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ABSTRACT

Animal behaviour can lead to varying levels of risk, and an individual’s physical condition can alter the potential costs and
benefits of undertaking risky behaviours. How risk-taking behaviour depends on condition is subject to contrasting
hypotheses. The asset protection principle proposes that individuals in better condition should be more risk averse, as
they have higher future reproductive potential (i.e. more to lose). The state-dependent safety hypothesis proposes that
high-condition individuals that are more likely to survive and maximise the benefits of risky situations may make appar-
ently riskier choices, as their individual risk is in fact lower. We systematically searched for studies that experimentally
manipulated animals’ nutritional or energetic condition through diet treatments, and subsequently measured risk-taking
behaviour in contexts relating to predation, novelty and exploration. Our meta-analysis quantified condition effects on
risk-taking behaviour at both the mean and variance level. We preregistered our methods and hypotheses prior to con-
ducting the study. Phylogenetic multilevel meta-analysis revealed that the lower-nutritional-condition individuals
showed on average ca. 26% greater tendency towards risk than high-condition individuals (95% confidence interval:
15–38%; N = 126 studies, 1297 effect sizes). Meta-regressions revealed several factors influencing the overall effect, such
as the experimental context used to measure risk-taking behaviour, and the life stage when condition was manipulated.
Meta-analysis of variance revealed no clear overall effect of condition on behavioural variance (on average ca. 3%
decrease in variance in low- versus high-condition groups; 95% confidence interval: −8 to 3%; N = 119 studies, 1235
effect sizes), however, the experimental context was an important factor influencing the strength and direction of the var-
iance effect. Our comprehensive systematic review and meta-analysis provide insights into the roles of state dependency
and plasticity in intraspecific behavioural variation. While heterogeneity among effect sizes was high, our results show
that poor nutritional state on average increases risk taking in ecological contexts involving predation, novelty and
exploration.
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I. INTRODUCTION

Animals often must gamble with their lives, with behavioural
decisions frequently involving trade-offs between resource
acquisition, reproduction and survival. Many of those deci-
sions have to be made in the face of incomplete information
or inherent stochasticity in the outcome. Some behaviours
are thus inherently ‘risky’ (defined as involving high outcome
variance), and promise large gains, but also the potential of
large losses (Barclay, Mishra, & Sparks, 2018). The concept
of risk may be applied broadly in animal ecology
(e.g. participation in aggressive contests, reproductive invest-
ment decisions, etc.), and is often used in contexts where the
outcome is unpredictable (e.g. responses to novelty, sensu
boldness; White et al., 2013) or contexts with a high relative
likelihood of death (e.g. predator responses; Réale et al.,
2007). When to engage in risky behaviours is an important
decision in an individual’s life, and thus an important
research topic in behavioural ecology. State variables, such
as individual condition, can modify the costs and benefits of
risk taking (Luttbeg & Sih, 2010). State dependency of behav-
iour is an important driver of among-individual variation in
behavioural traits (Sih et al., 2015; Niemelä & Dingemanse,
2018; Moiron et al., 2019), but its specific relationship to risk
taking is subject to unresolved competing hypotheses.

Individual condition, considered here as variation in nutri-
tional or energetic state, can lead to differences in morpho-
logical, behavioural and cognitive traits among individuals
(Borcherding & Magnhagen, 2008; Buchanan, Grindstaff, &
Pravosudov, 2013; Han & Dingemanse, 2015), which can
subsequently affect risk taking in different ways. Animals in
high condition might be risk averse, as these individuals have
much to lose in terms of future reproductive potential (the
‘asset-protection principle’; Ludwig & Rowe, 1990; Clark,
1994), whereas individuals in low condition have more to
gain in terms of improved condition, elevated competitive-
ness, and starvation avoidance, particularly when an individ-
ual is relatively close to their starvation threshold [Dall &
Johnstone, 2002; Luttbeg & Sih, 2010; also known as the

‘needs-based’ explanation (Barclay et al., 2018)]. Contrast-
ingly, the ‘state-dependent safety’ hypothesis (also known as
the ‘ability-based’ explanation) predicts that individuals
may appear to take greater risks where they are able to sur-
vive better and maximise the benefits of engaging in risky
behaviours, as they individually experience a lower level of
risk (Barclay et al., 2018). State-dependent safety might apply
if improved condition allows greater investment in physical
and/or cognitive capabilities (e.g. increased vigour and/or
ability to evade or defend against predation) that reduce
the level of risk for the individual (as in Temple, 1987).
Risk taking can depend on the current and/or past condi-

tion of an individual, and physical condition in early life may
have a disproportionate effect on risk-taking behaviour. For
example, individuals may be developmentally primed to
engage in risky behaviours when those behaviours were
favoured early in life (Zimmer et al., 2017), and poor early-life
environments may drive greater risk taking in adults as a way
to compensate for their poor start (Krause & Caspers, 2016).
Conversely, a favourable nutritional environment during
development in particular can increase investment in traits
that improve future survival and fitness, such as defensive
or competitive morphologies, or cognitive ability
(Luttbeg & Sih, 2010; Buchanan et al., 2013). This might
allow greater risk taking if those traits provide an advantage
in certain risky contexts by altering effective risk levels, for
example if high-condition individuals are better protected/
less vulnerable than low-condition individuals in the same sit-
uation. Theoretical support for any one directional-state
effect on risk taking is mixed, and studies show that the out-
come may depend on environmental conditions, such as
overall resource availability or acuteness of the risk factor
(Luttbeg & Sih, 2010; Engqvist, Cordes, & Reinhold,
2014). Empirical results are similarly mixed, and thus it
remains unknown if there are any generally applicable effects
of condition on risk-taking behaviour, or the ecological con-
text in which any one hypothesis applies.
Regardless of the hypothesis, condition effects on risk tak-

ing are often framed as adaptive responses to variation in an
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individual’s future fitness expectations [as in Clark (1994) and
Wolf et al. (2007)]. The key proposition is that decisions to
take risks are related to variation in state, where an individ-
ual’s state includes all intrinsic and extrinsic factors strategi-
cally relevant to their fitness (Wolf & Weissing, 2010).
State-dependent responses due to nutritional condition may
have interactive effects with other state variables, such as
life-history differences within or among species
(McNamara & Houston, 1996). For example, sex is a form
of state variation involving differences in reproductive roles,
which may alter male and female responses to poor dietary
conditions (Han & Dingemanse, 2015). In some cases, males
could be more sensitive to condition due to condition-
dependent sexual selection, but in other cases, females may
be more sensitive to condition since they often bear a dispro-
portionate energetic burden of reproduction (Houslay et al.,
2015; English & Uller, 2016). Similarly, interspecific differ-
ences in longevity may influence behavioural responses, since
long-lived species generally have a larger future reproductive
asset and/or more future opportunities to improve their own
condition, and thus might be less willing to display risky
behaviour (Clark, 1994).

A subset of ecological contexts where variation in risk-
taking behaviour can apply are those involving trade-offs
between resource acquisition and (implied or direct) preda-
tion risk, which are often used in connection with the concept
of ‘boldness’. For example, responses to novelty involve
inherently high outcome variance, as the potential benefits
and dangers of novel situations are unknown to the individ-
ual. Furthermore, greater activity or exploration increases
the likelihood of both finding new resources or habitat
patches, and encountering predators (Réale et al., 2007;
Wohlfahrt et al., 2007). Risk taking is therefore often quanti-
fied in assays involving the presence of predators directly or
via predation cues, which emphasise the risk of mortality
(Moschilla, Tomkins, & Simmons, 2018). Furthermore, some
studies manipulate the outcome variance of foraging-related
behaviour directly (Andrews et al., 2018). Studies of risk-
taking behaviour across a variety of contexts have shown
different responses, for example between predator and
novel-object experimental setups (Carter et al., 2012), or
between emergence into a novel environment and startle
responses (Beckmann & Biro, 2013). As such, condition
effects on behaviour are expected to vary across experimen-
tal contexts. For example, state-dependent safety may be
more relevant to predator responses, if individuals that are
subject to high-condition treatments are able to become less
vulnerable to predation.

