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Abstract

We consider a class of comprehensive compact convex polyhedra
called Cephoids. A Cephoid is a Minkowski sum of finitely many
standardized simplices (“deGua Simplices”). The Pareto surface
of Cephoids consists of certain translates of simplices, algebraic
sums of subsimplices etc. The peculiar shape of such a Pareto
surface raises the question as to how far results for Cephoids can
be carried over to general comprehensive compact convex bodies
by approximation.

We prove that to any comprehensive compact convex body
I', given a set of finitely many points on its surface, there is a
Cephoid IT that coincides with I' in exactly these preset points.
As a consequence, Cephoids are dense within the set of com-
prehensive compact convex bodies with respect to the Hausdorff
metric.

Cephoids appear in Operations Research (Optimization [10],
[3]), in Mathematical Economics (Free Trade theory [7], [8]), and
in Cooperative Game Theory (the Maschler—Perles solution [6]).

More generally in the context of Cooperative Game Theory,
the notion of a Cephoid serves to construct “solutions” or “values”
for bargaining problems and non—side payment games ([9]).

Therefore, the results of this paper open up an avenue for the
extension of solution concepts from Cephoids to general compact
convex bodies.
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1 Notations and Definitions

A Cephoid is a specific compact convex comprehensive polyhedron located
within the nonnegative orthant of R". We review some concepts described
extensively in [10], see also [3], [4].

Let I := {1,...,n} denote the set of coordinates of R", the positive orthant
is R? :={x = (21,...,2,) | 7 > 0,i € I'. Let €' denote the i"" unit vector
of R and e := (1,...,1) = > e’ € R" the “diagonal” vector. For min
and max of vectors @,y € R™ we write

(1.1) TNy = (min{xﬂyi})(iEI) , TVY = (maX{xiayi})(ieI) :

The notation CovH C is used to denote the convex hull of a subset C of

R’} . Given a vector @ = (ay,...,a,) > 0 € R", we consider the n multiples
a’ := a;e' (i € I) of the unit vectors. The the set
(1.2) A® .= CovH {al,...,a"}

is the Standard Simplex or for short, the Simplex resulting from a (we
use capitals in this context). Figure 1.1 represents a Simplex in R?.

A

a2

Aa

aq (05}

Figure 1.1: The Simplex in R? generated by a = (a1, as, a3)

Next, for J C I we write R} :={x € R"|z; =0 (i ¢ J)}. Accordingly, we
obtain the Standard Subsimplex or just Subsimplex

(1.3)

Ay = {zeA"|z;=0(i¢J)} = ANR;) = CovH{d'|icJ} .

There is a second type of simplex we want to associate with a positive vector
a € R". This is the one spanned by the vectors a’ plus the vector 0 € R},
that is
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(1.4) n* .= Co'vH{O,al,...,a”} .

In order to distinguish both types verbally we call [1* the deGua Sitmplex
associated to a, paying homage to J.P. de Gua de Malves 1] who generalized
the Pythagorean theorem for simplices of this type. Consistently we write,
for any J C I the corresponding deGua Subsimplex of 11 as

(5) 5 = {zell®|z; =00 ¢ J)}
' = IINR} = CovH {{0}{a'|ic J}} .

A set A C R} is called comprehensive if, for any £ € A it contains
all vectors y € R} satisfying y < x (inequalities between vectors to be
interpreted coordinatewise). The comprehensive hull of a set A C R is
given by

CmpH A = {ye]R’HEImGA : ygm} )

clearly we have also
II* = CmpHA®* | 115 = CmpH A5,

and Figure 1.2 indicates the deGua Simplex II* generated by a. All vectors
below A® including the vector 0 € R3 are included.

Figure 1.2: The deGua Simplex I1*; a = (a4, az, as)

In the terminology of Convex Analysis, A® is the mazimal (outward) face
of II®. Here we prefer the MathEcon notation, calling A® the Pareto face
of I1%.

A normal at/to some convex set C' in some point & € dC' is a vector that
generates a separating hyperplane. A vector that is a normal to some face
F of a convex set C' in all points of F' is called normal to F.
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A deGua Simplex I1* admits of a normal

1 1
n = | — ....— .
(al’ ,an)

to A%. All other normals to A® are positive multiples of this one, i.e., the
normal cone to A% is

N® = {tn*|t >0} .

