
norman köster

A N E X T E N S I B L E G R A P H Q U E RY L A N G U A G E
F O R M O D E L - B A S E D I N F O R M AT I O N R E T R I E VA L

I N I N T E L L I G E N T E N V I R O N M E N T S

A N E X T E N S I B L E G R A P H Q U E RY L A N G U A G E
F O R M O D E L - B A S E D I N F O R M AT I O N R E T R I E VA L

I N I N T E L L I G E N T E N V I R O N M E N T S

norman köster

Domain analysis, conceptualization, implementation, and empirical evaluation

A doctoral thesis presented for the degree of
Doctor of Engineering (Dr.-Ing.) at

Faculty of Technology
Bielefeld University
Inspiration 1

33619 Bielefeld
Germany

reviewers

Prof. Dr. Philipp Cimiano
Dr. Sebastian Wrede
Prof. Dr. Nico Hochgeschwender

board

Prof. Dr. Ulrich Rückert
Dr. Malte Schilling

defended and approved

April 29th, 2020

Printed on permanent paper as per ISO 9706.

A B S T R A C T

Research on human behavior and the (non-)verbal interactions exe-
cuted in these situations makes increasing use of intelligent systems,
such as robot companions or smart environments. To allow for valuable
and robust communication in these socially involved scenarios, sys-
tems executing human–robot interaction (HRI) are strongly tied to and
dependent on the data and knowledge provided by the various sen-
sors and software components of the system. This data ranges from
low-level raw sensor data to higher-level domain-specific knowledge
derived by components applying, for example, machine learning tech-
niques. Additionally, these systems and environments are characteris-
tically extensively heterogeneous and highly complex, yielding large
amounts of data following different schemata at diverse granulari-
ties. State-of-the-art systems therefore often structure and store avail-
able knowledge using graph-based structures, which represent the
domain-specific entities and their relations. This raises the question
on how to provide access to the full range of data and domain-specific
knowledge of the intelligent systems in a manageable and (ideally)
supportive manner.

In this thesis I investigate the applicability of a Model-driven Soft-
ware Engineering (MDSE) approach to assist behavior developers of in-
telligent systems and environments by supporting the information re-
trieval process. I analyze how extensive modeling of the domain can
support the retrieval and query creation process already at query de-
sign time. Therefore, I examine questions on domain-specific language
(DSL) design, semantics, and composition to identify what the neces-
sary conceptualizations are for providing an extensible graph query
language, which exploits the available model-based knowledge. I fur-
ther describe my efforts implementing a vertical prototype which re-
alizes a functional slice of the proposed system. Within a detailed
evaluation, which tests the implementation on users in a real world
application context, I analyze the viability and advantages of my ap-
proach compared to a baseline condition making use of state-of-the-
art tools. I measure cognitive load of users, task solving duration, and
additionally multiple usability metrics. The results show that in terms
of usability, the presented vertical prototype does not reach the profes-
sional tooling of the baseline condition and is perceived as less usable
by users when designing graph database querys (GDQs). However, once
the users overcame the initial learning curve, they require less effort
and are more effective when designing domain-specific GDQs using
the implemented conceptualizations.

A C K N O W L E D G M E N T S

This journey towards a PhD was an incredible experience and nat-
urally I would not have been able to achieve this monumental task
without the support from the ones around me.

I am the most grateful to Marlena Dorniak. Ever since our paths
crossed you provided me with nothing short of the greatest sup-
port. You encouraged me to discover, challenge, push, and accept
the boundaries of my own potential at every step of the way – even
on long and busy days. Especially during the finalizing phase when
I could not return the time and efforts as much as I would have liked
to. You also provide perspective when my own tunnel vision hinders
me to see the bigger picture. Thank you so very much.

I also extend great gratitude to my parents Doris and Edward
Köster. You have always supported me during my life and provided
me all options to finish this endeavor. Without your help I would not
have reached this point in my life. Thank you very much.

Academically, I am grateful to my doctoral supervisors Prof. Dr.
Philipp Cimiano and Dr. Sebastian Wrede. Thank you very much for
providing me with this opportunity and for supporting me through
this process with ideas, feedback, and guidance. Our discussions and
your views had great impact on form and shape of this work. Also,
many thanks to Prof. Dr. Nico Hochgeschwender for agreeing to join
this process as a reviewer. Further, great help and discussions were
always provided by all colleagues in my work group, the overarching
projects, and all other PhD candidates and students I crossed paths
with in the past. Thank you all very much.

Last but absolutely not least, I am very thankful to my friends. You
are the social net which catches me on good and on difficult days.
Thank you for being there and allowing us to laugh and cry together.
Special thanks to Phillip Lücking for always thinking outside of the
technocrat-box with me, in which we found ourselves in ever so of-
ten. Without your perspective I would have been without prospects
more than once. Also special appreciation and thanks to Dr. Sebastian
Schneider. Our joint journey ever since we started studying in 2006

has enriched me on so many levels. Your encouragement and your
own curiosity kept also me going and searching for more. It is diffi-
cult to find the correct words to express how thankful I am to have
you as a close friend: Thank you very much.

Thanks to everyone who gave me feedback: Sebastian, Marlena, Jan,
Michael, Hendrik, Dennis, Vera, Marco, and everyone else I was un-
able to name here personally: Thank you!

C O N T E N T S

i research topic 1

1 introduction 3

1 .1 Research questions and contribution 6

1 .2 Outline . 7

ii preliminaries 9

2 graph-based knowledge representation and

management 11

2 .1 Data, information, and knowledge modeling 12

2 .2 Graphs and their role in intelligent systems 14

2 .3 Graph-based Knowledge management 17

2 .3 .1 NoSQL: Graph databases 18

2 .3 .2 Graph query languages 22

2 .4 Summary . 28

3 model-driven software engineering 29

3 .1 Foundations and introduction 29

3 .1 .1 Models and transformations 29

3 .1 .2 Domain-specific languages 31

3 .1 .3 Benefits of MDSE . 42

3 .2 Application of MDSE in adjacent domains 43

3 .3 MDSE development process . 44

3 .4 Summary . 47

iii modeling interaction relevant knowledge

in smart environments 49

4 a model of interaction relevant data 51

4 .1 Embodied interaction in smart environments 52

4 .2 Domain analysis . 53

4 .2 .1 The CSRA Project . 53

4 .2 .2 Roles, responsibilities, and required knowledge 57

4 .2 .3 Knowledge queries in the EISE domain 59

4 .3 Related work . 61

4 .4 A multi-modal interaction corpus 64

4 .5 An ontology of interaction relevant knowledge 65

4 .5 .1 Smart environment ontologies 66

4 .5 .2 Ontologies in robotics . 67

4 .5 .3 Gaph-based approaches 69

4 .5 .4 The EISE ontology . 70

4 .6 Summary . 72

x contents

5 conceptualizations for model-based query

composition 75

5 .1 Objectives and requirements . 75

5 .1 .1 Requirements . 77

5 .1 .2 Functional requirements 77

5 .1 .3 Non-functional requirements 77

5 .2 Related work . 78

5 .3 System architecture . 79

5 .4 Extensible graph query language composition 81

5 .4 .1 Representation of graphs 84

5 .4 .2 Representation of pattern matching queries . . . 84

5 .4 .3 Representation of domain descriptions 88

5 .4 .4 Representation of time 91

5 .4 .5 Plug-ins and implementation modules 100

5 .5 Technology mapping . 101

5 .6 Summary . 102

iv model-based support for behavior develop-
ers 105

6 implementation and practical concerns 107

6 .1 Language implementation . 107

6 .1 .1 Language composition 109

6 .1 .2 Graphs and graph query languages 112

6 .1 .3 Domain description language 114

6 .1 .4 Time languages . 115

6 .1 .5 Transformations and generation of queries 116

6 .1 .6 Language pragmatics . 118

6 .2 Automation aspects in applied MDSE research 123

6 .2 .1 Continuous integration of DSLs 124

6 .2 .2 Language deployment: A DSL plug-in server . . 126

6 .3 User perspective: The EISE Query Designer 128

6 .4 Summary . 130

v evaluation of mdse approaches 133

7 evaluation and application 135

7 .1 Introduction to MDSD evaluation 136

7 .2 Evaluation metrics . 138

7 .3 Evaluation of the EISE Query Designer 140

7 .3 .1 Methods and study design 142

7 .3 .2 Measurements . 146

7 .3 .3 Study results . 147

7 .3 .4 Discussion . 149

7 .4 Summary . 152

contents xi

vi perspectives 155

8 outlook 157

9 conclusion 161

vii appendix 163

a evaluation appendix 165

a .1 Full questionnaire . 165

a .2 Study information material . 167

a .3 Ethics documents . 184

a .4 Ethics committee application . 184

a .5 Consent form . 185

a .6 Questionnaire results . 186

acronyms 189

glossary 193

bibliography 199

Involved and own publications . 199

General . 200

Online resources . 215

Software packages . 216

L I S T O F F I G U R E S

Figure 2.1 DIKW pyramid model mapping 12

Figure 2.2 GDB popularity trends . 21

Figure 3.1 MOF abstraction model of the OMG 31

Figure 3.2 Four types of language composition 36

Figure 3.3 Screenshot of the Xtext language workbench 39

Figure 3.4 Screenshot of the MPS language workbench 40

Figure 3.5 Applied MDSE development process 46

Figure 4.1 The CSRA living room . 54

Figure 4.2 Map view of the CSRA laboratory 55

Figure 4.3 Exemplary interaction scenario 59

Figure 4.4 The EISE interaction ontology 71

Figure 5.1 System structure diagram . 80

Figure 5.2 Language modularization and composition 82

Figure 5.3 Meta-model of the Graph language 84

Figure 5.4 Reduced meta-model of the Graph Query language . . 85

Figure 5.5 Meta-model of the Domain Description language . . 88

Figure 5.6 The meta-model of the Time language. 92

Figure 5.7 The meta-model of the Relative Time language. . . . 93

Figure 5.8 Absolute temporal expansion examples 94

Figure 5.9 Relative temporal expansion examples 94

Figure 5.10 Temporal Graph Query language meta-model 95

Figure 5.11 Two approaches for time abstraction within a graph 97

Figure 5.12 Technology mapping diagram 102

Figure 6.1 Implementation language composition diagram . . . 108

Figure 6.2 Devkit module composition 109

Figure 6.3 Alluvial diagram of the language dependencies . . . 111

Figure 6.4 Cypher language concrete syntax 113

Figure 6.5 Domain Graph Description language syntax (1) . . . 115

Figure 6.6 Domain Graph Description language syntax (2) . . . 115

Figure 6.7 Concrete syntax of the temporal languages 116

Figure 6.8 MPS based Cypher generator example 117

Figure 6.9 Temporal query constraint generator example 118

Figure 6.10 Graph visualization projection implementation . . . 120

Figure 6.11 Editor aspects of visualization projection 121

Figure 6.12 Example of the query explain feature 122

Figure 6.13 EISEQD solution dependency diagram 123

Figure 6.14 MPS module build dependency graph 126

Figure 6.15 Screenshot of the EISEQD interface 128

Figure 6.16 Screenshot of the query editor in the EISEQD 130

Figure 7.1 Screenshot of the Neo4j web interface 141

Figure 7.2 The executed in-between study design 143

Figure 7.3 Execution time results boxplot per set 148

Figure 7.4 Cognitive load results boxplot per set 148

Figure 7.5 Syntactical error rateresults per task 149

Figure 7.6 Categorized keystrokes results per set 149

Figure 7.7 UEQ and SUS usability questionnaire results 150

Figure A.1 SUS questionnaire . 165

Figure A.2 TLX questionnaire . 165

Figure A.3 UEQ questionnaire . 166

L I S T O F TA B L E S

Table 2.1 Overview of existing graph databases 20

Table 4.1 Estimation of sensory data amount in the CSRA . . . 57

Table 6.1 Aspect statistics of implemented languages 110

L I S T O F C O D E L I S T I N G S

Listing 2.1 Example Cypher query . 24

Listing 2.2 Example SPARQL . 25

Listing 2.3 Example Gremlin query . 27

Listing 5.1 EBNF excerpt from the openCypher language 86

Listing 6.2 Exemplary project file for the Cypher DSL. 126

Listing 6.3 Example entry within a updatePlugins.xml 127

Listing 6.4 Generated Cypher query code 129

N O TAT I O N

margin notes

� Key point L Definition

languages and concepts

The names of domain-specific languages and concepts of these are writ-
ten in a non-proportional font, e.g. Relative Time. Concepts of lan-
guages are additionally written using medial capitals, e.g. DomainDe-
scriptionGraph.

denotational semantics

The denotational semantics of element E of the abstract syntax of a lan-
guage L is described by JEKL. The natural association of any language
construct to its denotational meaning (its natural identity) is accord-
ingly expressed by JEKI. Concrete syntax of the target language within
the denotational semantics are written as green characters. We assume
there exists a distinct empty element ε with the following properties.
Further, the operator ⊕t is used for element concatenation into tar-
get semantic of type t such that for any given left expression L, right
expression R, and empty element ε the following holds:

JL⊕t εKL = JLKL JL⊕t RKL = JLKL ⊕t JRKL
Jε⊕t RKL = JRKL Jε⊕t εKL = ε

For example:

JL⊕AND RKCypher = JLKCypher AND JRKCypher

attribution of authorship

I will speak of myself using I in case of work originally done by
myself alone. In case the results of a collaboration with others are
presented, I will use we. The respective collaborators are indicated by
the co-authors of the publication the results are based on.

Part I

R E S E A R C H T O P I C

Introduction to the research topic, the adjacent domains,
and formulation of the research questions investigated in
this thesis.

1
I N T R O D U C T I O N

“All sorts of things can happen when you’re open to new ideas
and playing around with things.“

—Stephanie Kwolek
chemist who invented Kevlar and winner of

the Lavoisier Medal for technical achievements

Research investigating humans, their behavior, and (non-)verbal in-
teraction makes increasingly use of artificial intelligent systems such
as robot companions or intelligent environments [Gar+07; Atk+00;
FND03]. Any human–robot interaction (HRI) executed in these systems
is strongly dependent on the data and knowledge available as to ac-
complishing valuable and robust communication [GS07]. It is thus im-
perative for software components orchestrating the interactive scenar-
ios to have access to the relevant data and derived knowledge which
is available in the system. However, these systems and environments
are characteristically extensively heterogeneous and highly complex,
yielding large amounts of data at diverse granularities [CD05]. This
raises the question on how to provide access to the full range of low-
level data to high-level domain-specific information of the intelligent
systems in a manageable and (ideally) supportive manner.

The aforementioned shared systems incorporate the domains of in-
telligent/smart environments and embodied cognition in HRI into a
joint environment. This combined environment houses both, an au-
tonomous embodied robot (e.g. a companion robot) and an ubiq-
uitous system (e.g. a smart home) operating together. A common
shared space as such is referred to as the Embodied Interaction in Smart
Environments (EISE) domain in which the systems jointly support hu-
mans in their daily lives [Hol+16a]. While a physically distributed
system commonly only provides an overview on the complete envi-
ronment, it lacks on the one hand sensors for searching tasks (e.g.
finding misplaced keys in a smart home), on the other hand actua-
tors for manipulation (e.g. picking up and handing over found keys)
which are both necessary for rich embodied interactions with the en-
vironment. In contrast to this, embodied agents are often equipped
with high quality local sensors required for navigation or pick-and-
place tasks and can thus conduct a such a detailed local analysis.

The emergent behavior of these systems can be separated into low-
level functionalities (e.g. autonomous navigation, object detection, or
manipulation tasks) and high-level behavioral functionalities (e.g. co-
operative task solving, verbal interaction, or other forms of HRI). To

4 introduction

realize higher level behaviors, such as increasingly complex HRI sce-
narios involving multimodal data sources and interaction partners,
the available raw sensor data is commonly enriched yielding derived
information and knowledge (e.g. via machine learning or sensor data
fusion). Research objectives in these domains for example cover ques-
tions regarding the creation and design of robust interaction [Ric+16],
recovering from weak or eventually broken interactions [CSW16], safe
HRI and trust humans place into robots [BES19], or requirements to-
wards software/hardware infrastructure and architecture [Wre+17].
The creation and execution of such complex HRI scenarios is thus
a non-trivial task and poses an interdisciplinary challenge includ-
ing other distinct domains such as linguistics and psychology. Only
few researchers from these adjacent non-engineering domains have
a computer science background or the accompanying programming
expertise which is commonly necessary to program these extensive
HRI behaviors for the above mentioned systems. In addition to this,
the (non-)functional requirements towards systems in research set-
tings strongly differ to requirements towards commercial products
and projects. Researchers reside in a more volatile setting and the de-
velopment process needs to be adapted accordingly. They are for ex-
ample exposed to constant development and system training efforts,
exploratory (re-implementation efforts, volatile software, exceedingly
complex systems, or drastically changing systems and environments
within short time spans.

In this thesis I attend the perspective of behavior developers who cre-
ate complex system behaviors. I am concerned with topics regarding
which data is actually relevant for natural interaction and how the de-
velopers can be supported in their efforts to create interaction behav-
ior by exploiting available domain-specific knowledge. This involves
in detail two perspectives:

1. What data is relevant for interaction and how can it be abstracted?

2. How can behavior developers be supported in the process of interaction
relevant data retrieval within complex interactive systems?

The first perspective attends to the adjacent domain of graph-based
knowledge representation. In recent years there is a rise of applica-
tions which represent the knowledge and information of the domain
at hand in graph structures. Renowned examples for the application
of graphs are a) trees in the Robot Operating System (ROS) coordi-
nate transform library TF2 [Foo13], b) knowledge bases such as on-
tologies for the organization of task specific knowledge as ORO or
KnowRob [TB13; Bee+18; Lem+10], or also c) the in recent years ad-
vancing use of Graph Database Management System (GDB) as a storage
backend for relational knowledge [Neo07]. Their application often tar-
gets the use of graphs as modeling frameworks used to abstract and
represent the real world. In contrast to structures in classic Database

introduction 5

Management System (DBMS), the graph structure inherently is con-
cerned with connections between the nodes of the graph. This eases
data retrieval as it provides sub-graph pattern matching, graph traver-
sal functionalities, and specialized graph algorithms operating on the
graph structure and consequently the structure of the data itself.

The second perspective is concerned with the software engineering
side of interaction design and creation. Depending on the research
goals and changing study system configurations, behavior developers
adapt their programs requiring an extensive knowledge of low-level
system properties (e.g. system architecture, data structures, or storage
properties). Commonly they fall back on General Purpose Languages
(GPLs) such as Java, Python, or C++ and the full set of generic lan-
guage features to create the intended interactions in individual soft-
ware components interconnected via the common middleware [ES12;
Fer15; Fis+18]. These applications further increase complexity with
respect to the system design and its usage. To be able to create op-
timal retrieval queries from the available data sources, behavior devel-
opers need to be aware where data is stored, what schema it follows,
and how to access the data. Following a Model-driven Software Engi-
neering (MDSE) approach is increasingly popular to manage similar
(accidental) complexity of artificial systems [Rod15a]. The key idea
is to provide domain-specific languages (DSLs) and tools to describe
the real world and its details in a language close to the domain and
known by its experts. As a result, the created formalizations such as
meta-models allow its users to capture and model the domain, conse-
quently reducing the semantic gap between original and actual im-
plementation. Additional tooling can then provide the developers
with analysis and model checking at the time of query composition.
Helpful functionality emerges, such as static analysis, domain-spe-
cific code completion, or extensive debugging support. Additionally,
the ability to generate code automatically based on the created user
models positively impacts productivity, quality, validation, and verifi-
cation [Fow10; Völ13a; vKV00; Com17].

In this thesis I combine these two perspectives with the goal to
provide behavior developers with domain-specific support during infor-
mation retrieval. Considering both perspectives, it becomes apparent
that an extensible and unified query interface is required for the de-
velopers. As with the storage systems in the first perspective, state-
of-the-art systems commonly rely on the DBMS accompanying query
languages as the information retrieval interface – with various ab-
straction and expressive capabilities, for example Structured Query
Language (SQL) or Prolog [Bee+18]. When put in the context of fre-
quently adapting research settings, the creation of a domain-specific
query language requires further special attention. Especially the ap-
plication of a MDSE approach underlines the need for an extensible
query language to avoid recurrent meta-model (and consequently user

6 introduction

model) changes. This aspect is thus managed twofold in this thesis:
First, domain model modifications need to be possible, not only by
the hand of a language engineer, but also by researchers themselves.
The language compositions for this domain hence requires designs
and mechanisms on the meta-model layer which enable domain model
changes in the model space by the domain experts themselves. Sec-
ond, the language composition needs to respect possible future and
present extensions which are within the considered EISE domain. As
such, extension points and language adaption opportunities needs to
be realized to allow the addition of orthogonal or adjacent domain
with manageable effort. Languages consequently need to realize ap-
propriate differentiation and separation regarding language cohesion
and coupling.

I present four contributions realizing this goal. First, I analyze the
EISE domain and its stakeholders to finally derive a model of inter-
action relevant data. This model is the foundational abstraction of
the domain knowledge and serves as the basis for the second con-
tribution of this thesis: Implementation-independent conceptualiza-
tions describing a system, which realizes an extensible graph query
language. This involves the identification of suitable languages and
domain-specific extensions (e.g. temporal expansion or user domain
data schemata) to provide model-based graph knowledge retrieval to
behavior developers of the EISE domain. Third, I implement a vertical
prototype integrated development environment (IDE) realizing the theoret-
ical considerations as a proof-of-concept. Fourth and last, I evaluate
this prototype in an extensive user study. The evaluation covers met-
rics such as the cognitive load and error rate during query design to
analyze the impact of such a system and show benefits and potential
limitations of the application.

1 .1 research questions and contribution

The overarching top-level goal of this thesis distills to:goal and re-
search questions

�

Provide DSL conceptualizations that support developers of HRI
scenarios in the process of query design, execution, and mainte-
nance of interaction relevant information. Follow a MDSE ap-
proach that incorporates an extensive empirical evaluation on a
vertical prototype with a high level of evidence.

In more detail, the individual research questions I investigate in
this work are derived from the above mentioned challenges. These
questions are:

RQ1 What are central elements and relations of interaction in
the EISE domain and how can these be modeled such that
commonly occurring questions can be answered?

1.2 outline 7

RQ2 What is a suitable MDSE development process and what
are the (non-)functional requirements, which allow to cre-
ate an extensible query language?

RQ3 What are implementation-independent meta-models, seman-
tics, and compositions strategies of DSLs, which provide a
suitable approach to reach the identified requirements?

RQ4 How can the implementation-independent abstraction be
realized? What are language pragmatics resulting in a work-
ing vertical prototype that provides the identified functional-
ities?

RQ5 Is an integrated graph data query support solution such as
an IDE viable and does it provide an advantage to the usual
workflow with state-of-the-art tools? How does it perform
in terms of usability, complexity reduction and feature sup-
port?

1 .2 outline

This thesis is separated into six parts which investigate the above
stated research questions. This initial Part I opens up this thesis and
introduces the research topic as well as the involved domains. It mo-
tivates the application of a MDSE approach for supported query de-
sign in the EISE domain. Further, this introduction presents the five
research questions which are investigated in the remainder of the
thesis. Lastly, I explicitly comprise my contributions included in this
thesis.

The second Part II summarizes the theoretical background for this
work. These preliminaries are split into two sections which introduce
the two adjacent domains presented in the afore named perspectives.
The first domain of graph-based knowledge representation focuses on
knowledge representation, storage, and retrieval using graphs struc-
tures. State-of-the-art graph-based knowledge storage systems are
discussed in this section and available graph query languages (GQLs)
and their characteristics are analyzed. The second part initially exam-
ines MDSE in artificial systems and the graph domain. Foundations
of models, DSLs (including semantics, language composition, and lan-
guage workbenches), and the MDSE process are presented. This part
concludes in the presentation of the overarching iterative MDSE de-
velopment process, which I applied during my research (RQ2). The
six individual phases of the process are used to frame the presented
work in the remaining sections.

The third Part III presents the initial two contributions of this the-
sis. First, a domain analysis of the EISE domain alongside the im-

8 introduction

plementation example of the Cognitive Service Robotics Apartment as
Ambient Host (CSRA) project is described in Chapter 4. This analysis
extracts the existing roles, responsibilities, and competency questions
(knowledge queries) of the domain. The information is used to com-
pose a model of interaction relevant knowledge in the EISE domain
(RQ1). The second contribution in Chapter 5 presents the results of
the application of the MDSE approach. Extracted requirements, cor-
responding languages, their composition, and denotational semantics
are discussed implementation-independent and in-depth (RQ2 and
RQ3). This part closes with a technology mapping which grounds
these theoretical considerations into specific technical choices as used
in the reference project.

Part IV describes the implementation of the concepts presented in
the analysis phase. The central contribution is a vertical prototype de-
veloped using the language workbench MPS that realizes the abstract
models (RQ4). Pragmatics of the language development are shown,
especially how a domain description and temporal constraints are
included into the graph query design process.

The prototype implementation is the basis for the evaluation pre-
sented in Part V. My contributions presented in this section amount
to study design, execution, and result discussion (RQ5). I measure
usability and application benefits via multiple metrics, as I consider
the perspective of users to be highly relevant for model-based appli-
cations.

The last Part VI concludes this thesis by opening perspectives. I
present possible future work extending the presented contributions,
before closing with a brief discussion of the results of this work with
respect to to the initially stated research questions.

Part II

P R E L I M I N A R I E S

Theoretical background of graph-based knowledge repre-
sentation and Model-driven Software Engineering.

2
G R A P H - B A S E D K N O W L E D G E R E P R E S E N TAT I O N
A N D R E T R I E VA L I N I N T E R A C T I V E I N T E L L I G E N T
S Y S T E M S

“I didn’t want to just know the names of things. I remember really
wanting to know how it all worked.“

—Elizabeth Blackburn [Bla09],
Biological Researcher at the University of California

awarded the 2009 Nobel Prize in Physiology/Medicine.

Graphs are a central component of interactive intelligent systems.
Their conceptual abstractions provide properties which can success-
fully be used at different data processing layers of the system. Most
prominently, graphs are often used as the foundation for abstractions,
which create a reduced representation of the real world, for example,
in state machines, markov models, or neural networks. Specialized al-
gorithms on graphs such as shortest/longest path or cycle detection
allow subsequently to exploit the graph structure of the stored data ef-
ficiently and intuitively. With an increased interest in graph data man-
agement in the last decade, graph-based data storage, query, and anal-
ysis tools have been developed. Also, the use in academic fields such
as research on robotics or human–robot interaction (HRI) increased and
graph databases are employed more frequently in experimental sys-
tems [Hoc+16; Fou+17; HRH16]. Further, graphs are a foundational
element in the Model-driven Software Engineering (MDSE) process, for
example, the abstract syntax tree (AST) of a model is represented using
a graph structure. Thus, I investigate the application of Graph Database
Management Systems (GDBs) over traditional Database Management Sys-
tems (DBMSs) for interaction relevant data in the domain of Embodied
Interaction in Smart Environments (EISE). This chapter presents an in-
troduction to graph-based knowledge representation and retrieval in
interactive intelligent systems.

The remainder of this chapter is thus organized as follows. To con-
textualize the usage of graph-based knowledge within interactive in-
telligent systems I will firstly recap clear conceptualization of data, in-
formation, and knowledge via the data-information-knowledge-wisdom
(DIKW) hierarchy. I map the elements of this hierarchy to common
components of interactive artificial systems, showing the system’s
connection between the DIKW concepts. In the then following Sec-
tion 2.2, I give a concise introduction to graphs, their representations,
and their role in the different layers of the DIKW hierarchy. The re-
maining sections define the requirements for successful information

12 graph-based knowledge representation and management

and knowledge management in the context of interactive artificial sys-
tems. This includes an analysis of existing GDBs as well as suitable
graph query languages (GQLs) for the application in interactive intelli-
gent systems.

2 .1 data , information, and knowledge modeling

The DIKW hierarchy represents a central abstraction for information
management, information systems and knowledge management in
general. With no clear origin of its first presentation, I follow the revis-
ited analysis of the DIKW hierarchy as presented by Rowley [Row07].
The model pyramid is depicted in Figure 2.1 and shows the increas-
ing structure, meaning, and transferability of its elements from bot-
tom to top. In contrast to this gain in value, the size of the pyramid
parts decrease from bottom to top reflecting the respectively available
amount.

Within this hierarchy, data lies at the lowest level and is character-
ized by being discrete observations which are unprocessed collected
signals. For an intelligent system, this layer transfers to the actual data
recorded by the low level sensors of the system (e.g. camera images,
microphone recordings, or laser scanner data).

Sensors of robot/environment
(e.g. camera images,

microphone recordings)

Synthesis of information/
Belief structuring within cognitive frameworks

(e.g. semantic maps, dialoge sytems,
knowledge bases)

Wisdom

Knowledge

Information

Data

Highest level of abstraction,
Intuition, vision and foresight

Enriched/Organized data
(e.g. faces, utterances, persons)

Figure 2.1: The DIKW pyramid and its mapping to interactive intelligent
systems.

The second layer on top of data represents information and is com-
monly defined as structured data [Row07]. This layer has been orga-
nized to give the data relevance for a specific context, thus enriching
its value and relevance for a given application. Aggregating low level
sensor data of an intelligent system this way can, for example, yield
information such as spoken utterances, face detection, or even person
percepts.

Knowledge is the third layer in the DIKW pyramid. Depending on
the perspective (philosophical, biological or entirely technical), defi-
nitions vary strongly. However, a common key distinction is made
between tacit knowledge and embedded knowledge. The former is
embedded in the individual, whilst the latter is recorded, and in turn,

2.1 data , information, and knowledge modeling 13

explicitly defined for sharing. More generally, information is a con-
cept that is commonly described as being a reference to underlying
data [Row07]. Further structuring of information and beliefs creates a
synthesis over a certain time span. Knowledge is thus an expert opin-
ion composed of information, experience understanding, and skills –
either obtained from previous information (tacit) or previously dor-
mant within the individual (embedded). The transfer of the concept
of knowledge to intelligent systems can best be represented via large
systems which contain system goals, semantic maps, or knowledge
bases. A common goal of those systems is to rely on tacit knowledge,
rather than embedding all required knowledge into a system at its
creation time.

The top layer of wisdom is often omitted from the pyramid and as
such it is rarely a clearly defined concept. Available definitions point
out that wisdom is the highest level of abstraction, which can enable
an entity to predict and provide a form of foresight [Row07]. Thus,
wisdom can allow to transfer and apply concepts from one domain to
previously unseen situations in different domains. Exhibiting general-
izing viable wisdom in an artificial system remains the most difficult
unsolved task, as it requires all lower tiers of the pyramid to be con-
sidered and available.

When viewed from the perspective of robotics and artificial intelli-
gent systems, all layers of the DIKW have their own unique require-
ments for storage and retrieval of relevant information. Systems need
to manage the high complexity, whilst providing solutions for low
level drivers, the perception, abstraction, reasoning, and further be-
havior building upon these. The question on how to extract and pro-
vide perception data is considered solved in current state-of-the-art
applications for artificial systems and robotic systems by the general
utilization of event-based architectures [Qui+09; MFN06; WW11]. Sys-
tems using this architecture can cope with the heterogeneous hard-
ware and software uses of the domain while still allowing a growing
scale and scope. Developers separate the functionality to collect and
provide data into individual software packages that communicate
over the common middleware. This approach, in turn, breaks down
the overall system complexity into small manageable chunks allow-
ing the reuse of highly specialized software by other developers (e.g.
in the Robot Operating System (ROS) eco-system). This facilitates rapid
prototyping of hard- and software experiments (with helpful features
such as debugging, collaboration support, monitoring/introspection)
while allowing large-scale integrative robotics research. Higher lay-
ers of the DIKW are build on top into individual components of the
underlying system. Information is extracted in these components and
shared into the event-based architecture. Popular approaches incorpo-
rate, for example, knowledge bases (cf. Section 2.3 on page 17), which
allow systems to infer new information over previous information of

14 graph-based knowledge representation and management

(interaction) episodes. The KnowRob project presents such a knowl-
edge based approach. The project aims to provide a computational
resource to bridge the gap between vague task description and low
level information needed for robotic manual task execution [TB13;
Bee+18]. Similarly, Lemaignan et al. presented the Open Robot On-
tology (ORO), an ontology based knowledge processing framework
supporting agents with cognition in HRI environments [Lem+10].

As stated in research question RQ3, my goal is to make use of
model-based domain knowledge to support the information retrieval
process on layers above the data layer. Developers already have dedi-
cated access to the data layer via the middleware and programming
of behavioral components also uses this transport layer. In contrast
to the data level, this thesis therefore targets retrieval of information
and knowledge (green elements of Figure 2.1) from the developer
perspective.

2 .2 graphs and their role in intelligent systems

The concepts, terminology, and structure of graphs suggest their ap-
plication as a modeling framework for abstractions of the real world.
In these cases, the graphs provide mechanisms to manage knowledge
in a contextually appropriate form. The following (sub-)domains of
artificial intelligent systems are, for example, well represented using
graphs:

(a) (Finite-)state machines for system coordination or task execu-
tion [BC10; Lüt+11; SGK17],

(b) Ontologies, or knowledge graphs, used as a tool for the formal
definition and representation of real world entities or knowl-
edge [TB13; Bee+18; Lem+10],

(c) Machine learning (e.g. markov models or artificial neural net-
works) used to process complex data inputs in HRI and allow
task execution, such as, image recognition, speaker identifica-
tion, or gesture recognition [NLK12],

(d) Trees to appropriately represent domain-specific knowledge, for
example, the transform library as a part of ROS, which is used
for the representation of coordinate frames, their relations, and
respective transformations [Foo13]

(e) Graphs to represent the structure of meta-models as used in the
MDSE workflow (cf. Chapter 3 on page 29) [Rod15a]

The final example is of great importance to this thesis and the four-lay-
ered abstraction model in Figure 3.1 on page 31 shows an exemplary
application, which makes heavy use of connected graphs featuring la-
bels, properties, direction, and their overall structures to allow (meta)

2.2 graphs and their role in intelligent systems 15

modeling in the context of MDSE. In all cases graphs are used to
represent or hold knowledge relevant to the overall system and/or
(sub-)system parts and are of existential importance to their applica-
tions.

Claude [Cla66] initially presented the topic of graph theory and to-
day numerous detailed introductions into graphs and graph theory
exist in literature [Wil99; Wes01; Gro08]. As graphs are a central un-
derlying concept for my work, I will briefly introduce (non-simple)
graphs, a common notation used in the remaining thesis.

Fundamentally, a graph G is represented by the ordered pair

G = (V ,E) (2.1)

consisting of a finite set of nodes (also called vertices)1

V = V(G) = {n0, . . . ,nm} (2.2)

and a finite set of edges E(G) containing ordered pairs of elements of
V(G). An edge

E = E(G) = {(nx,ny) | nx,ny ∈ V(G)} (2.3)

connects (or joins) the two nodes nx and ny and thus expresses the
relationship between them. When using ordered pairs of elements
within an edge, one can express directed edges between nodes of
a graph, thus expressing source and target of the relationship. The
graph is then called a directed graph or digraph opposed to the other-
wise undirected graph.

A loop can exist within a graph which is an edge composed of an
equal pair of nodes, i.e. connecting the node to itself:

eloop = {nx,nx} | nx ∈ V(G) (2.4)

Further, a multidigraph refers to a graph which allows connecting any
node with a directed edge to any other node. Edges of the same type
can, as a result, connect the same nodes multiple times.

A graph H is called a subgraph of a graph G (i.e.H ⊆ G) if the set
of nodes and edges of H are a subset of the nodes and edges of G,
that is

V(H) ⊆ V(G) and E(H) ⊆ E(G) (2.5)

Alternatively to the previously mentioned connected graphs, discon-
nected graphs GA and GB can coexist and are defined by having no
connection between any nodes. A common operation on connected
graphs involves walks alongside its nodes and edges. A connection

1 In the remainder of this thesis the words node and vertex, as well as edge and
relationship are used interchangeably.

16 graph-based knowledge representation and management

walk along a sequence of nodes P = (n0, . . . ,nk) is also called a path
between two nodes. In the particular case that n0 = nk the path is
considered to be closed and called a cycle. For example, paths play
an important role in the context of tree structures, which in turn are
connected graphs with only one path between each pair of nodes.

A further extension of graphs adds more descriptive aspects to itsgraph model �

entities via labels and properties. Labeled graphs allow to attach dif-
ferent labels from a finite set Lab to nodes and edges, while property
graphs allow to assign multiple properties from finite sets Prop and
constants Const to nodes and edges respectively.

G = (V ,E, ρ, λ,σ)

V = {v0, . . . , vj}

E = {e0, . . . , ek} | where V ∩ E = ∅
ρ : E→ (V × V) | ρ(ex) = (va, vb)

λ : (V ∪ E)→ P(Lab) (2.6)

σ : (V ∪ E)× Prop→ Val

Lab = {l0, . . . , ll}

Prop = {p0, . . . ,pm}

Const = {c0, . . . , cn}

With E being a finite set of edges, the function ρ(ex) = (va, vb) conse-
quently defines that ex is a directed edge from node va to node vb in
graph G.

To further allow the graph G to represent labeled multidigraphs (i.e.
multiple directed edges between nodes with identical source, target,
and label(s)), λ projects onto a powerset of the finite set of labels Lab.
These graph properties combined are referred to as a labeled propertylabeled property

multidigraph
L

multidigraph (in the following simply referred to as a graph) and can
be represented by current state-of-the-art GDBs, such as Neo4j. There
are more graphs properties with less importance to the application in
this thesis which are not discussed in depth at this point; for further
details I suggest reading common literature on graphs [Wil99; Wes01].

Recent research continues evolve graphs to support large-scale data
management formally. For example, Shinavier and Wisnesky recently
presented a formal lingua for algebraic property graphs and an ex-
emplary implementation [SW19]. The authors define a labeled prop-
erty multidigraph similar to Equation (2.6) and also include a notion
of graph schema as well as the concept of hypergraphs2. Their de-
scription of graphs is a fundamental perspective and contains similar
definitions as presented in this section.

2 Hypergraphs are a graph in which an edge can connect any number of nodes and
in which edges are also vertexes that can be connected by further edges

2.3 graph-based knowledge management 17

2 .3 graph-based knowledge management

The term knowledge management term was first coined in 1974 by
Henry and refers to the entire process of crating, sharing, storing,
retrieving, and managing knowledge [Hen74]. This scopes the pro-
cesses of collecting and storing data, information, and knowledge in
DBMS for increased accessibility. The classic relational model was
introduced by Codd in 1970 proposing to represent data as sets of
tuples (relations) alongside a suitable first-order predicate logic to de-
scribe queries (i.e. Structured Query Language (SQL)) [Cod70]. The rela-
tions are a collection of tables consisting of sets of rows and columns.
Modifications on these tables are realized via relational operators for
tabular manipulations.

Consequently, the underlying model imposes strong constraints on
inserted data. The data model core advantage is its uniformity and as
such, the problem domain is always mapped to this model [Mai83].
As a result, since its wide application no considerations were made
whether or not the relational model is appropriate for a particular
set of data or information. However, while the relational model is
widely adopted and used, model shortcomings are increasingly docu-
mented [Ang12]. One central limitation is that data model with high
coupling (i.e. the degree of interdependence between elements) of-
ten drastically impacts querying performance negatively [SF13]. Ad-
ditionally, the relational model is not well suited for data containing
uncertainty. Each row of a table is considered a true proposition in
this model. Analytical processing, statistical data, and fundamentally
changing data is thus not easily represented.

Similarly, the query language SQL [CB76] has been heavily criti-
cized – especially in its early years by its author [Dat84; Dat87; Dat12;
Atz+13]. The most common issues with SQL refer to its

• Lack of consistency (abstract and concrete syntax are inconsis-
tent),

• Lack of compactness (large and growing language),

• Lack of orthogonality (hard to compose),

• Host language mismatch (low system cohesion; no integration
with application languages and protocols).

As the relational model contains limitations that do not cover the
requirements of current applications, alternating databases increased
in popularity [Ang12]. NoSQL databases emerged which address the
shortcomings by providing alternative data models and appropriate
query languages. The most popular approaches provide models such
as key-value stores, document stores, graph, triple stores, or multi-
model stores. These databases exploit the structure of the data and

18 graph-based knowledge representation and management

information to be stored, providing higher performance or accessi-
bility for appropriate domains. Consequently, NoSQL databases and
their performance and application suitability are researched inten-
sively; multiple comparisons of NoSQL databases discuss the individ-
ual properties [TB11; MK14]. In the context of this work, GDBs and
the suitable GQLs are analyzed in detail in the following sections.

2 .3 .1 NoSQL: Graph databases

GDBs are one of the widely adopted NoSQL storage types which em-
ploy a fundamentally different data model compared to the tradi-
tional relational model for knowledge storage. This type of storage
utilizes a structured graph model with similar model definitions to
the previously presented labeled property multidigraph in Equation (2.6)
on page 16. Besides the exploitation of data structure in the model,
GDBs mitigate the aforementioned limitations of relational DBMSs
by providing a (computationally) cheap traversal alongside the edges
of the graph. The costs of edge traversal are in turn shifted to the
insertion time and higher investments (e.g. via more complex state-
ments) are necessary when inserting data into the GDB. With the
importance of graphs for computer science and knowledge manage-
ment, multiple GDB implementations are available addressing indi-
vidual functional and non-functional requirements of developers and
system users [Ang12]. They can be categorized into two categories:
a) single-node platforms providing high efficiency with limited scal-
ability (e.g. Neo4j , OrientDB), and b) large-scale distributed systems
(including cloud solutions) with efficiency impacts due to distribu-
tion and overhead (e.g. AragonDB, Hadoop). Each implementation
supports a wide range of different graph specific algorithms, includ-
ing graph traversing, path (sub-graph pattern) finding, graph metric
calculation, shortest path calculations, cluster detection, or graph sim-
ilarity calculation. Table 2.1 on page 20 presents a condensed list of
state-of-the-art graph databases and their core features and proper-
ties. In the following I compare the different implementations along
the following categories to show their adequacy for my work to fit the
previously introduced research question RQ4 (Section 1.1 on page 6)
and the upcoming implementation requirements FR1, FR7, NFR1,
NFR2, NFR5 (Section 5.1 on page 75):

1) Access (the application in research requires to consider source
code access and potential licensing)

2) Specialization (the degree of language specialization opposed
to generalization of the query language)

3) Query interface (users require an intuitive interface for effective
query composition)

2.3 graph-based knowledge management 19

4) Ranking (overall popularity impacts the choice as further devel-
opment and use of the query language benefits its usage)

5) Overall applicability (does the language provide all features nec-
essary for the domain application).

With the application of the target GDB in public funded research,
(source) access and licensing impact my GDB choice. Besides down-
sides such as vendor lock-in, reduced innovative approaches, and
high complexity of corporate applications, factors such as the avail-
ability (especially for paid only licensing models), adaptability and
overall mindset of closed source systems do not align with my re-
search requirements. However, some companies offer a dual-license
model, as for example the Neo Technology organization does for their
GDB Neo4j. In this example, the community edition is open source
and freely available, while enterprise edition primarily provides ex-
clusive support and specialized features. Unfortunately, few GDB (i.e.
Sparksee and GraphDB) invoke deal-breaking constraints on the com-
munity editions – such as upper limits of nodes or no parallel query
execution – rendering them unusable for the application in my work.

Most of the databases provide implementations of specialized fea-
tures for narrow domains and employ different graph database mod-
els that correspond to their intended application. These models in-
clude graph models tailored for spatial and geographical data (e.g.
Oracle Spatial) and Resource Description Framework (RDF) triplestores
(e.g. Apache Jena). Only three of the selected solutions use the de-
tailed and for my work best suitable labeled property multidigraph (cf.
Equation (2.6) on page 16) as their underlying graph model and the
remaining examples use a multi-model approach that combines dif-
ferent models.

The RDF based databases (e.g. Apache Jena or AllegroGraph) pri-
marily provide retrieval interfaces using (extended) SPARQL Protocol
and RDF Query Language (SPARQL) or SQL query languages due to
the underlying triple store model. The remaining databases use spe-
cialized query languages such as Cypher, Gremlin, AQL, or provide
access via specialized APIs. GDBs with support for the query lan-
guages openCypher and Gremlin are a good fit for the application in
the EISE domain as shown in Section 2.3.2 on page 22. These include
the databases Neo4j, JanusGraph, and AnzoGraph from Table 2.1 on
the next page. While Cypher was initially presented as a part of Neo4j
in 2011, it is pushing for a broader adoption since 2015 via a full and
open specification in the openCypher project. As a result, other plat-
forms (recently) added suitable support, for example, AgensGraph,
CAPS (Cypher for Apache Spark), Apache TinkerPop (via Cypher for
Gremlin), Memgraph, RedisGraph, or SAP HANA Graph.

20 graph-based knowledge representation and management

s
o

u
r

c
e

i
d

n
a

m
e

g
r

a
p

h
m

o
d

e
l

t
y

p
e

i
m

p
l

.
q

u
e

r
y

l
a

n
g

u
a

g
e

r
a

n
k

i
n

g
r

a
c

i
d

l
i
c

e
n

s
e

s
c

a
l

a
b

i
l

i
t

y

a
c

c
e

s
s

l
a

n
g

u
a

g
e

opensource

1
N

eo
4
j1

pr
op

er
ty

gr
ap

h
Ja

va
C

yp
he

r
1

3
du

al
-l

ic
en

se
3

([
D

om
+1

0
])

2
O

ri
en

tD
B

m
ul

ti
-m

od
el

Ja
va

SQ
L

3
3

A
pa

ch
e

Li
ce

ns
e

2
.0

-

3
Ja

nu
sG

ra
ph

2
gr

ap
h

da
ta

ba
se

Ja
va

G
re

m
lin

(T
in

ke
rP

op
)

7
3

A
pa

ch
e

Li
ce

ns
e

2
.0

3

4
A

ra
go

nD
B3

m
ul

ti
-m

od
el

m
ul

ti
pl

e
A

Q
L

4
3

du
al

-l
ic

en
se

d
-

5
A

pa
ch

e
Je

na
4

R
D

F
tr

ip
le

st
or

e
Ja

va
SP

A
R

Q
L,

O
W

L
>3

0
3

A
pa

ch
e

Li
ce

ns
e

2
.0

-
([

D
om

+1
0
])

6
C

ou
ch

ba
se

5

(M
em

ba
se

)
m

ul
ti

-m
od

el
C

,C
++

N
1
Q

L
>3

0
7

du
al

-l
ic

en
se

-

proprietary

7
O

ra
cl

e
Sp

at
ia

l6

tr
ip

le
st

or
e

Ja
va

SQ
L

&
sc

he
m

a
fu

nc
.

>3
0

(3
)

cl
os

ed
-

8
A

lle
gr

oG
ra

ph
tr

ip
le

-/
do

cu
m

en
ts

to
re

C
L

SP
A

R
Q

L
1

1
3

cl
os

ed
-

9
A

nz
oG

ra
ph

7
tr

ip
le

st
or

e
C

,C
++

SP
A

R
Q

L;
C

yp
he

r
2

2
3

cl
os

ed
3

1
0

Sp
ar

ks
ee

8

(D
EX

)
pr

op
er

ty
gr

ap
h

C
++

A
PI

on
ly

2
4

3
D

ua
l-

lic
en

se
d

(3
)P

([
D

om
+1

0
])

1
1

G
ra

ph
D

B9
tr

ip
le

st
or

e
Ja

va
SP

A
R

Q
L

1
0

3
cl

os
ed

/d
ua

l
(3

)P

Ta
bl

e
2

.1
:O

ve
rv

ie
w

of
ex

is
ti

ng
gr

ap
h

da
ta

ba
se

s,
th

ei
r

pr
op

er
ti

es
,a

nd
th

e
us

ed
qu

er
y

la
ng

ua
ge

s;
C

om
m

en
ts

:
R

R
an

ki
ng

ob
ta

in
ed

fr
om

[s
ol

1
9

]P
pa

ye
d

su
bs

cr
ip

ti
on

re
qu

ir
ed

1
op

en
sp

ec
ifi

ca
ti

on
of

op
en

C
yp

he
r

ex
is

ts
[N

eo
1

5
]2

va
ri

ou
s

ba
ck

en
ds

us
ab

le
(C

as
sa

nd
ra

,H
Ba

se
,B

ig
ta

bl
e,

an
d

ot
he

rs
);

ba
ck

en
d

im
pa

ct
s

sc
al

ab
ili

ty
3
ke

y/
va

lu
e,

do
cu

m
en

t,
gr

ap
h;

A
ra

go
nD

B
Q

ue
ry

La
ng

ua
ge

4
va

ri
ou

s
in

te
rn

al
re

as
on

er
s

5
do

cu
m

en
t

or
ie

nt
ed

;
co

m
m

un
it

y
ed

it
io

n
w

it
ho

ut
re

ce
nt

bu
g

fix
es

w
it

h
A

pa
ch

e
2

.0
lic

en
se

;N
1

Q
L

is
a

SQ
L

ex
te

ns
io

n
ta

rg
et

in
g

JS
O

N
da

ta
6
ta

ilo
re

d
to

ge
og

ra
ph

ic
an

d
lo

ca
ti

on
;A

C
ID

co
m

pl
ia

nc
e

un
cl

ea
r

7
no

co
m

m
un

it
y

ed
it

io
n;

ac
tu

al
st

or
ag

e
ty

pe
no

t
di

sc
lo

se
d

8
co

m
m

un
it

y
ve

rs
io

n
lim

it
ed

to
1

m
ill

io
n

no
de

s
9
W

3
C

co
m

pl
ia

nt
;f

re
e

ve
rs

io
n:

no
m

or
e

th
an

tw
o

qu
er

ie
s

in
pa

ra
lle

l

2.3 graph-based knowledge management 21

Figure 2.2: Trends of GDB popularity as presented by [sol19].

The individual graph database rankings (cf. Figure 2.2) are ob-
tained from DB-Engines Ranking [sol19] and while they do not re-
flect a formally complete analysis of actual usage of the databases,
they allow to identify trends and serve as an indication for current
usage statistics, which are rarely officially reported by the develop-
ers themselves. According to the authors, rankings represent a pop-
ularity score including (for a given DBMS) the number of mentions
on websites, a Google Trends3 analysis, the frequency of technical
discussions on common related support forums, mentions in job of-
fers and profiles of professionals, and lastly relevance in social net-
works4. Within this GDB ranking the databases Neo4j, OrientDB, and
AragonDB are placed amongst the top five candidates. The popular-
ity and ranking of the Neo4j database has been consistently the high-
est among all graph databases since 2013. Within recent years cloud
based alternatives (e.g. Microsoft Azure Cosmos DB or Amazon Nep-
tune) have gained popularity, possibly due to the stronger adoption
of NoSQL based databases within professional fields.