Thus far, most studies have focused on mean behavioural
effects of condition (i.e. higher or lower levels of risk taking).
There has, however, been growing interest in individual-level
variation in recent years (Westneat, Wright, & Dingemanse,
2015), and new tools to meta-analyse variances alongside
means are revealing that meta-variance effects may be both
prevalent and often overlooked (Nakagawa et al., 2015).
While a recent meta-analysis of variance has shown that diet
restriction can increase variation in longevity (Senior et al.,

2017), another has shown little evidence of environmental
stress (including diet restriction) effects on phenotypic beha-
vioural variance (Sánchez-Tójar et al., 2020). Furthermore,
case studies have shown increased within-individual beha-
vioural variation in high-condition animals, via an increased
capacity to express behavioural plasticity (Royauté &
Dochtermann, 2017; Royauté et al., 2019). Conversely, it is
conceivable that extremely poor conditions may lead to the
expression of cryptic genetic variation, and thus increased
variation in state and behaviour among low-condition indi-
viduals. However, if a high-risk strategy is the only viable
option for acquiring adequate resources in a poor environ-
ment, individuals (including low-condition individuals) may
converge on a high-risk phenotype (Han & Dingemanse,
2017b). Overall, condition-dependent effects on the variance
in risky behaviours are likely present, but currently are diffi-
cult to predict in direction and magnitude.

We here present a systematic review and meta-analysis of
studies that experimentally manipulated individual nutri-
tional or energetic condition through diet quality or quantity
treatments, and independently quantified risk-taking behav-
iours such as exploration, and predation and novelty
responses. Specifically, we address six questions, which we
preregistered prior to the study (see Section II.1).

(1) Do nutritional-condition manipulation treatments
have an overall effect on mean risk-taking behaviour?
We did not predict a clear non-zero overall effect,
but instead expected high heterogeneity among effect
sizes resulting from the various contexts in which risk
is measured and the multiple mechanisms that may
drive condition effects on risk taking.

(2) Is the effect of nutritional condition on mean risk-
taking behaviour context dependent? We expected
low-condition treatment groups to show increased
risk-taking behaviour in both foraging and feeding
contexts (starvation-avoidance effect), but reduced
risk-taking behaviour in predator-response contexts
(state-dependent safety effect). Across the remaining
contexts (e.g. novel environment exploration, novel
object response), we predicted high-condition treat-
ment groups to show reduced risk-taking behaviour
(asset-protection effect).

(3) Does nutritional condition have differential effects on
mean risk-taking behaviour in males and females?
We did not predict an overall difference between
males and females, due to the high heterogeneity in
sex-based ecological differentiation across species.
However, sex-specific differences in behaviour are
widespread, and thus should be quantified.

(4) Does nutritional condition at different life stages have
differential effects on mean risk-taking behaviour?
We expected that early-life treatments would have a
greater effect on mean risk-taking behaviour than
late-life treatments, as early-life treatments may affect
mean risk-taking behaviour through both develop-
mental and state-dependent behavioural plasticity.
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(5) Does the life history of a species determine how nutri-
tional condition affects risk-taking behaviour? We
expected that a species’ maximum lifespan, a key life-
history measure, would influence the condition effect
on risk taking. According to the asset protection princi-
ple, longer-lived species should be less willing to dis-
play risky behaviour (Clark, 1994).

(6) Does nutritional condition affect the amount of total
variation in risk-taking behaviour within high- and
low-condition treatment groups? We did not predict
an overall clear variance effect between high- and
low-condition experimental groups, however, as for
hypotheses 1 and 2, we predicted variance effects to
show high heterogeneity and context dependence.

In addition to the hypotheses above, we conducted the fol-
lowing exploratory (i.e. not preregistered) analyses to test for
an effect of: (i) manipulation type, e.g. quantity, quality or
starvation treatment; (ii) manipulation direction,
e.g. restriction, enrichment, or combined; (iii) manipulation
duration relative to maximum longevity; and (iv) whether
study subjects were reared in the laboratory or the wild.

II. METHODS

(1) Protocol

Study protocols (research questions, a priori hypotheses,
search methods and planned analyses) were registered prior
to data collection to enhance the objectivity of our analyses
and conclusions (see preregistration at https://osf.io/
xgrkz/). Non-preregistered analyses are hereafter labelled
as exploratory. This review was conducted following
PRISMA reporting guidelines (Moher et al., 2009; for
PRISMA records see online Supporting Information,
Appendix S1, and Open Science Framework repository
https://osf.io/3tphj/).

(2) Systematic review and data collection

Database searches were conducted in Web of Science Core Col-

lection and Scopus, with a search query designed to identify
studies involving both diet manipulations
(e.g. “*nutrition*”, “calori*”, “bod* condition*”) and risk-
taking experiments (e.g. “bold*”, “risk*”, “novel*”, “pre-
dat*”) within animal behaviour and behavioural ecology
(e.g. “personalit*”, “temperament*”, “behavio* type*”,
“risk taking behavio*”). For full search strategy see Appendix
S2).

We screened records to find original experimental studies
that manipulated the condition of animals in independent
treatment groups through their diet, via both dietary quantity
(i.e. partial restriction, complete deprivation or enrichment)
or quality treatments (e.g. protein restriction or enrichment),
and including both short-term and longer-term manipula-
tions up to extended periods of weeks to months. We

screened for studies that then subjected those animals to
behavioural observations in contexts relating to risk
(e.g. novel environments, novel object, risk-sensitive forag-
ing, predator response) in independent trials (for inclusion
and exclusion decision trees see Appendix S1). Our aim
was to test for adaptive condition-dependent behavioural
responses in non-human animals, therefore we excluded
studies using species with compromised genetic diversity
and/or evolved adaptive responses (e.g. domesticated ani-
mals, laboratory breeds, genetically modified organisms; as
per Kelly et al., 2018) as well as studies on humans. Studies
manipulating the micronutrient content of diets, or subject-
ing animals to high-fat diets were also excluded as the
relationship between these diet manipulations and body con-
dition is not clear and was considered beyond the scope of
this review. Dietary treatments were excluded as ‘non-inde-
pendent’: (i) where the behaviour was measured in the pres-
ence of high and low food availability, or dietary treatments
such as periods of deprivation were applied within the novel
environment (i.e. non-independence of treatments from the
behavioural assay); (ii) where the dietary treatments were
coupled with additional non-dietary factors (e.g. tempera-
ture; i.e. non-independence of the diet factor within treat-
ments); or, (iii) the dietary treatments were applied
longitudinally (within individuals) rather than cross-
sectionally (i.e. non-independence between high and low
treatments).
After the removal of duplicates, the title and abstract

screening of 5453 records, and the full-text screening of
641 published papers were conducted by two authors (N.P.
M. 100%, A.S.-T. 25% at both stages) to ensure reliability.
Title and abstract screening were carried out using Rayyan
(Ouzzani et al., 2016), from which 626 references were
selected for full-text screening. Title and abstract screening
resulted in only 67/1377 (4.9%) conflicted decisions between
observers, confirming high inter-screener agreement. All
conflicted decisions were resolved collectively by both
screeners. A few additional references that were not captured
by our search but were identified from different sources were
also included for full-text screening (‘non-systematic’ records,
N = 15). Data from five of these papers were included in the
final analysis, therefore we conducted a sensitivity analysis to
test the potential effects of these additional five references by
re-fitting the main effects models without these effect sizes.
The results remained very similar (see Appendix S3). Full-
text screening of 641 papers resulted in 5/160 (3.1%) con-
flicted decisions (i.e. where one screener included a reference,
and the other excluded it), that were resolved collectively by
both screeners. Full-text screening identified 147 studies
meeting the experimental design criteria for inclusion (see
https://osf.io/3tphj/ for full-text screening decision data-
base ‘CD_FulltextScreeningDatabase.xlsx’, and Appendix
S1 for the PRISMA diagram and the decision tree summar-
ising the full-text exclusion reasons).
Data were extracted as comparisons between the low-condi-

