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Abstract

For peoplewho are physically unable to communicatewith their fellow human beings due to
severe disabilities, technical communication aids can be a life enrichment. Communication
tools can be realized with so-called brain-computer interfaces (BCIs), which provide a
connection between the brain and the computer and can be controlledwithout the activation
of the peripheral nervous system. The electrical brain activity is recorded, usually non-
invasively, by means of an electroencephalogram (EEG). BCIs analyze the collected EEG
data in real-time and convert them into output signals allowing hands-free control of
various kinds of applications such as mental typewriters.

One of the control paradigms used to realize BCIs is based on visual evoked potentials
(VEPs), which appear in the visual cortex of the brain when visual stimuli are perceived.
An example of such stimuli is flickering target objects on a computer screen, each flashing
with a specific frequency. By detecting the VEPs, the BCI can determine the target on which
the user is focusing. In spelling applications, these targets represent letters; the user can
spell a word or sentence just by looking at the corresponding stimulus.

In several studies, a high variation in BCI accuracy across users has been observed; not all
users did achieve reliable control over the system. A significant problem in BCI research
is that EEG data cannot be interpreted reliably for all users. In spelling applications, the
system might output wrong letters too frequently, which makes effective communication
difficult. For other applications, such as wheelchair control, faulty classifications should be
avoided entirely.

An essential goal in the field of research is, therefore, to improve the accuracy of the
classification. One way to achieve this goal is to customize critical parameters to the user.

In this work, factors that impact the performance of VEP-based BCIs were investigated.
These factors include parameters and settings of the user interface and the classification,
such as the number of targets and the duration that a stimulus needs to be fixated until
the corresponding command is executed. Furthermore, demographic differences such as
age and gender and their relation to BCI performance were analyzed. To this end, several
studies - each dedicated to one or several of these factors - were conducted. The results
of these studies indicated that user age and the number of targets of the graphical user
interface have a high impact on classification accuracy.

Based on these findings, a robust BCI application was developed, a spelling application
that determines personalized key parameters. This application enables a more accurate
BCI control, as the BCI is tailored to the respective user. Moreover, the software allows
non-specialists to set up the system. The latter is an essential point in terms of usability in
daily life; it enables nursing staff or family members to adjust the necessary system settings
with little effort.



Zusammenfassung

Für Menschen, die wegen schweren Erkrankungen körperlich nicht mehr in der Lage sind
mit ihren Mitmenschen zu kommunizieren, können technische Kommunikationshilfen eine
Lebensbereicherung sein. Eine solche Kommunikationshilfe kann mit sogenannten Brain-
Computer-Interfaces (BCIs, deutsch Gehirn-Computer-Schnittstellen) realisiert werden.
BCIs ermöglichen eine Verbindung zwischen dem Gehirn und dem Computer und können
ohne eine Aktivierung des peripheren Nervensystems bedient werden. Hierzu wird die
elektrische Gehirnaktivität aufgezeichnet. Dies kann zum Beispiel nicht-invasiv mittels
eines Elektroenzephalogramms (EEG) erfolgen. BCIs analysieren die aufgenommenen
EEG-Daten in Echtzeit und wandeln sie in Ausgangssignale um. Auf diese Weise können
diverse Applikationen, wie zum Beispiel Schreibprogramme, ohne die Nutzung der Hände
angesteuert werden.

Zu den Paradigmen, mit denen BCIs realisiert werden können, zählen visuell evozierte
Potentiale (VEP).Diese elektrischenPotentiale treten imvisuellenCortex (auch Sehrinde) des
Gehirns auf,wenn visuelle Stimuliwahrgenommenwerden. Ein Beispiel solcher Stimuli sind
mit verschiedenen konstanten Frequenzen flackernde Boxen auf einem Computermonitor.
Durch die Detektion der VEPs kann das BCI feststellen, welche Box angesehen wird. Bei
Schreibprogrammen repräsentieren diese Boxen Buchstaben, so dass Personen, die das
System nutzen, nur durch das Ansehen der entsprechenden Box ein Wort oder einen Satz
buchstabieren können.

In einigen Studien wurde eine hohe Variabilität der Klassifikationsgenauigkeit zwischen
den Nutzenden beobachtet; dabei konnte in einigen Fällen keine zuverlässige Kontrolle
über das System erreicht werden. Ein wesentliches Problem der BCI-Technologie liegt also
darin, dass die EEG-Daten nicht immer zuverlässig interpretiert werden können. Das führt
dazu, dass etwa bei Schreibprogrammen häufig ungewünschte Buchstaben ausgewählt
werden, was die Kommunikation erschwert. Für andere Applikationen, beispielsweise eine
Rollstuhlansteuerung, sollten fehlerhafte Klassifikationen komplett vermieden werden.

Ein wesentliches Ziel ist es daher die Genauigkeit der BCI-Klassifikation zu verbessern. Ein
Ansatz dieses Ziel zu erreichen ist die individuelle Anpassung wichtiger BCI-Parameter an
den Nutzer oder die Nutzerin.

In dieser Arbeit wurden unterschiedliche Faktoren, die die Performanz VEP-basierter
BCIs beeinflussen können, untersucht. Hierzu zählen Parameter und Einstellungen der
Nutzerschnittstelle und der Verarbeitungsalgorithmen, etwa die Anzahl der zu unterschei-
denden Ziele und die Dauer, die ein Stimulus fixiert werdenmuss, damit das entsprechende
Kommando ausgeführt wird. Darüber hinaus wurde die BCI Performanz in Bezug auf de-
mographische Unterschiede, wie das Alter und das Geschlecht, analysiert. Mehrere Studien
wurden durchgeführt, um diese Faktoren zu untersuchen. Die Ergebnisse dieser Studien
deuten darauf hin, dass das Alter derNutzerinnen undNutzer und die Anzahl der BCI-Ziele



der graphischen Benutzeroberfläche einen hohen Einfluss auf die Klassifikationsgenauigkeit
haben.

Auf Basis dieser Erkenntnisse wurde eine robuste BCI-Anwendung entwickelt; ein Schreib-
programm bei demwichtige Parameter auf die Nutzerin oder den Nutzer angepasst werden.
Zum einen ermöglicht diese Anwendung eine exaktere BCI Ansteuerung. Ferner ermöglicht
sie auch Laien die Einstellung des Systems. Letzteres ist einwichtiger Punkt, denn so können
die notwendigen Einstellungen beim alltäglichen Gebrauch des Systems mit nur wenig
Aufwand vom Pflegepersonal oder von Familienmitgliedern vorgenommen werden.



Introduction 1

“Tech changed my life, without it I would be mute - I would
still be the same chatterbox, but nobody would notice”
—Kathrin Lemler, Board member of the Gesellschaft für

Unterstützte Kommunikation e.V.

Several assistive technologies are being developed to enhance the
life quality of people with severe disabilities. Kathrin Lemler from
the University of Cologne, who suffers from infantile cerebral palsy
due to a lesion in the central nervous system in early childhood,
used to communicate with a simple letter board. Nowadays, she
uses an eye-tracking device in her daily life; the input modality of
this device is based on eye movements.

Another way to realize assistive technologies are brain-computer
interfaces (BCIs), which use recorded brain signals as an input
modality. A variation of these systems can be realized by employing
certain visual stimuli, specific flickering patterns that elicit visual
evoked potentials (VEPs) in the brain. Using constant frequencies,
which evoke steady-state VEPs (SSVEPs), or pseudorandom code
patterns, which evoke code-modulated VEPs (c-VEPs), various
types of applications, such as spelling interfaces [1] and control
applications for a prosthesis [2] or navigation [3] can be operated.

There is a growing research interest in BCI technologies [4]; the
focus of this thesis lies exclusively on VEP-based BCIs, which
represent a standardBCIparadigmandhavebecomequite common
over time (see Figure 1.1).
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Figure 1.1: Publications from 2001
- 2019 related to BCIs based on
steady-state visual evoked potentials
(SSVEPs) or code-modulated visual
evokedpotentials (c-VEPs).Displayed
are the number of articles identified
from PubMed search results for the
search term “ssvep or c-vep or cvep”.



2 1 Introduction

1.1 Motivation and Problem Statement

Over the last 20 years, many studies related to VEP-based BCIs
have been conducted. Generally, promising results have been
achieved. VEP-based BCIs yield high spelling speeds and have
been successfully tested with disabled users [5–7].

On the other hand, cases where the BCI system was not able
to interpret the user’s intent with sufficient accuracy have been
reported repeatedly [1, 8, 9].

This issue - commonly referred to as BCI illiteracy (or BCI de-
ficiency) - is a significant problem in BCI research. It may even
reduce the public interest in the technology as it hinders its use in
practical scenarios and complicates commercial exploitation.

In many BCI studies relatively small sample groups with a low
meanage are recruited.Only a fewBCIfield studieswere conducted
in the last two decades, which repeatedly reported cases of BCI
illiteracy. Especially elderly users were affected. The relationship
between age and BCI performance has yet to be carefully studied.

The occurrence of BCI illiteracy could be reduced if system param-
eters are identified and adjusted carefully for each user. To this
end, the following questions need to be addressed: What are the
main factors contributing to sufficient BCI control? To what extent
does the number of targets, the frequency choice, and the length
of the classification time window affect BCI performance? Do age
and gender impact the BCI performance?

In real-life scenarios, the setup of BCI parameters needs to be
applied by non-experts (e.g., family members or caregivers). A
primary goal of this thesis was, therefore, the development of
a robust BCI application that can be customized by non-experts
while simultaneously yielding a high BCI literacy rate (i.e., a high
percentage of users that achieve reliable control).

To achieve this goal, this thesis addresses the following principal
aims:

I to investigate age-related differences in VEP BCI perfor-
mance;

I to explore key system parameters and their impact on BCI
performance and BCI illiteracy;

I to implement auto-calibration methods;
I to improve signal classification methods; and
I to synthesize the above finding to propose a robust BCI for

all that can be set up by non-experts.
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1.2 Publications

This thesis presents and summarizes research results and findings
achieved during my work as a research assistant at the BCI-Lab
Kleve, Rhine-Waal University of Applied Sciences. Some results,
ideas, and figures of the following published scientific papers were
incorporated:

I I. Volosyak, F. Gembler, and P. Stawicki. ‘Age-Related Differ-
ences in SSVEP-Based BCI Performance’. In: Neurocomputing
250 (2017), pp. 57–64. doi: 10.1016/j.neucom.2016.08.121.