We refer to this situation saying that the normal of A% is “unique up to a
multiple” or “essentially unique” etc.

The projection of n® to RY, is denoted by ng := n® R The subface
J+

G of the Pareto face admits of a normal cone NG generated by the normals
{n3/|J§J/§I} .

Certain operations on convex sets are a standard in Convex Geometry. For
two subsets A, B C R} the algebraic or Minkowski sum is

A+B = {zx+y|lxcA yec B}
and for A € R, the multiple of A is defined via
M = x|z e A}.

If A and B are convex sets, then the sets A+ B and AA are also convex and
if A and B are polytopes, so are A+ B and \A.

Now we are in the position to define the subject of this treatise. A Cephoid
is a Minkowski sum of deGua Simplices. More precisely, using

K = {1,...,K}

for some integer K, we have:

Definition 1.1. Let {a(k)}keK denote a family of positive vectors and let
(1.6) m=>Ymn" = >u®
keK ke K

be the Minkowski sum. Then II is called a Cephoid.

The surface of a polyhedron can be described by either a list of extremal
points or by maximal faces. We focus on the Pareto surface of a Cephoid.
For completeness, we provide the following

Definition 1.2. 1. A face F of a Cephoid II is maximal if, for any
face F° of TT with F C F° it follows that F = FV is true.
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2. The (outward) or Pareto surface of a compact convex set (specif-
ically: of a Cephoid II) is the set

(1.7) Ol = {xell| Ayell,Aiel : y>x, y;, >x; }.

3. The points of the Pareto surface are called Pareto efficient.

4. Maximal faces in the Pareto surface are called Pareto faces.

Clearly, A® is the only Pareto face of 11?; similarly for A and II5.

The vector 0 is always an extremal point of a Cephoid in R™ but it is not
Pareto efficient. All other extremal points of a Cephoid are Pareto efficient
and referred to as wvertices.

Definition 1.3. Let =5, 11" be a Cephoid and let i € I. Define
(1.8) ) = TN Rpg -

Then T constitutes a maximal face of IT but not a Pareto face. I1¢-9 is
called the i—face of II.

Indeed, 19 is clearly a maximal face but not located in the Pareto surface
as not all points of 1= are Pareto efficient (Definition 1.2). All maximal
faces of a Cephoid II are either Pareto faces or intersections of II with some
Ry as in (1.8). On the other hand, 119 C R\ i3+ is a Cephoid in its
own right, generated by the family of vectors

i)
I keK

We also introduce a notation for the reduction of a Cephoid in members of
the family as follows.

Definition 1.4. Let II=5", 11" be a Cephoid and let k € K. Define
ke K\{k}

Then III7* is called the k-missing Cephoid to II. This is a Cephoid in
RY.

The following well known theorem (see e.g. EWALD [2| or PALLASCHKE—
URBANSKI [5]) is basic tool for testing Pareto efficiency of a sum of polyhedra.
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Theorem 1.5. Let A and B be compact conver sets and letx € A andy € B
be Pareto efficient vectors of A and B respectively. Then x + y is a Pareto
efficient vector in A + B if and only if the normal cone of A in x and the
normal cone of B in y have a nonempty intersection. That s, if and only if
A and B admit of a joint normal in x and y respectively.

On the other hand, every extremal point z of A+ B is the sum z = x +y
of two extremal points * € A and y € B, such that the intersection of the
normal cones of x,y, z has a nonempty intersection.

Similarly, we have for faces or extremal sets of two convex and compact sets
the following

Theorem 1.6. Let A and B be compact convex sets and let F' € A and
F? € B be faces of A and B respectively. Then F' + F? is a face of A+ B
if and only if the normal cone of F with respect to A and the normal cone
of F% with respect to B have a nonempty intersection. That is, if and only
if A and B admit of a joint normal in F' and F?* respectively.

On the other hand, every face F' of A+ B is the sum F = F' + F? of two
faces F* of A and F? of B, such that the intersection of normal cones of
F,F' F? have a nonempty intersection.
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2 Examples: Windmills

We recall the idea of the “canonical representation” of a Cephoid and offer
some examples.

The “canonical representation” (see CHAPTER 2 of [10]) is a consistent bijection
of the Pareto surface of a Cephoid II onto a suitable multiple of A€. This is
done in a way such that the partially ordered (“PO”) set of the Pareto faces
is preserved. The details are found in [10].

