
tally harmful and requires natural resource inputs. The other producer g is a
green entrant that offers a climate-friendly alternative.

Consumption goods-producing firms invest in capital goods that are accu-
mulated as a stock at the firm-level. Firms’ capital stock is composed of a
range of (possibly) different capital goods. It depreciates over time and is
maintained or expanded through investments. Single capital goods (”vin-
tages“ v) do not only differ by technology type ig but also by productivity
level Av. Each capital producer offers a range of different vintages that differ
by Av. If the capital producer in sector ig successfully innovates, it brings
a new and more productive vintage to the market. The sectoral productiv-
ity frontier AV

ig,t is shifted upwards. t is the time index. The probability of
innovation success is positively dependent on R&D expenditures. Capital
producers invest a fraction of profits in R&D. This is a source of increasing
returns in sectoral innovation. The capital producer that performs better on
the market innovates relatively faster. Capital producers set prices according
to an adaptive pricing rule. This reflects the market response and scarcity in
the supply of capital. It partly counterbalances increasing returns.6

Labor Li,t is required by firm i to operate capital. It is hired at the labor mar-
ket. Heterogeneous employees l ∈ Li,t are endowed with technology-specific
skills bigl,t. These skills are needed to exploit the productivity of capital of

6For example, if a producer increased prices in the previous periods and if this was asso-
ciated with increasing profits the producer continues to increase prices. If profits and market
share were decreasing, the producer does the opposite.
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type ig = c, g. In other words, employees need to know how to work with
green or conventional machinery effectively. Employees learn technology-
specific know-how when working with a specific capital type ig (”learning
by doing“, LBD). If employees of a given firm work only with green (conven-
tional) capital, they accumulate green (conventional) skills relatively faster.

Technology-specific skills Big
i,t =

1
Li,t

∑l∈Li,t
big

l,t accumulated across the whole
workforce Li,t determine the firm’s effective, technology-specific productivity.
This is a source of evolving, heterogeneity across firms in green and con-
ventional technology adoption benefits. In their investment decision, firms
estimate and compare the net present value (NPV) of different investment
options. They have to decide about the quantity, the technology type ig and
productivity level Av. They form expectations about future prices, wages,
demand and the evolution of their employees’ technology-specific skills.

The process of LBD is conditional on the interactive properties of competing
technologies. The technological distance χdist ∈ [0, 1] is an inverse measure
for the cross-technology transferability of knowledge. If the distance is small,
technologies are similar. Skills that are useful to operate conventional tech-
nology are also useful for the operation of green capital, and vice versa.7

The second interactive property is the technological difficulty χint ∈ R. It
describes the effectiveness of relative effort in LBD. If χint is high, the tech-
nology is difficult to learn and LBD is inefficient if both technologies are used
at the same time. χint is a measure for the returns to technological specializa-
tion. If χint = 0, both technologies are very easy to learn. LBD is independent
of the capital share of each technology type ν

ig
i,t that is used in the firm i.8 This

may reduce the costs of transition because two technology types can be used
simultaneously.

If χint > 1, returns to specialization are increasing in ν
ig
i,t. The formal imple-

mentation is outlined in 4.A. More detail about the empirical motivation of
the learning function is provided in chapter 3 and Hötte (2019f).

Macroeconomically, the technological evolution over time t is driven by two
processes of learning. The productivity of supplied capital AV

ig,t is interpreted
as codified knowledge. Its evolution is driven by a process of intended ”learn-
ing by (re-)searching“ reflected in R&D investments. Technology-specific
skills of employees Big

i,t are interpreted as tacit knowledge (cf. Cowan et al.,
2000). In contrast to codified knowledge, tacit knowledge is not explicitly
traded on the market and needs to be learned at the firm level i. LBD is a
byproduct of everyday production routines.

7Note that skills can be more generally interpreted as site-specific supporting factors.
This is discussed in more detail in chapter 2 and (Hötte, 2019b).

8The share of capital of type ig is given by ν
ig
i,t = Kig

i,t/Ki,t where Kig
i,t is the amount of

capital of type ig = c, g that is used by firm i in time t and Ki,t = Kc
i,t + Kg

i,t is the total
amount of capital used in t.
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Both learning processes are subject to increasing returns dependent on the
technological state of the economy and stabilize the incumbent regime. The
technological state at the macroeconomic level is evaluated by the relative
market penetration of green and conventional capital. It is measured by the
share of conventional capital νc

t that is used in the economy in current pro-
duction. If νc

t → 0, a transition to green technology has occurred.

The aggregate technological evolution is driven by the technology adoption
behavior and learning processes at the level of heterogeneous firms and by
endogenous innovation in the capital sector.

4.4.2 The characteristics of competing technologies in
Eurace@unibi-eco

The model is used to simulate a competitive race between an incumbent con-
ventional and a market entering green technology. The competitive dynam-
ics are dependent on the characteristics of the technologies. The green, en-
trant technology has the chance to diffuse only if it is sufficiently superior
given the properties of the socio-technical landscape and given its relative
maturity. Interactions in the process of learning affect the pace of conver-
gence to the final technological regime. The characteristics and its link to the
Eurace@unibi-eco model are summarized in table 4.1.

Exogenous properties are conditional on the socio-technical landscape, re-
flected in e.g. resource endowments and consumer preferences. In the
model, resource endowments are reflected in the price of natural re-
source inputs that are required to operate conventional capital and in
relative production costs of capital goods. Consumer preferences are
reflected in households’ relative willingness to pay for final goods pro-
duced with a specific technology type. These properties determine the
relative, technical superiority of the green technology in the landscape
context.

In a baseline simulation, landscape pressure on the incumbent comes
from the costs of resource inputs. A technological breakthrough en-
ables the production of green capital that allows adopters to save in-
put costs. The price for the natural resource is sufficiently high that
the green technology is sufficiently superior to challenge the incum-
bent technological regime. In a policy experiment in section 4.5.2, I
show how market-based policies may influence the type and strength
of landscape pressure.

Stock variables are embodied in the accumulated codified (productivity)
and tacit knowledge. Firms accumulate technology-specific tacit
knowledge Big

i,t that is needed to operate a technology. Capital produc-
ers incrementally innovate and increase the productivity of supplied
capital goods AV

ig,t. Tacit knowledge has a similar effect as supportive
infrastructure or learned routines and habits. It is a supporting factor
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TABLE 4.1: Characterization of competing technologies

Exogenous land-
scape

Stock variables Interactive properties Pathways of transi-
tion

Concept
· Value of technology

in given context.
· Accumulated over

time by intended
investment and as
byproduct of doing.

· Degree of spillover
in accumulation pro-
cess.

· Degree of complexity
and returns to spe-
cialization.

· Process of technolog-
ical substitution of
incumbent by emer-
gent entrant.

Impact
· Determines the rela-

tive technical supe-
riority dependent on
external conditions.

· Stabilize the domi-
nant technology.

· Source of path-
dependence and
barrier to diffusion
for the entrant.

· Strength of path
dependence, degree
of disruptiveness in
pre-existing distri-
bution of power and
wealth.

· Economic and distri-
butional outcome de-
pendent on pathway.

Economic indi-
cators/ empiri-
cal concepts

· Resource endow-
ments reflected in
prices,

· Consumer norms
and attitudes re-
flected in willingness
to pay, stated and
revealed preferences.

· Relative policy sup-
port.

· Codified knowledge
(R&D, publications,
education systems
and occupations).

· Tacit knowledge
proxied by em-
beddedness in
production net-
work, employment
shares (assumed to
be correlated with
infrastructure, rou-
tines, regulation
etc.).

· Technological dis-
tances in patent and
IO data (e.g. via
citation overlaps,
commodity flows,
labor mobility).

· Substitution elasti-
cies.

· Complexity mea-
sured by number
of links in produc-
tion and innovation
networks.

· State of transition:
Market share, use
rate.

· Stability: Variance of
diffusion measure,
market share across
time, relative pace of
accumulation (e.g.
sectoral growth rates,
growth of patent
counts).

· Depth of transition/
disruptiveness: Mar-
ket exits, reallocation
across industries and
occupations.

Variables in
Eurace@unibi-
eco

· Resource price: peco
t ,

· Policies: θ, ςinv, ςcons.
· Consumer preference

parameter γ (not
used).

· Productivity of sup-
plied capital Ac

t , Ag
t .

· Tacit knowledge of
firms Bc

i,t, Bg
i,t.

· Spillovers in the
learning process
χdist,

· Technological dif-
ficulty/ returns to
specialization χint.

· Penetration rate of
conventional capital
νc

t , its variance σν
t ,

· Relative technolog-
ical divergence α∗t ,
β∗t ,

· Duration until con-
vergence t∗.

· Evolution of market
structure.

This table summarizes the characterization of competing technolo-
gies, economic indicators, that can be used to measure these concepts

and shows the link to the Eurace@unibi-eco model.
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that facilitates the effective use of a technology. Tacit knowledge is re-
flected in the skills embodied in labor, local infrastructures, standards
and consumer habits. Its accumulation is the outcome of learning by
using.

The ratio between the technology-specific stock variables αt =
AV

g,t

AV
c,t

and βt =
Bg

t
Bc

t
determines the relative maturity of the niche technol-

ogy. Increasing divergence in the relative endowment with technology-
specific stocks drives a process of convergence to a dominant techno-
logical regime.

Interactive properties describe interactions in the accumulation of knowl-
edge and infrastructures. They influence the pace of divergence of rel-
ative stock variables and the pace of technological convergence.

In the model, interactive variables are given by the spillover intensity
χdist and returns to specialization χint in LBD.

4.5 Simulations and experiments

The model is used to simulate a competitive race between an incumbent,
conventional technology established at the regime level and a green market
entrant. The simulations are run over a time horizon of 15, 000 iterations
that correspond to roughly 60 years. More detail about simulations with
Eurace@unibi-eco can be found in the SM I.

At the beginning of the simulations, the conventional technology dominates
the market and is entrenched in the production system. The capital stock
of firms consists only of conventional capital. Firms and employees have
accumulated the matching skill type Bc

i,t needed to operate conventional ma-
chines. The conventional capital producer invests a fraction of profits to im-
prove the productivity performance of supplied capital incrementally. Learn-
ing and innovation dynamics are “aligned” (cf. Geels and Schot, 2007), i.e.
both are directed to the improvement of conventional capital. This stabilizes
the regime. Permanent pressure from the landscape is reflected in the price
of the natural resource that is required to operate conventional capital. But a
sufficiently mature alternative technology to challenge the regime is lacking.9

After some time, the market entry of the green capital producer is enabled
by a technological breakthrough. In the simulations, the day of market entry
is set to t0 = 600 which corresponds to roughly 2.5 years. The green tech-
nology is technically superior because it allows firms to get rid of the costly

9In the simulations, the price for the resource input is set to 10% of labor costs. Over
time, this cost-share is held constant, i.e. the price evolves proportionally to average wages.
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requirement of resource inputs.10 But it suffers from barriers to diffusion
that are operationalized as lower endowments with accumulated knowledge.
Employees have not yet worked with green capital and the technical matu-
rity, reflected in the productivity of supplied capital, is lower. This is in line
with the empirical literature that has documented that insufficient skills and
supporting infrastructures and an inferior technical performance may hin-
der firms to adopt new technologies (cf. Arundel and Kemp, 2009; Triguero
et al., 2013). Lower initial endowments with accumulated codified and tacit
knowledge represent two different types of diffusion barriers. These diffusion
barriers are implemented as a factor βA (βb) that scales down the initial pro-
ductivity (skill level) of the entrant technology, i.e. AV

g,t0
= (1 − βA)AV

c,t0

(bg
h,t0

= (1− βb)bc
h,t0

) with βA, βb ∈ [0, 1). βA (βb) is a supply-sided (demand-
sided) diffusion barrier because it refers to technological knowledge that is
(not) traded on the market (cf. chapter 2 and Hötte (2019b)).

The dynamics of the competitive race depend on the ratio between techni-
cal superiority (resource cost savings) and the technological disadvantage
(lower maturity). The green technology has the chance to diffuse only if it
is sufficiently superior given its relative maturity. Otherwise, the regime can
preserve itself. In the simulations, the entry conditions are sufficiently bal-
anced such that both technologies have the chance to win the technology
race. Further explanations of simulation settings, the calibration and valida-
tion of this baseline scenario are explained in further detail in the compre-
hensive working paper Hötte (2019f).

The outcome of the technology race is uncertain. It depends on the competi-
tive dynamics and on the stochastic elements of the model. For example, in-
novative success is probabilistic and may shift the relative productivity crit-
ically in favor of one technology. Further, households’ purchasing behavior
and matching processes on the labor market have stochastic elements. This
may critically affect the performance and investment behavior of individual
firms. These small events may tip the technological evolution into one direc-
tion that is stabilized by increasing returns.

In figure 4.1a, an exemplary sample of 210 simulated transition curves is
shown. Transition curves are measured as the time series of the share of
conventional capital νc

t = Kc
t /Kt that is used in the economy. Single curves

in figure 4.1a exhibit very diverse patterns.

In some cases, the economy is locked in and the green technology does not
diffuse at all. In other cases, the green technology is quickly taken up and the
green regime stabilizes. The process can be very unstable. This occurs if the
green technology is initially taken up, but path dependence in the accumu-
lation process of knowledge is high. The initial diffusion process is reversed.
Sometimes, a change in the direction of the transition process occurs multiple
times and the economy switches between lock-in and green transition.

10Resource input requirements can be alternatively interpreted as compliance costs with
environmental regulations or other inputs that are relatively more costly than those required
to operate the entrant technology.
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FIGURE 4.1: Simulated patterns of transition
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These figures show the characteristics of simulated transition path-
ways. Each line represents a single simulation run r out of a set of 210

runs.

The standard deviation σν
t of νc

t is a measure to operationalize the volatility of
the transition process. It is computed run-wise over a moving time window
of 600 periods and illustrated in figure 4.1b. This volatility measure is nega-
tively associated with aggregate economic output.11 The switching behavior
is costly because learning and R&D resources are wasted for a technology
type that is obsolete in the long run.

In capter 2, I have discussed how initial diffusion barriers may prevent a
green transition (see also Hötte, 2019b). In the subsequent chapter 3, I stud-
ied knowledge transferability in more detail (see also Hötte, 2019f). In this
paper, I focus on the interactions between the characteristics of competing
technologies and market-based transition policy.

4.5.1 Market-based diffusion policies

The acceleration of a sustainable transition is one of the most pressing soci-
etal and economic challenges in the coming years. Political instruments can
be used to accelerate a transition. In a policy experiment, I evaluate the ef-
fect of three market-based policies that alter the market conditions for the

11The coefficient of correlation between annual output growth and σν
t is −4.466%. An

OLS regression using two-way clustered standard errors on run-time confirms a significant
negative relationship between annual output growth and the diffusion volatility measured
by σν

t . This relationship is consistent across different model specifications and aggregations.

%growtht = 1.89∗∗∗ − .0085 · σν
t
∗∗∗ + εt.

Additional detail about this analysis is available in the appendices 4.B.1 and 4.C.
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green technology in different regards. These instruments are (1) a resource
tax that penalizes the use of conventional capital, (2) an investment subsidy
that makes investments in green capital cheaper and (3) a price support for
green products that stimulates the creation of green product markets. I study
the effect of these policies on the transition pathway and the macroeconomic
outcome. It will be shown below that the effect of different market-based in-
struments depends on the relative maturity of the green technology and the
transferability of knowledge.

The policies are operationalized as follows:

1. The eco-tax θ is imposed on the material resource input, i.e. its price
peco

t is multiplied by the factor p̃eco
t = (1 + θ) · peco

t .

2. The investment subsidy ςinv reduces the price of green capital goods
pg

t , i.e. the price is multiplied by p̃g
t = (1− ςinv) · pg

t .

3. ςcons is a price support that reduces consumer prices pi,t for eco-friendly
produced final goods. The level of support is proportional to the share
of green capital goods ν

g
i,t that is used in production. The supply price

of final goods offered by firm i is multiplied by p̃i,t = pi,t · (1− (ν
g
i,t ·

ςcons)). Firms with a higher ν
g
i,t receive a relatively higher subsidy on

product sales.

The implementation is explained in more detail in the SM I. The budget of
the government is balanced in the long run. Net expenditures for diffusion
subsidies and the income of the eco-tax are settled by adaptive income and
corporate taxes. Taxes are increased (decreased) if the smoothed net financial
inflows of the government are negative (positive).

More generally, these three instruments reflect the characteristics of the tech-
nological landscape when ignoring the budgetary implications of the poli-
cies. The eco-tax is analog to the price for the natural resource input. The
investment subsidy reflects the availability of resources required for the pro-
duction and installment of green capital goods. The consumption subsidy is
analog to a shift in consumer attitudes that results in a higher willingness to
pay. This yields a price premium for green products.

In the following, I describe first the impact of different political instruments
on the emerging technological pathway and discuss the interactions between
the instruments and the characteristics of competing technologies. There-
after, I illustrate the effects of the policies on the macroeconomic outcome
and market structure within the Eurace@unibi-eco economy.



Chapter 4. Pathways of transition 138

4.5.2 Technological learning and the effectiveness of diffu-
sion policy

To analyze the effectiveness of policies conditionally on the characteristics
of competing technologies, a Monte-Carlo experiment is run. In this exper-
iment, diffusion barriers βA and βb, learning parameters χdist and χint and
policy parameters are drawn at random from uniform distributions of pre-
determined intervals. All three policy instruments are used simultaneously
but at different levels that are drawn independently at random. The impact
of single instruments can be isolated through statistical analysis. The inter-
vals are determined such that trivial patterns of monotone diffusion or lock-
in are avoided and a well-mixed sample of transition and lock-in regimes is
obtained.12

The outcome of the policy experiment is descriptively compared to a bench-
mark scenario with the same average levels of relative maturity and learn-
ing parameters. Some general properties of the simulated time series of the
benchmark are summarized in appendix 4.B.1.

The impact on the technological evolution

A descriptive comparison of the diffusion outcome suggests that the policies
stimulate a transition. In the benchmark scenario without policy, the econ-
omy converges to a green technological regime in 30% of the simulation runs.
This is much lower compared to the policy experiment with a transition fre-
quency of 70%. This is reflected in the diffusion curve shown in figure 4.2a
that is aggregated across all 210 simulation runs.13 The black (gray) line in-
dicates the policy experiment (benchmark). Figure 4.2b shows the diffusion
curve disaggregated by regime (green transition or lock-in). In the lock-in
regimes, green technology take-up is higher until the reversal to conventional
technology occurs. This suggests that the policies accelerate the diffusion of
green technology, independently of the emerging regime. The higher uptake
of green technology is reflected in higher volatility σν

t in the early phase after
the day of market entry. It jumps up early after the day of market entry and
approaches to zero when the economy converges to one of the two techno-
logical regimes (cf. figure 4.2c).

The impact of the policies on the transition probability can be presented as
a shift in the transition boundary. The probability of a green transition is
dependent on the initial maturity of market-entering green technology. The
transition boundary is a dividing line in the two-dimensional space of initial
relative knowledge stocks αt0 and βt0 . Higher levels of αt0 and βt0 indicate

12More information on the initialization is available in the appendix 4.B.2.
13An aggregate value of 0.30 means that, on average, 30% of capital goods that are used

for production at time t are conventional and the remaining 70% are green. Due to the
convergence to a value between 0 and 1, the rounded ν

g
T = 1− νc

T measured at the end of the
simulation horizon T and aggregated across runs can be interpreted as transition probability.
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FIGURE 4.2: Transition patterns in policy experiment
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These figures show time series patterns of the diffusion curve and its
volatility over time. Gray curves represent the experiment without
policy. In figure 4.2b, the red (green) curve represents the aggregate
diffusion curve within the subset of runs that converge to the conven-
tional (green) technological regime. In figure 4.2c, σν

t is the standard
deviation of the diffusion measure νc

t computed over 2.5 years.

less favorable starting conditions for the green technology, i.e. a lower rel-
ative maturity of the entrant technology in t0. Figure 4.3a (4.3b) shows the
transition boundary in the benchmark (policy) scenario. An upward shift of
the transition boundary is observed. This indicates that the policies effec-
tively compensate for initial technological disadvantages.