I F. Gembler, P. Stawicki, and I. Volosyak. ‘Autonomous Pa-
rameter Adjustment for SSVEP-Based BCIs with a Novel
BCI Wizard’. In: Frontiers in Neuroscience 9 (Dec. 2015). doi:
10.3389/fnins.2015.00474.

I F. Gembler, P. Stawicki, and I. Volosyak. ‘Suitable Number of
Visual Stimuli for SSVEP-Based BCI Spelling Applications’.
In: Advances in Computational Intelligence: 14th International
Work-Conference on Artificial Neural Networks, IWANN 2017,
Cadiz, Spain, June 14-16, 2017, Proceedings, Part II. Ed. by I.
Rojas, G. Joya, and A. Catala. Cham: Springer International
Publishing, 2017, pp. 441–452. doi: 10.1007/978-3-319-
59147-6_38.

I F. Gembler, P. Stawicki, and I. Volosyak. ‘Exploring the
Possibilities and Limitations ofMultitarget SSVEP-Based BCI
Applications’. In: Engineering in Medicine and Biology Society
(EMBC), 2016 IEEE 38th Annual International Conference of the
the IEEE Engineering in Medicine and Biology Society (EMBC).
Orlando, FL, USA, 2016, pp. 1488–1491. doi: 10.1109/EMBC.
2016.7590991.

I F. Gembler and I. Volosyak. ‘ANovel Dictionary-DrivenMen-
tal Spelling Application Based on Code-Modulated Visual
Evoked Potentials’. In: Computers 8.2 (2019). doi: 10.3390/
computers8020033.

I F. Gembler, P. Stawicki, A. Rezeika, and I. Volosyak. ‘A Com-
parison of cVEP-Based BCI-Performance Between Different
Age Groups’. en. In: Advances in Computational Intelligence.
Ed. by I. Rojas, G. Joya, and A. Catala. Vol. 11506. Cham:
Springer International Publishing, 2019, pp. 394–405. doi:
10.1007/978-3-030-20521-8_33.

I F. Gembler, P. Stawicki, A. Saboor, and I. Volosyak. ‘Dynamic
TimeWindowMechanism for Time Synchronous VEP-Based
BCIs—Performance Evaluation with a Dictionary-Supported
BCI Speller Employing SSVEP and c-VEP’. en. In: PLOS ONE
14.6 (June 2019). Ed. by Z. Wang, e0218177. doi: 10.1371/
journal.pone.0218177.

https://doi.org/10.1016/j.neucom.2016.08.121
https://doi.org/10.3389/fnins.2015.00474
https://doi.org/10.1007/978-3-319-59147-6_38
https://doi.org/10.1007/978-3-319-59147-6_38
https://doi.org/10.1109/EMBC.2016.7590991
https://doi.org/10.1109/EMBC.2016.7590991
https://doi.org/10.3390/computers8020033
https://doi.org/10.3390/computers8020033
https://doi.org/10.1007/978-3-030-20521-8_33
https://doi.org/10.1371/journal.pone.0218177
https://doi.org/10.1371/journal.pone.0218177
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I F. Gembler, M. Benda, A. Saboor, and I. Volosyak. ‘A Multi-
Target c-VEP-Based BCI Speller Utilizing n-Gram Word Pre-
diction and Filter Bank Classification’. In: 2019 IEEE Inter-
national Conference on Systems, Man and Cybernetics (SMC).
2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC). Oct. 2019, pp. 2719–2724. doi: 10.1109/
SMC.2019.8914235.

In case one of the publications listed above was fundamental to a
section, it is stated at the beginning of that section.

1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 provides definitions,
nomenclature, and historical backgrounds related to the field of
BCIs. Different types of spelling applications based on the VEP-
paradigm are reviewed in section 2.6. The evaluation metrics used
to assess BCI performance are defined in section 2.7.

Chapter 3 describes the components required for the implemen-
tation of VEP-based BCIs: Methods of stimulus presentation are
described in sections 3.1 and 3.2, the implementation of stimuli
and classification methods are targeted in sections 3.3, 3.4, and
3.5.

Chapters 4 and 5 summarize the studies listed in section 1.2, which
were conducted to investigate the primary research questions
of this thesis. While chapter 4 focuses on parameters for the
SSVEP paradigm, Chapter 5 addresses the c-VEP paradigm. In both
chapters, studies conducted to investigate key system parameters
and automated calibration are presented. As the methods and
materials of these studies are similar, they are provided in detail
for the first study summarized in the respective chapter. Impacts
of user age on performance are investigated in sections 4.3 and 5.2,
methods of auto-calibration are demonstrated in sections 4.4 and
5.3, and the optimal number of BCI targets is discussed in sections
4.5 and 5.4. Additionally, the SSVEP and c-VEP paradigms are
compared in section 5.3, addressing user-friendliness and overall
system speed.

Finally, chapter 6 summarizes the thesis, outlines the conclusions,
and provides recommendations for further research.

https://doi.org/10.1109/SMC.2019.8914235
https://doi.org/10.1109/SMC.2019.8914235
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The invention of the electroencephalography (EEG) in the early
twentieth century led to the realization of communication via brain
activity. The expression ’brain-computer interface’ for a system that
links the human brain to a computer was initially introduced by
Vidal in 1973 [10]. A few years later, in 1977, the first BCI application,
a cursor-object on a computer screen that could be controlled by
means of EEG analysis, was presented [11]. Since then, great
advances have been made; many laboratories began researching
BCIs, exploring various control paradigms and applications while
forming a standard knowledge structure (taxonomy).

This chapter provides a brief introduction to BCIs (section 2.1)
and the EEG recording technique (section 2.2). Following that, the
major BCI control paradigms, the general BCI framework, and
typical applications are presented (sections 2.3, 2.4 and 2.5). Then,
the focus is put on VEP-based spelling applications (section 2.6).
After that, the evaluation metrics used in this thesis are described.
In particular, the classification accuracy, the information transfer
rate (ITR) in bit per minute (bpm), and the output characters per
minute (OCM), are introduced (section 2.7). The chapter closes
with a discussion of BCI illiteracy (section 2.8).

2.1 Definition

In 2002, Wolpaw et al. [12] shaped the definition that is now
recognized in the research field by describing the BCI as a system
that enables its user to interactwith his or her environment,without
the use of peripheral nerves and muscles. Figure 2.1 illustrates
this concept: The BCI interprets recorded patterns of the user’s
brain activity employing physiological principals related to specific
cognitive tasks; the generated commands can be used to control
various kinds of applications.

Brain activity 
recording device

External
application

Brain signals Control signals
Brain-

Computer
Interface

Figure 2.1: Brain-computer interface.
The system translates recorded brain
signals into control signals for an ex-
ternal application.
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Among the most popular fields of applications for BCIs are com-
munication tools for patients suffering from motor neuron disease
(MND) [13]. MNDs such as amyotrophic lateral sclerosis (ALS)
disrupt neurological networks affecting the brain’s communication
with other organs and the motor control of the muscles. Patients
suffering from locked-in syndrome (LIS), brainstem stroke, brain
or spinal cord injury, cerebral palsy, muscular dystrophies, or
multiple sclerosis eventually lose voluntary control over skeletal
muscles and the tongue, which leads to difficulties in exchanging
of information. These patients can benefit from alternative com-
munication systems. For example, communication tools based on
eye-tracking allow the control of a virtual keyboard by tracking the
movement of the pupils; if the gaze lingers on the desired letter,
the system produces the associated output command [14]. Unfor-
tunately, these kinds of applications are not suitable for persons
who cannot control ocular movements or who experience uncon-
trollable head movements [15]. However, these patients might still
be able to communicate via brain signals using a BCI.

Researchers have categorized BCIs according to several character-
istics; the following classes are typically used to describe certain
aspects of the system (e.g., [13]):

Dependent/ independent:
Dependent BCIs require control over peripheral nerves and
muscles; for example, gaze dependent systems require con-
trol over extraocular muscles. In contrast, independent BCIs
only rely on brain activity; they do not depend on any mus-
cle activity. Therefore, independent systems are suitable for
patients who lost control over their eye muscles, such as
late-stage ALS patients.

Exogenous/endogenous:
Exogenous BCIs require an external stimulus (for example,
a visual flickering pattern). Endogenous BCIs, on the other
hand, are based on brain patterns that are voluntarily mod-
ulated by the user’s imagination; they do not require any
external stimuli. For these kinds of systems, the user needs
to learn how to modulate his or her brain signals in such a
way that the BCI interprets them as desired.

Synchronous/asynchronous:
In synchronous BCIs, the system determines the timings of
the control, i.e., the user does not influence the time a system
output is generated. Conversely, in asynchronous BCIs, users
control the timing of produced commands, which results in
a more natural interaction between user and system.

Invasive/noninvasive:
Systems that do not require surgery are referred to as non-
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invasive BCIs. An example of noninvasive BCIs are systems
based on EEG, which record brain activity via electrodes
placed on the scalp. On the other hand, systems that do
require surgery are referred to as invasive BCIs. For example,
systems based on electrocorticography (ECoG) require direct
access to the brain tissue and, thus, an invasive opening
through the skull. The brain signals are recorded via elec-
trodes implanted under the scalp. Because of the involved
costs and risks, invasive BCIs are rarely used in research with
humans.

The various methods to monitor brain activity include magne-
toencephalography (MEG), functional magnetic resonance imag-
ing (fMRI), near-infrared spectroscopy (NIRS), ECoG, and EEG;
the latter approach, EEG, is the most practical method, as it is
non-invasive, portable, comparably inexpensive, and easy to ap-
ply [16].

2.2 Electroencephalography

Since 1924, when physiologist Hans Berger [17] recorded the first
human EEG, the procedure has become a widely adopted method
in research and medicine, which significantly advanced the un-
derstanding of the brain’s functional architecture. Because of its
practicability, widespread availability, and high temporal resolu-
tion, EEG is by far the most applied monitoring method in BCI
research [16].

EEG measures the electric potential generated by the summed
synchronous activity from millions of neurons over time. The volt-
age fluctuations of these summed patterns are still small, ranging
from -100 to 100 �V [18]. For this reason, EEG measurements are
sensitive to external electrical noise; the recorded signals need to
be amplified.