Example 2.1. We present a Cephoid (or rather a family or type of Cephoids)
called the Windmill. It appears within the classifications offered in CHAPTER
2 of [10].

Figure 2.1: The Windmill

Figure 2.1 shows a Cephoid
O =1°+1°+1°;

we sketch a in blue, b in red, and c in green. The deGua Simplex I1° (red)
is located in the origin. Its translate that appears on OII is

a’+ 1%+ ¢! .
Thus, the Pareto surface OII is indicated in Figure (2.1). This Cephoid has

exactly one positive vertex which is

T =ad+b+c!

The Canonical Representation of the Windmill is depicted in Figure 2.2.
This figure reflects the PO set of the Windmill which consists of three deGua
simplices and three rhombi; all ingredients being defined on the multiple 9A®
of the unit Simplex.
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3e3

3e! Ao 3e?

Figure 2.2: The Windmill: Canonical Representation

Here the size of the various Pareto faces is irrelevant, it is just the relative
location that matters. The canonical representation reflects the structure
of the PO set. It allows for a classification as there are only finitely many
possible arrangements of the deGua Simplices and the rhombi.

Example 2.2. The “inductive type” is a (family of) Cephoid(s) also de-
scribed in the classification of [10].

The Cephoid IND is a sum of three deGua simplices, but the Pareto surface
does not resemble a windmill (see Figure 2.3). Figure 2.4 shows the canonical
representation of IND.

Figure 2.3: The Pareto set of IND

The central vertex (the unique positive one) of IND is denoted . Obviously
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1t writes

z=a"+a®? g

The three translates of the deGua simplices involved are not ordered in a

“cyclic” way. E.g., the blue deGua Simplex (i.e. Aa(l)) is translated to the
Pareto surface as

e a a®

(2.1) A™ +a®? 4+ gt = A{123} - A{3} - A{1} :

The green deGua Simplex (i.e. Aa(3)) is translated to

a®

~ ~ a® a® a®
(2-2) a"? +a?’ 1 AT = AL + ALy + Al -
This is the Pareto face of the translated version

(2.3) m® — gW2 4 g®3 4 &t

However, the red deGua Simplex (i.e., Aa@)) is translated to be

(1)2

(2.4) AT AT g

Also, the two rhombi in the lower third of the sketch are

Aaa? )
12313} A?13}CJE12

Figure 2.4: An Inductive Type — Canonical Representation

aMg® a® &® ORI a®

a
(2.5) Alioffisy = Aoy AL AL, and Afj5\70 = } +A{13}+A{12} :

The point common to (2.1), (2.2),(2.5) is the unique positive vertex

a® _

A{Q} +A{3} +A{1} — g2 L g®3  gbn _ g
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3 The Pseudo Windmill

Let I" be a smooth compact convex comprehensive set with boundary OI'.
We write t; := max{t|te’ € dI'} (i € I); thus f' = t;e’ is the maximal
point located in I' on the i— axis. We denote these points in the tradition of
Bargaining Theory:

Definition 3.1. The vectors f' (i € I) are the bliss points of I.

Definition 3.2. Let £ € I'. Then
(3.1) Iz = (T—2)NRL

is called the calotte defined by Z. Define @ = (ay,...,a,) such that
a;e’ (i € I) are the bliss points of the calotte I'z. Then the deGua Sim-
plex I1% is the wane defined by Z (or by I'z).

Example 3.3. Figure 3.1 shows the convex body I' with surface 0I' and
calotte I'z in three dimensions. The sketch shows the translated version
T + I'; so that the surface 0I'z is imbedded in the surface 9. The vane
I1% is also indicated (dotted red lines), also transferred via Z such that the
translated vertices

(3.2) z + e’

appear as points on JI'.

f3
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Next, let € OI" be a point on the surface of I'. Define

3.3 ) =z .
(3:3) | RR (5

For ¢ € I consider the calotte
(3.4) Lzea
with surface OI'; (-, . For ¢ € I the vane generated by this calotte has vertices

(3.5) T — 27 =€ as well as aje’ (j eI\ {i})

Definition 3.4. 1. Let £ € OI'. We denote 'z to be the i—calotte
of x.