Regression analyses reveal the structural relationships between different po-
litical instruments, initial maturity of the entrant, learning interactions and
their impact on the transition probability and its pathway. The transition
probability is approximated by the diffusion measure νc

i,T at the firm level in
T = 15, 000. Until T, νc

i,t has converged to one (zero) if the economy is locked
in (a transition occurred). Its rounded inverse aggregated across firms and
simulation runs is a measure of the transition probability.14

The shape of the transition pathway is described by a set of different indi-
cators, that measure the time until technological stabilization, the degree of
technological divergence and the stability of the transition pathway. The time
until stabilization t∗i measures the period when the last switch between differ-
ent technology types was observed. After t∗i , the adoption behavior becomes
monotone and firm i invests in only one technology type.

Long-lasting switching behavior between technology types is associated
with higher diffusion volatility. The volatility is measured by the variance
(σν

i )
2 of νc

i,t computed across the whole simulation horizon.15 A high value

14Until T, the economy has converged to one of the two technological states and the vari-
ation of νc

i,T across firms is negligibly small. Across runs, the average standard deviation of
νc

i,T across firms in T accounts for .0064.
15The variance is computed firm-wise across the full time horizon, i.e. (σν

i )
2 =

1
T ∑T

t=0(ν
c
i,t − ν̄c

i )
2 with ν̄c

i = 1
T ∑T

t=0 νc
i,t.
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FIGURE 4.3: Policy-induced shift in the transition boundary
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These figures illustrate the shift in the transition boundary. The verti-
cal (horizontal) axis represent the relative technological frontier αt0 =

Ac
t0

/Ag
t0

= 1/1− βA (relative skill level βt0 = bc
t0

/bg
t0

= 1/1− βb)
at the day of market entry t0. Each dot represents a simulation run,
its color indicates the resulting technological regime and the position
the barrier combination at the day of market entry. The boundary
separates green from conventional regimes. The transition bound-
ary is derived with a k-nearest neighbors clustering algorithm that
is trained to predict the emerging regime using αt0 and βt0 as input.

Technical detail on the algorithm is available in the appendix I.

of (σν
i )

2 indicates a very unstable transition curve. The degree of technolog-
ical divergence is described by relative knowledge stocks α∗i =

(
A+

i /A−i
)∗,

β∗i =
(

B+
i /B−i

)∗ evaluated in t∗i . The superscript + (−) indicates the tech-
nology type that wins (loses) the technology race. A high value of α∗i and β∗i
indicates a high degree of divergence in t∗i .

These indicators are used as dependent variables and are regressed on the
policy instruments (θ, ςinv, ςcons), initial diffusion barriers (βA, βb), learn-
ing conditions (χint, χdist), interaction terms of these parameters and a set
of micro- and macroeconomic controls. A binary Probit regression is used to
explain the transition probability. The other regressions are OLS.

The shape of the transition pathway and its interaction with explanatory
variables may exhibit systematic differences across technological regimes.
These differences are captured by the inclusion of an interaction term of a
regime-dummy 1(eco) that equals one if the emerging regime is green. An
extract of the regression results is shown in table 4.1.16

16To take account of possible endogeneity, the dummies are included through an instru-
mental variable regression. All explanatory variables are scaled and demeaned to ensure the
comparability of coefficients. Technical details about the data processing, the model selec-
tion procedure, robustness checks and alternative model specifications are provided in the
SM II. In the subsequent part, I discuss only those effects that are significant at a < .1% level
if not explicitly mentioned differently.
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The regressions allow disentangling the relationship between market-based
diffusion policies, different groups of technology characteristics and their in-
teractions and emerging pathways of transition. Column (1) and (2) repre-
sent the results of the transition probability. Column (3) illustrates the effect
on the duration until stabilization. Column (4) and (5) describe the techno-
logical divergence. The last column (6) shows the association of policies with
the diffusion volatility.

The core observations are the following:

All policy instruments are effective and are associated with a higher transi-
tion probability. The effect on the diffusion volatility and the time until
stabilization t∗ differs across instruments (θ, ςinv, ςcons).17

The effectiveness of the consumption subsidy ςcons to increase the transition
probability is undermined by a high distance and increasing returns to
specialization (see column (1) and (2) in table 4.1). Its effect can be even
reversed if χdist and/ or χint are large. In contrast, the effectiveness of
the tax θ is reinforced by χdist and weakened by χint. The investment
subsidy ςinv is least sensitive to cross-technology interactions in LBD.

The distance χdist increases the diffusion volatility (σν
i )

2 and the duration
until stabilization t∗i if a transition occurs, i.e. if 1(eco) = 1. If the econ-
omy is locked in, it has the opposite effect and stabilizes the technologi-
cal evolution because it reinforces the specialization in the conventional
technology (cf. row (2) and (17) in table 4.1).

The duration until stabilization t∗i is differently affected and the direction
of the policy effect differs across technological regimes. If the economy
is locked in, t∗i is increasing in the level of θ but decreasing in the level of
subsidies (row (4)-(6)). The opposite is true if a transition is successful.
Taxes accelerate (subsidies postpone) t∗i (row (18)-(20)).

The diffusion volatility in the last column is negatively associated with θ
and ςinv if a transition occurs, i.e. 1(eco) = 1. Both instruments stabi-
lize a successful diffusion process but increase uncertainty if the econ-
omy is locked in. In contrast, ςcons has a negative association with the
volatility in the lock-in case and is neutral in the transition. The subsidy
ςcons is paid proportionally to the amount of green capital that is used
in production. Hence, the strength of support is dependent on ν

g
i,t. This

stabilizes an ongoing diffusion process but diminishes if green technol-
ogy is not used. It does not destabilize the technological evolution. In
contrast, the strength of support of ςinv is constant.

17With some limitations, quantitative inference about the effectiveness can be drawn. The
effect of the ςcons on νc

i,T is quantitatively the strongest when neglecting the interaction ef-
fects. If interactions with diffusion barriers and learning parameters are absent, an increase
of ςcons (θ, ςinv) is associated with a 4 (3, 2) % higher transition probability (column (1) in
table 4.1). All explanatory variables were scaled and normalized to allow a comparison of
coefficients. But the size of the intervals from which the parameters are drawn is not entirely
comparable because of the non-linear effects of interaction terms. A longer discussion of the
possibility to draw quantitative inference is available in the SM II.
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The strength of the relationship between the volatility and the policies
is conditional on the technological distance. The interaction of χdist

with all policy instruments increases the volatility. The policies and
χdist operate in opposite directions. Policies favor green technology up-
take and stimulate initial diffusion. Lacking spillovers associated with
a high distance reinforces path dependence arising from pre-existing
knowledge stocks. This operates in favor of the incumbent if initial
green technology use is not yet sufficiently high.18

The technological divergence and the volatility tend to be negatively cor-
related. Explanatory variables that lead to a stronger technological di-
vergence, i.e. higher (A+

i /A−i )
∗ and (B+

i /B−i )∗, tend to be associated
with lower volatility. This qualifies relative technological knowledge
as a driver of the direction of technological change and technological
stabilization.19

Diffusion barriers may be prohibitively high and prevent the diffusion of
green technology. The strength of barriers is associated with a lower
technological divergence in case of a transition. The negative effect of
the technical barrier βA, i.e. a lower initial productivity of green capital
goods, is decreasing in χdist. If the competing technologies are suffi-
ciently distant, productivity performance becomes relatively less im-
portant for diffusion compared to other factors.

In contrast, the inhibiting effect of βb is stronger if χdist is large. Lacking
spillovers in LBD make it more challenging to overcome the disadvan-
tage of lower endowments with technology-specific know-how Big

i,t. If
χdist is high, firms are challenged by the incompatibility of pre-existing
know-how when adopting green technology. External factors that are
not related to productivity, e.g. variable input costs, become more im-
portant. This is also visible in the increasing effectiveness of the tax
reflected in the negative coefficient of χdist · θ in the regression of νc

i,T.20

The different policies operate through different channels. The tax and
the investment subsidy have an instantaneous effect on the relative cost-
effectiveness of a technology. The tax compensates permanently for the tech-
nical disadvantage if adopting a less productive technology (reflected in βA).
It operates through the channel of relative utilization costs. A less productive
capital good that is bought remains in the capital stock until it is depreciated
or taken out of use. The tax compensates for this disadvantage over the full

18This is also visible in the opposite coefficients of χdist, ςinv and θ and their regime-type
interaction terms.

19In the long run, the higher effective productivity embedded in cumulative knowledge
may offset the role of relative prices and marginal using costs. This is an explanation for
long-term upwards sloping factor demand curves discussed by Acemoglu (2002) and Han-
lon (2015).

20Keep in mind that this finding might be specific to the assumptions in the model. χdist

is related to spillovers in the evolution of relative, technology-specific absorptive capacity
on the technology demand side. Spillovers in the innovation process are not considered, but
might have an analogous effect.
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life time of a green capital good. This trade-off is taken into consideration in
firms’ investment decisions. The permanent compensation explains why the
tax may reduce the duration until stabilization if 1(eco) = 1.

The investment subsidy ςinv is neutral with regard to the relative techno-
logical performance over time. It has an instantaneous effect on relative in-
vestment costs. Relative investment costs per productivity unit are sensitive
to the dynamics of innovation success and price competition on the capital
market (cf. 4.A). This explains why ςinv is associated with lower stability.

In contrast to the other instruments, the effectiveness of the consumption
subsidy is sensitive to the current technological state. The strength of sup-
port is proportional to νc

i,t. In the beginning, when a firm adopts green capital
but has a high share of pre-existing conventional capital, the level of support
of the subsidy is relatively weak. The adoption decision is stronger influ-
enced by the relative endowment with technological know-how and the rel-
ative performance of the technologies. ςcons is a stabilizing policy instrument
because it reinforces ongoing transition processes but diminishes if the green
technology is not used. It is asymmetric across firms depending on the type
of technology that is used by firms. This may have side effects on the market
structure.
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TABLE 4.1: Regression of transition pathways on technology
characteristics

Dependent variable
νc

i νc
i t∗i

(
A+

i /A−i
)∗ (

B+
i /B−i

)∗
(σν

i )
2

OLS Probit IV IV IV IV

(1) (Intercept) .3381*** -.4684*** 3794*** 1.099*** 1.097*** 6.548***
(.0043) (.0144) (70.63) (.0031) (.0029) (.1399)

(2) χdist -.0130** -.0898*** -471.0*** .0141*** .0213*** -.9603***
(.0044) (.0151) (65.99) (.0041) (.0031) (.1172)

(3) χint .0081. -.0161 -117.2*** .0085*** .0078*** -.0240
(.0043) (.0145) (31.42) (.0017) (.0012) (.0535)

(4) θ -.0300*** -.1119*** 788.9*** -.0297*** -.0296*** 2.267***
(.0043) (.0145) (70.37) (.0037) (.0029) (.1218)

(5) ςcons -.0401*** -.1730*** -318.1*** .0085*** -.0065* -.1806***
(.0044) (.0151) (77.99) (.0018) (.0032) (.0536)

(6) ςinv -.0205*** -.0763*** -310.8*** -.0369*** -.0286*** 1.506***
(.0045) (.0149) (58.73) (.0037) (.0030) (.1090)

(7) βA .1139*** .4650*** 8.747 .0395*** .0069*** -.3212***
(.0046) (.0196) (27.75) (.0049) (.0016) (.0482)

(8) βb .0946*** .2974*** -501.0*** .0478*** .0519*** -2.894***
(.0044) (.0149) (65.63) (.0040) (.0035) (.1436)

(9) χdist · θ -.0504*** -.1177*** -119.3*** -.0110*** -.0063*** .4541***
(.0044) (.0149) (28.46) (.0019) (.0014) (.0609)

(10) χint · θ .0460*** .1706*** -143.2***
(.0040) (.0137) (28.06)

(11) χdist · ςcons .0289*** .0972*** -.0070*** .4550***
(.0044) (.0156) (.0016) (.0601)

(12) χint · ςcons .0163*** .0466***
(.0042) (.0139)

(13) χdist · ςinv .0522** 140.0*** -.0099*** -.0073*** .4853***
(.0160) (25.38) (.0018) (.0013) (.0561)

(14) χint · ςinv .0049*** -.7356***
(.0015) (.0552)

(15) χdist · βA -.0378*** -.1738*** 195.1*** .5285***
(.0044) (.0199) (23.1) (.0442)

(16) χdist · βb .0447*** .1624*** 301.8*** .0092*** .2984***
(.0046) (.0163) (37.7) (.0015) (.0711)

(17) 1(eco) · χdist 1144*** -.0222* -.0213*** 2.658***
(146.8) (.0089) (.0064) (.2647)

(18) 1(eco) · θ -1070*** .0540*** .0532*** -3.919***
(135.8) (.0076) (.0059) (.2298)

(19) 1(eco) · ςcons 671.4*** .0239***
(149.1) (.0066)

(20) 1(eco) · ςinv 843.7*** .0952*** .0772*** -2.392***
(140.9) (.0090) (.0075) (.2719)

(21) 1(eco) · βA -.0413***
(.0060)

(22) 1(eco) · βb 786.3*** -.0908*** -.1064*** 4.706***
(137.2) (.0084) (.0074) (.31)

R2 .1868 .266l .2071 .2483 .2699 .315
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1. l Pseudo R2.

This table shows an excerpt of the results of a regression analysis of
different technological indicators on a initial conditions and control
variables. For the sake of readability, only the coefficients are shown
that are discussed in the text. The full model is shown in the appendix

(table 4.B.4).
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Pathways of transition and macroeconomic side-effects

The macroeconomic side effects of policies differ across instruments. The
policies reinforce the initial surge of green technology uptake independently
of the emerging regime and weaken the competitive pressure for the entrant.
This initial surge can be undesirable if the economy is locked in. AF higher
initial adoption of green technology is associated with an allocation of learn-
ing resources in favor of green technology. If the transition is not successful,
the green technology type is obsolete in the long run. The misallocation of
learning resources retards the specialization in conventional technology and
may have negative consequences for the macroeconomic performance (cf.
chapter 2 and Hötte (2019b)).

For the sake of simpler representation, I consider only regimes with a suc-
cessful transition.21 I focus on the effects of different policy measures on
macroeconomic performance, market concentration and unemployment. To
evaluate these effects, a regression analysis is run using macroeconomic data
of the first 30 years after market entry in the subset of green technological
regimes.

Economic implications depend on the choice of policy instruments. The most
decisive factor of influence is the volatility of the diffusion process σν

t . The
first column in the table shows the association of the policies, the technolog-
ical characteristics and σν

t with aggregate output. The analysis indicates a
negative relationship between aggregate output and σν

t . Also the investment
subsidy ςinv and a lower entrant productivity βA exhibit a negative relation-
ship. ςinv distorts instantaneous investment decisions through the capital
price channel. It reduces total investment costs while the other two instru-
ments influence the relative cash-flow of using green capital. This might dis-
tort firms’ choice about the investment quantity, i.e. how many capital goods
to buy (cf. Hötte, 2019b). This can be a source of inefficiency.

ςinv is associated with higher unemployment. This contrasts with the ob-
servation that technological uncertainty σν

t tends to have a job-preserving
effect. The negative effect of σν

t on unemployment is a general property of
the simulations. Stable technological pathways are associated with higher
labor-saving productivity growth. This coincides with an increase in aggre-
gate output and consumption but also with a moderate increase in unem-
ployment.22 Technological uncertainty, reflected in σν

t , undermines the pace

21Moreover, one might argue that policies would be adjusted if a lock-in becomes appar-
ent. The study of insufficiently stringent policy would be an analysis of policy failure which
is not in the focus of this study.

22Recall the time horizon of several decades that is considered in the simulations. The
consideration of the unemployment rate is an insufficient indicator to evaluate labor market
effects. Labor supply in the model is inelastic which assumes away possible income effects
and adjustments of supplied working hours at the intensive margin. Reductions in working
hours per household have been empirically observed over the course of the 20th century
and are visible in cross-country comparisons (e.g. Bick et al., 2018; Messenger et al., 2007).
Macroeconomic gains of productivity growth are reflected in an increasing level of wealth
and a higher demand for leisure.
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TABLE 4.2: Regression of macroeconomic side effects

Dependent variable
Output # firms Herfindahl Unempl.

Intercept 8.333*** 64.49*** 176.1*** 7.707***
(.0097) (.2360) (.5364) (.0926)

σν
t -.0232*** .5106*** -1.192*** -0.1335***

(.0013) (.0255) (.0571) (.0117)
θ .0067 -.0380 .0200 .1623*

(.0046) (.1628) (.3525) (.0661)
ςcons -.0045 -.5934*** 1.288** .0966

(.0053) (.1801) (.4063) (.0811)
ςinv -.0170** -0.0777 -.0995 .7740***

(.0060) (.1985) (.4506) (.0974)
βb -.0032 -.1399 .4983 -.0670

(.0050) (.1624) (.3686) (.0736)
βA -.0193*** .1828* -.4089* -.0822*

(.0035) (.0858) (.2052) (.0396)
χint .0026 -0.1588 .2881 .1413.

(.0054) (.1650) (.3549) (.0850)
χdist .0013 -.2443 .3788 -.0138

(.0046) (.1613) (.3501) (.0576)
R2 .3640 .2778 .2723 .2341

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In parentheses, two-way clustered standard errors are shown. The re-
sults are consistent across alternative panel model specification (ran-
dom effects, between). Variables are measured at the macroeconomic

level.

of productivity improvements. This has a job-preserving effect.

ςinv is associated with higher unemployment which indicates a qualitative
difference to the uncertainty-employment trade-off mentioned above. Tech-
nological uncertainty is a coordination failure. It undermines productivity
growth at the aggregate but individual investment decisions of firms are ef-
ficient. The investment subsidy distorts investment decisions at the micro-
level.

The negative effect of βA on aggregate output is expected. βA is similar to a
downward shift in aggregate productivity. A higher βA indicates lower pro-
ductivity of green capital goods on the day of market entry that persists over
time. Similarly as σν

t , βA has a negative association with unemployment.23 βb

is not significant. Lacking skills to operate the green technology have an im-
pact on the transition probability, technological uncertainty and the macroe-
conomic performance in the short run, but this initial disadvantage is quickly

23This can be explained by the same argument as before. βA scales the productivity of
green capital down and reduces (or retards) the effect of labor-saving technological progress
compared to simulation runs with lower βA.
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overcome when the economy converges. This is longer discussed in chapter
2 and more comprehensively in Hötte (2019b).

Technological uncertainty and less productive green capital goods (given
that a transition occurs) allow less efficient firms to survive on the market.
A high βA forces most productive firms to operate at a lower frontier if they
adopt green technology because the maximal productivity of capital goods
on the market is lower. This reduces the productivity gap between more and
less productive firms and weakens competitive pressure. These effects are
reflected in a lower market concentration measured by the Herfindahl-index
and a higher number of active firms.

The consumption subsidy ςcons is an effective transition stimulus that has a
smoothening effect on the technological evolution, even if the economy is
locked in. Its impact vanishes if none of the firms uses green capital. How-
ever, ςcons can be a driver of market concentration. It rewards firms most
that adopted green technology early. If the transition is successful, these
firms benefit twice. On the one hand, they have early specialized on the
“right” technology type. This is associated with a competitive advantage if
late adopters still have to catch up. Further, they benefit from higher subsidy
support which is proportional to ν

g
i,t. This support allows to achieve higher

mark-ups or to reduce prices. This double advantage makes it difficult for
late adopters to sustain on the market.

This analysis illustrates a trade-off between technological specialization and
economic variety. Technological uncertainty undermines technological spe-
cialization which is a driver of productivity and output growth. At the same
time, specialization may affect the market structure if it is difficult for weaker
firms to survive.

4.5.3 Discussion

Market-based diffusion policies alter the conditions of the socio-technical
landscape. The tax and the investment subsidy reflect relative costs for the
inputs required to produce and use the green technology. The consumption
subsidy operates through the same channel as consumer preferences and a
higher willingness to pay for green products. Using Geels and Schot’s termi-
nology to describe different types of landscape pressure in transition theory,
the tax exerts constant pressure. The investment subsidy exerts abrupt, but
not permanent pressure. The consumption subsidy is avalanche like because
its strength is endogenously increasing.