The basic setup of the recording system consists of electrodes,
amplifiers, analog-to-digital converter (ADC), and a recording
device. The electrodes acquire the signal from the surface of the
head; the amplifiers enlarge the signal amplitudes for accurate
digitization by the ADC; the recording device (typically a personal
computer) stores and displays the collected data. EEGmeasures the
potential difference between a signal and a reference electrode over
time. The voltages are measured against an additional electrode,
the common ground, so that artifacts from power sources, common
to all signal electrodes and the reference electrode are reduced.
While three electrodes (ground, reference, and signal electrode) are
the minimal configuration for EEG, multi-channel configurations
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Figure 2.2: Standard 10-20 electrode
placement [22]. (A) Left side of head.
(B) Top of head scheme. The posi-
tion labels are composed of letters
specifying the lobe and numbers de-
termining the hemisphere location.
The letters A, F, Fp, T, C, P, and O
denote ear, frontal, frontal polar, tem-
poral, central, parietal, and occipital
lobes, respectively. Even numbers cor-
respond to electrodes placed on the
right hemisphere; odd numbers cor-
respond to electrodes placed on the
left hemisphere; A lower case ’z’ (i.e.,
zero) refers to electrodes placed on
the middle line.
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can comprise of many more additional signal electrodes. Some
applications employ more than 100 signal electrodes [19].

An advantage of EEG is the high temporal resolution; the EEG
activity is scanned on the level of milliseconds, depending on
the sampling frequency (sampling frequencies between 100 and
1000 Hz are common in BCI research). A disadvantage of EEG
is the low spatial resolution on the scalp in comparison to other
methods, which is caused by various resistive layers (especially
the skull) between the electrical sources within the brain and the
recording electrodes. These layers induce a smearing effect (also
called volume-conduction effect) [20].

For suitable signal quality impedances between sensors and scalp
need to be lowered (typically below 5kΩ is recommended, depend-
ing on the type of electrode [21]). In this regard, a non-abrasive
electrode gel needs to be applied to the scalp, which serves as a
conductive pass between skin and electrodes. Electrodes can be
classified as active or passive electrodes. Active electrodes are less
affected by external noise, such as cable movements, as they use
pre-amplification very close to the skin at the recording sites.

As the preparation and cleanup procedure when using gel-based
electrodes is quite cumbersome, several alternatives have been
tested. For example, water-based sensors (small pellet electrodes
rolled in cotton soaked with water) may simplify the setup [23].
Moreover, dry electrodes which are integrated into the cap or
affixed on top of the scalp, do not require any gel at all [24, 25].
Unfortunately, the signal quality might be considerably lower with
these types of electrodes [24].

Figure 2.2 shows the international standard 10-20 electrode system
montage, which was developed with the goal of reproducible
measurements [22]. The 10-20 system standardizes 21 positions for
electrode placement using the nasion (at the top of the nose) and
the inion (at the bony lump at the base of the skull) as reference
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Figure 2.3: The 10-5 electrode system
[19]. Electrode locations of the stan-
dard 10-20 system are indicated by
white circles, additional electrode lo-
cations of the 10-10 system are indi-
cated by gray circles, and additional
electrode locations of the 10-5 system
are indicated by black dots and circles;
the black circles indicate a selection
of locations suitable for a 128 channel
EEG system.

points. The electrodes are labeled according to the distance between
these references, which is divided into intervals of 10% and 20%.
Each location corresponds to a position label composed of a letter
and a number. The letter refers to the brain region: The letter A
refers to the electrode placement on the mastoid process (the bony
prominence behind the ear), C to the central, P to the parietal, F to
the frontal, Fp to the frontal polar, and O to the occipital area. The
number refers to the lateral distance to the mid-line. The positions
on the mid-line have no number; instead, the letter z (for zero) is
appended. Odd numbers refer to the left and even numbers to
the right side; a higher number indicates a greater distance to the
mid-line.

Over time, the 10-20 system has been extended to the 10-10 and
10-5 systems, allowing up to 74 and 345 electrode positions, respec-
tively [19]. Figure 2.3 shows the electrode locations of the 10-10
system (marked as gray circles) and of the 10-5 systems (marked as
black circles and dots). The 10-10 system uses letter combinations
to label the additional positions, e.g., the electrodes between P and
O are labeled PO. The 10-5 system appends the letter ‘h’ (half) for
electrode positions halfway between two existing locations.

Depending on the type of BCI, the amplitude, latency, or frequency
spectrum of the sampled raw EEG data can be investigated. The
data can be decomposed into its constituent frequencies via Fourier
transformation. Certain frequencies may be more dominant in the
EEG; several frequency ranges (frequency bands) have beendefined
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to categorize the brain waves and associated characteristics [18,
26]: the delta band (< 4Hz, associated with deep sleep), the theta
band (4-7Hz, associatedwith drowsiness), the alpha band (8-12Hz,
associated with relaxed states and closing the eyes, recorded over
the occipital region), the mu rhythms (8-12Hz, associated with
motor activities, recorded over the sensorimotor region), the beta
rhythms (12-30Hz, associated with motor activities, recorded over
frontal and central regions), and the gamma rhythms (30-100Hz,
associated with motor activities and meditative states). The exact
boundaries of the bands are not consistent in literature; for example,
the alpha band is sometimes reported from 8 to 15Hz.

2.3 The Three Major BCI Paradigms

The BCI research field can be split into several sub-categories on
the basis of the used control paradigm. Each of these paradigms
is based on a specific brain potential occurring in the EEG. In
the following, the three most common BCI control paradigms are
described: TheMI-basedparadigm,which is based on sensorimotor
rhythms (SMRs), the P300 paradigm which is based on event-
related potentials (ERPs) and the VEP paradigm, which includes
the SSVEP and the c-VEP control signals. Figure 2.4 provides
example applications for each of these paradigms.

The Motor Imagery Paradigm

SMRs are brain waves recorded over the sensorimotor cortex [29].
The amplitudes of these rhythms change when a person is moving,
but also when preparing or imagining the movement [30]. SMR
rhythms can be characterized by frequency bands; most commonly
used are the � rhythm and the � rhythm [31].

Each body part corresponds to a specific section of the brain that
controls the movement of that part. For example, the right hand
movement corresponds to motor cortex activity in the contralateral
hemisphere; it is, therefore, possible to distinguish the brain activity
corresponding to the movement of the left and the right hand
[30]. When not involved in a motor task, the measured signal at
the corresponding motor area in the brain shows synchronized
activity in the � band; this activity is referred to as event-related
synchronization (ERS). On the other hand, during a motor task,
for example, a hand movement, a desynchronization activity can
be observed, where the amplitude of the � rhythm decreases; this
activity is referred to as event-related desynchronization (ERD).
ERS and ERD are also observed when the movement is only
imagined rather than executed [32]. For that reason, SMR activity
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SSVEPP300SMR

A B C

Figure 2.4: The three major BCI paradigms. (A) The motor imagery (MI) paradigm. The imagination of the movement of a
limb, e.g., the imaginary movement of the hand, as in the picture, generates a sensorimotor rhythm (SMR) signal which can
be recorded over the motor cortex. The figure shows the graphical user interface (GUI) of the Hex-o-Spell system [27], where
the centrally positioned arrow can be rotated clockwise by imagining right hand movement. This control mechanism allows
the selection of hexagons representing groups of letters or, in a second step, individual letters. (B) The P300 paradigm. The
BCI presents a character grid to the user with various rows and columns highlighted. The infrequent event, where the
highlighted column or row contains the desired target character, elicits the P300 peak roughly 300 ms after stimulus onset.
The system then matches the detected P300 to the target character. The figure shows the Farwell and Donchin speller [28],
which presents a 6 × 6 matrix of symbols, including all 26 letters of the alphabet as well as 10 additional symbols. (C) The
steady-state visual evoked potential (SSVEP) paradigm. The GUI presents different stimulation frequencies to the user. By
gazing at one of them, SSVEPs are elicited in the visual cortex of the brain. The SSVEP-BCI analyzes the data measured via
electroencephalography (EEG) and produces an output command. The figure shows the Bremen BCI [1], which employs five
stimulation frequencies. Figure adapted from Rezeika et al. [13].
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Figure 2.5: P300 component of an
event-related potential. The trial with
the P300 component (elicited by a
rare event) shows a large peak from
300-400 ms.

is used as input for MI-based BCIs. These systems interpret brain
activity, which the user modulates by imagining limb movements
or by performing similar cognitive tasks. Figure 2.4 A shows an
MI-based spelling application, the Hex-o-Spell system [27], which
is controlled by imagining right hand movements.

MI-based BCIs are endogenous and independent, as they can
be operated with brain activity only and do not require external
stimuli. These systems are, therefore, suitable for patients with
affected sensory organs. Successful tests with ALS patients have
been conducted with MI-based BCIs [33].

MI applications are typically synchronous as they specify fixed
timewindowswhere the user needs to imagine themovement after
a cue signal [34]. It should be noted that MI-based BCIs typically
require more training time than other paradigms, as the user needs
to learn how to modulate the SMR rhythms in several sessions [29,
33]. However, the use of modern machine learning methods has
lead to a strong decrease in calibration time from more than 50
hours to less than half an hour [35].

The P300 Paradigm

ERPs are electrocortical signals, which are detectable via EEG and
occur as a response to a sensory (visual, auditory, or tactile) or
psychological event. The type of the stimulus event determines
the characteristics (i.e., the specific fixed time delay, location, and
amplitude) of the evoked ERPs. Among the most researched ERPs
in BCI literature is the P300.
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The P300 paradigm is based on an ERP component that occurs
as a positive deflection in voltage roughly 300ms after a stimulus
event [36]. A typical P300-based BCI design embeds an infrequent
stimulus (the rare event) in a series of background stimuli (usual
events). The method of recording the elicited response to rare
events is referred to as oddball paradigm [28]. The P300 wave
induced by a rare event is most prominent in the EEG recorded
by electrodes covering the parietal area of the brain. By averaging
over multiple recordings, the P300 amplitude is isolated from the
noise. Figure 2.5 shows example signals recorded after a rare event
and after a usual event.

Farwell and Donchin [28] developed the first P300-based BCI
speller in 1988, where the oddball paradigm was implemented
using visual stimulation in the form of flashing rows and columns
(see Figure 2.4 B).

The P300 can be evoked in a high number of users: According to a
study conducted by Guger et al. [37] in 2009, approximately 89% of
the general population reach accuracies above 80%. As P300-based
BCIs employ the flashes at a fixed pace, which the user cannot
influence, they are considered as synchronous systems. Moreover,
as these systems rely on external stimuli, they can be categorized
as exogenous systems. With modern P300-based BCI applications,
ITRs in the range from 12-70 bpm have been achieved [13, 38] (ITR
is a standard performance metric for BCIs that integrates speed
and accuracy into a single measure; for more details, please refer
to section 2.7). Like MI-based systems, P300-based BCIs have been
successfully tested with patients with advanced ALS [39].