2. The deGua Simplex I1® = 18" given by @ = a® via
(3.6) =1, a (jeTI\{i})
is called the i wane corresponding to .

3. The Cephoid

(3.7) I=1% =) 1

el

is called the pseudo—windmill corresponding to .

(3.8) AV =% (iel)

while ?ig.i) (7 € I) is given by the blisspoints of the surface (3.4) and hence de-
termined by the surface 0" (or OI" respectively). In particular we observe
that

(3.9) T = (T,...,7%,) = @",...,a") = Za(m.

el

holds true. Hence, Z is a sum of extremals of the deGua Simplices ma"” (1 €
I). Consequently, & is an extremal of the sum, i.e., the pseudo windmill
I = @ if and only if there is a common normal to all the summands
D in the corresponding extremal a"". See Theorem 1.5, also for the present
purpose see e.g., Theorem 1.5, CHAPTER I of [10]. This will be an essential
detail within the following development.
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Now consider the calotte I' ) to be transferred back onto the surface oI

via Y. The bliss points are then transferred into the points

(3.10) Zand 270 + 3,60 = 2 (jel).
The transferred deGua Simplices — the i—vanes — are

(3.11) - 4 fi0

Superficially, transferring all 1D via U onto the surface O suggests (in
three dimensions) the shape of a “Windmill”, ¢f. Example 2.1. We emphasize
that this is a possible shape of the Pareto surface of the Cephoid

(3.12) o =1® = Zﬁ(i)’

el

but not the only one. II (in three dimensions) can have a different Pareto
surface OL; thus, Figure 3.2 (see below) may be misleading. This is why we
call IT a “pseudo windmill”. The following example sheds some light on this
phenomenon.

f3

Figure 3.2: Constructing a +—Vane

Example 3.6. In three dimensions let £ € JI' and consider the three i—
calottes generated together with the vanes IV (i € I). First, we focus on
Ol _(~2), depicted in blue (Figure 3.2). The vane I = 11%% is the deGua
Simplex indicated by @ = (ai,as,as3). Here, as = 75 while a; and ay are
(-2)

determined by the calotte construction as boundary points of OI'. x is

the origin of I';(—2).
In Figure 3.2, I1® is transferred to the the surface oI via 5(_2), SO one views
AN | S

Note that Z is a vertex of "2 + 112 . Moreover, as this Simplex is inscribed
into JI', it follows that the normal n® at OI' in & is a normal to the deGua
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Simplex II® in . This holds true for the translated versions as well, that
is, we have

(3.13) n® isanormalat 2 4+0® in Z.

Now this procedure is being performed for the calotte OI';(-1) and OI';(-s) as
well resulting in two further deGua Simplices lifted to dI'. The construction
is depicted in Figure 3.3. It resembles the “Windmill” discussed in Example
2.1 of SEcT1ON 2. Whether the construction (“lifting the vanes”) does indeed
result in an image of the sum I = 1I® = 216{1,273} I depends on the

various subsimplices making up the Pareto surface OII.

h
~

Figure 3.3: The Pseudo Windmill as a Windmill

Assuming for the moment that Il is a windmill (hence represented by Figure
3.3), we discuss the situation somewhat more in detail.

For example, the green Simplex Y + IO satisfies

(3.14) (0,72, %) + IV = (0,a?,a¥) + I = MO 4 g®2? 4 g®3
This means that it is a translate of IIV) via two extremals of II® and II®.
Analogously we have for the blue Simplex

(3.15) #7241 = g 4@ 4 g®?

and for the red one

(3.16) #7041 = @' 4@ 4@ |

All translates (3.14), (3.15), and (3.16) occur as summands of II. Obviously
we have

(3.17) T = (71,82,53) = aVM+a?P?+a®?.
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holds true. Thus, Z is a sum of three extremals of the deGua Simplices

summing up to II. Moreover, according to what was said in (3.13), we observe

that n® is a normal at 9 + 110 (1 =1,2,3) in . This implies that actually
(a) & is a vertex of II,

(3.18) _ _ N
(b) n® is a normal to II in the vertex & .

Accordingly, we prove the decisive argument to be true in general: x is
a vertex of the pseudo windmill II® and n® is a common normal to this
Cephoid and to I' in the common point . The actual shape of OII (windmill
or not) is not important.

Theorem 3.7 (The Centml Vertex Theorem).