The analysis shows that each type of landscape pressure has its own idiosyn-
cratic effect on the technological evolution. Landscape pressure is not neces-
sarily sufficient to trigger a transition to green technology. It was seen that
preferences for green products are only effective as diffusion stimulus if it is
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easy for producers to adopt and learn to use the green technology. The con-
sumption subsidy performs better if the green technology is similar to the
incumbent and easy to learn.

The parameters χdist and χint can be interpreted as a measure for the disrup-
tiveness of innovation and the nature of interaction between the entrant and
incumbent technology. If the distance and returns to specialization are small,
firms can gradually switch to the green technology without incurring high
learning costs during the transition phase.

These costs can be effectively compensated by price-dependent policies like
an investment subsidy or a penalty on the utilization of the incumbent tech-
nology. In contrast, the returns from a price surplus arising from a higher
willingness to pay are realized in a more distant future. Their full realization
is uncertain if the type of the emerging regime is not yet clear.

4.6 Concluding remarks

In this paper, a conceptual framework for the characterization of compet-
ing technologies is introduced. This framework builds the basis for the
technology-concept in the macroeconomic ABM Eurace@unibi-eco that is used
to study transition pathways. It is an economic approach to the MLP in tran-
sition theory.

Relative endowments of codified and tacit technological knowledge are em-
bodied in the productivity performance of supplied capital and adopters’
absorptive capacity. Diffusion barriers for the entrant are reflected in the rel-
ative maturity of the entrant technology and are formalized as lower stocks
of technological knowledge. The productivity-related diffusion barrier is less
important if technologies are dissimilar and spillovers in the evolution of
adopters’ absorptive capacity are low. If the two competing technologies are
dissimilar, the cross-technology transferability of tacit knowledge is low and
adopters struggle with the acquisition of required know-how (tacit knowl-
edge). Other factors, for example, resource prices become increasingly im-
portant.

Three market-based diffusion policies are analyzed, i.e. a consumption sub-
sidy for green products, a green investment subsidy and a tax imposed on
the environmental resource. These policies reflect the characteristics of the
socio-technical landscape.

All political instruments are effective as diffusion stimuli but have different
effects on the stability of the diffusion process. The consumption subsidy
reinforces ongoing transition dynamics but is neutralized if the economy is
locked in. This stabilizes the diffusion process and reduces uncertainty. The
consumption subsidy (eco-tax) is less (more) effective if technologies are dis-
similar.
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The insights of this study are helpful to understand the empirically observed
variety of transition pathways. This understanding is critical for the develop-
ment of appropriate policy measures to accelerate a (sustainable) transition
process and to understand macroeconomic side effects and disruptions in the
market structure. The proposed taxonomy links concepts of transition theory
systematically to micro- and macroeconomic termini.

It is an economic interpretation of the drivers of transition and transition
pathways. Rosenbloom (2017) proposes to use the concept of pathways to
bridge the insights from different scientific disciplines. This may facilitate a
political and societal discourse about different ways to achieve a transition
to a carbon neutral economy. This study adds an economic perspective. It
aggregates the multi-dimensional nature of socio-technical systems into eco-
nomic categories. This aggregation procedure may overlook the granular na-
ture of single processes, e.g. the role of agency and the heterogeneous nature
of single drivers of change and their interaction (Geels, 2011). These pro-
cesses are indirectly reflected in the proposed indicators. The coarseness of
aggregation should be seen as motivation for the elaboration of more detailed
microfoundations. Linking the characterization of competing technologies to
empirical concepts and data is left as an agenda for future work.
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4.A Formal description of the model

This description is an extract of the more comprehensive model documenta-
tion available in the SM I. The most relevant parts of the model are produc-
tion and learning processes at the firm-level and competition on the capital
goods market.

4.A.1 Production of consumption goods

Heterogeneous firms produce a homogeneous consumption good that is of-
fered at firm-specific prices. Households are consumers. Their consumption
decision is based on a multinomial logit function. Households’ purchasing
decision is probabilistic, but influenced by the price. Firms are heterogeneous
by demand expectations, production efficiency and capacity. Their individ-
ual pricing and production decisions are based on a firm’s estimations about
future demand and conditioned on the firm’s production capacity and effi-
ciency.

The production efficiency is determined by the bundle of the productivity of
the firm’s physical capital stock and technology-specific skills of the firm’s
employees.

The productivity of physical capital is interpreted as codified knowledge.
The capital stock is composed of a range of different vintages v of capital that
differ (possibly) by technology-type 1(v) and productivity level Av. Each
vintage of capital is characterized by the bundle of properties (1(v), Av)
where 1(v) is the indicator for the technology type. It takes the value 1 if
the technology-type ig is conventional c and zero if it is green g.

Employees work with capital goods in a Leontief fashion. To make effective
use of the theoretical productivity Av of a specific vintage, employees l need
to know how to operate the machine. This know-how is called technology-
specific skills big

l,t that are acquired in a learning process. t is the time in-

dex. Technology-specific skills averaged at the firm-level Big
i,t =

1
Li,t

∑l∈Li,t
big

l,t
is interpreted as the firm’s stock of tacit knowledge with Li,t as number of
employees of firm i. The bundle of Big

i,t and theoretical productivity Av de-

termine the firm’s effective productivity AE f fv
i,t = min[Av, Big

i,t] for a given
vintage v characterized by (1(v), Av).

Firm i’s production in t given by

Qi,t =
V

∑
v=1

(
AE f fv

i,t ·min
[
Kv

i,t, max
[
0, Li,t −

V

∑
k=v+1

Kk
i,t
]])

(4.1)

where ∑V
v=1 Kv

i,t is the firm’s ordered capital stock composed of V different
capital stock items. The term max

[
0, Li,t −∑V

k=v+1 Kk
i,t
]

captures the fact that



Chapter 4. Pathways of transition 151

firms can only use as much capital as workers are available in the firm to
operate the machines. Ordered capital refers to the running order of capital
that is determined by the cost effectiveness of capital goods.

Firms invest in new capital goods to replace depreciated units or to expand
their production capacity. Employees are hired on the labor market.

4.A.2 Capital goods market

Capital goods are offered by two competing capital goods producers. Both
producers are in price-per-productivity-unit competition. Each producer of-
fers a range of different vintages that differ by productivity. Older vintages
are less productive than newer vintages. Prices of capital goods are set adap-
tively taking account of the evolution of relative demand and profits. A frac-
tion of profits is re-invested in R&D that contributes positively to the prob-
ability of innovative success. Successful innovation shifts the frontier of the
producer upward in discrete steps, i.e. AV

ig,t+1 = (1 + ∆A) · AV
ig,t. It enables

the successful producer ig = c, g to bring a new and more productive vintage
to the market while input requirements per produced vintage are constant.
The producer can supply more productivity units using the same amount of
inputs. Further detail is available in the SM I.

4.A.3 Learning by employees

Employees learn over time how to use capital goods efficiently. The pace

of relative learning depends on ν
ig
l,t =

Kig
l,t

Kc
l,t+Kg

l,t
the share of capital of type ig

that is used in current production. Kig
l,t is the amount of capital goods of type

ig = c, g that is used by the firm where l is working.

Technology-specific skills big
l,t are updated in discrete steps. The step size

∆big
l,t+1 = big

l,t+1 − big
l,t is given by

∆big
l,t+1 = χ

gen
l ·

([(
ψ

ig
l,t

)(1+χdist) (
ψ
−ig
l,t

)(1−χdist)
]1/2

− 1

)
. (4.2)

The pace of learning is scaled by l’s learning ability χ
gen
l . Technological

knowledge may be transferable across technology types and contribute to
the stock of skills of the alternative technology type −ig with ig 6= −ig and
ig,−ig ∈ {c, g}. χdist ∈ [0, 1] is a measure for the technological distance. A
smaller distance is associated with a higher degree of cross-technology trans-
ferability of skills.
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ψ
ig
l,t ≥ 1 is the amount of knowledge learned in one period when working

with technology type ig. It is given by

ψ
ig
l,t = 1 +

(
ν

ig
l,t

)χint

·max[0, (Aig
l,t − big

l,t)]. (4.3)

It is dependent on the parameter χint which is a measure for the technological
difficulty and returns to specialization. ν

ig
l,t is a proxy for the amount of ef-

fort invested in learning by doing with capital type ig. It captures the degree
of technological specialization of the employer. The updating step is also de-
pendent on the technical novelty max[0, (Aig

l,t− big
l,t)] where Aig

l,t is the average
productivity of capital goods of type ig in the employer’s capital stock, i.e.
Aig

l,t = 1
Kig

l,t
∑v∈Kig

l,t
kv

l,t. This reflects the potential amount of knowledge that

is new to the employee. An employee can only learn if there is something
new to learn. The endowment of technology-specific skills of individual em-
ployees is not observable by the firm. Firms can only estimate the average
skill endowment Big

i,t. Firms observe the amount of inputs and the amount of

output. This allows to estimate the effective productivity given by AE f fv
i,t .

4.B Additional information on the simulation re-
sults

4.B.1 Barriers to diffusion and learning

TABLE 4.B.1: Initialization of barriers and learning parameters
(baseline)

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

βA .0495 (.0306) .0358 (.0266) .0564 (.0301) 6.4e-6
βb .0482 (.0283) .0323 (.0231) .0561 (.0274) 8.9e-9

χint .9942 (.5563) 1.044 (.5635) .9694 (.5531) .3715
χdist .4878 (.2916) .4075 (.2866) .5279 (.2868) .0041

The column at the left hand side shows the mean (standard deviation)
of initial conditions across all runs. The other two columns show the
initial conditions computed as averages within the subset of green
and conventional regimes. The p-value indicates whether the techno-

logical regimes significantly differ by initial conditions.

A Monte-Carlo experiment with randomly drawn levels of learning parame-
ters (χdist, χint) and diffusion barriers (βA, βb) serves as benchmark scenario
for the policy experiment. This baseline scenario is not a true counterfactual.
Initial conditions are drawn uniformly at random from the same interval, but
are not identical. However, the sample size of both experiments is supposed
to be sufficiently large to draw descriptive inference.
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Barriers to diffusion measured as percentage difference βA, βB in the initial
frontier AV

g,t0
= (1− βA) · AV

c,t0
and initial endowments of employees with

tacit knowledge bg
l,t0

= (1− βb) · bc
l,t0

are drawn at random from the interval
[0, .1]. The learning conditions are drawn from uniform intervals. The inter-
val of χdist ∈ [0, 1] ranges from perfect spillovers and the absence of learning
spillovers. χint ∈ [0, 2] covers the extreme cases of increasing returns to spe-
cialization (χint = 2) and a pace of learning that is independent of degree of
specialization at the firm level (χint = 0). A comprehensive discussion and
conceptual motivation of these parameters can be found in chapter 3.

In this benchmark scenario, the transition probability accounts for 30%, i.e.
70 out of 210 simulation runs converge to a green technological state. An
overview of different macroeconomic time series plots is provided in the
supplementary material 4.B.1. In table 4.B.1, the initial conditions of the ex-
periment are summarized. Descriptively, it can be seen that lower diffusion
barriers seem to be positively associated with the transition probability. In
the subset of green regimes, initial barriers are on average lower compared
to the average initial conditions in the subset of conventional regimes. A
Wilcoxon test confirms that these differences are significant.

A similar observation can be made for the role of state dependence in learn-
ing. The differences across regimes are significant for the technological dis-
tance, but not for the difficulty. On average, the distance is lower in the subset
of transition regimes. A longer discussion can be found in chapter 3.

The transition probability, its volatility and measures for the pace and degree
of technological divergence can be used to describe the pathway of transition.
These indicators are introduced in section 4.5.

A regression analysis of these indicators illustrates the relation between the
relative pace of learning embodied in χdist and χint and the relative maturity
of the entrant technology. The model selection procedure is described in SM
II.

Diffusion barriers reduce the probability of a transition. A higher techno-
logical distance χdist is negatively associated with the transition probability.
Further, χdist reinforces the inhibiting effect of the skill-related barrier βb. A
skill-related barrier is more difficult to overcome if the technological distance
is high. The distance reinforces path dependence in the accumulation of tacit
knowledge.

The interaction of the distance and the technical barrier χdist · βA is not clear
from this analysis because the coefficients of the interaction term differ across
the OLS and Probit specification. This can be explained by the different func-
tional forms of the two models and suggests non-linearities in the relation-
ship between the level of barriers and the degree of spillovers.

A lower initial maturity has, in general, a postponing effect on t∗. Previous
analyses have shown that βA and βb are decisive for the emerging technolog-
ical regime. Their effect on the diffusion volatility is ambiguous. Both very
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TABLE 4.B.2: Regression of transition patterns on barriers and
learning

νc
i νc

i t∗i
(

A+
i /A−i

)∗ (
B+

i /B−i
)∗

(σν
i )

2

OLS Probit IV IV IV IV
(Intercept) .6599*** .8293*** 3519*** 1.112*** 1.07*** 2.569***

(.0033) (.0203) (183.3) (.0178) (.0138) (.3278)
χdist .0934*** .6556*** 1220*** .075*** .0955*** -.698***

(.0037) (.0238) (120.5) (.0106) (.0079) (.1326)
χint -.0027 -.028. 492.9*** .0176* .0086 -.4932***

(.0034) (.0145) (110.1) (.0087) (.0063) (.1009)
χdist · χint -.8477***

(.0493)
βA .1532*** .7162*** 1168*** .0487*** .0437*** -.454**

(.0038) (.0218) (111.3) (.0057) (.0056) (.1491)
βb .1871*** .8811*** 368.6*** .0987*** .0915*** -1.654***

(.0034) (.0194) (81.76) (.0091) (.007) (.1448)
χdist · βA -.0209*** .1041*** .0221*** .0155***

(.0034) (.016) (.0046) (.0033)
χdist · βb .0328*** .4102*** .0311*** .0222*** -.0574

(.0033) (.0191) (.0082) (.0062) (.0872)
χint · βA -.0542*** -.1541*** .1126

(.0033) (.0141) (.0747)
χint · βb -305.5*** -.0109*** -.0069**

(44.51) (.0032) (.0023)
1(eco) -699.8 -.1107* -.0499 9.839***

(449.1) (.0497) (.0384) (.889)
1(eco) · χdist -2428*** -.0541. -.0974*** 1.203***

(198.4) (.0282) (.0209) (.3091)
1(eco) · χint -1305*** -.0579** -.0295* 2.158***

(236.1) (.0188) (.0134) (.2425)
1(eco) · βA -929.1*** -.4974.

(198.5) (.2705)
1(eco) · βb -.1210*** -.1156*** 3.997***

(.0111) (.0075) (.2980)
AV

c .1455*** .0171*** .0225*** -.3407***
(.0232) (.0020) (.0031) (.0789)

Bc
i -151.4*** -.0061*** -.0054***

(31.66) (.0018) (.0013)
#employeesi -263.7*** -.0111*** -.0097***

(31.96) (.0022) (.0024)
outputi .0159***

(.0046)
pricei .0251*** .049*** -.0039* .0682

(.0047) (.0142) (.0018) (.0418)
# f irms -.0105** -.0720*** -.3611***

(.0033) (.0137) (.0429)
peco/wr -.0167*** .1000*** .0149*** -.3424***

(.0043) (.0294) (.0035) (.0919)
R2 .3417 .4952 .1626 .3436 .4168 .2759
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νc
i evaluated at the

end of simulation. The third column illustrates the relationship be-
tween initial conditions and the duration t∗ until the diffusion process
stabilizes.

(
A+

i /A−i
)∗ (
(

B+
i /B−i

)∗) are measures for the relative stock
of codified (tacit) knowledge at firm-level in time t∗i . The variance
(σν

i )
2 is a measure for the volatility of the diffusion process. The re-

sults in column 3-6 are the results of an instrumental variable regres-
sion taking account of the potential endogeneity of the type dummy

1(eco). Further info is available in SM II.
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FIGURE 4.B.1: Macroeconomic and technological indicators
(baseline)
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These figures give an overview of the time series of macroeconomic
and technological indicators. The different line shapes indicate dif-

ferent regime types (�: eco, *: conv).
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high and very low barriers have a negative effect on t∗. Sufficiently high bar-
riers prevent the diffusion process very early and the lock-in regime is stable.
Very low barriers do not represent a burden for the entrant technology and
the transition may be fast and stable. The role of barriers was more compre-
hensively discussed in chapter 2.

The variance of the diffusion process (σν
i )

2 is generally higher if the transition
occurs. The difference compared to the lock-in case is larger if barriers, the
technological distance and difficulty are high.

In the regression of the measures for the relative performance
(

A+
i /A−i

)∗
and

(
B+

i /B−i
)∗, the coefficients of the knowledge barrier βb and the techno-

logical difficulty are negative in the transition regime. Hence, the divergence
of relative knowledge stocks is less pronounced. This indicates that the dif-
fusion of the green technology is more challenging in the presence of high
skill-related barriers and state dependence in the learning process.

Additional discussion about the interplay of barriers and learning param-
eters can be found in the description of the policy experiment in section
4.5.1. For the sake of completeness, in figure 4.B.1 , some time series figure
of macroeconomic core indicators are shown. A longer discussion of these
simulation results can be found in (Hötte, 2019f).

4.B.2 Policy experiment

TABLE 4.B.3: Initialization of the policy experiment

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

θ .4927 (.2853) .5087 (.2847) .4553 (.2852) .2346
ςinv .0565 (.0279) .0584 (.0263) .0521 (.0309) .2246

ςcons .0129 (.0073) .0133 (.0073) .0121 (.0071) .2788
βA .0472 (.0287) .0394 (.0279) .0655 (.0212) 6.9e-10
βb .0524 (.0280) .0488 (.0276) .0609 (.0272) .0033

χint .9923 (.5687) .9934 (.5741) .9899 (.5605) .9624
χdist .4868 (.2873) .4903 (.2849) .4784 (.295) .8429

The columns show mean (standard deviation) of the initial conditions
for the aggregate set of simulation runs and the subsets of green and
conventional regimes. The p-value indicates whether the difference
of the means across the regime subsets is significant. The parameters
are drawn from the intervals: θ ∈ [0, 1], ςinv ∈ [0, .1], ςcons ∈ [0, .025],

βA, βb ∈ [0, .1], χint, χdist ∈ [0, .5].

The entries in table 4.B.3 show the mean (standard deviation) of the initial
conditions for the full set of simulation runs and the subsets of green and
conventional regimes. The last column indicates the p-value of a two-sided
Wilcoxon test. Within the policy simulations, only the difference in the initial
level of the barriers exhibits a significant difference when comparing the sub-
set of green and conventional regimes. The initial policy parameters are on
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average slightly higher in the subset of transition regimes, but the difference
is not significant using the Wilcoxon test as a test criterion.

The intervals from which the policy parameters are drawn were determined
in a series of preceding analyses. Holding the other parameters fixed, the
mean values of the two subsidies perform similarly well in their diffusion
effectiveness. The modeling framework prevents an analytical derivation of
exactly equally performing instruments. Additional discussion of this issue
can be found in (Hötte, 2019b).

The intervals from which the diffusion barriers are drawn are determined
such that a balanced sample of green and lock-in regimes is obtained. The
levels are the same as used in the benchmark scenario introduced above 4.B.1.

In this section, some additional information about the macroeconomic and
technological side effects of policy are illustrated by time series plots and
briefly explained. In figures 4.B.2a to 4.B.2e the evolution of technological
indicators is shown comparing the aggregate outcome of the policy simula-
tions with the baseline. The difference in the subset of conventional regimes
between the policy and business as usual case is remarkable. In the early sim-
ulation phase, policies trigger a higher green technology uptake, indepen-
dently of the resulting regime. This has positive effects on the environmental
performance in the short run. The environmental impact per output unit
(“eco-efficiency”) is lower in the beginning, but not necessarily in the long
run. If the economy is locked in and does not switch to the green regime, eco-
policies cause a distortion in the allocation of learning and R&D resources.
The specialization in the conventional technology is retarded which has a
negative effect on productivity compared to the baseline scenario without
policy. This is also visible in the evolution of relative knowledge stocks αt
and βt.