The overall applicability of GDBs to my work is a superset of indi-
vidual properties of each platform; various features impact the ap-
plicability metric decision, including a) possible graph operations,
b) supported graph size, c) storage and retrieval efficiency, d) hori-
zontal scalability (i.e. cluster size), e) vertical scalability (i.e. number
of cores), f) data ingestion time, g) indexing performance, and h) job
execution time. Evaluating these metrics for the listed GDB is done
with respect to the EISE application domain. In terms of scalability,
Dominguez-Sal et al. conducted the HPC Scalable Graph Analysis
Benchmark [Bad+09] which consists of multiple analysis techniques
(via multiple kernels), which implement access to GDB [Dom+10].

3 https://trends.google.com/trends/
4 See https://db-engines.com/en/ranking_definition for further details on the

score calculation.

https://trends.google.com/trends/
https://db-engines.com/en/ranking_definition

22 graph-based knowledge representation and management

Their experimentation identified that for small graphs all tested data-
bases are capable to achieve a reasonable performance, but only Neo4j
and Sparksee were able to deal with the largest benchmark sizes
and are thus considered the most efficient. Guo et al. also evaluate
GDBs using multiple different experiments [Guo+14]. The authors
measure basic performance via job execution time, which shows that
there is no overall winner (with Hadoop being the worst performer
in all cases) and the individual GDBs perform stable with maximal
variances of 10%. Further scalability experiments show that an in-
crease of computation cores can lead to regressing performance, es-
pecially for small graphs while normalized performance per comput-
ing unit generally decreases when scaling horizontally and vertically.
The last metric of overhead evaluation exhibits diverse results across
the GDBs, chosen algorithms, and graphs. There exist many more
evaluations of graph databases available which compare platforms
directly or investigate the difference between relational based DBMS
and GDB [McC+14; Vic+10; Mpi+15; Lou+15; TB11]. However, with
the fast development life-cycle many tools have often improved previ-
ous shortcomings and extended further support for previously miss-
ing features (e.g. user management within Neo4j).

Summarizing, I conclude that Neo4j is the optimal choice as a plat-
form for the development of a model-driven query support environ-
ment. With a labeled property multidigraph as the underlying graph
model, Neo4j provides free access to a popular and high-performance
solution. Even though Neo4j has no native sharding support to battle
potential horizontal scalability, this missing feature is of low impor-
tance, as the EISE use-case primarily requires a high efficiency solu-
tion rather than high horizontal scalability. Additionally, Neo4j uses
Cypher as its main query interface, which further backs it as an op-
timal platform due to my decision to use Cypher as the underlying
query language for my approach (cf. Section 2.3.2). This ensures that
a potential transfer or extension to other GDB platforms which sup-
port the openCypher standardization will be possible with little to no
overhead. Neo4j’s plug-in support also allows further customization
of the overall database, query evaluation mechanisms, and the query
access (including graph access via a Java Object Graph Mapping (OGM)
interface).

2 .3 .2 Graph query languages

With possible applications of GDBs in various domains (e.g. biology,
chemistry, machine learning, and robotics), the interest has strongly
increased within the last decade showing their importance to many
fields. With this development, appropriate query interfaces are re-
quired to facilitate data, knowledge, and information handling. These
graph query languages (GQLs) are commonly external domain-specific

2.3 graph-based knowledge management 23

languages (DSLs) for information retrieval. Existing languages such
as SQL (used for relational DBMS) can not sufficiently provide ac-
cess to data stored in graph models and is unable to make use of
algorithms which exploit the graph properties. As a result, new lan-
guage definitions and implementations emerged next to already well
established GQLs, such as SPARQL, Prolog, XPath, or XQuery. These
new languages provide support for efficient and easier access to data
in extended graph models (such as the labeled property multidigraph,
cf. Section 2.2) and further focus on individual (niche) domain re-
quirements; examples are Cypher, Gremlin, GraphQL, G-Core, and
PGQL

All graph query languages share the conceptual core that they uti-
lize either a) graph pattern matching and/or b) graph navigation
as operations for graph querying [Ang+17]. The pattern matching
method matches a user supplied subgraph pattern against the present
graph in the GDB and returns all matches. The latter method alterna-
tively navigates the topology of the graph and extracts suitable results
based on the provided user query. Additionally, navigational queries
allow users to check path existence or path lengths and hence directly
exploit the graph model structure. In both cases, a query on a graph
can return either constants (i.e. labels, types, properties, or values),
nodes, relationships, individual paths, or entire (sub-)graphs. Further
result augmentation, filtering and match restrictions are additionally
possible by appending operations such as projection, union, optional,
or difference.

At the same time, different semantics for query language execution
are followed (either in the GQL or by the executing query engine).
These are categorized into the following (sub-)types [Ang+17]:

a) Pattern matching

– Homomorphism-based

– Isomorphism-based

– Simulation-based

a) Graph navigation

– Arbitrary path

– Shortest path

– No-repeated-node

– No-repeated-edge

Query designers thus need to precisely understand the underlying se-
mantics of the different GQLs and execution engines to formulate cor-
rect and effective queries. One can easily overlook (sometimes subtle)
differences in different semantical interpretations and thus construct
valid queries with unintended behavior (e.g. duplicated or missing
results).

24 graph-based knowledge representation and management

1 MATCH (lisa:Person {name: "Lisa"})-[:Friend]->()-[:Friend]->(fof)
2 WHERE fof.name = lisa.name
3 RETURN lisa.name, fof.name

Listing 2.1: Example of a simple Cypher query extracting the pair of names
of persons who know each other via exactly two other friends
and share the same name.

Discussions in the literature about graph query languages and their
strengths and weaknesses are primarily informal and present the
most prominent features of different languages [Mah17]. However,
more in-depth discussion of this topic are gaining traction in recent
years. Angles et al. recently composed a detailed survey on the foun-
dational features of modern graph query languages with a focus
on the importance of their formalization [Ang+17]. They focus their
efforts on the three representative languages SPARQL, Cypher and
Gremlin and address them along the three dimensions of 1) data
models to encode data, 2) (sub) graph patterns search, and 3) navi-
gational expressions for path matching. Similarly, Shinavier and Wis-
nesky recently presented a detailed analysis of the graph model and
include semantic descriptions of model transformations and query
algorithms [SW19].

A GQL for my application domain needs to fulfill three require-
ments. The query language needs to provide both types of language
querying – pattern matching and navigational querying. At the same
time, behavior developers (cf. Section 4.2.2 on page 57) of the EISE do-
main who implement queries need to have an easy entry and a good
grasp of the language capabilities. With most languages being GDB
specific (cf. Table 2.1 on page 20), only few candidates remain which
are transferable and support more than one storage back-end. Fur-
ther, language customizations (via language internal keywords, func-
tions, or operations) are ideal. More experienced developers can use
these features to customize and extend their queries and reduce com-
plexity. In the following, I describe Cypher, SPARQL, and Gremlin in
greater detail alongside uncomplicated query examples as the repre-
sentatives of the most appropriate GQLs and identify their applicabil-
ity for my scenario.

2 .3 .2 .1 Cypher

The Cypher graph query language [Fra+18; Neo11] has initially
been introduced by the Neo4j, Inc. as a part of the graph database
Neo4j [Neo07] and was extracted to its own project called openCypher
in 2015 [Neo15] . Currently, Cypher within Neo4j is a specialization
of the specification of openCypher, extending it with only few fea-
tures with future plans to migrate to the pure openCypher specifica-
tion. Cypher is a declarative GQL designed for graph data retrieval
and storage whilst maintaining a high expressiveness and efficiency.

2.3 graph-based knowledge management 25

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?name ?mbox
3 WHERE
4 { ?x foaf:name ?name .
5 ?x foaf:mbox ?mbox }

Listing 2.2: Example of a simple SPARQL query extracting the name and
email address of persons.

The language design is strongly inspired by the popular SQL (Struc-
tured Query Language) query language commonly used in relational
DBMSs; Listing 2.1 on the facing page shows a query example match-
ing a subgraph and filtering the results. This similarity to SQL shows
in the clause syntax which is using a subgraph pattern matching
clause (MATCH), a filtering clause (WHERE) and a final transformation
clause (RETURN). Additional clauses exist for the creation, modifica-
tion, and deletion of nodes, relationships, and properties. Cypher’s
concrete syntax visually encodes nodes as circles with surrounding
braces and relationships between them as boxes with directed ar-
rows. Additionally, the properties of locally bound variables can be
accessed via common dot notation. Build-in functions allow to exe-
cute common operations, such as ID() and TYPE() to obtain the node
id and type respectively, COUNT() to count elements, or various math-
ematical operations5. Cypher is based on the labeled property multidi-
graph model (cf. Section 2.2 on page 14) and its evaluation follows
the isomorphism-based non-repeated edge semantics: the same edge
is not mapped twice within a single match statement [Ang+17]. This
property ensures for example that the query in Listing 2.1 on the fac-
ing page does match a circular graph between the same two nodes.

In summary, Cypher is a suitable candidate as the query language
for queries towards the EISE domain. The language holds a) an in-
tuitive interface close to existing query languages, b) allows to be ex-
tended and customized via user functions, c) uses the extensive labeled
property multidigraph model with intuitive isomorphism-based non-re-
peated edge semantics, and d) the Neo4j back-end is a strong and
scalable competitor pushing adoption further via the openCypher ini-
tiative.

2 .3 .2 .2 SPARQL

The SPARQL has initially been standardized in 2008 by the World Wide
Web Consortium (W3C) and is considered as a key semantic web tech-
nology [W3C08]. It is a declarative semantic triplet query language
intended for the design of retrieval and storage queries of RDF for-
matted data [Heb09]. The language supports query triplet patterns,

5 Refer to https://neo4j.com/docs/cypher-refcard/current/ for the full reference
of the current Cypher features shipped with Neo4j

https://neo4j.com/docs/cypher-refcard/current/

26 graph-based knowledge representation and management

conjunctions, disjunctions, and optional patterns6 (cf. Listing 2.2 on
the previous page for a simple SPARQL query example). The core
clause syntax of SPARQL allows to locally bind external namespaces
(PREFIX), a matching clause used to identify individual elements or
graph patterns to be returned (SELECT), a filter clause holding the
triplets representing the graph pattern to match (WHERE), and fur-
ther optional elements to refine the query (e.g. UNION, CONSTRUCT, or
ASK). It is a rich and expressive querying language allowing users
to write complex and extensive queries. In contrast to the Cypher
language, the semantics of SPARQL evaluation are homomorphism-
based, matching of identical nodes within a graph needs to be manu-
ally avoided with appropriate filters [Ang+17].

The application of SPARQL within the EISE domain is a possible
choice. The language provides extension mechanisms and is highly
expressive. However, the expressiveness also implicates high costs
of efficient query design. Further, the description of subgraphs in
SPARQL via triple patterns is perceived as not as intuitive as in other
languages such as Cypher [SW19]. The central backends with direct
SPARQL support are RDF knowledge bases due to the underlying
knowledge base structure, opening potential issues of transferability
and user adoption.

2 .3 .2 .3 Gremlin

Gremlin is a property graph query language introduced in 2016 and is
a central element of the Apache TinkerPop3 graph framework [Rod15b]
(cf. Listing 2.3 on the facing page). Unlike Cypher and SPARQL, it
does not draw inspiration from SQL, but rather functional query
languages, such as XPath [RDS17]. As a result, Gremlin is also a
functional language that focuses on navigational over pattern match-
ing based queries. However, is still possible to define subgraphs for
matching queries using declarative queries. Gremlin evaluation fol-
lows the homomorphism based bag semantics [Ang+17]. With the
functional language design, Gremlin decisively differentiates as it is
an embedded language in any host language, which supports func-
tion composition and nesting. This results in queries being written
alongside the application code and thus tightly integrated into the
application logic. The exemplary Gremlin query shown in Listing 2.3
on the next page operates on G.V() which provides the set of all
nodes (called vertexes within Gremlin) in the graph. Instead of in-
dividual clauses as implemented in Cypher and SPARQL, queries
in the Gremlin language traverses the graph by chaining individual
functions (hasLabel() to match nodes, out() to follow relations). Re-
sult filtering happens along this traversal via corresponding functions

6 Refer to https://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/ and
https://www.w3.org/TR/rdf-sparql-query/ for a full list of features in SPARQL

https://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/
https://www.w3.org/TR/rdf-sparql-query/

2.3 graph-based knowledge management 27

1 G.V().hasLabel("Person").has("name","Lisa")
.out("firend").hasLabel("Friend")
.out("firend").hasLabel("Friend").has("name","Lisa")
.values("name","email")

↪→

↪→

↪→

Listing 2.3: Example of a simple Gremlin query extracting a traversal over
three nodes extracting the name and email address of persons.

(.has()). Possible results are iterable traversals, nodes, paths or ex-
tractions from the graph (.values()).

With no inspiration from popular languages such as SQL, the Grem-
lin language requires users to get to know the language’s traversal
based approach in depth to effectively formulate queries. The tight
integration of queries in application code further results in difficul-
ties for code generation within MDSE approaches. Gremlin is pri-
marily used within JanusGraph and all current efforts to standard-
ize graph query languages do not include any functional query lan-
guage [ISO19]. Its transferability is consequently unclear and an ap-
plication for the EISE domain thus not ideal.

2 .3 .2 .4 Other

Besides Cypher, two other state-of-the-art property graph query lan-
guages exist, namely the research language proposal G-CORE and
the Property Graph Query Language (PGQL). While PGQL is bundled
and bound to the Oracle Spatial and Graph database, G-CORE repre-
sents a research language proposal. With largely overlapping feature
sets in these three languages, the GQL Manifesto has been established
to call for a fuse of these three languages into comprehensive query
language for graph data called “GQL”, to fill a role similar as SQL in
the context of relational databases [Neo19]. The applicability of each
of these language for my work is thus similar and decided based
on their interoperability with graph storages. Only recently the call
for a unified graph query language is gaining further traction. The
ISO/IEC’s Joint Technical Committee decided to work on a unified
Graph Query Language (GQL)7 [ISO19]8. Cypher is the core inspiration
for the new developments but also other languages proposed in the
GQL Manifesto influence the upcoming development.

Besides these generalizing query languages for (property) graphs,
query languages for niche applications and highly specialized lan-
guages are available, for example, GraphQL, N1QL, or AQL. While
N1QL and AQL are domain-specific specializations of existing lan-
guages, GraphQL provides a conceptual framework as an alternative
to REST frameworks [Fac16; HP18]. It is an open-source data manipu-

7 Note that the new GQL language name collides with the already existing query
language but is favored due to its closeness to the standardized SQL

8 See https://neo4j.com/blog/gql-standard-query-language-property-graphs/
for further information

https://neo4j.com/blog/gql-standard-query-language-property-graphs/

28 graph-based knowledge representation and management

lation language for Application programming interfaces (APIs) released
in 2015 and now part of the GraphQL Foundation. Since 2018, the
GraphQL Schema Definition Language was added to the specification
adding schema and type support to the framework. In contrast to the
previously mentioned query languages, GraphQL requires an existing
code and data environment for its application as the language is not
part of a GDB and does not provide any database or storage engine
itself9). Semantics of GraphQL are only implicit and subject to cur-
rent research with the implementation and application relying on an
already present back-end environment [HP18]. The query language
design is inspired by the JSON syntax and query results returned are
JSON objects. It is different to usual GQLs and the application is in-
tended for the goal to provide a framework for web based services.
With these properties, GraphQL is thus not a valid choice for the ap-
plication in the EISE domain.

2 .4 summary

This chapter presents the context of graph-based knowledge repre-
sentation alongside the DIKW pyramid model. With such a promi-
nent role of graph structures I present the labeled property multidi-
graph model which is the most versatile data representation model.
It allows to represent graphs with nodes and relationships which
both hold multiple labels, properties, and values. Additionally, the
graph is a directed graph that can represent multiple relationships
of the same type between individual nodes. The increased adoption
of NoSQL databases also shows an increased use of GDBs. Conse-
quently, I present an introduction and analysis of available GDBs and
GQLs. The analysis shows that the usage of Neo4j as a GDB in com-
bination with Cypher provides a viable technology foundation to im-
plement upon. Neo4j is a popular GDB choice which scales appropri-
ately and allows for unrestricted free access. Cypher provides pattern
based matching and path queries while providing high language fa-
miliarity due to is closeness to SQL. Additionally, the non-repeated
edge bag semantics reduce the query design complexity further. With
the openCypher initiative and recent standardization efforts, the lan-
guage also perspectively will be able to provide maximal storage in-
dependence [Neo19; ISO19].

9 With only experimental support in GDBs, for example within Neo4j: https://neo4j.
com/developer/graphql/

https://neo4j.com/developer/graphql/
https://neo4j.com/developer/graphql/

3
M O D E L - D R I V E N S O F T WA R E E N G I N E E R I N G

“When I first started using the phrase software engineering, it
was considered to be quite amusing. They used to kid me about
my radical ideas. Software eventually and necessarily gained the
same respect as any other discipline.“

—Margaret Hamilton
Mathematician and Pioneering Computer Scientist,

co-authored the notion of software engineering

As I apply a Model-driven Software Engineering (MDSE) approach in
this work, this chapter provides an overview to the relevant funda-
mental concepts by introducing general definitions of core keywords
as a common ground. Within the relevant subdomains there exist
numerous interpretations of the relevant definitions and their appli-
cation in a MDSE approach [Völ+13; Rod15a]. I will summarize these
points of views and present their usage in relevant recent literature of
the individual (sub-)domains. Lastly, based on these foundations, Sec-
tion 3.3 on page 44 presents the development process applied in this
thesis to develop a model-driven graph query interface for interactive
smart environments.

3 .1 foundations and introduction

3 .1 .1 Models and transformations

At the core of MDSE (also called Model-driven Engineering (MDE))
stands the task of abstraction from a certain domain and its entities
by creating a models. According to Bezivin and Gerbe [BG01] a model L model

is defined as follows:

A model is a simplification of a system built with an in-
tended goal in mind [. . .]. The model should be able to
answer questions in place of the actual system. The an-
swers provided by the model should be the same as those
given by the system itself, on the condition that questions
are within the domain defined by the general goal of the
system. [BG01, p. 2]

Similarly, Combemale [Com17] define the term model as follows:

A model is an abstraction of an aspect of reality (as-is or
to-be) that is built for a given purpose. [Com17, p. 5]

30 model-driven software engineering

Thus, a model is an abstraction of a system and gains its usefulness
from being easier to use than the original, which is visualized in Fig-
ure 3.1 on the next page, where layer M0 represents the real-world
system and layer M1 represents the model of this system [Omg08].
While this definition of a model considers the corresponding core con-
cepts (i.e., a targeted simplification of a system allowing to answer
questions towards the system itself), it is rather broad and allows for a
wide interpretation of what can be a model. More recently, Rodrigues
da Silva [Rod15a] summarizes the definition of a model as:

[A] model [is] a system that helps to define and to give
answers of the system under study without the need to
consider it directly. [Rod15a, p. 141]

However, a more concise definition (and more relevant for MDSE)
is given by Kleppe et al. [KWB03]:

A model is a description of a (part of) systems written
in a well-defined language. A well-defined language is a
language with well-defined form (syntax), and meaning
(semantics), which is suitable for automated interpretation
by a computer [KWB03, p. 52]

This definition includes languages – along with the important prop-
erty of being well-defined (i.e., in the mathematical sense to be unique
and unambiguous to allow automated interpretation) – with both of
their central parts: the syntax, referred to as the concrete syntax, andconcrete syntax L

most importantly the semantics, referred to as the abstract syntax. Thisabstract syntax L

definition of a model thus describes prescriptive models (i.e., more rig-
orous formal, complete, and consistent), rather than solely descriptive
models [Völ13a]. In the context of software engineering this difference
is key, because this enables one to use a defined model and transform
it as required within the same medium (i.e., a digital representation
of the system). Depending on anticipated final target artifacts, an ex-
ample result can be generated General Purpose Language (GPL) source
code to be executed in production.

Re-applying the step of modeling to modeling itself results in the
corresponding meta-model (see Figure 3.1 on the facing page, layer
M1), which is composed of the concepts required to write down the
model itself. Meta-models in the M2 layer are thus the languages cre-
ated in the MDSE process with the goal to be used by the domain
experts in the M1 layer to model the real-world system. In my work
I will focus on the layers M0 to M2, but for completeness it is impor-
tant to note that re-applying the modeling step again on the M2 layer
provides one with a meta-meta-model (M3) which describes the con-
cepts required to write down a meta-model. As a result, the real-world
system is an instance of a model which conforms to the meta-model
which in turn conforms to the meta-meta-model.

3.1 foundations and introduction 31

Domain
Model

M0

M1

M2

M3

Real-world system

Domain
Model

Domain
Model

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-Meta-Model

Meta-
Model
(DSL)

conforms to

conforms to

instance of

specializes

In
cr

ea
se

d
Ab

st
ra

ct
io

n
&

Fe
w

er
 E

le
m

en
ts

Domain
Experts/

Language
Users

Language
Designers

Figure 3.1: The four layered abstraction model (Meta-Object Facility (MOF))
as defined by the Object Management Group (OMG) along with
the language user and language designer areas of involve-
ment [Omg08].

3 .1 .2 Domain-specific languages

The previously mentioned language – a central element of MDSE –
is referred to as a domain-specific language (DSL). van Deursen et al. L domain-specific

language (DSL)[vKV00] define DSLs as:

A domain-specific language is a programming language
or executable specification language that offers, through
appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem
domain. [vKV00, p. 1]

More recently and prominently Fowler [Fow10] defined:

domain-specific language (noun): a computer programm-
ing language of limited expressiveness focused on a par-
ticular domain. [Fow10, p. 33]

The following sections describe DSLs and their effect in further detail.

32 model-driven software engineering

3 .1 .2 .1 Benefits and challenges of DSLs

With the reduced expressiveness of a new language, DSLs offer a wide
range of benefits [vKV00; Völ13a]. Most importantly, the expression
of a given problem at the level of abstraction of the problem domain
is a strong argument. This has a positive impact on software produc-
tion and will increase productivity, as problems are expressed and
solved quicker with the actual language of the domain. To identify
and realize these concepts in a new language, direct involvement of
domain experts is necessary and – in turn – will assist the communi-
cation about the problem and domain between the involved parties.
For each language concept individual (provably) correct artifacts can
be generated which allows to proof the overall correctness and thus
increase the product quality. This generation step can also individu-
ally be changed or extended to any given target platform, ensuring
reuse and portability. With the model knowledge about concepts and
relationships of the domain, the corresponding validation and verifi-
cation of models becomes available. This feature increases the testabil-
ity as it allows for validation and verification of user inputs at model
design time, rather than at later stages of the development (e.g. at
compile time). Potential input errors are avoided which increases the
reliability of the product. With models specifically describing their do-
main, their maintenance and evolution is straight forward and thus
reliability, maintainability, and data longevity increases.

The use of a DSL also comes with challenges, which developers
need to overcome [vKV00; Völ13a]. MDSE processes require the nec-
essary language engineering skills to reach high quality DSLs and
results in at first increased development costs (i.e. higher effort for de-
sign and implementation). The target users of DSLs are also required
to understand and effectively use the created languages, which can
be mitigated by involving them early in the development cycle. This
involvement can help to also reduce the difficulty of outweighing the
ideal level of specificness and keeping a balanced DSL scope. Further,
the integration into other tools needs to be addressed to avoid the gen-
eral danger of (tool) lock-in. Thus, current research attends reusable
language (domain-specific) building blocks for common DSL tools as
well as language modularization [Wig+17; Völ18]. Lastly, a specific
issue is described by Völter called the “DSL Hell” [Völ13a, p. 44],
which describes the issue of re-implementation and development of
unfinished languages instead of using existing compatible, well engi-
neered and extendable languages.

3 .1 .2 .2 DSL variants

DSLs can be divided into two different variants [Völ13a; FB00].
First, internal (or embedded) DSLs are written within the language

which they are intended to be used with/in. In this case, the host

3.1 foundations and introduction 33

language itself is transformed and extended into a DSL. As a result,
the full feature set of the host language (often also called the base
language) is available to the language creator and (if wanted) to the
language end-user. However, this can also impose limitations on the
internal DSL as any reduced expressiveness of the host language will
also be present in the final language. With the overall goal of DSLs
in mind – to reduce the expressiveness for the target audience of do-
main experts – language creators thus must reduce available features
so that there are unique ways to express problems of the domain at
hand. This is especially difficult as the host language is not necessar-
ily designed to be used for an embedded DSL. Without appropriate
abstraction, non-programmers will potentially struggle to use a fin-
ished language if they do lack basic knowledge of the host language
itself. Prominent examples for this approach are often created within
functional programming languages (e.g. Lisp).

Second, external DSLs are written in a different language than the
targeted host language. This removes the burdens that come with an
internal host language (e.g. the host syntax, or features) and allows to
define any free form for the target DSL. External DSLs thus lack a link
into the target language; this mapping must consequently be defined
by the language designer. Further, tools and features that commonly
are provided for host languages and are considered the bare mini-
mum for a language (e.g. an editor, compiler, or fully featured inte-
grated development environment (IDE)) have to be created and provided
for external DSLs. This requires the language developer to find ap-
propriate abstractions and limits for their external DSL. Lastly, a new
external language needs to be transformed into the target language
with the help of defined model-to-model (M2M) and/or model-to-text
(M2T) generators.

Summed up, from the perspective of the language end-user exter-
nal languages mitigate issues internal languages often struggle with.
But in turn the DSL creator will have a more demanding task as de-
tailed care of has to be put into language design.

3 .1 .2 .3 DSL semantics

Next to the abstract syntax and the concrete syntax, it is necessary to de-
scribe the behavior of a DSL – the language semantics [Com17; Hen90;
NN91]. The syntax is initially defined either by using a minimized
notation representation such as Extended Backus–Naur Form (EBNF) or
by graphical representations such as meta-models. While the syntax de-
scribes the valid and allowed from of expressions within a language,
the semantics are concerned with the effects of the evaluation of cor-
rect expressions [HR00]. The semantics fulfill the three roles of 1) a
basis to prove the semantical correctness of a language, 2) a machine-
and compiler-independent standard, and 3) a formal way to ensure
that implementation are correct and conform to the concepts created

34 model-driven software engineering

by the language designers. There are two distinct types of semantics
for programming languages [Com17; Hen90; NN91]: a) operational
semantics, and b) denotational semantics.

Operational semantics provide logical statements which server to
prove a language’s execution and procedures. Common categories
among the operational semantics are a) concrete operational semantics:
This practical approach calculates the values of expressions of the
language via a compiler or interpreter for the language. It requires
a full implementation of the behavior that represents the language
semantics and can be used to obtain the meaning of any given ex-
pression. b) small-step semantics or evaluation semantics: Language de-
velopers create formal axiomatizations of the intentions of expression
evaluation. The individual inductive definitions are the resulting for-
malization which can lead to large sets of non-trivial axioms. c) big-
step semantics or computation semantics: Result oriented semantics that
show the consequence and overall results of an expression.

The denotational semantics in essence use mathematics for semanti-denotational
semantics

L

cal descriptions to represent the interpretation of the language behav-
ior. Thus the denotational semantics provide the space of meanings for
all language expressions and association between symbols and actual
functions. This type of semantics allows to provide concise descrip-
tions and defines a semantical mapping M from sets of languages L

to the semantic domain S, i.e. M : L −→ S. The denotational semantics
JK of a language L (written as J_KL) thus describes its behavior by for-
malizing the meanings as mathematical constructs. This description
is independent of the concrete syntax and provides a precise descrip-
tion of the individual language actions.

Semantics of DSLs in research literature are given mostly infor-
mal in the accompanying text – if provided at all. However, dis-
tinct denotations are required for the soundness of languages and
unambiguously transport language semantics to users. Given a) the
available freedom in their definition, b) the conciseness of the defini-
tions, and c) the common understanding of definitions, Denotational
semantics are the ideal application for describing language behavior
in the scope of this thesis. For most languages of distinct domains
(e.g. graph query languages (GQLs) as Cypher) the language semantics
are well understood and documented extensively and thus omitted
in this thesis1. However, language combinations in this thesis (espe-
cially orthogonal language composition) are not intuitively defined
and I thus provide their denotational semantics, following the notations
as presented by Hennessy [Hen90; Com17]. In this thesis, I use the
Cypher query language and its concrete syntax as the running exam-
ple for GQL reduction. Cypher semantics are already described in
detail and provide a graspable representation foundation for seman-

1 The semantics are often not described formally but as a mixture of concrete syntax,
abstract syntax, use-cases, implementations, and usage examples.

3.1 foundations and introduction 35

tic clarifications2. The identity semantics JKI of a given query Q are
thus assumed to evaluate to Cypher semantics JKC as follows.

JQK = JQKI (3.1)

JQKI = JQKC (3.2)

3 .1 .2 .4 Language composition

Language composition and suitable modularization has been iden-
tified as a central necessity for DSL development [Völ13a; Com17;
Pic10; Erd+13; VP12; ŞvV18]. Multiple of the previously named ad-
vantages of DSLs – such as reuse, or extendability – require success-
ful language dependency organization. In a recent literature survey
by Méndez-Acuña et al. the authors additionally emphasize the im-
portance of language modularization to reach acceptable separabil-
ity [Mén+16]. They recommend to practice “Language Product Lines
Engineering”, i.e. software product lines where the products are DSLs.
Language features join the sets of language constructs to represent a
functionality, which is provided by a DSL. Varying combinations of
these features then can allow to produce a target DSL.

In detail, Völter categorizes five central types of modularization
and composition approaches (compare Figure 3.2 [Völ13b]): L language composi-

tion
reference This composition strategy allows to reference elements

of a language LB within another language LA. A direct depen-
dency is established between the two languages when at least
one concept CA1

from LA references another concept CB1
of LB.

However, the resulting fragments FA and FB of either language
stay homogeneous as the reference is also represented in the
fragments. Fragments are thus not combined. LA consequently
cannot be used without LB

extension An extending composition allows the combination of
concepts from different languages, for example to extend an ex-
isting language with additional features. The depicted example
in Figure 3.2 on the next page shows a language LA extending
language LB by providing CA3

which is a specialization of the
existing concept CB3

. Concept CA3
can thus be used as a child

of CB4
(additionally to CB3

) and in turn provide (as shown in
this example) an additional child CA4

to a fragment abstract
syntax tree (AST). This mix of concepts allows heterogeneous
fragments while creating a direct dependency (LA depends on
LB).

reuse The reuse composition allows to create homogeneous frag-
ments while at the same time maintaining independent lan-
guages. To realize this independence between languages LA and

2 Refer to https://neo4j.com/docs/cypher-refcard/current/ for a short summary.

https://neo4j.com/docs/cypher-refcard/current/

36 model-driven software engineering

homogeneous fragments heterogeneous fragments

in
de

pe
nd

en
t l

an
gu

ag
es

 reference

Language B

 reuse language

 composition
type

extend

contain

reference

depend

Language BLanguage A
A5 B5B6A6

Language ABR

AB5

Fragment A Fragment B

 embedding

Language BLanguage A
A7 B7B8A8

Language ABE

AB7

 Fragment A+B

Language A

 extension

A1

B1 B2

Language B

Language A
A3

B3 B4

A4

Fragment A Fragment B Fragment A+B

fragment

C1 concept

de
pe

nd
en

t l
an

gu
ag

es

Figure 3.2: The four types of language composition and the resulting frag-
ment structure as presented by [Völ13b, pp. 116–127].

LB in the shown example, an adapter language LABR
is intro-

duced. On the one hand, concept CAB5
of adapter language

LABR
specializes CB5

and on the other hand, CAB5
also refer-

ences CA5
. As a result, only language LABR

has a dependency
to other languages while the languages LA and LB remain in-
dependent. This technique is very useful for DSLs which cover
generic domains with high potential of reuse (e.g. a time do-
main). However, great care needs to be taken when creating
reusable languages so that explicit hooks and adaption points
are made available for later reuse.

embedding The embed composition is very similar to a reuse com-
position. Again, an adapter language LABE

is added which takes
the role of holding the dependency to the involved languages
LA and LB. These languages thus stay independent from each
other. Fragments of embedding languages are, however, hetero-
geneous as this composition allows to mix the involved lan-
guages together. To realize this behavior, concept CAB7

of the
adapter language LABE

specializes CB5
(similar to reuse). Ad-

ditionally, instead of just a reference, concept CAB7
contains3

instances of CA7
(i.e. has CA7

as a child). This composition
strategy is especially useful when syntactically composing oth-
erwise independent languages

3 The Unified Modeling Language (UML) notation defines this relation type as compose,
but to to avoid an ambiguous usage in this section, it is referred to as contain

3.1 foundations and introduction 37

orthogonal composition Orthogonal language composition is
alternatively also referred to as language annotation. This com-
position mechanism allows to attach concepts of one language
to the model AST of another language without affecting any
functionality of the target language. All following work on the
model ignores these annotations unless they are explicitly sup-
ported by the language using the modified AST. Fragments are
consequently heterogeneous (similar to extension), but the lan-
guages themselves stay independent as they are not aware of
the attachment. Further no adapter language needs to be de-
fined to handle the connection between languages. In this case,
the combination of languages (being the attaching of fragments
to other fragments) is a feature which the language workbench
must explicitly support. While it is not a composition strategy
in the classical sense as the others depicted in Figure 3.2 on the
facing page, it allows for very clean combination of languages of
different (orthogonal) domains, without introducing additional
dependencies.

Similarly to Völter, Erdweg et al. also summarize comparable types
of composition into the five categories of [EGR12]:a) language exten-
sion, b) language restriction, c) language unification (i.e. adapter lan-
guages), d) self-extension (i.e. embedding), and e) extension compo-
sition (i.e. incremental extension).

For example, the application of suitable composition is especially
important in the context of cognitive systems and robotics research.
Wigand et al. proposed an approach that contains a focus on lan-
guage composition and generation for component-based robotics sys-
tems [Wig+17]. Their goal is to support extensibility and refinement
of the system and split the language modules into three orthogonal
dimensions: hardware platform, software platform, and capability. As
a result, they successfully implemented a quad-arm object manipula-
tion scenario on a simulated robot setup and on real robot hardware.

Look et al. presented their approach of black-box integration of
heterogeneous languages in the context of cyber-physical systems
[Loo+14]. Similarly to the abstract presentation by Völter, they base
their approach on the three composition mechanisms provided by
their language workbench MontiCore (a framework for the development
of domain-specific languages with special consideration of language
composition [KRV10]): a) aggregation, b) embedding, and c) inheri-
tance. Unfortunately, the authors do not include language composi-
tion information or detailed meta-model diagrams. Also an evaluation
or application to a real-world scenario would be beneficial to validate
the approach.

Also using the MontiCore workbench, Butting et al. recently pre-
sented an approach for systematic composition of independent lan-
guage features [But+19]. They use grammar-based language syntax

38 model-driven software engineering

modules to separate concerns of language life cycle participants. Lan-
guages are decomposed into “composable language components” by
the authors to realize automated language derivation. The authors ar-
gue that this step increases reuse of abstract syntax and tooling as
the decomposition decouples language development and composi-
tion. The language composition is hence based on developer defined
grammar and rules.

Another example closely related to this thesis, is the robot knowl-
edge query DSL by Balint-Benczedi et al. [Bal+17]. The authors pro-
vide a language which is part of KnowRob’s perceptual episodic mem-
ory storage and retrieval system. The presented language is an inter-
nal DSL created via a grammar definitions and serves the purpose
of a description language of the stored information Their language
description, however, does not contain any language composition in-
formation or other language design details.

3 .1 .2 .5 Language workbenches

There exist numerous tools that assist language developers and fa-
cilitate the design and usage of DSLs. These so called language work-language workbench L

benches [Fow05] “alter the relationship between editing and compiling
the program. Essentially they shift from editing text files to editing
the abstract representation of the program” [Fow05, p. 12]. They pro-
vide an integrated language development environment providing the
tools to edit different language aspects (e.g. concrete syntax, abstract
syntax, or semantics), as well as the language pragmatics [Rod15a] (i.e.language pragmatics L

the practical concerns of a language, such as its application in the
real-world). Language workbenches vary in the set of provided features
and design approaches and are hence analyzed and evaluated with re-
spect to features and completeness [Erd+15]. This section introduces
an overview of state-of-the-art tools providing language workbenches
features along with their advantages and challenges.

xtext

Xtext [Ecl] is an Eclipse-based open-source software framework which
provides the means to develop DSLs (c.f. Figure 3.3 on the next page).
Development of Xtext takes place within the Eclipse Modeling Frame-
work (EMF) and provides Ecore as the central (meta-)model, which in
turn implements the OMG’s MOF shown in Figure 3.1 on page 31.
Xtext is based on a notation close to EBNF and the framework pro-
vides features for meta modeling, constraint checking, code genera-
tion and M2M generation [EV06]. The AST model is derived (parsed)
from the textual syntax and can support multiple concrete syntaxes by
manually defining additional representations once the textual syntax
was parsed. The internal project structure within Eclipse is used for
Xtext languages and individual parts of the language is separated
into individual projects.

3.1 foundations and introduction 39

Figure 3.3: Exemplary screen shot of a running Xtext instance with a domain
model example language. The created DSL is launched as a new
Eclipse instance (window on top) in which the newly created
concepts are available.

Developers can use the general-purpose high-level programming
language Xtend as the common grounding language, which is imple-
mented using the Xtext framework [Typ11]. The implementation aims
to provide a less verbose language which is syntactically close to Java
while maintaining maximum compatibility. The core usage of Xtext
requires language developers to also use other plug-ins provided by
the openArchitectureWare project, which in turn is a part of the Eclipse
Generative Modeling Technologies project. Consequently, the integration
of all parts and plug-ins required for effective domain modeling with
Xtext is not a seamless experience which can in turn also impact the
language end users.

jetbrains meta programming system

JetBrains Meta Programming System (MPS) [Jet; Jet18] is an open-source
tool developed by JetBrains. It facilitates the creation of external DSLs
and in contrast to most other parser based language workbenches, MPS
provides a projectional editing environment. The language concrete

40 model-driven software engineering

Figure 3.4: Exemplary screen shot of a running MPS instance. The shown
math language is embedded into the provided Java base lan-
guage and allows seamless editing of Java code and common
math constructs.

syntax is therefore separated from the abstract syntax and thus the AST,
consequently removing the need of limited language parsing [VP12].
As a result, the information of a model can be displayed in different
formats such as textual, tables or within other custom graphical rep-
resentations.

Language definition in MPS is separated into nine different lan-
guage aspects for each language concept: structure, editor, actions,
constraints, behavior, typesystem, intentions, dataflow, and generator.
These individual aspects represent the central elements required for
the definition of a DSL. The structure models the abstract syntax; the
editor model the concrete syntax; action and behavior aspects model
a concepts behavior; constraints, typesystem, and dataflow model
various restrictions of the concepts; and lastly the generator models
the necessary M2M and M2T transformations via a template engine,
which are required for artifact generation. Each aspect can be individ-
ually changed for each concept to implement the necessary language
features.

3.1 foundations and introduction 41

Further, MPS also includes numerous user-facing features which
modern IDEs provide, for example, syntax highlighting, code com-
pletion, error checking, or runtime debugging [Völ13b]. This also in-
cludes extensive language modularization capabilities facilitating lan-
guage composition for language combination, extension, reuse, em-
bedding, and orthogonal language composition. With extendability,
maintainability, and low coupling as goals, these features are essen-
tial for large MDSE projects.

Unlike the previously presented Xtext, JetBrains provides core con-
cepts and a base language which serve the purpose of providing foun-
dational and extendable concepts. The MPS base language is referred
to as the Java Base Language and implements the complete Java API
as DSL constructs. This language overcomes the lack of a link into
a target language with which external DSLs often struggle with. As
a result, this allows easy integration of other languages within Java
programming code, as shown in Figure 3.4 on the preceding page.
In this example math language concepts are directly embedded and
accessible within Java code statements. The math language generator
defines the M2M transformations required to transform its concepts
into base language concepts, which are then generated in a later gen-
eration step into valid Java statements using the M2T generators of
the base language.

antlr

ANother Tool for Language Recognition (ANTLR) is a tool used to create
parser based languages [Ter]. Parsers and lexers are generated based
on a given grammar specifying the language expressed in EBNF. Gen-
erated tools are used for reading, processing, executing, or translat-
ing structured text or binary files. The supported target languages
for generation contain most prominent GPLs such as Java, C++ and
Python. As a primarily text based approach using parsing, ANTLR
provides no capabilities for language composition or management.
Though ANTLR allows to create external DSLs, the AST is repre-
sented by EBNF definitions and language pragmatics and further tool-
ing needs to be build around the generated parsers and lexers.

other language workbenches Further, there exist a wide va-
riety of other language workbenches, for example Melange & Kermeta:
A language composition oriented approach that provides a bridge
towards the Eclipse ECore formalism as the underlying meta-model
conforms to the MOF standard4, Metaedit: A commercial modeling
tool used in industry applications focusing on graphical language
creation 5, Spoofax: A workbench allowing to generate parsers, type
checkers, compilers, and plug-ins for common IDEs6. For detailed de-

4 http://www.kermeta.org/
5 http://www.metacase.com/
6 http://www.metaborg.org

http://www.kermeta.org/
http://www.metacase.com/
http://www.metaborg.org

42 model-driven software engineering

scriptions and information and analysis of the existing workbenches,
I refer to the language workbench evaluation presented by Erdweg et
al. [Erd+15].

3 .1 .3 Benefits of MDSE

MDSE has proved to be an effective approach in the development and
maintenance of large scale and embedded systems [Hut+11; Lie+14a;
Rod15a]. Empirical assessment in industry shows that most apparent
benefits of MDSE are the increased communication and reduced time
to respond to quickly changing surroundings. Models are used for all
parts of the development cycle, such as domain modeling, documen-
tation, refactoring, transformation, static analysis, code generation, or
automated testing.

In contrast to traditional software engineering the model creation
process holds special properties. At the core, models and their coun-
terpart are in the same eco-system: they are both software and as
such automatic processing of the models is possible. The formaliza-
tion in the modeling process documents the structure of valid models
via the involved aspects abstract syntax, concrete syntax, semantics, and
pragmatics.

The MDSE process is practical and a good addition to the soft-
ware engineering practices already in place as modeling is a com-
mon task in computer science. Nevertheless, formalizing modeling
is a task beyond creating class diagrams which requires an initial in-
vestment concealing a lot of MDSE success. When overcoming these
challenges, MDSE can yield strong advantages over traditional ap-
proaches [Völ13a; Rod15a]. Due to formalization the developers reach
an (implementation) independent meta-model of the domain which re-
duces the semantic gap between original and actual implementation.
This meta-model allows to execute analysis and checking on models
while programming/writing statements in the created language. De-
velopers are provided helpful functionality, such as static analysis,
domain-specific code completion, debugging at design time, or most
importantly, the ability to generate code automatically based on the
created user models. In turn, these features positively impact produc-
tivity, quality, validation, and verification.

For the application in the Embodied Interaction in Smart Environments
(EISE) domain (cf. Chapter 4) a MDSE approach provides productive
tooling to support developers in the query design. The accompanying
advantages result in direct feedback for developers at query design
time rather than at execution time. The query creation process can
further be stripped from complexity, for example by providing model-
based completion suggestions or special features for temporally con-
straint queries. The developers are thus closer to the problem domain
allowing to specify queries easier, understand, and maintain during

3.2 application of mdse in adjacent domains 43

system evolution – thus acting as domain experts rather than broad
system and technology specialists.

3 .2 application of mdse in adjacent domains

The combination and incorporation of graphs in MDSE approaches
is often highly application domain-specific.

For example, direct applications such as Green-Marl provide high-
level languages that provide features for algorithms on graphs and
graph structure analysis [Hon+12]. Hong et al. present an external
DSL which is targeted for developers that is capable to generate C++

code. The basis for the proposed analysis language is a directed prop-
erty graph which is not modified during the execution of developer
defined analysis. The provided approach includes a compiler for pars-
ing, type checking, and model transformation. Though the authors do
not provide meta-models or any other abstract syntax definition, the
presented evaluation shows reduced (Source) Lines Of Code (LOC) and
reduced algorithmic execution duration.

Similarly, GraphIT is a performance oriented graph DSL for algo-
rithmic applications on graphs [Zha+18]. Its scope is close to Green-
Marl as the implemented DSL is a high-level language describing
computations on graphs. Optimized algorithm implementations are
generated by the proposed compiler, focusing on performance charac-
teristics. The approach separates computation of the algorithm from
how it is computed via an algorithm language for programmers and
a second scheduling language for performance optimizations. The au-
thors also do not describe the abstract syntax of the languages and the
behavior of the languages are explained solely example driven with
no concise semantics. However, a detailed quantitative evaluation is
presented comparing similar state-of-the-art frameworks and DSLs
on graphs on multiple datasets showing its increased performance
over the alternatives.

DSLs research in the domain of artificial systems and especially
robotics strongly increased in recent years. The literature survey by
Nordmann et al. presents a detailed analysis of uses of DSLs in the
robotics domain [NHW14]. The authors discuss the use of specific lan-
guages for design, simulation, and programming of robotic systems.
While their investigation of quantitative measures and the temporal
distribution of publications show that increased research interest is
present, the authors also identify the missing reuse of languages.

A recent application of MDSE closer to the domains of artificial sys-
tems and graphs is presented by Hochgeschwender et al. [Hoc+16].
The authors present results of a MDSE approach which incorporates
domain models at runtime of robotic applications. Their research in-
vestigates the roles of graph-based knowledge retrieval and query
languages in robotic applications within multiple application scenar-

44 model-driven software engineering

ios. Neo4j is used as the Graph Database Management System (GDB)
in the presented implementation and Cypher is used as the GQL.
The authors make use of a similar graph model to Equation (2.6) on
page 16 but extend the model via specific pre-defined labels. These
set labels represent individual domain-specific elements of their do-
main. However, the authors do not discuss how changes in the do-
main are executed in this extended model. Further, the robot uses the
knowledge in the graph at runtime by applying developer designed
Cypher queries. Detailed knowledge of the domain and the under-
lying graph schema is required to allow developers to design these
Cypher queries, as the proposed application does not provide query
design support to the developers. The authors acknowledge the dif-
ficulty to quantitatively evaluate their approach and all of its facets
and consequently present a use-case driven evaluation on real world
systems. This application at run-time steps beyond previous MDSE
approaches where models are solely used as a design tool for devel-
opers. As a result, the performed knowledge access is comparable
and close to approaches such as KnowRob and ORO [TB13; Bee+18;
Lem+10]: Formalized knowledge is organized in a graph structure
and primarily used by the system to improve the robot behavior (cf.
Section 4.3 on page 61).

Similarly, the Robmosys project strives for a composable set of mod-
els, also considering model application at runtime [EU17]. In this con-
text graphs are also identified as a central core and are used rep-
resent the highest abstraction level. Their graph model extends the
introduced labeled property multidigraph to hierarchical hypergraphs7,
i.e. a graph in which an edge can connect any number of nodes and
in which edges are also vertexes that can be connected by further
edges [SLS17]. With the recent start of this project, no further de-
tails are available how these extended graphs are practically used in
robotic applications.

3 .3 mdse development process

Industry and research commonly recommends language engineers to
execute the MDSE development process iteratively and in close co-
operation with domain experts [Völ06; Völ09; Völ13a; Com17; Obj14;
Nor16; BAG18; Bar+12]. Völter suggests an iterative process and dis-
tinguishes three categories of DSLs which language engineers usually
develop [Völ13a]. First, technical DSLs factor present knowledge from
known existing frameworks, systems, or architectures into a reduced
and targeted set of languages. Second, business domain DSLs extract
(tacit) knowledge from domain experts or given abstractions such as
ontologies and bundle information into DSL. Third and most diffi-
cult, fragmented domain DSLs work on domains with no clear given ab-

7 See also https://robmosys.eu/wiki/modeling:hypergraph-er

https://robmosys.eu/wiki/modeling:hypergraph-er

3.3 mdse development process 45

stractions and possible split domain knowledge. The core abstractions
are unknown, detailed analysis is required, and especially difficult in
fragmented domains. The Cognitive Service Robotics Apartment as Am-
bient Host (CSRA) project (cf. Section 4.2 on page 53 for a detailed do-
main description and analysis) equals such a fragmented domain: An
interdisciplinary set of researchers works towards an implementation
of an EISE domain, which is embedded in similar iterative develop-
ment process. Völter additionally proposes an iterative language de-
velopment process towards a stable product which is composed of the
three distinct phases of a) elaboration, b) iteration, and c) automation.
Further, co-evolving of languages alongside the analysis is a must to
avoid an uncontrolled fragmentation of languages. These recommen-
dations are reflected in my proposed process as shown in Figure 3.5
by the following phases: Phase P1. Domain Analysis (requirements
and system architecture), Phase P2. Language Design (implementa-
tion-independent architecture and technology mapping), Phase P4.
Automation (tool generation, deployment, and integration).

Combemale recommends complementary to distinguish the pro-
cess of meta-modeling and modeling (cf. M2 and M1 in Figure 3.1 on
page 31) [Com17]. Each of these parts involves different persons and
roles at different stages of the development cycles: the meta-modeling
(M2) team, the the modeling (M1) team, and the final user. While theo-
retically distinct, these roles can contain potential overlap. Within a
varying research setting such as the CSRA, this distinction supports
the MDSE process. The separation allows an advanced composition
of language and domain concepts as the complexity is decomposed
iteratively in the application domain.

Due to the neglect of systematic evaluation within MDSE processes
(cf. Chapter 7 on page 135), I propose to additionally include a de-
tailed dedicated evaluation phase in the process [KBM16; GGA10].
This phase contains both, validation via application and detailed anal-
ysis of a vertical prototype. The goal of the evaluation phase is to reach
a tangible evaluation with a high level of evidence, thus improving
the language and tool quality [Net+08]. Literature suggests the devel-
opment process to be tightly intertwined with the evaluation [BAG18;
Bar+12]. This involves the evaluation of DSL usability which is exe-
cuted during the development life cycle and executed on pre-defined
metrics [Weg+13; Bar+12; Bar13].

Additionally to the mentioned elements, the proposed process is
further inspired by recommendations from the MDA guide [Obj14],
extensions proposed by Nordmann [Nor16], as well as Language-ori-
ented Programming (LOP) where the development of a DSL is started
at a high-level layer in which a well-suited language for the target
domain is developed [War95].