LetTl = I® = Y icr 1D be the pseudo wmdmzll generated by . Then
x is a vertex of I1® admzttmg the normal n®. Thus, T is the unique vertex
of &) with positive coordinates.

Proof: The last statement follows from non-degeneracy. We claim it without
offering a proof as it is not relevant in the present context.

For 7 € I let

) g
(3.19) K= %

denote the normal cone to ﬁ(i)Nin a”". The normal cone is the same for any
translation of II®). Therefore K’ is as well the normal cone to

(3.20) > @ +n® i Y a¥ =
jeiel\{i} JjeI

the last equation following from Remark 3.5, Formula (3.8).

The translate >, a4+ T is inscribed into I' and has exactly n
points common with JI'; these are

Y @V +aieier\{i})
jeieI\{i}
(3.21) and

Za(j)j - F

jeI

Consequently, K¢ contains the normal n to O in & for all i € I. As a result
(e.g., Theorem 1.5, CHAPTER I of [10]),

(3.22) z=> a’¥

jeI



* SECTION 3: THE PSEUDO WINDMILL % 16

is an extremal of II. In addition, as every sum of n simplices in R’ has
exactly one vertex with positive coordinates, @ is precisely this vertex.

q.e.d.

The normal T = n® is common to all vertices @™’ of the vanes II) (i € I).
We note the relation to any other deGua simplex (a candidate for the vanes
of other pseudo windmills) as follows.

Let & € OI' and let 11(0) = 11 be a de Gua Simplex. Let n = n® denote
the normal in Z at IT and let K©7 be the normal cone at A© in the vertex
a9, Define

(3.23) 1Y

= jellnex®™} .

That is, we collect those vertices a(®’ which allow for 1 as a normal in Z to

A.

Then we have

Lemma 3.8. Let & € 0. Let II = II® be the pseudo windmill generated
by  and let II) be a de Gua Simplex. Then

(3.24) I #0
holds true.
Proof:

This is verified by a standard argument, cf. Theorem 4.8, CHAPTER III of
[10]. The normal cones K@/ (5 € I) span the full R".

q.e.d.

Based on these considerations we observe that we can identify further vectors
that are common to a pseudo windmill and the surface OT'.

Theorem 3.9. Let & € OU. Let I = I® = Yoier 11 be the pseudo
windmill generated by . Then, for i € I there exists | € I\ {i} such that

1. 25 s a vertex of IL.
2. 27 e o1 = orn{z|z; = 0}.
(—i+D)

3 n | is a normal to II in T

That is, OI' and IT have at least one additional point in common on each
boundary OI'"?. Together with & we, therefore, find indeed n + 1 common
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points of JI" and II that are extremal for both convex bodies involved. In par-
ticular, if IT is a windmill, then all vertices of the translated deGua simplices
@ (i € I) are located on I

Proof: For ¢ € I consider the projection ) Then

= & | I*{i}.

(3.25) =3 a.

leI\{i}

The vector n=) := n® is a normal in a® to A*" for all € T\ {i},

| 1\{i}
hence it is a normal in 2% to the Cephoid

a®
(3.26) oA | 1

len\{i}

The normal cones KO (1 € I'\ {i}) in a® at A*” span the full R gy i€y
(3.27) I = {1|1er\{i},aD e X} £0 .

Therefore, any vector ¢ of the convex hull

(3.28) Cgi) = CovH{a"' (I € I(%_i))}

admits of a joint normal with all vectors ™! (I € T\ {i}). Hence, in view of
(3.25) we find that

(3.29) 7 e = Z aV' +c
len\{i}

is Pareto efficient in

a® a(® _ — (1)
(3.30) > A et ey TN ey =T
len\{i}

In particular, the extremals of C’gi) yield the vectors
(3.31) T = F 4 e 1e1l?) .
All of these vectors are located on 9" by construction. Clearly nl=" is
normal to IIC-? and hence to II in all of these vectors.
q.e.d.

Remark 3.10. Based on the above development we can now point out the
possible shape of a pseudo windmill in 3 dimensions. Here, II resembles a
different type of a “sum of three” Cephoid in R?.

We return to Example 2.2, the “Inductive Type” IND (also described in [10]).

This type of Cephoid in three dimensions is also a candidate for 11, consistent
with Theorem 3.7.
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Figure 3.4: The Pseudo Windmill as IND

Compare Figure 3.4 which copied from Figure 2.3. The vector Z is the central
vertex of IND but not all vectors 2" are vertices of II. Recall that the
central vertex is N o o .