tion groups (i.e. the treatment group for diet-restriction treat-
ments, or the control group for diet-enrichment treatments)
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and the high-condition groups (i.e. the control group for diet-
restriction treatments, or the treatment group for diet-
enrichment treatments). Extractions were conducted by
N.P.M. with data extracted from figures where necessary
using theR package ‘metaDigitise’ v1.0.0 (Pick, Nakagawa, &
Noble, 2019). Data required to calculate effect sizes were (i)
group means and (ii) estimates of uncertainty [standard error
(SE), confidence intervals] or variability [standard deviation
(SD)] in combination with sample sizes (N) for the beha-
vioural variables of interest. Full or partial extraction of rele-
vant data was possible from the published material of
118 studies (80.2% of all studies included after full-text
screening). To recover missing or partially reported data,
the corresponding authors of 72 studies were contacted via

a standardised author correspondence email, such that
395 (29.6%) of 1334 effect sizes in the full final data set were
obtained via author correspondence. Data from 25% of
included papers (37 papers) were re-extracted by an indepen-
dent observer to ensure data reliability. Of 1420 re-extracted
values, errors requiring correction were identified in only six
values (0.4%) affecting only two effect sizes included in the
final analyses.

(3) Effect size calculation

We analysedmean effects using the log response ratio of group
means (lnRR; Hedges, Gurevitch, & Curtis, 1999), instead of
Cohen’s D or Hedges’ g, as lnRR is less sensitive to heterosce-
dasticity. Variance effects were analysed using the log coeffi-
cient of variation ratio (lnCVR), as this effect size, unlike log
ratio of variances (lnVR), is less sensitive to potential mean–
variance correlations (Nakagawa et al., 2015). Both ratios were
calculated using low condition over high condition, such that a pos-
itive effect size represents higher risk taking or larger variance
in risk taking in low-condition animals, respectively (effect sizes
calculated via R package ‘metafor’ version v2.1-0; Viecht-
bauer, 2010). Tomaintain consistent directionality, effect sizes
were reversed for a subset of lnRR effect sizes where lower
values reflected higher-risk behaviours (e.g. latency to emerge
from a shelter, distance from a predator, etc.). Since lnCVR
directionality is independent of the mean, sign reversals were
not required. To assess if our choice of effect sizes affected
our conclusions, main effects analyses were also run using
alternative effect sizes for mean [standardised mean difference
with heteroscedasticity correction (SMDH); Bonett, 2009],
and variance (lnVR; Nakagawa et al., 2015). Conclusions
remained robust (see Appendix S4 for details).

(4) Data analysis – main-effects models

Two multilevel intercept-only meta-analytic models were
fitted for each effect size, testing for a general effect of condi-
tion treatments on risk-taking behaviour at a mean and var-
iance level (using the function ‘rma.mv’ from the R package
‘metafor’ v2.1-0; Viechtbauer, 2010). Phylogenetic and
non-phylogenetic models were fitted to investigate whether
non-independence due to the degree of relatedness between

species influenced both the overall effects and their level of
uncertainty. Phylogenetic relatedness was estimated based
on existing phylogenies and taxonomic information from
the Open Tree of Life, and any polytomies were resolved
by randomisation [Hinchliff et al., 2015; via R package ‘rotl’
v3.0.7 (Michonneau, Brown, & Winter, 2016); for the final
phylogenetic tree see Appendix S5]. Branch lengths were
estimated using Grafen’s method [Grafen, 1989; via R pack-
age ‘ape’ v5.3 (Paradis & Schliep, 2019)], and were used to
construct a phylogenetic variance–covariance relatedness
matrix.

In addition to phylogeny, we included other random
effects in our models to account for non-independence due
to the use of the same species across studies (SpeciesID), mul-
tiple effect sizes taken from the same study (StudyID), and
multiple effect sizes taken from the same experimental group
of animals within the same behavioural experiment
(ExperimentalID). A unit-level random effect (EffectID) was
also included to estimate residual heterogeneity. For a subset
of effect sizes, an experimental group was compared to mul-
tiple treatment groups (i.e. shared-control non-indepen-
dence). Sampling variances were modelled as variance–
covariance matrices that accounted for correlated sampling
variances due to the shared group designs, and were con-
structed following Lajeunesse (2011; for estimation methods
see Appendix S4).

A subset of studies used a crossed factorial experimental
design by applying an additional treatment factor
(e.g. diet × temperature treatments; juvenile × adult dietary
treatments, etc.). To avoid including variance associated with
the additional treatment factor in our analysis, we combined
groups across the treatment factor that was not of interest to
us (e.g. low condition/low temperature and low condition/
high temperature). Groups were combined by calculating
marginalised means and SDs (following equations for pooled
means and SDs from J.L. Pick, N. Khwaja, M.A. Spence,
M. Ihle & S. Nakagawa, in preparation).

For main-effects models, we investigated total, residual
and random-effect specific relative heterogeneity by calculat-
ing I2 values [Nakagawa & Santos, 2012, via R package
v0.0.0.9000 ‘MetaAidR’ (Noble, 2019)], and estimated abso-
lute heterogeneity Q. For moderator models, we calculated
the percentage of heterogeneity explained by the inclusion
of moderators in each model R2

marginal [Nakagawa & Schiel-
zeth, 2013; via function ‘r2_ml’ in R package ‘oRchard’
(Nakagawa et al., 2020)], the residual heterogeneity QE, and
moderator-specific heterogeneity QM (i.e. an omnibus test
of coefficients as implemented in the function ‘rma.mv’ via
R package ‘metafor’ v2.1-0; Viechtbauer, 2010). Where
applicable, estimates are presented with 95% confidence
intervals in square brackets (hereafter simply referred to as
‘confidence interval’).

(5) Data analysis – hypothesis-testing models

All hypotheses were tested using phylogenetic multilevel
meta-regression models for both lnRR and lnCVR including
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random effects as above (for detailed descriptions of all mod-
erators used for hypothesis-testing models see Appendix S6).

First, we included a categorical moderator (RiskContext) to
test if effects were context dependent by classifying beha-
vioural variables by both the functional context of the exper-
iment (e.g. assays involving predators or predator cues, novel
objects, novel environments, etc.; Luttbeg & Sih, 2010) and
the specific behavioural measurements (e.g. activity levels,
areas explored, willingness to feed and forage, shoaling ten-
dencies, etc.; for descriptions of all categories see Appendix
S6). Second, a categorical moderator (Sex) tested for differ-
ences between male and female experimental groups. Effect
sizes were calculated separately for males and females where
sufficient data were available, otherwise effect sizes were
categorised as mixed (i.e. groups including both sexes), or
unknown (i.e. no information about the sex of study subjects).
Third, a categorical moderator (ManipLifeStage) tested for an
effect of life stage at the time of the treatments, with the level
of maturity during diet manipulations categorised as juve-
nile, adult, both (i.e. for treatments spanning both periods),
or unknown/mixed. If the paper did not present sufficient
information to determine the subject’s life stage, this was
inferred from the available information (e.g. age, average
length, mass, etc.) where possible. If life stage could not be
reasonably inferred or if groups may have included both
juvenile and adult individuals, these were classed together
as mixed/unknown. Since treatments in juveniles may have
been imposed a longer time before behavioural testing
(e.g. early-life diet treatments with adult behavioural testing)

relative to adult diet treatments, life-stage models also
included the time between condition treatment(s) and beha-
vioural experiments relative to the species’maximum longev-
ity as a continuous moderator (RelativeTimeFromTreatment.C).
Finally, to assess the role of life-history variation among spe-
cies, we separately tested for effects of maximum lifespan
(MaxLongevity.C) and the natural logarithm of maximum life-
span (lnMaxLongevity.C) as continuous moderators. Log-
transformed lifespan was used to capture the variability in
lifespan better among species, as estimates for included spe-
cies were heavily biased towards short lifespans. Lifespan esti-
mates were obtained from online databases (AnAge,
genomics.senescence.info; FishBase, fishbase.se; Animal
Diversity Web, animaldiversity.org; Longevity Records,
demogr.mpg.de/longevityrecords). If no estimates were
available, ad hoc searches for lifespan estimates from primary
literature were conducted via Google Scholar. Where available,
sex-specific and wild/captive-specific longevity estimates
were used. Continuous moderators were z-transformed to
aid interpretation (Schielzeth, 2010).