Figure 3.5 on the next page shows the iterative development pro- � development process

cess I propose and apply in this thesis, which contributes towards

46 model-driven software engineering

P1. Domain
Analysis

Interviews / analysis
(Non-)functional
requirements

Impl.-independent
system architecture
Meta-models
Composition
Language semantics
Technology mapping

Vertical prototype

Test and validation
Distinct userstudy

P5. Evaluation

P3. Language Impl.

Tool generation
Deployment
Integration

P4. Automation

M
et

a
M

od
el

in
g

Pr
oc

es
s

M
od

el
in

g
Pr

oc
es

s

Modeling

Team

Final
Users

Application in domain
context

P6. Application

P2. Language
Design

Meta Modeling
Team

Concrete syntax
Generators
Language pragmatics
Other implementation
aspects

Figure 3.5: The proposed and applied development MDSE process. Com-
bining recommendations from Völter; Combemale; Ward; Nord-
mann [Völ13a; Com17; War95; Nor16]

the overarching research question RQ2. This process incorporates the
roles and responsibilities of the three involved actors in the applied
MDSE development cycle. The process is primarily inspired by Völ-
ter [Völ13a], Combemale [Com17], and Barišić et al. [BAG18]. The
figure depicts the two nested iterative processes consisting of the dis-
tinct meta-modeling process and modeling process. The meta-modeling
process, which is executed by the meta-modeling team, is separated
into five core parts: 1) domain analysis, 2) language design, 3) lan-
guage implementation, 4) automation, and 5) evaluation. The latter is
connected to the nested modeling process which involves the model-
ing team as well as the final users and targets the application of the
developed languages and tools to the domain.

Each of the six phases (Phase P1. Domain Analysis to Phase P6.
Application) shown in Figure 3.5 has multiple steps and produces
phase specific artifacts:

p1 . domain analysis

The first phase, the Domain Analysis, targets to increase the un-
derstanding of the domain and all involved concepts. From each
execution step of the analysis phase a set of functional and non-
functional requirements is defined. These requirements are ex-
tracted from the domain assessment done via analyzing docu-
mented domain knowledge or consulting domain experts via
interviews.

p2 . language design

The requirements and results of the domain analysis are then
used in the second Language Design phase to extract a technol-

3.4 summary 47

ogy-independent system architecture. This architecture is platform
agnostic and is mapped to particular technology items in the
following technology mapping step. The mapping to technology
items is explicit and makes clear statements about used stan-
dards and platforms.

p3 . language implementation

Phase three, the Language Implementation, realizes the previous
specifications into a vertical prototype, thus implementing the ar-
chitecture definition and technology mapping. The vertical pro-
totype provides a minimal viable product and is extended with
each iteration. This step in itself is an iterative process centered
around the implementation of the abstract syntax, concrete syn-
tax, language semantics, and lastly suitable generators for the
language(s) [Com17].

p4 . automation

The fourth Automation phase targets supplemental automation.
This includes the generation of the final tools (often an IDE or
set of programs), integration in the domain (i.e. implementation
of static glue code and adapter artifacts), and handing of their
deployment to the final users (including updates in following
iterations).

p5 . evaluation

Phase five contains a set of detailed tests and validations. This
step incorporates recommendations of extensive testing of DSLs.
The Evaluation phase represents a dedicated evaluation via dis-
tinct user studies within a controlled environment using the
previously created vertical prototype.

p6 . application

Besides the previously mentioned distinct evaluation, the last
phase executes the application of the vertical prototype directly in
the domain context (i.e. the CSRA project). This phase involves
the final users as well as a modeling team who are jointly re-
sponsible for the creation and maintenance of models for the tar-
get domain. This application thus ensures that the meta-models
are capable to represent the domain via test and validation.

3 .4 summary

This chapter presents the foundations of MDSE, the creations of DSLs,
and language workbenches. This includes the different aspects that are
relevant in this context to create languages: abstract syntax, concrete
syntax, semantics, and language pragmatics. Additionally, the com-
monly emerging challenges are discussed and what expected bene-
fits one can yield. Related work is presented via the role of MDSE

48 model-driven software engineering

for graphs and intelligent systems. These foundations are used to de-
fine the MDSE process applied in the remainder of this thesis: an
agile and iterative development process that takes a strong empha-
sis in the language design and evaluation. This process is separated
into six phases handling analysis, design, implementation, automa-
tion, evaluation, and application. Lastly, the process also identifies
the different roles active in the process and maps these roles to the
individual phases.

Part III

M O D E L I N G I N T E R A C T I O N R E L E VA N T
K N O W L E D G E I N S M A RT E N V I R O N M E N T S

The third part analyzes the concepts and relations of inter-
action within smart environments alongside the Cognitive
Service Robotics Apartment as Ambient Host project. It fur-
ther proposes a model of interaction relevant knowledge
as an ontology. Based on this analysis implementation-in-
dependent domain-specific languages, their semantics and
composition are presented.

4
A M O D E L O F I N T E R A C T I O N R E L E VA N T D ATA F O R
I N T E L L I G E N T S Y S T E M S

“A human must turn information into intelligence or knowledge.
We’ve tended to forget that no computer will ever ask a new
question.“

—Grace Murray Hopper
developer of the first compiler for

a computer programming language

This chapter presents a domain analysis of the Embodied Interaction
in Smart Environments (EISE) domain. I examine the domain along-
side the Cognitive Service Robotics Apartment as Ambient Host (CSRA)
project, an application scenario implementation representing an ex-
emplary EISE domain. From this scenario I present a domain descrip-
tion as well as the roles and responsibilities present within the project.
Based on interviews with the developers and based on the scenarios
implemented in this project, I identify representative questions asked
towards the domain. From the perspective of the developers, a query
system in this domain needs to be able to fully answer these ques-
tions. As a last contribution I present an ontological model capturing
the interaction relevant concepts.

This chapter aligns within Phase P2. Language Design of the devel-
opment process applied in this thesis. The presented analysis and do-
main description are an artifact of this process investigating research
question RQ1. The derived model of interaction relevant data serves
as an underlying artifact used for the following Phase P3. Language
Implementation.

The presented analysis and model are the result of multiple iter-
ations executed within the CSRA project and parts have also been
published previously. This primarily includes the two publications
“An Ontology for Modelling Human Machine Interaction in Smart
Environments” (presented during the Proceedings of SAI Intelligent
Systems Conference (IntelliSys) 2016) and “How to Address Smart
Homes with a Social Robot? A Multi-modal Corpus of User Interac-
tions with an Intelligent Environment” (published in the Proceedings
of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016) [KWC18b; Hol+16b]).

52 a model of interaction relevant data

4 .1 embodied interaction in smart environments

A smart environment is an extension of the concept of ubiquitous com-
puting (the idea of omnipresent computing capabilities) and accord-
ing to Cook and Das [CD05] it is defined as follows.

Smart environments combine perceptual and reasoning
capabilities with the other elements of ubiquitous comput-
ing in an attempt to create a human-centered system that
is embedded in physical spaces. [. . .] [It] is a small world
where all kinds of smart devices are continuously working
to make inhabitants’ lives more comfortable. [CD05]

In contrast to these ubiquitous systems, the theory of embodied cog-
nition considers the shape of the entire body of an organism as a
first class citizen and a central component necessary for cognition
and cognitive tasks. With the field of human–robot interaction (HRI) re-
search this theory is investigated by the design and explicit use of
robotic companions with similar or close to identical human physical
sensors and actuators.

Nouvelle AI is based on the physical grounding hypoth-
esis. This hypothesis states that to build a system that
is intelligent it is necessary to have its representations
grounded in the physical world. [Bro90]

When combined, the two ideas of a smart environment and embod-
ied cognition in HRI merge to the concept of Embodied Interaction inEmbodied Interaction

in Smart Envi-
ronments (EISE)

L

Smart Environments (EISE) in which both, an embodied robot and an
ubiquitous system, share a common space in which they support hu-
mans in their daily lives. The agents (e.g. a robot companion and a
smart environment system) can make use of each of their individual
strengths and overcome individual shortcomings to further support
the environments inhabitants. For example, while an ubiquitous sys-
tem often has a broad view on the complete environment, it lacks sen-
sors for searching tasks which are necessary for a detailed analysis of
an area (e.g. finding misplaced keys in the apartment). In contrast
to this, embodied agents are often equipped with high quality local
sensors required for navigation or pick-and-place tasks. These robots
can provide their additional sensing capabilities to conduct a detailed
environment analysis.

Prominent examples of smart environments are smart homes, as they
are composed of many sensors, or sensor networks, capturing rel-
evant variables of the environment. Additionally, various actuators
commonly provide multiple actuation capabilities allowing the envi-
ronment to engage with and influence its surrounding. The rising
popularity of smart home solutions and smart home technology re-
sults in increased availability and application [Ric+06]. The most es-
tablished implementations target support for private households and

4.2 domain analysis 53

are available in various complexities. The offers range from full (of-
ten ubiquitous) systems, such as systems based on the KNX stan-
dard [ISO14543] or less intrusive systems which allow for effortless
installation, such as th appleHomeKit1, to rather simple personal de-
vices and assistants, such as Alexa2 or the Google Home3 system. Fur-
ther than the application in private homes, one can observe an in-
creased adoption of smart home technology in elderly care scenarios
research [Mor+13; Cav+14]. These approaches are examples for appli-
cations of the EISE domain, as work in this area additionally incor-
porates personal robots to support humans in their daily living and
provides an embodied interaction.

From a technological perspective a significant challenge of systems
in the EISE domain is posed by the overall system complexity and
its heterogeneous nature. Integration of hardware and software com-
ponents in such a joint environment requires developers to take into
account domain-specific characteristics of both domains. Developers
of individual interaction components need to access and incorporate
interaction relevant data, information, and knowledge from all modal-
ities (i.e. different data sources, storage properties, schema, etc.). Any
support in this information retrieval process will reduce the required
knowledge about all these modalities and in turn reduce the query
design complexity. As a first step to identify the central elements
and concepts of high importance to the domain, the following sec-
tion presents a domain analysis alongside the CSRA project.

4 .2 domain analysis

To reach this chapter’s goal of developing a model for interaction rel-
evant data within the EISE domain, I conduct an analysis of the do-
main and its involved actors. The analysis is executed alongside the
implementation of an application scenario, namely the CSRA project,
in which I participated during my research [Bie13]. The system is pre-
sented by Wrede et al. in detail [Wre+17], but to provide appropriate
context and relevance for my model of interaction relevant data, I first
present the core elements of the system and secondly the domain
analysis and its results in the following.

4 .2 .1 The CSRA Project

The Cognitive Service Robotics Apartment as Ambient Host (CSRA) is a
large-scale project of the Cluster of Excellence Cognitive Interactive Tech-
nology at Bielefeld University (CITEC) aiming to provide an EISE do-
main laboratory as described in Section 4.1 on the preceding page.

1 https://www.apple.com/ios/home/
2 https://alexa.amazon.de
3 https://store.google.com/product/google_home

https://www.apple.com/ios/home/
https://alexa.amazon.de
https://store.google.com/product/google_home

54 a model of interaction relevant data

Figure 4.1: An example picture from within the CSRA from the living room
showing an interaction with Floka in the apartment.

Its laboratory space is build up to accommodate an apartment-like
area composed of three rooms and a connecting hallway which in-
corporate a total space of 60 m2. Figure 4.1 shows a picture taken
within the apartment during a handover interaction. Additionally,
Figure 4.2 provides an overview of the rooms and the smart environ-
ment elements, such as sensors and actuators. The laboratory area
includes a large multipurpose area which contains a fully functional
kitchen, a dining area, an open living room, and a functional bath-
room4. Further, a robot room provides space dedicated HRI with an
autonomous robot inhabiting the apartment at all times. Adjacent to
the robot room exists a control room which allows researchers as well
as developers to work on the laboratory system or study conductors
to supervise and observe running experiments. The control room is
not a part of the CSRA laboratory space in terms of scenario exe-
cution and is therefore excluded in further descriptions. The overall
goal of the CSRA is to provide a research platform which allows to
investigate questions regarding cognitive interaction in daily scenar-
ios. The environment serves as a basis for quantitative and qualitative
research within a controlled environment that provides reproducible
conditions joined with automated recording and post-processing of
the gathered experimental data [Hol+16b; Ric+16; BE18; RK18]. Ex-
emplary questions of relevance being addressed in this laboratory
setup are

• Which interfaces are ideal to support specific functions of a
smart home or a mobile robot?

• How do users of this environment address the available func-
tions?

• Which information and knowledge is of high interest or even
required for individual software components?

Overall, the research topics reach from smart environments (contain-
ing ambient intelligence and ubiquitous systems) to social robotics

4 Due to ethical and privacy reasons the bathroom only includes simple motion sen-
sors unable to record audio or video

4.2 domain analysis 55

Figure 4.2: Map view of the CSRA laboratory.

(including virtual and embodied agents). This vision is realized by
providing an EISE domain which is composed of extended smart
home features as well as a cognitive social robot with advanced ma-
nipulation capabilities. As such, it offers a dense sensor- and actuator
network which embeds virtual agents and a mobile robot, providing
embodied and personalized interaction with humans. The system is
designed to operate 24/7 so that any interaction episode in this en-
vironment can contribute to interaction components. This is specially
helpful for adapting software components using for example machine
learning approaches. As a result, access to higher level information
and knowledge of past episodes beyond the raw sensor data is a nec-
essary functionality for the running interaction software components.

Compared to related approaches, the CSRA differs in its concep-
tualization and research areas [LLM15]. The project prioritizes the
role, interplay, and usage of devices used for embodied interaction
with the smart environment. An anthropomorphic mobile service ro-
bot provides the designated role as preferred agent for interaction
with the environment. We consider the capabilities of the semi-auton-
omous robot as more extensive than the isolated smart environment.
Together, these weakly coupled systems operate independently with
the possibility for bilateral cooperation and support (e.g. exchange of
data, knowledge, or information).

56 a model of interaction relevant data

the smart environment elements of the csra

The CSRA contains multiple sensors and actuators to facilitate in-
teraction with humans. This includes common smart home sensors,
such as movement, temperature, power usage, present devices, ca-
pacitive floors or programmable wall switches, as well as actuators,
such as controllable lights, heating, blinds, or wall plugs. Addition-
ally, there are various displays, projection areas, audio interfaces as
part of the experimental research setup. These include multiple home
automation systems and standards, such as KNX5 [ISO14543], zigbee6,
and openHab7. Technically, the system uses a homogeneous service-
oriented software architecture. All systems are integrated together
via the common middleware Robotics Service Bus (RSB) to provide ac-
cess to available data for all involved software components.

the (embodied) interaction elements of the csra

Beyond the usual smart environment interfaces, additional elements
fostering interaction are present in the CSRA environment. For exam-
ple, the ceiling is exhaustively equipped with depth sensors facing
downward, capturing the entire apartment space. This setup is pri-
marily used to provide a global overview over the entire apartment.
In conjunction with dedicated software components, this setup allows
us to provide a consistent apartment wide person tracking system.
Similarly, systems for situation recognition, speaker detection, and in-
teraction group detection are implemented and researched. Addition-
ally, the bi-manual mobile Floka robot is present in the CSRA (a Meka
robot base [Gui11] modified for optimal interaction capabilities via
the Flobi head, which replaces the MEKA M1 default head [BE17]). It
operates as an autonomous agent which is able to interact physically
with the environment and serves as an embodied interaction partner
for end-users. With its mobile platform it can complement the other-
wise stationary sensors and actuators of the apartment in scenarios
such as, clean up or search and find. Further, two individual virtual
Flobi agents are present in the entrance area and in the kitchen as inter-
action points for task specific interaction and support (i.e. welcoming
or kitchen cleaning). Similar to the smart environment elements, all
above listed additional interaction elements are also integrated into
RSB as a source for interactive applications.

data , information, and knowledge of the csra

As shown, the system and its elements manifest a heterogeneous,
complex, and highly diverse software and hardware ecosystem. Be-
sides the base software, interactive systems or software components

5 https://www.knx.org/
6 https://www.zigbee.org/
7 https://www.openhab.org/

https://www.knx.org/
https://www.zigbee.org/
https://www.openhab.org/

4.2 domain analysis 57

can also access the available (sensor) data via the common middle-
ware. In Table 4.1 I present an estimation of the accumulating data
within this system (not including data the mobile robot can supply)
It shows that recording of raw and un-abstracted data in this scenario
is not feasible. Consequently, higher level abstractions (i.e. knowledge

sensor type amount framerate (hz) data (mib/s)

Depth sensors 14 30 615,23

HD cameras 5 25 741,58

Microphones 12 16000 0,366

Various Small Sensors 100 30 5,0

Total 1362.176

Table 4.1: Estimation of sensory data of the CSRA smart environment. This
estimation excludes data extracted by a mobile robot.

and information as presented in Section 2.1 on page 12) such as con-
cepts of persons, their physical movement trajectories, conversations,
or conversation topics need to be extracted and made available for
dependent software components.

4 .2 .2 Roles, responsibilities, and required knowledge

Four central groups of actors are involved within the CSRA envi-
ronment. Each of these groups holds individual roles, responsibili-
ties, and knowledge in the domain. Consequently, participants of the
groups have different requirements for model-driven information re-
trieval support.

The most basic and direct interaction recipients are naïve users who
represent the target audience or end-users for the overall system and
environments. They are the recipients of services offered by the sys-
tem (e.g. as demonstration attendees or study participants) and are
thus not directly involved in the design and implementation of ser-
vices or programs. Nevertheless, depending on the influence users are
allowed to have on the automation, naïve users need to be enabled to
control the systems provided by appropriate means. Current state-of-
the-art smart environments thus give users controls to allow coordina-
tion of activities via trigger-action programming [Jon+14]. These are
commonly in the form of rule based domain-specific languages (DSLs)8 ,
which allow to express rules such as “disable the heaters if any of the
windows are opened”, or “turn off the lights if no person is present”.
The appropriate DSL concepts are commonly part of the environment
and are bound to real world entities, such as heating, lights, or win-
dows.

8 For example the openHAB rule DSL [ope13]; See https://www.openhab.org/docs/
configuration/rules-dsl.html

https://www.openhab.org/docs/configuration/rules-dsl.html
https://www.openhab.org/docs/configuration/rules-dsl.html

58 a model of interaction relevant data

With the CSRA being a laboratory setup, study conductors are a sepa-
rated role in the domain. They oversee the execution and observation
of studies or demonstrations of the environment that are conducted
within this EISE domain. Their knowledge thus needs to cover the
basic usage of the system as well as all required elements to start and
stop the system or individual components of it.

In contrast to this, behavior developers are closely involved in the
system development and make use of available capabilities. They are
domain experts on how to create suitable interactions for the naïve
users via the available actuation and interaction mechanisms. Interac-
tion design and creation is their core task in this role and thus this
task requires them to have appropriate domain-specific knowledge
and programming skills. As a result of their specificity, behavior de-
velopers do not necessarily know a) which interaction relevant data,
information, or knowledge is stored (cf. Section 2.2 on page 14) and
b) in what format the data is stored and accessed optimally (cf. Sec-
tion 2.3 on page 17). This role specifically does not require to have this
detailed knowledge, nevertheless the developers need to have access
to all layers of the data-information-knowledge-wisdom (DIKW) pyramid
to successfully design intended interactions.

At the lowest level, system developers provide infrastructure and all
other services of the underlying system. This includes on the one
hand basic tasks such as mounting and maintenance of sensors, ac-
tuators, computation machines, cables, and all other infrastructure;
this requires detailed knowledge about technological requirements
for the successful execution of all software components (e.g. required
computing power, storage or connection speeds). On the other hand,
the overall system architecture needs to be defined and maintained
by system developers, including the communication protocols, utilized
middleware, key software components for sensor/actuator data pro-
visioning, knowledge and information extraction, DIKW storage and
querying; these services are considered to provide the base function-
ality. Additionally, system developers need to define the interfaces and
access points for behavior developers, which is a non-trivial task. Espe-
cially in research environments the system composition can change
quickly based on study goals, resulting in varying hardware and soft-
ware setups. Additionally, interaction relevant data is highly volatile;
information exchanged within an interaction is strongly context de-
pendent and varies between users. Given these unusual properties,
the storage of higher level knowledge or information in this domain
can thus not easily be achieved with traditional storage mechanisms
(cf. Section 2.3 on page 17).

From the perspective of this thesis, the system developers are respon-
sible for the application of a Model-driven Software Engineering (MDSE)
approach to support the information retrieval process. In turn, the re-
cipients are primarily behavior developers who are domain experts of

4.2 domain analysis 59

adjacent (potentially non-technical) domains and require the access
to domain-specific information and knowledge. Given the aforemen-
tioned number of sensors and actuators employed, there is hence
a large amount of data comprising of various modalities available.
This data needs to be stored in a fashion so that it can be readily
queried within the interactive scenarios. While system developers are
familiar with the required Database Management System (DBMS) de-
tails (i.e. data schema and query languages), behavior developers typ-
ically lack the specific knowledge to efficiently work with complex
database management systems. While the group of naïve users are not
the intended recipient, they can still be questioned to provide further
domain insights. This group can for example provide their perspec-
tive of how they prefer the interaction with the system, impacting the
domain model and queries.

4 .2 .3 Knowledge queries in the EISE domain

This section discusses common questions stated in the domain before
an abstraction of the domain can be derived. As an example, consider
the following interaction sequence. It consists of a greeting scenario as
depicted in Figure 4.3 and a subsequent cleanup task, which both in-
corporate knowledge of previous interactions. Two persons enter the
apartment together upon which they are greeted by the virtual agent
Flobi in the entrance interaction island (cf. Figure 4.2). Before the start
of the interaction, the agent (i.e. the interaction behavior component)
needs to inquire whether or not the currently targeted person has
been seen before. If the persons have been there before, the agent
accesses the stored information (e.g. their names) and personal pref-
erences regarding environmental settings (e.g. lighting or heating set-

Figure 4.3: Exemplary interaction scenario in the entrance interaction island
from the user perspective.

60 a model of interaction relevant data

tings). Following, the settings are applied and the users are greeted by
name. Depending on content and topics of previous interactions, the
agent enters a conversation regarding open matters, such as left mes-
sages by other interaction partners. Otherwise, the conversation starts
anew and the agent introduces itself, introduces the environment, the
environment capabilities, and lastly , asks the new users whether to
remember them via face identification and name. Once entered, the
agent could offer refreshments and in case the persons have not been
in the apartment before, corresponding information needs to be sup-
plied by the agent. In a second part of the interaction the persons are
prompted to support a cleaning task within the kitchen. Objects such
as cutlery, glasses, and plates lie on the kitchen counter and are de-
tected by the agent to be removed by storing them in the correspond-
ing drawers. In this cooperative task the virtual agent follows the goal
to obtain help from the present persons. This interaction requires ac-
cess to similar information as described for the greeting scenario, as
the agent is independent of the one at the entrance interaction island.
Additional to information about the entered persons, new queries
need to be answered whether or not the persons have executed a sim-
ilar cleaning scenario before. The virtual agent can further provide
feedback regarding the designated drawer and cupboards for the in-
dividual items upon request, thus fulfilling the cooperative aspect of
this task.

A second example for an interaction scenario involving the autono-
mous embodied agent is a search scenario. In this example, a person
in the apartment is unable to find the keys within the apartment. As
a result, the person asks the environment’s virtual agent if they can
supply help in the search. If the apartment has information on pre-
vious locations of the keys, it can provide the relevant information.
With the overlooking perspective via the installed cameras, the apart-
ment only has a low resolution image of the rooms. It can thus not
directly participate in this search scenario and requests the embod-
ied agent to engage in a detailed exploration using its mobile sensors.
The mobile agent then participates in the search together with the
person and provides the location of the item in case of success.

As the above described scenarios show, the behavior developers re-competency
questions

�

quire access to a large and diverse set of questions. Exemplary ques-
tions lifted from these scenarios include questions such as:

• Have I seen the person in the wardrobe/hallway/kitchen before
and if so when?

• What is the name of the person P in the room R?

• What were topics of the last conversation with person P and
should I explain how to do task T?

• Does the person P know where to find drinks/cups/object O in
the apartment?

4.3 related work 61

• What are names of persons that entered the apartment within
the last 5 minutes?

• Have previous interactions with the present persons P involved
the cleaning scenario?

• Where has the object O called ’Keys’ been seen within the last
hour?

• Do known persons in the apartment know each other and what
were previous conversation topics?

The questions allow to identify central aspects a model of this domain
needs to cover (RQ1):

• Sensor and actuator information,

• Objects information,

• Agent and person information, and

• Spatiotemporal information of the above aspects.

The questions serve as the exemplary competency questions which a
model of the domain needs to be able to answer.

4 .3 related work

Li et al. present a detailed overview on ambient systems which pro-
vide cognitive assisted living environments [LLM15]. From the au-
thors’ perspective, the aging population due to current demographic
change imposes strong challenges with respect to healthcare, rehabil-
itation, and general assisted living while maintaining user indepen-
dence and quality of life. The authors focus strongly on the connec-
tion of embodied interaction with a smart environment and conse-
quently the users. In comparison, the CSRA project features these
aspects explicitly via an anthropomorphic mobile service robot in
combination with an extensive smart environment. Li et al. generally
present a wide variety of platforms and discuss them in context of cur-
rent research aspects. This includes projects covering domains such as
large scale smart home environments mobility access projects, social
inclusion, robotic service platforms, and human machine interfaces.
A central conclusion is the missing integration of services, devices,
and individual systems. Additionally, the authors encourage the exe-
cution of further studies targeting usability, user acceptance, and user
expectations towards these systems.

A related robot-centric human support approach is presented by
Tenorth and Beetz in the KnowRob project [TB13; Bee+18]. The au-
thors introduce a knowledge representation and reasoning approach

62 a model of interaction relevant data

for robotic agents. Though only partially in the EISE domain, this ap-
proach provides a query answering system for an autonomous agent
acting in personal environments supporting humans in physical ma-
nipulation tasks. The robot can obtain information about previously
captured images or motions to know how to reach its goal. At its core,
the KnowRob system consists of multiple ontologies representing ro-
bots, their tasks, or the situational context of objects, which allows to
semantically annotate the meaning of real objects to low level data
in the ontology. These formalizations provide the basis for control
systems and allow queries by the robot at runtime. Evaluations and
experiments validate the approach on large sets of observations and
real world scenarios. The project is centered on the robotic actions
and does not consider smart environments or external sensors.

The underlying model used by KnowRob is encoded within an up-
per ontology such that the ontology provided by KnowRob can be
seen as an extension of the preexisting OpenCyc ontology [Len95].
While CYC itself is an expert system with a domain that spans all
everyday objects and actions - as which it served as an upper ontol-
ogy targeting natural language understanding and machine learning
– KnowRob extends this rather broad human knowledge base with
more domain-specific concepts needed for robots. These extensions to
th ontology cover the descriptions of everyday tasks, general house-
hold objects, and most crucially, robot parts. The central KnowRob
upper ontology can be categorized into the following areas:

• MathematicalObjects: Provides all math related concepts such
as vectors, coordinate systems, or matrices

• TemporalTings: The description of events and actions

• SpatialThings: Physical layout of the robots surrounding, but
also the physical layout of itself

• HumanScaleObject: Contains the objects in the robot environ-
ment, including body parts and furniture

As a consequence the ontology allows to model

• Robots, corresponding body parts, connections of parts

• Sensor/actuator capabilities

• Objects, including individual parts, functionality, and configu-
ration

• Robot tasks, actions, activities, and behaviors

• Contextual information about situations and the environment

4.3 related work 63

Generally, the KnowRob systems follows a closed-world semantic,
meaning that all unknown knowledge items are assumed to be false.
As a result, the non-existence of anything does not have to be de-
scribed in the underlying knowledge base. The recently published
KnowRob 2.0 extension further allows to include other ontologies into
the overall system to add domain-specific knowledge into the pro-
vided core knowledge base [Bee+18]. The entire KnowRob system
uses its ontology at the core but is composed of a hybrid system archi-
tecture to combine additional general- and special-purpose methods.
Architecturally these methods interact with the ontology as they are
build on top of the available knowledge. These additional methods
combine for example features such as probabilistic inference, robot
capability matching, or classification and clustering.

The hybrid approach is facilitated by the usage of powerful query
language Prolog. Beetz et al. chose the logical programming language
Prolog as the “interlingua” for robot knowledge processing. Inter-
nally within KnowRob, OWL Web Ontology Language (OWL) state-
ments are consequently represented as Prolog predicates and com-
mon Prolog inference methods can be applied to these predicates. As
a result, Resource Description Framework (RDF) triples are loaded and
stored internally and OWL reasoning can be applied on top of these
representations. On top of the systems triple store, increasingly com-
plex query predicates operate and abstract step wise from lower level
representations to higher conceptualizations. This extension of predi-
cates allows programmers to create their own abstractions and chose
precisely which predicate from which abstraction layer to include
within their own queries. This abstraction reaches all the way up to
the possibility to define simple global plans making use of multiple
lower level predicates, for example such as the ehow-make-pancakes1

plan using pancake, frying-pan, or mixforbakedgoods2 predicates as
listed by the authors in [TB13].

For the authors, this powerful abstraction mechanism provided by
the Prolog language is a central reason for its choice: Prolog is more
expressive than other logical dialects and allows to query more com-
plex relations. On the one hand, comparing Prolog to RDF it shows
that RDF allows for more efficient reasoning but is less expressive. On
the other hand, the Prolog language is not as universal in its represen-
tations as other languages, for example CycL which would allow to
represent nearly every natural language expression [Mat+06]. Prolog
lies in between these languages and provides a well documented lan-
guage to robot developers. Most prominent, the ability to inspect the
knowledge base using Prolog provides the programmers with more
power. For example it allows for additional logical inference on the
existing knowledge at query design time. However, within KnowRob
the Prolog language is primarily used as a knowledge query language
rather than in the context of inference tasks. Only as a dedicated

64 a model of interaction relevant data

query language, Prolog can be directly be embedded in the robot con-
trol loop. This fact represents the core challenge going along with the
choice of Prolog as the query interface for the robot programmers and
developers. The language uses a depth-first search with backtracking
which can result in endless queries. Queries consequently need to
be designed, optimized, and tested very carefully as they otherwise
might block the entire system. The users of the languages (being ro-
bot programmers and graduate students) thus have to invest heavily
in their queries at design time. Last but not least it is important to
note, while many foreign language interfaces exist for Prolog, it lacks
special-purpose reasoning mechanisms for uncertainty, temporal, or
spatial reasoning. These features are covered in the KnowRob system
via the aforementioned hybrid approach with dedicated methods.

4 .4 a multi-modal interaction corpus

The CSRA is used to develop smart home technology systems as well
as to study human-machine interaction in the context of smart en-
vironments. Within the context of the project, Holthaus et al. and I
created a multi-modal corpus of user interactions within the EISE
smart environment [Hol+16b]. We explored multiple verbal and non-
verbal interfaces by providing participants with different modalities
for interaction to fulfill a given task description. To reach a given
goal, such as to turn a light on/off or alter its brightness, participants
were able to either chose to interact with the environment directly
(e.g. using pointing gestures, talking to the environment, or clapping)
or address the autonomous robot (e.g. via waving or speech) to ask
for help to complete the task. The participants’ choice of modality
was not influenced but rather endorsed to be an exploration task in
which common ways (e.g. using wall mounted light switches) were
explicitly forbidden.

The conducted study was a remotely controlled study (a “Wizard-
of-Oz” [Kel84] setup) which allowed a human operator to generate
the correct feedback for any goal directed action of the participants.
This lead the participants believe their strategy is a valid interaction
mechanism and confirms their choice of interaction for subsequent
tasks. During the study execution we recorded all sensor data, actu-
ator data and other system internal events, including dedicated par-
ticipant video and audio recordings. In a second step we created an
integrated annotation also containing ground truth information about
participants behavior and actions. The resulting published dataset is
openly available for researchers to use as for evaluation and further
analysis of human behavior in the EISE domain.

4.5 an ontology of interaction relevant knowledge 65

4 .5 an ontology of interaction relevant knowledge

With the overarching goal of this work to support the querying pro-
cess of interaction relevant data in interactive smart environments, a
model of the domain at the conceptual or ‘knowledge level’ is required.
This model abstracts from specific data schemata and also benefits the
portability of solutions to other systems and platforms. To generalize
at this conceptual level, one needs to formally specify the relevant in-
teraction associated concepts and their relations. In an early iteration
of the MDSE process I therefore designed an ontology that models the
domain of interaction in interactive smart environments alongside
the CSRA project. Knowledge management in information science
is commonly executed by the creation of ontologies or knowledge
graphs [Wal07]. Wallace defines an ontology as follows:

(1) an ontology is an artificial construct that may have a
link to a naturally occurring phenomenon, (2) an ontology
is a tool for knowledge representation, and (3) an ontol-
ogy is an explicit but abstract and simplified conceptual-
ization. [Wal07, p. 185]

With this definition, an ontology is a similar conceptualization as meta-
models created in the context of MDSE. The central difference lies in
the degree of detail [PU03]. An ontology contains a set of classes,
their relations, provides a fixed vocabulary of the domain. It allows
to formulate meaningful statements within a domain using this vo-
cabulary. The ontology grammar additionally defines meanings and
ensures well-formedness of the statements; it is thus able to repre-
sent the data of a domain. Meta-models are, however, an abstraction
used to describe how a domain-specific model is build. These abstrac-
tions describe a more formalized specification of individual domain
notations with a reduced rule set. In this sense I concur with Pid-
cock and Uschold, who conclude that valid meta-models are thus also
ontologies [PU03]. The inverse statement, however, is not valid and
not every ontology provides a formalized model as a meta-model. I
therefore use ontologies as a tool to analyze the domain is its struc-
ture. The ontology represent a graph where individual classes (nodes)
are linked together (relationships) to form an abstraction of the real
world.

As documented in literature, the creation of a domain ontology
helps to accomplish several goals, most importantly [NM+01; SS09]:

• Analyze the domain

• Explicitly state domain assumptions

• Split the operational knowledge from domain knowledge

• Create a common ground and understanding of the domain
information structure

66 a model of interaction relevant data

• Allow to utilize domain knowledge in systems

Thus, an ontology as an analysis step supports reaching the overarch-
ing goal as introduced in Section 1.1 on page 6:

• Conceptual abstraction and interoperability: An ontology sup-
ports an interaction with a data management system at the con-
ceptual level, i.e. at the level how users tend to conceptualize
the domain rather than how the data is modeled using specific
schemata that are designed with other goals in mind (e.g. effi-
ciency of querying). Per definition, an ontology supports inte-
gration of different data sources as well as the communication
between different components that are forced to speak the same
‘language’ by the ontology with no need to know the details of
how to technically access particular data.

• Model-driven approaches: Using an ontology, that is a declar-
ative specification of the domain, comes with the benefit of be-
ing able to adopt model-driven approaches to system engineer-
ing which support taming the complexity of heterogeneous sys-
tems in which many constraints need to be satisfied. It provides
the benefit of being able to automatically generate components
from the ontology, e.g. query interfaces.

• Reasoning: Using an ontology comes with the benefit of being
able to use inference mechanisms to check consistency of certain
situations but also to infer new knowledge.

This work is inspired by the common use of ontologies in the sub-
domains of smart environments and robotics. The following sections
hence present an overview of related work in these fields.

4 .5 .1 Smart environment ontologies

Many ontologies have been developed in the smart home/smart en-
vironment domains, which address different areas such as human
behavior recognition or health monitoring [Msh+18; Rod+14]. One ex-
ample ontology for the domain of smart environments includes the
ontology developed by McAvoy et al. [MCD12], who present an ontol-
ogy-based context management system to deal with difficulties result-
ing from the ambiguity of collected data. Their efforts also cover tem-
poral reasoning, sharing, and re-using data amongst various applica-
tions. A very relevant ontology for the domain of interaction in smart
environments is the Sensor Network Ontology, which was published in
2005 by the World Wide Web Consortium (W3C) and is concerned with
modeling sensor networks and their properties [Com+12]. It consists
of 51 concepts and 55 properties and central concepts in this scope
are Sensor, Observation, ObservationValue, Deployment, and System. The

4.5 an ontology of interaction relevant knowledge 67

Sensor Network Ontology is a domain-independent ontology that can
be used in domains composing high amounts of sensors. As a result,
the proposed ontology for the domain of embodied interactive smart
environments imports this top-level ontology and reuses its concepts.

An example of an ontology that takes into account the temporal
structure of situations and their evolution over time is the contex-
tual model developed for smart home applications by Mallik et al.
[Mal+15]. Their system is able to track humans and situations occur-
ring in smart homes, and to make predictions on the evolution of
these situations based on the current observations and on ontological
reasoning.

Other ontologies have been developed to support the recognition
of human activity in the smart home domain, e.g. Wongpatikaseree
et al. [Won+12]. They rely on a context-aware ontology to define de-
scription logic rules that can be used to infer/predict activities on the
basis of location and posture information.

On a more abstract layer, the effort of the schema.org community
tries to provide a common vocabulary jointly [Mik15]. It is devel-
oped by Google, Bing and Yahoo and includes few interaction con-
cepts. Relevant example concepts and their properties of importance
in this context are Person, InteractAction and Place. The central role
of schema.org is the ability to incorporate information into web sites
so that search engines can extract this structured information, e.g. by
using micro formats. One downside of the models of interactions in
schema.org is the static definition of its concepts. As a result, concept
dynamics (e.g. changes on the concepts) and temporal structure are
not covered.

4 .5 .2 Ontologies in robotics

In the domain of robotics, several ontologies and complex knowl-
edge modeling frameworks have been developed to equip robots with
knowledge and reasoning capabilities. The KnowRob system, for in-
stance, focuses on representing task-specific and object knowledge to
support robots in reasoning and planning their own actions [TB13;
Bee+18]. Knowledge is encoded in Web Ontology Language ontologies
and the system provides a Prolog based query answering system for
agents. Encoding task specific information relevant for manual task
execution makes KnowRob a robot-centric approach. The framework
thus does not provide classes for representing concepts related to
human machine interaction. In theory the approach is a model based
system which uses ontologies as models for the world knowledge. For
the applied use case the level of formalization is suitable: ontologies
are sufficient for the intended modeling purposes and reasoning capa-
bilities of the KnowRob system. The system consequently has difficul-
ties to deal with modification as well as model evolution. Inconsisten-

68 a model of interaction relevant data

cies and inference of new knowledge in the robot knowledge base are
difficult to detect. The query capabilities of the KnowRob system are
provided by using the Prolog language. Queries towards the system
are thus required to be carefully designed and optimized as Prolog’s
depth-first search is incomplete and can eventually result in infinite
searches – even if possible results exist. Behavior developers therefore
need to understand the heterogeneous domain, the ontology struc-
ture and Prolog optimization techniques to be able to formulate well
performing queries. As already discussed by the authors, the system
approach is hence difficult to combine with machine learning algo-
rithms. A recent extension by Balint-Benczedi et al. addresses these
issues and provides a dedicated interface language comparable to
SPARQL Protocol and RDF Query Language (SPARQL) (see Section 5.2
on page 78 for more detail) [Bal+17].

The KnowRob system is made publicly available via the succeeding
cloud robotics application and knowledge service openEase [BTW15].
It provides access to the information for robots and researchers with
analogously semantic data access when compared to the features
already present in KnowRob. Queries towards the platform are se-
lectable in menu of natural language representations linking to the
actual highly complex queries. These queries can be executed towards
the knowledge base and the result is presented in the integrated web
view. The knowledge service provided by openEase consists of three
integrated central elements: A large database containing episodes of
joint human robot manipulation tasks, an ontology that represents the
underlying conceptual model of manipulation activities, and tools for
querying, visualizing, and analyzing of manipulation task episodes.

The Open Robot Ontology (ORO) approach exhibits another exam-
ple which makes use of ontologies in the domain of domestic service
robotics [Lem+10]. ORO is an ontology based knowledge processing
framework supporting agents with cognition in HRI environments. It
acts as a central intelligent blackboard storage for robots to store or
retrieve knowledge. Lemaignan et al. focus on maintaining a consis-
tent knowledge representation by continuously updating and check-
ing the ontology for inconsistencies. Information is mainly gathered
by the robot via natural human interaction (i.e. speech or textual in-
put) and only knowledge about objects and their location is stored
in their application scenario. The approach also comprises a common
sense ontology for robots which is close to the KnowRob upper level
taxonomy. ORO uses an RDF triple store (the Jena framework) at its
core and uses first-order logic formalism to represent knowledge. The
querying interface of the knowledge base is realized via a dialect of
RDF and OWL description logic. Evaluation is executed using syn-
thetic exemplary task implementations such as point and learn or an
object identification game. The authors identify issues regarding the
ontology consistency maintenance. Consistency checks are potentially

4.5 an ontology of interaction relevant knowledge 69

resource intensive, especially for large ontologies. Similar to KnowRob
the ontology is also robot centric and no explicit knowledge about
the interaction is considered. While the system queries the knowl-
edge from the triple store, no further detailed query design support
is offered and existing query languages are reused.

4 .5 .3 Gaph-based approaches

The large-scale knowledge engine for robots RoboBrain provides task
execution relevant knowledge [Sax+14]. The authors merge multiple
sources for knowledge, e.g. via observation, machine learning, or on-
line resources analysis. Any insert into the system then triggers in-
ference to unify the present knowledge base. Unlike KnowRob, the
core knowledge storage of RoboBrain makes use of a labeled directed
graph (G = (V ,E)), which holds no properties. No common query lan-
guage is reused to access the information in the system. Information
retrieval is realized via a dedicated robot query library which con-
tains retrieval functions and suitable programming constructs and
thus provides traversal and pattern matching queries. The authors
evaluate the system via detailed application examples.

A more practical application is provided by Fourie et al., called
SLAMinDB [Fou+17]. The introduced system realizes a shared central-
ized persistence layer for memory storage and retrieval in mobile ro-
botics. The authors combine the graph database Neo4j together with
the document store MongoDB, to jointly store low-level data for nav-
igation, such as Simultaneous Localization and Mapping (SLAM) data
or obstacle information. The link between layers is realized by stor-
ing data identifiers and no details on their combination is described.
Only Cypher graph queries are presented and it is unclear how devel-
opers actually obtain data from the system. The presented approach
allows to attach timestamps to the stored data which is then retriev-
able for the SLAM algorithm. More complex calculations which ab-
stract the data appropriately for the SLAM algorithm are realized in
Java functions in the Neo4j server. With the combined databases hold-
ing no schemata of its data, Fourie et al. do not provide a model
of the domain; the storage graph expresses a very specific domain
model which is not introduced. Similarly, temporal aspects of queries
are considered by creating temporal queries by hand. These crafted
queries use timestamps in their matching clauses to filter the present
data. Further, their chosen system architecture (i.e. plug-ins and func-
tions residing in the databases) requires frequent system restarts of
the centralized location of truth for the SLAM algorithm. Query de-
sign and developer support are not considered and developers re-
quire full domain knowledge, especially to obtain real data from
document store. Approach evaluation is application and experiment
driven evaluation, showing that the proposed approach is feasible.

70 a model of interaction relevant data

4 .5 .4 The EISE ontology

A conceptualization of the EISE domain is an important part of the
applied development process. Within the model of the domain, the
concepts and their relations are expressed as explicitly as possible. In
an early iteration, I thus created an ontology covering the EISE do-
main to gain an understanding of the involved entities which are of
relevance to the behavior developers. The identification of competency
questions is helpful to determine what the ontology needs to answer.
I thus directly use the knowledge queries determined in the previ-
ous Section 4.2.3 as the competency questions towards the ontology.
These questions and the central aspects in them show, that an ontol-
ogy of interaction for the domain of interactive smart environments
needs to take into account that: a) large numbers of sensors and actua-
tors are in the environment, b) several different objects are present in
environment, c) autonomous embodied agents and persons act and
interact, d) any of the above the concepts also holds spatiotemporal
information.

As building blocks of the proposed ontology, I build on the fol-
lowing aspects: sensor-related concepts, interaction participants, spa-
tiotemporal representation, and interaction concepts:

• Sensor-related concepts: Modeling sensors, their physical loca-
tion, properties, schemata etc. are crucial to capture the interac-
tion in the EISE domain. I reuse the W3C Semantic Sensor Net-
work Ontology for this purpose [Com+12].

• Interaction participants: Different participants are involved in
interactions, for example virtual agents, embodied agents, and
persons. As the structure of persons, their properties and rela-
tions have been studied in depth, I reuse the Friend of a Friend
Ontology [BM14].

• Interaction concepts: A taxonomy of interaction types is crucial
in the targeted domain. I build on the HRI taxonomy introduced
by Yanco and Drury that focuses on human social interaction,
and extend it appropriately for my purposes. It describes the rel-
evant categories, such as tasks, composition of interaction teams,
or the possible combinations of single or multiple humans and
agents [YD04].

• Spatiotemporal concepts: Physical objects in the environment,
participants of interactions, and interactions themselves hold
spatiotemporal information. These aspects of domain concepts
need to be considered, for example the beginning and ending of
an interaction (its temporal structure) is of high importance to
the above stated competency questions. The W3C Time Ontology
is reused for this purpose [HP04].

4.5 an ontology of interaction relevant knowledge 71

involved-in

owl:Thing

makes

Interaction

convey

Interaction

Participant

Person

Agent

has-timeTemporal

Entity

Spatio-

temporal

Entity

is-inArea Room

has-location

Space

Region

Location

holds

Physical

Container

PhysicalObject

Embodied

Agent

is-produced-by

Sensor

observedBy

Observation

Sensor Output

Virtual

Agent

used in

Conversation

Cooperative

Task

Task

Utterance

involved-in

connected-to

knows

contribute-to

FOAF

W3C SSN

DUL

W3C Time

rdfs:subClassOf

owl:ObjectProperty

owl:Class

Figure 4.4: The EISE interaction ontology.

Figure 4.4 shows an overview of the top level concepts in the EISE
ontology. The ontology is a model which allows to represent the sce-
narios described in Section 4.2.3 from the perspective of behavior devel-
opers. I emphasize on concept and representation reuse from existing
ontologies to make use of existing detailed modeling efforts. The ad-
ditionally added concepts, such as InteractionParticipants or Spa-
tiotemporalEntity, embed the required classes into this structure.

The concept of Persons and their properties such as names and con-
tact information are taken from the FOAF ontology. Artificial interac-
tion Agents are chosen as a subClassOf Persons to enable their respec-
tive descendants VirtualAgents and EmbodiedAgents to be modeled
identically to Persons. They thus are similarly capable to know other
InteractionParticipants. These involved participants are in turn
involved-in Interactions. their possible interconnection allows to

72 a model of interaction relevant data

represent all configuration described in the HRI taxonomy by Yanco
and Drury [YD04]. The previously described scenarios revolve pri-
marily around verbal interaction and thus Conversations are one ex-
emplary lower level Interaction concept. Utterances conveyed by
the individual InteractionParticipants are consequently used-in

such Conversations. Besides the shown Conversations, further ex-
tensions of this ontology can provide other types of Interactions de-
scribing other HRI scenarios. The temporal structure of PhysicalOb-
jects (reused from the DUL ontology) is modeled via TemporalEnti-

ties attached to the intermediate SpatiotemporalEntity. The phys-
ical locations are abstracted by SpaceRegions more precisely Rooms,
Areas, and Locations. The Sensor aspects of the smart environment
and the EmbodiedAgent are grounded into the concepts of the SSN
ontology. The individual Observations of these Sensors are of im-
portance to the behavior developers and thus are modeled as such.

The ontology provides an initial abstraction of the concepts and re-
lations of the domain and allows to represent the scenarios described
in Section 4.2.3. Also the exemplary competency questions can be an-
swered using this model. However, a central limitation of this domain
model as an ontology lies in the eventual domain evolution and conse-
quently the model evolution. With the CSRA domain being a research
setting, it is composed of a rapidly changing hardware and software
setup. One example of this change is the addition of dedicated track-
ing sensors to the system, which were introduced at a later stage of
the project. Fundamental changes as such to the domain are prob-
lematic as they require a change to the domain model. This change
also impacts the queries which users formulate towards the model:
Changes to the ontology need to be transfered and queries need to be
migrated to satisfy the new model layout.

4 .6 summary

This chapter introduces the EISE domain as a combination of com-
mon smart environments and embodied cognition in HRI. As an exam-
ple the CSRA project is described in which the contributions of this
thesis are developed and used. The CSRA project is used for a domain
analysis and the running application example for the followed MDSE
approach. The central factors of the domain which are subsequently
identified as:

• The system architecture in which tooling needs to be deployed
and generate artifacts for,

• The data, information, and knowledge present in the system,

• The roles and responsibilities of individuals in the laboratory
system,

4.6 summary 73

• Required knowledge of each individual participating group,

• Exemplary knowledge queries towards the EISE domain.

Additionally, a brief presentation of a multi-modal interaction data
corpus extracted from the CSRA is described. Lastly, the resulting
ontology of interaction relevant knowledge is presented which was
obtained in an early iteration of the development process. This on-
tology serves as the basis for the language engineering efforts in the
following chapters: The DSLs and their composition need to be able
to express the concepts of the ontology.

5
C O N C E P T U A L I Z AT I O N S F O R M O D E L - B A S E D
Q U E RY C O M P O S I T I O N

“Nothing in life is to be feared, it is only to be understood. Now is
the time to understand more, so that we may fear less.“

—Maria Skłodowska-Curie [Ben73]
Awarded the 1903 Nobel Prize in Physics

So far, the Chapters 2 to 4 introduced the research topic, the ad-
jacent domains, an analysis of the Embodied Interaction in Smart Envi-
ronments (EISE) domain, and extracted a model abstracting interaction
relevant knowledge of the EISE domain. Based on this foundational
work, this chapter describes four central parts of the Model-driven Soft-
ware Engineering (MDSE) process: 1) the underlying objectives and re-
quirements (RQ2), 2) a technology-independent system architecture
(RQ3), 3) a detailed language composition definition (RQ3), and 4) a
suitable technology mapping (RQ4). I further present each language
of the composition definition in detail, including individual imple-
mentation-independent meta-models and semantics of language inter-
sections. Lastly, the technology mapping serves as a grounding in the
application domain of the Cognitive Service Robotics Apartment as Am-
bient Host (CSRA) project. This mapping is based on the languages
defined in this chapter as well as the findings of the research topic
presentation in Chapters 2 to 3.

The individual sections of this chapter are concerned with two dif-
ferent development process phases. On the one hand, Section 5.1 ex-
tracts objectives as well as (non-)functional requirements and is thus
part of the domain analysis in Phase P1. Domain Analysis. Section 5.3,
on the other hand, represents the results of Phase P2. Language De-
sign, containing the implementation-independent system architecture
and the technology mapping for the EISE domain.