T =47 +AE AN
If we consider the translates located on the Pareto surface, then this vertex
is common to the two rhombi

g a@g!

A{12}{13} and A{13}{12}
and the two deGua Simplices

a® a®

{123} and A{123} .

It is not a vertex of the translate of (the red deGua Simplex) A&

Within the framework of Theorem 3.9 it is seen that IECE_S) = {1} and thus

—3+1)

7 is the common vertex of 9T and II located on '3,

In what follows we adapt the construction of a pseudo windmill to a “local
windmill”, that is, a pseudo windmill defined w.r.t. a calotte 'z for some
x e ol.

Definition 3.11. Let & € I', & € JI' be such that £ < x. The local
windmall Hg) is the pseudo windmill generated by & — & via Definition 3.4
with respect to the calotte I'z.

Figure 3.5 is depicting the following procedure. First we transfer the calotte
I'z =T'n{x| > x} via & into the origin. Then we construct the pseudo
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Figure 3.5: The Local Windmill 1)

z

windmill w.r.t. £ —Z € dI'z. Finally, this pseudo windmill is moved back so
the calotte appears as a segment of OI'. The transferred local windmill

(3.32) z+ 1%

appears inserted into I'.

The local windmill is a sum of n deGua Simplices
(3.33) ny = Y e
for short we write

(3.34) a® _. [0

A
The vectors a'¥ are obtained via Definition 3.4 (and formula (3.5)) mutatis
mutandis. They are given by the blisspoints of I'z analogously to Remark
3.5. In particular it follows as in (3.8) that

2y _ ~

(3.35) =&, —& (icl)

and hence, analogously to (3.9)
RS O (O N 0%
(3.36) :z:::z:—i—(al,...,a”):a:—i—Za“.
el
holds true. That is, up to shifting with Z, Z is a sum of extremals of the
deGua Simplices 11" (i € I).

The transferred deGua Simplices are

N A
(3.37) 2+ @-2) 7 +0% = 2+ Y @ +1" (ie)
jen—{i}
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with the vertices

. A N
(3.38) z aswellas z+ (z—2)7) +ae = 207 (jeI)

in analogy to (3.11). Figure 3.5 shows the situation for three dimensions and

N

the deGua Simplex II®) coloured in blue. The figure reflects the situation
that the local windmill is actually a windmill which is not necessarily the
case.

Again we emphasize the role of the normal n® at OI'z in & which is the same

A

as the normal n® at OI' in . As the deGua Simplices II®) are inscribed into
I'z, we conclude

Corollary 3.12. 1. For all i € I the normal n® is a common normal to
L A _
II® in @™’ This holds true also for the translates: n® is a common
normal to
. AT . A
(3.39) T+ Z a’’ + 119 in Z+ Z al =z
JeI\—{i} jeI

2. Consequently,

/\ . .
(3.40) 2+ av = &
jel
AN

is a common vertex to all translated I1¢) (tel).

()

3. Thus,  is a common to JI' and the translated local windmill 2 +I13".

Also, n® is a normal common to OI' and to 1% + 7 in 2.

z

Proof: Follows from Theorem 3.7 and (3.18).
q.e.d.
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4 Approximating a Convex Body

Let I be a compact convex comprehensive set I' with smooth boundary OI'.
Tentatively, we assume that the normal to OI' in every & € OI' is positive.
Also, we assume that JI" has no “flat” areas, i.e., for any & € OI' with normal
n® it follows that {x | ne = nZ} = {Z}.

Given an exogenously preset number of of points located in OI" we construct
a Cephoid IT* such that both bodies coincide at these points.

As we have seen, a pseudo windmill can be constructed to one preset point
x in OI" such that this point is the sole positive Pareto efficient vertex of
the pseudo windmill. Essentially this is possible since the deGua Simplices
derived from the point in question (the vanes) have the normal to O in & as
a common normal. Hence it is a normal to & seen as a vertex of the Pseudo
windmill as the deGua Simplices are inscribed into I.

Naturally, the same holds true for any local windmill H% as long as * < @
holds true.

The idea is as follows. Given a set of points on JI', we attempt to construct
a “windmilled” Cephoid which is a sum of pseudo windmills. Each of these
have a joint vertex coinciding with one of the prescribed points. The Pseudo
Widmills are arranged in a way such that summing up all of them preserves
this decisive property.