(6) Data analysis – publication bias tests

Several meta-regression models were used to assess our lnRR
data set for evidence of publication bias (for all included
moderators and descriptions see Appendix S6).
First, the precision of each effect was included as a moder-

ator, calculated as the square root of the inverse sampling
variance (Precision; a variant of an Egger’s regression based

Table 1. Main-effects models estimates, with random-effect specific heterogeneity estimates (I2) expressed as percentages, and Q-test
for absolute heterogeneity among effect sizes (Q). Square brackets represent 95% confidence intervals. Round brackets represent 95%
prediction intervals, that is the range within which 95% of future or unknown effects are likely to fall. Positive log response ratio (lnRR)
and log coefficient of variation ratio (lnCVR) effects represent higher either risk taking or variance in risk taking in low-condition
animals, respectively. k is the number of effect sizes used in each model

Effect size k
Mean
effect

I2Experiment

ID (%)
I2Study

ID (%)
I2Species

ID (%)
I2Phylogeny
(%)

I2Effect

ID (%)
I2Total (%) Q

lnRR (non-
phylo)

1297 0.23
[0.15,
0.32]

(−0.90,
1.36)

20.2
[17.1–23.3]

7.8
[6.0–9.8]

24.2
[19.3–29.6]

— 45.8
[41.9–49.8]

98.0
[97.8–98.1]

25864.30
P < 0.0001

lnRR (phylo) 1297 0.23
[0.09,
0.38]

(−0.91,
1.37)

19.8
[16.9–22.9]

7.8
[5.9–9.8]

22.0
[17.2–26.9]

3.4
[2.5–4.4]

45.3
[41.5–49.0]

98.0
[97.8–98.2]

25864.30
P < 0.0001

lnCVR (non-
phylo)

1235 −0.03
[−0.09,
0.03]

(−0.78,
0.72)

11.6
[9.7–13.6]

21.6
[17.4–26.2]

0.0
[0.0–0.0]

— 28.0
[25.8–30.3]

61.2
[58.8–63.6]

2543.32
P < 0.0001

lnCVR
(phylo)

1235 –0.03
[−0.09,
0.03]

(−0.78,
0.72)

11.6
[9.7–13.5]

21.6
[17.4–26.0]

0.0
[0.0–0.0]

0.0
[0.0–0.0]

28.0
[25.7–30.2]

61.2
[58.8–63.5]

2543.32
P < 0.0001
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on Nakagawa & Santos, 2012), to test for small-study bias.
Next, time-lag bias was tested using the year of publication
as a continuous moderator (Year.C); a commonly observed
trend is a decrease in effect size over time (Jennions &Møller,
2002; Sánchez-Tójar et al., 2018). For both the precision and
time-lag models, a limited data set excluding effect sizes
obtained through author correspondence was used so that
we specifically tested for effects of publication bias in pub-
lished material. Finally, using the full data set, we used a cat-
egorical moderator to test whether effect sizes were larger in
studies with partial or incomplete reporting of results (Effect-
SizesFromPublication; i.e. complete, partial or none; where
none refers to studies where all effect sizes had to be obtained
via author correspondence). In addition, funnel plots were
produced using lnRR and precision for a visual assessment
of funnel asymmetry (Nakagawa & Santos, 2012; for plots
see Appendix S7). As there appeared to be some evidence
of publication bias, we also calculated fail-safe N to test the
robustness of our results (function ‘fsn’, R package ‘metafor’

v2.1-0; Viechtbauer, 2010; see Appendix S7). Publication
bias tests were not conducted for lnCVR, as the overwhelm-
ing majority of papers were focused on effects at the mean
behavioural level, with very few testing for effects on beha-
vioural variance, so we did not expect publication bias for
lnCVR.

(7) Data analysis – exploratory models

Additional exploratory analyses (i.e. not preregistered) were
included to test whether differences in the experimental
designs of included studies influenced the results of both
lnRR and lnCVR (for moderators and descriptions see
Appendix S6).

We tested a categorical moderator based on the differing
types of diet manipulation included in our analysis (Manip-

Type). This included quantity (where the amount of food
ration/food access differed between groups), starvation
(where one group was entirely deprived of food for an
extended period), quality (where the nutritional content of
food differed between groups) or combined (where both
quality and quantity was manipulated in the same treatment
group). Since our main models compared low- versus high-
condition treatment groups regardless of whether diets corre-
sponded to restriction or supplementation treatments, we
also explored potential effects of this by including a categor-
ical moderator (ManipDirection). This categorised treatments
as restriction (where low-condition groups were restricted rel-
ative to high-condition/control groups), supplementation
(where high-condition groups were enriched relative to low-
condition/control groups), and dual (where both the low-
condition group was restricted and the high-condition group
was enriched from standard conditions). To explore how the
duration of diet treatments influenced the outcome, a contin-
uous moderator (RelativeManipDuration.C) was defined as the
time that the treatment was applied as a proportion of the
maximum lifespan of the species. Finally, the influence of
the source of the study subjects was tested using a categorical
moderator (WildLabRear; wild, laboratory, commercial or
mixed).

III. RESULTS

(1) Main-effects models

LnRR and lnCVR effect sizes could be obtained from
126 and 119 studies, respectively (for full database, see
Appendix S8). Intercept-only models showed a significant
positive effect for lnRR, with the mean estimate correspond-
ing to a 26% increase in risk-taking behaviour in animals sub-
ject to low-condition treatments compared to those from
high-condition treatments (non-phylogenetic method:
lnRR= 0.23 [0.15–0.32], phylogenetic method: lnRR= 0.23
[0.09–0.38]; Table 1, Fig. 1). For lnCVR the overall estimate
was small, negative and the confidence intervals overlapped
zero substantially (lnCVR = −0.03 [−0.09 to 0.03];

Fig 1. Phylogenetic (black circles) and non-phylogenetic (white
circles) meta-analytic means for log response ratio (lnRR) and
log coefficient of variation ratio (lnCVR) with 95% confidence
intervals, showing higher mean risk taking in animals subject
to low-condition treatments compared to high-condition
treatments, but similar behavioural variation between them.
k is the number of effect sizes used in each model.
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Table 1, Fig. 1). As phylogeny failed to resolve any heteroge-
neity in lnCVR, the estimates from the phylogenetic and
non-phylogenetic models were identical.

(2) Hypothesis-testing models

The magnitude of lnRR was influenced by the experimental
context, with the RiskContext moderator explaining a large
amount of heterogeneity among effect sizes (R2

mar-

ginal = 8.96%; Table 2). Although most context-specific confi-
dence intervals overlapped with zero, all the mean estimates
were positive (Table 3). The highest estimates were found for
behaviours relating to feeding under predation (lnRR = 0.75
[0.53–0.97]), feeding in a novel environment (lnRR = 0.36
[0.20–0.52]), and shoaling in a novel environment
(lnRR = 0.37 [0.06–0.67]; Table 3; Fig. 2A). The risk context
also explained a large amount of heterogeneity in lnCVR
(R2

marginal = 8.58%; Table 4), and the confidence intervals of
some context-specific effects did not overlap with zero, includ-
ing refuge use in a novel environment (lnCVR = 0.18 [0.04–
0.31]), feeding in a novel environment (lnCVR = −0.16
[−0.25 to –0.07]), and, dispersal/migration decisions
(lnCVR= −0.49 [−0.86 to –0.11]; Table 5; Fig. 2B), showing
a reduction in total variance in low- versus high-condition treat-
ments in those specific risk contexts.