The VEP Paradigm

VEPs have been researched since the 1970s [11]. The VEP paradigm
can be divided into several subgroups according to the stimulation
modality. Among these subgroups are the SSVEP and the c-VEP
paradigms, which are the main focus of this thesis.

SSVEPs, which are also called frequency-modulated visual evoked
potentials (f-VEPs), are responses to a periodic visual stimulus
occurring at the occipital and parietal cortical areas of the brain [40–
42]. If the frequency of a flickering stimulus is high enough (> 6Hz),
the individual responses to each flash overlap; as a result, a steady-
state brain response can be observed with dominant frequency
components at the fundamental, harmonics and sub-harmonics
of the stimulus frequency. Figure 2.6 A shows the amplitude
spectrum for an SSVEP response to a stimulus flickering at 9Hz as
an example; peaks at 9, 18, 27, 36, and 45Hz are clearly visible.



2.3 The Three Major BCI Paradigms 13

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60

Frequency [Hz]

µV
A

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60

Frequency [Hz]

µV

B

Figure 2.6: Amplitude spectrum for
SSVEP and c-VEP response, calcu-
lated by fast Fourier transform (FFT).
(A) The BCI user focused on a 9 Hz
SSVEP stimulus. (B) The BCI user fo-
cused on a 63 bit <-sequence.

In BCI applications, the SSVEP paradigm is implemented in the
following way. Multiple stimuli, each flickering with a unique
frequency, are presented to the user while brain responses are
recorded via EEG. By analyzing the brain signals, the system
detects which target is gazed at by the user; it identifies the target
frequency out of all stimuli as the one that is most dominant
in the spectrum of the recorded signal. Each stimulus is linked
to a control command specific to the application. In spellers, for
example,multiple boxeswith letters are used as stimuli; the desired
letter can be selected by gazing at the corresponding box containing
it. Figure 2.4 C shows the Bremen-BCI spelling application, which
presents five selectable SSVEP targets for cursor navigation.

Regarding the SSVEP stimulation frequencies, several factors need
to be considered: First, only a limited frequency range evokes a
strong enough SSVEP response [43]; second, the harmonics of
the frequencies might interfere with each other [40]; third, the
generation of stable flickering patterns depends on hardware. For
example, if computer screens are used for stimulus presentation,
the frequencies depend on the refresh rate [6].

A similar VEP BCI approach is the c-VEP paradigm, which has
initially been proposed by Sutter [44]. In contrast to SSVEP-BCIs,
all stimuli are modulated with different time lags of the same
binary code sequence. The states of the target objects, shown and
not shown, correspond to the bits of the corresponding code. A
particular pseudorandom binary sequence, a so-calledm-sequence,
is typically used because of its correlation property (an<-sequence
is nearly orthogonal to shifted versions of itself, see section 3.2).

For classification, usually, a template matching approach is
used [45]. When the user gazes at one of the stimuli, the system
compares the recorded EEG data to templates, selects the best
matching one, and produces the corresponding output. The EEG
templates are generated a priori by averaging multiple trials
collected in a training session during which the user needs to gaze
several times at the stimuli. For the c-VEP paradigm, stimulus
onset needs to be determined precisely. For this, data collection
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and stimulus presentation need to be synchronized. Figure 2.6 B
shows the amplitude spectrum for a typical c-VEP response.

Sutter [44] presented the first c-VEP-based BCI in 1984, which
employed a microcomputer with MC68000 processor for signal
analysis and a specially designed video display for stimulus pre-
sentation with up to 128 targets. This system has been tested by
an ALS patient using implanted electrodes; the patient achieved
communication rates of 10 to 12 words per minute with the BCI [7].
More than a decade later, in 2009, Bin et al. [45] implemented
an EEG-based 16-target c-VEP system using a standard computer
screen and reached a mean ITR of 92.8 bpm. By doubling the
number of targets and using spatial filters based on canonical
correlation analysis (CCA), two years later, Bin et al. [46] yielded a
mean ITR of 108 bpm.Due to further improvements in classification
and in the design of spatial filters, Spüler et al. [9] reached an even
higher mean ITR of 144 bpm.

In comparison to the other BCI paradigms, VEP-based BCIs require
little or no user training and achieve high selection speeds [41].
VEP-based BCIs are exogenous, as they require external stimuli.
Moreover, almost all VEP-based BCIs belong to the category of
dependent systems, as they typically rely on gaze direction con-
trolled by extraocular muscles. Therefore, they may not be suitable
for people with neuromuscular disabilities who cannot control
the required muscles. Despite that, systems where VEPs were
modulated by spatial attention only, independent of extraocular
muscle control, have also been developed. An example is an SSVEP
system proposed by Kelly et al. [47], which detects the desired
target (one of two stimuli on the left and right side of the screen)
only by means of visual spatial attention. In comparison to the
more common dependent VEP BCIs, this system yieldsmuch lower
ITRs and requires more user training.

While not addressed in this thesis, transient VEPs (t-VEPs), steady-
state motion VEPs (SSMVEP), and motion-onset VEPs (m-VEPs)
also belong to the category of VEP-based BCIs.

The t-VEPs are elicited by mutually independent flash sequences
[45, 48]. Their classification involves averagingovermultiple flashes.
To prevent overlapping of t-VEPs, the stimulus rate of the flash
sequence needs to be below 4 Hz. The achievable ITRs for t-VEP-
based BCIs are around 30 bpm [45] (much lower than SSVEP and
c-VEP-BCIs).

The m-VEPs are elicited by predefinedmotions of the visual targets
and are usually comprised of three main peaks P1, N2 (predom-
inantly motion-specific, latency 160-200 ms), and P2 (elicited by
complex moving stimuli, latency 240 ms) [49].
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The SSMVEPs are elicited when gazing at objects with sinusoidal-
based movement patterns, e.g., contractions or oscillations. In
SSMVEP-based BCIs, all stimulus objects are moving simultane-
ously with individual frequencies [50]. An advantage of SSMVEP-
based BCIs over SSVEP-based BCIs is a more subtle stimulation; a
disadvantage is the comparably low system speed.

2.4 General BCI Frame Work

Regardless of the neurophysiological principle used, the basic
design of a BCI consists of several standard components. Figure 2.7
illustrates a general BCI framework, as introduced in [51].

In the following, a short description of the individual components
is provided:

User:
The BCI user is the person who controls the system via brain
signals, which either occur as a response to external stim-
uli (exogenous BCIs) or through self-regulated intrinsically
produced EEG features (endogenous BCIs).

Signal acquisition:
The brain activity is recorded; for example, in EEG-based
BCIs, signal electrodes are used, which are connected to an
amplifier that amplifies and temporally filters the recorded
electrical signals.

Preprocessing:
The signal is segmented, i.e., an appropriate classification
window is determined. Furthermore, as the raw EEG is noisy,
temporal filtering methods may be applied to reduce various
bio-electrical artifacts. To limit the signal analysis to a specific
frequency range, band-pass filters can be applied. Most VEP-
based BCIs use stimuli above 6 Hz; low frequencies (e.g.,
below 2 Hz) can be filtered as they do not carry relevant
information. Moreover, notch filters which reject signals in
a specific frequency range are applied to remove the power
line interference (in Europe 50 Hz). In VEP-BCI research,
Chebyshev and Butterworth filters are commonly applied
filter implementations (see, e.g., [8, 52]).

Feature extraction:
Informative and non-redundant values are extracted from
the preprocessed data yielding a feature vector. Methods of
dimensionality reduction, e.g., principal component analysis,
may be applied.
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Figure 2.7:Components of a BCI. The
general stages of a BCI system frame-
work are shown.
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Classification:
The signal features are translated into an output software
command. This command is typically produced on the basis
of established classification techniques such as Pearson’s
correlation method, linear discriminant analysis, support
vector machines, and neural networks (see, e.g., [28, 53–55]).

Control interface:
The classifier output is translated into a control signal of the
application. For example, in case of a spelling application,
the character corresponding to the classified command is
added to the screen; systems can additionally provide audio
feedback.

It should be highlighted that the user is a critical component
of the BCI. Various factors, such as age, tiredness, mental and
physical health, can have an impact on the system performance. In
respect to user variability, it is essential to customize the remaining
components to suit individual needs. The investigation of user
attributes and their impact on performance is relevant for the
development of user-specific calibration methods.

2.5 BCI Applications

The earliest BCIs were mainly developed as communication tools
for severely impaired patients [28, 44]. During the last decades,
several other types of applications have been tested. Wolpaw et
al. [12] categorized BCI applications as towhether their functioning
is to replace, restore, enhance, supplement, or improve natural
central nervous system (CNS) outputs. The following list provides
examples to each of these categories:

Replace:
Spelling applications for people who lost control over their
voice [13] and wheelchair control applications for people
who lost control over limbs [5] belong to this category. The
target group of these applications is patients who have
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limited communication options (for example, late-stage ALS
patients).

Restore:
Applications that electrically stimulate paralyzed muscles
to restore limb movement or applications that stimulate
peripheral nerves to restore bladder function belong to this
category.

Enhance:
Non-medical applications that continuously monitor brain
activityduringdemanding tasks, such asdriving a car, belong
to this category [56, 57]. These types of applications can be
used to warn the user and enhance his or her attention in
emergencies. The primary target group of this application
scenario is healthy users.

Supplement:
In general, any application that provides an additionalmeans
of control belongs to this category. In computer games,
where the user is controlling a joystick with both hands, the
BCI can enable a supplementary selection function. BCIs
could provide additional hands-free control mechanisms
for augmented reality and virtual reality glasses. In smart
homes, the artificial BCI outputs could be used to control
lighting or entertainment devices [58, 59] while the user is
manually engaged in other daily activities, e.g., preparing a
meal. These application scenarios may be of interest to the
entertainment sector.

Improve:
Rehabilitation applications with a focus onmotor re-learning
that detect and enhance brain signals fromadamaged cortical
area to stimulate muscles or improve movements belong to
this category [60]. The target group includes stroke patients
with impaired CNS functions. During motor exercises, the
BCI can provide supportive feedback if the user performs
the re-learned movement correctly.

The majority of current BCI research addresses the first type of
BCI application, the replacement of lost CNS output. The thesis
focuses on VEP-based spelling applications, which also belong to
this category.