Example 4.1. A naive geometrical idea of how to approach the problem is
presented by the following canonical representation of a “windmilled” Cephoid.

/QJA& =

Figure 4.1: The windmilled Windmill

Figure 4.1 suggests a “windmilled Windmill”: given 3 points in a surface each
of them is supported by a local windmill.

We introduce a notation for enumerating a set of vectors that are located on
Jdl'. For @ € N we write Q = {1,...,Q}; a system of vectors located on
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Ol is then enumerated by Q; we write

— {a} .
(4.1) X = ¢z R}

(QGQ)}Qé‘F.

We also consider a corresponding system

{¢¥ {4}

—~ {a}
(4.2) X = {:’IE eRl' |z <= (qu)}gF

of vectors dominated by the vectors of X. X is arbitrary under this condition
but will be specified later. Both sets are also regarded as elements of R3*?;
we write

(4.3) X = {X|X satisfies (4.2)} C R*Q .

Here is our main Theorem.

Theorem 4.2 (Main Theorem of Approximation). Let I' C R" be a
compact comprehensive conver body with smooth surface OI' and let () € N.
Let X be a set of positive vectors on OU'. Then there exists a Cephoid IT*
such that

1. 1I* is a sum of nQ) deGua Simplices,
2. II* is a sum of QQ Windmills,

{d}
3. For q € Q we have © € OII*, i.e., the preset points are Pareto efficient
in IT*.
Proof:
15t'STEP :

Let X € X. For each q € Q consider the calotte I';,; generated according to
z

{a} {a}
Definition 3.2. Construct the the local windmill IT := II% corresponding
z

{a} {a}
to  and x according to Definition 3.11. This Cephoid is a sum of n deGua

Simplices (vanes), say

{a} (g} {da},.
(4.4) o= Tg = Y 100,
T iel
The vanes
(4.5) nY =1e” (el
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are given by vectors

(4.6) {{&}@)}
el

that result from the procedure described in 3.11 using the bliss points of the
local windmill. All of this is done quite analogously to SEcT1ion 3. Figure

4.2 shows, for some ¢ € Q, a local windmill in three dimensions, shifted to

{q}
the surface of I' via Z. The blue vane indicated is drawn for i = 2.

2"ISTEP :

Now we focus on Corollary 3.12. Accordingly we know for the translates via
{a}
x that, for g € Q and i € I,

{4}
n® isa common normal to
(4.7) {a} ab, @0 {a
$+ Z {q}j)j—}-H Z{Q}(] T — 7 .
JeI\{i} jeI
Thus, for ¢ € Q,
{a} g
(4.8) z = S Wiy
jeI
{a} . {a}
is a common vertex to all translates of 1) (i € I'). Also, n®is a common
0 {ad {a

normal to the translated Cephoid 117, + x in x which is a common point

of this translated Cephoid and OI. ngure 4.2 repeats Figure 3.5 adjusted to

{a}
Figure 4.2: The Local Windmill II

the current situation.
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3*"dSTEP : The choice of

—~ {a}
X = 1dx|qeq
so far has been free under the conditions listed in (4.2), i.e., under the con-
g A{g} {q} .
ditions 0 < z < z (¢ € Q) . If T varies, then the vectors Wa (1€ I) are
{g}
functions of x
{4} 4
(4.9) T — {{2’3@}
icl
{a}
Correspondingly we imagine that  is mapped into the n deGua Simplices
{a} . {a}; {a} {a}
0 = e (i e I) adding up to the pseudo windmill II = T2 “at”
{0} "
T,
W o) i
(4.10) I =12 .

More or less obviously, these functions are continuous and antitone: if we
{4} .
decrease the coordinates of Z, the values of the data {{qu;}(l)}ie_[ in (4.6) will

increase.

{q}
A closer inspection shows: for small Z the calotte 'ty approaches I, hence
xT

{a} {a}
the local windmill II = TII? approaches the (“global”) pseudo windmill
T w {a}
constructed via Definition 3.11. For & approaching & we observe that the
{g}

calotte I'(,; becomes arbitrarily small as € JI.
@

4*"STEP : Now we apply Lemma 3.8 to the present situation. Accordingly,

{4} {q} {r} .
let ﬁ{c}enote the normal at 9T in  and let K7 be the normal cone at the
p ,
vane A® in G 03 Following Formula (3.23), define for p,q € Q and [ € I

{p}(l) . {g} {p}l,
(4.11) L, = qjel|nexXx®; .