Sex appeared to have some effect on lnRR (Table 2), but
there was little evidence for an effect on lnCVR (Table 4).
The lnRR estimates were positive but the confidence inter-
vals slightly overlapped with zero for both females
(lnRR = 0.15 [−0.03 to 0.33]) and males (lnRR = 0.12
[−0.06 to 0.30]), while effects were strongest for mixed-
(lnRR = 0.34 [0.06–0.61]) and unknown-sex groups
(lnRR= 0.29 [0.13–0.45]; Fig. 2C). Life stage also influenced
lnRR (Table 2), and less clearly also lnCVR (although this
model showed a relatively high R2

marginal = 5.28%, Table 4).
Life-stage-specific estimates for lnRR were lowest and over-
lapping zero in adult treatments (lnRR = 0.12 [−0.06 to
0.30]), and strongest for treatments that spanned both the
juvenile and the adult life stage (lnRR = 0.45 [0.17–0.73];
Table 3; Fig. 2E). Life-stage effects on lnCVR showed a neg-
ative estimate for juvenile treatments (lnCVR = −0.08
[−0.16 to 0.00]), and a positive effect, that is an increase in
behavioural variance in low-condition treatments, when
treatments spanned both the juvenile and the adult life stage
(lnCVR = 0.18 [0.01–0.35]; Table 5; Fig. 2F). Untrans-
formed maximum lifespan did not appear to influence lnRR
(0.00 [−0.08 to 0.09]). However, log-transformed lifespan
showed a positive lnRR effect, with its confidence intervals
only slightly overlapping with zero (0.15 [−0.01 to 0.30];
Tables 2, 3) and did explain a relatively high percentage of
heterogeneity (R2

marginal = 5.73%; Table 2). Neither lifespan

Table 2. Hypothesis testing, publication bias and exploratory moderators for log response ratio (lnRR) models, with Q-test for
residual heterogeneity (QE), moderator explained heterogeneity (QM), and the estimated percentage of heterogeneity explained by the
moderators (R2

marginal). Numbers preceding hypotheses refer to the a priori hypotheses described in Section I

Hypothesis (model)
Effect
size

k Moderator(s)
QE

(residual)
QM

(moderator)
R2

marginal

(%)

Hyp. 2. Context dependency of
risk (rr.Full.h2)

lnRR 1297 RiskContext 14657.13
P < 0.0001

79.38 ***
P < 0.0001

8.96

Hyp. 3. Sex difference in risk
taking (rr.Full.h3)

lnRR 1297 Sex 24006.28
P < 0.0001

15.80 **
P = 0.0033

1.97

Hyp. 4. Effects across life stages
(rr.Full.h4)

lnRR 1214 ManipLifeStage + RelativeTimeFromTreatment.
C

16753.80
P < 0.0001

21.20 ***
P = 0.0004

3.76

Hyp. 5(i). Life-history effects (rr.
Full.h5.i)

lnRR 1214 MaxLongevity.C 23933.71
P < 0.0001

0.00
P = 0.9651

0.00

Hyp. 5(ii). Life-history effects (rr.
Full.h5.ii)

lnRR 1214 lnMaxLongevity.C 22654.52
P < 0.0001

3.46
P = 0.0628

5.73

Publication bias 1 (rr.Full.pub1) lnRR 908 Precision 13245.28
P < 0.0001

2.80
P = 0.094

0.27

Publication bias 2 (rr.Full.pub2) lnRR 908 Year.C 21211.43
P < 0.0001

0.97
P = 0.3251

0.82

Publication bias 3 (rr.Full.pub1) lnRR 1297 EffectSizesFromPublication 23269.07
P < 0.0001

11.58 **
P = 0.009

0.64

Exp a. Effect of manipulation
type (rr.Full.exp.a)

lnRR 1297 ManipType 22616.48
P < 0.0001

8.30
P = 0.0812

1.31

Exp b. Effect of manipulation
direction (rr.Full.exp.b)

lnRR 1297 ManipDirection 20399.67
P < 0.0001

10.41 *
P = 0.0154

0.08

Exp c. Effect of manipulation
duration (rr.Full.exp.c)

lnRR 1214 RelativeManipDuration.C 24024.39
P < 0.0001

0.06
P = 0.8007

0.02

Exp d. Effect of rearing
environment (rr.Full.exp.d)

lnRR 1297 WildLabRear 22799.97
P < 0.0001

16.79 **
P = 0.0021

2.17

For QM, ‘*’ = P < 0.05, ‘**’ = P < 0.01 and ‘***’ = P < 0.001.
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estimate appeared to have a clear effect on lnCVR, and both
only explained a small amount of heterogeneity (R2

mar-

ginal = 0.80% and 0.36%, respectively; Tables 4, 5).

(3) Publication bias tests

Funnel plots showed some evidence of potential asymmetry
(for plots and fail-safe N calculations see Appendix S7). The

estimated effect of Precision on lnRR was negative and the
confidence intervals overlapped slightly with zero (−0.002
[−0.005 to 0.000]; Tables 2, 3), although R2

marginal was low
(0.27%; Table 2), showing limited evidence of small-study
bias. There was also possible evidence of time-lag bias in
published data, with effect sizes appearing to trend slightly
downwards over time but the confidence intervals over-
lapped with zero (−0.05 [−0.14 to 0.05]; Tables 2, 3), and

Table 3. Parameter estimates for log response ratio (lnRR) hypothesis testing, publication bias, and exploratory models, with 95%
confidence intervals. k is the number of effect sizes, and nstudy is the number of studies. Bold estimates correspond to confidence
intervals that do not overlap zero. Note that models with categorical moderators were fitted as no-intercept models for ease of
interpretation

Hypothesis (model) Moderator(s) Level k nstudy Estimate

Hyp. 2. Context dependency
of risk (rr.Full.h2)

RiskContext novelenvironment_activity 248 46 0.09 [−0.06, 0.25]
novelenvironment_exploration 153 33 0.11 [−0.05, 0.28]
novelenvironment_feeding 331 37 0.36 [0.20, 0.52]
novelenvironment_lightdarktest 26 6 0.21 [−0.11, 0.52]
novelenvironment_refugeemergence 39 7 0.03 [−0.23, 0.30]
novelenvironment_refugeuse 75 16 0.23 [0.03, 0.42]
novelenvironment_shoaling 29 5 0.37 [0.06, 0.67]
novelobject_response 92 11 0.19 [−0.04, 0.41]
predation_feeding 81 14 0.75 [0.53, 0.97]
predation_response 172 34 0.19 [0.02, 0.36]
predation_shoaling 20 4 0.28 [−0.04, 0.61]
dispersalmigration 15 6 0.03 [−0.39, 0.45]
other 16 5 0.23 [−0.16, 0.61]

Hyp. 3. Sex difference in risk
taking (rr.Full.h3)

Sex female 421 39 0.15 [−0.03, 0.33]
male 291 37 0.12 [−0.06, 0.30]
mixed 120 14 0.34 [0.06, 0.61]
unknown 465 61 0.29 [0.13, 0.45]

Hyp. 4. Effects across life
stages (rr.Full.h4)

ManipLifeStage adult 423 48 0.12 [−0.06, 0.30]
both 179 8 0.45 [0.17, 0.73]
juvenile 601 66 0.30 [0.14, 0.46]
unknown/mixed 94 11 0.40 [0.11, 0.69]

RelativeTimeFromTreatment.C (covariate) — — 0.01 [−0.03, 0.06]
Hyp. 5(i). Life-history effects
(rr.Full.h5.i)

MaxLongevity.C intercept — — 0.26 [0.15, 0.36]
(covariate) — — 0.00 [−0.08, 0.09]

Hyp. 5(ii). Life-history effects
(rr.Full.h5.ii)

lnMaxLongevity.C intercept — — 0.22 [0.02, 0.43]
(covariate) — — 0.15 [−0.01, 0.30]

Publication bias 1 (rr.Full.pub1) Precision intercept — — 0.28 [0.08, 0.49]
(covariate) — — 0.00 [−0.01, 0.00]