Earlier iterations and parts of the conceptualizations in this chapter
have previously been published by me and were peer-reviewed by the
community. This primarily includes the publication “A Model Driven
Approach for Eased Knowledge Storage and Retrieval in Interactive
HRI Systems” presented during the 2018 Second IEEE International
Conference on Robotic Computing (IRC) [KWC18a].

5 .1 objectives and requirements

The objectives of the design process are influenced by two parts: a) the
theoretical background regarding graphs and knowledge representa-

76 conceptualizations for model-based query composition

tion (cf. Chapter 2 on page 11), as well as b) the background and state-
of-the-art MDSE practices (Chapter 3 on page 29). In their core, the ob-
jectives are then derived from the research questions in Chapter 1 on
page 3 and the domain analysis in Chapter 4 on page 51. They frame
the central question on how to provide behavior developers with an ex-
tensible graph query language (GQL) and other supporting tools. These
tools are created following a MDSE approach, which allows develop-
ers to compose queries towards information and knowledge present
in the EISE domain. The difficulty of this task lies in the choice of ap-
propriate language design and composition to enable the inclusion of
domain-specific user models and time constraints (e.g. via language
patterns [Pes+15]), while keeping the individual languages extend-
able. The following objectives thus provide the grounds to formulate
the (non-)functional requirements in the following Section 5.1.1.

The first objective is openness, as the results of the MDSE approach
need to integrate into the already present infrastructure and develop-
ment process. This objective is based on the fact that a large portfolio
of existing software, components, interconnection, and (sub-)systems
are available, which need to be considered and included into the pro-
cess from the beginning. On the one hand the domain’s available
knowledge and technical decisions, e.g. domain-specific data types
or a common middleware, need to be considered in the process. On
the other hand it is imperative that all generated artifacts can be used
in the present ecosystem and infrastructure to foster developer accep-
tance and use. Only with this openness the usage of a graph query
design tool for execution and analysis of queries is enabled.

The provided languages are required to support the representation
of domain-specific queries. This includes an easy creation of queries
grounded into the real world of the complex interactive system of
the EISE domain, which can be constrained with respect to their tem-
poral expansion.

Variations and changes of the EISE domain and the overall setup
are plentiful due to the research setting and study oriented setup.
This includes the addition or removal of sensors/actuators and any
changes in the domain model or domain data types. Extendability and
versatility are thus objectives to be considered during the MDSE pro-
cess. Domain-specific languages (DSLs) need to provide a level of ab-
straction that allows to maintain, evolve, and extend user models. The
application of appropriate language composition is central in the de-
velopment process as it enables the required generalization, for ex-
ample, by using language reuse, adapter languages, or orthogonal
languages. Languages need to be build with support for easy future
modifications and additions. The complexity of graph query design is
then further reduced during the implementation phase via language
pragmatics [Rod15a], such as query reduction/simplification of reoc-

5.1 objectives and requirements 77

curring patterns, domain-specific completion and suggestions (static
checking), or user model and query analysis/profiling.

Closely tied to the versatility and query support lies the objective
of abstraction: While the overall query constructs such as graphs, time
representation, or graph pattern matching queries are part of the M2
abstraction layer, other domain properties ideally reside in the layer
of user models M1. As such, the domain description can either be
statically implemented as a meta-model in M2, however, allowing do-
main experts to describe the current state of the domain themselves
provides higher flexibility. Queries then depend on these user mod-
els and create instances of the domain concepts and their relations –
grounding them into concepts of the real world.

5 .1 .1 Requirements

Based on the domain analysis of the project, the domain context and
the identified objectives the following (non-)functional requirements
are derived (RQ2).

5 .1 .2 Functional requirements

FR1 Allow the representation of Graph Database Management Sys-
tem (GDB) queries

FR2 Allow the execution of created queries towards a database

FR3 Allow the creation of domain description models as a graph,
allowing to abstract the concepts, relationships, and proper-
ties of the domain

FR4 Allow to link the GQL and the domain description model to
ground queries into the concepts of the real world

FR5 Allow to express time constraints on GQLs

FR6 Provide query feedback lifted from external analysis tools

FR7 Interface with the Application programming interfaces (APIs),
middleware, and other software infrastructure of the domain

FR8 Provide visual representations of (sub-)graphs

5 .1 .3 Non-functional requirements

NFR1 Consider developer bias (e.g. system structure knowledge,
preferred languages, query language knowledge)

78 conceptualizations for model-based query composition

NFR2 Formulate graph queries in a back-end independent query
language

NFR3 Apply suitable language composition for easy language evo-
lution and extension

NFR4 Provide a reproducible integrated language build and de-
ployment solution

NFR5 Generate artifacts which integrate tightly with user General
Purpose Language (GPL) code and the system of the domain

5 .2 related work

There exists only few applications in literature, which combine the
domains of graphs, GQLs, robotics, human–robot interaction (HRI) and
interactive environments. Proposed systems in the domain of HRI of-
ten utilize knowledge-based systems, knowledge processing, ontolo-
gies, or other frameworks providing reasoning capabilities, such as
KnowRob or ORO [TB13; Bee+18; Lem+10]. These examples make use
of inference engines to provide reasoning and logical deduction for
complex problem solving, such as robot motion planning, common-
sense grounding of actions, semantic annotation, or memory manage-
ment. Querying in these applications is generally realized by existing
query languages such as the tuple based SPARQL Protocol and RDF
Query Language (SPARQL) or logic programming language Prolog.

The most prominent approach focusing on query design support
for such systems is presented by Balint-Benczedi et al. who provide
a storage and retrieval DSL for robotic episodic memories [Bal+17].
The underlying ontology model is concerned with data regarding ro-
bot perception and especially data relevant for long-term manipula-
tion tasks. It is embedded and part of the KnowRob system and a
direct reaction to the complex Prolog queries emerging within this
system [TB13; Bee+18]. Retrieval of episodic memories is thus eased
via an object and scene description language. As such, it serves as an
abstraction layer between the structure of the perception of the robot
and the semantic interpretation of observations. The implemented
dedicated query interface is used to retrieve specific elements of the
episodes and realizes two central goals: 1) enable on-line retrospec-
tion and specialized training of perception routines and 2) enable re-
searchers to interactively explore perception results. Architecturally,
the authors store the raw sensor data as unstructured information
within a MongoDB document store. This database already provides a
specific query language that follows the syntax of the data descrip-
tion format JSON and the central contribution of the authors is the
addition of predicates into this language. The predicates are based

5.3 system architecture 79

on the existing description language, which abstract from the data
structure in the underlying ontology. Users of this internal DSL need
to be familiar with the host description language and the additional
predicates for successful query design: No further query design sup-
port, such as completion, query analysis, or other tooling is provided
in this approach. The authors also identify temporal properties of the
data as an important factor. As a result, they expose access to the
annotated timestamps of data and queries can be constrained via ab-
solute time information. Again, the complexity of proper temporal
query design is left to the user, who need to directly insert times-
tamps into temporally constrained queries. Further, evaluation of the
approach is solely anecdotal by example and implementation show-
ing 1) reduced (Source) Lines Of Code (LOC) when compared to the
usual query constructs using native database queries and 2) a real-
ization of recognition classifier training sample collection at runtime
using the DSL.

Dietrich et al. present another internal DSL which supports robotic
world knowledge retrieval [DZK15]. The introduced language Select-
Script adopts the semantics of Structured Query Language (SQL) and
extends the language with domain-specific features. The authors pro-
vide a language with a reduced expressiveness for effective query-
ing within developer code. The implementation was created using
ANTLR and hence detailed descriptions on the language’s grammar
are given. While they provided features for continuous queries (by ex-
ecuting existing ones every 100 milliseconds), no detailed modeling of
temporal concepts or the domain concepts were described. As a result,
SelectScript requires developers to fall back their domain knowledge
and the use of timestamps to express domain-specific temporally con-
straint queries.

5 .3 system architecture

The technology-independent system architecture defines all concepts,
which are available to create a system [Völ06]. It contains all technolo-
gies and approaches useful to represent, explain, and illustrate the ar-
chitecture intentions. According to Völter, there is no formalized way
of representing technology-independent architectures: It is composed
from box and line diagrams, state/sequence/activity charts, textual
explanations, and anything helpful to communicate the architecture.
Contributing towards research question RQ3, I present the system
architecture by considering the different requirements as well as per-
spectives from behavior developers of the CSRA.

Figure 5.1 shows my proposed technology-independent structure
diagram that contains a) different targeted IDEs and tooling which
developers utilize (NFR1, NFR3, NFR4), b) the structural integration
of the IDE (FR7, NFR4), c) the individual developers and their roles

80 conceptualizations for model-based query composition

realizes

User Code
is in

Embodied

Agent

Shared Software

is in Domain Models

Domain Description
Domain Types
Environment (DB access)

Shared Domain Knowledge
(Typelibraries, middleware, etc)

uses

IDE // DSL

Generic
Query

Designer

Storage Models

Queries
Functions

uses

Domain
Model

M0

M1.1

M2.1

M3

R
ea

l-w
or

ld

Domain
Model

Domain
Model

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-
Model
(DSL)

Meta-Meta-
Model

specializes

instance of

use

Intelligent

Environment

Software Stack
Conceptualizations

Real World

Software Stack
Conceptualizations

is in

Real World

C
om

po
ne

nt
C

om
po

ne
nt

C
om

po
ne

nt
C

om
po

ne
nt

C
om

po
ne

nt
C

om
po

ne
nt

C
om

po
ne

nt
C

om
po

ne
nt

is in

M2.2

M1.2

uses

`Domain Experts

uses

Graph Storage

acesses

Language
Developer

Behavior Developers

conforms to

conforms to

Figure 5.1: Diagram of the structural integration of the target integrated
development environment (IDE) into the overall system, the in-
volved user roles, user models, and a mapping to the under-
lying real world elements. Additionally, models and tool ele-
ments are related to the corresponding Object Management Group
(OMG) meta-modeling layers where applicable (cf. Figure 3.1 on
page 31).

in this structure (FR7), and lastly d) a mapping of user models to the
corresponding individual layers of the OMG meta-modeling layers
and real world entities.

At the core of the system lies the real world represented by the
intelligent environment and the autonomous embodied agent acting
in it (bottom). Each of these systems is composed by separated soft-
ware components carrying out individual tasks. The tasks operate on
various abstraction levels of the system, for example, sensor data pro-
visioning to middleware or person tracking on available data (cf. the
data-information-knowledge-wisdom (DIKW) hierarchy in Section 2.1).
While both these systems rely on their own conceptualizations (e.g.
data types, and communication patterns) and own software, they also
share domain knowledge, abstractions and (connected) software.

5.4 extensible graph query language composition 81

The architecture provided in my work provides a generic query
designer IDE for behavior developers (left). The languages and concep-
tualizations of this tool conform to the M3 layer and are realized as
meta-models in M2. With the help of this tool and the included DSLs,
domain experts create the three different types of user models for the
EISE domain: a) a domain description model composed of all concepts
and relations of importance to the behavior developers (FR3), b) a model
of domain types based on the shared and individual conceptualiza-
tions of the domain (NFR2), and c) other models containing required
environment specific knowledge such as database access or shared
middleware properties (FR7, NFR1, NFR2).

The created models in combination with the generic query design
IDE provide a highly domain-specific query design tool: The EISE
Query Designer (EISEQD) (center). All queries that are created in the
EISEQD can be grounded into the domain via the dependent domain
description, domain types and environment information. This tool is
used by behavior developers who are responsible for components of the
system and within its environment, each user can compose specific
models that contain graph database querys (GDQs) and user functions
for their specific use case. In the traditional workflow, developers com-
pose the query strings and place a copy within their source code. In
contrast to this, queries are constructed in the IDE and can directly be
tested and profiled in the environment. Artifacts are generated from
the IDE and embedded in the developer code (e.g. as library depen-
dencies packaging the designed queries). In the last step following
the query design phase, suitable deployment strategies install the re-
sulting components and model artifacts into the software stack of the
environment(s) (NFR4, NFR5). As a result, similarly to the domain
description and domain types, the query models of developers exist in
the M2 layer. Changes to the domain model are consequently directly
reflected in the user queries at design time. The developer code, how-
ever, is stable as it references the functions of the generated artifacts
and thus does not need to be updated upon every query change. Suit-
able language composition is required allow this type of composition
and ultimately enable evolution of the domain (NFR3).

5 .4 extensible graph query language modularization

and composition

Language composition and modularization has been identified as a
central necessity for DSL development [Völ13a; Com17; Pic10; Erd+13].
Suitable language composition for this work is also a requirement
(NFR3) to implement tooling that allows to integrate in the previously
presented system architecture. Additionally, many of the named ad-
vantages – such as reuse, or extendability (cf. Chapter 3 on page 29)
– require successful language dependency organization. Figure 5.2

82 conceptualizations for model-based query composition

Graph
Query

Time

Temporal Graph
Query

Graph

Domain
Description

Domain
Graph Query

Query
Vizualization

Query
Analysis

Query
Execution

Relative
Time

extend

reuse

reference

language

adapter
language

 external

 impl.
module

*

* theoretical
Extended Graph

Query

Types

Figure 5.2: The proposed language modularization and composition.

thus shows the implementation-independent language modulariza-
tion and composition applied in this thesis. At its core, the Graph

language resides with no external dependencies. This language rep-
resents the abstractions required to represent labeled property multidi-
graphs as introduced in Section 2.2 on page 14. As such, it allows to
represent the elements of a graph: Nodes and Relationships, as well
as the respective Properties and Labels. This foundation is the ba-
sis for the extending Graph Query language, which embeds the Graph

concepts and allows to describe matching pattern graph queries via
the PatternQuery top-level concept. The Domain Description is the
second depending language and reuses (i.e. depends and references)
the Graph language. It abstracts from the description of a domain and
allows to create two top-level concepts:

a) DomainDescriptionGraphs: A concept to represent all elements
of a domain, their relations, as well as element properties re-
spectively.

5.4 extensible graph query language composition 83

b) DomainInstanceGraphs: A Graph as defined by the Graph lan-
guage that additionally allows to ground graph elements via
referencing to elements of a given DomainDescriptionGraph1

The Domain Description language additionally embeds a Type lan-
guage to enable domain-specific type incorporation. The adapter lan-
guage Domain Graph Query combines the features provided by the
Domain Description and Graph Query languages without providing
any further concepts or extensions itself. The combination of domain
descriptions and graph queries in user models is practically enabled
by the joint dependencies to the common Graph language. The Tem-

poral Graph Query adapter language uses the conceptualizations of
the domain description and provides the feature to explicitly con-
strain graph queries with respect to their temporal expansion (FR5).
It therefore reuses the Relative Time language and applies orthogo-
nal language composition onto the Domain Graph Query language. The
Relative Time language is an extension of the Time language and en-
ables the representation of time relative to another point in time, for
example, temporal constraints relative to the query execution. Lan-
guage pragmatics, such as Query Execution, Query Visualization, or
Query Analysis primarily make use of reference and extension capabil-
ities to enrich the language architecture with their respective features.
Depending on the chosen language workbench and the availability of
features (e.g. projectional editing), the pragmatics can provide, for ex-
ample, different concrete syntaxes, alternative projections, or lift analy-
sis information back into the IDE. Further extensions can be created
using this proposed composition mechanism (NFR3), even in later
iterations of the process.

The following sections will present each language in detail. With
the language composition in Figure 5.2 showing a clear overview
on how the languages are organized and related, the following in-
dividual meta-models explain the syntax of each individual language.
I make use of Unified Modeling Language (UML) based meta-model
diagrams due to the increased intuitiveness, pragmatic representa-
tion, and elegance [HR00]. However, this detailed view on concepts
and representation of languages does not fully describe the complete
language behavior: The meta-models are implementation-independent
descriptions of the syntax, and thus it is necessary to clearly de-
scribe the intended language behavior, especially at its intersections,
to fully capture the meaning behind the conceptualizations. There-
fore, I present additional semantic descriptions of the language be-
havior (cf. Section 3.1.2 on page 31). Whenever language intersections
and composition cannot be explained sufficiently by the provided ab-
stract syntax and meta-models, I provide the denotational semantics of
the languages. These semantics are intended to denote the language

1 Elements of the DomainInstanceGraph are thus “instances” of their referenced pen-
dants in the DomainDescriptionGraph

84 conceptualizations for model-based query composition

Node

Label

0..n

Graph

source

1..1

target

1..1 0..n

Relationship

1..1

1..1

Property

Constant

Name

0..n

<<abstract>>
Graph

Element

Figure 5.3: The meta-model of the Graph language which allows to represent
a labeled property multidigraph.

behavior and also provide the resulting behavior applied during and
after artifact generation.

5 .4 .1 Representation of graphs

Figure 5.3 shows the meta-model of a graph, which is a central lan-
guage in the composition. This representation allows to describe la-
beled property multidigraphs as introduced in Section 2.2 and as a result,
a graph represented by this meta-model corresponds to a graph of the
form G = (V ,E, ρ, λ,σ) as described in Equation (2.6) on page 16.
At the top-level of the abstraction lies the Graph itself. It contains a
number of Nodes and Relationships. Each of these GraphElements

can hold multiple Properties consisting of a Name and an assigned
Constant value. Labels are individually held by Nodes and Relation-

ships alike, representing the multi-graph characteristics of the graph
model. Relationship direction is expressed via two distinct references
from a Relationship to a source and a target Node. This meta-model is
the foundational abstraction to be reused by the GQL in the technol-
ogy mapping (FR1 - FR2, NFR2).

5 .4 .2 Representation of pattern matching queries

Figure 5.4 on the next page depicts a non-exhaustive meta-model of a
pattern matching read-only query and the relations to the dependent
Graph language2. A PatternQuery is one possible type of graph query
which consists of three core components: 1) MatchingClause, 2) Fil-
terClause, and 3) ResultClause. The concepts Patterns and Pattern-

2 This meta-model focuses on simplified pattern matching queries on graphs. The de-
tailed role of graph traversal queries are not considered in this thesis.

5.4 extensible graph query language composition 85

1..1
0..1 1..1

0..n

1..n

Pattern
Query

Result
Clause

Results
Expression

Filter
Clause

Boolean
Expression Expression

Matching
Clause

Pattern Pattern
Element

Pattern
Element

Reference

references
1..1

<<abstract>>
Query

1

Graph
<<abstract>>

Graph
Element

Figure 5.4: A simplified meta-model of a pattern based query language.
Dashed concepts are part of the dependent Graph language.

Elements of Graph Query language consequently specialize the con-
cepts Graph and GraphElements respectively. PatternElements can be
referenced within the filter and result clause to restrict the query on
the properties or labels of the graph. A simple pattern matching read-
only graph query Q consists of the three elements matching pattern
M, constraint C, and result aggregation R. Each matching pattern con-
tains a set of Patterns P which are matched against the stored graph.
An individual Pattern is composed of PatternElements PE, which
individually can represent a Node or a Relationship.

Q = (M,C,R) |M ∈ G (5.1)

M = (P1, . . . ,Pn) (5.2)

Pi = (PE1, . . . ,PEm) | ∀ Pi ∈M (5.3)

In essence, M represents a graph that is composed of the individual
contained patterns Pi, which are described as an ordered list. This
choice is inspired by the Cypher semantic: Each individual Pattern
of a MatchingClause is a linear graph chain (e.g. A-B-C and D-B-E) and
the combination of all patterns composes the full matching graph. To
further illustrate, when using Cypher as the target GQL, the seman-
tics transforms the query to a three clause statement such that the
denotational semantics in Equations (5.4) to (5.6) operate. This rationale
is based on the Extended Backus–Naur Form (EBNF) grammar of the
Cypher language [Neo15], as shown in the example in Listing 5.1 on
the following page, taken from the official grammar3. I chose this

3 Also compare to the full resources provided at https://github.com/opencypher/
openCypher

https://github.com/opencypher/openCypher
https://github.com/opencypher/openCypher

86 conceptualizations for model-based query composition

122 Where = (W,H,E,R,E), SP, Expression ;
123

124 Pattern = PatternPart, { [SP], ',', [SP], PatternPart } ;
125

126 PatternPart = (Variable, [SP], '=', [SP], AnonymousPatternPart)
127 | AnonymousPatternPart
128 ;
129

130 AnonymousPatternPart = PatternElement ;
131

132 PatternElement = (NodePattern, { [SP], PatternElementChain })
133 | ('(', PatternElement, ')')
134 ;
135

136 NodePattern = '(', [SP], [Variable, [SP]], [NodeLabels, [SP]],
[Properties, [SP]], ')' ;↪→

137

138 PatternElementChain = RelationshipPattern, [SP], NodePattern ;
139

140 RelationshipPattern = (LeftArrowHead, [SP], Dash, [SP],
[RelationshipDetail], [SP], Dash, [SP], RightArrowHead)↪→

141 | (LeftArrowHead, [SP], Dash, [SP], [RelationshipDetail], [SP],
Dash)↪→

142 | (Dash, [SP], [RelationshipDetail], [SP], Dash, [SP],
RightArrowHead)↪→

143 | (Dash, [SP], [RelationshipDetail], [SP], Dash)
144 ;
145

146 RelationshipDetail = '[', [SP], [Variable, [SP]], [RelationshipTypes,
[SP]], [RangeLiteral], [Properties, [SP]], ']' ;↪→

Listing 5.1: Excerpt from the official openCypher EBNF definition showing
an example on how MatchingClauses are defined in the official
query language.

minimalistic example as it clearly shows the similarity of the deno-
tational graph semantics presented in this chapter within the open-
Cypher grammar. Additionally, it is important to note that queries
– especially MatchingClauses – can possibly be more complex than
what is shown here. Depending on the query details and result ag-
gregation, the query can also yield a path as a result. For example,
MatchingClauses can contain increased details such as sub-clauses,
entire sub-queries, or optional keywords. Another example are Pat-

ternElements, which can be composed as complex as the desired
by the users and include Nodes, Relationships, references to Rela-

tionships, references to Nodes, or references to other Match clauses.
The decomposition in the denotational semantics provided here are cho-
sen to keep compatibility to the aforementioned EBNF. Consequently,
these semantical the abstractions I provide here are as direct and un-
ambiguously as possible and are directly compatible to the implemen-
tation as presented in Chapter 5 on page 75.

Matching patterns are further destructed by the Graph Query lan-
guage semantics into individual pattern elements PE. Each element

5.4 extensible graph query language composition 87

of the linear pattern chain is further reduced using Cypher semantics
as shown in Equations (5.5) to (5.11).

J(M,C,R)KGQ = MATCH JMKGQ

WHERE JCKC
RETURN JRKC

(5.4)

JMKGQ = JP1KGQ ⊕, · · · ⊕, JPnKGQ (5.5)

JPiKGQ = JPE1KC · · · JPEmKC | PEk ∈ Pi (5.6)

For the distinction of different cases in Equation (5.7a) each Pattern-

Element is seen as its abstract definition, i.e. the tuple of an identifier
y, the node v or edge u itself, the labels or type L, and the correspond-
ing set of attributes A4.

PEk−1JPEkKCPEk+1 =



(y:JLKC JAKC) | if PEk = (y, v,L,A) ∧ (5.7a)

v ∈ V

-[y:JL ′KC JAKC]-> | if PEk = (y, e,L,A) ∧ (5.7b)

e ∈ E ∧

PEk−1 = (_,u, _) ∧

PEk+1 = (_, v, _) ∧

u, v ∈ V ∧

ρ(e) = (u, v) ∧

<-[y:JL ′KC JAKC]- | if PEk = (y, e,L,A) ∧ (5.7c)

e ∈ E ∧

PEk−1 = (_,u, _) ∧

PEk+1 = (_, v, _) ∧

u, v ∈ V ∧

ρ(e) = (v,u) ∧

JAKC = J(p1 = c1, . . . ,pn = cn)KC (5.8)

J(p1 = c1, . . . ,pn = cn)KC = {p1:c1 ⊕, · · · ⊕, pn:cn} (5.9)

JLKC = Jl1 . . . lmKC = l1 ⊕: . . .⊕: lm (5.10)

JL ′KC = Jl1 . . . loKC = l1 ⊕| . . .⊕| lo (5.11)

Depending on the context around any present PatternElement PEk,
each individual element is constructed to Cypher concrete syntax and
represents:

• Nodes in Equation 5.7a 5,

4 Attributes are properties. I use A to avoid name clashes in the equations
5 Includes PatternElements which have no left and/or right neighbor, i.e. PEi±1 ∈ ε

88 conceptualizations for model-based query composition

• Right directed Relationships in Equation 5.7b, or

• Left directed Relationships in Equation 5.7c.

The relationship direction is conserved by falling back to the relation-
ship direction information in ρ(e). Lastly, in Equations (5.10) to (5.11)
the Labels and Attributes of each GraphElement are reduced to the
list representation using the corresponding separators and syntactical
extras such as brackets defined in the Cypher language.

5 .4 .3 Representation of domain descriptions

The Domain Description language is used to represent the EISE do-
main within the queries (FR3). This language aggregates the knowl-
edge of the domain concepts and their relations as a user model in-
stead of as a meta-model. The language is designed so that the do-
main concepts modeled in a domain model can be instantiated and
referenced within a GQL, subsequently grounding the query in the
domain. This grounding functions similarly to a schema known in
relational databases, however the domain model is a model created by
domain experts themselves and developer queries directly link to it.
This allows to easily maintain and evolve domain representations ac-
cording to the real world while also propagating the changes to all

Domain
Property

Node

Graph

Relationship

<<abstract>>
Graph

Element

Domain
Node

Instance

source

1..1

Domain
Relationship

Instance

target

1..1

Domain
Description

Graph

references
1..1

references
1..1

<<abstract>>
Domain
Element
Instance

Domain
Instance
Graph

0..n

1..1 1..1

<<abstract>>
Type Name

0..n

1..1

0..n

Domain
Property
Instance

Constant

references
1..1

0..n

Domain
Node

Domain
Relationship

<<abstract>>
Domain
Element

source

1..1

target

1..1

Domain
Label

1..1

1..1

Figure 5.5: The meta-model of the Domain Description language. Dashed
concepts are part of the dependent Graph and Type languages.

5.4 extensible graph query language composition 89

corresponding queries (without the need to update a meta-model by
language designers).

Figure 5.5 on the facing page shows the proposed meta-model of the
Domain Description language. The language depends on the previ-
ously presented graph language (cf. Figure 5.3). It reuses (i.e. combi-
nation of referencing and extension) the graph language and provides
two top-level concepts which specialize a Graph: 1) DomainDescrip-

tionGraph and 2) DomainInstanceGraph.
The former DomainDescriptionGraph is the specialized graph used

to represent the domain concepts and their relations by using Do-

mainNodes and DomainRelationships. DomainElements can contain
any number of DomainProperties. These properties differ from the
Property concept in the Graph language such that instead of a con-
stant value, a Type from the available Type language(s) is provided.
The DomainLabels also differ from the traditional labeled property mul-
tidigraph definition as their cardinality is reduced to one, thus increas-
ing the model specificness. The possibility to reference a Type for each
DomainLabel allows to further ground the type of DomainElements to
already present types in the Type language or domain-specific Type

specializations available in the domain.
In contrast to this, the DomainInstanceGraph (which is technically

also a graph) allows to define DomainElementInstances, which spe-
cialize the already existing GraphElements. DomainElementInstances
are intended to be used within matching patterns of a GQL and
conceptually represent individual instances of the anonymous ab-
stract DomainElements. The specializations DomainNodeInstance, and
DomainRelationshipInstance thus use the common GraphElement

features and additionally require a reference to an existing Domain-

Node or DomainRelationship respectively. This required reference rep-
resents the grounding of a DomainElement via reference to the con-
cepts defined in a DomainDescription (FR4). The DomainPropertyIn-

stance concept held by DomainElements similarly provides the means
to represent a specific instances of a DomainProperty. In contrast to
the Graph language, the DomainPropertyInstances contain a constant
value and their name and type is derived from the referenced Domain-

Property. At the same time, non-grounded properties can be speci-
fied as the DomainElementInstance specializes a GraphElement which
in turn provides the “anonymous” Property concept.

Semantically, a DomainDescriptionGraph DDG operates similarly
to the previously shown graph (cf. Section 5.4.1 on page 84). However,
for each edge the number of labels |λ(e)| is limited to one for this
graph.

JDDGKDD = G | where G = (V ,E, ρ, λ,σ)

∀e ∈ E : |λ(e)| = 1
(5.12)

90 conceptualizations for model-based query composition

Analogously to the semantics for graph queries in Equation (5.4) on
page 87, the semantics of DomainElementInstances embedded within
a graph query QDD are described by the following statements:

QDD = (MDD,C,R) (5.13)

J(MDD,C,R)KC = MATCH JMDDKDGQ

WHERE JCKC
RETURN JRKC

(5.14)

JMDDKDGQ = JPDD
1 KDGQ ⊕, · · · ⊕, JPDD

n KDGQ (5.15)

JPDD
i KDGQ = JPEDD

1 KDGQ · · · JPEDD
m KDGQ (5.16)

The Pattern PDD
i listed in Equation (5.16) represents the elements

of the MATCH clause M such that PDD
i ∈ M. A key difference to the

default semantics in Equations (5.4) to (5.6) on page 87 is the change
that the PatternElements PEDD of each Pattern PDD

i within the set
of provided Pattern in M can be a DomainElementInstance (Equa-
tions (5.14) to (5.15)).

PEk−1JPEDD
k KCPEk+1 =



(y:JLKDGQ JAKC) | if PEk = (y, v,L,A) ∧ (5.17a)

v ∈ V(JDDGKDGQ)

-[y:JLKDGQ JAKC]-> | if PEk = (y, e,L,A) ∧ (5.17b)

e ∈ E(JDDGKDGQ) ∧

PEk−1 = (_,u, _) ∧

PEk+1 = (_, v, _) ∧

u, v ∈ V(JDDGKDGQ) ∧

ρ(e) = (u, v) ∧

<-[y:JLKDGQ JAKC]- | if PEk = (y, e,L,A) ∧ (5.17c)

e ∈ E(JDDGKDGQ) ∧

PEk−1 = (_,u, _) ∧

PEk+1 = (_, v, _) ∧

u, v ∈ V(JDDGKDGQ) ∧

ρ(e) = (v,u) ∧

JPEkKC | else (5.17d)

JLKDGQ = Jl1KC = l1 (5.18)

As a result, the individual PatternElements PEDD
k (i.e. either Node or

Relationship), that make use of the domain description specializa-
tions DomainNodeInstance or DomainRelationshipInstance concepts,
are reduced corresponding to Equations 5.17a to 5.17c. Their refer-

5.4 extensible graph query language composition 91

ence to the corresponding DomainNode and DomainRelationship is
expressed in the corresponding use of target language syntax which
expresses a Cypher node or relationship respectively. Similarly to the
default semantics for PatternElements of the Cypher language as
listed in Equation (5.7a) on page 87, the semantics for queries with
domain knowledge distinguish nodes and relationships. PatternEle-
ments are still seen as a tuple of an identifier y, the node v or relation-
ship u, the labels or type L, and the corresponding set of attributes
A6. The central difference of the semantics is that domain description
information (i.e. the node/relationship reference) is used as the node
label or relationship type L respectively. Identifier and properties are
transfered analogously, while relationship direction is conserved by
falling back to the relationship direction information ρ(e) of the do-
main description graph. In case PEk is not a concept related to the
domain description, the default Cypher semantics are applied (Equa-
tion 5.17d) as described by Equation (5.7a) on page 87.

5 .4 .4 Representation of time

As identified in the domain analysis, the ability to express tempo-
ral properties of queries is an important factor in the query design
process (FR5). Queries on domain knowledge are often formulated
with temporal properties relative to their execution time [All84; TB09;
Bal+17] and are thus treated specifically in this thesis. For example, a
query can target information from within the last n seconds (i.e. an
interval starting n seconds ago until now), or at exactly n seconds
ago (i.e. a point in time which lies exactly n seconds in the past).

The time languages are thus constructed to allow to formulate time
constraints and attach them to queries or its elements. I separate this
task into three languages (NFR1,NFR3): 1) Time 2) Relative Time,
and 3) Temporal Graph Query.

Figure 5.6 depicts the proposed meta-model of the Time language,
which provides the fundamental capabilities to represent any point
in time or temporal expansion. I base the language design on the
Time Ontology in OWL as presented by the World Wide Web Consor-
tium (W3C), which gathers the core temporal classes, their topology,
and principles (cf. Section 4.5.4 on page 70) [W3C17; HP04]. At the
language core the TimeDescription concept represents temporal en-
tities, which are expressed either as Interval or as Instant concepts.
An Interval can have two distinct forms and is either a DurationIn-

terval consisting of an Instant and a Duration referencing the start
and duration of the interval, or an InstantInterval which holds two
Instants referencing the start and end of the interval. A time In-

stant itself is a precise TimeDescription, which holds all required

6 Attributes are properties but to avoid naming clashes in the equations the identifier
A is used here

92 conceptualizations for model-based query composition

<<abstract>>
DateTime

Description

1..1

Duration
Interval

<<abstract>>
Interval

Proper Instant

Proper Duration

+ years: int
+ months: int
+ days: int
+ hours: int
+ minutes: int
+ seconds: int
+ weeks: int

1..11..1

Instant
Interval

1..2

<<abstract>>
Time

Description

Tolerance
Instant

1..1

Proper

DateTime Description

+ day: int
+ year: int
+ month: int
+ hour: int
+ minute: int
+ second: int
+ week: int
+ timezone: int
+ dayOfWeek: int
+ dayOfYear: int

<<abstract>>
Duration

<<abstract>>
Instant

1..1

Figure 5.6: The meta-model of the Time language.

time related elements to represent a certain point in time. To allow
the description of a point in time with a given tolerance, I further
add the ToleranceInstant. This concept specializes a TimeDescrip-

tion by holding an Instant to represent a point in time and a Du-

ration representing the tolerance around this point (NFR1). Though
this ToleranceInstant could also be expressed with a correspond-
ing Interval and suitable concrete syntax or language pragmatics, I
chose this explicit representation to clearly formulate tolerances in
the model.

The Time language is independent from the other languages of this
approach (FR4) and I further specialize temporal descriptions in the
Relative Time language depicted in Figure 5.7 on the next page. The
goal of this language in the overall language composition is to allow
the representation of temporal constructs relative to a temporal ref-
erence point. The addition of the RelativeTimeDescription concept
provides the possibility to express these relative time constructs by be-
ing an Instant specialization, which also holds an additional Anchor
and Offset. This description of a point in time with a given offset

5.4 extensible graph query language composition 93

1..1 Relative
Time Description

<<abstract>>
Instant

<<abstract>>
Offset

<<abstract>>
Anchor

1..1

<<abstract>>
Duration

Symbolic
Anchor

Figure 5.7: The meta-model of the Relative Time language. Dashed concepts
are part of the dependent Time language

allows to create TimeDescriptions that are relative to a given point
in time (e.g. the query execution time).

Semantically, the Time and Relative Time languages provide cor-
responding expected behavior. Every TimeDescription is reducible
to either a single point in time (i.e. an Instant) or a set of multiple
points in time (i.e. an Interval). For the usage in the EISE domain, I
chose a point in time such as a ProperInstant reduces to the equiva-
lent POSIX Time representation7:

JPIKRT = JPIKT = JPIKPOSIX (5.19)

Further, a RelativeTimeDescription RTD adds an Instant special-
ization which is denoted by the tuple of an Anchor A and an Offset

OFF, which are semantically reduced to a joint ProperInstant based
representation using common time arithmetics [All84]:

JRTDKRT = J(A,OFF)KRT (5.20)

= (JAKRT + JOFFKT)

= (JPIKT + JOFFKT)

Figure 5.8 and Figure 5.9 on the following page depict exemplary
temporal expressions which are expressible using the above presented
languages. The Time language provides four absolute temporal con-
structs users can use to express temporal expansions. Figure 5.8 on
the next page shows these four types and the concepts which are
used to construct each temporal expansion: A ProperInstant (PI) al-
lows to represent a single point in time, while the extended version,
a ToleranceInstant (TI) describes a point in time with a given tol-
erance around it (technically representing an Intervall). Intervalls
can either be based on given start and end Instants (II) or based

7 The number of seconds since January 1, 1970 midnight +00:00, minus leap seconds

94 conceptualizations for model-based query composition

II (PI, PI) DI (PI, PD) TI (PI, PD) PI

Figure 5.8: Timeline of all four absolute temporal expressions expressible
using only the Time language. The indicated involved concepts
are named after the initials of concepts shown in Figure 5.6 on
page 92. Normal lines indicate properties defined by the user,
dashed lines are the resulting temporal boundaries.

Anchor II (RTD, RTD) II (RTD, DI) TI (RTD, PD) RTD

Offset

Figure 5.9: Timeline of exemplary complex temporal expressions express-
ible using both the Time and Relational Time languages. The
indicated involved concepts are named after the initials of con-
cepts shown in Figure 5.6 on page 92 and Figure 5.7 on the pre-
vious page. Normal lines indicate properties defined by the user,
dashed lines are the resulting temporal boundaries.

on start Instant and Duration (TI). Combination of the Time and
Relative Time language allows to define temporal expansions which
are anchored to a set point in time. Additionally, the user provides
an Offset which is added relative to the Anchor as show in Equa-
tion (5.20) on the preceding page. For the EISE domain, I chose a
SymbolicAnchor SA representation, which expresses the query execu-
tion time. Figure 5.9 shows four examples of possible relative tem-
poral expressions. The most left example is produced by creating an
InstantInterval which holds two RelativeTimeDescription. These
relative concepts act in this constellation as Instants and thus rep-
resent the start and end of the Interval. Many more combinations
are possible using the Relative Time language by combining them
with the concepts of the Time language. While the languages concep-
tually allow the representation of all required temporal expansions, it
is important to note that the concrete syntax and language pragmatics
need to ensure that the interface for the users is simple and hides
unnecessary complexity of time expansion composition.

The adapter Temporal Graph Query language functions as the com-
bination language of temporal features provided by the Time lan-
guage, the Relative Time language and query capabilities provided
by the Domain Graph Query language (FR5). The result is the addi-
tional feature to temporally constrain entire queries or parts of them.
Figure 5.10 on the facing page shows the meta-model of this language
which adds the two central capabilities of

a) Annotating DomainElements as timed elements thus declaring
the time annotation type (left), and

5.4 extensible graph query language composition 95

annotates

Time
Description

annotates

<<abstract>>
Timed

Element

Directly Timed Parallel Timed

<<abstract>>
Domain
Element

1..n
Pattern Pattern

Element

Temporal
Property

Domain
Property

1..1

Graph

1..1

Temporal
Graph

Figure 5.10: The Temporal Graph Query language meta-model which primar-
ily acts as an adapter language to join the otherwise indepen-
dent source languages. Dashed concepts are part of (transitive)
dependent languages.

b) Annotating Patterns or PatternElements with a TimeDescrip-

tion (right).

The Temporal Graph Query language makes great use of orthogo-
nal language composition (NFR3), also referred to as language anno-
tation. This technique allows to annotate any existing node of a given
abstract syntax tree (AST) with concepts from other languages without
the original AST requiring any knowledge about this addition. I chose
this composition approach as time and temporal constraints are actu-
ally orthogonal to the queries themselves. Time is a structured and
stable domain which has been analyzed extensively and as a result
these concepts can reside in corresponding meta-model(s) within the
M2 layer. This contrasts to the dynamic and thus unstable domain
description where I chose a more dynamic approach moving domain
descriptions to user models in the modeling layer M1. Moreover, to be
able to express temporal constraints is a crosscutting concern which
has applicability at different levels and in a wide range of languages,
hence further supporting an orthogonal language composition ap-
proach. For the application in queries, this composition type allows a
seamless annotation of queries – or parts of it – with temporally con-
straining information, without changing the query itself. While the
considerations shown here are in combination with the Domain Graph

96 conceptualizations for model-based query composition

Query language, a similar annotation on the generic Graph Query lan-
guage is theoretically possible. With no domain-specific knowledge
available, however, other mechanisms would be required in this case
to ground temporal constraints.

The semantics of the Time language consist of two distinct parts:
a) semantics of time representation in a given domain description,
and b) semantics of GQL annotations for temporal queries. To explain
the semantics of the Time language within a GQL, I base on the seman-
tics for a single pattern-based query Q as shown in Equations (5.1)
to (5.3) on page 85 and the semantics of the Domain Description lan-
guage as shown in Equations (5.12) to (5.18) on pages 89–90.

time representation and modeling First, the definition of
a time abstraction (or temporal domain description) needs to be cre-
ated before the behavior of temporal query annotations can be de-
fined. Different approaches are possible to express temporal proper-
ties within a graph-based structure; Figure 5.11 on the facing page
shows two alternative variants of time representations on a graph.
The first depicted approach (Figure 5.11 on the next page, left) uses
the graph structure to represent a timestamp This approach practi-
cally implements a temporal index which is not uncommon in GDB
applications [TB09; Sfa+13; SP16]. This feature is usually not imple-
mented within the database itself as proposed here, but rather pro-
vided by a dedicated index feature. This additional parallel graph
structure allows to inquire time aspects starting directly from time
graph elements. Queries targeting nodes related to the individual
time constructs can easily be expressed. However, this option allows
to only relate nodes to the individual time elements (seconds, min-
utes, etc.) but does not support to express temporal relationships.
The alternative approach (Figure 5.11 on the facing page, right) does
not include a separated graph. This representation embeds temporal
information into the graph elements via distinct time related prop-
erties (i.e. timestamps). In this case nodes and relationships can be
annotated with temporal information, allowing for a more flexible
domain description. Queries on this abstraction result in a more com-
plex query design: Queries need to be constructed such that they
match the desired sub-graph and subsequently the results need to
be filtered based on the time constraints. Both approaches allow to
represent durations by attaching two temporal elements (e.g. a start
and end time or start time and duration) which is helpful for example
for data retention strategies.

During the iterative development process I chose the second ap-
proach (Figure 5.11 right) for the abstraction of the temporal represen-
tation. I use timestamps as distinct properties on nodes and relation-
ships to represent temporal information. Though this approach pro-
vides a higher expressiveness for temporal concepts, the challenges

5.4 extensible graph query language composition 97

year
n=2019

month
n=12

month
n=01

[...]

minute
n=00

second
n=59

second
n=00

minute
n=59

X

A

Y

YB DZ

W

C

E

happens_at

happens_at

[...]

[...]

[...]

X

A
TS=15...

Y

YB
D

TS = 15...

C

E

Z
TS = 15...

W
TS = 1568032100

[...] [...]

happens_at

Figure 5.11: Two different approaches to represent time within a graph. First
creating a parallel sub-graph expressing time and use distinct
relationships to reference the temporal information (left); Sec-
ond directly using the features of the labeled property multidi-
graph via node and relationship properties to annotate time in-
formation using a timestamp (right).

are potentially increased costs in terms of queries complexity within
filtering clauses. However, the application of the MDSE approach mit-
igates this central issue: With the model knowledge available, addi-
tional complex statements or query elements can be generated. This
reduces the cognitive task for the developer while being able to use a
representation of higher expressiveness.

I chose to use the previously introduced DomainDescriptionGraph

(Section 5.4.3 on page 88) to indicate the type of abstraction of tempo-
ral information. Domain description graph elements (DomainNode and
DomainRelationship) can be marked via orthogonal language com-
poisition (i.e. concept annotations) as graph components containing
temporal information (cf. Figure 5.10 on page 95, right). The result-
ing Time Graph Query language semantics of a domain description
graph, which is annotated with a time description JDDGTDKTGQ, are
expressed by Equations (5.21) to (5.22).

JDDGTDKTGQ = (V ,E, ρ, λ, JσKTGQ) | (V ,E, ρ, λ,σ) = JDDGKDD (5.21)

JσKTGQ = (V ∪ E)× (Prop∪ {JTPKC}) | Const = Types (5.22)

→ Const

Such a domain description graph is represented by its usual graph
elements. The semantics for the ParallelTimed temporal annotation
simply adds a dedicated TemporalProperty TP containing a user de-

98 conceptualizations for model-based query composition

fined property to the σ of the existing graph. This property expresses
a temporal abstraction and expects individual timestamps onto Do-

mainElements as depicted in Figure 5.11 (right). Depending on the
user data and domain properties the temporal annotation strategy
and appropriate semantics can bee chosen. The semantics of alterna-
tive approaches such as the DirectlyTimed are omitted in this thesis;
the alternative approach is provided to highlight the customization
aspects of the language design.

time annotation in graph queries The second part of the
Time Graph Query language describes the features and the behavior
when combined with a GQL (Figure 5.10 on page 95, right). Though
these semantics must conform to the time abstraction semantics pre-
sented in the previous paragraph, their usage and resulting behavior
is transparent to the query designers: Within my proposed languages
a pattern-matching query with temporal constraints is expressed by a
simple annotation of a TimeDescription on a Pattern or PatternEle-
ment (i.e. a matching sub-graph) using a (Relative)TimeDescription

from the (Relative) Time language. This annotation holds a time de-
scription (i.e. a point in time or a range of time) which describes the
temporal constraint the annotated element needs to satisfy. As a re-
sult, users of the query language do not necessarily need to be famil-
iar with the underlying temporal abstraction as they simply mark the
Patterns, Nodes, or Relationships with an intended temporal con-
straint. The Relative Time language additionally provides the means
to formulate queries relative (i.e. with an Offset) to a set temporal An-
chor. In the applied Time Graph Query language for the EISE domain
I chose a SymbolicAnchor which references the time of query execu-
tion:

(A,OFF) = (SA,OFF) (5.23)

= JSAKTGQ + JOFFKTGQ (5.24)

This Anchor allows the users to always formulate their temporal con-
straints on a query with relation to the time of its future execution
hence reducing the query composition complexity further. For the
Cypher based pattern matching query semantics, the execution time
SymbolicAnchor evaluates to the Cypher internal timestamp function.

JSAKTGQ = (timestamp()/1000.0) (5.25)

Equation (5.20) on page 93 thus transforms to a representation includ-
ing the execution time.

JRTDKRT = JSAKRT + JOFFKT (5.26)

= (timestamp()/1000.0) + JOFFKT

5.4 extensible graph query language composition 99

The denotational semantics for queries JQDD,TDKTGQ grounded into
a DomainDescription and temporally constraint by TimeDescription

annotations are formulated in Equations (5.27) to (5.36). Initially, the
individual query clauses M ′, C ′, and R ′ are obtained following the
evaluation of the query JQ ′KDGQ using Cypher semantics. Query Q ′

represents an identical query to QDD,TD which is stripped from all
time annotations (Equation (5.27)). While the obtained clauses M ′

and R ′ are reused directly for the evaluation of QDD,TD in the Time

Graph Query language, additional conditions are concatenated to the
filter clause C ′ to satisfy time annotation constraints (Equation (5.28)).
Time annotations are either defined globally as TDg on a complete
matching Pattern PDD (Equation (5.30)) or locally as TDl on each
individual PatternElement PEDD (Equation (5.31)). For each locally
annotated PatternElement PEDD,TDl

(i.e. either a node or a relation-
ship) an additional condition is appended to the filtering clause as
listed in Equations (5.32) to (5.36). These conditions ensure that the an-
notated element satisfies the provided time description in compliance
to the chosen time model as described in Section 5.4.4 on page 96. Sim-
ilarly, a global TimeDescription annotation TDg

j on a Pattern PDD

propagates its annotation downward to each PatternElement PEDD
k

which holds a TimedElement annotation in the domain description
(Equation (5.29)).

JQ ′KC = (M ′,C ′,R ′) (5.27)

JQDD,TDKTGQ = MATCH M ′

WHERE (C ′ ⊕AND (JMDD,TDKTGQ))

RETURN R ′
(5.28)

JMDD,TDKTGQ = J(PDD,TDl

1 , TDg
1)KTGQ ⊕AND . . . (5.29)

⊕AND J(PDD,TDl

i , TDg
i)KTGQ

J(PDD,TDl

j , TDg
j)KTGQ = J(PEDD,TDl

1 , TDg
1)KTGQ ⊕AND . . . | ∀ Pj ∈M (5.30)

⊕AND J(PEDD,TDl

n , TDg
n))KTGQ

J(PEDD,TDl

k , TDg
l)KTGQ = J(PEDD

k , TDl
k)KTGQ⊕AND | ∀ PEk ∈ Pj (5.31)

J(PEDD
k , TDg

k)KTGQ

Any PatternElement PEk is either a node or a relationship and
hence represented by the tuple of its children (y, s, _), where y rep-
resents the local element identifier (i.e. a local variable) of graph el-
ement s with its properties _8. The individual conditions which are

8 The properties are irrelevant for the semantics on how temporal constraints are con-
structed and are hence omitted here.

100 conceptualizations for model-based query composition

added to the filtering clause follow the denotations in Equations (5.32)
to (5.36).

J((y, s, _), I)KTGQ = y.JTPKC = (JIKRT) (5.32)

J((y, s, _), (I,D)KTGQ = y.JTPKC >= (JIKRT -JDKRT) AND y.JTPKC <= (JIKRT+JDKRT) (5.33)

J((y, s, _), (I,D))KTGQ = y.JTPKC >= (JIKRT) AND y.JTPKC <= (JIKRT+JDKRT) (5.34)

J((y, s, _), (I1, I2))KTGQ = y.JTPKC >= (JI1KRT) AND y.JTPKC <= (JI2KRT) (5.35)

J((y, s, _), εKTGQ = ε (5.36)

Their implications are covered by the five cases where the user pro-
vided one of the following concepts9:

1. Instant I (Equation (5.32)),

2. ToleranceInstant (I,D) (Equation (5.33)),

3. DurationInterval (I,D) (Equation (5.34)),

4. InstantInterval (I, I) (Equation (5.35)), or

5. None ε (Equation (5.36)).

The semantics for these conditions implement Allen’s logic and en-
sure the TemporalProperty TP of each PatternElement lies within
the user provided TimeDescription constraint. The source tuples in
Equations (5.32) to (5.35) describe nodes and relationships alike, such
that s ∈ V ∪ E.

5 .4 .5 Plug-ins and implementation modules

The three remaining modules shown in Figure 5.2 on page 82 (dashed
boxes) Query Execution, Query Analysis, and Query Visualization

differ from the previously explained languages in their realization as
they are implemented using language pragmatics10 [Rod15a]. These
plug-ins and extensions are implementation-specific components and
the proposed language architecture enables them to be unobtrusive
and not centralized dependent modules. Unlike the language concep-
tualizations, the implementation of practical features is heavily influ-
enced by the used language workbench, GDB, and GQL.