In figure 4.B.2f the budget balance measured as percentage GDP is shown. It
fluctuates around zero which confirms that the budget is balanced on aver-
age. The fluctuations are largest for the green transition regimes in the policy
scenario. This is largely explainable by the pro-cyclical behavior of the sub-
sidy payments which are correlated with sold quantity of green goods and
investment dynamics in green capital. If green capital is not adopted, sub-
sidies are not paid. Figure 4.B.2g illustrates the functioning of the budget
balancing mechanism. The base income tax is incrementally adapted such
that the budget is balanced in the long run. It is not only responsive to the
expenditures and income of green policies, but also to the payment of unem-
ployment benefits, corporate tax rates and government’s involvement in the
financial sector, i.e. via the government’s interest income and payment.

The day of market entry causes severe distortions in the economic system.
It is associated with increased competition and a series of market exits inde-
pendent of the resulting technological regime and independent of the policy
as shown in figure 4.B.2h. The series of market exits is associated with a
growth of the firm size. Note that the market entry dynamics in this model
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FIGURE 4.B.2: Macroeconomic and technological indicators
(experiment)
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These figures give an overview of the time series of macroeconomic
and technological indicators. The different line shapes indicate dif-
ferent regime types (�: eco, *: conv). Gray colored lines indicate the

baseline scenario.
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are highly stylized and probabilistic. Only the survival rate of entrants and
the number of exits is endogenous and responsive to the technological evo-
lution and policies.

In the policy scenario, the distortions are stronger and seem to be a side effect
of relatively higher green technology adoption rates. This is partly reflected
in monthly output with a short phase of stagnation that can be explained
by learning costs incurred in the beginning. Recall that also in the lock-in
regimes, inefficiencies arise because some firms take up the green technology.
This is observable in the rise of unit costs in figure 4.B.2l. Unit costs steeply
increase immediately after the day of market entry.

The simulations in the model tend to exhibit “technological unemployment”
that is not compensated by consumption growth. If productivity grows,
firms dismiss labor, but the dismissal rates are low. In the baseline case,
the unemployment rate increases over a horizon of roughly 60 yeas from
5 to 12.5%. In the presence of policy, this behavior is different and largely
explainable by the consumption subsidy. The consumption subsidy makes
green consumption goods cheaper. Hence, it is only paid if green technology
is used. In the case green policy regimes, this price support is sufficient to
stimulate demand such that the tendency of “technological unemployment”
is overcome. But this effect is not permanent and conditional on the subsidy.

Recall that all the phenomena discussed here apply to Monte-Carlo simula-
tions with different levels of initial barriers, learning parameters and policy
strength that are independently drawn at random from continuous intervals.
Dependent on these conditions, the dynamics may be more extreme or mod-
est. The discussion above refers to the average outcome, but preceding simu-
lations and experiments have shown that these patterns are quite robust and,
even if no guarantee can be given, this simple method of scenario aggrega-
tion seems eligible for the given parameter ranges.
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TABLE 4.B.4: Full list of regression results of policy experiment

νc
i νc

i t∗i
(

A+
i /A−i

)∗ (
B+

i /B−i
)∗

(σν
i )

2

OLS Probit IV IV IV IV
(Intercept) .3381*** -.4684*** 3794*** 1.099*** 1.097*** 6.548***

(.0043) (.0144) (70.63) (.0031) (.0029) (.1399)
χdist -.013** -.0898*** -471*** .0141*** .0213*** -.9603***

(.0044) (.0151) (65.99) (.0041) (.0031) (.1172)
χint .0081. -.0161 -117.2*** .0085*** .0078*** -.024

(.0043) (.0145) (31.42) (.0017) (.0012) (.0535)
χdist · χint -.0291*** -.0701***

(.0045) (.0158)
θ -.03*** -.1119*** 788.9*** -.0297*** -.0296*** 2.267***

(.0043) (.0145) (70.37) (.0037) (.0029) (.1218)
ςcons -.0401*** -.173*** -318.1*** .0085*** -.0065* -.1806***

(.0044) (.0151) (77.99) (.0018) (.0032) (.0536)
ςinv -.0205*** -.0763*** -310.8*** -.0369*** -.0286*** 1.506***

(.0045) (.0149) (58.73) (.0037) (.003) (.109)
βA .1139*** .465*** 8.747 .0395*** .0069*** -.3212***

(.0046) (.0196) (27.75) (.0049) (.0016) (.0482)
βb .0946*** .2974*** -501*** .0478*** .0519*** -2.894***

(.0044) (.0149) (65.63) (.004) (.0035) (.1436)
χdist · θ -.0504*** -.1177*** -119.3*** -.011*** -.0063*** .4541***

(.0044) (.0149) (28.46) (.0019) (.0014) (.0609)
χint · θ .046*** .1706*** -143.2***

(.004) (.0137) (28.06)
χdist · ςcons .0289*** .0972*** -.0070*** .4550***

(.0044) (.0156) (.0016) (.0601)
χint · ςcons .0163*** .0466***

(.0042) (.0139)
χdist · ςinv .0522** 140*** -.0099*** -.0073*** .4853***

(.016) (25.38) (.0018) (.0013) (.0561)
χint · ςinv .0049*** -.7356***

(.0015) (.0552)
χdist · βA -.0378*** -.1738*** 195.1*** .5285***

(.0044) (.0199) (23.1) (.0442)
χdist · βb .0447*** .1624*** 301.8*** .0092*** .2984***

(.0046) (.0163) (37.7) (.0015) (.0711)
χint · βA -.0171*** -.1635***

(.0044) (.0199)
χint · βb .0301*** .0975*** -.2552***

(.0044) (.0149) (.0485)
1(eco) -2718*** -.1695*** -.1753*** 2.874***

(144.4) (.0071) (.0061) (.3324)
1(eco) · χdist 1144*** -.0222* -.0213*** 2.658***

(146.8) (.0089) (.0064) (.2647)
1(eco) · θ -1070*** .054*** .0532*** -3.919***

(135.8) (.0076) (.0059) (.2298)
1(eco) · ςcons 671.4*** .0239***

(149.1) (.0066)
1(eco) · ςinv 843.7*** .0952*** .0772*** -2.392***

(140.9) (.009) (.0075) (.2719)
1(eco) · βA -.0413***

(.006)
1(eco) · βb 786.3*** -.0908*** -.1064*** 4.706***

(137.2) (.0084) (.0074) (.31)
AV

c -.017*** 102.9*** .0066*** .0072*** -.2764***
(.0044) (26.88) (.0018) (.0012) (.0548)

Bc
i -.2179***

(.0569)
#employeesi -.143*** -.4386*** .3848***

(.0257) (.0873) (.0562)
outputi .1674*** .5116***

(.0259) (.0886)
pricei .0254*** .0634***

(.0057) (.0191)
# f irms .0272*** .0988*** -120*** -.0035***

(.0043) (.0142) (25) (8e-04)
R2 .1868 .266 .2071 .2483 .2699 .315
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

In this table, the coefficients of the full regression models on firm-
level data are shown. Additional detail on the specification of the

regression equations is provided in the main article and appendix.
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4.C Technical notes on statistical procedures

Relationship between aggregate growth and the transition stability In
section 4.5, the negative relationship between aggregate growth and the dif-
fusion volatility is mentioned. This finding is robust across different model
specifications and levels of aggregation.

It was evaluated at an aggregate and at the run-specific level. At the ag-
gregate level, it the correlation between the aggregate volatility computed
as variance (σν

T)
2 of νc

t across the whole simulation horizon and the aver-
age growth rate within a single simulation run. The correlation between
both measures is negative and a simple regression analysis including a type-
dummy confirms the significance of this relationship.

At the run-specific level, this relationship is investigated through a series of
panel data methods. The data is indexed by time and run identity. I tested
an fixed effects, a between , a first differences (FD) and a random effects es-
timator. The results of the between and FD estimator are not significant. The
other estimators confirm the negative relationship at a < 0.1% level. Likely,
the FD estimator is not significant due to the data types that are used. The
variance is computed as running average across a 2.5 year window and the
variation between individual two time steps is small. The results mentioned
in the text are the estimates of a pooled regression analysis using two-way
clustered standard errors on run-time.

This relationship was confirmed and more comprehensively discussed in
previous studies within slightly different settings (cf. chapter 2, 3 and (Hötte,
2019b,d,f). The volatility of the diffusion measure is dependent on the con-
ditions of technological learning and the strength of initial diffusion barriers.
Both are drawn at random in this example and are fixed within a single sim-
ulation run. A more comprehensive discussion of the relationship between
these properties and the transition stability can be found in Hötte (2019f).
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Chapter 5

Conclusion

A state without the means of some change is without the means of its
conservation. (Edmund Burke)

The world is changing. Climate change, digitization, but also globalization
and the emergence of new powerful players in the geopolitical sphere will
likely disrupt the established routines in economic and social systems. For
individuals, firms and whole economies, it is a challenge to adapt to new
circumstances. But this adaptation requires the willingness and capacity to
change. Empirically, resistance to change is well-documented in the litera-
ture on social psychology, sociology, political science and organizations (Fey-
gina et al., 2010; Pardo del Val and Martínez Fuentes, 2003; Watson, 1971;
Wells and Nieuwenhuis, 2012).

It is an essential question how adaptation and active change can be managed.
In the context of climate change, change in established modes of produc-
tion and consumption is urgently needed to reduce existential risks and this
needs to be realized as rapid as possible (Steffen et al., 2018).1 In the context
of digitization, but also globalization, change is on the course of happening.
Change and its economic, political and societal side effects can be governed
and the pathway of change can be pro-actively shaped. It is unlikely that
an “ostrich-strategy” of ignorance and continuation will be the best choice in
the long run.

In this thesis, I studied processes of sustainability transition in search for
levers and barriers of change. I introduced a theory of directed technologi-
cal change in the presence of heterogeneous, coevolving absorptive capacity.
The theoretical framework is implemented in a large scale macroeconomic
agent-based model. This approach helps to identify potential reasons for the
empirically observed heterogeneity of pathways of transition and to study
the relationship between different pathways and economic side effects. The
conceptual framework can be generalized as an economic approach to the
multi-level perspective in transition theory (cf. Geels and Schot, 2007).

1The term possible acknowledges the endogenous resistance that imposes constraints to
the political and technical feasibility.
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The approach is not aimed at searching for optimal pathways. Real-world
transitions are subject to a high degree of uncertainty that makes ex-ante
statements about optimal pathways very vulnerable to contentions about the
technical, ethical and empirical assumptions. These controversies might be
useful to advance the scientific debate but it makes statements about opti-
mality unreliable in the political and societal discourse when it is not feasible
to communicate the underlying assumptions in detail. In this thesis, I have
descriptively highlighted that patterns of transitions are sensitive to the char-
acteristics of competing technologies and the characteristics of the absorbing
economic environment. It is one step towards gaining a better intuition for
the economic drivers and barriers to change. It may help reducing uncer-
tainty about the consequences of change.

The reduction of uncertainty helps to translate the abstract claim for sustain-
ability transitions into well (or at least better) defined pathways of transition
that can serve as an informative tool for political debate and communication
(Rosenbloom, 2017). Research in social psychology has shown that both, the
reduction of uncertainty and a higher transparency in the debate, may help
overcome resistance to change at the individual and societal level (Watson,
1971). People are more reluctant to change if the pathway and its conse-
quences are unclear.

However, translating the complex multi-level nature of socio-technical
transitions into economic termini should not invite to overlook the co-
evolutionary dynamics in other societal domains such as culture, social val-
ues and policy. It should also not invite to understate the role of agency,
i.e. the capacity of individuals to act independently of structural restrictions
(Geels, 2011). Agency is essential to understand the origins of novelty and
intervention points for policy.

Joseph Schumpeter described the problem of dealing scientifically with radi-
cal change very aptly. If change is radical, established norms, means of mea-
surement and thinking may be rendered inappropriate if systems of valua-
tion change (Knudsen, 2005). This is true for economic analyses of social wel-
fare where the metrics of measurement are values that are sensitive to change.
But it is also true for other disciplines.

Transition research is an interdisciplinary project characterized by mutual,
adaptive learning (Köhler et al., 2019). Economic side effects of transitions af-
fect the evolution of the distribution power, societal debates, cultural norms
and values. Insights from anthropology, political science, sociology and his-
tory are valuable to understand the multi-dimensional feedbacks. Rosen-
bloom (2017) proposed to use the concept of transition pathways as a bridging
concept that facilitates communication across disciplines. This thesis delivers
an economic conceptualization of transition pathways.
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Supplementary material I

Eurace@unibi-eco: A model of
technology transitions
Model documentation v1.1

I Motivation and overview

Eurace@unibi-eco was developed to study the transition from brown to green
technology. It can be generalized to non-environmental technologies and
technological change with multiple competing alternatives.

The underlying baseline model is the agent-based macroeconomic model
Eurace@unibi that is comprehensively described in Dawid et al. (2019b).
Throughout the paper, many explicit references to the descriptive article of
the baseline model are made for readers who are interested in technical de-
tails of specific modules. This paper is aimed to be self-contained and the
description provided here should be sufficient to understand the function-
ing of the model. Routines that are newly added to the baseline model are
explained in more detail.

Processes of technological change are subject to uncertainty, heterogeneous
capacities to adapt, path dependence and non-linear self-enforcing dynamics
(Arthur, 1988, cf.). Agent-based models allow to study the implications of
agent heterogeneity, interaction and learning for the technological evolution
and its economic and distributional consequences.

The Eurace@unibi modeling paradigm can be characterized as constructive ap-
proach, i.e. constructing a virtual economy from the bottom up (Tesfatsion,
2006). In the simulated economy, agents’ behavior and interaction are repre-
sented by functions of a computer program that are stepwise executed. One
step is called “iteration” and represents a working day. Agents interact in
discrete time on different markets and exchange physical and financial flows
and information. Agents adapt to changes in their environment. Adapta-
tion and the response to interaction is reflected in changes of agents’ state
variables which can be saved at a given frequency as micro-level time series
data. The time series of individual agents can be aggregated and interpreted
as macroeconomic time series. Some processes in the model are stochastic.
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The model is simulated multiple times and the set of multiple simulated time
series can be statistically analyzed.

The model’s suitability for economic analysis is justified by a two-way vali-
dation procedure. First, the underlying assumptions of behavioral routines
and interaction patterns at the microeconomic level should be plausible and
justified by theoretical and empirical evidence. Second, the emerging macro-
and microeconomic patterns should match with empirical stylized facts (see
Fagiolo et al., 2019). The richness of behavioral detail in agents’ behavior is
constrained by the computational tractability and the desired number of de-
grees of freedom in the parameter calibration. The Eurace@unibi-eco model is
designed according to these guidelines and a summary of the design and val-
idation criteria and their references to the literature is provided in appendix
A of Hötte (2019b).

Until now, the model has been used to study how drivers and barriers of
green technology diffusion influence the pace and disruptiveness of a large
scale technological transformation. In policy experiments, it was analyzed
how market based policies may speed up the diffusion of green technolo-
gies and their implications for distribution and macroeconomic performance
were studied (Hötte, 2019b). It was analyzed how similarities of competing
technologies and spillovers in the process of technological learning may have
ambiguous effects for the success and stability of a transformation process.
The model was used to illustrate the concept of technological uncertainty and
its implications for the economic performance. The representation of technol-
ogy was used to derive a taxonomy that allows the systematic comparison of
different classes of competing technologies (Hötte, 2019f).

Core of the underlying theory of technological substitution is the assump-
tion of technology-specific absorptive capacity. Final goods firms are the
potential adopters of green technology and may incrementally replace con-
ventional production capital by a green alternative. The effective utilization
of a specific technology requires the adequate skill set which is built up by
technological learning. Hence, not only the properties of supplied capital are
important, but also the capabilities of technology adopting firms.

Methodologically, this approach differs from the majority of other macroeco-
nomic models of directed technological change in mainly three regards:

1. Agents are heterogeneous. Their behavior and interaction is described
by adaptive functions.

2. Decision making is asynchronous which is a source of frictions and un-
cleared markets.

3. Processes are subject to stochasticity and non-determinacy arising from
non-linear, self-enforcing dynamics.

These features have been insightful to build theories of macroeconomic tech-
nological transitions driven by interaction and adaptation at the microeco-
nomic level.
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The remainder of this documentation paper is structured as follows. In the
next section, the paper continues with a short general overview of the model,
its macroeconomic structure and a detailed description of the most important
parts of the model. In section III, the transition dynamics and mechanisms
of the model are illustrated along a set of exemplary simulation results. This
paper concludes with a short outlook on possible extensions and generaliza-
tions of the model.

Readers who are interested in the technical implementation of model are in-
vited to have a look on the programming code available in a data publication
(Hötte, 2019g).1

II The model

FIGURE II.1: Macroeconomic structure of Eurace@unibi-eco

Capital producers

Households

Banks

Indicators

Firms

C

G
Innovation

Supply

Skills

Work

Consumption

Saving

Credit supply

Capital stock

Workforce
Env.

impact

Produc-

tivity

Diffusion

Production

Credit taker

Capital

market

Labor

market

Goods

market

Credit&

closure

Technology

A

B

K

L

K

∆A

L

∆b

The large blocks represent the group of agents and their role in the
economy. Circles in the middle between represent markets as places
where agents interact. Gray (magenta) arrays indicate monetary or
physical (immaterial) flows. The block on the right-hand-side con-
tains the main macroeconomic indicators that have been studied.
This flowchart is the same as presented in the chapters. It is based

on Dawid et al. (2011).

The Eurace@unibi model is a macroeconomic agent-based model that sim-
ulates an economy composed of various groups of individual agents that
are linked by economic trans- and interactions. The most important links
and groups of agents are sketched in figure II.1. The main activities of the
agents that are relevant for the technological evolution are summarized in

1Updates of the model code and software for analysis can be found online in the resources
that are referenced in the data publication.
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TABLE II.1: Overview of agents and their main activities

Agent Main activities Stocks*
Households h Supply labor lh and acquire technology-specific skills

during work big
h,t, consumption, investment and saving.

big
h,t

CG firms i Produce consumption goods, demand labor Li,t and
invest in new capital goods kv with properties
(Av,1(ig)), demand credit if necessary. Capital is ac-
cumulated as stock Ki,t consisting of a mixture of dif-
ferent types of capital goods v. Labor Li,t is a stock that
evolves by discrete hiring and dismissal.

Kig
i,t, Li,t,

Aig
i,t, Big

i,t

IG firms ig Supply capital goods differing by productivity level Av

and technology type ig, invest in R&D to increase max-
imal supplied productivity AV

ig,t.

AV
ig,t

Banks Supply credit, maintain agents’ bank accounts, ensure
financial closure of the model (stock-flow consistence).

Government Collects taxes and pay unemployment benefits, im-
poses policies.

* The stock variables shown here do only refer to the technology part
of the model. Stocks are tangible (labor force and capital) and in-
tangible (skills and frontier productivity) assets that are accumulated
through physical (investment, hiring) or non-physical (learning) ac-

tivities.

table II.1. The structure of the simulated economy resembles the structure
of other macroeconomic models. Households (HH) supply labor and earn
wages. Households’ income is either spend for consumption or can be saved.
Households are heterogeneous. They differ by skill level and wealth which
has implications for their consumption and saving behavior. Skill and wealth
differences may be the source of emerging inequality if relative wages for dif-
ferent skill groups or the ratio between financial and wage income diverge.
Households’ consumption choice is not deterministic and has probabilistic
elements, but it is influenced by relative supply prices.

Firms produce a homogeneous final consumption good (CG) using labor and
capital. They are households’ employers. Capital is accumulated in a capi-
tal stock that depreciates over time and can be expanded or maintained by
investment. To finance current production and new investment, firms may
borrow money from banks. If firms’ are unable to repay their loans they
run into bankruptcy. Firms differ by their endowment with capital, labor
and financial means. The capital stock is composed of possibly differently
productive vintages of capital and the labor force is composed of possibly
differently skilled employees. This is the source of heterogeneity of firms’
productivity.