Publication bias 2 (rr.Full.pub2) Year.C intercept — — 0.26 [0.07, 0.44]
(covariate) — — −0.05 [−0.14, 0.05]

Publication bias 3 (rr.Full.pub1) EffectSizesFromPublication no 130 13 0.10 [−0.16, 0.35]
partial 360 31 0.26 [0.07, 0.45]
yes 807 82 0.24 [0.09, 0.40]

Exp a. Effect of manipulation
type (rr.Full.exp.a)

ManipType combined 24 4 0.27 [−0.07, 0.62]
quality 248 18 0.35 [0.07, 0.63]
quantity 390 50 0.30 [0.07, 0.53]
starvation 635 59 0.19 [−0.04, 0.41]

Exp b. Effect of manipulation
direction (rr.Full.exp.b)

ManipDirection dual 60 7 0.30 [−0.06, 0.66]
restrict 1170 112 0.23 [0.09, 0.38]
supplement 67 9 0.20 [−0.04, 0.44]

Exp c. Effect of manipulation
duration (rr.Full.exp.c)

RelativeManipDuration.C intercept — — 0.25 [0.16, 0.35]
(covariate) — — −0.01 [−0.07, 0.05]

Exp d. Effect of rearing
environment (rr.Full.exp.d)

WildLabRear commercial 139 12 0.25 [−0.02, 0.52]
lab 711 58 0.13 [−0.03, 0.3]
mixed 15 1 0.21 [−0.5, 0.93]
wild 432 57 0.32 [0.16, 0.48]
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R2
marginal was again relatively low (0.82%; Table 2). Last,

effects calculated from papers where effect sizes could be par-
tially (lnRR = 0.26 [0.07–0.45]) or completely (lnRR = 0.24
[0.09–0.40]) calculated from the publicly available material
were relatively large (Table 3; Fig. 3), whereas the effect from
papers where effect sizes could only be obtained through
author correspondence were small and the confidence inter-
vals overlapped with zero (lnRR = 0.10 [−0.16 to 0.35]),
however, R2

marginal was relatively low for this moderator
(0.64%; Table 2). This difference suggests that non-reported
results might be biased towards inconclusive (likely statisti-
cally non-significant) results.

(4) Exploratory models

There was limited evidence that either the type or direction of
dietmanipulation influenced lnRRwith all diet types and direc-
tional treatments, respectively, showing positive mean esti-
mates, and little heterogeneity explained by either of those
moderators (R2

marginal = 1.31% and 0.08%, respectively;
Tables 2, 3; Fig. 4A, C). The effect of the duration of diet treat-
ments on lnRR was almost zero too (Tables 2, 3). There was
some heterogeneity explained by the rearing environment of
the experimental subjects (R2

marginal= 2.17%;Tables 2, 3), with

effect sizes from laboratory-reared animals being the smallest
(lnRR= 0.13 [−0.03 to 0.30]), and effect sizes fromwild-reared
animals being the largest (lnRR = 0.32 [0.16–0.48]; Fig. 4E).

Both the type and direction of diet manipulation did not
appear to influence lnCVR substantially, whereas the dura-
tion of diet treatments had a small positive effect on beha-
vioural variance (0.05 [0.00–0.10]), and explained some
heterogeneity (R2

marginal = 1.99%; Tables 4, 5; Fig. 4B, D).
There was limited evidence that rearing environment influ-
enced lnCVR, with 2.08% of heterogeneity explained by this
moderator (Tables 4, 5; Fig. 4F).

IV. DISCUSSION

Despite our expectations, we found a convincing directional
effect on mean risk-taking behaviour, where animals subject
to low-condition dietary treatments are more likely to show
high-risk behaviour in a range of contexts involving preda-
tion and novelty. This condition dependency may be caused
by increased risk aversion in animals from higher-condition
treatments, due to their greater reproductive expectations
(an interpretation consistent with the asset-protection

(Figure legend continued from previous page.)
Fig 2. Category-specific estimates for log response ratio (lnRR) and log coefficient of variation ratio (lnCVR) with meta-regression
models testing the effect of (A, B) the experimental context for risk-taking behaviour; (C, D) sex of study subjects; and (E, F) life-
stage of study subjects during the diet-manipulation treatments. lnRR effects are presented on the left (A, C, E) and lnCVR on the
right (B, D, F). The areas of the blue-shaded circles are proportional to the number of effect sizes (k) used, and bars represent 95%
confidence intervals. A positive effect shows higher risk taking or higher variance in risk taking in low-condition animals, respectively.

Table 4. Hypothesis testing, publication bias and exploratory moderators for log coefficient of variation ratio (lnCVR) models, with
Q-test for residual heterogeneity (QE), moderator explained heterogeneity (QM), and the estimated percentage of heterogeneity
explained by the moderators (R2

marginal).

Hypothesis (model)
Effect
size

k Moderator(s)
QE

(residual)
QM

(moderator)
R2

marginal

(%)

Hyp. 2. Context dependency of
risk (cvr.Full.h2)

lnCVR 1235 RiskContext 2450.98
P < 0.0001

38.4 ***
P = 0.0002

8.58

Hyp. 3. Sex difference in risk
taking (cvr.Full.h3)

lnCVR 1235 Sex 2520.50
P < 0.0001

5.9
P = 0.2066

3.00

Hyp. 4. Effects across life stages
(cvr.Full.h4)

lnCVR 1153 ManipLifeStage + RelativeTimeFromTreatment.
C

2158.20
P < 0.0001

9.5
P = 0.0908

5.28

Hyp. 5(1). Life-history effects
(cvr.Full.h5.i)

lnCVR 1153 MaxLongevity.C, 2185.53
P < 0.0001

1.41
P = 0.2348

0.80

Hyp. 5(ii). Life-history effects
(cvr.Full.h5.ii)

lnCVR 1153 lnMaxLongevity.C 2187.91
P < 0.0001

0.34
P = 0.5615

0.36

Exp a. Effect of manipulation
type (cvr.Full.exp.a)

lnCVR 1235 ManipType 2535.90
P < 0.0001

3.1
P = 0.5406

1.15

Exp b. Effect of manipulation
direction (cvr.Full.exp.b)

lnCVR 1235 ManipDirection 2541.40
P < 0.0001

2.23
P = 0.5256

0.68

Exp c. Effect of manipulation
duration (cvr.Full.exp.c)

lnCVR 1153 RelativeManipDuration.C 2182.57
P < 0.0001

4.59 *
P = 0.0322

1.99

Exp d. Effect of rearing
environment (cvr.Full.exp.d)

lnCVR 1235 WildLabRear 2514.93
P < 0.0001

4.6
P = 0.3312

2.08

For QM, ‘*’ = P < 0.05, ‘**’ = P < 0.01 and ‘***’ = P < 0.001.
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principle applying to the context of nutritional condition and
predation–novelty-based risk), or by increased risk taking in
animals from low-condition treatments, due to the ele-
vated likelihood of starvation (a starvation-avoidance
mechanism; Luttbeg & Sih, 2010). These adaptive inter-
pretations contrast with a recent meta-analysis showing
that riskier behavioural types tended to have higher sur-
vival in the wild (Moiron, Laskowski, & Niemelä, 2020),
which may highlight a distinction between behavioural
variation due to personality trait differences and due to
state-dependent effects. Nonetheless, our result is consis-
tent with the idea of a trade-off between the potential ben-
efits of high outcome-variance behaviours (e.g. accessing

resources) and the potential costs (e.g. predation or star-
vation), which animals balance based on their current or
past nutritional state (Ludwig & Rowe, 1990; Clark,
1994; McNamara & Houston, 1996).
Although our overall effect was relatively strong, there was

high heterogeneity in lnRR effect sizes with a large proportion
(>20%) related to among-species differences. Variation
among species, however, was only minimally related to their
shared ancestry, with phylogeny only accounting for a small
proportion of heterogeneity (3%). It would be interesting to
investigate whether condition dependence of risk-taking
behaviour also applies to humans (Wilson et al., 1994;Gosling,
2008), but the large amount of heterogeneity suggests that any