The Query Execution module provides a bridge between the user
query and the storage back-end to allow query execution and pre-
sentation of query results. Similarly, the Query Analysis also uses

9 These cases cover both the absolute TimeDescriptions as well as the Relative-
TimeDescriptions as the latter are a specialization of the abstract Instant (cf. Fig-
ure 5.7 on page 93)

10 Language pragmatics are practical features implemented to enable a certain func-
tionality. Unlike languages, pragmatics are not modeled explicitly as their pragmatic
element is closely tied to implementation specific factors.

5.5 technology mapping 101

external tools, which are used to analyze the current query. The ob-
tained results then also need to be evaluated and presented to the
users. Lastly, the Query Visualization module provides a different
concrete syntax of a user query.

The type of implementation (i.e. how it is integrated) depends
strongly on the used language workbench. For example, when using
JetBrains Meta Programming System (MPS) as the target platform, the
visualization needs to be integrated using a MPS Java plug-in module
and can make use of the projectional editing feature to provide an
individual projection of a query that shows the matching sub-graph
pattern(s).

5 .5 technology mapping

The language descriptions are implementation-independent and for-
mulated from a conceptual perspective. The decisions in the tech-
nology mapping consequently summarize the conceptual decisions
leading up to this point. These conceptualizations are linked by the
mapping to the underlying implementation (RQ4). Figure 5.12 on the
following page presents this mapping and covers the language layer,
conceptual layer and implementation layer. The mapping starts at the
tool level (top) and increases with respect to specificity via each of
the three layers a) language layer, b) conceptual layer, and c) imple-
mentation layer.

The language layer picks up on the language composition in Sec-
tion 5.4 and proposes my decision to use MPS as the language work-
bench for DSL implementation. This choice allows to realize individ-
ual requirements via provided features of the language workbench. Fac-
tors regarding language composition (NFR3) and system integration
(FR7, NFR4, NFR5) are implemented using MPS’s extensive language
composition and IDE generation features. Further, orthogonal fea-
tures such as lifted feedback and visual representations are well sup-
ported via the projectional editing features in this particular language
workbench (FR5, FR6 and FR8). Lastly, the provided BaseLanguage pro-
vides a DSL and generators for the GPL Java and thus supports the
decision considering developer bias and implementation system ar-
chitecture (FR6, NFR1, NFR5).

The implementation layer presents the specific software, libraries,
and technologies chose for the implementation of the vertical proto-
type. Middleware and domain types use the Robotics Service Bus (RSB)
ecosystem (rsb-java, rsb-proto, and rsb-proto-csra) which is also
used in the CSRA project. This fosters the system integration and
allows to use domain-specific Robotics Systems Types (RST) types for
grounding in the existing environment (FR7, NFR1, NFR5). I use the
combination of Neo4j and Cypher as the technological basis for GDB,
GQL, and GQL engine. Their combination presents an optimal choice

102 conceptualizations for model-based query composition

Graph
Visualiz.

Graph Query Designer

Time

Neo4j joda-time

Graph QueryDomain
Description

Query
Analysis

Query
Execution

rsb-
java

rst-
proto

rst-proto-
csra

prefuse

Jetbrains MPS

RSB Neo4j Query
Profile

La
ng

ua
ge

La

ye
r

Im
pl

em
en

-
ta

tio
n

La
ye

r
C

on
ce

pt
ua

l
La

ye
r

Cypher

java-rest

RSB

neo4j-ogm

Java
Baselang.

Labeled Property MultidigraphDomain Types Allen TimeGPL

Figure 5.12: The technology mapping binding the system architecture
shown in Figure 5.1 on page 80 and composing languages in
Figure 5.2 on page 82 to specific conceptual abstractions and
specific implementation technologies applicable in the EISE do-
main. The specialization starts at the top from the intended tool-
ing and increases in specificness with each layer to the bottom.
Grayed elements are not used/implemented in the vertical pro-
totype of this work.

(cf. Section 2.2 on page 14) for the application in the EISE domain.
The usage of Cypher fulfills NFR1 with its closeness to known well
known query languages such as SQL. Access further is simplified
using the java-cypher-ogm wrapper allowing to execute queries to-
wards Neo4j while keeping node and relationship type safety accord-
ing to the domain description. Other access to the database is realized
via the REST API, e.g. for the extraction of query profiling from the
query engine. Lastly, graph visualizations within the created tooling
makes use of the perfuse graph visualization library. The creation of
relatively timed queries makes use of the joda-time library to easily
compute time element relations.

5 .6 summary

This chapter presents an implementation-independent conceptualiza-
tion of the application of a MDSE approach for the EISE domain. As
the basis for the abstractions proposed in this chapter, the objectives,
eight functional, and five non-functional requirements are extracted.
These requirements are derived from the domain analysis and ob-
jectives of the approach previously presented in this thesis. The fol-
lowing implementation-independent system architecture specifies the
concepts involved in the targeted system and relates the individual
structural elements of the target IDE to the OMG layers. A further
contribution of this chapter is the detailed language composition and
modularization description. The presented languages and their rela-
tions are extensively described and discussed individually. For each
language intersection denotational semantics are presented that show

5.6 summary 103

the intentions and usage of resulting languages and concepts. This
involves languages representing of a labeled property multidigraph, do-
main descriptions, pattern based graph queries, and (relative) time
constrained queries. Lastly, this chapter presents a mapping of the ex-
tracted theoretical ideas and conceptualizations into the technological
implementation real-world. This chapter is the theoretical foundation
for the next chapter in which the applied MDSE is presented which
yields a vertical prototype of the core features. The created prototype
serves as a proof for the applicability of these theoretical abstractions
and simultaneously serves as the tool used for the evaluation of the
approach in the subsequent chapter.

Part IV

M O D E L - B A S E D S U P P O RT F O R B E H AV I O R
D E V E L O P E R S

The fourth part presents a vertical prototype which imple-
ments the requirements and provides support for applica-
tion developers.

6
I M P L E M E N TAT I O N A N D L A N G U A G E
P R A G M AT I C S F O R T H E E I S E D O M A I N

“Above all, don’t fear difficult moments. The best comes from
them.“

—Rita Levi-Montalcini
Nobel Prize-winning neurobiologist

who co-discovered nerve growth factor

This chapter presents details of the implementation (RQ4) of the in-
dividual domain-specific languages (DSLs), the language pragmatics, au-
tomation aspects of the MDSE application in a research setting, and fi-
nally the combined integrated development environment (IDE). The con-
tributions are based on the previously defined a) system architecture,
b) implementation-independent language meta-models, c) denotational
semantics for composed languages, and d) the technology mapping.
The content of this chapter is thus anchored in the phases Phase P3.
Language Implementation and Phase P4. Automation of the develop-
ment cycle proposed in Section 3.3 on page 44. Similarly to previous
chapters, the presented implementation results from multiple devel-
opment iterations within the Cognitive Service Robotics Apartment as
Ambient Host (CSRA) project. However, in contrast to the theoretical
considerations in the previous chapter Chapter 5, I present the imple-
mented languages and highlight implementation specific changes if
applicable. Changes to the meta-models are required if for instance a
certain feature is not supported by the used language workbench. One
example for this is single cardinality only references in MPS. To im-
plement references with multiple cardinality a helper concept needs
to be introduced which holds a list of the references. As a final con-
tribution of this chapter, I present the EISE Query Designer (EISEQD),
the current version of the vertical prototype of the query IDE. I pro-
vide a view from the user perspective on how to create a domain
description, declare temporal entities, and combine these features in
the query design process. A version of this IDE was used for the user
study and evaluation in the following Chapter 7.

6 .1 language implementation

The implementation of the presented languages is carried out using
the language workbench JetBrains Meta Programming System (MPS). The
clear separation of a language into individual language aspects in
MPS provides the development process with dedicated support for

108 implementation and practical concerns

language development. As such, the language creation is clearly sep-
arated into:

• Abstract syntax of a language is defined via the structure aspect,

• Concrete syntax is implemented using the editor aspects,

• To restrain the model and to conform to the desired language
semantics one can use the constraints aspects, typesystem aspects
or dataflow aspects,

• Model-to-model (M2M) and model-to-text (M2T) definitions are
done in the generator aspects and textgen aspect,

• All other elements, such as language pragmatics, can be defined
in actions aspects or other user created aspects.

Further, using a projectional editor such as MPS allows to lift certain
language pragmatics from the language layer into separated modules.
For example, visualizations are not languages themselves but rather

Cypher

C.Neo4j

Time

Relative
Time

Cypher
Vizualization

Domain
Graph

Description

CypherDGD

Cypher
Explain

Cypher
Time

prefuse

extendedcypher
gen.plan

Time
PlainText

CypherDGD
PlainText

Cypher
PlainText

Cypher.Neo4j
PlainText

Neo4j.Execute

C.Neo4j.Script C.N.Script
PlainText

neo4j-java-driver

 Impl. Module

Generator

Solution

Depend

Extend

 Language

Figure 6.1: Language composition implemented. Dependencies into Jet-
brains MPS internal modules are omitted for the sake of read-
ability.

6.1 language implementation 109

provide an additional concrete syntax to an existing language via an
implementation module containing no new abstract concepts. This al-
lows to extend languages easily and transparently to the users (e.g.
by providing dedicated visual projections of the model).

6 .1 .1 Language composition

I compose the set of languages using multiple MPS modules, which
provide abstractions for individual sub-domains and/or solve other
technological hurdles. The implementation was created based on the
language independent considerations in the previous Chapter 5. The
current iteration of the language dependency graph is shown in Fig-
ure 6.1. The composition depicts the languages, solutions, and imple-
mentation modules as well as the corresponding interconnections us-
ing MPS notations of module extension, dependence, and use.

The use of these is supported via Devkits which bundle up MPS
modules and can be imported to jointly provide all dependencies for
a certain functionality. Figure 6.2 additionally shows the provided
Devkit structure. Each Devkit abstracts a sub-domain or larger parts
of each, for example the Time Devkit provides the dependencies to

User
Queries

Interaction
Domain

Time

DGD

ExtendedCypher

CypherDGD

Cypher

C.Neo4j

C.Vis

C.Explain

 Devkit

Solution

Use

Extend

Figure 6.2: Devkit module composition which provides the final abstraction
layer for users. Each Devkit aggregates multiple modules from the
implemented languages shown in Figure 6.1 and from MPS inter-
nal modules. The aggregated modules are omitted for readability.
Only the final ExtendedCypher Devkit is required for a user solu-
tion which provides all EISEQD capabilities.

110 implementation and practical concerns

structure aspects

m
o

d
u

l
e

c
o

n
c

e
p

t
s

i
n

t
e

r
f

a
c

e
s

e
n

u
m

s

p
r

o
p

e
r

t
i
e

s

r
e

f
e

r
e

n
c

e
s

a
g

g
r

e
g

a
t

e
s

i
m

p
l

e
m

e
n

t
s

e
x

t
e

n
d

s

e
d

i
t

o
r

c
o

n
s

t
r

a
i
n

t
s

b
e

h
a

v
i
o

r

t
y

p
e

s
y

s
t

e
m

i
n

t
e

n
t

i
o

n
s

a
c

t
i
o

n
s

Cypher 110 35 3 7 4 79 79 116 70 11 7 41 16 3

C.Neo4j 1 0 0 0 0 2 1 1 1 0 0 0 0 0

C.Neo4j.Script 15 1 0 0 3 6 15 14 14 4 1 7 0 1

C.Neo4j.Exec 1 0 0 0 0 1 1 1 0 0 0 0 0 0

C.Explain 0 0 0 0 0 0 0 0 2 0 8 0 0 0

C.Vis 0 0 0 0 0 0 0 0 3 0 8 0 0 0

DGD 25 4 0 0 10 22 22 28 44 9 3 19 0 0

CypherDGD 4 0 0 0 0 0 11 4 2 1 2 1 0 0

Time 23 2 15 26 0 26 11 24 18 1 14 1 3 0

RelativeTime 6 1 2 3 0 8 4 6 4 1 1 0 0 0

CypherTime 4 1 0 2 0 1 1 4 3 0 0 1 4 0

Dot 25 4 3 7 4 19 11 22 22 1 3 0 0 0

DepDiagram 3 1 0 13 0 3 2 3 2 0 2 0 0 1

Total 217 49 23 58 21 167 158 223 185 28 49 70 23 5

Table 6.1: Statistics on the implemented languages covering details for all
MPS aspects. Language coupling is expressed by showing refer-
ences, aggregations, implementations, and extensions used.

the Time and RelativeTime languages as well as the TimePlainText

generator. The ExtendedCypher Devkit jointly provides all required
dependencies for the full capabilities of the Embodied Interaction in
Smart Environments (EISE) Domain Query Designer.

The full meta-models of the implemented languages are omitted at
this point as the languages contain many implementation and tool
specific decisions. This is the result of the language mapping and
other resulting implementation-specific constraints. Nevertheless, the
meta-models of the shown modules conform to the theoretical descrip-
tions in Chapter 5.

Table 6.1 provides information on the complexity of the imple-
mented languages. The table shows statistics of all languages im-
plemented in this work by listing the total amount of elements for
each language aspect (structure, editor, constraints, behavior, typesys-
tem, intentions, and actions). In addition, the structure aspect is fur-
ther unraveled and separated into its composing elements and rela-
tion types: concepts, interfaces, enumerations properties, references,
aggregations, implementations, and extensions. The numbers show,
that central languages of the composition (compare Figure 6.13) con-
tribute the most concepts in their implementation: The Cypher lan-

6.1 language implementation 111

Cypher

Time

DGD

Dot

Cypher.Neo4j.Script

DependencyDiagram

RelativeTime

CypherDGD
CypherTime
Cypher.Neo4j

Cypher.Neo4j.Execute

BaseLanguage

Cypher

Time

DGD

Dot

Cypher.Neo4j.Script

DependencyDiagram

RelativeTime
CypherDGD
CypherTime
Cypher.Neo4j
Cypher.Neo4j.Execute

Figure 6.3: Alluvial diagram of the implemented language dependencies.
Connections from concepts of languages on the left to concepts of
languages on the right indicate a dependence between languages.
The thickness of the connecting lines represent the amount of
connections causing these dependencies (i.e. the sum of proper-
ties, references, aggregations, implementations, and extensions
as shown in Table 6.1). The opacity of connections to the Base-
Language is reduced to increase overall visibility.

guage provides 110 concepts, the DomainGraphDescription (DGD) lan-
guage provides 25 concepts, and lastly the Time language provides
23 concepts. At the same time, these languages also make increasing
use of coupling relevant connections, such as extension or aggrega-
tion. The other languages provide comparably low numbers of new
concepts but rather provide individual features beyond the extended
languages on which they depend. To further analyze the language
coupling, the alluvial diagram shown in Figure 6.3 gives detailed in-
formation on all existing connections between languages concepts. In
this depiction, all languages on the left side have connections from
their concepts (colored lines in the center) to any concept of other
languages on the right side. The connections are composed of all de-
pendency introducing structure aspects: The sum of properties, refer-
ences, aggregations, implementations, and extensions as listed in Ta-
ble 6.1. The height of the black bars of each language represents the
sum of concepts, interfaces and enumerations, while the thickness of
the connecting lines corresponds to the amount of connections. For
example, concepts of the Cypher language connect to a total of 212

concepts within itself and further 73 connections exist to the BaseLan-

guage. This diagram shows three key properties of the implemented
languages.

First, a sizable portion of the connections of most languages are to
the BaseLanguage. This is to be expected as language development

112 implementation and practical concerns

using MPS generally results in a heavy usage of this fundamental
language. If one choses to not use the BaseLanguage, many low level
mechanisms need to be implemented by hand. Not reusing the avail-
able and highly tailored BaseLanguage would result in unmanageable
implementation effort.

Second, the implemented languages exhibit low coupling. The con-
cepts of languages are mostly connected to other concepts within the
same language. Examples for this type of connection are shown in the
meta-models of the languages in Chapter 5: Each arrow of a meta-model
counts as a connection. The only languages directly involving other
languages besides the BaseLanguage are the RelativeTime language
(connecting to the Time language) and the CypherDGD language (con-
necting to the languages Cypher and DGD). This low coupling factor of
the implementation results from the detailed language composition
planning in Section 5.4.

Third, the orthogonal language composition, which makes use of
language annotations, can be identified as no dependency between
the involved languages are present. As such, the CypherTime lan-
guage is only connected to the BaseLanguage which provides the an-
notation feature as a part of the language workbench but no connection
exists to the Cypher language (cf. Section 3.1.2.4). Consequently, no
direct dependencies were introduced between the languages Cypher,
Time, and CypherTime.

In the following I present each of the language modules in depth
and explain the necessity and overall integration.

6 .1 .2 Graphs and graph query languages

The implementation of the graph query language (GQL) is based on the
Cypher language. As such, the language implementation diverts from
the usual approach in which the implementation closely follows the
implementation-independent meta-models. The Cypher language was
hence developed alongside the Extended Backus–Naur Form (EBNF)
grammar definition of openCypher1 (see Listing 5.1 on page 86 for
an example excerpt from this grammar). As the formalization pro-
vided by the openCypher initiative does not contain all features used
in the existing Cypher implementation contained in the Neo4j Graph
Database Management System (GDB), I implemented additional lan-
guages covering these features. As a result, the Cypher.neo4j lan-
guage and the Cypher.neo4j.script language further depend on the
base Cypher language (cf. Figure 6.13 on page 123). Following this
implementation approach, no additional graph language implemen-
tation is used in the vertical prototype.

1 The EBNF grammar version M15, as published on http://www.opencypher.org/
resources [Neo15]

http://www.opencypher.org/resources
http://www.opencypher.org/resources

6.1 language implementation 113

Structurally, the implemented concepts in the Cypher language rely
heavily on the basic concepts provided by the MPS Baselanguage.
Any extension provided by other languages make use of these shared
common Baselanguage concepts and interfaces (e.g. BaseConcept, Ex-
pression, or INamedConcept). The resulting structures representable
by the Cypher language conform to the implementation-independent
descriptions in Section 5.4.1 on page 84 and Section 5.4.2 on page 84

and further also provide all query capabilities the Cypher query lan-
guage allows (e.g. graph traversal queries and graph algorithms).

In sum, the Cypher related languages consist of 165 concepts with
an expected degree of coupling (Table 6.1). The central top-level con-
cepts (root concepts) provided by the Cypher related languages are

• Cypher Query,

• Cypher Query Collection,

• Neo4j Query Execution, and

• Neo4j Query Script.

Figure 6.4: Concrete syntax example of the Cypher query language

The concrete syntax of the Cypher language is an unchanged im-
plementation based on the grammar definitions. Figure 6.4 shows a
short concrete syntax example as presented by this language. Corre-
sponding editor aspects are thus implemented to provide a seamless
language interface.

The Cypher language already provides users with query design
supporting features beyond the default state-of-the-art tools such as
the Neo4j web interface. Besides syntax highlighting, completion for
node and relationship concepts, local variable names, properties (via
common dot notation), labels, and basic types are provided. For exam-
ple, the string type in the first matching pattern shown in Figure 6.4
is inferred from the user input in the property assignment. The type
system also checks function calls and the individual clauses, such
that for example the WHERE clause always evaluates to a boolean value.
If statements are created, which have not attached type information
(e.g. by accessing node properties), a warning message is displayed

114 implementation and practical concerns

informing the user that the type system cannot ensure type safety
for this concept. Additionally, various intentions are present which
allow to do common mundane tasks, such as switch direction of a
relationship or surround statements with a function call.

The Cypher language also includes a separated M2T generation
module using the existing text generator plug-in2. As a result, plain
text Cypher queries can be generated from the representations in
MPS. The separated Neo4j.Execute language makes use of this gen-
eration target and uses the generated text artifacts to execute them on
an existing Neo4j database. Following languages make use of M2M
transformations to convert their language specific additions into the
Cypher language meta-model.

6 .1 .3 Domain description language

In contrast to the Cypher language, the DomainGraphDescription (DGD)
language is implemented closely to the theoretical meta-model shown
in Figure 5.5 on page 88. The language fully conforms to the theoreti-
cal considerations in Section 5.4.3 on page 88. The Node and Relation-

ship concepts are grounded in the Baselanguage as Expressions and
can thus further be embedded in the existing Expression language.
Additionally, Relationships further specialize BinaryOperations for
seamless integration as operators within Expressions.

The DGD language consist of a total of 29 concepts with a total of
73 relations to other concepts. Two central top-level concepts allow to
describe a) DomainDeclarations to model concepts and relations of a
domain, and b) DomainInstantiations to create certain instances of
concepts and relations in a DomainDeclaration.

Figure 6.5 on the facing page shows the concrete syntax provided
to create Domain Declarations consisting of Entities and Relation-

ships. Each concept is visually contained via vertical surrounding
brackets. This declaration is executed in user solutions and allows
domain experts to create their model of the domain instead of a meta-
model. As shown in the depiction, suitable scoping rules in the DGD lan-
guage ensure that code completion suggestions provide contextually
correct concepts. The types which are used to denote properties are
reused from the Baselanguage and cover common basic data types.
Instances of the declaration concepts defined in the domain declara-
tion can be used to compose actual concrete instances of the domain,
as shown in the concrete syntax example in Figure 6.6 on the next
page. The instances allow to define their stereotype (e.g. «Person»)
and subsequently provide access to the schema defined in the cor-
responding Domain Description. Again, scoping is provided, but in
this case a further reduction of offered concepts is computed. For the
depicted example, the only stereotype allowed for the right instance is

2 https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/

https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/

6.1 language implementation 115

Figure 6.5: The concrete syntax provided by the domain description language
allows to describe Entities (surrounded by green brackets) and
Relationships (surrounded by magenta brackets).

Figure 6.6: Additional concrete syntax used by the Domain Description lan-
guage to express instances of the Entities and Relationships
shown in Figure 6.5.

a Room as the description only defines this Relationship. Similar com-
pletions are provided when accessing Properties, however Generic

Properties not defined in the description are also allowed (resulting
in a warning due to missing type support).

6 .1 .4 Time languages

The Time language implementation is inspired by the Time Ontology
in OWL as presented by the World Wide Web Consortium (W3C). This
onology gathers all central temporal classes, their topology, and prin-
ciples [W3C17; HP04]. The final implementation is comprised of 40

concepts in total of which a 15 concepts are specialized enumerations.
The time domain has multiple predefined ranges of constants (e.g.
timezones, weekdays, or number of seconds with a minute) and thus
this language requires this increased amount of enumeration con-
cepts. The implementation conforms to the meta-model as presented
in Figure 5.6 on page 92 and is fully independent of all other lan-
guages presented in this thesis. However, the Time language also de-
pends upon the internal Baselanguage for eased language composi-
tion. As a general language to express time related elements, this lan-

116 implementation and practical concerns

guage provides top-level concepts for Instants, Intervals and Dura-

tions. Figure 6.7a depicts examples for the concrete syntax included in
the language. Additionally, included language pragmatics are shown,
such as intentions for time selection or time zone completions based
on the time zone enumerations.

The expression of relative time concepts is provided by the Rela-

tive Time language. In contrast to the Time language, the Relative

Time language contains only eight concepts in total as it mainly re-
lies on the Time language and extends it with feature to represent
relational temporal expansions. The implementation of this language
is also conforming to the theoretical considerations in Figure 5.7 on
page 93. Though the Relative Time language is an intermediate lan-
guage, it also provides top-level concepts and suitable language prag-
matics to describe relational time descriptions as shown in Figure 6.7b.
Figure 6.7 shows multiple examples of the editor representations of
time related concepts.

6 .1 .5 Model transformations and generation of queries

The generation of artifacts of the different models and representations
fall back onto the underlying GQL which is Cypher. The implemented
generation plan thus initially transforms all concepts expressed in
higher order languages (e.g. domain description instances or time
constraints) to the GQL representation via the provided M2M trans-
formations. Therefore, the denotational semantics as explained in Sec-
tion 5.4 on page 81 are implemented by the M2M transformation
generators. A dedicated GQL M2T generator then transforms this
common model to the textual representation pendant using the cor-
responding reduction rules for each concept.

(a) (b)

Figure 6.7: Concrete syntax examples provided by the Time (left) and Rela-
tive Time language (right) languages used to express time re-
lated concepts.

6.1 language implementation 117

Figure 6.8: Excerpt of the Cypher generator used to generate plain text
Cypher queries. The complete generator is separated into its own
module and the shown part contains the reduction rules for Node
and Relationship concepts.

Technologically, the generation implemented is designed for exten-
sive language composition and diverse options for (future) integra-
tion, by practicing separation of concerns. As such, each language, gen-
erator, implementation module, and build module is implemented in
a dedicated project. The generation pipeline reuses the Plaintex plug-
in3. This allows to create dedicated M2T generators using the full
MPS generator feature set, instead of the integrated easy to use but
feature wise simplified internal textgen language aspect. With the gen-
erators extracted into their own languages, the DSLs are independent
from the generation step. Multiple generators for different targets can
be defined and co-exist. The users can chose the generators (or gener-
ator plans) involved in the generation step for their application. One
example for this feature is the Cypher to text generator which cre-
ates plain text from the query, while another generator can generate
source code for the Neo4j Object Graph Mapping library.

Figure 6.8 shows an example screenshot of the Cypher text gen-
erator implemented in the vertical prototype. The generator resides
within its own language and solely provides a transformations for
the parent Cypher language: Language concepts are generated into
their corresponding textual representations. The example depicts four
reduction rules for the concepts GenericPropertyOperation, Node,
Relationship, and CypherExpression. With the help of MPS’s tem-
plate language, each concept is reduced to its concrete syntax elements,

3 This plug-in is part of the officially by Jetbrains supported community MPS exten-
sions at https://github.com/JetBrains/MPS-extensions

https://github.com/JetBrains/MPS-extensions

118 implementation and practical concerns

Figure 6.9: Temporal query constraint generator example showing an ex-
cerpt of the $INSERT$ macro generating temporal constraints.

for example by looping over child concepts ($LOOP$), calling subse-
quent reduction rules ($COPY_SRC$), or by condition reduction (IF).
The latter example is selected and in the inspector at the bottom of the
screen the condition is resolved via the actual node direction defined
in the user model.

Figure 6.9 shows another generator example to illustrate the tem-
poral constraint generation. This excerpt realizes a small part of the
language behavior described in the denotational semantics presented in
Equations (5.27) to (5.36) on pages 99–100. It traverses the available
Match statements and appends a new GreaterThanOrEqualsExpres-

sion, which conforms to the TimeAnnotation attached to the current
Relationship. The presented code uses the internal SModel language,
which allows to query and modify MPS models4, to perform the M2M
transformations.

6 .1 .6 Language pragmatics and implementation modules

The implementation of language pragmatics and model checking fea-
tures follows the description of the implementation-independent lan-
guage composition (cf. Figure 5.2 on page 82). As a result, these fea-
tures are split off into independent modules, languages, or behavioral

4 See https://www.jetbrains.com/help/mps/smodel-language.html for detailed in-
formation

https://www.jetbrains.com/help/mps/smodel-language.html

6.1 language implementation 119

aspects of existing languages. Pragmatics implemented5 in the vertical
prototype of this thesis include:

1) Query execution: Capability to directly execute a query from
within the IDE.Queries are transformed, send to a Neo4j
GDB via the REST Application programming interface (API), re-
sults are retrieved and lastly displayed to the users.

2) Query pattern visualization: The (sub-)graph pattern of a
query are additionally visualized next to the query in a sep-
arated projection of the abstract syntax tree (AST).

3) Temporal query constraints: Attaching temporal constraints
onto queries is enabled using MPS’s intentions aspect.

4) Extraction of nodes, patterns, or other local variables: Com-
mon helpers allowing to transform a query by extracting
parts of it into own modules.

5) Automatic local variable name specifications: Convenience
functionality, which generated local variable names based on
the used concepts.

6) Query analysis and visualization: Capability to analyze a
query from within the IDE.Similar to the execution feature,
but uses the Neo4j internal EXPLAIN functionality to obtain
a query analysis.

7) Language composition visualization Provides a visualiza-
tion of the underlying language composition by traversing
the dependency tree and generation a graph using the DOT

format. This feature is mainly for development purposes to
ensure that the theoretical language composition is realized
and to identify necessary changes.

8) IDE generation The generation of an independent domain-
specific IDE is implemented using the MPS internal Build

language.

In the following paragraphs, I highlight pragmatics implementation of
the exemplary items 2) the query pattern visualization, 6) the explain
feature selected, and 7) language composition visualization.

120 implementation and practical concerns

Figure 6.10: Custom editor hits are used to provide an additional concrete
syntax projection of a query. The depicted example shows a vi-
sualization of a query as a graph to foster the understanding of
pattern structure.

6 .1 .6 .1 Visualization

Figure 6.10 show an example query with an activated visualization
for existing patterns in a MATCH clause. This visualization is realized
using MPS’s editor hints feature allowing to provide projections (i.e.
coexisting different concrete syntaxes) for any defined concepts. Fig-
ure 6.11 on the next page shows the corresponding editor hints im-
plementation of this projection. The Cypher.visualization language
provides its projection via a separated editor definition for the ex-
isting concept Pattern of the Cypher language. The existing concrete
syntax is reused and the graphical representation embeds below as a
$swing component$, which provides a Java swing graphical user in-
terface object. This swing object is further defined in the inspector
view at the bottom of Figure 6.11, where implemented the Java code
creates and returns the PatternPrefuseVisualisation object. All cus-
tom Java classes necessary are bundled with in the language behavior
aspects, while the library runtime (i.e. prefuse) is contained in an indi-
vidual runtime solution.

5 Most implemented pragmatics are prototyped and further implementation refine-
ment is required for a fully featured release

6.1 language implementation 121

6 .1 .6 .2 Query analysis

The query analysis feature provides an integrated view for develop-
ers which provides means to explain a given Cypher query. Similarly
to the query pattern visualization feature, the explain feature is imple-
mented as an implementation module. Additional information is pro-
vided as an additional projection which can be enabled by the users
at any time. When activated as shown in Figure 6.12 on the following
page, the projection adds an explain section below the query with a
button to trigger query explanation. After triggering, the projection
provides the query developer with information on a) the actual query,
which is generated from the MPS representation, b) metadata of the
query plan, which will be used by the Neo4j Cypher engine, and c) a
visualization of the query plan containing further plan execution in-
formation for each step. From the information presented, developers
acquire an estimation of how many rows a given query will return
for each step of the query execution plan. Most importantly, costly
query steps such as Cartesian products (e.g. by expressing two or
more unrelated matching patterns) can be identified by the develop-
ers and ideally be removed to optimize the query execution duration.
Technologically, the implementation makes use of the Cypher inter-
nal EXPLAIN feature. The query engine can provide this information
of any valid query by prepending the EXPLAIN keyword. Pressing the
Explain this Query! button thus triggers the following steps in the plug-
in:

1. The MPS query text generator is activated to obtain the plain
text representation of the query,

Figure 6.11: Editor aspects implementation used to provide the additional
visualization depicted in Figure 6.10 on the preceding page. The
Java based visualization attaches a swing interface component
to the existing concrete syntax.

122 implementation and practical concerns

Figure 6.12: Example of the query explanation feature used to explain a
Cypher query. The result is embedded below the query and
shows information on the actually generated query, query plan
metadata, and the full query plan as a graph.

2. The query is sent to the Neo4j database query engine via the
provided REST web service interface

3. The analysis is done by the engine and sent back to MPS

4. The returned JSON document is parsed, transformed, and dis-
played to the user

As solely valid queries can be analyzed via the EXPLAIN mechanism,
this feature is executable only on error free queries and also needs to
be triggered manually by the users.

6.2 automation aspects in applied mdse research 123

6 .1 .6 .3 Language composition visualization

To mitigate DSL composition challenges (cf. Section 3.1.2.1), I de-
veloped the de.citec.dependencydiagram MPS plug-in, dedicated
to the creation of dependency graphs. The plug-in shows the exact
composition of all involved modules and models. Figure 6.13 shows
an exemplary dependency graph, which is generated on the basis
of the de.citec.dependencydiagram plug-in itself. This overview al-
lows to identify potentially erroneous and unintended dependencies
amongst language compositions. Internally, the module structure is
analyzed and a representation of the structure is realized using the
DOT graph description language. Common tools which support the
DOT notation generate visualizations from this representation and
even large compositions can simply be generated and layout auto-
matically.

To ease language composition I make heavy use of Devkit modules,
which allow to group multiple MPS modules together and expose their
composition as a single unit. Thus, users solely import the according
Devkit (e.g. de.citec.dependencydiagram.devkit for the dependency
graph plug-in) within their user solution and can begin creating their
own models.

6 .2 automation aspects in applied mdse research

Several supporting aspects have been implemented as part of Phase
P4. Automation of the development process presented in Section 3.3
on page 44. These provide accessibility to artifacts and languages for

de.citec.dependencydiagramwrapper

de.citec.dependencydiagram

de.citec.dependencydiagram.devkit

de.citec.dot

de.citec.dot.plaintextgen#01

de.citec.dot.devkit

com.dslfoundry.plaintextgen de.citec.dot.plaintextgen

de.citec.depenedncydiagram.sandbox

Solution

Language

Generator

Devkit

Plugin

Combined Modules

Dependency

Extension

Usage

Legend

Figure 6.13: Dependency diagram of the dependencies required for a solu-
tion (red ellipse) realizing the dependency diagram MPS plug-
in. This includes the Dependant Devkits (green diamonds), plug-
in solutions (yellow component rectangle), languages (blue rect-
angles), and generators (green upside down house shape). Mod-
ules which reside in the same language are grouped by sur-
rounding boxes.

124 implementation and practical concerns

users and integrate the overall tool into the research application en-
vironment. This section describes two exemplary automation aspects,
which were implemented: i) building and integrating DSLs and ii) de-
ploying languages to the final users.

6 .2 .1 Continuous integration of DSLs

In small projects consisting of only few languages with few depen-
dencies, artifact generation via a manual build process from within
the MPS development environment is feasible. However, given the
complexity inherent in the language design and composition of my
approach, systematic building of the involved modules and an appro-
priate deployment strategy are critical elements which require inten-
sive consideration. Additionally, the models designed by the domain
experts need to remain valid over the time of use. In the case of ver-
sion updates – either of my own languages or of the used language
workbench – I need to provide reproducible artifacts and be able to
execute strategic model migrations.

I consider it thus necessary to use common automation tools, such
as the Jenkins [Jen] Continuous Integration (CI) server, to generate the
intended build artifacts. MPS allows to build artifacts in a headless
mode via the build process automation tool Ant [Apa00]. To guide
this process, developers can use the included BuildLanguage module
to compose their modules and artifact layouts. In either case, module
dependencies must be present within the used MPS instance (e.g. as
a loaded plug-in) or provided as build arguments pointing to the
folders with the necessary artifacts. Thus, when deploying composed
MPS languages via a CI server, the knowledge about dependencies
is duplicated in the languages themselves and in the topology of the
build jobs. Maintenance of these duplications is an error prone task
which can lead to missing or faulty dependencies and thus incom-
patible or nonfunctional artifacts (and in edge cases event influence
user models). Further, in scenarios where reproducibility of the over-
all system is required, the reproduction process suffers as in-depth
knowledge about the MPS module topology is required for the setup
of a build system.

To mitigate these risks I use the CITk as proposed by Lier et al.
to create a reproducible build setup for my modules [Lie+14b]. To in-
clude MPS modules within the CITk system I created a template for
MPS based projects (c.f. Listing 6.1 on the next page) that summa-
rizes common project properties. I include each individual module in
the CITk as a project based of the MPS template, for example List-
ing 6.2 on page 126 shows the resulting project file for the Cypher

language. In the generation step the CITk build generator extracts de-
pendency knowledge per project from the provided Ant files and cre-
ates or updates the corresponding Jenkins jobs. As a result, I eliminate

6.2 automation aspects in applied mdse research 125

1 variables:
2 natures:
3 - mps-plugin-build-file
4

5 platform-requires:
6 ubuntu:
7 packages:
8 - ant
9 - '@{next-value|[]}'

10

11 default-build-file:
12 - build.xml
13 build-file-name: |
14 ${next-value|${analysis.plugin-build-files|${default-build-file}}}
15

16 home-variables: ${next-value|${analysis.home-variables}}
17

18 extra-requires:
19 - nature: program
20 target: mps.sh
21 version: ${mps-version}
22 - '@{next-value|[]}'
23

24 aspects:
25 - name: mps.shell
26 aspect: shell
27 variables:
28 home-variable-options: '-D${home-variables}="${dependency-dir}" '
29 ant-calls: |
30 ant -Dmps_home="${dependency-dir}/mps-${mps-version}"
31 @{home-variable-options}
32 -file "${build-file-name}"
33 aspect.shell.command: |
34 # Invoke ant for each plug-in build file
35 @{ant-calls}

Listing 6.1: The template for MPS based projects within the Cognitive Inter-
action Toolkit (CITk).

dependency duplications as the dependency knowledge only resides
within the modules themselves and is solely extracted as dependencies
into Jenkins build jobs.

For example, Figure 6.14 on the next page shows the resulting
DSL and module build dependency graph as extracted from a Jenk-
ins server. The nodes of the graph represent individual Jenkins jobs
which are connected to all other dependent jobs. Once the dependen-
cies of a module are build the downstream jobs are triggered, finally
building the entire module stack. The shown graph was generated by
the CITk build generator tool processing the build project file which
provided an early version of the vertical prototype.

126 implementation and practical concerns

1 templates:
2 - code-corlab
3 - mps
4 - base
5

6 variables:
7 description: MPS Cypher Language
8 keywords:
9 - dsl

10 - cypher
11 - neo4j
12 access: private
13

14 repository: ${redmine.instance}/git/cypher-dsl.cypher-language.git
15 scm.credentials: code.corlab
16

17 build-file-name:
18 - "build-plugin-cypher-mps.xml"
19

20 versions:
21 - name: 2018.2.1
22 variables:
23 mps-version: 2018.2.1
24 branch: "2018.2"

Listing 6.2: Exemplary project file for the Cypher DSL.

6 .2 .2 Language deployment: A DSL plug-in server

The next step for manageable language deployment is the distribu-
tion of module artifacts. For MPS based DSLs development these are
commonly IDE plug-ins. At first, the end-users obtain a generated
IDE, which contains the current version of all necessary plug-in and
settings to begin the modeling of the domain. These settings also con-
tain an update URL pointing to a server that provides updates of the
included modules. Further artifact updates are then deployed to the

mps-domaingraphdescription:2018.2.1

mps:2018.2.1

mps-cypherdgd:2018.2.1

mps-neo4j:2018.2.1

mps-cypher:2018.2.1

mps-plaintextgen:2018.2.1

mps-neo4jscript:2018.2.1

mps-cypher-visualisation:2018.2.1

mps-prefuse-runtime:2018.2.1

Figure 6.14: MPS module build dependency graph generated from the Jenk-
ins job layout. Contains the composed languages used to build
a vertical prototype.

6.2 automation aspects in applied mdse research 127

1 <plugin-repository>
2 <ff>"MPS"</ff>
3 <category name="MPS">
4 <plugin date="1543249645.5626543"

url="127.0.0.1/plugins/de.citec.time-1.0.0/
de.citec.time-1.0.0--MPS-181.4445.78-2018.1.zip">

↪→

↪→

5 <id>de.citec.time</id>
6 <name>de.citec.time</name>
7 <version>1.0.0</version>
8 <idea-version since-build="181.0"

until-build="181.4445"/>↪→

9 <depends>jetbrains.mps.core</depends>
10 <depends>com.dslfoundry.plaintextgen</depends>
11 <description>
12 <!--- detailed plugin description ... -->
13 </description>
14 <vendor url="https://cit-ec.de/cse">
15 <!--- detailed vendor description ... -->
16 </vendor>
17 </plugin>
18 <!--- further plugins ... -->
19 </category>
20 </plugin-repository>

Listing 6.3: Example entry within the updatePlugins.xml database of the MPS
plug-in server.

users via the MPS internal plug-in update mechanism. The end-users
are notified if updates to the used languages exist and a seamless
update process is offered. This ensures consistency and stability of
end-user models as each update will apply all provided version up-
date migrations.

To allow this seamless integration I developed a plug-in server
to maintain and deploy an Extensible Markup Language (XML) based
plug-in database, as required for the MPS plug-in system. The data-
base consists of the commonly named updatePlugins.xml file (cf. List-
ing 6.3 for an exemplary file content), containing minimal server in-
formation (lines 1-3 and 19-20) and entries for each plug-in (lines
4-17). As I distribute each individual plug-in as a compressed ZIP file
via the CI server (cf. 6.2.1), the plug-in server simply directly extracts
the required information from the packaged plugin.xml file. The plug-
in server architecture primarily follows the Observer pattern [Gam07,
p. 293]. It observes a staging folder to which newly build plug-in are
copied after successful building by the CI server. Each new build is
analyzed by the server and compared to the current state of the plug-
in repository. Additions and changes are added to the repository and
the new plug-in is copied to a target folder accessible by the connect-
ing clients. The server creates a new unique sub-folder in the target
folder for each plug-in to support the parallel existence of plug-ins of
various versions within the repository

128 implementation and practical concerns

6 .3 user perspective : the eise query designer

The languages presented in the previous sections are combed into a
standalone workbench for the EISE domain, the EISEQD. This inte-
grated solution is build and distributed using the CI infrastructure as
described in Section 6.2.1. The individual languages are internally
deployed as plug-ins into the IDE and updates can be generated
and pushed to the clients using the plug-in server and the MPS
internal plug-in architecture as described in Section 6.2.2. All lan-
guages listed in Table 6.1 on page 110 are bundled into the EISEQD
so that the features described in Section 6.1 are jointly available. Be-
havior developers download the complete package artifact which con-
tains the MPS runtime as well as all languages directly from the
Jenkins server. They can create new DomainDescriptions or use al-
ready available descriptions from a project repository. Figure 6.15

Figure 6.15: Screenshot of the EISEQD interface editing a DomainDescrip-
tion concept which outlines description of the interaction do-
main. Individual Relationships or Entities can be annotated
with the time property indicating that temporal information is
recorded in the nodes properties.

shows a screenshot of the tool. The project view shows two dedi-
cated solutions. The first solution contains a DomainDescription mod-
eling the EISE domain and the second solution holds queries tar-
geting this domain. The domain declaration for is being edited in
the main view. While the left column of a DomainDeclaration con-
cept allows to define the DomainNodes of the domain (DomainNode
are surrounded with green colored brackets), the right part allows
to define DomainRelationships from one DomainNode to another (each
DomainRelationships is surrounded with magenta colored brackets)6.

6 The concrete syntax removes the technological details and simply displays them as
Entities and Relationships to the users to reduce the complexity.

6.3 user perspective : the eise query designer 129

1 MATCH (aConv:Conversation)-[aContains:contains]->
2 (aTopic:ConversationTopic {type: "Greeting"}),
3 (aConv2:Conversation)-[aContains2:contains]->
4 (aTopic2:ConversationTopic {type: "Goodbye"})

5 WHERE (aContains.ts >= (timestamp()/1000)-10.0 AND aContains.ts <=

(timestamp()/1000)-5.0) AND↪→

6 (aContains2.ts >= (timestamp()/1000)-10.0 AND aContains2.ts <=

(timestamp()/1000)-5.0)↪→

7 RETURN COUNT(aConv) + COUNT(aConv2)

Listing 6.4: Generated Cypher query code from the finished query shown
in Figure 6.16. The temporal constraint are expanded into the
corresponding WHERE clause filters filtering the query results ac-
cording to the defined temporal expansion.

Each entry in the DomainDeclaration can contain DomainProperties

whose Types are taken from the basic type language of the inter-
nal Baselanguage. The temporal constraining feature allows to attach
a TimedElement annotation to any Entity or Relationship to the
DomainDeclaration concepts, indicating that these concepts follow
the temporal model as presented in Section 5.4.4 on page 96. The anno-
tations are added using the Intentions mechanism of MPS. Figure 6.16

on the following page shows a screenshot of the content of one of
the query sheets. The shown query makes use of the DomainNodes

and DomainRelationships concepts defined in Figure 6.15 and creates
suitable DomainNodeInstances and DomainRelationshipInstances re-
spectively. For missing entries the suitable completion is provided, in
this example only Conversation are connected to ConverstionTopic

concepts via a contains relation, thus only this concept is shown
in the completion. These DomainElementInstances act as local vari-
ables and can be reused in the query as expected. The matching
Conversations are for example counted in the RETURN clause via the
internal COUNT function. Further, correct intentions are provided to
the users to add these kind of functions around existing concepts.
In the shown example the visualization additionally shows the sub-
graph which is being matched. As the query patterns do not re-
late to each other, the graph is separated and two subgraphs are
shown. At the top of the query a temporal constraint is added to the
query. This constraint is applied on the entire MATCH clause and all
DomainElementInstances which are annotated with a TimedElement

will be restricted as described in the semantics in Section 5.4.4 on
page 91. In the depicted example, an Interval is considered which
starts ten seconds before the execution and ends five seconds later. A
resulting Cypher query string obtained from the generator is shown
in Listing 6.47. All concepts are generated to the corresponding Cypher
concrete syntax, including local variable names, labels, types, and prop-
erties within the MATCH and RETURN clauses in lines 1 and 7. Even
though no WHERE clause is defined in the original query, a filter clause

7 Generation was obtained once the errors were removed from the query.

130 implementation and practical concerns

Figure 6.16: Screenshot of the query editor in the EISEQD containing an ex-
emplary query based on the interaction domain description in
Figure 6.15. Multiple query design supporting mechanisms are
shown, for example intentions for time constraint annotation,
concept completion dialogs, or graphical pattern visualization.

was added by the generation step in line 5 and 6. This filter satisfies
the temporal restrictions defined in the EISEQD and ensures that the
ps property of the annotated concepts in Figure 6.15 on page 128 lies
in the given interval.

6 .4 summary

This section presents detailed excepts about the implementation exe-
cuted as a part the development process Phase P3. Language Imple-
mentation of this thesis. These implementations are integrated into
a vertical prototype which covers a functional vertical slice of the envi-
sioned tool. Thus, an overview is presented on the implemented DSLs,
the language composition, application modules, language pragmatics,
and automation aspects. While the implemented languages conform
to the implementation-independent meta-models presented in Chap-
ter 5 on page 75, the implementation contains implementation spe-
cific adjustments. This is done as the development of languages in the
followed iterative process described in Section 3.3 on page 44 did not
fully align with the theoretical considerations presented. These adjust-

6.4 summary 131

ments were done to overcome technological challenges and tool lim-
itations or constraints. This chapter highlights the central differences
of the languages to their theoretical considerations in Chapter 5. Fur-
ther, an overview of the language’s complexity (i.e. number of con-
cepts, relationships, aggregations, or extensions) and implemented
language pragmatics are provided. For each central language, the im-
plementation specific changes to the meta-models are highlighted and
the created concrete syntax is exemplary presented. As a part of the
Phase P4. Automation, the implementation of approaches for CI and
DSL deployment are additionally presented. These allow the execu-
tion of a feasible deployment and maintenance strategy of languages
and modules with low effort for the final users. Updates to meta-models
and languages can be delivered automatically to the users resulting in
a smooth user experience. These automation elements are used to in-
tegrate the Model-driven Software Engineering (MDSE) approach of this
thesis into the example environment of the CSRA project. The final
contribution of this chapter highlight the user perspective by present-
ing the generated IDE for the EISE domain, the EISEQD. This view
exhibits usage examples and shows the applicability of the MDSE ap-
proach of this thesis by example. An earlier iterative version of the
IDE presented here was used to execute a user evaluation. The fol-
lowing chapter presents the details of this evaluation and the results
obtained from the analysis.

Part V

E VA L U AT I O N O F M D S E A P P R O A C H E S

The fifth part presents the quantitative and qualitative
evaluation carried out using the vertical prototype of the
EISE Query Designer (EISEQD).

7
E VA L U AT I O N A N D A P P L I C AT I O N

“As always in life, people want a simple answer ... and it’s always
wrong.“

—Susan Greenfield
Neurochemist currently researching

Parkinson’s and Alzheimer’s diseases.

Empirical evaluation of software that originates from traditional
software development processes is common practice [BBL76; Bro96;
LHS08; FB14]. However, the evaluation and subsequent validation of
a Model-driven Software Engineering (MDSE) process and its resulting
domain-specific languages (DSLs) presents a more complex task, which
is often overlooked [KBM16; GGA10]. Since the relevant concepts,
relations, and other domain knowledge is often scattered, a precise
definition of a baseline allowing for approach comparison is diffi-
cult to specify. This distribution of information can be mitigated by
a preceding detailed domain analysis as part of the MDSE process
to create appropriate formalizations and domain models. To show the
improvements and benefits of an approach and its application one
then needs to attend different fields of evaluation (qualitative and
quantitative) at all stages of the language development (proof of con-
cept, actual development, evolution, and maintenance). Additionally,
evaluations are required to also investigate the viability of the im-
provements promised by MDSE approaches. As a result, DSLs, tools
and other artifacts of the MDSE process are overall rarely evaluated
systematically [KBM16; GGA10]. Thus, in this chapter I present the
quantitative and qualitative evaluations I conducted to validate the
previously presented approach and its primary result, the EISE Query
Designer (EISEQD). Further, as a part of the study description and exe-
cution the practical use of the integrated development environment (IDE)
is shown.

This chapter presents results from Phase P5. Evaluation and Phase
P6. Application of the development process and subsequently inves-
tigates research question RQ5. The user evaluation via a user study
was executed using an earlier iteration of the vertical prototype pre-
sented in the previous chapter. Parts of the here described evaluation
approach, the study technologies, the obtained results, and their dis-
cussion have previously been published by me and peer-reviewed
by the community. This primarily includes the publications “Evalu-
ating a Graph Query Language for Human-Robot Interaction Data
in Smart Environments” presented during the STAF 2017 Collocated

136 evaluation and application

Workshops and “Evaluation of a Model-driven Knowledge Storage
and Retrieval IDE for Interactive HRI Systems” published in the In-
ternational Journal of Semantic Computing [KWC18c; KWC19].

7 .1 introduction to mdsd evaluation

In practice Neto et al. identified five levels of evidence an evalua-
tion can provide regarding the usefulness of an MDSE approach:
1) speculation, 2) example, 3) proof of concept, 4) experience or in-
dustrial reports, and 5) experimentation (ordered from low to high
evidence) [Net+08]. As an example for an application of a medium
layered evidence type (i.e. proof of concept/industrial report) Kärnä
et al. used and evaluated their developed solution in the context of
product development [KTK09]. In their setup, only six users (famil-
iar with the target domain) had to develop an application with their
tool-chain. They qualitatively compared the outcomes along the three
dimensions of developer productivity, product quality and the gen-
eral usability of the tooling. To alternatively reach higher evidence,
one can carry out an extensive case study analysis involving a large
user base (experience/industrial reports). This evaluation approach
is especially effective if a large user base already exists for the pro-
vided tools who make extensive use of its features and functionalities
and can share their experiences. However, it is important to note that
this is not generally applicable when developing DSLs for smaller do-
mains such as the Embodied Interaction in Smart Environments (EISE)
domain due to the low user base size.