2.6 VEP-based BCI Spellers

According to the review of Rezeika et al. [13], only a fifth of
the studies presenting BCI-spellers in the last decade directly
addressed the design of the graphical user interface (GUI).
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Figure 2.8:Multi-step speller and single-step speller. (A) The figure shows the Bremen speller [1]. Multiple cursor movements
controlled via SSVEP are required to select a letter. (B) The figure shows the QWERTZ speller [61]. Only one SSVEP selection
is required to select a letter.

The GUI design, however, is a crucial component in terms of
BCI performance and usability. VEP-based BCI spellers can be
categorized as to whether they are based on a multi-step or a
single-step layout and as to whether they are synchronous or
asynchronous. Additional GUI features, such as word completion
or word suggestion modules, can improve the overall efficiency of
the system.

Multi-step Speller

The English alphabet consists of 26 letters. Typically, the number of
stimuli used in SSVEP-based BCIs is much lower. For this reason,
various multi-step interfaces, where the user needs to select several
SSVEP targets to choose the desired character, have been developed.
One example of a multi-step speller is the Bremen-BCI GUI, which
presents a rhombus-shaped grid consisting of 32 characters [1].
Five SSVEP target stimuli (representing directions UP, DOWN,
RIGHT, LEFT, and the command SELECT) allow the user to move
a cursor along the grid and to select the desired character (see
Figure 2.8 A). The usage frequency of characters in the English
language determines their position in the grid; for example, E, the
most frequent letter, is positioned in the center.

The Bremen speller was tested in a field study conducted at the
RehaCare fair with 29 healthy participants and 8 participants with
different kinds of disabilities [1]. In this study, an average ITR of
25.7 bpmwas achieved. Over time, several modifications lead to an
increased average ITR of 61.7 bpm with seven healthy participants
and a peak ITR of 109 bpm [42].

Another example of a multi-step speller is the three-step speller
we presented in [62, 63]. The three-step speller shows four boxes
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as SSVEP stimuli to the user. One of these boxes contains the
command DELETE, the other boxes contain selectable menus, each
offering nine characters. For writing a letter, the user needs to
produce three SSVEP commands. More details about this interface
are provided in chapter 4.

The overall spelling speed of multi-step spellers is limited, as the
classification windows and gaze-shifting periods of each step are
accumulated.

Single-step Speller

The earliest single-step c-VEP speller with multi-target stimulus
presentation was developed in the 1990s by Sutter [7], who used a
custom-designed cathode-ray tube (CRT) for stimulus presentation.
In 2003, Gao et al. [40] presented a multi-target SSVEP system
using 48 LED with a frequency resolution of 0.2 Hz to control a TV
remote; their experiment demonstrated the feasibility of single-step
SSVEP spellers. Hwang et al. [64] developed an SSVEP speller that
resembled a QWERTY style keyboard. The authors used 30 LEDs
flickering with different frequencies.

Meanwhile, researchers developed one-step spellers for standard
liquid-crystal display (LCD) monitors; in 2011, Bin et al. [46] imple-
mented a system with 32 targets based on the c-VEP paradigm.

While c-VEP stimuli share the same circular shifted code pattern,
SSVEP stimuli need to differ in their cycle length; the update
rate of the display hardware (i.e., the refresh rate) limits the
number of suitable SSVEP stimuli. For this reason, SSVEP multi-
target systems for standard monitors are harder to realize. In 2010,
advancements in stimulus design led to the implementation of
SSVEP one-step spellers for standard monitors. Wang et al. [65]
developed a frequency approximation method to realize multi-
target SSVEP systems. The authors tested the method with a
16-target virtual keypad yielding an ITR of 75 bpm with three
participants. After further improvements in signal classification,
Chen et al. [66] presented a one-step SSVEP speller, which yielded
an average ITR of 267 bpm. In their system, 40 SSVEP stimuli were
arranged as a 5 × 8 matrix allowing the selection of characters,
numbers, and additional symbols.

While single-step spellers might be more intuitive and allow faster
spelling speeds, they tend to be less accurate and cause more eye
fatigue than systems with a low number of targets. In chapter 4,
the impact of the number of targets on BCI performance, which is
closely related to the number of steps of the GUI, is investigated.
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Synchronous Spellers

Synchronous VEP spellers produce system outputs at fixed time
intervals. The flickering stops after a fixed time interval during
which the system collects the EEG data. For example, for the c-VEP
paradigm, this time interval is determined by the code-length of the
<-sequence. After the flickering phase, the BCI produces an output
by analyzing the collected data. Spelling applications typically
incorporate a flickering pause after generating a command. During
this phase, the flickering stops, and the user is given a fixed time
interval to shift the gaze to the next letter. In the literature, this
stimulation pause has been termed gaze shifting period [67], cue
duration [68], break between trials [69], or rest period [47]. After the
gaze shifting phase, the flickering continues. In this manner, gaze-
shifting and flickering-phases alternate; the BCI generates outputs
at equidistant time points which the user cannot influence.

Synchronous systems do not consider that a user – for any reason
– is not looking at the target. Particularly, in spelling applications,
the duration the user needs to locate the desired letter and to shift
his or her gaze depends on many factors, such as familiarity and
complexity of the letter arrangement, external distractions, and
tiredness. Thus unintended selections might occur, an issue which
is often referred to as the Midas touch problem (see, e.g., [67]).
While synchronous system implementations lead to fast spelling
speeds in short sessions, they might be impractical in long-term
daily use.

Asynchronous Spellers

Asynchronous VEP spellers can distinguish between intended
target fixations and exploratory target fixations. These kinds of
systems incorporate a no-control state [70] (also called idle state
[71]), where the user does not intend tomake a selection.With asyn-
chronous applications, the BCI can provide continuous feedback
reflecting the classifier state to the user [47].

For the SSVEP paradigm, asynchronous systems have been realized
by introducing classification thresholds [42, 63, 69]. The system
determines prediction scores after specific calculation intervals
and compares these against threshold values. For example, in
the Bremen-BCI, cursor movements or selections are only per-
formed if the calculated frequency power estimation associated
with the presumably fixated target surpasses a pre-defined thresh-
old; otherwise, the system rejects the classification and collects
further data [42]. The system also provides continuous feedback
by varying the size of the targets in relation to the corresponding
probability. In addition to the threshold criterion, pseudo-targets
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can be implemented to improve the distinction between control
and no-control state [71]. In this sense, the classifier calculates prob-
ability scores for the target frequencies displayed on the screen,
and also, for frequencies that are not shown but might correspond
to VEPs elicited when the user is scanning through the letters. If
the BCI classifies any of these pseudo-targets, it does not generate
an output. Typically, mean values between target frequencies are
employed as pseudo-targets (see, e.g., [63, 70]).

For c-VEP-based BCIs, asynchronous systems are harder to realize;
static time windows are the standard because of the required syn-
chronization between EEG data collection and stimulus represen-
tation, the fixed length of the code sequence, and the dependence
on pre-recorded data sets. In spite of these issues, we developed an
asynchronous c-VEP speller [72], which is described in chapter 5.

In general, classification thresholds can lead to a more natural
interaction between user and BCI, but they can slow down the
output speed, as it takes extra time until they are surpassed. This
performance drop may be compensated using word prediction
methods.

Spellers with word prediction features

Word completion and word prediction features allow users to
produce outputs with fewer selections and can, therefore, speed
up communication via BCI. So far, spellers offering predictions
showed promising results. The majority of prediction methods
have been developed for P300-based BCIs [73–75].

Ryan et al. [74] developed a P300-based spelling application that
presented an 8× 9matrix for character, letter, and number selection.
In addition to that, theGUIpresentedup to sevenword-suggestions,
preceded by a number, in a separate window. Users could choose
the desired word by selecting the corresponding number in the
matrix.According to their results, theirwordpredictionmechanism
led to an improved character output. However, the authors also
observed reduced accuracy, which might be explained by an
increased workload when using the additional prediction module.
To reduce the cognitive load, Kaufmann et al. [75] developed a
similar 6 × 6 P300 speller. In their system, the word suggestions
were directly integrated into the matrix rather than in a side
window. This modification led to a reduced workload on the user
and yielded overall better performance.

For VEP-based BCIs, word prediction mechanisms are quite
rare [73]. Regarding the SSVEP paradigm, Volosyak et al. [76]
presented a dictionary functionality for the Bremen-BCI speller.
The original Bremen-BCI speller was extended by an additional
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drop-down list containing six dictionary suggestions, and a sixth
SSVEP target box, which led to a menu layout. This menu layout
presented each of the six suggested words in a flickering box; the
user could select the desired word by focusing on the box contain-
ing it. For most users, the modified dictionary-driven Bremen-BCI
realization led to an increased spelling performance.

Spelling interfaces based on the c-VEP paradigm are typically
implemented as synchronous systems. Due to the additional time
needed to check the dictionary suggestions and to locate the desired
target, dictionary integrations are more suitable for asynchronous
spellers such as the Bremen-BCI. The developed asynchronous
c-VEP system [72] employs word suggestions on the word level.
The functionality of the dictionary feature is also described in
detail in chapter 5.

2.7 Evaluation Metrics

Various evaluation metrics can be applied to analyze BCI per-
formance. Among the most common evaluation metrics for BCI
spelling applications are the classification accuracy, the ITR, and
the OCM. Each of these measures has its own advantages and
disadvantages [77].

Classification Accuracy

To determine the accuracy of a BCI classifier, one can investigate
the confusion matrix (see, e.g., [77]). For two-class problems, the
confusion matrix partitions the classifications into true positive
(TP), false positive (FP), false negative (FN), and true negative (TN)
recognitions (see Figure 2.9 A). Various performance metrics can
be derived from this matrix. Most commonly used in BCI research
is the classification accuracy, %, which describes the probability of

Figure 2.9: (A) General confusionma-
trix for a two class problem (# = 2).
The observations are categorized into
true positives (TP), false negatives
(FN), false positives (FP), and true
negative (TN). (B) Example of a confu-
sion matrix for multiple classes (here,
# = 5). In the example, an accuracy
of 85% is achieved (calculated as the
sum of diagonal elements divided by
the total sum of cases).
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a correct classification; in the binary case,

% =
)% + )#

)% + �% + �# + )# . (2.1)

More generally, for # classes, the confusion matrix (=8 9), with rows
and columns 8 , 9 = 1, . . . , # , displays the relationship between the
actual class the user intended to select, and the predicted class,
determined by the classifier. A single element =8 9 indicates the
number of occurrences the actual class 8 was classified as class
9. Hence, the diagonal elements, =88 , represent the number of
correct classifications for the class 8. The accuracy can, therefore,
be calculated as the sum of diagonal elements divided by the total
sum of elements,

% =

∑#
8=1 =88∑#

8=1
∑#
9=1 =8 9

. (2.2)

An example confusion matrix for a 5-class system (such as the
SSVEP Bremen speller [42]) is depicted in Figure 2.9 B. As equation
(2.2) reveals, the accuracy depends on the number of classes and the
individual frequency of cases. The chance level, i.e., the threshold
that denotes if the accuracy is better than random is depended
on the same values. Ideally, data should be balanced in the sense
that each actual class has the same number of occurrences. The
following example illustrates why unbalanced data sets are not
desired. We consider a binary classification problem with 10 cases
where the actual class is 0 and 30 cases where the actual class is 1.
The classifier that only outputs class 1, independently of the actual
class, achieves 75% accuracy; the classifier that only outputs class
0, independently of the actual class, achieves 25% accuracy. Due to
the imbalance of the data, a comparison of the classifiers based on
the accuracy is biased.