Table 5. Parameter estimates for log coefficient of variation ratio (lnCVR) hypothesis testing, and exploratory models, with 95%
confidence intervals. k is the number of effect sizes, and nstudy is the number of studies. Bold estimates correspond to confidence
intervals that do not overlap zero. Note that models with categorical moderators were fitted as no-intercept models for ease of
interpretation

Hypothesis (model) Moderator(s) Level k nstudy Estimate

Hyp. 2. Context dependency
of risk (cvr.Full.h2)

RiskContext novelenvironment_activity 248 46 0.02 [−0.06, 0.11]
novelenvironment_exploration 153 33 −0.05 [−0.15, 0.05]
novelenvironment_feeding 312 34 −0.16 [−0.25, −0.07]
novelenvironment_lightdarktest 24 5 −0.09 [−0.35, 0.16]
novelenvironment_refugeemergence 39 7 0.04 [−0.18, 0.25]
novelenvironment_refugeuse 75 16 0.18 [0.04, 0.31]
novelenvironment_shoaling 29 5 0.01 [−0.25, 0.26]
novelobject_response 88 10 −0.08 [−0.24, 0.08]
predation_feeding 61 13 −0.01 [−0.21, 0.18]
predation_response 167 33 0.02 [−0.08, 0.13]
predation_shoaling 20 4 0.01 [−0.24, 0.26]
dispersalmigration 13 5 −0.49 [−0.86, −0.11]
other 6 3 0.59 [0.16, 1.02]

Hyp. 3. Sex difference in risk
taking (cvr.Full.h3)

Sex female 401 38 0.05 [−0.05, 0.16]
male 276 37 0.03 [−0.08, 0.14]
mixed 117 13 −0.09 [−0.28, 0.09]
unknown 441 56 −0.08 [−0.17, 0.00]

Hyp. 4. Effects across life
stages (cvr.Full.h4)

ManipLifeStage adult 402 45 −0.01 [−0.10, 0.09]
both 116 7 0.18 [0.01, 0.35]
juvenile 578 63 −0.08 [−0.16, 0.00]
unknown/mixed 89 11 −0.02 [−0.21, 0.17]

RelativeTimeFromTreatment.C (covariate) — — 0.02 [−0.02, 0.05]
Hyp. 5(i). Life-history effects
(cvr.Full.h5.i)

MaxLongevity.C intercept — — −0.03 [−0.09, 0.03]
(covariate) — — −0.03 [−0.08, 0.02]

Hyp. 5(ii). Life-history effects
(cvr.Full.h5.ii)

lnMaxLongevity.C intercept — — −0.03 [−0.09, 0.03]
(covariate) — — −0.02 [−0.09, 0.05]

Exp a. Effect of manipulation
type (cvr.Full.exp.a)

ManipType combined 24 4 0.07 [−0.21, 0.35]
quality 246 18 0.05 [−0.09, 0.18]
quantity 363 48 −0.07 [−0.16, 0.03]
starvation 602 54 −0.04 [−0.12, 0.05]

Exp b. Effect of manipulation
direction (cvr.Full.exp.b)

ManipDirection dual 60 7 0.11 [−0.14, 0.35]
restrict 1116 106 −0.04 [−0.10, 0.03]
supplement 59 8 −0.06 [−0.27, 0.14]

Exp c. Effect of manipulation
duration (cvr.Full.exp.c)

RelativeManipDuration.C intercept — — −0.03 [−0.08, 0.03]
(covariate) — — 0.05 [0.00, 0.10]

Exp d. Effect of rearing
environment (cvr.Full.exp.d)

WildLabRear commercial 127 11 −0.02 [−0.21, 0.17]
lab 679 54 0.02 [−0.06, 0.11]
mixed 15 1 0.10 [−0.41, 0.62]
wild 414 55 −0.09 [−0.18, 0.00]
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effect might differ in a human context. The high heterogene-
ity among effect sizes is also evident from the wide prediction
intervals estimated, and the substantial heterogeneity among
studies and experiments. Since theory predicts that state-
dependent effects on risk taking vary in strength and direction
with factors such as life-history traits (Clark, 1994; McNa-
mara & Houston, 1996) and/or local environmental/ecolog-
ical conditions (Luttbeg & Sih, 2010), such a pattern of
variation among species, studies and experiments was to be
expected. Critically, given the high heterogeneity, our overall
effect does not preclude the opposite pattern being applicable
in certain systems. Also, our findings focus on nutritional state
in contexts often involving direct or indirect predation risk, so
state-dependent safety may be more directly applicable when
considering types of state variables that provide a more direct
advantage in reducing predation risk (e.g. defensive traits), or
in risk-taking contexts where physical condition provides a
clearer advantage (e.g. intraspecific contests).

The experimental context of risk-taking behaviour was the
most explanatory of the lnRR moderators, revealing that the
effect of condition manipulations in certain contexts was clear
and particularly strong, such as those involving feeding. This
is consistent with studies showing that the choice of

experiment used to measure risk taking is important to the
outcome, and that different risk-taking behaviours can show
divergent patterns of individual-level variation (e.g. Carter
et al., 2012). The concept of a ‘risky’ behaviour can be applied
to a broad range of circumstances, as shown by the range of
behavioural variables included here, and ‘risk taking’ can
refer to a suite of potentially independent behaviours. A risk
context that was particularly strongly affected was shoaling
behaviour in a novel environment (and, with less certainty,
shoaling when exposed to a predator). Whether decisions to
venture from a group can be considered a risk-taking behav-
iour or boldness trait has been disputed, partly due to overlap
with sociability traits (Toms, Echevarria, & Jouandot, 2010),
but our findings are consistent with these decisions being
related to risk taking as a trade-off between resource acquisi-
tion and group safety. Contrastingly, the estimated effect was
highly uncertain and close to zero for refuge emergence into a
novel environment, a variable commonly used to measure
bold–exploratory personalities. Studies have shown refuge
emergence to be unrelated to within-species variation in other
risk-taking behaviours [e.g. startle responses in Pomacentrus

spp. (Beckmann & Biro, 2013) or novel object tests in Chlamy-
dogobius eremius (Moran et al., 2016)], such that the relationship
between refuge emergence and risk taking remains unclear.

Sex effects on lnRR did not show evidence of male–female
differences, with both male- and female-specific effects being
relatively small and similar to each other. It has been sug-
gested that different reproductive roles may lead to sex-
specific responses to diet variation (Han & Dingemanse,
2015), but there does not appear to be a generalisable direc-
tion to this effect. Life-stage effects did show evidence that
treatments in juvenile stages had strong and positive effects,
while effects in adults were less clear. The effects of life-stage
and sex may be interrelated in a way that was not originally
anticipated, as the strong effect in ‘unknown sex’ groups
may be related to an overrepresentation of juveniles in that
category. By contrast, studies where sex was identifiable
may have been more likely to involve adult treatment groups,
with both sex-specific and adult-specific estimates being
smaller. The influence of longevity was ambiguous, but
ongoing theoretical support for asset protection to be sensi-
tive to life-history traits (e.g. iteroparous versus semelparous
reproductive strategies; Luttbeg et al., 2020) suggests that a
more focused analysis incorporating life-history differences
is warranted, particularly in relation to reproductive traits.