Völter et al. presented an excellent example of a case study provid-
ing insights on benefits gained from the development of the mbeddr
platform [Völ+19]. The mbeddr project successfully uses JetBrains Meta
Programming System (MPS) to provide an IDE [ite17] with a set of in-
tegrated and extendable languages for embedded software engineer-
ing [Völ+12]. Their evaluation primarily targets the language engi-
neering process using JetBrains MPS as a language workbench. They
conclude that designing languages that handle complex domains and
that are modular and scalable is possible using MPS.

However, multiple case studies which investigate the evaluation of
MDSE processes showed that the evaluation itself is often simply ig-
nored by language designers and never carried out properly [KBM16;
GGA10]. Far worse, there is no systematical report culture on the de-
sign and execution of experimental validations of the languages or
environments which emerge from the processes. The evaluations that
are executed are often informal or anecdotal with little to no compara-
bility and thus of low level of evaluation confidence. Further compli-
cations arise from the fact that an approach’s effectiveness is not mea-
sured at all, due to difficulty to formulate this metric. Kosar et al. thus
correctly conclude that generally, the core DSL development phases

7.1 introduction to mdsd evaluation 137

which are lacking investigation are domain analysis, validation, and
maintenance [KBM16]. This disconnection from the systematical re-
porting culture stands in strong contrast to the otherwise systematical
approach language engineers follow. DSLs and environments need to
be evaluated and their effectiveness for the target audience needs to
be assured.

Barišić et al. thus proposed a development process tightly involv-
ing the evaluation process for the usability of DSLs which is primar-
ily applied during the development life cycle [BAG18; Bar+12]. The
authors identify the mostly anecdotal evidence presentation in liter-
ature and thus created a development and evaluation process to be
applied during language development. Besides an initial definition of
usability, they conclude that Quality in Use [ISO9126] (withdrawn and L usability

succeeded by [ISO25010]) is the optimal evaluation target, as it cov-
ers effectiveness, efficiency, satisfaction, and accessibility in specific
user-task scenarios. They encourage using multiple metrics, includ-
ing questionnaires targeting the subjective measures such as cogni-
tive load or perceived usability. For my following evaluation I extend
this idea with features from integrated iterative testing approaches
which focus on the analysis of pre-defined metrics [Weg+13; Bar+12;
Bar13]. According to Barišić et al. the evaluation needs to span the
entire DSL life cycle by assessing motivation, carrying out qualitative
interviews, validating the DSL design, and quantifying benefits. Mix-
ing quantitative and qualitative criteria is required in the evaluation
process as the use of simple metrics such as (Source) Lines Of Code
(LOC)) are unable to cover all advantages and risks of the application
of a domain-specific modeling solution [Weg+13]. Nevertheless, they
conclude that each measurement itself is important and individual
results need to influence the DSL development process.

Further difficulties in DSL evaluation arise from the fact that vari-
ous language workbenches exist which do not share the same properties
and features or make use of very different approaches (e.g. textual
and projectional editing; cf. Section 3.1.2.5 on page 38). A cross-work-
bench comparison is thus increasingly difficult. The actual reporting
culture on DSLs is thus often reduced to the presentation of the do-
main, its analysis, concrete syntax examples and a meta-model showing
the implemented language. While all these elements are of great im-
portance, effectiveness is measured often anecdotally via application
and implementation in example domains. One approach to mitigate
this issue for language developers within the MPS language workbench
ecosystem is presented by Häser et al. [HFB16]. The authors identify
the difficulties for language engineers to safely determine the effects
of language design decisions on the usability of the languages for the
end-users. They present a practical approach closing the development
and evaluation loop to investigate DSLs an their effectiveness. To re-
alize this, they created an integrated set of languages and plug-ins

138 evaluation and application

within the language workbench MPS which allow to describe controlled
experiments. These languages include the modeling of planning, op-
eration, analysis and interpretation, presentation and packaging of
results as parts of the environment and thus provides a data-driven
language development support. Unfortunately, the created environ-
ment is not freely provided to use and I thus manually realized the
process to create a similar evaluation study.

Cervera et al. for example presented a recent evaluation of a MDSE
approach using multiple evaluation metrics [Cer+15]. The authors
present a detailed description of the study setup and its execution
alongside their goal to measure the usefulness and ease of use of the
created tools and DSLs. The used measurements are the Technology
Acceptance Model and the Think Aloud Method to gain insights into the
end user thoughts about the provided tools. However, while the met-
rics are comparably concise and applicable, the Think Aloud Method
solely covers the subjective perception of a participant. This is a delib-
erate decision by the authors as they perceive questionnaires as unre-
liable and biased. On the contrary, I argue that this decision is for the
wrong reasons. The Think Aloud Method allows to gain additional in-
sights into the user perspective and can be used to further investigate
the usability. There are difficulties to compare the results obtained
from this method and draw clear conclusions for the comparison to a
baseline – in contrast to questionnaire and statistical analysis.

7 .2 evaluation metrics

Because there exists a wide range of metrics applicable within the
MDSE process, I describe a concise selection of the most used and
relevant evaluations. In this section I provide an overview on different
quantitative and qualitative metrics I consider applicable and helpfulMDSE evalu-

ation metrics
�

for MDSE approach evaluation.
One of the oldest, most prominent, and tangible metric in soft-

ware development and software engineering evaluation is the count
of (Source) Lines Of Code (LOC). It is consequently used in literature(Source) Lines

Of Code (LOC)
L

as the main metric for DSL assessment [Völ+19]. This metric gives in-
sight on the effectiveness at design time (i.e. how much less code does
a DSL user need to write) and also on improvements at compile time
(i.e. the volume of generated artifacts). A common problem arises for
language workbenches which make use of the projectional editing fea-
ture (such as MPS). DSL editors consist of individual cells which in
turn can contain much more information as a single word and thus
lines of cells are not easily mappable to traditional LOC. In this case
it is common to approximate the LOC by estimating 4 editor cells per
line [Völ+12; Völ+19].

The recording and analyzing of keystrokes of study participants
during task execution using the provided software is a similar quan-

7.2 evaluation metrics 139

titative measurement. With reduced overhead and boilerplate code
necessary to write when using a special DSLs, one expects study par-
ticipants to exhibit reduced, more specific and less error correcting
inputs. This metric investigates the participants at design time rather
than compile time and can additionally help to uncover repetitive
tasks and common input errors.

Besides effort intensive direct observation of study participants
and their physical reactions (e.g. eye movement, facial expressions,
or heart rate), the most common approaches to quantitatively assess
software product usability are questionnaire driven analysis during
and after study task execution. The System Usability Scale (SUS) is L System Usability

Scale (SUS)an effective and reliable tool for measuring the usability of software
components [Bro96]. It is appropriately short with only 10 items and
it is intuitive to understand [BKM08]. Comparability – an important
measurement for MDSE products – is given, as the scale is uniformly
interpretable. A potential study design needs to include a baseline
condition for comparison and the application of the SUS on MDSE
products can thus easily be done by researchers (refer to Figure A.1
on page 165 for the full questionnaire). Similarly to the SUS, the User L User Experience

Questionnaire
(UEQ)

Experience Questionnaire (UEQ) provides a further detailed analysis
on product usability [LHS08]. However, in difference to the SUS, the
UEQ does not calculate a single comparison measurement but pro-
vides comprehensive impression of user experience. It investigates
both usability aspects (efficiency, perspicuity, dependability) and user
experience aspects (originality, stimulation). It categorizes these as-
pects by attractiveness, perspicuity, efficiency, dependability, stimulation,
and novelty. The application itself is analogous to the SUS by incor-
porating the appropriate 26 items in a questionnaire subsequent to
program usage (refer to Figure A.3 on page 166 for the full question-
naire).

Besides questionnaires targeting the usability, I consider the cog-
nitive load of study participants during task execution as an impor-
tant measurement. With one benefit of DSLs being the reduction of
complexity by allowing domain experts to formulate problems in the
concise language of the domain, the cognitive load of users is ex-
pected to not increase. Ideally, the complexity reduction also reduces
the cognitive load as common concepts and abstractions of the do-
main can directly be used without the need to encode them in a dif-
ferent language. Further, the combination of different domains and
their languages is also expected to not increase the load on users. A
validated metric for the measurement of subjective cognitive load is
the NASA Task Load Index (TLX) [HS88]. The measurement of the total L NASA Task Load

Index (TLX)workload is separated into six subscales that are presented to subjects
on a single page between individual tasks, each on a scale from 0 to
100 points. These individual scales are Mental Demand, Physical De-
mand, Temporal Demand, Performance, Effort, and Frustration (refer to

140 evaluation and application

Figure A.2 on page 165 for the full questionnaire). A systematic eval-
uation 20 years after its introduction further showed that there is no
need to adjust the TLX scale to individual participants as a normal-
ization measure and it is just as accurate without, thus simplifying its
application further [Har06].

Lastly, the measurement of task execution duration and the calcu-
lation of an error rate for individual tasks can show whether or not a
DSL reduces (user) execution speed and errors. The latter depends on
the task specification and study design requires appropriate adjust-
ment. For example, to calculate a syntactical error rate for individual
tasks one can implement:

ET =
1

N
(

N∑
n=0

tni
(tni + tnc)

), (7.1)

where tnc and tni are described by the amount of correct and incorrect
task executions for participant n respectively.

Besides the aforementioned quantitative metrics, a multitude of ad-
ditional qualitative measures need to be obtained by researchers to
reach high levels of evidence [Net+08]. These qualitative metrics are
important as they help to uncover more intangible issues with a tool
which will not necessarily be covered by the metrics mentioned above.
A straight forward method is to gather free comments and feedback
as a part of the questionnaire from participants directly after their
interaction with the tool. The users will most likely report on the
biggest issues they encountered during the study execution which
they potentially cannot voice in the questionnaires (e.g. unnecessary
switches between mouse and keyboard can break concentration for
some participants). Additionally, verbal feedback and discussions are
a good tool to extract information beyond the usual items of the ques-
tionnaire. To identify further usability issues, recordings of the partic-
ipants view (screen recording) as well as key and/or mouse inputs
are a helpful. Qualitative (and also quantitative as described above)
analysis of these can yield information on common problems with
DSLs, tooling, and study tasks.

7 .3 evaluation of the eise query designer

As shown in the previous sections, qualitative and quantitative anal-
ysis is required to reach valuable insights on tools created in the con-
text of the MDSE process and validate their applicability. Besides the
development of languages, their composition (Chapter 5) and the cre-
ation of the EISEQD (Chapter 6), I hence conducted an evaluation
study to assess the approach applicability and improvements. I de-
signed a user study with the goal to reach a high level of evidence
showing the effectiveness of my approach [Net+08]. Participants were

7.3 evaluation of the eise query designer 141

Figure 7.1: A screenshot of the Neo4j web interface. The left side of the in-
terface gives limited domain-specific hints on node labels and
relationship types as well as property keys. This information is
only updated irregularly. The right side shows the query results
with a successful query (bottom right) and a query containing a
syntax error (center right). At the right top users can compose
and send queries. Here an unsent query is shown containing a
wrong reference to a variable (i.e. q) which is not identified or
highlighted at design time.

requested to design queries in the Cypher query language and run
these towards a given sample database.

I defined a baseline condition to successfully compare the results of
my approach (the EISEQD) against. This baseline is designed to rep-
resent the usual workflow a real world user commonly follows when
creating Graph Database Management System (GDB) queries towards a
Neo4j database. Users designed and execute their queries with the
Neo4j web interface which is depicted in Figure 7.1. They then sub-
sequently copied the resulting query string into a text document for
persistent storage. In contrast to this, the MPS condition made use of
the EISEQD to design, execute, and store the queries. This results in
the two conditions listed in Equation (7.2). Where Neo4j refers to the
baseline condition and MPS refers to the test condition involving the
EISEQD:

C = {Neo4j,MPS} (7.2)

I identified three evaluation research questions (ERQ1-ERQ3) for � evaluation research
questionsmy study along the three axis of effort, effectiveness, and intuitiveness

of the used tooling among the two conditions C:

ERQ1 What is the effort to design and execute a query towards the
EISE domain when using either Neo4j or MPS?

Measurements: time, cognitive load, keystrokes

H0 Null hypothesis: The effort is similar when using Neo4j and
MPS to design a query towards the EISE domain.

142 evaluation and application

H1 Alternative hypothesis: The effort is lower when using Neo4j
to design and execute a query towards the EISE domain.

H2 Alternative hypothesis: The effort is lower when using MPS to
design and execute a query towards the EISE domain.

ERQ2 How effective are users when designing and executing queries
using either Neo4j or MPS?

Measurements: Amount of correct/incorrect queries, error rate,
keystrokes

H0 Null hypothesis: The effectiveness is similar when using Neo4j
and MPS to design a query towards the EISE domain.

H1 Alternative hypothesis: The effectiveness is higher when using
Neo4j to design and execute a query towards the EISE domain.

H2 Alternative hypothesis: The effectiveness is higher when using
MPS to design and execute a query towards the EISE domain.

ERQ3 How intuitive is it to design and execute queries using either
Neo4j or MPS?

Measurements: UEQ and SUS questionnaire

H0 Null hypothesis: The intuitiveness is similar when using Neo4j
and MPS to design a query towards the EISE domain.

H1 Alternative hypothesis: The intuitiveness is higher when using
Neo4j to design and execute a query towards the EISE domain.

H2 Alternative hypothesis: The intuitiveness is higher when using
MPS to design and execute a query towards the EISE domain.

7 .3 .1 Methods and study design

To answer research questions ERQ1-ERQ3 and show the applicability
of my approach, I designed a between-group user study (cf. Figure 7.2
on the facing page) in which each participant solves tasks of varying
difficulty [MDF05]. The between-group design – where each partici-
pant only experiences one condition – was chosen over the oppos-
ing within-subject design to allow for statistical comparison between
the two conditions C and show a relationship between the indepen-
dent variables and the outcomes. This design choice minimizes the
influence by external factors and provides an independent measure
as every participant is only using one of the tools of one condition
with similar previous knowledge and bias. Improvements due to in-
creased practice and experience are ruled out and will not influence
the results.

I avoided the typical experimenter bias by preparing all participants
similarly with predefined textual material [MDF05]. As a result, the

7.3 evaluation of the eise query designer 143

Condition MPS
Questionnaire 1

Set 1 Set 2 Set 3 Set 4

Condition Neo4j

Set 0

Questionnaire 2

TLX TLX TLX TLX

Set 1 Set 2 Set 3 Set 4Set 0

TLX TLX TLX TLX

Figure 7.2: Depiction of the in-between study design implemented in the
user study. Participant start with the initial Questionnaire (left)
and execute each task set in alternation with a TLX questionnaire
(center). The tasks in the individual sets are identical across both
conditions. They finish the study after the second part of the
questionnaire (right).

experimenter did not provide any information and hence did not un-
intentionally influence participant actions in any way. For this I cre-
ated the following introductory preparation material:

a) Cypher Information Sheet (Appendix A.2.1 on page 167)
This document contains a summary of the most important prin-
ciples on the Cypher query language. All elements of impor-
tance for the tasks are explained in detail alongside an example
of their usage. Additionally, it provides a dense one page sum-
mary containing all relevant information for the use during the
study.

b) Embodied Interaction in Smart Environments Domain Informa-
tion Sheet (Appendix A.2.2 on page 171)
As the tasks for participants revolve around the EISE domain,
a simplified and reduced domain representation as a graph is
provided to the participants. It holds eight concepts, their prop-
erties and relations to each other as present in the database to-
wards which the queries of each task are executed.

c) Tool Information Sheet (Appendix A.2.3 on page 172)
Depending on the condition, participants get an introduction
sheet that summarizes the use of involved tools. For both con-
dition the information sheet shows how to use the tools for
query design and execution. Additionally, the task workflow is
explained and the most important shortcuts are listed.

d) Task Sheet (Appendix A.2.4 on page 179)
The actual tasks each participant had to solve during the study

144 evaluation and application

are listed in the task material. The study consists of five sets of
queries S0, S1, S2, S3, and S4. Each set contains two to three
individual queries

Q = {S0Q1,S0Q2,

S1Q1,S1Q2,S1Q3,

S2Q1,S2Q2,

S3Q1,S3Q2,

S4Q1,S4Q2,S4Q3}

(7.3)

participants had to solve. The queries are presented in natural
language text alongside a hint to remove any ambiguity and
ensure that all participants understand the goal of the query.
Further, the expected result is listed so that participants can be
sure that their created query is correct. As a time measurement
helper, each query is also annotated with a maximum amount
of time it should take to formulate the Cypher query. S0 is an in-
troductory set to familiarize the participants with the procedure
and the TLX questionnaire, which has to be filled in after each
set to capture the set specific subjective cognitive load. It is thus
omitted from further calculations and evaluations. The remain-
ing sets S1 to S3 raise in their difficulty level, each requiring
new concepts of the Cypher language, and asking increasingly
more complex questions. To investigate the learning effect of the
participants, the final set S4 is a permuted copy of S1 targeting
slightly altered variables.

Participant guidance (i.e. what to do next) and all the collection
of all questionnaire based metrics was executed using the statisti-
cal survey web application LimeSurvey [Sch12]. Access to the survey
interface was provided on a second independent computer next to
the participant as humans react unconsciously to the computers they
interact with and transfer experiences from one interaction to an-
other [NMC99]. This data collection approach allows to obtain more
honest responses about the system independent from its usage.

The study I conducted also followed the ethical requirements (cf.
Appendix A.4 on page 184 for a copy of the successful ethics appli-
cation) as defined by the Ethics Committee of the University of Bielefeld1,
which in turn follows the corresponding rules of the “gemeinsamen
Ethischen Richtlinien der Deutschen Gesellschaft für Psychologie und
des Berufsverbandes deutscher Psychologinnen und Psychologen”.
Informed and voluntary consent in written from was acquired by
me from each participants prior to recording and data collection (cf.
Appendix A.5 on page 185 for the used consent form). Further, I

1 https://uni-bielefeld.de/uni/einrichtungen-organisation/
zentrale-organisation/kommissionen/ethik/

https://uni-bielefeld.de/uni/einrichtungen-organisation/zentrale-organisation/kommissionen/ethik/
https://uni-bielefeld.de/uni/einrichtungen-organisation/zentrale-organisation/kommissionen/ethik/

7.3 evaluation of the eise query designer 145

anonymized the data directly at recording time and further sanitized
it by separating names and any identifying information from the data
into an isolated database linking to participant identifiers. The data
is additionally stored on encrypted devices to avoid unauthorized
access and breakage of confidentiality.

Summed up, the study procedure for each participant was thus the
following:

1. Introduction

a) The participant is provided with the consent form and has
to read, understand, and sign it

b) The participant is handed all supplemental material and
the experimenter leaves the room

c) The participant fills in the initial demographic question-
naire

d) The participant reads the introduction material consisting
of

• Cypher Information Sheet

• Tool Information Sheet (based on the condition)

e) The participant is able to ask questions of clarification or
understanding

f) The participant reads the task material consisting of

• Embodied Interaction in Smart Environments Domain
Information Sheet

• Task Sheet

g) The participant starts the test set S0

h) The participant fills in the TLX questionnaire

i) The participant can ask the experimenter final questions
of clarification or understanding with respect to tools and
execution

2. Study Execution

a) The participant solves each set and fills in the TLX ques-
tionnaire until all sets are done (with no option to ask the
experimenter at any point)

b) The participant fills in the SUS, UEQ, and free feedback
questionnaire

3. Wrap-Up

a) The study ends and an open feedback discussion is initial-
ized

146 evaluation and application

7 .3 .2 Measurements

To properly evaluate the EISEQD quantitatively and qualitatively in
this study, I made use of the metrics presented in Section 7.2 on
page 138. This includes

A Quantitative

• SUS (System Usability Scale): 10 item questionnaire, Likert
scale [Lik32] ranging from -2 (“strongly disagree”) to +2

(“strongly agree”)

• UEQ (User Experience Questionnaire): 26 item questionnaire,
seven-stage scale ranging from −3 (“attractive”) to
+3 (“unattractive”)

• TLX (NASA Task Load Index): 6 item questionnaire, scale
ranging from 0 “very low”) to 100 (“very high”)

• Keystrokes and mouse movement

• Error rate

• Demographic data

B Qualitative

• Participant view (screen recording)

• Feedback regarding the used tools, the study itself, and
other (free text input after the questionnaire and verbal
feedback via interviews)

Due to the nature of each metric’s application, the TLX (measur-
ing the subjective cognitive load of a participant) is the only metric
which has to be applied during the experiment. It has to be filled out
by participants between each task execution and thus classifies as an
obtrusive measurement [MDF05]. This is necessary as the TLX is – to
the best of my knowledge – the best metric to obtain meaningful and
comparable cognitive load measurements. The other applied metrics
are unobtrusive measurements and thus do not influence the study exe-
cution.

The recorded keystrokes are categorized into the five following cat-
egories to allow a separation and more detailed analysis of differences
in participant intentions.

1. Insertion
All keystrokes done with the intention to create a query

2. Deletion
All keystrokes done with the intention of deletion of characters
or query elements

3. Navigation
Any usage of arrow keys, or other keyboard based navigation

7.3 evaluation of the eise query designer 147

4. Other
All remaining input done during the task which does not be-
long to previous categories

7 .3 .3 Study results

Participants of the study were obtained via bulletin within the Clus-
ter of Excellence Cognitive Interactive Technology at Bielefeld University
(CITEC) institute and satisfied the required knowledge levels (i.e. ba-
sic knowledge of the Structured Query Language (SQL) query language
and basic programming knowledge). Additionally, the study partici-
pants were randomly assigned to each of the two conditions. In prac-
tice, a successful study run took each participant between 60 and 70

minutes. In total 28 persons participated in the study, however due
to execution errors two participants had to be removed from the fi-
nal data set, resulting in the final sample size of N = 26; equally
distributed across the condition.

To compare the different conditions and to identify significance in
the data, I used the non-parametric Wilcoxon signed-rank test over the
alternative dependent samples t-test [Wil45; FMF12]. This decision is
based on the fact the final sample size of 13 participants per condi-
tion is too low for a t-test, which is only applicable with a larger
sample size (i.e. greater than 20 per condition). Notable significant
differences between measurements are indicated via the ’∗’ notation
and were calculated with a confidence interval of p < .05, unless
stated otherwise. Results from all metrics are depicted in Figures 7.3
to 7.7 on pages 148–150.

The two metrics execution duration and TLX were measured per
set and averaged over all participants for each condition. The error
rate EC

Q is calculated for each individual query Q (cf. Equation (7.3)
on page 144) of each condition C (cf. Equation (7.2) on page 141),
which modifies Equation (7.1) on page 140 to

EC
Q =

1

N
(

N∑
n=0

qni
(qni + qnc)

), (7.4)

where qnc and qni are described by the amount of sent queries with
correct and incorrect syntax for participant n in condition C respec-
tively (cf. Figure 7.5 on page 149). EC

Q thus describes the rate in which
each participant sent syntactically incorrect queries to the database.

I calculated the keystrokes metric ratios (cf. Figure 7.6 on page 149)
individually for each set via

K =

4∑
s=0

1
N(

∑N
n=0 I

MPS
n,s)

1
M(

∑M
m=0 I

Neo4j
m,s)

(7.5)

148 evaluation and application

●
●

●

●

●

●

●

●

●

●

●

●●

●

T
im

e
[s

10
−2

]

0

3

6

9

12

15

18

21

24 Neo4j
MPS

Set 1 Set 2 Set 3 Set 4

**(p<0.0003)

**(p<0.0003)

* (p<0.003)

Figure 7.3: Boxplot of the time it took participants to complete the tasks in
each set S.

●

●

●

●

●

●

●

●

●

●

C
og

ni
tiv

e
Lo

ad
 S

co
re

0

10

20

30

40

50

60

70

80
Neo4j
MPS

Set 1 Set 2 Set 3 Set 4

* (p<0.011)

Figure 7.4: Boxplot of the cognitive load measurements obtained via the
TLX questionnaire for each set S.

where IMPS
n,s and I

Neo4j
m,s represent the inputs of each participant m

or n for set s of the two conditions MPS and Neo4j respectively.
This assumes that the average keystrokes in the Neo4j condition (the
baseline) is a representative measure for the difficulty of the task and
hence is usable for normalization and calculation of this ratio mea-
sure. To allow a detailed analysis of this assumption, I separated the
keystrokes of the participants into the aforementioned categories.

The UEQ and SUS questionnaire values are calculated according
to their documentation and are summarized in Figure 7.7 [LHS08;
Bro96]. All user feedback gathered during the study is listed in Ap-

7.3 evaluation of the eise query designer 149

Neo4j
MPS
Average Neo4j
Average MPS

E
rr

or
 r

at
e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S1Q1 S1Q2 S1Q3 S2Q1 S2Q2 S3Q1 S3Q2 S1*Q1 S1*Q2 S1*Q3

Figure 7.5: Rate of the averaged syntactical errors per query as calculated by
Equation (7.1) on page 140.

R
at

io
 (

M
P

S
/N

eo
4j

)

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

●

Baseline
Other
Navigation

Insertion
Deletion
Average

Set 1 Set 2 Set 3 Set 4

Figure 7.6: Results of the keystrokes metric calculated using Equation (7.5)
on page 147. Inputs are separated into five categories and show
the relation from condition MPS to the baseline condition
Neo4j.

pendix A.6.1 on page 186 and omitted by me at this point due to its
length.

7 .3 .4 Discussion

The duration of task execution and the TLX values increase as ex-
pected alongside the rising difficulty from S1 to S3, while the per-
mutation S4 exhibits significant improvements over S1 within both
conditions. Additionally, the keystrokes analysis shows that gener-
ally the required user input for condition MPS reduces with each set.
These results indicate that participants gain expertise between tasks
and can perform already seen tasks with less effort, thus confirming
the expected learning effect in both conditions.

150 evaluation and application

●

●

●

●

●

●

●

S
co

re

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Neo4j
MPS
UEQ neutral score

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

**(p<0.0006)*(p<0.02)

●

●

●

●

0

10

20

30

40

50

60

70

80

90

100

Neo4j
MPS
SUS average

SUS

Figure 7.7: Results of the UEQ questionnaire categories (left) and SUS ques-
tionnaire score (right). Questionnaire specific neutral and good
areas are indicated using a dashed red line.

Results from the error rate analysis indicate evince that participants
within the condition MPS execute significantly less queries with er-
rors for all queries except the first query S1Q1. Via qualitative analy-
sis of the screen recordings, I attribute the initial query errors to the
unfamiliarity with the projectional editing scheme. Users initially ex-
plored the DSL practically in the first query and became familiar with
the input and deletion behavior. Generally, the results from the error
rate calculations are expected. Due to the projectional editing and
the thus resulting strong link between concrete syntax to the abstract
syntax tree in the background, users of the MPS commit less errors.
However, it raises the question why these strong constraints do not
fully disallow any syntactical errors. I thus qualitatively verified in
the recordings that each error recorded by this metric was actually
displayed as such within the IDE to the users. The EISEQD develop-
ment prototype warned its users if they were about to send erroneous
queries to the database and all participants deliberately executed the
queries – against the tool recommendation. In later discussions few
participants stated that they “do not trust the tool” and thought “its
error reporting is wrong”, thus they force executed queries they con-
sidered correct. This is also reflected in the highly varying results
for the UEQ category Dependability. However, the task execution (in
terms of duration and cognitive load) is not significantly impacted
by the used tooling in either condition. At the same time participants
in the MPS condition profit from the additional support resulting
in less errors and also less inputs required to formulate the queries.
Overall, these results suggest that the model driven approach is more
effective (with respect to errors and inputs) and validate hypothesis

7.3 evaluation of the eise query designer 151

ERQ1H2 and ERQ2H2 over their alternative hypotheses H0 and H1

respectively.
The usability metrics generally exhibit an increased performance of

the baseline condition Neo4j. The SUS score for MPS holds a large
variance with its average below Neo4j and the global SUS average of
68 [Bro96]. This score is in the first quartile rating and marginal low
acceptance area and thus above the adjective rating “OK” [BKM08].
The variance in the SUS score is also reflected in the UEQ categories
dependability and perspicuity, the participants feedback, and individ-
ual qualitative analysis of screen recordings: users have the feeling
of control loss and thus consider the EISEQD as not dependable (e.g.
being unable to delete individual tokens but only complete concepts).
Some participants also stated that they did not understand the gen-
eral idea of the underlying model of the EISE domain. In contrast to
this, participants in the Neo4j condition actually used production
ready tooling with familiar edition scheme, which yields an above
average SUS score with small variation (i.e. acceptance area with the
adjective rating “GOOD” [BKM08]). Further aligning with these re-
sults, the UEQ for condition MPS metrics additionally hold large
variations with significant differences to the baseline in the categories
efficiency and dependability.

However, all above mentioned usability results differ from the re-
sults obtained from execution duration and TLX metrics in which
MPS participants perform as good as the baseline of Neo4j. The
error rate and keystrokes even show that MPS participants perform
better than baseline participants by using less insertions to perform
the tasks, reduced deletions, and lower average inputs despite the in-
creasing difficulty of tasks. These results allow to conclude two find-
ings with respect to the usability of the EISEQD used in MPS.

First, the results indicate the existence of initial fundamental dif-
ficulties for participants, which (most) users overcome during the
study. This difficulty shows especially in the significant difference
between conditions in the execution duration in task set S1 and high
variances for S2 in execution duration and TLX. Once this obstacle
is overcome, participants reach a similar cognitive load in S4 (except
individual outliers). I attribute this effect to the use of fundamen-
tally different projectional editors. Developers are used to traditional
text based inputs and the common workflow involves only parser-
based programming support. Using a projectional editor for the first
time consequently requires the developers to change their mental
model and think on the model or concept layer. The increased learning
curve of projectional editors has been previously discussed in litera-
ture [Fow05; Völ+14; PS16]. The learning curve for new MPS users
is exceptionally steep (especially due to the projectional editing) and
joint with the specific domain knowledge of the experiment requires
participants to familiarize and understand the tools. However, once

152 evaluation and application

developers adjust and adapt their mental representation to the pro-
jectional schema, they overcome the what I call cognitive projectionalcognitive projec-

tional editor gap
L

editor gap and reach similar or better performance as before.
Second, usability strongly impacts the user acceptance and tool un-

derstanding. If users understand and can handle the tooling, they
benefit greatly (i.e. having less errors and reduced input) and also
score high SUS values. Most critical cases of confusion can be traced
to unexpected tool behavior, most commonly the deletion of concepts.
If a deletion is triggered, the abstract syntax tree (AST) node under the
cursor is deleted rather than its individual tokens. Since the execu-
tion of the study, a new version of MPS mitigates this issue by a two
stroke mechanic that highlights complete editor cells/concepts that
will be deleted if the delete key is pressed again. The introduction
to the tools via a single sheet of paper was not sufficient to prepare
participants for the usage of a projectional DSL editor, supporting
the alternative hypothesis. Additionally, not all inputs were automat-
ically transformed by the IDE and users had to select variables via
the completion menu. This was a technical error in the implementa-
tion impacting many users to leave negative feedback, describing the
completion as not helpful. More language development and improve-
ment is required in terms of usability to increase the acceptance of
users with the EISEQD.

Put together, the results show that participants consider the base-
line condition as more intuitive and hence ERQ3H1 is confirmed over
the null hypothesis ERQ3H0 and the alternative hypothesis ERQ3H2.
This is not unexpected as the Neo4j condition uses a well-engineered
state-of-the-art enterprise database tool and interface. Subjective per-
ception seems to be crucial element for user acceptance and further re-
finement of my provided tooling as well as more detailed evaluations
are necessary. I consider this gap addressable with further tool refine-
ment and an analysis of long-term usage of the generated tools. Addi-
tionally, I expect that providing a state-of-the-art graphical interface
to represent (sub-graphs will address issues reported in participant
feedback and hence increase the usability and acceptance strongly.

7 .4 summary

This chapter presents a detailed description of the importance of eval-
uation of DSLs, common evaluation metrics, and my study to eval-
uate the EISEQD. In practice, evaluation of artifacts and tools result-
ing from a MDSE process is challenging for the developers and re-
searchers and as a result often omitted completely. My literature re-
view showed that the executed evaluations present only low levels of
evidence and are mostly anecdotal reports or descriptions of a proof-
of-concept test. The metrics chosen to evaluate DSLs and tools are also
often weak and deliberately chosen to show the classic MDSE benefits

7.4 summary 153

(e.g. LOC and code generation). I identify key metrics that can show
quantitative benefits of MDSE tools when compared to a baseline,
such as cognitive load, task execution duration, error rate, and usabil-
ity metrics. Additionally, I present a between-group study design to an-
swer my three research questions ERQ1-ERQ3 regarding effort, effec-
tiveness, and intuitiveness with a high level of evidence. From the ob-
tained study results I conclude that my presented approach does not
impact user performance once they overcome the quantitatively iden-
tified cognitive projectional editor gap. The participants performance in
task execution exhibits no significant differences as shown by the TLX
cognitive load scores and execution duration metric. Contrary, the
keystrokes values show that participants require reduced inputs for
query design when compared to the baseline. Additionally, IDE users
show a reduced error rate when creating queries. Thus, users of the
EISEQD require less effort and are more effective when designing
queries and confirming research questions hypotheses ERQ1H2 and
ERQ2H2. However, the usability of my approach is below the baseline
condition as shown by the UEQ and SUS questionnaire results. This
low usability scores show that the intuitiveness is higher for Neo4j

condition, confirming the alternative hypothesis H1 for research ques-
tion ERQ3. However, at the same time users of the MPS condition
benefit from all advantages emerging from the applied MDSE: Their
queries are statically checked at design time, they are provided with
auto completion for relevant concepts, they can apply quick fixes, and
will (by design) produce no syntactical error. Besides the fact that my
study shows the applicability of my approach, I conclude that the
various metrics, especially the cognitive load, yield strong evidence
for the effectiveness and reduced effort of my approach.

Part VI

P E R S P E C T I V E S

The sixth and last part provides an outlook on further re-
search and summarizes the contribution of this work.

8
O U T L O O K

“One never notices what has been done; one can only see what
remains to be done.“

—Maria Skłodowska-Curie
letter to her brother in 1894 after

receiving her second graduate degree

Assorted possible future work items became apparent during the
course of my research, which lie beyond the scope of this thesis. Be-
fore concluding this work, I provide the most promising opportuni-
ties and potential future efforts which can be categorized either as
work which a) directly improves the implemented system with re-
spect to features and usability, or b) investigates high interest areas
for follow-up future research endeavors.

In terms of technical improvements, various options are available
which can advance the presented vertical prototype further towards
a fully featured integrated development environment (IDE). The most
apparent improvement is an implementation of the dedicated Graph

language presented in the implementation-independent architecture.
The implementation currently does not include a dedicated graph
language, as it was chosen to be closely tied to the Cypher query lan-
guage (and subsequently to the Cypher Extended Backus–Naur Form
(EBNF)). A proper separation in the implementation would provide a
unification and allow for more diverse further extensions.

Apart from modifications to the languages and the composition,
further work can revise features which were not fully completed dur-
ing the course of this work. These lie especially in the areas of usability
and quality of life functions for users. The evaluation indicates that
the users are missing these features and as a result a noticable cog-
nitive projectional editor gap in metrics such as the NASA Task Load In-
dex (TLX). Even though most users overcome this gap within a short
amount of time, the level of entry is high and the learning curve is
steep. With further improvements targeting this issue, errors realted
to projection could be minimized and broken model states became
less frequent, thus increasing usability and acceptance.

Another example for a high-impact usability improvement is the
concrete syntax of time representation used in the temporal query an-
notations. Further refinements of this interface are possible to provide
users with a unified concrete syntax, which supports any temporal ex-
pansions description.

158 outlook

The model analysis feature could be extended by implementing
additional (sub-)graph and query analysis features. For instance, by
adding boolean satisfiability problem (SAT) or satisfiability modulo theories
(SMT) solvers into the IDE, one could aid the developers in spotting
logic errors within their queries [MB11].

The latter example also provides options for further detailed re-
search on how to optimally make use of the known domain-specific
properties in the logical solving process. A SAT or SMT solver could,
for example, check for additional constraints by using information
from the DomainDescription provided by the EISE Query Designer
(EISEQD) users via the Domain Description language. These con-
straints could either be provided by the developers themselves or
could potentially be directly derived from the provided domain ab-
straction.

An implementation of the proper separated graph language could
additionally allow to implement further alternative query languages
to be used in the EISEQD. Other query languages can, for example,
increase acceptance amongst the users. While Cypher was chosen as
the ideal candidate for the domain, the modular language composi-
tion allows to integrate different languages with comparably low ef-
fort. This, however, has a great impact on the users and the difference
will have to be analyzed in the future: Other languages provide differ-
ent semantics and model-to-model (M2M) transformations and it may
not be possible to fully express constructs of one graph query language
(GQL) in another. Further research is required to formally grasp and
unify these GQLs differences and to aid large-scale data management
efforts [SW19; ISO19].

In a more domain focused perspective, future research can inves-
tigate extended application of the proposed system and tools in the
Embodied Interaction in Smart Environments (EISE) domain. For exam-
ple, the temporal query feature could be expanded to match graph
patterns materializing in the future. Such a query would thus trans-
form into a standing query or a continuous query which consequently
provides a streaming data interface. Necessary steps include an adap-
tion of existing languages such as the Time language and the design
of developer interfaces to access the resulting streaming data within
their software components. Such an application can possibly be even
made available to the final environment users, who can use the stand-
ing queries to design environment controlling rules or agents. Re-
search can investigate to what extend and how an end-user directed
GQL interface can overcome common problems of this domain, such
as the significant discrepancy between user interpretation and reality
of a rule [HC15]. A future evaluation can analyze how this approach
compares to available approaches which use rule based domain-spe-
cific languages (DSLs) to create triggers and commonly reduce errors
via static analysis [NE16].

outlook 159

Lastly, further evaluation and study based analysis can be exe-
cuted to validate the approach and tooling presented in this thesis
in greater detail. While the presented evaluation already allowed to
introspect the efforts with a high level of evidence, an even more
detailed longitudinal study will be instrumental [KBM16; GGA10].
Therefore multiple measurements and metrics of study participants
need to be recorded over longer time spans. Following a use case or
group of use cases over a long period of time can thus allow to gather
normative data regarding usability or tooling benefits to users.

9
C O N C L U S I O N

“For a research worker the unforgotten moments of his life are
those rare ones which come after years of plodding work, when the
veil over natures secret seems suddenly to lift & when what was
dark & chaotic appears in a clear & beautiful light & pattern.“

—-Gerty Cori
Nobel Prize winner in Physiology or Medicine

for her work in metabolizing carbohydrates

In this thesis I applied Model-driven Software Engineering (MDSE)
techniques to support the design of graph queries targeting interac-
tion relevant knowledge. I therefore considered the perspective of the
role of behavior developers in the Embodied Interaction in Smart Envi-
ronments (EISE) domain who create complex human–robot interaction
(HRI) system activities. In total, I attended to five research questions
in this thesis and carried out an empirical user evaluation investigat-
ing the applicability of the approach.

The contributions of this thesis with respect to the research ques-
tions RQ1-RQ5 are as follows. The volatile and dynamic nature of
interactive scenarios in research environments demands that domain
modeling and abstraction (RQ1) lies in the user model space; M1 of
the Meta-Object Facility (MOF) layer. The concepts and their relations,
which in sum abstract the domain, evolve frequently and thus need to
be easily changeable without continuous language evolution. Orthog-
onal domains, such as temporal representations, however require the
abstraction as meta-models in the M2 layer. Constraints on queries can
then realized as orthogonal annotations to the query model abstract
syntax tree (AST) with no impact on the query model. Further, the pro-
posed development process (RQ2) applied in this thesis emphasizes
the increased need for subsequent application and evaluation of the
developed domain-specific languages (DSLs), as presented in Section 3.3.
The objectives and requirements for my approach (RQ2) were identi-
fied in Chapter 5. It showed, that temporal querying and query analy-
sis at design time pose fundamental tasks in this context. The require-
ments lay the foundation for the following proposed implementation-
independent language composition (RQ3). The DSL composition is
explicitly chosen to provide an extensible query language and fur-
ther supporting languages, which extensively aid behavior developers
in the graph database query (GDQ) design process. I further describe
each individual language in detail alongside corresponding meta-mod-
els and clarify the intended behavior of the languages by providing

162 conclusion

detailed denotational semantics. An implementation of these theoretical
considerations (RQ4) is presented in Chapter 6. My realization uses
the language workbench JetBrains Meta Programming System (MPS) to
create a fully integrated development environment (IDE), the EISE Query
Designer (EISEQD). This vertical prototype implements a functioning
slice of the proposed system and their behavior, hence providing a
set of languages which allow for:

a) Graph query design,

b) M1 domain modeling and model grounded querying design,

c) (Relative) temporal graph querying,

d) Query design support, query checking, and design time query
analysis,

e) Integration in an existing application system, and

f) Additional domain-specific features, such as graph visualiza-
tion or direct query execution.

To validate the approach, I conducted an empirical evaluation of the
created tool (RQ5), which analyzes the implementation in compari-
son to state-of-the-art tooling within a baseline condition. The per-
formed evaluation analyzes multiple metrics and provides a high
level of evidence. In terms of usability, my implementation does not
reach the professional tooling of the baseline condition. Consequently,
this confirms hypotheses H1 of evaluation research question ERQ3:
Users perceive the implemented tooling as less usable when design-
ing GDQ. However, the users recognized the novelty and potential of
the approach and rated this factor above average. Lastly, it showed
that users of the EISEQD perform similar to the baseline condition
in terms of cognitive load and task execution duration, while (at the
same time) exhibiting a significantly reduced input and error rate.
Thus, the hypotheses H2 of evaluation research question ERQ1 and
ERQ2 were confirmed respectively over their alternatives: Users of
the EISEQD require less effort and are more effective when designing
GDQ queries.

Part VII

A P P E N D I X

A
E VA L U AT I O N A P P E N D I X C H A P T E R

a .1 evaluation questionnaire

Figure A.1: The System Usability Scale (SUS) questionnaire as presented to
participants within the EISE Query Designer (EISEQD) study.

Figure A.2: The NASA Task Load Index (TLX) questionnaire as presented to
participants after each task execution within the EISEQD study.

166 evaluation appendix

Figure A.3: The User Experience Questionnaire (UEQ) questionnaire as pre-
sented to participants within the EISEQD study.

A.2 study information material 167

a .2 study information material

This section holds all information and task related documents handed
to participants during the EISEQD study.

a .2 .1 Cypher information material

Cypher Information Sheet

This document serves you as a help and small summary of the most important principles on how to
write queries using Cypher.

The language has many more features beyond the ones mentioned here. However, these will not
be relevant for any of the tasks presented to you in this study as all tasks can be done solely with
this provided information.

1. Cypher: The declarative query language for the graph database Neo4j

Neo4j is a graph database, adopting a labeled property graph model. In Neo4j terminology,
vertices are called nodes, and edges are called relationships.

Cypher is a declarative graph query language that allows for expressive and efficient querying and
updating of the graph store. It is inspired by a number of different approaches and builds upon
established practices for expressive querying. Cypher borrows its general structure from SQL — 
queries are built up using various clauses. Clauses are chained together, and they feed
intermediate result sets between each other. For example, the matching identifiers from one clause
will be the context that the next clause exists in.

1.1 Key principles and capabilities of Cypher

• Cypher matches patterns of nodes and relationships in the graph to extract information.

• Cypher has the concept of identifiers which denote named, bound elements and parameters.

• Cypher manages constraints on patterns.

1.2 Basic Read-Query-Structure

Patterns are the fundamental traversal description of Cypher. Designed after ASCII art representing
nodes as circles and relationships as arrows, such as

(identifier1)-->(identifier2)

Relationship identifiers are specified within square brackets, with an optional type after a colon, like

(u)-[r:HAS_ACCESS]->(a)

Labels are specified similarly to relationship types, following a colon:

(u:User)-->(a:Asset)

1.3 Most important query keywords

• MATCH: The graph pattern to match. This is the most common way to get data from the graph.

• WHERE: Adds constraints to a pattern, or filters the intermediate result.

• RETURN: What to return.

Page 1 / 4

2. Examples

Consider this simple example graph:

The most basic query is a match on all nodes and then return them:

MATCH (a)

RETURN a

Optionally, we can add a LIMIT to the RETURN clause to limit results (for large databases):

MATCH (a)

RETURN a LIMIT 50

Patterns in the graph can be matched using a MATCH clause and the results are returned with a
RETURN clause. The following query will search for nodes a and b with relationships pointing to
each other and return all matched nodes (this matching will ignore the direction of the relationships
– to match directions one has to use “-->” or “<--” respectively instead of the undirected “--”).

MATCH (a)--(b)

RETURN a, b

One can match multiple sub-graphs at the same time:

MATCH (a)--(b), (b)--(c)

RETURN a, b

Labels can be used to further specify the pattern. The following will return all nodes with the label
Movie that have a relationship with a node labeled Actor:

MATCH (a:Actor)--(b:Movie)

RETURN b

The MATCH clause can be further filtered using a WHERE clause. In the following example we use
the identifier b and restrict the matching to all nodes which have a string unequal to “Orange” in
the property called name (note: instead of “!=” Cypher uses the “<>” as the unequal operator) :

MATCH (a:Actor)--(b:Movie)

WHERE b.name <> “Orange”

RETURN b

Page 2 / 4

168 evaluation appendix

However, it is also possible to define node properties in the MATCH clause itself (note: it is
impossible to do negative matches here). The following query returns the same result as the one
above:

MATCH (a:Actor)--(b:Movie {name : “Apple”})

RETURN a

The idea of properties and labels is also applicable to relationships. The following defines the
relationship between the nodes by matching relationships r with the label PLAYS and further
restrictions on its properties in the WHERE clause:

MATCH (a:Actor)-[r:PLAYS {important: True}]-(b:Movie)

WHERE r.duration=231 AND a.name = “Denko”

RETURN b

Lastly, there are also functions available in Cypher. They allow to influence the results. In this
example we simply return the count of the nodes that our query returned:

MATCH (a:Actor)-[r:PLAYS {important: True}]-(b:Movie)

WHERE r.duration=231 AND a.name = “Denko”

RETURN COUNT(b)

Here is a larger example also using multiple matches to also find the according directors:

MATCH (a:Actor)-[r:PLAYS {important: True}]-(b:Movie), (b:Movie)-[:DIRECTED]-(c:Director)

WHERE r.duration=231 AND a.name = “Denko”

RETURN COUNT(b), c

Page 3 / 4

A.2 study information material 169

3.1 Read Query Structure

MATCH {PATTERN}

WHERE {BOOLEAN_EXPRESSION}

RETURN {RESULT_SET} [LIMIT X]

3.2 MATCH Syntax

Syntax Example Explanation

MATCH (n:Actor)-[:KNOWS]->(m:Director)

WHERE n.name = "Alice"

Nodes and Relationships ins MATCH patterns can
contain labels and properties

MATCH (n)-->(m)<--(k)--(o) Any pattern can be used in MATCH

MATCH (n {name: "Alice"})-->(m) Pattern that also matches a node property

MATCH (n {name: "Alice", age: 33})-->(m) Pattern that matches multiple node properties

MATCH (a)-->(b)<--(c), (b)--(o) Multiple patterns and references to each other
are allowed in a single MATCH

3.3 WHERE Syntax

Syntax Example Explanation

WHERE n.property <> {value} Use a predicate to filter (<> is the unequal
operator in Cypher - it is the same as WHERE
NOT (n.property = {value}))

WHERE n.property1 <> {value2} AND
NOT(n.property2 = {value2})

Concatenate multiple filters; second filter is
negated (see Boolean operators)

3.4 Operators

Type Operator

Mathematical +, -, *, /, %, ^

Comparison =, <>, <, >, <=, >=

Boolean AND, OR, XOR, NOT

String +

Regular Expression =~

3.5 RETURN Functions

Function Description

RETURN count(identifier) The number of non- NULL values (aggregation)

Page 4 / 4

170 evaluation appendix

A.2 study information material 171

a .2 .2 EISE Domain information material

Embodied Interaction in Smart Environments Domain

All queries are to be done within in the “Embodied Interaction in Smart Environments”
Domain (EISE Domain). The following image shows you the data meta model of the graph
database. Instances of these types of nodes and relationships are stored within the
database. Instances that are created which do not provide full details (for example a
Person missing the firstname property) are initialised with empty default values.
According defaults are: “” for strings and 0 for int/long/double.

Page 1 / 1

172 evaluation appendix

a .2 .3 Tool information material

a .2 .3 .1 Neo4j tool information material

Tool Information Sheet

This document serves you as a help and summary of the most important principles of the “Neo4j Web-
Interface“. It is the default tool provided by Neo4j and you will use it during this study to write plain Cypher
queries which are presented to you as textual quesions.

1. Introduction

You can reach the web interface via the browser by browsing to http://localhost:7474/browser/. In case you
are required to provide credentials, please usethe following.

User: neo4j | Password: a

You will be greeted by the default interface:

To write and execute a query (see the following picture) you have use the input field (1) and press the play
button (2). The result will appear below with a visualised graph (3). You can switch the view from graph to row
on the left side of the visualisation (4). Further details about currently displayed results are listed at the bottom
(5). You can remove old queries by pressing (6). If you write large queries it may be helpful to limit the results
via LIMIT 50 as otherwise large amounts will be displayed which might slow down the browser significantly.
Once the query is finished you can remove this restriction to get the final result.

Page 1 / 2

2. Task Workflow

When solving the tasks in the study you can follow this order:

1. Use the web-interface to design and execute queries

2. Evaluate the results and refine query

3. Once you think you finished a query: Copy the query and paste it in the prepared opened text editor

4. Solve the next tast

In case you close the browser or text editor by accident, you can find the according links on the desktop to re-
open them.

3. Shortcuts

Shift+Enter Create a new line in query input Allows to write multi-line queries. Makes the design
of long queries easier and gives you more overview

Ctrl+Enter Execute query Executes multi-line queries

Up/Down Previous/Next query Allows to switch to and re-use the previous queries

Left click on
previous query

Put query into input field Allows you to modify the previously executed query
and execute it again.