Cross-Validation

Cross-validation (also called rotation estimation) describes a set of
validation techniques for classification models that were trained
with a dataset of known labels [78]. They are typically used to esti-
mate a statistical measure (such as the accuracy) of a classification
model on unknown data (i.e., data that was not used for classifier
training).

In cross-validation, a sample of data is partitioned into subsets.
Usually, several rounds of cross-validation are implemented using
different partitions. The results are averaged across these rounds.

In :-fold cross-validation, a dataset of observations of known labels
is partitioned into : equal-sized subsets (i.e., each subset contains
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Figure 2.10: :-fold cross-validation.
In :-fold cross-validation, the data
are divided into : complementary
subsets. The 8-th set is used as test
set 8 = 1, . . . , :. The remaining : − 1
subsets are used as training sets. For
each round (i.e., each of the : sets
used as test set), a performancemetric
(here, %8 ) is calculated. At last, a mean
value across all rounds is calculated.

Test Training on k -1 splits

Split k

…

Average

… …

Split 2

Split 1

the same number of observations). From these, :−1 subsets (called
the training folds) are used to train the model. The subset that is
left (called the validation fold or test fold) is used to evaluate the
model of the classifier. In total, : of such validation rounds are
performed. Each round a different subset is used as test data, and
the remaining : − 1 subsets are used as training data. An overall
average across the results of the different rounds is calculated,
yielding a single estimation. Note that all observations are used
for training and validation. Figure 2.10 illustrates the procedure of
:-fold cross-validation.

In the case where : is the number of observations, the method
is called leave-one-out cross-validation. In stratified :-fold cross-
validation, in each fold, the labels of the observations occur equally
frequent.

There are two use cases for cross-validation. On the one hand, it can
beused to compare twodifferent predictionmodels. For example, to
compare two classification methods for a BCI spelling application,
for each of these methods, cross-validation can be performed using
labeled off-line data to estimate the classification accuracy. On the
other hand, cross-validation can be used to optimize a parameter
specific to a prediction model. In this sense, cross-validation is
performed multiple times with the same model but with different
values for the parameter. The parameter can then be set to the value
that maximizes the averaged results from the cross-validation (e.g.,
the parameter value yielding highest accuracy).

Information Transfer Rate

The ITR is a standard metric to examine BCI performance. Its
calculation is based on Shannon’s channel theory for general
communication systems [79] and has been introduced by Wolpaw
et al. [12]. The ITR is a measure of the mutual information between
the user’s choice and the BCI selection; as such, it interprets the
BCI system as a noisy channel, where noise is added whenever a
misclassification occurs [80].
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Figure 2.11: Information transfer rate
in bit/trial for different numbers of
classes, # = 2, 4, 16, 32. Provided are
also the associated values for the ITR
in bit/min (assuming 30 trials/min,
i.e., a selection time of 2 s). The bit
rates are only shown for accuracies
greater than or equal to chance level
(i.e., % ≥ 1/#). Figure adapted from
Wolpaw et al. [12], Figure 1.

The measure combines information on system speed and accuracy
in one variable while also taking into account the number of classes.
The metric is expressed as the number of error-free bits per time
unit. The ITR in bit/min, �< , can be calculated using the following
formulas:

�C = log2 # + % log2 % + (1 − %) log2

(
1 − %
# − 1

)
, (2.3)

�< =
60
)
· � · �C , (2.4)

where �C denotes the information transferred in bit per trial, # the
number of classes, % the classification accuracy, ) the total time
of the experiment task, and � the number of classifications of the
experiment task.
A calculator for the ITR can be found under the tools section
of https://bci-lab.hochschule-rhein-waal.de/en/itr.html.
In this thesis, the unit of the ITR, bit/min, is abbreviated as bpm.

Figure 2.11 shows the ITR in bit per trial as a function of the
classification accuracy for different numbers of classes. The figure
also shows the associated values of the ITR in bit per minute if
the average classification time is 2 s per trial (i.e., 30 trials/min).
It can be seen that the ITR increases with the number of classes
# . In the following, the formula (2.4) is examined in detail. The
first summand of the formula, log2 # , is strictly positive and
independent of the classification accuracy %. The second summand,
% log2 %, contributes negatively to the ITR and is independent of
the number of classes. The third summand of the ITR formula,
(1−%) log2

( 1−%
#−1

)
, is dependent on the classification accuracy% and

on the number of classes# . The term also contributes negatively to

https://bci-lab.hochschule-rhein-waal.de/en/itr.html
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Figure 2.12: Individual terms of the ITR formula. (A) The first summand, which depends only on the number of classes. (B)
The second summand, which depends only on classification accuracy. (C) The third summand, which depends on both the
classification accuracy and the number of classes. Values are only shown for accuracies greater than or equal to chance level
(i.e., % ≥ 1/#). Figure adapted from https://bci-lab.hochschule-rhein-waal.de.

the ITR for accuracies below 100%. However, for fixed accuracies,
the values increase with the number of classes # . Figure 2.12
shows the individual summands as a function of the classification
accuracy for different numbers of classes.

For multi-step spellers, the number of classes can be either set
as the number of frequencies (i.e., the number of choices on the
level of selections in each step) or as the total number of possible
selections (i.e., on the level of output characters) [1, 38, 70]. With
the first option, the ITR describes the performance of the raw
BCI and reflects the efficiency of the classification algorithms;
with the second option, the ITR reflects the effectiveness of the
application.

Strictly speaking, the ITR calculation is done under the assump-
tions that all possible selections are equally probable and that the
system is memoryless [12, 80, 81]. As practical experiments often
violate these assumptions, for example, when testing systems with
word prediction models, researchers usually provide additional
performance metrics.

Output Characters per Minute

The ITR alone is not an appropriate measure for the evaluation of
the application usability. In systems where manymisclassifications
occur, the ITR values may be too high, as the following example
demonstrates: We consider a P300 speller such as the Farwell and
Donchin speller [28] with # = 36 selection options, which is tested
with two setups. In the first setup, the selection time for each letter

https://bci-lab.hochschule-rhein-waal.de
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is 1 s. With these parameters, the user achieves an accuracy of 30%
after 100 selections. In the second setup, the selection time for each
letter is 10 s. Now the user achieves an accuracy of 100% after 100
selections. Calculation of the ITR results in 41.9 bpm for the first
and 31.0 bpm for the second setup. Although the first setup is
not usable with a classification accuracy as low as 30%, it yields a
higher ITR.

In comparison to the ITR, themeasures introduced in the following
reflect the application speed in terms of output characters rather
than in terms of selections.

Correct letters per minute (CLM) is a measure for single-step
spellers that determines the theoretical number of correct letter
selections per minute by simulating the correction of typing er-
rors [25, 81]. In single-step spellers, where an erroneous selection
requires one additional correct choice (delete the previous char-
acter), the number of correct characters can be calculated as the
difference of correct selections and incorrect selections. Taking the
classification accuracy % into account, the number of characters
is %� − (1 − %)� = (2% − 1)�, where � refers to the total number
of selections. If the accuracy is below 50%, the number of errors
is higher than the number of correct selections; the system is not
usable. Thus the CLM metric is defined as

�!"(), %) =


60(2% − 1)
)

% > 0.5

0 % ≤ 0.5
(2.5)

where ) refers to the average classification time for one selection
in seconds, and % refers to the classification accuracy. The unit of
the CLM is characters per minute, abbreviated char/min.

Back to the previous example, if we calculate the CLM, the first
setup () = 1, % = 0.3) results in a CLM of 0 char/min and the
second setup () = 10, % = 1) results in a CLM of 6 char/min.
Therefore, in this example, the CLM reflects the usability of the
application better than the ITR.

The CLMmetric is not suitable for multi-step spellers where the
number of selections for error corrections depends on the current
step or the position of a cursor. Moreover, the CLM can only be
used if one selection corresponds to exactly one character that
is added to the output display. It is, therefore, not suitable for
interfaces where selection options can represent entire words.

For this purpose, Ryan et al. [74] suggested a similar measure, the
output characters per minute (OCM), which is simply calculated
by dividing the total number of output characters by the time
required to spell them. This metric can be applied to measure the
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efficacy of multi-step spellers and dictionary-supported spellers,
where a single selection can represent an entire word. To determine
the OCM, the user needs to correct all errors. The OCM is also
expressed in characters per minute (char/min). It is directly depen-
dent on selection accuracy, and, similarly to the CLM, it provides
a better measure in terms of system output in comparison to the
ITR.

The information value of the different measures depends on what
aspect of performance is investigated. To assess the performance
of the classifier, the ITR is a suitable measure. To assess the per-
formance of the spelling application, OCM and CPMmay be the
better option. In this thesis, we mainly use ITR (on the level of the
selections in each step), the classification accuracy, and the OCM.
These three measures cover the performance on the classification
level and the application level.

2.8 BCI Illiteracy

BCIs not always interpret the user’s intent with sufficient accuracy.
Spelling applications are not usable if the average classification
accuracy is too low. The phenomena where no sufficient control
over the system is achieved has been termed BCI illiteracy [8, 29,
82].

A BCI user is referred to as BCI-illiterate if the system fails to detect
his or her intentions accurately, more precisely, if the classification
accuracy does not surpass a certain threshold.

It should be noted that this threshold value is neither standardized
nor fully justified in BCI research [83]. A threshold for reliable
control is indeed difficult to justify, as it depends on the number of
targets, but also on the systemdesign and systempurpose. This the-
sis uses a threshold of 70% accuracy to define BCI-illiteracy, a value
that has often been employed in this regard in the literature [84,
85].