Our exploratory analyses revealed a few key patterns in
condition-dependent behavioural responses, and the suitabil-
ity of our methodology. Modelling studies have suggested
there may be non-linearity in state-dependent phenotypic
responses in risk-taking behaviour, due to potential factors
such as varying correlations between condition and repro-
ductive value (Clark, 1994; McNamara & Houston, 1996;
Luttbeg & Sih, 2010).While not directly testing this, evidence
of a non-linear effect of condition and risk taking was not
detected in the analysis of diet manipulation direction.
Effects were similar for each group (i.e. reduced versus stan-
dard condition; standard versus enriched condition, reduced

Fig 3. Category-specific estimates based on the degree that log
response ratio (lnRR) effect sizes could be extracted from
published material. Fully reported effect sizes are from papers
where all effect sizes could be extracted from published
material, partially reported effect sizes are from papers where
some effect sizes could be extracted but additional effect sizes
could be obtained from authors (therefore includes effect sizes
from published material and author correspondence), and not
reported effect sizes are those that could only be calculated
from data obtained through author correspondence. The areas
of the green-shaded circles are proportional to the number of
effect sizes (k) used, and bars represent 95% confidence
intervals. A positive effect shows higher risk taking in low-
condition animals.
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versus enriched condition), supporting a relatively constant
directional effect of condition on mean risk taking, and sug-
gesting that our methodology of pooling these designs
together for analysis was sound. Similarly, the mean effect
estimate was positive across all classes of diet treatment ana-
lysed (e.g. quality, quantity, etc.), such that pooling these
experiments was unlikely to influence our results. Finally,
wild-reared animals did show the largest effect of treatment
on mean risk taking (and also a particularly strong negative
effect on behavioural variation), suggesting that these

animals might be either more sensitive to imposed dietary
manipulations or more responsive to predator-based risk
due to past experiences in the wild.
Contrasting with overall mean effects, support for an over-

all effect of condition on behavioural variation was limited,
with only a small, slightly negative and rather uncertain over-
all lnCVR estimate. This contrasts with the expectation that
poor condition may increase phenotypic variability (e.g. by
exposing cryptic genetic variation), but agrees with a recent
meta-analysis showing that developmental stress does not

Fig 4. Category-specific estimates for log response ratio (lnRR) and log coefficient of variation ratio (lnCVR) meta-regression models
for effect of (A, B) the type of diet manipulation; (C, D) the direction of the diet manipulation; and (E, F) the rearing environment of the
experimental subjects. lnRR effects are presented on the left (A, C, E) frames and lnCVR on the right (B, D, F). The areas of the
orange-shaded circles are proportional to the number of effect sizes (k) used, and bars represent 95% confidence intervals. A
positive effect shows higher risk taking and higher variance in risk taking in low-condition animals, respectively.
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seem to influence variation in behavioural traits across spe-
cies (Sánchez-Tójar et al., 2020). Heterogeneity was generally
lower in lnCVR models relative to lnRR ones, which is likely
because variance effect sizes are generally associated with
larger sampling variances (Sánchez-Tójar et al., 2020). Vari-
ance meta-analyses are expected to be more data hungry,
although this is unlikely to be the cause of the overall weak
lnCVR effect found in our study given the large data set used.

Variation in behaviour was sensitive to the experimental
context of risk-taking behaviour, with variation in both the
strength and direction of context-specific effects. In particu-
lar, variance in feeding behaviour within novel environments
was far lower in low-condition groups, providing some evi-
dence that being highly motivated to feed in this context is
an optimum phenotype for individuals in poor energetic
state. By contrast, variation in refuge use in a novel environ-
ment was higher in low-condition groups, which may be evi-
dence of the opposite (complementary) pattern where high
refuge use is a preferred strategy for high-condition individ-
uals. Effects of life stage on behavioural variation are consis-
tent with recent empirical evidence suggesting that
developmental diet is related to phenotypic plasticity and
personality development [see examples in Royauté & Doc-
htermann (2017) and Kelleher et al. (2019)]. Buchanan et al.
(2013) suggested that poor condition during early life stages
may reduce an individual’s capacity to express behavioural
plasticity. This is potentially consistent with our finding of
reduced behavioural variation in groups subject to low-
condition treatments as juveniles, while the effect in adults
heavily overlapped with zero. We also found that treatments
that spanned juvenile and adult life stages (often longer term,
chronic diet-restriction treatments) had a positive effect on
behavioural variation. Similarly, the duration of diet treat-
ments had a positive effect on behavioural variation, consis-
tent with the proposition that extremely poor diet
conditions can expose cryptic genetic and phenotypic varia-
tion (Han & Dingemanse, 2017b). Nonetheless, identifying
mechanisms from unpartitioned phenotypic variance
remains challenging, as the proposed mechanisms for effects
on variability in risk-taking behaviour often apply specifically
to among- or within-individual levels (Han & Dinge-
manse, 2015).

A pertinent question in behavioural ecology is whether
phenotypic variation is primarily within or among individ-
uals (Westneat et al., 2015). Any effects on the variance as esti-
mated in our meta-analysis (and more generally in most
meta-analysis using lnCVR) may arise from either source.
Individuals might become more variable in their behaviour
in response to some treatment (or some environmental effect)
as a form of behavioural bet-hedging or reduce accuracy of
performance (i.e. within-individual level). Alternatively, indi-
viduals might differ in their average responses to changes in
conditions if they have intrinsically different reaction norms
(i.e. among-individual level). Only repeated measurements
per individual would help to separate the two variance com-
ponents. However, such data are usually not available in the
literature (Niemelä & Dingemanse, 2018). Future studies

should focus on the relative importance of within- versus

among-individual variance in the variance effects identified
in our study.

Considered together, our publication bias analyses suggest
there may be some limited influence on the overall results.
Time-lag analysis showed that effect sizes might be decreas-
ing slightly over time, while precision analysis showed a small
negative effect, both of which can be indications of publica-
tion bias towards a positive effect (Jennions & Møller, 2002;
Jennions et al., 2013). Moreover, effect sizes obtained from
author correspondence where no data could be extracted
from published material showed the lowest and most uncer-
tain effect, suggesting preferential publication of positive
effects. Intriguingly, publication bias appears to be present
even where there are competing hypotheses, with positive-
effect hypotheses (e.g. the asset-protection principle)
potentially seemingly preferred. We avoided methods to
compensate for bias (e.g. trim and fill) as these can perform
poorly in high-heterogeneity data sets (Moreno et al., 2009).
Instead, we advise caution when interpreting our results,
and ecological meta-analyses in general, given the ubiquity
of publication bias in the literature.

V. CONCLUSIONS

(1) The overall evidence of diet- and condition-
manipulation effects on risk-taking behaviour in the
literature is clear: low-condition individuals appear
willing, on average, to take greater risks in ecological
contexts relating to predation risk and novelty.

(2) While condition dependency appears to have broad
relevance across the animal kingdom, the strength
and certainty of this effect may be somewhat over-
stated due to publication bias and large heterogeneity
among effect sizes.

(3) Furthermore, the effect is strongly context dependent,
at both the mean and the variance level, suggesting
that the specific ecological (and experimental) factors
of any context must be considered when studying
risk-taking behaviour.

(4) Overall, there appears to be complex and nuanced
effects of diet and condition on behavioural variance
warranting further empirical study. Future research
should focus on separating among- and within-
individual variance effects of individual condition.
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52. *GVOŽDÍK, L., ERNICKÁ, E. & DAMME, R. V. (2013). Predator-prey interactions
shape thermal patch use in a newt larvae-dragonfly nymph model. PLoS One 8,
e65079.

53. *HAFER, N. & MILINSKI, M. (2016). An experimental conflict of interest between
parasites reveals the mechanism of host manipulation. Behavioral Ecology 27, 617–627.

54. HAN, C. S. & DINGEMANSE, N. J. (2015). Effect of diet on the structure of animal
personality. Frontiers in Zoology 12, S5.

55. *HAN, C. S. & DINGEMANSE, N. J. (2017a). Sex-dependent expression of
behavioural genetic architectures and the evolution of sexual dimorphism.
Proceedings of the Royal Society B: Biological Sciences 284, 20171658.

56. HAN, C. S. & DINGEMANSE, N. J. (2017b). You are what you eat: diet shapes body
composition, personality and behavioural stability. BMC Evolutionary Biology 17, 8.

57. *HECTOR, K. L., BISHOP, P. J. & NAKAGAWA, S. (2012). Consequences of
compensatory growth in an amphibian. Journal of Zoology 286, 93–101.

58. HEDGES, L. V., GUREVITCH, J. & CURTIS, P. S. (1999). The meta-analysis of
response ratios in experimental ecology. Ecology 80, 1150–1156.
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