Page 2 / 2

A.2 study information material 173

174 evaluation appendix

a .2 .3 .2 MPS tool information material

Tool Information Sheet

This document serves you as a help and summary of the most important principles of the
“Embodied Interaction in Smart Environments Query-Designer“ (EISE Query-Designer). Instead of
writing plain Cypher queries, you will use the EISE Query-Designer which is a tool provided to
ease the creation and execution of Cypher queries. It extends the Cypher language with several
features such as code completion, syntax checking or direct in-tool execution.

The tool has many more features beyond the ones mentioned here. However, these will not be
relevant for any of the tasks presented to you in this study as all tasks can be done solely with this
provided information.

In case you close the tool by accident, you can find the according link on the desktop to start it
again. The prepared project to load is also located on the desktop.

1. The EISE Query-Designer: Design and execute domain specific
queries

The EISE Query-Designer is an advanced IDE created using Jetbrains MPS.

The Query-Designer is just like any other IDE (Eclipse, IntelliJ, Netbeans, etc.). It has a project view
(1), an editing area (2), a compile output log (3), and an execution output area (4).

Page 1 / 5

In contrast to other IDEs you do not directly edit the text, instead one edits the abstract syntax tree
(AST) of the languages supported by the tool. The Query-Designer is familiar with the Cypher
language and can give you appropriate support. So called Query-Sheets already give you the
general shape for Cypher queries (MATCH… WHERE… RETURN…) which you will have to fill
according to the tasks. Further, it also provides you with auto-completion wherever possible in the
editor (to open the auto-completion press Ctrl+Space). Once a query is designed, you need to
generate the according Java source files and run them afterwards (the connection to the database
is done automatically in the background).

The Query-Designer workflow is as follows:

edit AST generate Java source execute generated

2. Task Workflow

When solving the given tasks in the study you will only use the EISE Query-Designer to design and
execute your queries. Once you think you finished a query you save the project and go on with the
tasks.

You are provided a project with prepared Query-Sheets in which you can solve each given task
(S1Q1, S1Q2, etc.) individually. The general workflow is:

Step 1: Open the
according Query-Sheet for
the current task.

Page 2 / 5

A.2 study information material 175

Step 2: Write a query
using the provided tool
support such as auto-
completion (CTRL+Space)
and syntax checking.

Errors are highlighted in
red and give verbose
feedback on mouse over.
Only compile once all
errors have been
cleared. Compiling with
errors will lead to
faulty queries.

Step 3: Generate the
according code via the
context menu of the
model.

Page 3 / 5

176 evaluation appendix

Step 4: Run the
generated code via the
context menu of the
Query-Sheet or shortcut.

(Note: Always re-
compile before you run
– otherwise previously
generated code is
executed! You can only
run a query if it has
been generated before)

Setp 5: Inspect and verify
the results (remember to
save the project).

Page 4 / 5

A.2 study information material 177

3. Shortcuts

Enter or
Shift + Enter
(in the editor)

Add a node in the AST

Will add an appropriate node at the current
location of the cursor if possible.
For example: this will add another MATCH clause
or RETURN clause if pressed at the end of the
according clause.

Ctrl+Space Invoke code
completion

Basic code completion helps you complete the
names of nodes, relationships, and keywords
within the visibility scope. When you invoke code
completion, the context is analysed and choices
that are reachable from the current position of the
cursor are suggested.

Ctrl + Shift + F9
(in the editor)

Generate the model of
the currently open
query

Will generate the module in which the opened
query resides.

Ctrl + Shift + F10
(in the editor)

Run the currently open
query

Will run the opened query against the database.
The results of the query will be printed to the
console.

Tab / Shift + Tab Go to next/previous
editable cell

Will position the cursor at the next/previous cell
you can edit

–-
(in MATCH clause)

Add a relationship Manually add a relationship to the Node where the
cursor is. Simply adding two dashes will
automatically add a relationship.

AND / OR / = / <> / etc.
(in WHERE clause)

Add a logical phrase Writing and/or/=/<>/etc. followed by a space in
the where clause automatically adds the
appropriate logical expression.

Ctrl + w /
Ctrl + Shift + w

Increase/decrease
selection in the editor

Will increase/decrease the selection based on the
abstract syntax tree. Alternatively one can also
use Shift+Up/Shift+Down.

Alt + 1 Show/Hide project
view

Shows or hides the view on the project on the left
side of the IDE.

Page 5 / 5

178 evaluation appendix

A.2 study information material 179

a .2 .4 Task material

Test Set (S0)

Query 1 (S0Q1) [1 minute]

How many conversations are stored in the database in total?

Hint: This query is already prepared, execute the provided query.

Expected result: 409

Query 2 (S0Q2) [1 minute]

How many locations are located in the Room named “Bath”?

Hint: This refers to the amount of Locations that have an is_in
relationship to the Room with name “Bath”.

This query is already prepared, execute the provided query.

Expected result: 1414

1/5

Set 1 (S1)

Query 1 (S1Q1) [2 minutes]

Which persons are stored in the database in total?

Hint: Refers to the Person instances in the database.

Expected result: 2083 instances of persons

Query 2 (S1Q2) [2 minutes]

Which persons were stored in the database with a first name?

Hint: All persons have a firstname property. If not provided an empty
sting (“”) is stored. This query asks for all persons that do not
have an empty firstname property.

Expected result: 12 instances of persons

Query 3 (S1Q3) [2 minutes]

How many agents are stored in the database in total?

Hint: Refers to the absolute count of all agents in the database. Use
the count() function.

Expected result: 2

2/5

180 evaluation appendix

Set 2 (S2)

Query 1 (S2Q1) [5 minutes]

In which conversations where persons with a known last name
involved?

Hint: Refers to all instances of conversations that have an involved_in
relationship to persons who have a not empty lastname property.

Expected result: 214 instances of conversations (or 219 rows)

Query 2 (S2Q2) [5 minutes]

How many conversations are in the database in which persons and
agents were active together?

Hint: 1. Refers to the amount of conversations to which persons had an
involved_in relationship and at the same time agents also have
an involved_in relationship to.

2. Use multiple relationships within a MATCH clause (alternatively
it is also possible to use multiple MATCH clauses).

Expected result: 243

3/5

A.2 study information material 181

Set 3 (S3)

Query 1 (S3Q1) [5 minutes]

In which room and when did conversations start in which persons
interacted with the agent named “Flobi”?

Hint: Multiple MATCH clauses allow to match against several graphs at
the same time. The elements in MATCH clauses can reference to
each other (see Cypher Information Sheet, Section 2).

Expected result: Total of 243 (rooms are among „Wardrobe“ and
„Kitchen“)

Query 2 (S3Q2) [5 minutes]

Which conversation where the agent with name “Flobi” was
involved in have happened last year and which persons were also
involved?

Hint: To filter the last year one has to make a restriction on the start

and end property of conversations. The filter has to be done after
the timestamp 1451606400 and before timestamp 1481818044.

Expected result: 211 instances of conversations (or 216 rows) and a
total of 11 instances of persons

4/5

182 evaluation appendix

Set 4 (S4)

Query 1 (S4Q1) [2 minutes]

Which conversations were recorded?

Hint: Refers to all conversations in the database.

Expected result: 409 instances of conversations

Query 2 (S4Q2) [2 minutes]

Which persons age is known?

Hint: All persons have an age property. If not provided a zero (“0”) is
stored. This query asks for all persons that have an age property
larger than zero.

Expected result: 12 instances of persons

Query 3 (S4Q3):

How many sensors are stored in the database?

Hint: Refers to the absolute count of all sensors in the database. Use
the count() function.

Expected result: 2

5/5

A.2 study information material 183

184 evaluation appendix

a .3 ethics documents

a .4 ethics committee application

A.5 consent form 185

a .5 consent form

Einverständniserklärung

Graph-Query-Design Studie 2017

Hiermit erklären Sie sich bereit, an der Graph-Query-Design Studie teilzunehmen.

Ziel der Studie ist die Dokumentation und wissenschaftliche Untersuchung der Nutzbarkeit
von Programmen zur Unterstützung beim Design und Ausführen von Anfragen an Graph-
Datenbanken. Aus den Versuchen sollen Erkenntnisse über Anforderungen an Entwicklung
und das Design gezogen werden. Diese Studie findet im Rahmen des Projekt „The Cognitive
Service Robotics Apartment as Ambient Host (CSRA, LSP-01)“ statt.

Das Experiment wird ca. 60 Minuten dauern. Ihre Daten (Bildschirmaufzeichnung,
Tastatureingaben und Daten aus Fragebögen) werden streng vertraulich behandelt,
anonymisiert ausgewertet und nicht an Dritte weitergegeben. Eine Zuordnung ihrer
personenbezogenen Daten wird nach Abschluss der Studie gelöscht. Sie erklären sich damit
einverstanden, dass ihre studienbezogenen Daten aufgezeichnet und anonymisiert für
wissenschaftliche Auswertungen verwendet werden. Einer möglichen Veröffentlichung der
anonymisierten Daten dieser Studie stimmen Sie mit ihrer Teilnahme zu.

Ihre Teilnahme an der Untersuchung ist freiwillig. Bitte beachten Sie, dass es Ihnen jederzeit
frei steht, Ihr Einverständnis zurückzuziehen und die Untersuchung abzubrechen. Daraus
werden Ihnen keine Nachteile entstehen.

Sollten Sie sich mit den oben geschilderten Bedingungen einverstanden erklären, so
unterschreiben sie bitte wie folgt:

_________________________ _________________________ _________________________
Name Datum Unterschrift

Bitte kreuzen Sie außerdem an, in welchem Umfang Sie die Veröffentlichung des Videomaterials
gestatten:

O keine Veröffentlichung
O nur im Rahmen von wissenschaftlichen Vorträgen, z.B. anonymisiert auf Konferenzen
O uneingeschränkte Nutzung, z.B. auch im Citec-YouTube-Channel
O Ich möchte über die Nutzung von Fall zu Fall und unter Vorbehalt der Sichtung des Materials

entscheiden (Bitte dazu ihre E-Mail Adresse angeben).

Dürfen wir sie ggf. bei Fragen zu einem späterem Zeitpunkt noch einmal kontaktieren? Falls
ja, bitte auf diese Weise:

186 evaluation appendix

a .6 questionnaire results

a .6 .1 Feedback

a .6 .1 .1 Tool feedback

Condition: MPS, ID: 7 – “mps immernoch furchtbar”
Condition: MPS, ID: 10 – “Man muss die Autovervollständigung nut-
zen, damit eingegebene Worte erkannt werden. Einfach nur das Wort
einzugeben führt zu einem Fehler. Wenn man gewohnt ist, ohne Au-
tovervollständigung zu arbeiten, passiert das schnell. Und es ist ver-
wirrend, weil das richtige dasteht, aber trotzdem ein Fehler angezeigt
wird. Genauso muss man mit Integer Eingaben immer recht lange
warten, bis es tatsächlich übernommen wird. InteractionNode ist
falsch geschrieben in der Autovervollständigung (Intr...). Wenn man
"Inter" eingibt und dann enter drückt, kommt daher kein Vorschlag.”
Condition: MPS, ID: 12 – “Autocomplete manchmal etwas komisch
in der benutzung”
Condition: NEO, ID: 15 – “Es ist nicht immer klar, wie die Beziehun-
gen benannt sind, wenn man die Graph Visualisierung benutzt”
Condition: NEO, ID: 17 – “MATCH und RETURN scheinen immer ge-
braucht zu werden für Anfragen, daher könnten diese als feste Felder
bereitgestellt werden, sodass sie nicht als Keywords eingetippt wer-
den müssen”
Condition: MPS, ID: 18 – “Mit Vorerfahrung in MPS richten sich
einige meiner Antworten vielleicht auch auf die Benutzbarkeit der
IDE an sich.”
Condition: MPS, ID: 20 – “Lediglich die IDE hat so einige Macken.
Total nervig: Das man nochmal Cntl-Space drücken muss obwohl
bereits das richtige keyword geschrieben war. Auch das man nicht di-
rekt Durchschreiben konnte und immer wieder alles mit Cntl-Space
bestätigen müsste war nervig. (Autovervollständigung ist sehr hilfre-
ich wenn man die Domain nicht kennt, wenn bekannt dann sollte
eine manuelle Eingabe immer erlaubt sein weil die Assistenz sonst
eher störend wirkt. Das Locations eine Liste an Koordinaten sind ist
nicht intuitiv.”
Condition: NEO, ID: 23 – “Interaktive Hilfe / Tutorial oder mehr kom-
plexere Beispiele in der Dokumentation.”
Condition: MPS, ID: 24 – “Möglicherweise bei der Darstellung auch
Context Menüs über die Maus hilfreich. Variablen eingeben sollte
auch akzeptiert werden, ohne Autocomplete zu verwenden.”
Condition: MPS, ID: 26 – “Programm akzeptiert nur Ausdrücke, die
mit code-completion erstellt wurden.”
Condition: MPS, ID: 28 – “Autovervollständigung ist meistens nervig
und unnötig”
Condition: NEO, ID: 29 – “Könnte man in den eckigen Klammern
auch Vergleichsoperatoren nutzen, statt das WHERE?”

A.6 questionnaire results 187

Condition: MPS, ID: 32 – “Die Schritte Übersetzen und Ausführen
müssen vereinheitlicht werden”
Condition: MPS, ID: 34 – “Unvorhersehbar delete sprengt unrelated
entries weg. Autocomplete triggern nervt insgesamt behindert mmn
mehr als dsl im texteditor zu schreiben”

a .6 .1 .2 Study feedback

Condition: MPS, ID: 10 – “War das Wort InteractionNode irgendwo
eingeführt worden? Die Bezeichnung hat mich anfangs verwirrt, aber
vielleicht hab ich es überlesen.”
Condition: NEO, ID: 15 – “Prozentabstufungen (100er) finde ich et-
was ueber... 5er Schritte reichen voellig”
Condition: NEO, ID: 17 – “"LIMIT 50" habe ich im Rahmen der Studie
nie verwenden müssen und erkenne keinen Grund, warum in den In-
struktionen darauf hingewiesen wird, dies sei empfehlenswert.
Sämtliche Anfragen wurden fast auf Knopfdruck verarbeitet. Beim
SUS könnte "Menschen" u.U. durch "Informatiker" o.ä. ersetzt wer-
den, zumal "normale Menschen" sicher zunächst mehr lernen bzw.
Zeit investieren müssten, um Cypher zu lernen, als im IT-Bereich
vorgebildete Leute. Der Eintrag "Keiner" bei der Frage nach Erfah-
rung mit Programmiersprachen hat sich mir nicht erschlossen. Die
Frage "War ihnen die Aufgabe bereits bekannt?" ist mit dieser Skala
schwer zu beantworten, zumal "die Aufgabe" nicht klar spezifiziert
ist. Wenn die konkreten Testaufgaben gemeint sind, reicht eine binäre
Antwortmöglichkeit (ja/nein).”
Condition: MPS, ID: 24 – “Der Schwierigkeitsgrad nimmt von Set 2

zu Set 3 extrem zu. Dies führt zu Frustrationen insbesondere bei dem
engen Zeitrahmen.”
Condition: NEO, ID: 25 – “Es war nicht hundertprozentig klar, ob die
Zeitvorgabe bei den Aufgaben massgeblich war oder die komplett
richtige Lösung.”
Condition: MPS, ID: 28 – “S3 war bockschwer, links- und rechts-
Ausdrücke sollte man im Bedienkonzept (Anleitung) besser erklären”
Condition: NEO, ID: 29 – “Beim CYPHER sheet wäre noch statt nur
die Queries anzuzeigen auch interessant die tatsächlichen Ergebnisse
zu sehen. Das ist dann weniger verwirrend.”
Condition: NEO, ID: 31 – “Das man zwei Zettel hat die man für
das konstruieren der Anfragen hat ist nicht ganz optimal, aber lässt
sich wohl nicht vermeiden. Ich hätte mir bessere Beispiele zu kom-
binierten Anfragen, Filtern und vor allem für die Relationen gewün-
scht, hauptsächlich für große Relationen, die in SET 3 auftauchten.”
Condition: MPS, ID: 32 – “Textuelle Beschreibung nicht konsistent
mit der IDE”
Condition: NEO, ID: 33 – “eine vernünftige nicht ruckelnde maus
bzw einstellung wäre nett”

188 evaluation appendix

Condition: NEO, ID: 35 – “Frage und Hinweis passten meist nicht
zusammen, Frage nach ’which’ aber expected answer war eine Zahl,
schien komisch”

a .6 .1 .3 Other feedback

“Condition: MPS, ID: 7 – viel Erfahrung mir keiner programmier-
sprache :-D”
“Condition: NEO, ID: 15 – eine deutsche und eine englische Tastatur
sind etwas verwirrend...”
“Condition: MPS, ID: 18 – Viel Glück!”
“Condition: MPS, ID: 24 – :)”

A C R O N Y M S

A
ANTLR

ANother Tool for Language Recognition. used on: p. 41
API

Application programming interface. used on: pp. 28, 77, 102,
119

AST
abstract syntax tree. used on: pp. 11, 35, 37, 38, 40, 41, 95, 119,
152, 161

C
CI

Continuous Integration. used on: pp. 124, 127, 128, 131
CITEC

Cluster of Excellence Cognitive Interactive Technology at
Bielefeld University. used on: pp. 53, 147

CITk
Cognitive Interaction Toolkit. used on: pp. 124, 125

CSRA
Cognitive Service Robotics Apartment as Ambient Host. used
on: pp. xii, xiv, 8, 45, 47, 49, 51, 53–58, 61, 64, 65, 72, 73, 75, 79,
101, 107, 131

D
DBMS

Database Management System. used on: pp. 4, 5, 11, 17, 18,
21–23, 25, 59

DIKW
data-information-knowledge-wisdom. used on: pp. xii, 11–13,
28, 58, 80

DSL
domain-specific language. used on: pp. v, xv, xvii, 5–7, 22, 31–
36, 38–41, 43–45, 47, 49, 57, 73, 76, 78, 79, 81, 101, 107, 117,
123–126, 130, 131, 135–140, 150, 152, 158, 161

E
EBNF

Extended Backus–Naur Form. used on: pp. xv, 33, 38, 41, 85,
86, 112, 157

EISE
Embodied Interaction in Smart Environments. used on: pp. xii,
3, 6–8, 11, 19, 21, 22, 24–28, 42, 45, 51–53, 55, 58, 62, 64, 70–73,

190 acronyms

75, 76, 81, 88, 93, 94, 98, 102, 107, 110, 128, 131, 133, 135, 136,
141–143, 151, 158, 161, 162, 165

EISEQD
Embodied Interaction in Smart Environments (EISE) Query De-
signer. used on: pp. xii, 81, 107, 109, 128, 130, 131, 133, 135, 140,
141, 146, 150–153, 158, 162, 165–167

EMF
Eclipse Modeling Framework. used on: p. 38

G
GDB

Graph Database Management System. used on: pp. xii, 4, 11,
12, 16, 18, 19, 21–24, 28, 44, 77, 96, 100, 101, 112, 119, 141

GDQ
graph database query. used on: pp. v, 81, 161, 162

GPL
General Purpose Language. used on: pp. 5, 30, 41, 78, 101

GQL
graph query language. used on: pp. 7, 12, 18, 22–24, 28, 34, 44,
76–78, 84, 85, 88, 89, 96, 98, 100, 101, 112, 116, 158

H
HRI

human–robot interaction. used on: pp. v, 3, 4, 6, 11, 14, 52, 54,
68, 72, 78, 161

I
IDE

integrated development environment. used on: pp. 6, 7, 33, 41,
47, 79–81, 83, 101, 102, 107, 119, 126, 128, 131, 135, 136, 152,
153, 157, 158, 162

L
LOC

(Source) Lines Of Code. used on: pp. 43, 79, 137, 138, 153
LOP

Language-oriented Programming. used on: p. 45

M
M2M

model-to-model. used on: pp. 33, 38, 40, 41, 108, 114, 116, 118,
158

M2T
model-to-text. used on: pp. 33, 40, 41, 108, 114, 116, 117

MDE
Model-driven Engineering. used on: p. 29

acronyms 191

MDSE
Model-driven Software Engineering. used on: pp. v, xii, 5–9, 11,
14, 15, 27, 29–32, 41–48, 58, 65, 72, 75, 76, 97, 102, 103, 131, 135,
136, 138–140, 152, 153, 161

MOF
Meta-Object Facility. used on: pp. xii, 31, 38, 41, 161

MPS
JetBrains Meta Programming System. used on: pp. xii, 39–41,
101, 107–110, 112–114, 117–120, 123–127, 136–138, 151, 152,
162

O
OGM

Object Graph Mapping. used on: p. 22
OMG

Object Management Group. used on: pp. xii, 31, 38, 80, 102
OWL

OWL Web Ontology Language. used on: pp. 63, 68

P
PGQL

Property Graph Query Language. used on: p. 27

R
RDF

Resource Description Framework. used on: pp. 19, 25, 63, 68,
78

ROS
Robot Operating System. used on: pp. 4, 13, 14

RSB
Robotics Service Bus. used on: pp. 56, 101

RST
Robotics Systems Types. used on: p. 101

S
SAT

boolean satisfiability problem. used on: p. 158
SLAM

Simultaneous Localization and Mapping. used on: p. 69
SMT

satisfiability modulo theories. used on: p. 158
SPARQL

SPARQL Protocol and Resource Description Framework (RDF)
Query Language. used on: pp. xv, 19, 23–26, 68, 78

SQL
Structured Query Language. used on: pp. 5, 17, 19, 23, 25–28,
79, 102, 147

192 acronyms

SUS
System Usability Scale. used on: pp. xiii, 139, 142, 145, 146, 148,
150–153, 165

T
TLX

NASA Task Load Index. used on: pp. xiii, 139, 140, 144–149,
151, 153, 157, 165

U
UEQ

User Experience Questionnaire. used on: pp. xiii, 139, 142, 145,
146, 148, 150, 151, 153, 166

UML
Unified Modeling Language. used on: pp. 36, 83

W
W3C

World Wide Web Consortium. used on: pp. 25, 66, 70, 91, 115

X
XML

Extensible Markup Language. used on: p. 127

G L O S S A RY

A
abstract syntax

“The abstract syntax is a data structure that can hold the se-
mantically relevant information expressed by a program. It
is typically a tree or a graph. It does not contain any de-
tails about the notation – for example, in textual languages, it
does not contain keywords, symbols or whitespace.” [Völ13a,
p. 26] used on: pp. xvii, 30, 33, 34, 38, 40, 42, 43, 47, 83, 108, 150

artifact
Artifacts of domain-specific language (DSL) generation are com-
monly defined as the results of model transformations. In the
case of model-to-text (M2T) transformation artifacts often they
refer to generated source code or text, while the results of
model-to-model (M2M) transformations commonly are other
models. Further, M2T artifacts can also be libraries or a com-
piled integrated development environment (IDE). In the context
of software building and Continuous Integration (CI) servers,
artifacts refer to any result of a successful build process. used
on: pp. 30, 32, 40, 47, 72, 76, 78, 81, 84, 114, 116, 123, 124, 126,
128, 135, 138, 152

B
behavior developers

Behavior developers are a group of actors commonly involved
in the Cognitive Service Robotics Apartment as Ambient Host
(CSRA) environment who are closely involved in the system
development and make use of available capabilities. They are
domain experts on how to create suitable interactions for the
naïve users via the available actuation and interaction mech-
anisms. Interaction design and creation is their core task in
this role and thus this task requires them to have appropriate
domain-specific knowledge and programming skills. As a re-
sult of their specificity, behavior developers do not necessarily
know which interaction relevant data, information, or knowl-
edge is stored, and in what format the data is stored and
accessed optimally. used on: pp. v, 4–6, 24, 58–60, 68, 70–72, 76,
79, 81, 128, 161

C
cognitive projectional editor gap

Developers are used to traditional text based inputs and the
common workflow involves only parser-based programming

194 glossary

support. Using a projectional editor for the first time conse-
quently requires the developers to change their mental model
and think on the model or concept layer. The learning curve
for unexperienced users is thus commonly very steep. How-
ever, once developers adjust and adapt their mental represen-
tation to the projectional schema, they overcome their cogni-
tive projectional editor gap and reach similar or better perfor-
mance as before. used on: pp. 152, 153, 157

concrete syntax
“The concrete syntax defines the notation with which users
can express programs. It may be textual, graphical, tabular or
a mix of these.” [Völ13a, p. 26] used on: pp. xii, xvii, 25, 30, 33,
34, 38–40, 42, 47, 83, 92, 94, 101, 108, 109, 113–117, 120, 121,
128, 129, 131, 137, 150, 157

D
denotational semantics

The denotational semantics of a language describe its behav-
ior by formalizing the meanings via mathematical constructs.
The syntax independence provides a maximal abstraction
to describe the language actions. In this thesis the pro-
vided semantics follow the notations as presented by Hen-
nessy [Hen90; Com17]. used on: pp. xvii, 8, 34, 83, 85, 86, 99,
102, 107, 116, 118, 162

domain-specific language
A domain-specific language is a programming language de-
signed to have limited expressiveness to provide a focused
access to a particular domain. This contrasts to the usual pro-
gramming approach makes extensive use of General Purpose
Languages (GPLs). Within large software system, individual
DSLs usually only target one specific aspect of the overall
system [Fow10]. used on: pp. v, xvii, 5–7, 23, 31–36, 38–41, 43–
45, 47, 49, 57, 73, 76, 78, 79, 81, 101, 107, 117, 123–126, 130, 131,
135–140, 150, 152, 158, 161

G
General Purpose Language

“General Purpose Programming Languages (GPLs) are a
means for programmers to instruct computers. All of them
are Turing complete, which means that they can be used to
implement anything that is computable with a Turing ma-
chine. It also means that anything expressible with one Tur-
ing complete programming language can also be expressed
with any other Turing complete programming language.
In that sense, all programming languages are interchange-
able.” [Völ13a, p. 27] used on: pp. 5, 30, 41, 78, 101

glossary 195

H
human–robot interaction

“Human–Robot Interaction (HRI) is a field of study dedi-
cated to understanding, designing, and evaluating robotic
systems for use by or with humans. Interaction, by def-
inition, requires communication between robots and hu-
mans.” [GS07] used on: pp. v, 3, 4, 6, 11, 14, 52, 54, 68, 72, 78,
161

L
labeled property multidigraph

A graph G which is defined by G = (V ,E, ρ, λ,σ). Such a
graph allows to (1) contain multiple directed edges, (2) attach
multiple properties from finite sets Prop and constants Const
to nodes and edges, (3) attach different labels from a finite
set Lab to nodes and edges, and (4) contain multiple edges
between nodes with identical source, target, and label(s). used
on: pp. 16, 18, 19, 22, 23, 25, 28, 44, 82, 84, 89, 97, 103

language workbench
“The essential [five] characteristics of a language workbench
[are:] [1] Users can freely define new languages which are
fully integrated with each other. [2] The primary source of
information is a persistent abstract representation. [3] Lan-
guage designers define a DSL in three main parts: schema,
editor(s), and generator(s). [4] Language users manipulate a
DSL through a projectional editor. [5] A language workbench
can persist incomplete or contradictory information in its ab-
stract representation.” [Fow05] used on: pp. xii, 7, 8, 37–39, 41,
42, 47, 83, 100, 101, 107, 112, 124, 136–138, 162

Language-oriented Programming
“Language Oriented Programming to mean the general style
of development which operates about the idea of building
software around a set of DSLs” [Fow05] used on: p. 45

loop
Loops, see loop for more information. used on: p. 15

M
M0

Layer 0 of the Object Management Group (OMG) meta-model-
ing layers: “the concrete level (any real situation, unique in
space and time, represented by a given model from)” [BG01,
p. 3] used on: p. 30

M1
Layer 1 of the OMG meta-modeling layers: “the model
level (any model with a corresponding meta-model from
M2” [BG01, p. 3] used on: pp. 30, 45, 77, 95, 161, 162

196 glossary

M2
Layer 2 of the OMG meta-modeling layers: “the meta-model
level (contains any kind of meta-model, including the UML
meta-model” [BG01, p. 3]) used on: pp. 30, 45, 77, 81, 95, 161

M3
Layer 3 of the OMG meta-modeling layers[BG01] called the
meta-meta-model level. used on: pp. 30, 81

meta-model
“A meta-model is a model whose instances define the schema
for another model.” [Fow10] It thus defines the abstract syn-
tax of a language which is used to define valid language con-
cepts [Völ13a]. used on: pp. xii, 5–7, 14, 30, 33, 37, 41–43, 47, 65,
75, 77, 81, 83–85, 88, 89, 91–95, 107, 110, 112, 114, 115, 130, 131,
137, 161

model
“A model is a simplification of a system built with an in-
tended goal in mind (. . .). The model should be able to an-
swer questions in place of the actual system. The answers
provided by the model should be the same as those given by
the system itself, on the condition that questions are within
the domain defined by the general goal of the system.” [BG01,
p. 2] used on: pp. 5–8, 11, 29, 30, 32, 37, 38, 40, 42–44, 47, 49, 51,
53, 59, 61, 65, 70, 72, 75–78, 80, 81, 83, 84, 88, 95, 97, 108, 109,
114, 116, 118, 123, 124, 127, 129, 135, 151, 161, 162

Model-driven Engineering
Synonym for Model-driven Software Engineering (MDSE). used
on: p. 29

Model-driven Software Engineering
“MDE is a software engineering approach that considers
models not just as documentation artefacts but also as
first-class citizens, where models might be used through-
out all engineering disciplines and in any application do-
main.” [Rod15a] used on: pp. v, 5–9, 11, 14, 15, 27, 29–32, 41–48,
58, 65, 72, 75, 76, 97, 102, 103, 131, 135, 136, 138–140, 152, 153,
161

module
A Jetbrains JetBrains Meta Programming System (MPS) mod-
ule organizes models into higher level groupings. There-
fore modules usually consist of multiple models along with
the required meta information describing the relevant mod-
ule properties and dependencies. MPS differentiates between
multiple types of modules: languages, generators, devkits,
and solutions. used on: pp. xii, 100, 101, 108–110, 112, 114, 117–
119, 121, 123–126, 131

glossary 197

O
Object Graph Mapping

A mapping between graph elements (nodes, edges, proper-
ties, etc.) and plain old Java objects. used on: p. 22

P
pragmatics

The pragmatics of a language are described by the practical
concerns and considerations of a DSL implementation. They
describe “how modeling languages can be used in a more ef-
ficient and appropriate way [...] [and] [...] also refers practical
aspects of using modeling languages and MDE on real-world
projects” [Rod15a, p. 6]. Examples are practical features such
as language completion, quick-fixes, or code refactoring. used
on: pp. 7, 38, 41, 42, 47, 76, 83, 92, 94, 100, 107, 108, 116, 118–
120, 130, 131

S
sharding

“Often, a busy data store is busy because different people
are accessing different parts of the dataset. In these circum-
stances we can support horizontal scalability by putting dif-
ferent parts of the data onto different servers – a technique
that’s called sharding.” [SF13, p. 46] used on: p. 22

smart environment
“Smart environments combine perceptual and reasoning ca-
pabilities with the other elements of ubiquitous computing in
an attempt to create a human-centered system that is embed-
ded in physical spaces. [. . .] A smart environment is a small
world where all kinds of smart devices are continuously
working to make inhabitants’ lives more comfortable” [CD05]
used on: pp. v, 3, 49, 52, 54, 57, 64, 72

solution
A MPS solution is the entry level module and represents a set
of models. End user models are often referred to as sandbox so-
lutions, while runtime solutions allow to provide code to other
modules, such as Java classes, sources or jar files. Lastly, plugin
solutions allow to extend the IDE functionality by providing
menu entries, tool panels, windows, or other features. used
on: pp. xii, 109, 114, 123, 128, 136

U
usability

Qualitative characteristic of software as defined in [ISO9126]
(withdrawn and succeeded by [ISO25010]) describing the ex-
tend to which software reaches a certain quality in use. used
on: pp. v, 45, 136–140, 151–153, 157, 159, 162

198 glossary

V
vertical prototype

“As soon as you have a reasonable understanding of the
TECHNOLOGY-INDEPENDENT ARCHITECTURE and the
TECHNOLOGY MAPPING, make sure you test the non-
functional requirements. Build a vertical prototype: an appli-
cation that uses all of the above and implements it only for a
very small subset of the functional requirements. This specif-
ically includes performance and load tests. [...] you have to
verify that the programming model does not result in prob-
lems with regard to QoS later. You have to make sure the
various aspects you define in your architecture really work
together.” [Völ+13, p. 269] used on: pp. v, 6–8, 45, 47, 101–103,
105, 107, 112, 117, 119, 125, 126, 130, 133, 135, 157, 162

B I B L I O G R A P H Y

involved and own publications

[Hol+16b] Patrick Holthaus et al. “How to Address Smart Homes with a
Social Robot? A Multi-modal Corpus of User Interactions with
an Intelligent Environment.” In: Proceedings of the Tenth Inter-
national Conference on Language Resources and Evaluation (LREC
2016). Ed. by Nicoletta Calzolari et al. Paris, France: European
Language Resources Association (ELRA), 2016. used on: pp. 51,
54, 64

[KWC18a] Norman Köster, Sebastian Wrede, and Philipp Cimiano. “A
Model Driven Approach for Eased Knowledge Storage and
Retrieval in Interactive HRI Systems.” In: 2018 Second IEEE In-
ternational Conference on Robotic Computing (IRC). IEEE, 2018,
pp. 113–120. doi: 10.1109/IRC.2018.00025. used on: p. 75

[KWC18b] Norman Köster, Sebastian Wrede, and Philipp Cimiano. “An
Ontology for Modelling Human Machine Interaction in Smart
Environments.” In: Proceedings of SAI Intelligent Systems Con-
ference (IntelliSys) 2016. Ed. by Yaxin Bi, Supriya Kapoor, and
Rahul Bhatia. Vol. 16. Lecture Notes in Networks and Systems.
Cham: Springer International Publishing, 2018, pp. 338–350.
isbn: 978-3-319-56990-1. doi: 10.1007/978- 3- 319- 56991-
8_25. used on: p. 51

[KWC18c] Norman Köster, Sebastian Wrede, and Philipp Cimiano. “Eval-
uating a Graph Query Language for Human-Robot Interaction
Data in Smart Environments.” In: Software Technologies: Applica-
tions and Foundations. Ed. by Martina Seidl and Steffen Zschaler.
STAF 2017 Collocated Workshops. Vol. 10748. Lecture Notes in
Computer Science. Cham: Springer International Publishing,
2018, pp. 263–279. isbn: 978-3-319-74729-3. doi: 10.1007/978-
3-319-74730-9_24. used on: pp. 135, 136

[KWC19] Norman Köster, Sebastian Wrede, and Philipp Cimiano. “Eval-
uation of a Model-driven Knowledge Storage and Retrieval
IDE for Interactive HRI Systems.” In: International Journal of
Semantic Computing 13 (02 2019), pp. 207–227. doi: 10.1142/
S1793351X19400099. used on: p. 136

[Wie+18] Johannes Wienke et al. “Model-Based Performance Testing for
Robotics Software Components.” In: 2018 Second IEEE Interna-
tional Conference on Robotic Computing (IRC). IEEE, 2018, pp. 25–
32. doi: 10.1109/IRC.2018.00013.

https://doi.org/10.1109/IRC.2018.00025
https://doi.org/10.1007/978-3-319-56991-8_25
https://doi.org/10.1007/978-3-319-56991-8_25
https://doi.org/10.1007/978-3-319-74730-9_24
https://doi.org/10.1007/978-3-319-74730-9_24
https://doi.org/10.1142/S1793351X19400099
https://doi.org/10.1142/S1793351X19400099
https://doi.org/10.1109/IRC.2018.00013

200 bibliography

general

[All84] James F. Allen. “Towards a general theory of action and
time.” In: Artificial Intelligence 23 (2 1984), pp. 123–154. issn:
00043702. doi: 10 . 1016 / 0004 - 3702(84) 90008 - 0. used on:
pp. 91, 93, 100

[Ang+17] Renzo Angles et al. “Foundations of Modern Query Languages
for Graph Databases.” In: ACM Computing Surveys 50 (5 2017),
pp. 1–40. issn: 03600300. doi: 10 . 1145 / 3104031. used on:
pp. 23–26

[Ang12] Renzo Angles. “A Comparison of Current Graph Database
Models.” In: 2012 IEEE 28th International Conference on Data En-
gineering Workshops. IEEE, 2012, pp. 171–177. doi: 10.1109/
ICDEW.2012.31. used on: pp. 17, 18

[Atk+00] C. G. Atkeson et al. “Using humanoid robots to study human
behavior.” In: IEEE Intelligent Systems 15 (4 2000), pp. 46–56.
issn: 1094-7167. doi: 10.1109/5254.867912. used on: p. 3

[Atz+13] Paolo Atzeni et al. “The relational model is dead, SQL is dead,
and I don’t feel so good myself.” In: ACM SIGMOD Record
42 (1 2013), p. 64. issn: 01635808. doi: 10 . 1145 / 2503792 .

2503808. used on: p. 17

[Bad+09] David A. Bader et al. “Hpc scalable graph analysis bench-
mark.” In: Citeseer. Citeseer 2009 (2009), pp. 1–10. used on: p. 21

[BAG18] Ankica Barišić, Vasco Amaral, and Miguel Goulão. “Usabil-
ity driven DSL development with USE-ME.” In: Computer
Languages, Systems & Structures 51 (2018), pp. 118–157. issn:
14778424. doi: 10.1016/j.cl.2017.06.005. used on: pp. 44–46,
137

[Bal+17] Ferenc Balint-Benczedi et al. “Storing and retrieving percep-
tual episodic memories for long-term manipulation tasks.” In:
2017 18th International Conference on Advanced Robotics (ICAR).
IEEE, 2017, pp. 25–31. doi: 10.1109/ICAR.2017.8023492. used
on: pp. 38, 68, 78, 91

[Bar+12] Ankica Barišić et al. “How to reach a usable DSL? Moving
toward a Systematic Evaluation.” Multi-Paradigm Modeling
2011. In: Electronic Communications of the EASST 50 (2012). doi:
10.14279/tuj.eceasst.50.741. used on: pp. 44, 45, 137

[Bar13] Ankica Barišić. “Iterative evaluation of domain-specific lan-
guages.” In: CEUR Workshop Proceedings 1115 (2013), pp. 100–
105. issn: 16130073. used on: pp. 45, 137

[BBL76] Barry W. Boehm, John R. Brown, and Mlity Lipow. “Quantita-
tive evaluation of software quality.” In: Proceedings of the 2nd
international conference on Software engineering. IEEE Computer
Society Press. 1976, pp. 592–605. used on: p. 135

[BC10] Jonathan Bohren and Steve Cousins. “The SMACH High-Level
Executive [ROS News].” In: IEEE Robotics & Automation Maga-
zine 17 (4 2010), pp. 18–20. issn: 1070-9932. doi: 10.1109/MRA.
2010.938836. used on: p. 14

https://doi.org/10.1016/0004-3702(84)90008-0
https://doi.org/10.1145/3104031
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1109/5254.867912
https://doi.org/10.1145/2503792.2503808
https://doi.org/10.1145/2503792.2503808
https://doi.org/10.1016/j.cl.2017.06.005
https://doi.org/10.1109/ICAR.2017.8023492
https://doi.org/10.14279/tuj.eceasst.50.741
https://doi.org/10.1109/MRA.2010.938836
https://doi.org/10.1109/MRA.2010.938836

bibliography 201

[BE17] Jasmin Bernotat and Friederike Eyssel. “An Evaluation Study
of Robot Designs for Smart Environments.” In: Proceedings of
the Companion of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction - HRI ’17. Ed. by Bilge Mutlu et al.
New York, New York, USA: ACM Press, 2017, pp. 87–88. doi:
10.1145/3029798.3038429. used on: p. 56

[BE18] Jasmin Bernotat and Friederike Eyssel. “Can(‘t) Wait to Have
a Robot at Home? - Japanese and German Users’ Attitudes To-
ward Service Robots in Smart Homes.” In: 2018 27th IEEE In-
ternational Symposium on Robot and Human Interactive Communi-
cation (RO-MAN). IEEE, 2018, pp. 15–22. doi: 10.1109/ROMAN.
2018.8525659. used on: p. 54

[Bee+18] Michael Beetz et al. “KnowRob 2.0. A 2nd generation knowl-
edge processing framework for cognition-enabled robotic
agents.” In: 2018 IEEE International Conference on Robotics and
Automation (ICRA) : 21-25 May 2018. Ed. by Kevin Lynch. [Pis-
cataway, NJ]: IEEE, 2018, pp. 512–519. isbn: 978-1-5386-3081-5.
used on: pp. 4, 5, 14, 44, 61, 63, 67, 78

[Ben73] Melvin A. Benarde. Our precarious habitat. WW Norton & Com-
pany, 1973. used on: p. 75

[BES19] Jasmin Bernotat, Friederike Eyssel, and Janik Sachse. “The
(Fe)male Robot: How Robot Body Shape Impacts First Impres-
sions and Trust Towards Robots.” In: International Journal of So-
cial Robotics 85 (4 2019), p. 768. issn: 1875-4791. doi: 10.1007/
s12369-019-00562-7. used on: p. 4

[BG01] J. Bezivin and O. Gerbe. “Towards a precise definition of the
OMG/MDA framework.” In: Proceedings 16th Annual Interna-
tional Conference on Automated Software Engineering (ASE 2001).
IEEE Comput. Soc, 2001, pp. 273–280. doi: 10.1109/ASE.2001.
989813. used on: pp. 29, 195, 196

[BKM08] Aaron Bangor, Philip T. Kortum, and James T. Miller.
“An Empirical Evaluation of the System Usability Scale.”
In: International Journal of Human-Computer Interaction 24

(6 2008), pp. 574–594. issn: 1044-7318. doi: 10 . 1080 /

10447310802205776. used on: pp. 139, 151

[Bla09] Elizabeth Blackburn. “A conversation with Elizabeth Black-
burn. Interview by Misia Landau.” In: Clinical chemistry 55

(4 2009), pp. 835–841. doi: 10.1373/clinchem.2008.119578.
eprint: 19233908. used on: p. 11

[Bri08] Robert Bringhurst. The elements of typographic style. Version 3.2.
Point Roberts, Wash.: Hartley & Marks, 2008. isbn: 978-0-
88179-206-5. used on: p. 221

[Bro90] Rodney A. Brooks. “Elephants don’t play chess.” In: Robotics
and Autonomous Systems 6 (1-2 1990), pp. 3–15. issn: 09218890.
doi: 10.1016/S0921-8890(05)80025-9. used on: p. 52

[Bro96] John Brooke. “SUS-A quick and dirty usability scale.” In: Us-
ability evaluation in industry 189 (194 1996), pp. 4–7. used on:
pp. 135, 139, 148, 151

https://doi.org/10.1145/3029798.3038429
https://doi.org/10.1109/ROMAN.2018.8525659
https://doi.org/10.1109/ROMAN.2018.8525659
https://doi.org/10.1007/s12369-019-00562-7
https://doi.org/10.1007/s12369-019-00562-7
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1373/clinchem.2008.119578
19233908
https://doi.org/10.1016/S0921-8890(05)80025-9

202 bibliography

[BTW15] Michael Beetz, Moritz Tenorth, and Jan Winkler. “Open-
EASE.” In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 1983–1990. doi: 10.1109/
ICRA.2015.7139458. used on: pp. 63, 68

[But+19] Arvid Butting et al. “Systematic Composition of Independent
Language Features.” In: Journal of Systems and Software (2019).
issn: 01641212. doi: 10.1016/j.jss.2019.02.026. used on:
p. 37

[Cav+14] Filippo Cavallo et al. “Improving Domiciliary Robotic Services
by Integrating the ASTRO Robot in an AmI Infrastructure.” In:
Gearing up and accelerating cross-fertilization between academic and
industrial robotics research in Europe. Ed. by Florian Röhrbein,
Germano Veiga, and Ciro Natale. Vol. 94. Springer Tracts in
Advanced Robotics. Cham: Springer International Publishing,
2014, pp. 267–282. isbn: 978-3-319-02933-7. doi: 10.1007/978-
3-319-02934-4_13. used on: p. 53

[CB76] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL.” In:
Proceedings of the 1976 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control - FIDET ’76. Ed. by Gene
Altshuler, Randall Rustin, and Bernard Plagman. New York,
New York, USA: ACM Press, 1976, pp. 249–264. doi: 10.1145/
800296.811515. used on: p. 17

[CD05] Diane J. Cook and Sajal K. Das. Smart environments. Technologies,
protocols, and applications. Vol. v.43. Wiley Series on Parallel and
Distributed Computing. Hoboken, NJ: John Wiley, 2005. isbn:
978-0-471-54448-7. doi: 10.1002/047168659X. used on: pp. 3, 52,
197

[Cer+15] Mario Cervera et al. “On the usefulness and ease of use of a
model-driven Method Engineering approach.” In: Information
Systems 50 (2015), pp. 36–50. issn: 03064379. doi: 10.1016/j.
is.2015.01.006. used on: p. 138

[Cla66] Berge Claude. Théorie des graphes et ses applications. French.
Dunod, Paris, 1966. used on: p. 15

[Cod70] E. F. Codd. “A relational model of data for large shared data
banks.” In: Communications of the ACM 13 (6 1970), pp. 377–387.
issn: 00010782. doi: 10.1145/362384.362685. used on: p. 17

[Com+12] Michael Compton et al. “The SSN ontology of the W3C se-
mantic sensor network incubator group.” In: Journal of Web Se-
mantics 17 (2012), pp. 25–32. issn: 15708268. doi: 10.1016/j.
websem.2012.05.003. used on: pp. 66, 70

[Com17] Benoit Combemale. Engineering modeling languages. Chapman
& Hall/CRC Innovations in Software Engineering and Soft-
ware Development. Boca Raton, Florida, London, [England],
and New York: CRC Press, 2017. isbn: 978-1-315-38793-2. used
on: pp. 5, 29, 33–35, 44–47, 81, 194

https://doi.org/10.1109/ICRA.2015.7139458
https://doi.org/10.1109/ICRA.2015.7139458
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1007/978-3-319-02934-4_13
https://doi.org/10.1007/978-3-319-02934-4_13
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1002/047168659X
https://doi.org/10.1016/j.is.2015.01.006
https://doi.org/10.1016/j.is.2015.01.006
https://doi.org/10.1145/362384.362685
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1016/j.websem.2012.05.003

bibliography 203

[CSW16] Birte Carlmeyer, David Schlangen, and Britta Wrede. “Explor-
ing self-interruptions as a strategy for regaining the attention
of distracted users.” In: Proceedings of the 1st Workshop on Em-
bodied Interaction with Smart Environments - EISE ’16. Ed. by Un-
known. New York, New York, USA: ACM Press, 2016, pp. 1–6.
doi: 10.1145/3008028.3008029. used on: p. 4

[Dat12] Chris J. Date. SQL and relational theory. How to write accu-
rate SQL code. 2nd ed. Theory in practice. Sebastopol, Calif.:
O’Reilly, 2012. isbn: 978-1-4493-1640-2. used on: p. 17

[Dat84] C. J. Date. “A critique of the SQL database language.” In: ACM
SIGMOD Record 14 (3 1984), pp. 8–54. issn: 01635808. doi:
10.1145/984549.984551. used on: p. 17

[Dat87] C. J. Date. “Where SQL falls short.” In: Datamation 33 (9 1987),
pp. 83–89. used on: p. 17

[Dom+10] D. Dominguez-Sal et al. “Survey of Graph Database Perfor-
mance on the HPC Scalable Graph Analysis Benchmark.” In:
Web-Age Information Management. Ed. by Heng Tao Shen et al.
Vol. 6185. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 37–48. isbn: 978-
3-642-16719-5. doi: 10.1007/978-3-642-16720-1_4. used on:
pp. 20, 21

[Dup07] Lyn Dupré. BUGS in writing. A guide to debugging your prose.
Rev ed., 10. print. Boston: Addison-Wesley, 2007. isbn: 978-0-
201-37921-1. used on: p. 221

[DZK15] Andre Dietrich, Sebastian Zug, and Jorg Kaiser. “SE-
LECTSCRIPT: A query language for robotic world models and
simulations.” In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 6254–6260. doi: 10 .