The BCI literacy rate is defined as the percentage of users who
achieve control over the system, and the BCI illiteracy rate is
defined analogously [86]. It is estimated that across all major BCI
approaches the BCI illiteracy rate is around 15-30% [29].

The term BCI illiteracy is criticized for implying that it is the
user’s fault that he or she cannot control the system. However,
BCI illiteracy is not an issue of the user but of the BCI that is not
able to interpret the user’s intent. Some researchers prefer other
descriptions of the illiteracy phenomena instead, e.g., “lack of BCI
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efficiency” [87]. The categorization into BCI illiterate and BCI liter-
ate users is useful to identify reasons for insufficient performance.
Efforts to solve the BCI illiteracy problem include improvements of
signal classification algorithms, interface design, training protocols
(clear instructions, extended training of user and classifier), and
sensors [88]. Addressing these points improves the system accu-
racy and thus benefits all users. This thesis mainly focuses on the
first point (classification algorithms) but also addresses interface
design and training protocols.

Often, algorithms are tested with existing datasets using off-line
evaluation methods such as cross-validation [83]. While this ap-
proach is an effective way to evaluate and compare different
classification methods, on-line tests are essential to validate overall
BCI performance, as it takes instability over time, distractions due
to the real-time feedback as well as environmental disturbances
that affect performance in practical scenarios into account. The
evaluation of BCIs should, therefore, incorporate an on-line session
where the BCI is tested under real-world conditions [38].

While BCI literacy is defined on the basis of accuracy, Volosyak
et al. [1] introduced the term BCI ability rate as a function of the ITR
measure, representing the percentage of the population that can
achieve a particular desired ITR value. Similar to the BCI literacy
rate, the BCI ability rate can be seen as characteristic of the specific
tested BCI system.





Implementation of a VEP-based
BCI 3

In this chapter, the typical implementation of VEP-based BCI sys-
tems for a typical setup consisting of a computer, signal amplifier,
and a standard computer monitor is described. In this regard, the
methods used in publications [72, 86, 89] are summarized. Particu-
lar emphasis is put on stimulus presentation and the classification
of the EEG data, which are running in separated dedicated threads
(i.e., independently running functions executed in parallel).

Multichannel methods such as the minimum energy combination
(MEC) and the CCA are among the most widely used BCI signal
processing methods and have been tested in many practical ex-
periments. Both methods use linear combinations of individual
electrode channels to generate one or more filtered channels. An-
other critical aspect of the implementation of a VEP-based BCI is
the stimulus pattern.

The chapter presents different methods of stimulus presentation
for SSVEP-based BCIs, such as frequency approximation and sinu-
soidal modulation techniques (section 3.1). For the c-VEP stimulus
presentation, the generation and properties of the underlying <-
sequence are discussed in detail (section 3.2). After that, the chapter
focuses on the classification methods that were used in this thesis.
The algorithms for the MEC (section 3.3) and CCA (section 3.4)
are provided. Thereafter, a template matching method, which can
be used for both c-VEP and SSVEP-based BCIs, is described (sec-
tion 3.5). Following that, the chapter covers the synchronization
between stimulus presentation and data acquisition (section 3.6).
The last section discusses different training aspects of the classifi-
cation methods applied in VEP-BCI research (section 3.7).

3.1 Presentation of Visual Stimuli for
SSVEP-based BCIs

In SSVEP-BCIs, each selectable target flickers at a specific frequency.
To generate the flickering pattern on conventional monitors, re-
searchers used various methods; the most common approaches are
presented in this section. An important component for the stimuli
presentation is the vertical refresh rate of the monitor. The vertical
refresh rate is the number of times per second the monitor draws
images using the data it is given. The higher the refresh rate, the
smoother the transition of images. Typical computer monitors have
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a 60 Hz refresh rate; modern gaming monitors have refresh rates
of 120, 144, or 240Hz.

Divisors of the Vertical Refresh Rate

The stimulus pattern can be obtained from integer divisors of the
vertical refresh rate, which define the period lengths of a possible
frequency [42, 63, 90]. Let A denote the monitor refresh rate in Hz,
and � denote an integer divisor of A. The stimulus sequence with
period � representing the frequency 5 = A/� is given by

2(8) =
{

1 8 − 1 (mod �) <
⌈
�
2
⌉

0 otherwise,
8 = 1, 2, . . . , (3.1)

where dGe denotes the ceiling function, which maps G to the least
integer equal to or greater than G.

The render elements, which are presented on the monitor, are
determined within the software thread dedicated to the graphical
presentation. The iterator 8 of the stimulus sequence is updated
every frame. If 2(8) = 1, the stimulus is drawn to the screen; if
2(8) = 0, the stimulus is not drawn.

Some research groups found that the duty cycle (i.e., the fraction
of an ’on-off’ period where the stimulus is ’on’) might influence
BCI performance (see, e.g., [91]). When employing formula (3.1) for
stimulus presentation, the duty cycle is given by d�/2e /�. Hence,
for odd �, the duty cycle of the sequence is not 50%. For example,
if the monitor refresh rate A is 60 Hz, a cycle length of � = 3 yields
a 20 Hz stimulus pattern with a duty cycle of 2/3=66%.

Table 3.1: Suitable SSVEP frequencies
for 60Hz displays. The frequency is
calculated as 60/�, where � denotes
the period length in frames.

Period length 3 4 5 6 7 8 9 10
Frequency [Hz] 20 15 12 10 8.57 7.5 6.67 6

The overall number of distinct stimuli that can be generated with
divisors of the vertical refresh rate is limited. As shown in Table 3.1,
with a vertical refresh rate of 60Hz, only eight frequencies between
6 and 20Hz, a typical range for SSVEP stimuli choice (see section 4.1
formore details), can be realized.Nonetheless, when using a 120Hz
refresh rate, the number of realizable frequencies in this range
increases to 15.

Additional limitations can arise if the classification algorithms
consider harmonics of a stimulus frequency. For example, 6 Hz and
12 Hz stimuli should not be used simultaneously. More generally,
the following restriction rules need to be consideredwhen choosing
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Figure 3.1: Example of stimuli gen-
erated using the frequency approxi-
mation method. Displayed are the 1 s
stimulation cycles of a 7, 9, and 11Hz
stimulus for a refresh rate of 60Hz.

SSVEP stimulation frequencies to avoid mutual influences (see,
e.g., [92]):

58 ≠ 2 59 , 58 ≠ ( 59 + 5:)/2, 58 ≠ 2 59 − 5: . (3.2)

Due to these limitations, the method is not suitable for multi-target
BCI applications.

Frequency Approximation Method

Amethod to generate arbitrary frequencies up to half of themonitor
refresh rate was first described by Wang et al. [65]. The authors
implemented a 16-target system with a frequency resolution of
0.25Hz and achieved an average ITR of 75.4 bpm.

Their so-called frequency approximationmethod employs a square
wave function with amplitudes alternating at frequency 5 , which
is given by

B 5 (C) = 2(B b 5 Cc − b2 5 Cc) + 1, (3.3)

where b·c denotes the floor function. The code sequence that is
used for the stimulus presentation of the frequency 5 is now given
by

2(8) = 1
2

(
1 + B 5

(
8 − 1
A

))
8 = 1, 2, . . . , !, (3.4)

where the code length ! is a multiple of the frame rate A, inversely
dependent on the frequency resolution [66]. For example, with a
frequency resolution of 0.5Hz (e.g., 6Hz, 6.5Hz, 7Hz, and so on)
the code length is set to ! = 2A. Figure 3.1 shows the stimulation
cycles of a generated 7, 9, and 11Hz stimulus.

A characteristic of this method is that the number of frames that
represent a period of an approximated frequency varies. As a
result, the duty cycle is not constant, as can be seen, for example,
when inspecting the code sequence for the approximation of a 7Hz
stimulus with refresh rate 60Hz:

111110000︸      ︷︷      ︸
9

111100000︸      ︷︷      ︸
9

11110000︸    ︷︷    ︸
8

111100000︸      ︷︷      ︸
9

11110000︸    ︷︷    ︸
8

111110000︸      ︷︷      ︸
9

11110000︸    ︷︷    ︸
8

.

The sequence consists of a total of seven ‘on’ and ‘off’-phases of
varying lengths, three consisting of eight frames and four consisting
of nine frames.

One advantage of this method is that any frequency between 0
and A/2Hz can be generated. As SSVEPs evoked by approximated
frequencies with a low resolution of 0.1Hz can still be reliably dis-
tinguished [40, 93], this method is suitable for the implementation
of multi-target systems.



34 3 Implementation of a VEP-based BCI

Sinusoidal Stimulus Modulation

Themanipulation of the transparency of a stimulus object can yield
a more subtle flickering pattern. Manyakov et al. [94] proposed
a sinusoidal stimulus modulation method, which is based on
sampled sinusoidal intensity profiles. Using this technique, the
stimulus sequence 2 for the frequency 5 is given by

2(8) = 1
2

(
1 + sin

(
2� 5

8 − 1
A

))
, 8 = 1, 2, . . . , !, (3.5)

where the code length ! is a multiple of the frame rate A, as in the
previous section. The values of this sequence range from 0 to 1.

The function values are used to manipulate the pixels correspond-
ing to the stimulus. In this regard, alpha compositing, a technique
used in computer graphics where different images are superim-
posed by manipulating the so-called  value, is applied. The color
information of one pixel, usually represented by the RGB color
values (red, green, blue), is extended to a fourth code that repre-
sents this  value [95]. This  value is a measure of transparency
or opacity; it indicates how much a graphical element covers the
elements on deeper levels. By manipulating the alpha value, semi-
transparent images can be realized. The sum of transparency and
opacity is always 1 (e.g., if the opacity of a graphical element is
60%, the transparency is 40%). The fineness of the transparency
gradation depends on the number of bits used to store the alpha
channel. For the most common image formats, one additional byte
per pixel is used. In this case, the alpha channel comprises 28 =
256 gradations, with the extreme values ‘0’ for ‘fully-transparent’
and ‘255’ for ‘fully-opaque’.