Capital or investment goods (IG) are supplied by an investment goods sec-
tor that is composed of firms that produce different types of capital. In the
eco-technology version, the IG sector is composed of two representative pro-
ducers. One of them is incumbent in the market and offers a conventional
type of capital goods. The other firm is a market entrant and offers a green
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alternative.2 The two technologies are qualitatively different by technology
type. It is assumed that the entrant technology is superior because it allows
its adopters to save variable input costs. In the case of green technologies,
this is interpreted as costly natural resource input. In other contexts, it can be
interpreted differently, for example as labor that is replaceable by machines
(Goldin and Katz, 1998). Even though the entrant technology is superior in
terms of variable input cost savings, it does not necessarily diffuse because
it is subject to entry barriers. Diffusion barriers are measured as lower sup-
plied productivity and lower technology-specific skills of employees that are
needed to work effectively with green machinery. Skills B and supplied pro-
ductivity A are stock variables that are accumulated over time in a process of
learning and innovation.

Innovation occurs in terms of discrete productivity enhancements ∆A of sup-
plied capital goods. IG firms offer a range of vintages that differ by produc-
tivity. Probabilistic innovation enables IG firms to shift their individual tech-
nological frontier upwards and to offer more productive capital goods. The
success of innovative activity is endogenous and depends positively on R&D
expenditures. IG firms invest a fix share of profits in R&D. Consequently,
R&D investments in the more profitable IG sector are higher which has a
positive effect on the probability of successful innovation.

Technology-specific skills are accumulated by learning ∆b. Households learn
during work when working with specific machinery. Skills are technology-
specific and the pace of relative learning depends on the intensity to which
a technology type is used. For example, if employees only work with green
machinery, green skills are accumulated relatively faster.

The Eurace@unibi economy has a financial system. Every agent has a bank
account. This accounting module can be used to control the stock-flow con-
sistency of the model. Banks supply credit to CG firms if CG firms’ financial
means are insufficient to finance current production and investment.

Households’ financial wealth consists of safe deposits at private banks and
risky assets represented by an index fonds. Firms issue equity which is
traded on a stylized financial market. The financial market is kept simple
and comprises only an index fonds. The financial market is also used for
“revenue recycling” purposes for processes that are not explicitly modeled.
This ensures the financial closure of the model.

The model contains a policy module, called Government. It has a redistri-
bution and regulatory function. It collects taxes and pays unemployment
benefits. It may also impose economic policies to achieve specific targets,
for example diffusion policies to stimulate the transition towards green tech-
nologies.

2Note that this setting is implemented by a particular parameter setting. The number of
heterogeneous types of capital producers and the timing of market entry is only constrained
by the computational tractability of the model.
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The activities of agents are implemented as behavioral routines like functions
in a computer program that are executed stepwise. One iteration step in the
model represents a working day, 20 days make up a month and 240 represent
a year. Some routines are executed in a daily, monthly or yearly frequency or
event-based. The execution of routines is asynchronous. For example, firms’
pricing decision is made at another day than households’ purchasing deci-
sion and not every household or firm is active at the same day. Routines that
require interaction are matched across time via a so-called “message board”
that stores the information that is exchanged between agents. Asynchronous
decision making, incomplete information and bounded rationality of agents
are sources of price and wage stickiness. This has the consequence that mar-
kets do not necessarily clear. Firms build up inventory stocks (consumers
may be rationed) if demand falls below (exceeds) the supplied quantity.

In its technical features that concern the execution of routines, the
Eurace@unibi-eco model coincides with the baseline model. A detailed de-
scription of the technical features of the model and issues of implementation
can be found in section 2-3.1 of Dawid et al. (2019b).

CG firms, IG firms and households are the main agents that are involved
in the technological transformation. Further, the government may inter-
vene and implement policies to stimulate the diffusion of (green) technology.
Their behavioral routines and the policy module are explained in the subse-
quent sections. Banks have an intermediary function managing the supply
of credit. Their behavior is only briefly sketched in this article and the reader
is referred to section 3.4 in Dawid et al. (2019b) for more detail.3

II.1 Consumption goods sector

CG firms are the key agents involved in technology diffusion. Technologi-
cal knowledge is developed by innovation in the IG sector and embodied in
the productive properties of available capital goods. To have an economic
impact, technological knowledge does not only need to be invented, it also
needs to be used. In this model, CG firms decide whether to adopt a specific
technology when making their investment decisions. Skills of households
and the quality of supplied capital goods of IG firms are complementary fac-
tors that facilitate or impede the adoption of new technology, but are ex-
ogenous from the firm perspective. Households’ technology-specific skills
are needed at work. IG firms supply capital goods of different productivity
levels and technology type. An incumbent (entrant) IG producer supplies
capital goods of the conventional (green) type. Productivity embodied in
physical capital and skills of employees are aggregated as firm specific stocks
of codified and tacit technological knowledge as a consequence to firms’ in-
vestment and production decisions. In their investment decision, CG firms
decide upon the technology type that is used and have an influence on the

3For reasons of simplification and differently from the model discussed in Dawid et al.
(2019b), only 2 not 20 private banks are active in the Eurace@unibi-eco economy.
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skills that are learned by employees. The investment decision influences in-
directly the allocation of profit-oriented R&D investments and the direction
of research in the IG sector. Conditional on the type of capital that is used by
a firm, employees learn during work. The type of machinery that is used
at their workplace determines the type of know-how that is accumulated
over time. Technological change manifests in the way how final consumption
goods are produced. At the same time, the way how goods are produced in-
fluences which type of technological knowledge is accumulated throughout
the economy.

CG firms make their production decision once a month. They decide upon
the production quantity on the basis of estimated demand. This has an influ-
ence on their input demand, i.e. the hiring or dismissal of labor and possi-
bly, their credit demand if own financial means are insufficient. If firms are
credit constrained, they revise their production decision and input demand
is adapted. In the hiring process of labor, firms are not always able to fill
all vacancies and they can only dismiss a maximum fraction of employees.
Firms produce and deliver goods to the CG market (“mall”), a module that
manages the inventory holding.4

II.1.1 Production

CG firms produce homogeneous consumption goods using a Leontief tech-
nology combining labor and capital with constant returns to scale. The idea
behind the Leontief assumption is that one unit of capital requires one unit
of labor. Labor can only replaced in the aggregate sense if more productive
capital allows to produce the same amount of output using less labor.

Labor is hired on the labor market and firms invest to replace depreciated
capital or to expand their production capacity. Capital goods are accumu-
lated in a stock which can be expanded by investment and depreciates over
time. The capital stock is composed of various capital good items that may
differ by productivity Av and technology type ig = c, g. The index v can be
thought as a pointer to a specific class of capital items in the firm’s capital
stock with the properties (Av,1(v)). 1(v) is an indicator for the technology
type. It takes the value one (zero) if the vintage v is of type c (g).5

The variable Kv
i,t indicates the amount of capital of vintage v that is in the

firm’s current capital stock Ki,t. Formally, Kv
i,t represents the number of el-

ements in the firms capital stock with the properties (Av,1(v)), i.e. Kv
i,t :=

{k ∈ Ki,t|Av(k) = Av,1(k) = 1(v)} ⊆ Ki,t.

4The mall represents a regional market and allows to introduce a spatial dimension of the
model. Households and firms may have a regional identity and households are assumed to
purchase goods only locally (cf. Dawid et al., 2019b, section 4.3).

5Throughout this documentation, superscript indices indicate a property of an item, e.g.
the vintage or technology type. Subscript indices indicate whether the variable “belongs” to
an agent. For example, Kig

i,t is capital of type ig owned by CG firm i. In contrast, Kv
ig,t is the

sold quantity of vintage type v sold by IG firm ig.
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Moreover, the notation Kig
i,t ⊆ Ki,t is used when referring to the part of the

capital stock that consists only of items of type ig.

Vintages of different technology types are perfect substitutes in terms of their
theoretical productivity Av. But the exploitation of the theoretical productiv-
ity at the firm level is constrained by employees’ skill level. The theoretical
productivity can be interpreted as codified knowledge that can be bought on the
market (cf. Dosi and Nelson, 2010). The theoretical productivity differs from
the effective productivity of a given vintage AE f fv

i,t . The effective productivity

AE f fv
i,t of a capital good v is given by

AE f fv
i,t = min

[
Av, Big

i,t
]

(I.1)

where Big
i,t = 1

Li,t
(∑h∈Li,t

big
h,t) is the average technology-specific skill level of

firm i’s employees Li,t. Specific skills represent technology-specific know-
how about the effective utilization of capital of a certain technology type ig.
The stock variable Big

i,t, called tacit knowledge, determines the firm’s absorptive
capacity for capital of type ig (cf. Cohen and Levinthal, 1990; Edmondson
et al., 2003). Technology-specific skills of employees are imperfectly transfer-
able across technologies, i.e. workers with a high endowment with skills in
using conventional capital can not necessarily transfer these skills to the use
of green capital. Skills are accumulated over time, hence the effective produc-
tivity AE f fv

i,t of a given capital item v may change over time and varies across
firms dependent on the firm’s stocks of tacit knowledge. In contrast, the the-
oretical productivity of a given vintage is static and uniform to all firms. The
skill-dependent exploitation of productivity imposes a barrier to the adop-
tion of new and more productive vintages or capital vintages of another type
ig because it takes time until workers have learned how to use the new ma-
chinery. Though their skills may be sufficient to exploit the productivity of
older vintages or vintages of the other technology type.

Total feasible output Qi,t of firm i in t is given by the production function

Qi,t =
Vi,t

∑
v=1

(
min

[
Kv

i,t, max
[
0, Li,t −

Vi,t

∑
k=v+1

Kk
i,t
]]
· AE f fv

i,t

)
(I.2)

where Li,t is the number of employees, and ∑
Vi,t
v=1 Kv

i,t is the firm’s ordered cap-
ital stock composed of Vi,t different capital stock items. Ordered refers to the
running order of capital that is determined by the cost-effectiveness of capital
goods. Feasible output does not necessarily coincide with the output that is
actually produced. It can happen, that firms do not utilize their full capacity.
This may occur because of an insufficient availability of labor, insufficient ex-
pected demand or because of prohibitively high using costs of capital goods.
In such case, most cost-effective capital goods are used first. Firms can use
only as much capital as workers are available in the firm to operate the ma-
chines. This is captured by the term max

[
0, Li,t −∑V

k=v+1 Kk
i,t
]
. An additional
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capital stock item is only used as long as there are workers in the firm who
are not intended to work with more productive machines summed up in
∑V

k=v+1 Kk
i,t. Therefore, the running order of machines is decisive whether

a capital stock item is used or not. The cost effectiveness determines the
running order and is given by the amount of output per capital unit AE f fv

i,t
divided by vintage using costs. Using costs are given by the average wage
payment for a worker wi,t and, if it is a conventional capital good, costs for
the environmental resource input ceco

t . Formally, this is written as

ζv
i,t =

AE f fv
i,t

wi,t + 1(v) · ceco
t

(I.3)

where 1(v) is the indicator for conventional capital, i.e. 1(v) = 1 if v is
of type c, and zero otherwise.6 The running order is determined such, that
those capital stock items Kv

i,t with the highest cost-effectiveness ζv
i,t for firm i

are utilized first.

Production costs of a firm are composed of wage payments and the expendi-
tures for resource inputs required for each conventional vintage that is used.
Total resource costs are given by the unit costs for the resource input ceco

t mul-

tiplied with the total number of units of conventional capital ∑
V∗i,t
v=1 1(v) · Kv

i,t
that are used in current production, i.e.

Ceco
i,t = ceco

t ·
V∗i,t

∑
v=1

1(v) · Kv
i,t. (I.4)

The ∗ is a marker that indicates that the capital stock items are used for pro-
duction in t. The resource input costs ceco

t = e · p̃eco
t are composed of the user

price p̃eco
t for the input multiplied with an efficiency parameter e. The price

for the environmental resource p̃eco
t grows at the same rate as the average

wage in the economy. Hence, the cost share for the resource in variable using
costs of conventional capital is held constant for an average firm. The user
price includes potential environmental taxes (see II.5.1). The parameter e is
fix. Efficiency improvements in the conventional sector occur only indirectly
through productivity enhancements.

The decision of firms about the quantity to produce is based on their demand
estimations and their inventory stocks. Once a year, firms apply a market re-
search routine to estimate their demand potential for the coming year. In
monthly frequency, based on these estimated demand curves and taking ac-
count of current inventory stocks at the “shopping mall”, they determine the
profit maximizing price-quantity combination to make their production de-
cision. Newly produced goods are delivered to the mall where households
purchase goods in a weekly frequency. Delivery of goods to the market and

6In case of equality of a vintage’s cost-effectiveness the vintages are ordered by produc-
tivity and in case of further equality the green vintage is used first.
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purchasing decisions are asynchronous in time. Because the estimated de-
mand and resulting production decision do not necessarily coincide with the
real demand and prices can not be immediately adjusted, the consumption
goods market does not necessarily clear. Firms’ hold inventory stocks at the
mall being composed of a buffer for the case of unpredicted demand over-
shoot and goods that are remaining at the end of the month if the demand
potential was overestimated. These routines are explained in more detail in
Dawid et al. (2019b, section 3.2.1-2).

Firms’ adjustments of labor and capital stock are sluggish and occur in dis-
crete steps. Firms buy units of capital and hire single employees. The wage
paid for an employee is firm-specific. If the workforce of the firm is not suf-
ficient to produce the desired quantity, firms post vacancies with an offered
wage at the labor market. Unemployed households send applications if the
posted wage satisfies their expectations. If the firm accepts the application,
the matching occurs. If the vacancies are not filled, firms adjust their wage
upwards. It may occur that even after the wage adjustment the job is left
vacant. In such case, firms have to adjust their production decision and pro-
duce with reduced capacity. If more than one household apply for a vacancy,
the firm’s hiring decision is probabilistic but positively influenced by the ed-
ucational attainment of the applicant. It is assumed that technology-specific
skills big

h,t are not observable for the firm during the application process. In
contrast, general skills of applicants interpreted as educational attainment as
proxy for ability are observable. Further information about the households’
endowment with general and technology-specific skills is provided below
in section II.3. More detailed information about the labor market and the
matching process can be found in section 4.2 in Dawid et al. (2019b).

II.1.2 Investment decision

Periodically, firms decide upon investment to replace depreciated and/or ob-
solete capital and to expand their capacity. Capital goods are obsolete when
their using costs per unit of output are prohibitively high.

When firms invest they are faced with the decision which vintage and how
many units to buy. Hence, they have to determine the quantity Iv

i,t, the pro-
ductivity Av and the technology type ig of the capital good they want to buy.
In line with the empirical literature on firms’ investment (Bacon, 1992), the
decision is based on the estimated net present value (NPV) of an investment
option. Firms chose the option out of possible investments that is expected
to have the highest NPV. The net present value (NPV) is given by expected,
cumulated and discounted financial in- and outflows of a particular invest-
ment option computed along a given time horizon Tinv and given discount
rate ρ. The time horizon and the discount rate are homogeneous across firms
and reflect time preferences and risk attitudes of firms.
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The NPV is given by the expected, discounted profit π̂v conditional on an
investment in Iv

i,t less investment costs, i.e.

NPVv
i,t = − p̃v

t · Iv
t +

Tinv

∑
τ=0

(
1

1+ρ

)τ
· π̂v

i,t+τ (I.5)

where p̃v
t is the unit price of a certain vintage and Iv

t the amount of capital
items to be bought. It may include subsidies if subsidies are used by the gov-
ernment (see II.5.1). π̂v

i,t+τ is the expected net of revenue and costs in period
t + τ conditional on the investment quantity Iv

t in investment option v. Dif-
ferent investment options have different implication for the expected feasi-
ble production quantity, labor and resource input requirements and financial
costs. Financial costs are interest payments, dividends and annuities of out-
standing and, possibly, interest and annuities of new loans if own financial
means are insufficient to finance investment. Firms form expectations about
the development of wages and the skills of newly hired employees, prices,
inflation, future interest rates and the market size on the basis of past obser-
vations. Own potential prices in the NPV calculation are computed on the
basis of estimated demand curves in search for the profit maximizing price-
quantity combination (cf. Dawid et al., 2019b; Harting, 2019, section 3.2.10).
Firms do also anticipate learning of employees based on past observations.

The investment quantity is chosen in discrete steps and different price-
quantity-technology type combinations are compared with each other in-
cluding an no-investment option. The firm chooses the option with the high-
est expected NPV. The set of investment possibilities composed of different
vintage-quantity combinations that are taken into consideration is restricted
to reduce the computational complexity keeping the mixture of conventional
and green options in the choice set balanced.

Investment and production expenditures have to be financed in advance. If
the firm’s own financial means on the bank account are insufficient, it applies
for a credit from private banks (cf. Dawid et al., 2019b, section 3.2.8).

II.1.3 Environmental impact

Natural resource inputs required for the utilization of conventional capital
cause an environmental damage. The environmental damage Di,t is mod-
eled in a very stylized way, assuming it to be proportional to the amount of
resources required for the utilization of conventional vintages, i.e.

Di,t = e ·
V∗i

∑
v=1

1(v) · Kv
i,t. (I.6)

The economy wide environmental impact is obtained by aggregation of firm
level environmental damages, i.e. Dt = ∑iDi,t. For reasons of simplifica-
tion, environmental feedbacks on the economy are assumed away because
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the focus here is the study of technology diffusion and stylized representa-
tion of technology and the economic activity prevents reasonable assump-
tions about potential climate feedbacks.

Adoption at the firm level is measured by the share of green capital used in
current production that is given by

ν
g
i,t =

Kg∗
i,t

K∗i,t
(I.7)

where the asterisk ∗ again indicates that a capital stock item is actually used.
The share of green capital used in current production determines the envi-
ronmental quality of a consumption good which is not observable for con-
sumers. In the policy experiments, the government can pay a price support
for environmentally sound products which allows firms to achieve a higher
profit margin on green product sales (see II.5.1). The share ν

g
t aggregated

across firms is used to evaluate green technology diffusion at the macroeco-
nomic level at the intensive margin, i.e. it measures the intensity of green
technology utilization in current production.

Another indicator determining the environmental performance of produc-
tion is the so-called eco-efficiency εi,t which is given by the environmental
impact per unit of output, i.e. it corresponds to the environmental damage
caused by firm i divided by its output Qi,t in t

εi,t =
Di,t

Qi,t
. (I.8)

On the economy-wide level, the eco-efficiency corresponds to εt =
Dt
Qt

. The
eco-efficiency serves as indicator taking the economic activity into consider-
ation.

Note that this indicator is a relative indicator, and does not account for the
aggregate environmental impact. It measures the eco-efficiency, but does not
capture potential rebound effects that may arise when reductions in the ma-
terial consumption through an improved efficiency are overcompensated by
an increase of aggregate output. The eco-efficiency performance may also
improve by productivity enhancements in the conventional sector. The abso-
lute environmental performance Di,t is also referred to as eco-effectiveness.

For simplification, it is assumed that resource inputs are exogenously pro-
vided with an inelastic supply. Hence, the price for material inputs is inde-
pendent of the demanded quantity, but may be manipulated by policy.7

7This is a strong assumption that is mainly made for simplification reasons. It implies
that scarcity in the supply of resources is assumed away. It can be justified through the very
aggregate interpretation of resource inputs where a large number of substitutes is available.
This deviates from other resource economic models in which scarcity plays an important
part and price induced substitution between different types of resource inputs is key mech-
anism for the reduction of carbon emissions (Gerst et al., 2013; Nijkamp et al., 2005). In
such models, price interactions across different resources represent a decisive mechanism to
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To ensure the closure of the model, paid resource costs need to be recycled
back as income to the economy. For simplification, the costs for natural re-
sources are paid as a lump-sum transfer to households. One may think of a
separate labor market in the resource sector. If the resource sector becomes
obsolete in consequence of a green transition, households loose part of their
monthly income. At the same time, CG producing firms save input costs.