1109/ICRA.2015.7140077. used on: p. 79

[EGR12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Ren-
del. “Language composition untangled.” In: Proceedings of the
Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions - LDTA ’12. Ed. by Anthony Sloane and Suzana Andova.
New York, New York, USA: ACM Press, 2012, pp. 1–8. doi:
10.1145/2427048.2427055. used on: p. 37

[Erd+13] Sebastian Erdweg et al. “The State of the Art in Language
Workbenches.” In: Software Language Engineering. Ed. by David
Hutchison et al. Vol. 8225. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2013, pp. 197–217.
isbn: 978-3-319-02653-4. doi: 10.1007/978- 3- 319- 02654-
1_11. used on: pp. 35, 81

[Erd+15] Sebastian Erdweg et al. “Evaluating and comparing language
workbenches.” In: Computer Languages, Systems & Structures 44

(2015), pp. 24–47. issn: 14778424. doi: 10.1016/j.cl.2015.
08.007. used on: pp. 38, 42

[ES12] Ayssam Elkady and Tarek Sobh. “Robotics Middleware: A
Comprehensive Literature Survey and Attribute-Based Bibli-
ography.” In: Journal of Robotics 2012 (5 2012), pp. 1–15. issn:
1687-9600. doi: 10.1155/2012/959013. used on: p. 5

https://doi.org/10.1145/3008028.3008029
https://doi.org/10.1145/984549.984551
https://doi.org/10.1007/978-3-642-16720-1_4
https://doi.org/10.1109/ICRA.2015.7140077
https://doi.org/10.1109/ICRA.2015.7140077
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1155/2012/959013

204 bibliography

[EU17] RobMoSys EU. H2020 Project RobMoSys: Composable Models and
Software for Robtics Systems-Towards an EU Digital Industrial Plat-
form for Robotics. Tech. rep. EU, 2017. used on: p. 44

[EV06] Sven Efftinge and Markus Völter. “oAW xText: A framework
for textual DSLs.” In: Workshop on Modeling Symposium at
Eclipse Summit. 2006, p. 118. used on: p. 38

[FB00] Martin Fowler and Kent Beck. Refactoring: Improving the design
of existing code. 4. print. Object technology, software engineer-
ing. Reading, Mass. [u.a.]: Addison-Wesley, 2000. isbn: 978-0-
201-48567-7. used on: p. 32

[FB14] Normen E. Fenton and James Bieman. Software metrics. A rigor-
ous and practical approach / Norman E. Fenton and James Bieman.
Third edition. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development. Boca Raton: CRC
Press, 2014. isbn: 978-1-4398-3823-5. used on: p. 135

[Fer15] Ghofrane Fersi. “Middleware for Internet of Things: A Study.”
In: 2015 International Conference on Distributed Computing in Sen-
sor Systems. IEEE, 2015, pp. 230–235. doi: 10.1109/DCOSS.2015.
43. used on: p. 5

[Fis+18] Tobias Fischer et al. “iCub-HRI: A Software Framework for
Complex Human–Robot Interaction Scenarios on the iCub Hu-
manoid Robot.” In: Frontiers in Robotics and AI 5 (2018), p. 4807.
doi: 10.3389/frobt.2018.00022. used on: p. 5

[FMF12] Andy P. Field, Jeremy Miles, and Zoë Field. Discovering statis-
tics using R. London: SAGE, 2012. isbn: 978-1-4462-0046-9.
used on: p. 147

[FND03] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. “A
survey of socially interactive robots.” In: Robotics and Autono-
mous Systems 42 (3-4 2003), pp. 143–166. issn: 09218890. doi:
10.1016/S0921-8890(02)00372-X. used on: p. 3

[Foo13] Tully Foote. “tf: The transform library.” In: 2013 IEEE Con-
ference on Technologies for Practical Robot Applications (TePRA).
IEEE, 2013, pp. 1–6. doi: 10.1109/TePRA.2013.6556373. used
on: pp. 4, 14

[Fou+17] Dehann Fourie et al. “SLAMinDB: Centralized graph data-
bases for mobile robotics.” In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2017, pp. 6331–
6337. doi: 10.1109/ICRA.2017.7989749. used on: pp. 11, 69

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education,
2010. used on: pp. 5, 31, 194, 196

[Fra+18] Nadime Francis et al. “Cypher.” In: Proceedings of the 2018 Inter-
national Conference on Management of Data - SIGMOD ’18. Ed. by
Gautam Das, Christopher Jermaine, and Philip Bernstein. New
York, New York, USA: ACM Press, 2018, pp. 1433–1445. doi:
10.1145/3183713.3190657. used on: p. 24

[Gam07] Erich Gamma. Design patterns. Elements of reusable object ori-
ented software. Addison-Wesley professional computing series.
Boston [u.a.]: Addison-Wesley, 2007. isbn: 978-0-201-63361-0.
used on: p. 127

https://doi.org/10.1109/DCOSS.2015.43
https://doi.org/10.1109/DCOSS.2015.43
https://doi.org/10.3389/frobt.2018.00022
https://doi.org/10.1016/S0921-8890(02)00372-X
https://doi.org/10.1109/TePRA.2013.6556373
https://doi.org/10.1109/ICRA.2017.7989749
https://doi.org/10.1145/3183713.3190657

bibliography 205

[Gar+07] E. Garcia et al. “The evolution of robotics research.” In: IEEE
Robotics & Automation Magazine 14 (1 2007), pp. 90–103. issn:
1070-9932. doi: 10.1109/MRA.2007.339608. used on: p. 3

[GGA10] Pedro Gabriel, Miguel Goulão, and Vasco Amaral. “Do Soft-
ware Languages Engineers Evaluate their Languages?” In: Pro-
ceedings of the XIII Congreso Iberoamericano en "Software Engineer-
ing" (CIbSE’2010) (2010). used on: pp. 45, 135, 136, 159

[Gro08] Jonathan L. Gross, ed. Handbook of graph theory. [Online-ausg.]
Discrete mathematics and its applications. Boca Raton: CRC
Press, 2008. isbn: 978-0-203-49020-4. used on: p. 15

[GS07] Michael A. Goodrich and Alan C. Schultz. “Human-Robot In-
teraction: A Survey.” In: Foundations and Trends® in Human-
Computer Interaction 1 (3 2007), pp. 203–275. issn: 1551-3955.
doi: 10.1561/1100000005. used on: pp. 3, 195

[Guo+14] Yong Guo et al. “How Well Do Graph-Processing Platforms
Perform? An Empirical Performance Evaluation and Analy-
sis.” In: 2014 IEEE 28th International Parallel and Distributed Pro-
cessing Symposium. IEEE, 2014, pp. 395–404. doi: 10 . 1109 /

IPDPS.2014.49. used on: p. 22

[Har06] Sandra G. Hart. “NASA-task load index (NASA-TLX); 20 years
later.” In: Proceedings of the human factors and ergonomics society
annual meeting. Sage publications Sage CA: Los Angeles, CA.
2006, pp. 904–908. doi: 10.1037/e577632012- 009. used on:
p. 140

[HC15] Justin Huang and Maya Cakmak. “Supporting mental model
accuracy in trigger-action programming.” In: Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing - UbiComp ’15. Ed. by Kenji Mase et al. New
York, New York, USA: ACM Press, 2015, pp. 215–225. doi:
10.1145/2750858.2805830. used on: p. 158

[Heb09] John Hebeler. Semantic Web programming. Indianapolis, IN: Wi-
ley, 2009. isbn: 978-0-470-41801-7. used on: p. 25

[Hen74] Nicholas L. Henry. “Knowledge Management: A New Con-
cern for Public Administration.” In: Public Administration Re-
view 34 (3 1974), p. 189. issn: 00333352. doi: 10.2307/974902.
used on: p. 17

[Hen90] Matthew Hennessy. The semantics of programming languages.
An elementary introduction using structural operational seman-
tics. Chichester: Wiley, 1990. isbn: 978-0-471-92772-3. used on:
pp. 33, 34, 194

[HFB16] Florian Häser, Michael Felderer, and Ruth Breu. “An inte-
grated tool environment for experimentation in domain spe-
cific language engineering.” In: Proceedings of the 20th Interna-
tional Conference on Evaluation and Assessment in Software Engi-
neering - EASE ’16. Ed. by Sarah Beecham, Barbara Kitchenham,
and Stephen G. MacDonell. New York, New York, USA: ACM
Press, 2016, pp. 1–5. doi: 10.1145/2915970.2916010. used on:
p. 137

https://doi.org/10.1109/MRA.2007.339608
https://doi.org/10.1561/1100000005
https://doi.org/10.1109/IPDPS.2014.49
https://doi.org/10.1109/IPDPS.2014.49
https://doi.org/10.1037/e577632012-009
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.2307/974902
https://doi.org/10.1145/2915970.2916010

206 bibliography

[Hoc+16] Nico Hochgeschwender et al. “Graph-based software knowl-
edge: Storage and semantic querying of domain models for
run-time adaptation.” In: 2016 IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR). IEEE, 2016, pp. 83–90. doi: 10.1109/SIMPAR.2016.
7862379. used on: pp. 11, 43

[Hol+16a] Patrick Holthaus et al. “1st international workshop on em-
bodied interaction with smart environments (workshop sum-
mary).” In: Proceedings of the 18th ACM International Conference
on Multimodal Interaction - ICMI 2016. Ed. by Yukiko I. Nakano
et al. New York, New York, USA: ACM Press, 2016, pp. 589–
590. doi: 10.1145/2993148.3007628. used on: p. 3

[Hon+12] Sungpack Hong et al. “Green-Marl: A DSL for Easy and Ef-
ficient Graph Analysis.” In: Proceedings of the seventeenth inter-
national conference on Architectural Support for Programming Lan-
guages and Operating Systems - ASPLOS ’12. Ed. by Tim Harris
and Michael L. Scott. New York, New York, USA: ACM Press,
2012, p. 349. doi: 10.1145/2150976.2151013. used on: p. 43

[HP04] Jerry R. Hobbs and Feng Pan. “An ontology of time for the
semantic web.” In: ACM Transactions on Asian Language Infor-
mation Processing 3 (1 2004), pp. 66–85. issn: 15300226. doi:
10.1145/1017068.1017073. used on: pp. 70, 91, 115

[HP18] Olaf Hartig and Jorge Pérez. “Semantics and Complexity of
GraphQL.” In: Proceedings of the 2018 World Wide Web Confer-
ence on World Wide Web - WWW ’18. Ed. by Pierre-Antoine
Champin et al. New York, New York, USA: ACM Press, 2018,
pp. 1155–1164. doi: 10.1145/3178876.3186014. used on: pp. 27,
28

[HR00] David Harel and Bernhard Rumpe. “Modeling languages: Syn-
tax, semantics and all that stu.” In: N/A n/a (2000), pp. 1–28.
used on: pp. 33, 83

[HRH16] Martin Hoppen, Juergen Rossmann, and Sebastian Hiester.
“Managing 3D Simulation Models with the Graph Database
Neo4j.” In: DBKDA 2016 (2016), p. 88. used on: p. 11

[HS88] Sandra G. Hart and Lowell E. Staveland. “Development of
NASA-TLX (Task Load Index): Results of Empirical and The-
oretical Research.” In: Human Mental Workload. Ed. by N.
Meshkati and P. A. Hancock. Vol. 52. Advances in Psychol-
ogy. Elsevier, 1988, pp. 139–183. isbn: 978-0-444-70388-0. doi:
10.1016/S0166-4115(08)62386-9. used on: p. 139

[Hut+11] John Hutchinson et al. “Empirical assessment of MDE in indus-
try.” In: Proceeding of the 33rd international conference on Software
engineering - ICSE ’11. Ed. by Richard N. Taylor, Harald Gall,
and Nenad Medvidović. New York, New York, USA: ACM
Press, 2011, p. 471. doi: 10.1145/1985793.1985858. used on:
p. 42

[ISO14543] KNX. 14543. ISO/IEC. 2008. url: https://www.knx.org/ (vis-
ited on 2018-10-08). used on: pp. 53, 56

https://doi.org/10.1109/SIMPAR.2016.7862379
https://doi.org/10.1109/SIMPAR.2016.7862379
https://doi.org/10.1145/2993148.3007628
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/1017068.1017073
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/1985793.1985858
https://www.knx.org/

bibliography 207

[ISO25010] ISO/IEC JTC 1/SC 7 Software and systems engineering. Sys-
tems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE). 25010. ISO/IEC. Ver-
sion 2011. 2011. url: https://www.iso.org/standard/35733.
html (visited on 2019-07-10). used on: pp. 137, 197

[ISO9126] ISO/IEC JTC 1/SC 7 Software and systems engineering.
Software engineering – Product quality. 9126. ISO/IEC. Ver-
sion 1:2001. 2001. url: https : / / www . iso . org / standard /

22749.html (visited on 2019-07-10). used on: pp. 137, 197

[Jon+14] Matt Jones et al., eds. Proceedings of the 32nd annual ACM
conference on Human factors in computing systems - CHI ’14.
the 32nd annual ACM conference (Toronto, Ontario, Canada).
New York, New York, USA: ACM Press, 2014. isbn: 978-1-
4503-2473-1. doi: 10.1145/2556288. used on: p. 57

[KBM16] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. “Domain-
Specific Languages: A Systematic Mapping Study.” In: In-
formation and Software Technology 71 (2016), pp. 77–91. issn:
09505849. doi: 10 . 1016 / j . infsof . 2015 . 11 . 001. used on:
pp. 45, 135–137, 159

[Kel84] J. F. Kelley. “An iterative design methodology for user-friendly
natural language office information applications.” In: ACM
Transactions on Information Systems 2 (1 1984), pp. 26–41. issn:
10468188. doi: 10.1145/357417.357420. used on: p. 64

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Monti-
Core: a framework for compositional development of domain
specific languages.” In: International Journal on Software Tools for
Technology Transfer 12 (5 2010), pp. 353–372. issn: 1433-2779.
doi: 10.1007/s10009-010-0142-1. used on: p. 37

[KTK09] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. “Evaluat-
ing the use of domain-specific modeling in practice.” In: 9th
OOPSLA workshop on Domain-Specific Modeling. 2009. used on:
p. 136

[KWB03] Anneke Kleppe, Jos B. Warmer, and Wim Bast. MDA explained.
The model driven architecture ; practice and promise. Safari online
books. Reading, Mass. and Sebastopol, CA: Addison-Wesley
and Safari Books Online, 2003. isbn: 978-0-321-19442-8. used
on: p. 30

[Lem+10] Séverin Lemaignan et al. “ORO, a knowledge management
platform for cognitive architectures in robotics.” In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE, 2010, pp. 3548–3553. doi: 10.1109/IROS.2010.
5649547. used on: pp. 4, 14, 44, 68, 78

[Len95] Douglas B. Lenat. “CYC.” In: Communications of the ACM 38

(11 1995), pp. 33–38. issn: 00010782. doi: 10.1145/219717.
219745. used on: p. 62

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://doi.org/10.1145/2556288
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/357417.357420
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1145/219717.219745
https://doi.org/10.1145/219717.219745

208 bibliography

[LHS08] Bettina Laugwitz, Theo Held, and Martin Schrepp. “Construc-
tion and Evaluation of a User Experience Questionnaire.”
In: HCI and Usability for Education and Work. Ed. by Andreas
Holzinger. Vol. 5298. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 63–
76. isbn: 978-3-540-89349-3. doi: 10.1007/978-3-540-89350-
9_6. used on: pp. 135, 139, 148

[Lie+14a] Grischa Liebel et al. “Assessing the State-of-Practice of Model-
Based Engineering in the Embedded Systems Domain.” In:
Model-Driven Engineering Languages and Systems. Ed. by Juer-
gen Dingel et al. Vol. 8767. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2014, pp. 166–
182. isbn: 978-3-319-11652-5. doi: 10.1007/978-3-319-11653-
2_11. used on: p. 42

[Lie+14b] Florian Lier et al. “The Cognitive Interaction Toolkit – Improv-
ing Reproducibility of Robotic Systems Experiments.” In: Simu-
lation, Modeling, and Programming for Autonomous Robots. Ed. by
Davide Brugali et al. Vol. 8810. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2014, pp. 400–
411. isbn: 978-3-319-11899-4. doi: 10.1007/978-3-319-11900-
7_34. used on: p. 124

[Lik32] Rensis Likert. “A technique for the measurement of attitudes.”
In: Archives of psychology (1932). used on: p. 146

[LLM15] Ruijiao Li, Bowen Lu, and Klaus D. McDonald-Maier. “Cog-
nitive assisted living ambient system: a survey.” In: Digital
Communications and Networks 1 (4 2015), pp. 229–252. issn:
23528648. doi: 10.1016/j.dcan.2015.10.003. used on: pp. 55,
61

[Loo+14] Markus Look et al. “Black-box Integration of Heterogeneous
Modeling Languages for Cyber-Physical Systems.” In: CoRR
abs/1409.2388 (2014). used on: p. 37

[Lou+15] João Ricardo Lourenço et al. “Choosing the right NoSQL data-
base for the job: a quality attribute evaluation.” In: Journal of
Big Data 2 (1 2015), p. 12. doi: 10.1186/s40537-015-0025-0.
used on: p. 22

[Lüt+11] Ingo Lütkebohle et al. “The Task-State Coordination Pattern,
with applications in Human-Robot-Interaction.” In: Learning,
Planning and Sharing Robot Knowledge for Human-Robot Interac-
tion. Ed. by Rachid Alami et al. Dagstuhl Seminar Proceedings.
Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2011. used on: p. 14

[Mai83] David Maier. The theory of relational databases. Computer science
press Rockville, 1983. isbn: 978-0-914894-42-1. used on: p. 17

[Mal+15] Anupama Mallik et al. “Ontology based context aware situa-
tion tracking.” In: 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT). IEEE, 2015, pp. 687–692. doi: 10.1109/WF-
IoT.2015.7389137. used on: p. 67

[Mat+06] Cynthia Matuszek et al. “An introduction to the syntax and
content of Cyc.” In: UMBC Computer Science and Electrical Engi-
neering Department Collection (2006). used on: p. 63

https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-319-11653-2_11
https://doi.org/10.1007/978-3-319-11653-2_11
https://doi.org/10.1007/978-3-319-11900-7_34
https://doi.org/10.1007/978-3-319-11900-7_34
https://doi.org/10.1016/j.dcan.2015.10.003
https://doi.org/10.1186/s40537-015-0025-0
https://doi.org/10.1109/WF-IoT.2015.7389137
https://doi.org/10.1109/WF-IoT.2015.7389137

bibliography 209

[MB11] Leonardo de Moura and Nikolaj Bjørner. “Satisfiability mod-
ulo theories.” In: Communications of the ACM 54 (9 2011), p. 69.
issn: 00010782. doi: 10 . 1145 / 1995376 . 1995394. used on:
p. 158

[McC+14] Robert Campbell McColl et al. “A performance evaluation of
open source graph databases.” In: Proceedings of the first work-
shop on Parallel programming for analytics applications - PPAA
’14. Ed. by Manoj Kumar, Joefon Jann, and Priya Nagpurkar.
New York, New York, USA: ACM Press, 2014, pp. 11–18. doi:
10.1145/2567634.2567638. used on: p. 22

[MCD12] L. M. McAvoy, Liming Chen, and Mark Donnelly. “An
ontology-based context management system for smart envi-
ronments.” In: UBICOMM 2012 - 6th International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies
(2012), pp. 18–23. used on: p. 66

[MDF05] Geoffrey R. Marczyk, David DeMatteo, and David Festinger.
Essentials of research design and methodology. Essentials of behav-
ioral science series. Hoboken, N.J: John Wiley & Sons, 2005.
isbn: 978-0-471-47053-3. used on: pp. 142, 146

[Mén+16] David Méndez-Acuña et al. “Leveraging Software Product
Lines Engineering in the development of external DSLs: A
systematic literature review.” In: Computer Languages, Systems
& Structures 46 (2016), pp. 206–235. issn: 14778424. doi: 10.
1016/j.cl.2016.09.004. used on: p. 35

[MFN06] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “YARP:
yet another robot platform.” In: International Journal of Advanced
Robotic Systems 3 (1 2006), p. 8. used on: p. 13

[Mik15] Peter Mika. “On Schema.org and Why It Matters for the Web.”
In: IEEE Internet Computing 19 (4 2015), pp. 52–55. issn: 1089-
7801. doi: 10.1109/MIC.2015.81. used on: p. 67

[MK14] Dan McCreary and Ann Kelly. Making sense of NoSQL. A guide
for managers and the rest of us / Dan McCreary, Ann Kelly. Shel-
ter Island, New York: Manning, 2014. isbn: 978-1-61729-107-4.
used on: p. 18

[Mor+13] Meg E. Morris et al. “Smart-home technologies to assist older
people to live well at home.” In: Journal of aging science 1 (1
2013), pp. 1–9. used on: p. 53

[Mpi+15] Steve Ataky Tsham Mpinda et al. “Evaluation of graph data-
bases performance through indexing techniques.” In: Interna-
tional Journal of Artificial Intelligence & Applications (IJAIA) Vol 6

(2015), pp. 87–98. used on: p. 22

[Msh+18] Haider Mshali et al. “A survey on health monitoring systems
for health smart homes.” In: International Journal of Industrial
Ergonomics 66 (2018), pp. 26–56. issn: 01698141. doi: 10.1016/
j.ergon.2018.02.002. used on: p. 66

https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/2567634.2567638
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1109/MIC.2015.81
https://doi.org/10.1016/j.ergon.2018.02.002
https://doi.org/10.1016/j.ergon.2018.02.002

210 bibliography

[NE16] Chandrakana Nandi and Michael D. Ernst. “Automatic Trigger
Generation for Rule-based Smart Homes.” In: Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for
Security - PLAS’16. Ed. by Toby Murray and Deian Stefan. New
York, New York, USA: ACM Press, 2016, pp. 97–102. doi: 10.
1145/2993600.2993601. used on: p. 158

[Net+08] A. D. Neto et al. “Improving Evidence about Software Tech-
nologies: A Look at Model-Based Testing.” In: IEEE Software 25

(3 2008), pp. 10–13. issn: 0740-7459. doi: 10.1109/MS.2008.64.
used on: pp. 45, 136, 140

[NHW14] Arne Nordmann, Nico Hochgeschwender, and Sebastian
Wrede. “A Survey on Domain-Specific Languages in Robot-
ics.” In: Simulation, Modeling, and Programming for Autonomous
Robots. Ed. by Davide Brugali et al. Vol. 8810. Lecture Notes in
Computer Science. Cham: Springer International Publishing,
2014, pp. 195–206. isbn: 978-3-319-11899-4. doi: 10.1007/978-
3-319-11900-7_17. used on: p. 43

[NLK12] Nhan Nguyen-Duc-Thanh, Sungyoung Lee, and Donghan Kim.
“Two-Stage Hidden Markov Model in Gesture Recognition for
Human Robot Interaction.” In: International Journal of Advanced
Robotic Systems 9 (2 2012), p. 39. doi: 10.5772/50204. used on:
p. 14

[NM+01] Natalya F. Noy, Deborah L. McGuinness, et al. Ontology devel-
opment 101: A guide to creating your first ontology. Tech. rep. Stan-
ford knowledge systems laboratory technical report KSL-01-05:
Stanford University, 2001. used on: p. 65

[NMC99] Clifford Nass, Youngme Moon, and Paul Carney. “Are Peo-
ple Polite to Computers? Responses to Computer-Based Inter-
viewing Systems1.” In: Journal of Applied Social Psychology 29 (5
1999), pp. 1093–1109. issn: 0021-9029. doi: 10.1111/j.1559-
1816.1999.tb00142.x. used on: p. 144

[NN91] Riis Hanne Nielson and Flemming Nielson. Semantics with ap-
plications. A formal introduction. Chichester [u.a.]: Wiley, 1991.
isbn: 978-0-471-92980-2. used on: pp. 33, 34

[Nor16] Arne Nordmann. “Modeling of motion primitive architectures
using domain-specific languages.” Doctoral dissertation. Biele-
feld: Universität Bielefeld, 2016. used on: pp. 44–46

[Omg08] Q. V.T. Omg. “Meta object facility (mof) 2.0
query/view/transformation specification.” In: Final Adopted
Specification (November 2005) (2008). used on: pp. 30, 31

[Pes+15] Ana Pescador et al. “Pattern-based development of Domain-
Specific Modelling Languages.” In: 2015 ACM/IEEE 18th Inter-
national Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, 2015, pp. 166–175. doi: 10.1109/
MODELS.2015.7338247. used on: p. 76

[Pic10] Robert Pickering. “Language-Oriented Programming.” In: Be-
ginning F#. Ed. by Robert Pickering. Berkeley, CA: Apress, 2010,
pp. 327–349. isbn: 978-1-4302-2389-4. doi: 10.1007/978-1-
4302-2390-0_12. used on: pp. 35, 81

https://doi.org/10.1145/2993600.2993601
https://doi.org/10.1145/2993600.2993601
https://doi.org/10.1109/MS.2008.64
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.5772/50204
https://doi.org/10.1111/j.1559-1816.1999.tb00142.x
https://doi.org/10.1111/j.1559-1816.1999.tb00142.x
https://doi.org/10.1109/MODELS.2015.7338247
https://doi.org/10.1109/MODELS.2015.7338247
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1007/978-1-4302-2390-0_12

bibliography 211

[PS16] Nick Papoulias and Serge Stinckwich. “Towards projection:
mapping reflection onto the userland.” In: Companion Proceed-
ings of the 15th International Conference on Modularity - MOD-
ULARITY Companion 2016. Ed. by Lidia Fuentes, Don Batory,
and Krzysztof Czarnecki. New York, New York, USA: ACM
Press, 2016, pp. 172–175. doi: 10.1145/2892664.2892696. used
on: p. 151

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating
System.” In: ICRA workshop on open source software. Kobe, Japan.
2009, p. 5. used on: p. 13

[Ric+06] Vincent Ricquebourg et al. “The Smart Home Concept : our im-
mediate future.” In: 2006 1ST IEEE International Conference on
E-Learning in Industrial Electronics. IEEE, 2006, pp. 23–28. doi:
10.1109/ICELIE.2006.347206. used on: p. 52

[Ric+16] Viktor Richter et al. “Are you talking to me? Improving the
Robustness of Dialogue Systems in a Multi Party HRI Scenario
by Incorporating Gaze Direction and Lip Movement of Atten-
dees.” In: Proceedings of the Fourth International Conference on
Human Agent Interaction - HAI ’16. Ed. by Wei Yun Yau et al.
New York, New York, USA: ACM Press, 2016, pp. 43–50. doi:
10.1145/2974804.2974823. used on: pp. 4, 54

[RK18] Viktor Richter and Franz Kummert. “Continuous Interaction
Data Acquisition and Evaluation.” In: Companion of the 2018
ACM/IEEE International Conference on Human-Robot Interaction -
HRI ’18. Ed. by Takayuki Kanda et al. New York, New York,
USA: ACM Press, 2018, pp. 217–218. doi: 10.1145/3173386.
3177005. used on: p. 54

[Rod+14] Natalia Díaz Rodríguez et al. “A survey on ontologies for hu-
man behavior recognition.” In: ACM Computing Surveys 46 (4
2014), pp. 1–33. issn: 03600300. doi: 10.1145/2523819. used
on: p. 66

[Rod15a] Alberto Rodrigues da Silva. “Model-driven engineering: A sur-
vey supported by the unified conceptual model.” In: Computer
Languages, Systems & Structures 43 (2015), pp. 139–155. issn:
14778424. doi: 10.1016/j.cl.2015.06.001. used on: pp. 5, 14,
29, 30, 38, 42, 76, 100, 196, 197

[Rod15b] Marko A. Rodriguez. “The Gremlin graph traversal machine
and language (invited talk).” In: Proceedings of the 15th Sympo-
sium on Database Programming Languages - DBPL 2015. Ed. by
James Cheney and Thomas Neumann. New York, New York,
USA: ACM Press, 2015, pp. 1–10. doi: 10 . 1145 / 2815072 .

2815073. used on: p. 26

[Row07] Jennifer Rowley. “The wisdom hierarchy: representations of
the DIKW hierarchy.” In: Journal of Information Science 33

(2 2007), pp. 163–180. issn: 0165-5515. doi: 10 . 1177 /

0165551506070706. used on: pp. 12, 13

[Sax+14] Ashutosh Saxena et al. RoboBrain: Large-Scale Knowledge Engine
for Robots. Tech. rep. Cornell University and Stanford Univer-
sity, 2014. url: http://arxiv.org/pdf/1412.0691v2. used on:
p. 69

https://doi.org/10.1145/2892664.2892696
https://doi.org/10.1109/ICELIE.2006.347206
https://doi.org/10.1145/2974804.2974823
https://doi.org/10.1145/3173386.3177005
https://doi.org/10.1145/3173386.3177005
https://doi.org/10.1145/2523819
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1177/0165551506070706
http://arxiv.org/pdf/1412.0691v2

212 bibliography

[SF13] Pramod J. Sadalage and Martin Fowler. NoSQL distilled. A brief
guide to the emerging world of polyglot persistence. Always learn-
ing. Upper Saddle River, NJ: Addison-Wesley/Pearson, 2013.
isbn: 978-0-321-82662-6. used on: pp. 17, 197

[Sfa+13] G. Sfakianakis et al. “Interval indexing and querying on key-
value cloud stores.” In: 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 2013, pp. 805–816. doi: 10.
1109/ICDE.2013.6544876. used on: p. 96

[SGK17] Sebastian Schneider, Michael Goerlich, and Franz Kummert.
“A framework for designing socially assistive robot interac-
tions.” In: Cognitive Systems Research 43 (2017), pp. 301–312.
issn: 13890417. doi: 10.1016/j.cogsys.2016.09.008. used
on: p. 14

[SLS17] Christian Schlegel, Alex Lotz, and Dennis Stampfer. Compos-
able models and software for robotics systems. Deliverable D2.2: Ini-
tial preparation of (meta-)models, prototypical DSLs, tools and imple-
mentation. Tech. rep. EU, 2017. url: http://robmosys.eu/wp-
content/uploads/2017/03/D2.2_Final.pdf (visited on 2019-
10-25). used on: p. 44

[SP16] Konstantinos Semertzidis and Evaggelia Pitoura. “Time Travel-
ing in Graphs using a Graph Database.” In: EDBT/ICDT Work-
shops. 2016. used on: p. 96

[SS09] Steffen Staab and Rudi Studer. Handbook on Ontologies. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. isbn: 978-3-540-
70999-2. doi: 10.1007/978-3-540-92673-3. used on: p. 65

[ŞvV18] Ana Maria Şutîi, Mark van den Brand, and Tom Verhoeff.
“Exploration of modularity and reusability of domain-specific
languages: an expression DSL in MetaMod.” In: Computer
Languages, Systems & Structures 51 (2018), pp. 48–70. issn:
14778424. doi: 10.1016/j.cl.2017.07.004. used on: p. 35

[SW09] William Strunk and Elwyn B. White. The elements of style. 4. ed.
New York, NY: Longman, 2009. isbn: 978-0-205-30902-3. used
on: p. 221

[SW19] Joshua Shinavier and Ryan Wisnesky. Algebraic Property Graphs.
Tech. rep. Uber, 2019. url: http://arxiv.org/pdf/1909.
04881v1. used on: pp. 16, 24, 26, 158

[TB09] Jonas Tappolet and Abraham Bernstein. “Applied Tempo-
ral RDF: Efficient Temporal Querying of RDF Data with
SPARQL.” In: The Semantic Web: Research and Applications. Ed.
by Lora Aroyo et al. Vol. 5554. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 308–322. isbn: 978-3-642-02120-6. doi: 10.1007/978-3-
642-02121-3_25. used on: pp. 91, 96

[TB11] Bogdan George Tudorica and Cristian Bucur. “A comparison
between several NoSQL databases with comments and notes.”
In: 2011 RoEduNet International Conference 10th Edition: Network-
ing in Education and Research. IEEE, 2011, pp. 1–5. doi: 10 .

1109/RoEduNet.2011.5993686. used on: pp. 18, 22

https://doi.org/10.1109/ICDE.2013.6544876
https://doi.org/10.1109/ICDE.2013.6544876
https://doi.org/10.1016/j.cogsys.2016.09.008
http://robmosys.eu/wp-content/uploads/2017/03/D2.2_Final.pdf
http://robmosys.eu/wp-content/uploads/2017/03/D2.2_Final.pdf
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.1016/j.cl.2017.07.004
http://arxiv.org/pdf/1909.04881v1
http://arxiv.org/pdf/1909.04881v1
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1109/RoEduNet.2011.5993686
https://doi.org/10.1109/RoEduNet.2011.5993686

bibliography 213

[TB13] Moritz Tenorth and Michael Beetz. “KnowRob: A knowledge
processing infrastructure for cognition-enabled robots.” In: The
International Journal of Robotics Research 32 (5 2013), pp. 566–
590. issn: 0278-3649. doi: 10.1177/0278364913481635. used
on: pp. 4, 14, 44, 61, 63, 67, 78

[The18] The Economist. Style Guide. The Bestselling Guide to English Us-
age. First US edition. New York: Public Affairs, 2018. isbn:
978-1-61039-538-0. used on: p. 221

[Vic+10] Chad Vicknair et al. “A comparison of a graph database and a
relational database.” In: Proceedings of the 48th Annual Southeast
Regional Conference on - ACM SE ’10. Ed. by H. Conrad Cun-
ningham, Paul Ruth, and Nicholas A. Kraft. New York, New
York, USA: ACM Press, 2010, p. 1. doi: 10.1145/1900008.
1900067. used on: p. 22

[vKV00] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-
specific languages.” In: ACM SIGPLAN Notices 35 (6 2000),
pp. 26–36. issn: 03621340. doi: 10.1145/352029.352035. used
on: pp. 5, 31, 32

[Völ+12] Markus Völter et al. “mbeddr: an extensible C-based pro-
gramming language and IDE for embedded systems.” In: Pro-
ceedings of the 3rd annual conference on Systems, programming, and
applications: software for humanity. ACM. 2012, pp. 121–140. used
on: pp. 136, 138

[Völ+13] Markus Völter et al. Model-Driven Software Development. Technol-
ogy, Engineering, Management. 1. Aufl. Wiley Software Patterns
Series. s.l.: Wiley, 2013. isbn: 978-0-470-02570-3. used on: pp. 29,
198

[Völ+14] Markus Völter et al. “Towards User-Friendly Projectional Edi-
tors.” In: Software Language Engineering. Ed. by Benoît Combe-
male et al. Vol. 8706. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014, pp. 41–61.
isbn: 978-3-319-11244-2. doi: 10.1007/978-3-319-11245-9_3.
used on: p. 151

[Völ+19] Markus Völter et al. “Lessons learned from developing
mbeddr: a case study in language engineering with MPS.”
In: Software & Systems Modeling 18 (1 2019), pp. 585–630. issn:
1619-1366. doi: 10.1007/s10270-016-0575-4. used on: pp. 136,
138

[Völ06] Markus Völter. “Software Architecture - A pattern language
for building sustainable software architectures.” In: Eleventh
European Conference on Pattern Languages of Programs. 2006,
pp. 31–66. used on: pp. 44, 79

[Völ09] Markus Völter. “Best practices for DSLs and model-driven de-
velopment.” In: Journal of Object Technology 8 (6 2009), pp. 79–
102. used on: pp. 44, 45

[Völ13a] Markus Völter. DSL engineering. Designing, implementing and us-
ing domain-specific languages. In collab. with Sebastian Benz et
al. Lexington, KY: CreateSpace Independent Publishing Plat-
form, 2013. isbn: 978-1-4812-1858-0. used on: pp. 5, 30, 32, 35,
42, 44, 46, 81, 193, 194, 196

https://doi.org/10.1177/0278364913481635
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/352029.352035
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/s10270-016-0575-4

214 bibliography

[Völ13b] Markus Völter. “Language and IDE Modularization and Com-
position with MPS.” In: Generative and Transformational Tech-
niques in Software Engineering IV. Ed. by Ralf Lämmel, João
Saraiva, and Joost Visser. Vol. 7680. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 383–430. isbn: 978-3-642-35991-0. doi: 10.1007/978-3-
642-35992-7_11. used on: pp. 35–37, 41

[Völ18] Markus Völter. “The Design, Evolution, and Use of KernelF.”
In: Theory and Practice of Model Transformation. Ed. by Arend
Rensink and Jesús Sánchez Cuadrado. Vol. 10888. Lecture
Notes in Computer Science. Cham: Springer International Pub-
lishing, 2018, pp. 3–55. isbn: 978-3-319-93316-0. doi: 10.1007/
978-3-319-93317-7_1. used on: p. 32

[VP12] Markus Völter and Vaclav Pech. “Language modularity with
the MPS language workbench.” In: Software Engineering (ICSE),
2012 34th International Conference on. IEEE. 2012, pp. 1449–1450.
used on: pp. 35, 40

[Wal07] Danny P. Wallace. Knowledge management. Historical and cross-
disciplinary themes. Libraries Unlimited knowledge manage-
ment series. Westport, Conn: Libraries Unlimited, 2007. isbn:
978-1-59158-502-2. used on: p. 65

[War95] M. P. Ward. “Language Oriented Programming.” In: Soft-
ware—Concepts and Tools 15 (1995), pp. 147–161. used on: pp. 45,
46

[Weg+13] Timo Wegeler et al. “Evaluating the benefits of using domain-
specific modeling languages.” In: Proceedings of the 2013 ACM
workshop on Domain-specific modeling - DSM ’13. Ed. by Jeff
Gray, Steven Kelly, and Jonathan Sprinkle. New York, New
York, USA: ACM Press, 2013, pp. 7–12. doi: 10.1145/2541928.
2541930. used on: pp. 45, 137

[Wes01] Douglas Brent West. Introduction to graph theory. 2. ed. Upper
Saddle River, NJ: Prentice Hall, 2001. isbn: 978-0-13-014400-3.
used on: pp. 15, 16

[Wig+17] Dennis Leroy Wigand et al. “Domain-Specific Language Mod-
ularization Scheme Applied to a Multi-Arm Robotics Use-
Case.” In: Journal of Software Engineering for Robotics 8 (1 2017),
pp. 45–64. issn: 2035-3928. used on: pp. 32, 37

[Wil45] Frank Wilcoxon. “Individual Comparisons by Ranking Meth-
ods.” In: Biometrics Bulletin 1 (6 1945), p. 80. issn: 00994987.
doi: 10.2307/3001968. used on: p. 147

[Wil99] Robin J. Wilson. Introduction to graph theory. 4. ed., repr. Har-
low: Longman, 1999. isbn: 978-0-582-24993-6. used on: pp. 15,
16

[Won+12] Konlakorn Wongpatikaseree et al. “Activity Recognition Using
Context-Aware Infrastructure Ontology in Smart Home Do-
main.” In: 2012 Seventh International Conference on Knowledge,
Information and Creativity Support Systems. IEEE, 2012, pp. 50–
57. doi: 10.1109/KICSS.2012.26. used on: p. 67

https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1145/2541928.2541930
https://doi.org/10.1145/2541928.2541930
https://doi.org/10.2307/3001968
https://doi.org/10.1109/KICSS.2012.26

bibliography 215

[Wre+17] Sebastian Wrede et al. “The Cognitive Service Robotics Apart-
ment.” In: KI - Künstliche Intelligenz 31 (3 2017), pp. 299–304.
issn: 0933-1875. doi: 10.1007/s13218-017-0492-x. used on:
pp. 4, 53

[WW11] Johannes Wienke and Sebastian Wrede. “A middleware for
collaborative research in experimental robotics.” In: 2011
IEEE/SICE International Symposium on System Integration (SII).
IEEE, 2011, pp. 1183–1190. doi: 10.1109/SII.2011.6147617.
used on: p. 13

[YD04] H. A. Yanco and J. Drury. “Classifying human-robot interac-
tion: an updated taxonomy.” In: 2004 IEEE International Confer-
ence on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).
IEEE, 2004, pp. 2841–2846. doi: 10.1109/ICSMC.2004.1400763.
used on: pp. 70, 72

[Zha+18] Yunming Zhang et al. “GraphIt: a high-performance graph
DSL.” In: Proceedings of the ACM on Programming Languages 2

(OOPSLA 2018), pp. 1–30. doi: 10.1145/3276491. used on: p. 43

online resources

[Bie13] Bielefeld University. The Cognitive Service Robotics Apartment as
Ambient Host. 2013. url: https://cit-ec.de/en/cognitive-
service-robotics-apartment-ambient-host (visited on 2019-
02-12). used on: p. 53

[BM14] Dan Brickley and Libby Miller. FOAF Vocabulary Specification.
2014. url: http://xmlns.com/foaf/spec/ (visited on 2020-01-
10). used on: p. 70

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? 2005. url: https : / / www . martinfowler .

com/articles/languageWorkbench.html (visited on 2018-10-
08). used on: pp. 38, 151, 195

[Gui11] Erico Guizzo. Meka Robotics Announces Mobile Manipulator With
Kinect and ROS. IEEE. 2011. url: https://spectrum.ieee.org
/automaton/robotics/humanoids/meka-robotics-announces-

mobile-manipulator-with-kinect-and-ros (visited on 2019-
08-01). used on: p. 56

[ISO19] ISO Graph Query Language Proponents. Graph Query Language
GQL. GQL Standard. 2019. url: https://www.gqlstandards.
org/gql-blogs/critical-milestone-for-iso-graph-query-

standard-gql (visited on 2019-11-08). used on: pp. 27, 28, 158

[Jet18] JetBrains. JetBrains MPS. 2018. url: https://github.com/

JetBrains/MPS (visited on 2018-10-08). used on: p. 39

[Mah17] Alaa Mahmoud. No more joins: An overview of Graph database
query languages. IBM. 2017. url: https://developer.ibm.com/
dwblog/2017/overview-graph-database-query-languages/

(visited on 2019-04-16). used on: p. 24

[Neo19] Neo Technology. The GQL Manifesto - One Property Graph Query
Language. 2019. url: https://gql.today/ (visited on 2019-11-
08). used on: pp. 27, 28

https://doi.org/10.1007/s13218-017-0492-x
https://doi.org/10.1109/SII.2011.6147617
https://doi.org/10.1109/ICSMC.2004.1400763
https://doi.org/10.1145/3276491
https://cit-ec.de/en/cognitive-service-robotics-apartment-ambient-host
https://cit-ec.de/en/cognitive-service-robotics-apartment-ambient-host
http://xmlns.com/foaf/spec/
https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
https://spectrum.ieee.org/automaton/robotics/humanoids/meka-robotics-announces-mobile-manipulator-with-kinect-and-ros
https://spectrum.ieee.org/automaton/robotics/humanoids/meka-robotics-announces-mobile-manipulator-with-kinect-and-ros
https://spectrum.ieee.org/automaton/robotics/humanoids/meka-robotics-announces-mobile-manipulator-with-kinect-and-ros
https://www.gqlstandards.org/gql-blogs/critical-milestone-for-iso-graph-query-standard-gql
https://www.gqlstandards.org/gql-blogs/critical-milestone-for-iso-graph-query-standard-gql
https://www.gqlstandards.org/gql-blogs/critical-milestone-for-iso-graph-query-standard-gql
https://github.com/JetBrains/MPS
https://github.com/JetBrains/MPS
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://gql.today/

216 bibliography

[Obj14] Object Management Group. Model Driven Architecture (MDA).
Guide Rev. 2.0. 2014. url: https://www.omg.org/mda/ (visited
on 2019-08-16). used on: pp. 44, 45

[ope13] openHAB Community. openHAB. 2013. url: https : / / www .

openhab.org/ (visited on 2019-10-07). used on: p. 57

[PU03] Woody Pidcock and Michael Uschold. What are the differences
between a vocabulary, a taxonomy, a thesaurus, an ontology, and
a meta-model. 2003. url: https : / / web . archive . org / web /

20090310162812/http://www.metamodel.com/article.php?st

ory=20030115211223271 (visited on 2019-09-21). used on: p. 65

[RDS17] Jonathan Robie, Dyck Michael, and Spiegel Josh, eds. XML
Path Language (XPath). W3C. 2017. url: http://www.w3.org/
TR/2017/REC- xpath- 31- 20170321/ (visited on 2019-08-09).
used on: p. 26

[sol19] solid IT. DB-Engines Ranking. DB-Engines Ranking of Graph
DBMS. 2019. url: https://db- engines.com/en/ranking/
graph+dbms (visited on 2019-04-16). used on: pp. 20, 21

[Typ11] Typefox. Xtexd - Modernized Java. 2011. url: http://www.xten
d-lang.org/ (visited on 2018-10-08). used on: p. 39

[W3C08] W3C. SPARQL Query Language for RDF. W3C Recommendation
15 January 2008. 2008. url: https://www.w3.org/TR/rdf-
sparql-query/ (visited on 2019-04-11). used on: p. 25

[W3C17] W3C. Time Ontology in OWL. 2017. url: http://www.w3.org/
TR/owl-time/ (visited on 2019-08-26). used on: pp. 91, 115

software packages

[Apa00] Ant. Version 1.10.5. Apache Software Foundation. 2000. url:
https://ant.apache.org/ (visited on 2018-10-08). used on:
p. 124

[Ecl] Xtext. Language Engineering For Everyone. Eclipse Project. url:
http://xtext.org (visited on 2018-10-08). used on: pp. 38, 39,
41

[Fac16] GraphQL. GraphQL Specification. Facebook Inc. 2016. url: http:
//facebook.github.io/ (visited on 2018-10-08). used on: p. 27

[ite17] mbeddr. An embedded development system. Version 2017.2.0.
itemis. 2017. url: http://mbeddr.com (visited on 2018-11-16).
used on: p. 136

[Jen] Jenkins. Jenkins. url: http://jenkins.io (visited on 2018-11-
16). used on: pp. 124, 125

[Jet] MPS. Meta Programming System. Version 2018.2.1. JetBrains.
url: https://www.jetbrains.com/mps (visited on 2018-11-
16). used on: pp. 8, 39, 107, 109, 117, 121–123, 126, 128, 129, 141,
142

[Neo07] Neo4j. The Graph Platform. Neo Technology. 2007. url: https:
//neo4j.com/ (visited on 2018-10-08). used on: pp. 4, 16, 18, 22,
24, 25, 28, 44, 69, 101, 102, 112–114, 117, 119, 121, 122, 141, 142

https://www.omg.org/mda/
https://www.openhab.org/
https://www.openhab.org/
https://web.archive.org/web/20090310162812/http://www.metamodel.com/article.php?story=20030115211223271
https://web.archive.org/web/20090310162812/http://www.metamodel.com/article.php?story=20030115211223271
https://web.archive.org/web/20090310162812/http://www.metamodel.com/article.php?story=20030115211223271
http://www.w3.org/TR/2017/REC-xpath-31-20170321/
http://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
http://www.xtend-lang.org/
http://www.xtend-lang.org/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
https://ant.apache.org/
http://xtext.org
http://facebook.github.io/
http://facebook.github.io/
http://mbeddr.com
http://jenkins.io
https://www.jetbrains.com/mps
https://neo4j.com/
https://neo4j.com/

bibliography 217

[Neo11] Cypher. Neo Technology. 2011. url: https://neo4j.com/dev
eloper/cypher-query-language/ (visited on 2018-10-08). used
on: pp. xv, 19, 20, 22–28, 34, 35, 44, 69, 85, 87, 88, 91, 98, 99, 101,
102, 112–114, 116, 117, 121, 122, 129, 141, 143–145, 157, 158

[Neo15] openCypher. Neo Technology. 2015. url: http://www.opencyp
her.org/ (visited on 2018-10-08). used on: pp. xv, 19, 20, 22, 24,
25, 28, 85, 86, 112

[Sch12] LimeSurvey. An open source survey tool. Schmitz, Carsten. 2012.
url: http://www.limesurvey.org (visited on 2019-08-06). used
on: p. 144

[Ter] ANTLR. ANother Tool for Language Recognition. Terence Parr and
others. url: https://www.antlr.org/ (visited on 2018-10-08).
used on: p. 41

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://www.opencypher.org/
http://www.opencypher.org/
http://www.limesurvey.org
https://www.antlr.org/

D E C L A R AT I O N O F A U T H O R S H I P

According to the Bielefeld University’s doctoral degree regulations
§8(1)g: I hereby declare to acknowledge the current doctoral degree
regulations of the Faculty of Technology at Bielefeld University. Fur-
thermore, I certify that this thesis has been composed by me and
is based on my own work, unless stated otherwise. Third parties
have neither directly nor indirectly received any monetary advan-
tages in relation to mediation advises or activities regarding the con-
tent of this thesis. Also, no other person’s work has been used without
due acknowledgment. All references and verbatim extracts have been
quoted, and all sources of information, including graphs and data
sets, have been specifically acknowledged. This thesis or parts of it
have neither been submitted for any other degree at this university
nor elsewhere.

Norman Köster Place, Date

colophon

This thesis is typeset using the classicthesis typographical look-
and-feel developed by André Miede and is based on the template cre-
ated by Johannes Wienke. The applied style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic
Style” [Bri08]. The writing style has been influenced by Strunk and
White [SW09], Dupré [Dup07], and The Economist [The18].

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	List of code listings
	Research Topic
	1 Introduction
	1.1 Research questions and contribution
	1.2 Outline

	Preliminaries
	2 Graph-based knowledge representation and management
	2.1 Data, information, and knowledge modeling
	2.2 Graphs and their role in intelligent systems
	2.3 Graph-based Knowledge management
	2.3.1 NoSQL: Graph databases
	2.3.2 Graph query languages
	2.3.2.1 Cypher
	2.3.2.2 SPARQL
	2.3.2.3 Gremlin
	2.3.2.4 Other

	2.4 Summary

	3 Model-driven software engineering
	3.1 Foundations and introduction
	3.1.1 Models and transformations
	3.1.2 Domain-specific languages
	3.1.2.1 Benefits and challenges of DSLs
	3.1.2.2 DSL variants
	3.1.2.3 DSL semantics
	3.1.2.4 Language composition
	3.1.2.5 Language workbenches

	3.1.3 Benefits of MDSE

	3.2 Application of MDSE in adjacent domains
	3.3 MDSE development process
	3.4 Summary

	Modeling interaction relevant knowledge in smart environments
	4 A model of interaction relevant data
	4.1 Embodied interaction in smart environments
	4.2 Domain analysis
	4.2.1 The CSRA Project
	4.2.2 Roles, responsibilities, and required knowledge
	4.2.3 Knowledge queries in the EISE domain

	4.3 Related work
	4.4 A multimodal interaction corpus
	4.5 An ontology of interaction relevant knowledge
	4.5.1 Smart environment ontologies
	4.5.2 Ontologies in robotics
	4.5.3 Gaph-based approaches
	4.5.4 The EISE ontology

	4.6 Summary

	5 Conceptualizations for model-based query composition
	5.1 Objectives and requirements
	5.1.1 Requirements
	5.1.2 Functional requirements
	5.1.3 Non-functional requirements

	5.2 Related work
	5.3 System architecture
	5.4 Extensible graph query language composition
	5.4.1 Representation of graphs
	5.4.2 Representation of pattern matching queries
	5.4.3 Representation of domain descriptions
	5.4.4 Representation of time
	5.4.5 Plug-ins and implementation modules

	5.5 Technology mapping
	5.6 Summary

	Model-based support for behavior developers
	6 Implementation and practical concerns
	6.1 Language implementation
	6.1.1 Language composition
	6.1.2 Graphs and graph query languages
	6.1.3 Domain description language
	6.1.4 Time languages
	6.1.5 Transformations and generation of queries
	6.1.6 Language pragmatics
	6.1.6.1 Visualization
	6.1.6.2 Query analysis
	6.1.6.3 Language composition visualization

	6.2 Automation aspects in applied MDSE research
	6.2.1 Continuous integration of DSLs
	6.2.2 Language deployment: A DSL plug-in server

	6.3 User perspective: The EISE Query Designer
	6.4 Summary

	Evaluation of MDSE approaches
	7 Evaluation and application
	7.1 Introduction to MDSD evaluation
	7.2 Evaluation metrics
	7.3 Evaluation of the EISE Query Designer
	7.3.1 Methods and study design
	7.3.2 Measurements
	7.3.3 Study results
	7.3.4 Discussion

	7.4 Summary

	Perspectives
	8 Outlook
	9 Conclusion

	Appendix
	A Evaluation Appendix
	A.1 Full questionnaire
	A.2 Study information material
	A.2.1 Cypher information material
	A.2.2 EISE Domain information material
	A.2.3 Tool information material
	A.2.3.1 Neo4j tool information material
	A.2.3.2 MPS tool information material

	A.2.4 Task material

	A.3 Ethics documents
	A.4 Ethics committee application
	A.5 Consent form
	A.6 Questionnaire results
	A.6.1 Feedback
	A.6.1.1 Tool feedback
	A.6.1.2 Study feedback
	A.6.1.3 Other feedback

	Acronyms
	Glossary
	Bibliography
	Involved and own publications
	General
	Online resources
	Software packages

	Declaration
	Colophon