That is, for some [ € I, we collect those vertices {3}(1” (j € I) which allow

{g} 0  {q¢}
for n as a normal at II7 in = and hence can be added without disturbing

the Pareto property. We know by Lemma 3.8 that
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Forpge Qandl eI

{p}(l)
(4.12) I, #0

holds true.

5''STEP :

Now we specify X in a suitable way to prove our theorem. To this end define

{r}

(4.13) o= ) 1.

peQ ®
Rewriting (4.8) we obtain for ¢ € Q
N {0 {4
faw,. L Eey = S - 3 -7
jeI
(4.14) that is,
{ag} {a} :
= — = +Z{q}j)j-
jerI
{q}

Now, if we can represent T as a Pareto efficient vector of
{q}
(4.15) >, g,
peQ\{g} °*

{a} {q}
then (4.14) and (4.15) imply that & € II*. Moreover, & € JII* if and only if

{q}
the representation of & by Pareto efficient vectors of (4.15) can be arranged
so as to allow for common normals of all vectors involved.

To this end, for p,q € Q,p # q and | € I consider the convex hull

{r} )
(4.16) ng} = CovH{g,() JE ng}}#(l)
and the resulting sum
{a}
(4.17) c = Y ZC L AD (peQ\{a}) -
pEQ\{q} €I

Next, consider the correspondence (set valued mapping)

X— X
(4.18) {a} {¢} g {a}
x+— CovHSCU{z};nqx< x (g€ Q)
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The values of this correspondence are compact and convex; it is not hard to

see that it is upper hemi continuous. According to Kakutani’s fixed point

{gb  {g}
theorem, this correspondence has a fixed point satisfying £ < (¢ € Q).

(Somewhat sloppily we do not use a special notation for the fixed point).

q
A fixed point cannot result in £ = 0 for some g € Q in view of our remark

on monotonicity in the 3"*STEP. By the same reasoning it cannot result in

{a} {q}
xz = x for some ¢ € Q. Therefore we know that it satisfies

@ {9 {a ),
(4.19) zeC, z = Y Y CU (1eQ)

peQ\{q} lel

Accordingly, we can for any g € @ choose vectors

{p}
(4.20) Y0 ec! peqien
such that
la} 0)
(a2 Pooy oy

peQ\{q} lel

holds true. In (4.21), each {Z}F{lq)} is a convex combination of vertices

. {p} {p}
{g,}(l)] (j € IF{)}> i.e. {g}(” € A{P)}m )
{a}

In view of the 4""STEP and the defining equation (4.11), we conclude that

oy . {p} : g :
Ciy 18 a vector of the vane A® that admits of n as a normal to this

{a}
vane (and its translates). Therefore, (4.21) demonstrates that Z is a sum of

vectors of all vanes of pseudo windmills other than ¢ which can be added to
{a}

the local windmill II without disturbing the Pareto property of the vertex

{q}

.

More precisely, combining (4.14) and (4.21) we obtain

(4.22) z = ) Z{”}“ +Z{gz}(j)jeﬂ*

peQ\{q} leI jer

{q}
We know that @ is Pareto efficient in IT* as the common normal condition

is satisfied. This proves our Theorem.

q.e.d.
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Remark 4.3. For the generation of a pseudo windmill a point & € JI" is
not necessarily positive. We find “degenerate pseudo windmills” if x has
zero coordinates. In particular, if Z = f® is a bliss point, then the pseudo

windmill TI®) consists of just one vane; we have II®*) = II. Therefore the

¢ -
positivity assumption for vectors x € X can be dropped in Theorem 4.2.

The same is true for X.

2. Also, we do not have to assume a positive normal in all points of OT',
neither do we have to assume that JI' has no flat areas.

Combining we obtain

Corollary 4.4. The set of Cephoids is dense within the set of compact
comprehensive convex bodies in R} with respect to the Hausdorff metric.

Based on these results we can now proceed with the establishment of values
or bargaining solutions for general NTU games as presented e.g. in [9]. We
may employ an approximating procedure similar to the one for the Maschler—
Perles solution explained in [6].
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