II.2 Investment goods sector

The technological evolution in the simulated economy is embodied in the
evolution of the stocks of codified A and tacit technological knowledge B.
Codified knowledge is developed in the investment goods (IG) sector. If IG
firms successfully innovate, they shift the productivity frontier AV

ig,t upwards
which is a measure for the available stock of codified technological knowl-
edge in sector ig in t. The investment goods sector is composed of two IG
firms ig ∈ {c, g} that offer different types of capital goods.8 The firm c pro-
duces a conventional, the other firm g produces green capital goods. Each IG
firm offers a range of vintages that are indexed by v = {1, ..., V} that differ by
productivity. The parameter V indicates the fix maximal number of vintages
that can be supplied by a capital goods producer. The index v = 1 refers to
the least productive vintage supplied by IG firm ig and v = V to the most
productive. If a producer invents a new vintage, the least productive vintage
is assumed to be technologically obsolete and is removed from the supply
array.9

The properties of a vintage v can be summarized by the tuple (Av,1(v))
where 1(v) ∈ {1, 0} is a binary indicator that is associated with the tech-
nology type. It takes the value 1(v) = 1 if the vintage v was produced by the
conventional IG firm and zero otherwise.

How to interpret “green” and “conventional” capital goods? The distinc-
tion between green and conventional capital follows the eco-innovation con-
cept (Arundel and Kemp, 2009). Eco-innovations are defined in relation to
the incumbent and refer to any production practices that are environmen-
tally more benign than the incumbent solution and save material and en-
ergy input costs. For example, these technologies can be different kinds of
renewable energy and energy efficiency measures, but also re-using and re-
cycling technologies and organizational methods and systems that allow to

achieve emission reductions. Here, a shift between two technologies and learning dynamics
are studied but not incremental adjustments in the composite of intermediate inputs.

8The number of IG firms is restricted to two representative IG firms for reasons of sim-
plification. Technically, the number can be increased and also a larger number of technology
types is feasible whose technical characteristic 1(v) range in the interval [0, 1].

9Technically, that means that vintages are re-indexed but the order is maintained. The
second-least productive vintage v = 2 becomes the least productive v = 1 and so forth, i.e.
v← (v+ 1)∀v > 1. Principally, the obsolescence assumption is not necessary, but in practice
it enormously reduces the computational complexity of CG firms’ investment decision.
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produce any final good or service without the dependency on material or
fossil fuel energy inputs. In short, green capital is interpreted as produc-
tive capacity of the firm that enables employees to produce a final consump-
tion good using relatively less (natural) resource inputs compared the in-
cumbent, conventional production technique. The model may be extended
to a multi-technology case where the indicator 1(v) is not binary but ranges
in the interval 1(v) ∈ [0, 1]. In such case it represents different degrees of
eco-performance. Technology-specific skills of both types are proportionally
applicable.

Inventions allow IG firms to produce a new and more productive vintages of
capital goods. These inventions are interpreted as instructions or blueprints
how to develop and produce a new and more productive capital good.

Generally, capital (or investment) goods are any kind of tradable asset which
is used by CG firms in production and can be bought on the market and ac-
cumulated in a stock. Its lifetime is a matter of the depreciation rate. With
a hundred percent depreciation rate capital goods could also be interpreted
as intermediates. Here, it is interpreted as machinery or other tangible in-
put that enables employees at the firm to work productively. Though, the
interpretation can be straightforwardly expanded to tradable services and
tradable intangibles.

II.2.1 Production

Capital goods are produced with labor as the only input. For reasons of sim-
plification, IG firms are not integrated in the labor market and use only so-
called virtual labor. Capital is produced with constant returns to scale, i.e.

kv
ig,t = (αv

t )
−1 · lig,t (I.9)

where αv
t is a scaling factor determining the amount of labor lig,t needed to

produce one unit of capital. The scaling factor αv
t = α · (Av

A1 ) depends on the
ratio of the productivity of the least productive vintage v = 1 in the current
supply array to the vintage v. Hence, more productive vintages are more
labor intensive and as a consequence more expensive to produce (see II.2.3).
The indexation of vintages v is time dependent. Successful innovation shifts
the ratio. Production costs per supplied productivity unit decrease because
the least productive vintage becomes obsolete and all supplied vintages are
re-indexed (see II.2.2). The parameter α is homogeneous across different vin-
tages and IG firms.

The total amount of labor used by ig is given by Lig,t = ∑V
v=1 Kv

ig,t · αv
t where

Kv
ig,t is the total, demanded quantity of vintage v in t. To ensure the model’s

closure, the costs for labor inputs Clab
ig,t = plab

t · Lig,t are recycled back to the

economy as a transfer to households. Unit labor costs in the IG sector plab
t



Eurace@unibi-eco: Model documentation 192

co-evolve with average wages in the economy. This assumption can be inter-
preted as a separated labor market. Hence, there are some invisible house-
holds who work in the capital goods sector and consume in the same pro-
portions as households working in the CG sector. The use of virtual labor as
input implies that capacity constraints are assumed away.

II.2.2 Innovation

The productivity of vintages supplied by IG firm ig in t depends on its cur-
rent technological frontier AV

ig,t. The frontier corresponds to the productivity
level AV

ig,t of the most productive vintage indexed with V. If an IG firm ig
successfully innovates, its technological frontier is shifted upwards and firm
ig is able to offer a new and more productive vintage in t + 1, i.e.

AV
ig,t+1 = (1 + ∆A) · AV

ig,t. (I.10)

Productivity enhancements are discrete steps and the step size ∆A is fix.
The success of innovation is probabilistic, but IG firms are able to influence
the probability of success by investment in R&D. The probability of success
Pig,t[success] is given by

Pig,t[success] = p̄ · (1 + R̂&Dig,t)
η (I.11)

where p̄ is a fix minimum probability of innovation success and R̂&Dig,t) is
ig’s R&D intensity in the current month. The R&D intensity is computed
as monthly R&D spendings in relation to current monthly macroeconomic
activity proxied by scaled monthly GDP. The parameter η ∈ (0, 1] gives
the returns to R&D. After successful innovation, a more productive vin-
tage is added to the supply array and vintages are re-indexed as explained
above. The parameters p̄, ∆A and η are set in a way that overall productiv-
ity progress resembles empirically documented patterns of productivity and
GDP growth rates.

II.2.3 Pricing

IG firms impose an adaptive mark-up over unit production costs captured by
the wage proxy mentioned above (II.2.1). Adaptive pricing rules are a com-
mon approach for heuristic pricing rules in agent-based models (e.g. Assenza
et al., 2015). The price pv

ig,t of vintage v is given by

pv
ig,t = plab

t · αv
t · (1 + µig,t) (I.12)

where plab
t · αv

t are labor unit costs and µig,t is an adaptive mark-up over pro-
duction costs that is imposed by firm ig. Labor unit costs are vintage-specific
and proportional to the relative productivity of a vintage currently offered
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by firm ig. More productive vintages require more labor inputs and are more
costly to produce. Higher production costs are reflected in the final vintage
price.

The firm-specific mark-up µig,t follows an updating rule that depends on
trends of firms’ pricing behavior, market shares and profits in a given horizon
of past periods. The adaption rule is given by

µig,t =


µig,t−1 · (1 + δµ) if case A
max[µ̄, (µig,t−1 · (1− δµ))] if case B
µig,t−1 else

(I.13)

where µ̄ is a fix minimum mark-up level and δµ the size of the updating step.
Different cases for the updating routine have to be distinguished:

(A) Firms increase the mark-up in three cases:

i) They have increased the mark-up in past periods but did not
lose market share ωig,t measured in relative sales, i.e.

[
∆µig,t ≥

0 ∧ ∆ωig,t ≥ 0
]

where ∆ indicates the deviation from the average
computed across a given number of past periods.

ii) They have increased the mark-up and lost market share, but prof-
its πig,t were rising, i.e.

[
∆µig,t > 0∧ ∆ωig,t < 0∧ ∆πig,t > 0

]
.

iii) They have decreased the mark-up and the market share increased,
but profits decreased, formally

[
∆µig,t < 0 ∧ ∆ωig,t > 0 ∧ ∆πig,t ≤

0
]
. From this observation firms conclude that the mark-up was

too low to be profit maximizing even though they gained market
share.

(B) Firms decrease the mark-up in two cases:

i) They have increased the mark-up in past periods, lost market
share and made lower profits, i.e.

[
∆µig,t > 0 ∧ ∆ωig,t < 0 ∧

∆πig,t ≤ 0
]
. Controlling for the market share is a test on the as-

sociation of the decrease of profits with lost competitiveness. De-
creasing profits can be also due to cyclical volatility of investment,
and do not necessarily imply that mark-ups were too high.

ii) Firms decreased the mark-up, gained market share and made
higher profits, i.e.

[
∆µig,t < 0 ∧ ∆ωig,t > 0 ∧ ∆πig,t > 0

]
. The-

oretically, a firm can make higher profits even though it has de-
creased prices and lost market share. This can happen if the mar-
ket size has increased sufficiently. The combined condition of
[∆ωig,t > 0 ∧ ∆πig,t > 0] indicates that the increase in profits is
not (only) due to changes in the demand on the IG market but
likely also a consequence of a higher market share.

The minimum threshold µ̄ ensures that the mark-up never falls below
a given minimum value.
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In the remaining cases, e.g. when a firm decreased prices, lost market share
but made higher profits, the firm is uncertain about the strategy and keeps
the price constant.

II.2.4 Revenue allocation

IG firms’ revenue is composed of two parts. The first part accounts for virtual
wage payments for labor inputs to IG production. The amount is channeled
back into the economy as a lump-sum transfer that is uniformly allocated
across households (see II.2.1). The remaining part of IG firms’ revenue ac-
counts for profits πig,t stemming from the mark-up pricing. A given fraction
λ ∈ (0, 1) is reinvested in R&D. The remaining share (1 − λ) of profits is
paid as dividends to shareholders. They invest part of their income in a risky
index fonds. IG firms are part of the index fonds. This is a simplifying as-
sumption to ensure the financial closure of the model. The financial market
is explained briefly in II.3.2 and more detailed in Dawid et al. (2019b, section
3.6.4 and 4.4.1-2).

To capture the long term nature of R&D planning and budget setting, R&D
expenditures are smoothed to ignore the short term volatility of CG firms
investment activity. Monthly R&D expenditures are computed as running
average of past profits πig,t over the R&D budgeting horizon Trd, i.e.

R&Dig
t =

1
Trd

Trd

∑
τ=1

λπig,t−τ. (I.14)

R&D expenditures are spent for wages of researchers. This assumption co-
incides with many other macroeconomic models of technological change
(cf. Romer, 1990). Though in this model version, the labor market for re-
searchers is not explicitly modeled. This assumption implies that trade-offs
in the cross-sectoral allocation of researchers and crowding out of produc-
tion as studied by other authors are assumed away (Popp, 2006; Wolff and
Reinthaler, 2008). R&D expenses are transferred back to the economy to en-
sure model closure. This is done by treating R&D expenditures as dividends
that are paid to shareholders, i.e. to households who have invested in risky
assets. A similar smoothing mechanism is applied to the labor cost dummy
such that transfer payments do not reflect the same volatility as investments
do.

II.2.5 Technological competition

Technological competition is a race between the incumbent conventional and
entering green technology. It is assumed that the incumbent conventional
technology is established on the market. Hence, the capital stock of CG firms
is composed of merely conventional capital. At a given time, the eco-IG firm
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enters the market. At this point of time, the entrant firm suffers from different
entry barriers. These barriers are explained below (II.6).

II.3 Households

Households (HH) act as consumers, savers and investors, and employees in
the CG sector. Most important for this model extension is the role of house-
holds as employees and how employees learn at work. The other activities
of households are only briefly sketched in this paper. Additional detail is
available in Dawid et al. (2019b, section 3.6).

II.3.1 Learning employees

Next to codified knowledge developed in the IG sector, technology-specific
know-how Big

t is the second decisive determinant for the macroeconomic
technological evolution. Households in their role as employees are the car-
rier of technology-specific skills (know-how) and accumulate these skills by
learning at work. Aggregated at the firm level, technology specific skills rep-
resent the stock of tacit knowledge of a firm i, i.e. Big

i,t =
1

Li,t
∑h∈Li,t

big
h,t. Em-

ployees h ∈ Li,t are characterized by their learning ability and two types
of technology-specific skills. Workers ability to learn is captured by a time-
invariant general skill level bgen

h of employees and moderates the speed of
learning.

The two types of technology-specific skills big
h,t represent the employee’s ca-

pability to work productively with a specific type of capital ig ∈ {c, g}. These
skills are stock variables that are growing by stepwise updates that represent
a learning process. The learning process is dependent on the household’s
learning ability χ

gen
h = χ(bgen

h ) and the technological properties of the capi-
tal stock used in firm i where the employee is working, i.e. h ∈ Li,t. There
are two sources of learning. Employees are learning by doing when work-
ing with a specific technology type and they can learn via cross-technology
spillovers.

Skills are updated from period to period in discrete steps. The size of the
updating step ∆big

h,t+1 = big
h,t+1 − big

h,t is given by

∆big
h,t+1 = χ

gen
h ·

([(
ψ

ig
h,t

)(1+χdist) (
ψ
−ig
h,t

)(1−χdist)
]1/2

− 1

)
(I.15)

where ψ
ig
h,t is the “amount” of knowledge learned during one period through

the utilization of a specific technology type ig with ψ
ig
h,t ≥ 1. It is normalized

to ≥ 1 to ensure spillovers can not be negative and subtraction by 1 ensures
that the skill update is zero if there is no learning progress.
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Part of the learned knowledge ψ
ig
h,t is transferable across technology types. It

contributes to the accumulation of the endowment with the alternative skill
type −ig with ig 6= −ig and ig,−ig ∈ {c, g}. The parameter χdist ∈ [0, 1]
describes the technological distance between the two technologies which is a
source of state dependence.10 The functional form is inspired by models on
state dependent technological change.11

The skill update through learning by doing ψ
ig
h,t is dependent on the techni-

cal difficulty of the technologies and the relative amount of effort invested
in learning. More complex technologies are more difficult to learn and re-
quire a higher amount of effort, also called intensity of learning. The size of
the updating step also depends on the learning potential b̃ig

h,t which reflects
the relative technical novelty of capital ig. Taken together, the amount of
knowledge learned by doing is given by

ψ
ig
h,t = 1 +

(
ν

ig
i,t

)χint

· b̃ig
h,t (I.16)

with h ∈ Li,t. The relative intensity of learning in a specific technology cat-
egory ig is dependent on the relative amount of technology ig that is used

ν
ig
i,t =

Kig
i,t

Ki,t
at h’s workplace i : h ∈ Li,t. This can be understood as proxy for the

amount of time that invested in the learning to use a specific type of machin-
ery (cf. Cohen and Levinthal, 1990). Learning in category ig is faster if the
relative amount of used capital of type ig is higher. The parameter χint cap-
tures returns to scale in the learning process. Decreasing marginal returns in
the learning process imply that the first hours of learning are more effective
than the last. An alternative interpretation of χint is the technical difficulty. If
χint is close to zero, employees learn how to use the machinery irrespectively
of the time invested in working with the machine. More difficult technolo-
gies are more sensitive to the amount of time invested in learning.

b̃ig
h,t = max[0, (Aig

i,t− big
h,t)] is a measure for the technical novelty and represents

the learning potential of employee h ∈ Li,t. It is given by the gap between the
codified technological knowledge of the employer Aig

i,t and the employee’s

10For simplification, it is assumed that restrictions in the transferability only affect the
speed of learning, but skills are not perfectly disjoint. Differences in the levels of technology-
specific skills between ig and −ig can be principally fully closed by spillovers even if em-
ployees never have worked with one of the technology types.

11These models are used to investigate the implications of scarce time and R&D resources
that can be invested in the production of technological knowledge and an associated allo-
cation trade-off (cf. Acemoglu, 2002). The Acemoglu version of state dependence builds on
two main assumptions, i.e. (1) the resources that can be invested in R&D are scarce (in terms
of a limited amount of researchers that can be allocated across technological sectors), and (2)
there may be spillovers in the creation of knowledge, i.e. one sector may be able to use the
knowledge that is created in the alternative sector. Both aspects can be plausibly transferred
to the process of learning of employees who have (1) a limited amount of time to learn spe-
cific tasks, and (2) knowledge about specific tasks might be useful for both technology types.
In the version here, spillovers are not stock, but only flow dependent.
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current skill level big
h,t. The larger the gap is, the larger is the potential tech-

nological knowledge the employee can learn and the faster is the pace of
learning. This accounts for the fact that employees only learn if they are ex-
posed to (codified) technological knowledge they that is new to them, i.e.
employees learn only if there is something new to learn.

Firms can not observe the skill endowment of individual employees, but
observe the effectiveness of the production process. Hence, they know the
amount of inputs and the amount of output. From this observation they can
draw conclusions about their aggregate stock of tacit knowledge Big

i,t. This in-
formation is used in the investment, pricing and production decision of the
firm.

Households are matched to CG firms on the labor market as it was mentioned
above (II.1.1). An employed households h works at the same firm until she is
dismissed or leaves the firm deliberately. Unemployed household receive an
unemployment benefit from the government. If a household does not find
a job for a longer duration, she incrementally revises its reservation wage
downwards. Further detail is provided in section 4.2 in Dawid et al. (2019b).

II.3.2 Consumption and saving

Beyond their involvement in the labor market and production process,
households consume and save. Before households make their consumption
decision and after receiving their monthly income, they compute the planned
consumption budget for each week of a month. Households’ income is com-
posed of wage and financial income from savings and investments. After the
payment of taxes, households allocate the disposable income on saving and
consumption taking account of current income, current and desired financial
wealth (cf. Dawid et al., 2019b, section 3.6.2).

Households purchase goods in a weekly frequency at the mall which serves
as intermediary between CG firms and households and as inventory holder.
The decision which good to buy is computed by a multinomial logit function
where the probability to buy goods produced by firm i depends on the price
of the good p̃i,t and the prices of other goods available at the mall Gt. Goods
available Gt are equally valued by consumers, but are produced by different
firms and offered at different prices. The supply price of CG firms is subsidy
inclusive if a consumption subsidy is paid by the government (see II.5.1). The
probability that household h selects the product of firm i is given by

P[h buys i] =
exp

(
−γC log( p̃i,t)

)
∑j∈Gt exp

(
−γC log( p̃j,t)

) . (I.17)

The parameter γC is a constant that measures the consumers’ price respon-
siveness and is a proxy for the degree of competition on the market. The
consumption quantity is determined by the weekly consumption budget of
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the household, i.e. the full budget is spent if a sufficient amount of goods of
the selected producer is available. If the quantity is not available, the house-
hold makes a second choice. If it is again not sufficient, the household is
rationed. The remaining budget is added to the consumption budget for the
subsequent week. More detail is available in Dawid et al. (2019b, section 4.3).

Households’ total wealth consists of deposits at their bank account and finan-
cial assets invested in a risky index fonds. Once a month and after the sub-
traction of planned consumption expenditures and taxes, households make
a revision of financial asset allocation. For reasons of simplification, there is
only one risky asset available that consists of an index of shares issued by CG
firms and “virtual shares” of the IG firm and its R&D activities. The portfo-
lio revision consists of the decision whether to buy or sell shares of the risky
index fonds (cf. Dawid et al., 2019b, section 6.4.2). The decision is modeled
in a very stylized way and is not responsive to changes in the interest rate.
This might be a severe restriction, but facilitates the tractability of the model.
Economic effects channeled through portfolio revisions on the financial mar-
ket are beyond the scope of the current model. Changes in the interest rate
affect firms’ investment decision through the accessibility and affordability
of loans at private banks.

II.4 Banks

Banks serve as financial intermediaries and bookkeepers keeping track of all
financial flows and stocks of agents’ deposits and liabilities. Agents receive
interest income paid for their deposits. Banks do also supply credit to the CG
production sector. The supplied interest rate rb

i,t is firm-specific and depends
on the volume of the requested credit, its probability of default and the in-
terest rate of money supplied by the central bank. The default probability is
computed on the basis of the firm’s debt-equity ratio and the credit volume.
Banks have to fulfill reserve requirements. This may constrain their capabil-
ity to grant credit. This module is explained in more detail in Dawid et al.
(2019b, section 3.4.2-7)

II.5 Government

In the model, the government has two important roles. First, it reallocates
revenue via the payment of transfers and the collection of taxes, e.g. in
terms of an unemployment benefit and income taxes. Second, the govern-
ment may use taxes, subsidies and regulation to achieve particular political
targets. In the Eurace@unibi-eco version, policies are studied that may stimu-
late the diffusion of green technologies. The diffusion process is associated
with increasing returns of adoption and, in the long run, typically only one
of the two competing technologies survives on the market (cf. Hötte, 2019b).
Policies that stimulate the diffusion process are equivalent to policies that
increase the probability that the green technology wins the technology race.
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The replacement of the incumbent by the green entrant is interpreted as sus-
tainability transition (Safarzyńska et al., 2012).

II.5.1 Policies

In preceding studies (Hötte, 2019b,f), three different market based instru-
ments were analyzed with regard to their diffusion impact and macroeco-
nomic performance. These instruments are a tax on the natural resource in-
put and two different subsidies.

• The eco-tax θ is imposed as a value added tax on material inputs. This
increases relative costs of conventional capital utilization for CG firms,

p̃eco
t = (1 + θ) · peco

t . (I.18)

In this model, the environmental impact of production is proportional
to the amount of resource inputs that is used. Hence, the tax can also
be interpreted as a tax on the environmental externality.

• The government can use an investment subsidy ςi that reduces the
price for green capital goods,

p̃v
g,t = (1− ςi) · pv

g,t. (I.19)

• The government may also pay a green consumption price support ςc

for environmentally sound produced CGs, i.e.

p̃i,t =
(

1− ν
g
i,t · ς

c
)
· pi,t (I.20)

This subsidy is directly paid to firms and is proportional to the share
of green capital used in current production ν

g
i,t = (Kg∗

i,t /K∗i,t). The price
support allows CG firms to achieve a higher margin when producing
environmentally friendly.

Taxes and subsidies can be alternatively interpreted as technical character-
istics when ignoring the fiscal implications of policy. A tax on the environ-
mental resource is the same as a higher degree of technical superiority of the
entrant technology in terms of input cost savings. The investment subsidy re-
flects the production costs of green capital and a consumption subsidy paid
as price support is analogue to a higher willingness to pay for green goods.
This is discussed in more detail in (Hötte, 2019f).

The tax and the subsidy rates are initialized at a given level at the beginning
of the policy horizon and remain constant during the whole horizon. Before
the horizon ends, taxes and subsidies are phased out to avoid disruption.12

12Note that in this version, agents do not adapt expectation with respect to the behavior
of policy makers. An analysis of the role of expectation formation about political decisions
would require further adjustments in the simulation code.
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The government may freely combine taxes and subsidies and the assump-
tions about the fix or adaptive rates are a matter of the policy experiment of
interest.

II.5.2 Budget balancing

The government is budget constrained and seeks to balance its budget in
the long run. Budget balancing occurs via the adaption of a base tax rate
that is levied on households’ income and firms’ profits. The base tax rate
is increased if the net of tax income and transfer payments is negative and
decreased otherwise. The net inflow is computed as running average over
the government’s budgeting horizon to obtain smoothness in the evolution
of the tax rate.

II.6 Market entry & barriers to diffusion

At the day of market entry t0, the green technology becomes available as in-
vestment possibility for CG firms. At this time, the incumbent technology is
established on the market. All firms produce only with conventional tech-
nology and workers have only worked with conventional capital. Market
entering (green) technologies may suffer from different types of barriers to
diffusion. Barriers emphasized in the literature are for example technological
disadvantages, infrastructural and network effects in favor of the incumbent
technology, or labor related factors that concern the insufficient availability
of sufficiently skilled employees. Other barriers to technology adoption are
effective at the microeconomic firm level such as financial constraints or the
vintage structure of the capital stock (Arundel and Kemp, 2009; Carlsson and
Stankiewicz, 1991; Triguero et al., 2013). This analysis focuses on the two
broad categories of labor and technology related barriers. Many of the adop-
tion barriers mentioned in the (eco-)innovation literature can be subsumed
within the two categories concerning the availability of technology-specific
skills and the technological performance of capital supplied by the entrant.
The market entry conditions of the green IG firm are given by households’
relative endowment with technology-specific skills required to use the en-
trant technology type and by the relative productivity of supplied green cap-
ital goods.

The market entry of the green IG firm is assumed to be enabled by radical
innovation. At the day of market entry t0, the green IG firm starts supplying
the first vintage, least productive of green capital v = 1. The radical inno-
vation is assumed to enable a surge of follow-up innovations. In the first
years after market entry, every 6th month a new and more productive ver-
sion is brought to market until the maximal number of supplied vintages is
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reached.13 After that time, further innovation is probabilistic and dependent
on R&D expenditures.

The initial supply array of the entrant firm is initialized proportionally to
supplied vintages of the incumbent firm. The frontier productivity of the
entrant is given by

AV
g,t0

= (1− βA) · AV
c,t0

(I.21)

where βA ∈ [0, 1) is a measure for the technological disadvantage of green
technology at the day of market entry. The array of supplied vintages is
composed of other vintages of lower productivity while the productivity dif-
ference between these vintages is proportional to the step size of incremental
innovation.

Firms need employees with a sufficiently high level of technology-specific
skills to exploit the full productivity of capital. In analogy to the initial-
ization of the entrant’s technological frontier, the specific green skill level
of households in t0 is initialized proportionally to the specific skill level for
conventional technologies, i.e.

bg
h,t0

= (1− βb) · bc
h,t0

. (I.22)

The parameter βb ∈ [0, 1) describes a gap in the technological know-how,
in particular it determines to which extent workers are less able to use the
new, green technology in relation to the technology they are used to. For
example, if βA = βb = 0.05, supplied vintages of the green firm have a 5%
lower productivity and workers have a 5% lower level of green skills.

The parameters βA and βb represent different types of barriers to technology
diffusion. This way of initialization allows to control the conditions of market
entry and to make sensitivity tests about the effectiveness of different types
of barriers to diffusion.

II.7 Simulation settings and calibration

The simulation model is run for a given number of simulation runs R and
for a given number of iterations T. The model is run multiple times because
it has stochastic elements, for example in the innovation process, the labor
market matching and consumption decision. The outcome of a single run is
not necessarily representative. The number of R is set such that a sufficiently
large sample of simulated time series data is generated that can be studied

13This assumption matches with an empirical stylized fact of technology transitions elab-
orated by Grübler (1991). He interprets basis innovations as shifts in the feasibility frontier
that are followed by incremental improvements. Basis innovations are the root of large scale
system changes. An alternative interpretation can be found in the transition literature (Geels
and Schot, 2007). Disruptive change in the market environment challenges the incumbent
technology. It opens a window of opportunity for a technology established in a niche market
to replace the incumbent technological regime. It is incrementally adapted to the needs of a
broader group of users.
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with statistical tools. A typical number of R ranges between 50 and 200.
Its choice is dependent on the variation across runs and whether additional
randomness, for example as Monte Carlo analysis on initial conditions, is
introduced.

A basic setting for the time horizon in diffusion studies is T = 15000 which
corresponds to a horizon of roughly 60 years, i.e. 240 working days per year.
After a given number of iterations t0, the green technology producer enters
the market. An exemplary day of market entry is t0 = 600. The range of bar-
riers that produces a sufficiently large fraction of non-trivial patterns of dif-
fusion ranges between [0, 0.1]. The price of the natural resource is initialized
at the day of market entry such that resource input costs roughly correspond
to 10 percent of the average wage paid in the economy.

In each iteration, agents are sequentially activated and execute their behav-
ioral routines in a given order. A selection of routines that are executed dur-
ing one iteration and the sequential and conditional activation of agents is
illustrated in figure II.2 as pseudocode.

The simulation model can be thought as computer program that executes
stepwise the behavioral functions described above. Initial endowments and
parameter settings are used as input to the model. The initial conditions were
largely taken from the baseline Eurace@unibi model. Information on determi-
nation of initial conditions and parameter settings is available in Dawid et al.
(2019b, appendix A). The extensions of the model made a re-calibration of
some of the parameters necessary. This was done following an indirect cal-
ibration approach (cf. Fagiolo et al., 2019). Hence, parameters were set in
a way that the simulated time series data reproduces empirical micro- and
macroeconomic regularities. Whenever parameters have a direct natural in-
terpretation as e.g. time horizons or discount rates, empirical analogues were
directly used.

Other parameters were set in a way that the model reproduces empirical styl-
ized facts. More information on the procedure and the calibration results is
available in Hötte (2019b, appendix A).
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FIGURE II.2: Pseudocode of routines executed during one iter-
ation

Data: Initial population
Result: Time series of population
begin

Initialize
for t in SimulationHorizon do

/* Set entry barriers etc. */if t = MarketEntry then
Initialize green skills bg

h,t
∀ h ∈ HH

Initialize market entrant AV
g,t

for a in ListofAgents do
/* asymmetric activation */if t = a.TimeToAct then

if (a = IG.conv) ∨ ( a = IG.green ∧ t > MarketEntry) then
/* monthly */if InnovationSuccess then

Increase techn. frontier AV
ig,t

Replace oldest vintage by new one

Adapt supply prices
Send supply info to CG firms

/* event based */if CG buys capital good then
Deliver capital & receive revenue

if t = LastDayOfMonth then
Compute revenue & set R&D budget

if a = CG then
/* periodically */if t = TimeToInvest then

Read capital supply info
Estimate NPV for different investments
Choose most profitable option k∗

if k∗ > 0 then
Financial means sufficient?
if Yes then

Buy k∗ and add to Ki,t

/* periodically */if t = TimeForPriceUpdate then
Update supply prices

/* monthly */Execute production

Update technology (Big
i,t, A

ig
i,t) ∀ ig ∈ {c, g}

/* monthly */if a = h ∈ HH then
Receive income & set consumption budget

Update skill level big
h,t

∀ ig ∈ {c, g}
if a ∈ { Government, financial intermediaries } then

Execute agent’s routines

This pseudocode sketches a selection of routines executed during
each iteration. The routines executed by the government and finan-
cial intermediaries are not shown here. Interaction between agents
is organized via a so-called “message board” that stores information
sent by an active agent until the addressee is activated again and can

update its memory. See for further detail Dawid et al. (2019b).
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III Illustrative simulation results

This model provides a framework for the study of transition processes. Here,
a technology transition is defined as a large scale technology substitution
process. The conventional, incumbent technology is possibly substituted by
the entrant green technology. This substitution process can be illustrated by
diffusion curves. Macro- and microeconomic side effects can be studied with
the simulated time series of economic indicator variables.

In this section, a short overview of the properties of the model are illustrated
using a set of 200 simulation runs à T = 15000 iterations with a parameter
setting that generates non-trivial diffusion dynamics. In t0 = 600, the green
technology enters the market and suffers from moderate diffusion barriers
captured by 3% lower knowledge stocks, i.e. βA = βb = 0.03. There are
moderate spillovers in the learning process, i.e. χdist = 0.5, and decreasing
returns to learning, χint = 0.5. This set of simulations was used as base-
line scenario in Hötte (2019f). The model and simulated data are available
in Hötte (2019g). Diffusion patterns are trivial if the entry conditions are
sufficiently favorable (prohibitively unfavorable) that the entrant technology
immediately and permanently diffuses (does not diffuse at all). Non-trivial
diffusion patterns are characterized by technological competition among the
two technology types. It is ex-ante not clear whether the green technology
will permanently replace the incumbent, conventional alternative.

The model’s suitability for economic analysis is justified by an empirical val-
idation procedure that is explained in more detail in Hötte (2019b). A short
summary of the validation criteria applied to this set of simulations is pro-
vided in the appendix V.

FIGURE III.1: Simulated diffusion curves
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(A) Aggregate across runs

0.00

0.25

0.50

0.75

1.00

3000 6000 9000 12000
Periods

S
ha

re
 c

on
ve

nt
io

na
l c

ap
ita

l u
se

d

(B) Single runs
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(C) Aggregate by regime

One core indicator to study diffusion processes is the share of conventional
capital νc

t that is used for production in time t. In figure III.1, the time series
of this diffusion measure is shown in three different representations. Figure
III.1a shows an aggregate diffusion curve given by the average computed
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across 200 simulation runs. The average share of conventional technology
use at the end of the simulation horizon accounts for roughly 30% corre-
sponding to a green technology diffusion rate of 70%. Though, the aggre-
gate curve hides an important pattern. In figure III.1b, the diffusion curves
of each single simulation run are shown. Within a single simulation run,
the economy converges typically to one of two possible technological states
with roughly 100% or 0% conventional technology utilization. The diffusion
process in the model is subject to increasing returns that arise from learning
dynamics and endogenous innovation. Relative R&D investments in tech-
nology type ig are positively dependent on relative profit made in sector ig.
Employees learn relatively faster skills of type ig if they are working rela-
tively more with capital goods of technology type ig. Increasing returns lead
to the convergence to one of the two states. The dominance of the green
(conventional) technology is interpreted as green (conventional) technologi-
cal regime (cf. Dosi, 1982). A heuristic definition of a technological regime of
type ig is given by a share of technology use ν

ig
T at the end of the simulation

horizon T that is larger than 50%.

The relative frequency of green regimes in T is interpreted as transition prob-
ability for a given set of initial conditions. In the example shown in figure
III.1, in 142 out of 200 simulation runs a transition is observed which corre-
sponds to a transition probability of 71%. This roughly coincides with the
average share of green technology use shown in figure III.1a. Though, it
should be noted that the pace of convergence and the stability of the regime
depends on the characteristics of the two technologies and initial conditions.
Initial conditions and technology characteristics are for example initial diffu-
sion barriers (βA, βb), the properties of the learning function (χint, χdist), poli-
cies (θ, ςi, ςc) and the macroeconomic environment.14 In a forthcoming study
it is shown that the stability of the diffusion process is sensitive to knowledge
spillovers in technological learning (Hötte, 2019f). If the technological dis-
tance χdist is small, knowledge is easily transferable across technology types.
Hence, for firms it is easy to switch to the green technology but it is also easy
to switch back to the incumbent type. In such case, the divergence of νc

t is
less pronounced and νc

t may range well between 0 and 100%.

Figure III.1b reveals another important property of the diffusion process. In
some of the simulation runs, the transition to one of the two regimes is clear
cut. The initial surge of green technology diffusion is triggered by the techni-
cal superiority of the entrant. Though, initial diffusion is not necessarily per-
manent. In some of the runs path dependence in the process of knowledge
accumulation outweighs the technical advantage and the economy quickly
relapses into the conventional regime. In other cases, path dependence is

14Note that there is an alternative interpretation of the policy parameters. The tax scales
the technical superiority of the entrant technology in terms of input cost savings. The invest-
ment subsidy is related to the supply price of green capital and can be associated with the
production costs of green capital goods. The consumption subsidy is an analogue to a higher
willingness to pay for green products. This is discussed in more detail in Hötte (2019f).
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FIGURE III.2: Technological indicators
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overcome and the economy rapidly converges to the green state. Most in-
teresting, some of the diffusion curves are characterized by multiple local
extrema. This is an indicator for long enduring technological uncertainty, i.e.
firms switch between two different technology types. It is uncertain which
technology will dominate at the end of the simulation time.

To illustrate the drivers of technological convergence and the macroeconomic
effects of technological uncertainty, the set of simulation runs is split into
three subsets that are illustrated by three different lines in the time series
plots shown in III.1c. The green (red) curves represent the green (conven-
tional) the subset of runs whose technological evolution was relatively sta-
ble. The blue curve represents the subset of so-called switching regimes that
are characterized by a long lasting technological uncertainty.15

15The formal definition is the same as used in Hötte (2019b). A technological regime is
defined by the set of runs that exceed the 50% threshold, i.e. reco = {r ∈ R/{rswitch}|νc

T,r <

.5} and rconv = {r ∈ R/{rswitch}|νc
T,r ≥ .5} where r is a single run out of the set of runs R

excluding the switching regimes. A switching regime rswitch is characterized by two criteria:
(a) The level of conventional (green) technology utilization in T is less than 90%: a := (ν

ig
T,r <

90%), ig ∈ {c, g}. (b) The final level of conventional (green) capital utilization is higher than
50%, but the minimum level of conventional (green) technology utilization within the second
half of simulation time had been fallen below 25%, i.e. b := (ν

ig
T,r > .5 ∧mint∈[thal f ,T] ν

ig
t,r <
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This differentiation helps identifying the core mechanisms that drive the
technological divergence. In figure III.2a and III.2b, increasing returns to dif-
fusion are illustrated in terms of relative knowledge stocks. Figure III.2a and
III.2b show the ratio of the frontier productivity supplied in the two IG sec-
tors αt = (AV

c,t/AV
g,t) and the ratio of technology-specific skill endowments

βt = (Bc
t /Bg

t ). A level > 1 (< 1) indicates an advantage for the conventional
(green) technology. These figures illustrate path dependence of the diffusion
process. The relative advantage of the conventional (green) technology be-
comes stronger in the conventional (green) regime. A shift to the alternative
technology type becomes increasingly difficult.

The delayed divergence of the skill ratio (figure III.2b) is a result of techno-
logical legacy path dependence in the learning process during the early diffu-
sion phase. In the early phase after market entry, firms still have a large share
of conventional capital in their capital stock. The relative pace of learning is
dependent on the relative amount of capital that is used in a firm. This ex-
plains why the skill related disadvantage of the entrant βt initially increases,
independently of the emerging technological regime.

The divergence of knowledge stocks is least pronounced in the switching
regimes. This is a result of uncertainty about the allocation of learning and
R&D resources. If firms switch between the two technologies and both types
of technology are used, learning and R&D resources are invested in both
types and both knowledge stocks grow, i.e. the stocks do not diverge.16

Figure III.2c illustrates the relative degree of technological novelty. The de-
gree of novelty of a technology is given by the ratio of supplied productivity
and the level of the corresponding skill level. If this ratio is high, the technol-
ogy is relatively new to employees and the know-how is not yet sufficiently
high to exploit the full productivity. This has a positive effect on the pace of
learning, but only if firms invest in the corresponding technology type.

Figure III.2d confirms the functioning of the adaptive capital pricing mech-
anism. It shows the price ratio for the most productive vintage offered by
the IG producers. In the subset of green (conventional) regimes, the green
(conventional) technology is relatively more expensive in nominal terms.
The relative price of the relatively more demanded capital type increases.
Though, in real terms defined by the IG price per supplied productivity unit,
the dominant technology is relatively cheaper. Hence, improvements in the
productive quality of the dominant technology outweigh the relative increase
in nominal prices.

.25), ig ∈ {c, g}. Criterion (b) indicates large fluctuations at a relatively late point in time.
In this exemplary set of simulation runs, only 2 out of 200 runs are classified as switching
regimes. Note that this is a heuristic definition without any formal justification, but serves
well for the purpose of illustration.

16The jumpy behavior of the blue curve is due to the small number (2) of simulation runs
classified as switching regimes. Discrete adjustments as e.g. in the innovation or market entry
function (see below III.3c) are not smoothed by aggregation over a larger number of runs.
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The green entrant technology is interpreted as technically superior because
it allows its users to save material input costs. By the design of the model,
this relative advantage is stable over time. Hence, the price of the natural re-
source is assumed to grow by the same rate as wages. Wages and the natural
resource are variable input costs in production. The share of variable input
costs to be paid for the natural resource is constant as shown in figure III.2f.
Small fluctuations are due to delayed smoothing routines in the model.

FIGURE III.3: Macroeconomic indicators
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Uncertainty about the allocation of R&D and learning resources in the
switching regime has macroeconomic side effects in the long run. In figure
III.3 a selection of macroeconomic time series is shown. In the long run, ag-
gregate output (figure III.3a) is significantly lower in the switching regimes
and unit costs (figure III.3b) are higher. Technological uncertainty is associ-
ated with a waste of R&D and learning resources. These resources are partly
invested in a technology type that is obsolete in the long run. This under-
mines productivity improvements compared to a regime where the economy
specializes in only one technology type. If the divergence between both pos-
sible technological trajectories is clear-cut, all resources are invested in learn-
ing and R&D to improve only one technology type.

The other figures in III.3 illustrate some general properties of the simulation
model. Figure III.3c shows the evolution of the number of active firms. The
initial surge of green technology adoption is associated with an increase in
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competition among CG firms. Some firms are not able to sustain and leave
the market. Note that the subsequent growth of the number of active firms
is mechanically driven by the design of the model. The probability that a
new firm is founded is given and only the number of market exits is fully
endogenized.17 Similarly, the evolution of the average number of employees
as measure for the firm size reflects partly the evolution of the number of
firms. The market exits in the early diffusion phase lead to an expansion of
capacity of surviving firms and the average number of employees increases.

The unemployment rate increases on average some years after the market
entry at the time when the technological specialization begins and stabilizes
after some time. Figure III.3f confirms the balancing of the governmental
budget. The differences between the green and conventional regime that
are visible in the figures are significant for the later phases of the diffusion
process tested by a Wilcoxon signed rank test available (cf. supplementary
material of Hötte, 2019f). Note that these differences should not be over-
interpreted. Monthly output in the green regimes is higher because the con-
ventional regimes are characterized by a higher technological uncertainty
than green runs. The green technology is initially taken up independently
of the resulting technology type. Learning and R&D invested in the green
technology during the initial uptake are wasted if the economy is transition
is permanently reversed. This would be different in a situation with pro-
hibitively high barriers in comparison to the technical superiority of the en-
trant such that diffusion does effectively not take place.

A more comprehensive discussion of the properties of the simulated data is
available in Hötte (2019b,f) and the associated appendices and supplemen-
tary material. In these articles, also a set of model validation criteria is dis-
cussed.

IV Outlook

In this paper, a self-contained, concise description of the Eurace@unibi-eco
model is provided. Along an illustrative example, the main features of the
transition dynamics that can be generated with the model are discussed.

The model provides a framework for studies of diffusion and technology
transitions at the macroeconomic and industry level. Until now, it had been
applied to the study of green technology diffusion, though its scope is not
limited to this case.

The framework of the model leaves room for numerous extensions which
might be relevant in the context of diffusion and transition. Potential fields
for the future application of the model are an extension to a multi-technology

17With a given probability, an insolvent and inactive firm agent is re-founded and en-
dowed with a stock of seed capital. This is interpreted as entry of a new CG producer. Note
that the maximal number of firms is limited (here 120).
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case, R&D spillovers in the accumulation of codified knowledge, the role of
regulation and non-market based political instruments, green finance, het-
erogeneous and evolving consumer preferences, the responsiveness of labor
demand for specific skills and the spatial dimension of technological change.

V Additional information about model validation

This section summarizes some of the macroeconomic patterns that were used
for model validation. The selection of these validation criteria is motivated
in Dawid et al. (2018b). These criteria and the computation of the indicators
in the application to the Eurace@unibi-eco model are explained in more detail
in Hötte (2019b).

Average growth rates and the size of business cycle variation are summarized
in table V.1. The average growth rate of aggregate output accounts for 1.6%
and the business cylcle volatility for 0.13%.

TABLE V.1: Growth rate and business cycle

Avg. growth rate Business cycle size
Mean (Std) .0163 (.0010) .0013 (.0017)
Within-run var. .0010 (.0010) .0004 (.0005)

The mean (standard deviation) of the growth rate is the arithmetic
mean of the geometric means of the within-run growth rate. The size
of the business cycle (BC) is evaluated as percentage deviation of time
series data from the bandpass filtered trend. The within-run variation
is the mean of the within run standard deviation of the growth rate

(BC size). Its standard deviation is shown in parentheses.

Cross- and autocorrelation patterns of macro- and microeconomic time series
data are shown in table V.2. The cross correlation is the correlation between
business cycle dynamics and lagged macroeconomic indicators as e.g. con-
sumption, unemployment, prices or investment. Business cylce dynamics
are measured as cyclical deviation of aggregate output from its long term
trend. The correlation patterns confirm procyclical patterns of consumption,
prices and investment and a countercyclical pattern of unemployment.

In figure V.1 plots of a Phillips and Beveridge curve using the simulated data
are shown. The Phillips curve exhibits a slightly negative relationship be-
tween inflation and unemployment. The Bereridge curve illustrates the neg-
ative association between the unemployment rate and the vacancy rate. Fig-
ure V.2 shows the relative volatility of output, consumption and investment
and output, vacancies and unemployment. It confirms that investment is
more volatile than consumption and output.
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TABLE V.2: Simulated cross correlation patterns

t-4 t-3 t-2 t-1 0 t+1 t+2 t+3 t+4
Output -.119 .238 .612 .895 1 .895 .612 .238 -.119

(.097) (.077) (.043) (.012) (0) (.012) (.043) (.077) (.097)
Consumption -.474 -.473 -.332 -.069 .253 .541 .71 .713 .557

(.056) (.067) (.078) (.075) (.063) (.056) (.055) (.052) (.054)
Unemployment .145 -.209 -.586 -.878 -.995 -.899 -.623 -.252 .107

(.096) (.077) (.045) (.015) (.008) (.014) (.043) (.077) (.097)
Vacancies -.148 .014 .207 .382 .490 .500 .411 .254 .076

(.079) (.075) (.092) (.120) (.139) (.137) (.116) (.087) (.072)
Price .021 .153 .274 .351 .362 .305 .198 .071 -.042

(.112) (.120) (.131) (.136) (.130) (.113) (.096) (.092) (.102)
Debt -.126 -.011 .124 .241 .309 .311 .250 .149 .041

(.126) (.131) (.128) (.117) (.103) (.09) (.085) (.088) (.094)
Inflation -.364 -.333 -.212 -.031 .157 .295 .35 .316 .218

(.081) (.078) (.079) (.087) (.099) (.105) (.101) (.091) (.086)
Productivity .116 -.022 -.176 -.302 -.363 -.341 -.245 -.108 .028

(.113) (.087) (.102) (.145) (.173) (.169) (.137) (.098) (.087)
Investment -.234 -.164 -.054 .070 .179 .246 .258 .219 .147

(.091) (.088) (.098) (.113) (.120) (.114) (.097) (.086) (.091)
Price eco -.130 -.262 -.335 -.327 -.240 -.106 .032 .134 .178

(.113) (.128) (.135) (.127) (.112) (.106) (.116) (.125) (.124)
Avg. wage .019 -.129 -.261 -.334 -.326 -.240 -.107 .031 .133

(.103) (.112) (.127) (.135) (.127) (.112) (.106) (.116) (.125)
Mark up -.164 .068 .313 .505 .588 .542 .386 .173 -.033

(.121) (.11) (.131) (.168) (.187) (.174) (.134) (.096) (.094)

This table shows cross correlation patterns in the volatility of macroe-
conomic time series with (lagged) business cycle dynamics, i.e. varia-
tion in aggregate output. All variables are measured as cyclical argu-
ment of the underlying time series. The first row corresponds to the
autocorrelation of a business cycle. The presented values are averages
of the run-wise correlations. In parentheses, the standard deviation

across simulation runs is shown.
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FIGURE V.1: Beveridge and Phillips curve.
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(B) Beveridge

These figures show a Phillips and Beveridge curve for a randomly
drawn simulation run. The data accounts for non-smoothed time se-
ries data covering the whole simulation period of roughly 60 years.

Outliers are removed from the data.

FIGURE V.2: Relative volatility of macroeconomic indicators
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These plots show the relative magnitude of fluctuations captured by
the cyclical argument of macroeconomic bandpass filtered time series
and measured as percentage. The shown series cover a 10 year period
at the end of the simulation horizon of a randomly drawn single run

out of the set of 210 simulation runs.
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Supplementary material II

Technical notes

This supplementary material is kept as a separately from the chapter appen-
dices because it contains information that applies to serveral chapters.

I General technical detail on statistical procedures

Data The data used in the regressions to explain transition patterns, for
example in tables 2.4, 2.3, 3.2, 3.2, 4.1, is one year average smoothed data.
Additional explanations about the analyses in chapter 2 are provided in the
chapter appendix 2.C.4. Observations are monthly snapshots captured at dif-
ferent iterations representing initial conditions and the final state. The inter-
vals used for smoothing range from [600, 820] and [14780, 15000] and cover
12 monthly snapshots. One month consists of t = 20 iterations interpreted as
working days.

The set of firms used for the regression analysis shown in table 4.B.2 and 4.1
is truncated. The data of firms exhibits the structure of an unbalanced panel
with entries and exits. The diffusion volatility is only meaningful if the full
life time of a firm is considered. Here, only firms are considered that survive
during the whole simulation horizon. For other dependent variables, the lack
of completeness is ignored.

Explanatory variables Conceptually, it is distinguished between explana-
tory variables and controls. Explanatory variables capture the properties of
competing technologies. Controls are not of major interest, but control for
differences between simulation runs and firms.

Core explanatory variables in capter 4 are interactive properties χint and dis-
tance χdist, initial relative maturity of the entrant βA, βB and policy instru-
ments θ, ςinv and ςcons. Policy instruments can be alternatively interpreted
as features of the socio-technical landscape (see 4.5.1). In the analysis of the
baseline scenario 4.B.1 and in chapter 3 the set of explanatory variables is
restricted to those that are available. Explanatory variables are included as
identities, squared and interaction terms. The procedure to select relevant
terms is explained below.
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In some analyses, a dummy variable 1(eco) is included to control for sys-
tematic differences across the two technological regimes. It is included as
identity capturing fix differences in the intercept and as interaction term with
explanatory variables to capture differences in the slope of explanatory vari-
ables. In chapter 2 it is included as fix identity of the emerging regime. In the
analyses in chapter 3 and 4, it is included through an instrumental variable
approach (IV) explained below.

Explanatory variables and controls in chapter 3 and 4 are normalized to ob-
tain quantitatively comparable coefficients. The data were demeaned and
scaled by division by the standard deviation. Normalization was made us-
ing the R-function scale() (R Core Team, 2018). This facilitates the quantitative
comparison of coefficients with some limitations that are due to the design of
the experiment. A longer discussion is available in the technical appendix of
(Hötte, 2019f).

Micro- and macroeconomic control variables The macroeconomic controls
included in the regression analyses at the macroeconomic level are the aggre-
gate stock of codified AV

c in t0 and the number of active firms as proxy for
the competitive environment. AV

c does not measure the difference in knowl-
edge stocks, but captures technological progress in general that occurred un-
til the day of market entry. Note that the differences in the levels of macroe-
conomic indicators capture differences between simulation runs that arose
until t0 = 600.

Firm-level microeconomic controls are firm-level stocks of tacit knowledge
Bc

i , the number of employees and output as proxies for firm size, and the
firm’s price. Bc

i is a proxy for the firm’s productivity and the price might be an
indicator for the firm’s future market performance and investment behavior.
This is discussed in more detail in (Hötte, 2019b).

Firm-level microeconomic controls are firm-level stocks of tacit knowledge
Bc

i , the number of employees and output as proxies for firm size, age, price
and unit costs.

Dependent variables The share of conventional capital νc
i,T can be directly

measured. Its rounded value is used in the Probit model.

The time until technological stabilization t∗i is defined as the last local ex-
tremum in the smoothed diffusion curve measured by νc

i,t. It is the last change
in the direction of the firm-level adoption behavior within a single simulation
run. After t∗i , firm i does not any longer switch between green and conven-
tional capital. At the macroeconomic level, the economy starts converging to
one of the two possible technological states. Due to the possibly non-smooth
behavior of the depreciation function at the firm-level, one-year average data
of νc

i,t is used to identify t∗i .
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Technological indicators evaluated at t∗i are interpreted as threshold lev-
els in the relative performance. These are measures for degree of techno-
logical divergence beyond which the direction of technological change is
trivial. The degree of divergence is measured by the ratio of productivity
α∗i = (A+

i,t∗/A−i,t∗) and skills β∗i = (Bc
i,t∗/B−i,t∗) comparing the superior + with

the inferior − technology. Superior is defined as the “winner” of the technol-
ogy race. If the green (conventional) technology dominates in T, the green
(conventional) technology is said to be the winner.

The data set used for the analyses of performance thresholds and the stabi-
lization time t∗i is truncated. In particular, all observations are removed in
which t∗i corresponds to the last or first observation. If t∗i coincides with the
day of market entry, the diffusion pattern is trivial because the technologi-
cal trajectory is clear from the beginning. The green technology does (not)
diffuse without any competitive race among the two technology types. This
may occur if barriers are prohibitively high that diffusion is prevented or
such low that diffusion is straightforward. If t∗i = 15000, diffusion did not
stabilize until the end of simulations and it is not necessarily clear whether
one of the two technologies won the race. Technological variables evaluated
at this point in time cannot be interpreted as performance thresholds. Some
additional discussion how about alternative procedures how to deal with
these irregularities in the data can be found in (Hötte, 2019f).

The variance (σν
i )

2 of the diffusion measure νc
i,t ∈ [0, 1] is computed for each

agent i over the whole simulation horizon for each single simulation run.
The variance is scaled by 100 because otherwise, it is numerically to small for
a proper computational analysis and subject to rounding errors. Note that
(σν

i )
2 is different from the standard deviation shown in the time series plots

(e.g. figure 4.2c) which is computed over a 2.5 year window.

Model selection procedure In chapter 3 and 4, the specifications of the re-
gression equations are chosen using a stepwise model selection procedure
based on the Bayesian Information Criterion (BIC). This procedure is imple-
mented in the R functions stepAIC() (stepGAIC() for Probit) (Stasinopoulos
et al., 2017; Venables and Ripley, 2002). A full set of pairwise interaction
terms for all explanatory variables (policy, barriers and spillovers) was in-
cluded in the input term for the stepwise model selection functions. The
functions return the model specification that is associated with minimum
BIC.

The OLS and Probit functions are mainly chosen for reasons of simplification.
One might be concerned about possibly better fitting assumptions about the
underlying distribution to be fitted. In additional analyses, a series of regres-
sion analyses was carried out using the R function fitDist() of the gamlss

package which may provide guidance for the selection of an appropriate
distribution function (Stasinopoulos et al., 2017). It sequentially regresses
the objective variable on a constant using different families of distribution.
Even if these analyses yielded a good fit and improved the fit remarkably
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when using macroeconomic aggregate data, I refrain from the use of these
automatically selected functions for mainly two reasons. First, the selected
distributions vary over different data sets. This impedes the comparability
across models. Second and related to the first concern, is the trade-off be-
tween precision and generalizability. The fit achieved with OLS and Probit is
sufficiently well. These models allow the comparison across experiments, are
more commonly known than exotic distributional families, the coefficients of
OLS are straightforward to interpret, and sufficiently fulfill the purpose to
illustrate the underlying theory.

Instrumental variable approach In some of the regression models, a
dummy variable that indicates whether a transition took place 1(eco) is in-
ncluded. Descriptive analysis of time series disaggregated by the type of
regime exhibit very different patterns, not only with regard to the outcome,
but also concerning the variation over time. This raises concerns about the
possible endogeneity of emerging regime. The type dummy may be subject
to reverse causation and may be correlated with the error term. In chapter
3 and 4, these concerns are addressed using an IV approach. Similar as be-
fore, the set of instruments and explanatory variables for the type dummy
are identified using an iterative BIC based model selection procedure and
ensuring that the number of instruments exceeds the number of explanatory
variables in the second stage regression.

To determine the set of instruments, a heuristic procedure based on a re-
peated BIC based model selection procedure was used. The model selection
procedure was performed separately at the first and second stage of the re-
gression using fitted type dummies as input at the second stage. All variables
that were excluded by the BIC on the second stage were included as instru-
ment on the first stage. The selection procedure is rather a heuristic, but not
analytically justified approach. It roughly ensures that the instrument is not
or only weakly related to the dependent variable in the second stage regres-
sion. Additional information is available in (Hötte, 2019f).

Transition boundaries A K-nearest neighbors clustering algorithm with a
given number of nearest neighbors was used to train the classification model
that is used to draw the transition boundary. This was made by the use of the
knn3() function of the R-package caret (Kuhn, 2018). The appropriate number
of nearest neighbors depends on the sample size and affects the smoothness
of the curve, but there is no analytical rule to determine the optimal number.
Here, 25 neighbors were used for macroeconomic data. The decision on the
number was based on a series of trials with different parameters. It was
found that the results are robust across different, non-extreme specifications.
The final decision is mainly based on aesthetic reasons, i.e. the boundaries
are relatively smooth.

The plots in chapter 3 and 4 show the transition boundaries in the space of
initial diffusion barriers (figure 3.4 and 4.3). Colors indicate the final regime
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type. For the training of the classification algorithm, initial barriers were
used to predict the type of the resulting technological regime.

Transparency and reproducibility The simulation model, all data and pro-
gramming code that was used for the simulation and statistical evaluation
of simulated data is available online as a separate data publication (Hötte,
2019g). The data publication also contains additional descriptive statistics,
figures, and additional statistical tests using alternative model specifications
and data processing procedures. The reader is also referred to the accompa-
nying working paper (Hötte, 2019f). For chapter 4, some additional analyses
were made that are not included in the data publication. These are available
upon request.



Abstract

Climate change is an existential threat but mitigation action is slow. This the-
sis searches an economic explanation for the sluggishness of technological
change and searches for strategies how the transition to low-carbon tech-
nologies can be facilitated.

Based on a theory of technological capabilities and learning, the thesis begins
with an analysis of diffusion barriers. Using the agent-based macroeconomic
model Eurace@unibi-eco, it is shown that the accumulation of technology-
specific knowledge can be a source of path dependence. Technological un-
certainty can be macroeconomically costly if learning and R&D resources
are wasted for a technology type that is obsolete in the long run. I demon-
strate that the effectiveness of diffusion policies is dependent on the type and
strength of diffusion barriers.

In the next part, it is analyzed how the transferability of technological knowl-
edge across technology types affects adoption decisions of individual firms.
I introduce the microfoundations of a model of technological learning. In a
simulation experiment, it is shown that the transferability may have ambigu-
ous effects. A high transferability accelerates the diffusion in the beginning
but it comes with the cost of technological uncertainty and retarded special-
ization in the long run.

Finally, these theoretical concepts are embedded in a general characterization
of competing technologies. This characterization reflects the properties of
technology in given socio-technical, external circumstances and the relative
maturity of an emergent entrant technology. I show how the characteristics
of competing technologies can explain the shape of emerging transition
pathways and discuss empirical examples. Policy may change the external
conditions of the technology race. In an experiment, it is shown that the
performance of different policy instruments depends on the properties of
competing technologies.

Keywords: Evolutionary macroeconomics; technology transition; green tech-
nology diffusion; agent-based model; absorptive capacity; technological
knowledge.



Résumé court en français

La lutte contre le changement climatique nécessite d’accélérer la transforma-
tion durable de l’économie. Cette dissertation de thèse cherche une expli-
cation économique à la lenteur du changement technologique ainsi que des
stratégies permettant de le faciliter.

Basée sur une théorie des capacités technologiques et de l’apprentissage, la
thèse débute par une analyse des obstacles à la diffusion. Avec le mod-
èle de simulation Eurace@unibi-eco, je montre dans un premier temps que
l’accumulation des connaissances technologiques peut être source de dépen-
dance au sentier, puis que l’incertitude technologique est économiquement
coûteuse si les ressources d’apprentissage et de R&D sont gaspillées dans
une technologie qui s’avère être obsolète à long terme. Enfin, je prouve que
l’efficacité des politiques visant à propager une technologie dépend du type
et de l’intensité des obstables à la diffusion.

Ensuite, j’examine les effets de la transférabilité des compétences d’une tech-
nologie à l’autre sur les décisions d’adoption de ces technologies par des en-
treprises individuelles. J’introduis un modèle d’apprentissage avec des fon-
dations microéconomiques. Lors d’une expérience de simulation, je montre
que la transférabilité a des effets ambigus. Une transférabilité forte accélère
la diffusion initiale, mais elle est associée à une incertitude technologique et
à un retard de spécialisation technologique à long terme.

Pour finir, je développe une taxonomie caractérisant des technologies con-
currentes. Cette caractérisation reflète les particularités d’une technologie en
prenant en compte le contexte sociotechnique, les circonstances extérieures
ainsi que la maturité relative de la nouvelle technologie émergente. Je
montre comment les caractéristiques de technologies concurrentes peuvent
expliquer différentes trajectoires de transitions émergentes et je présente des
exemples empiriques. Une mesure politique peut affecter ces circonstances
extérieures. Lors d’une expérience de simulation, je montre comment
l’efficacité de différents instruments politiques dépend des caractéristiques
des différentes technologies concurrentes.

Mots clés: Macroéconomie évolutionniste; transition technologique; diffu-
sion des technologies vertes; modèle multi-agent; capacité d’absorption de
technologie; connaissances technologiques.
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