For the implementation of an SSVEP stimulus 5 the -values of
the graphical stimulus element are set to  = [(2 ∗ 255)], where 2 is
a value of the code sequence obtained by (3.5) and [·] denotes the
rounding operator, which rounds to the nearest integer (when the
fraction part is precisely 0.5 it rounds up). Typically, for maximum
contrast, the graphical stimulus elements are colored white, and
the background is colored black. Thus, if 2 = 0, the stimulus is fully
transparent, i.e., only the background (black) is visible at its place.
On the other hand, if 2 = 1, the stimulus is fully opaque, i.e., it is
colored white (maximal contrast to the background). For values
between 0 and 1, the stimulus color goes through different shades
of gray. The step width of the grayscale gradient is dependent
on the monitor refresh rate (see Figure 3.2). At high refresh rates,
a finer gradation is achieved, leading to a more subtle visual
stimulation.
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Figure 3.2: The -channel of an 11 Hz
stimulus. Displayed are the -values
during a one second stimulus inter-
val at different monitor refresh rates.
The alpha channel has 256 discrete
levels , ’0’ denotes ‘fully-transparent’
and ’255’ denotes ‘fully-opaque’. (A)
Refresh rate 60 Hz. (B) Refresh rate
120 Hz. (C) Refresh rate 240 Hz.

Hybrid Frequency and Phase Coding

The methods for SSVEP stimulus presentation described so far rely
on frequencies for information coding. Phase information can also
be used to code SSVEP targets. For example, Manyakov et al. [94]
implemented a BCI with multiple targets at the same frequency
but with different initial phases.

In the field of SSVEP research, the best results were achieved, when
frequency and phase coding were combined [52, 66, 96]. In this
sense, the approximation approach and the sinusoidal modulation
method can be extended to the phase domain [96, 97].

When using the so-called hybrid frequency and phase coding
approach [96] in combination with the sinusoidal modulation
method, the stimulus sequence 2 of frequency 5 with phase Φ is
given by,

2(8) = 1
2

(
1 + sin

(
2� 5

8 − 1
A
+Φ

))
, 8 = 1, 2, . . . , !, (3.6)

where, as before, ! and A denote code length and refresh rate.

3.2 Presentation of Visual Stimuli for
c-VEP-based BCIs

In c-VEP systems, all targets are modulated with cyclically shifted
versions of a single code [45]. Maximum length sequences (<-
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Figure 3.3: Basic #-stage linear feed-
back shift register (LFSR). The regis-
ter cells hold binary states 1 and 0.
The outputs are connected by XOR
gates. Figure adapted from Gembler
et al. [98].

sequences) are special non-periodic binary code patterns that
are particularly suitable for the stimulus design in BCI applica-
tions because of their correlation property [7]. In the following,
the generation of <-sequences and some of their properties are
described.

Generation of <-Sequences

A maximal-length sequence (<-sequence) is a periodic binary
sequence with a noise like wave-form [99]. An <-sequence can be
generated using a linear-feedback shift register (LFSR), as shown
in Figure 3.3. An LFSR consists of # binary memory stages (also
called cells) labeled '#−1 , . . . , '1 , '0. The input bit, '#−1, is the
value of a linear function 5 that performs modulo-2 additions with
a subset of the register entries. (The modulo-2 sum of two bits is
0 if the bits are identical, and 1 if they differ, 0 + 0 = 0, 0 + 1 = 1
and 1 + 1 = 0.) The register outputs of the LFSR are connected by
exclusive-OR (XOR) gates. The bit positions that influence the next
state (weights 08 ≠ 0) are called taps.

A timing clock controls the memory stages of the LFSR. At each
pulse of the clock, the states of the stages are shifted to the next
stage. The entry in cell '8 is passed to cell '8−1, 8 = # − 1, . . . , 1.
The entry in stage'0 (the rightmost register) determines the output
of the LFSR. The sequence of output bits, (18), is called the output
stream. The entry in the leftmost register '#−1 is updated with
the value of the feedback function 5 . An LFSR must be initialized
with a nonzero value, which is called seed.

A binary code of length # can assume 2# values. However, the
period of the code produced by the LFSR can have a maximal
length of at most 2# − 1, i.e., the LFSR cycles through all states
except for the case where all bits are zero (in that case, the register
states do not change). In the case where the period ! of the output
stream has maximal length, ! = 2# − 1, the initial cycle of the
generated output stream, (10 , 11 , 12 , . . . , 12#−2) is called maximal
length sequence or <-sequence.

The combination of the register pins can also be expressed as mod
2 polynomial:

�(-) = -# + 0#−1-
#−1 + . . . + 02-

2 + 01- + 1, (3.7)
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Timer '2 '1 '0

0 1 0 0
1 1 1 0
2 1 1 1
3 0 1 1
4 1 0 1
5 0 1 0
6 0 0 1

7 1 0 0
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Figure 3.4:Generator polynomial and
corresponding <-sequence. Shown
is an <-sequence, that is obtained
with the generator polynomial 6(G) =
1 + -2 + -3. The seed (initial values
of the registers) was set to 100. The
generated <-sequence is 0011101.

where the coefficients 08 ∈ {0, 1}, 8 = 1, . . . , # − 1 denote the
weights of the corresponding register pins. The length of the
generated sequence depends on the values of the coefficients 08 .
The LFSR produces an <-sequence (! = 2# − 1), if and only if
the corresponding generator polynomial is primitive, i.e., it can
not be reduced to a product of polynomials of lower order and
the smallest integer : for which it divides G: − 1 is : = ! (e.g.,
[100]). Figure 3.4 shows the generation of an <-sequence with the
primary polynomial 6(G) = 1 + -2 + -3 as an example.

Properties of <-Sequences

The <-sequences have several desirable mathematical properties
(see, e.g., [100]), some of which will be provided in the following.
To describe these properties, we transform the sequence to a list of
1s and -1s, representing ‘positive contrast’ and ‘negative contrast’,
respectively. More specifically, binary 0 is mapped to 1, and binary
1 is mapped to -1:

B8 = −218 + 1. (3.8)

In the following, we consider the infinitely long periodic output
stream (B0 , B1 , B2 , . . .)with a period of length ! = 2# − 1 generated
by an #-stage LFSR.

Balance property The number of 1s (binary 0s) and -1s (binary
1s) only differ by 1. For an <-sequence of length 2# − 1 the number
of 1s is 2#−1 − 1 and the number -1s is 2#−1,

2#−2∑
8=0

B8 = −1. (3.9)

Correlation property An <-sequence is almost completely un-
correlated with itself (i.e., nearly orthogonal to itself) for all time
shifts:

1
!

2#−2∑
8=0

B8B8+9 =

{
1 9 = 0,
−1/! 9 ≠ 0.

(3.10)
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For arbitrary large code length !, the autocorrelation function
approximates a Kronecker delta function, which is 1 if 8 = 9, and 0
otherwise.

Run property A run denotes a string (or tuple) of consecutive
1s or a string of consecutive -1s. In an <-sequence, one-half of the
runs have length 1, one-quarter have length 2, one-eighth have
length 3, etc. (as long as these fractions give integral numbers). In
each case, the number of runs of -1s is equal to the number of 1s.

The autocorrelation property is particularly advantageous for the
implementation of VEP-based BCIs.

Using <-Sequences in VEP-based BCIs

For VEP-BCIs, the brain responses evoked by different stimuli
should be uncorrelated to each other, as this would enhance target
discrimination. Because of the correlation property, patterns based
on an <-sequence and its different time lags are a logical choice
for BCI stimulus design.

Figure 3.5 shows the auto-correlation of an <-sequence and that
of a typical averaged evoked response. It can be seen that the
orthogonality of the stimuli patterns is not fully transferable to the
corresponding VEPs. In practice, the responses from consecutive
frames interact with each other [7]. Another issue is that the
immediate neighbors to a fixated target also contribute to the
response. The stimuli of a c-VEP-based BCI are usually arranged
as a matrix (see Figure 3.6). In the case where other neighboring
targets do not surround a target stimulus, i.e., at the boundaries,
the evoked response might differ significantly from the response of
the center targets. Therefore, some research groups implemented
additional stimuli, which are not selectable, around the matrix
of the target stimuli (Figure 3.6). This method is referred to as
wrap-around principle or principle of equivalent neighbors [7, 101].
The idea behind this approach is to increase the similarity between
the evoked responses when gazing at different targets.

Figure 3.5: Autocorrelation property
of the <-sequence and the evoked c-
VEP. (A) Shown is the auto-correlation
of the code pattern of a 63 bit <-
sequence. (B) Shown is an example of
the auto-correlation of the averaged
evoked response.
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Figure 3.6: Typical visual stimulation
matrix of a c-VEP-based BCI. (A) Prin-
ciple of equivalent neighbors. Sixteen
target stimuli and twenty complemen-
tary stimuli are shown. (B) The time
lag to the reference modulation code
is indicated for each target.

Typically, the stimuli are displayed on standard computers. Sim-
ilarly to the SSVEP paradigm, the stimuli (e.g., boxes containing
letters) assume the binary states drawn/not drawn, which are
updated every frame. The colors of the stimuli alternate between
the foreground color (typically ’white’, represented by ’1’) and
the background color (typically ’black’, represented by ’0’) in
accordance with the used <-sequences.

The duration of one stimulation cycle is dependent on the monitor
refresh rate, A. For example, if the monitor refresh rate is set
to 60 Hz, the duration of one cycle of the flickering pattern is
63/60=1.05 s (see Figure 3.7), a time window that is reasonably
short, but still long enough for reliable classifications.With a higher
refresh rate the time for one stimulus cycle and the lag between
consecutive targets decrease, which might impede the analysis of
c-VEP responses.

In the BCI literature [9, 45, 46, 102, 103], <-sequences with a code
length of 63 bit are the most popular choice for the stimulus
presentation when employing the c-VEP paradigm. A code length
of 63 bit is suitable for multi-target implementations. For example,
if a time lag of 2 bit between adjacent stimuli is employed, a 63 bit
<-sequence provides 32 stimuli, which is sufficient for spelling
applications presenting the English alphabet, which contains only
26 letters and leaves room for six additional symbols (for example,
German Umlauts [9]).

Wei et al. [103] investigated the impact of c-VEP stimulus specificity
on the overall system performance. The parameters, size, color,
proximity of the stimuli, and the length and lag of the stimulus
sequence were tested. According to their results, a system with

0

1

5 10 15 20 25 30 35 40 45 50 55 60

Frames

Figure 3.7: Stimuluspattern of a 63 bit
<-sequence. Each bit corresponds to
one frame. If the monitor refresh rate
is 60Hz (the refresh rate of a typical
monitor), the stimulus duration of
one cycle is 63/60 = 1.05 s.
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white targets outperformed a system with red, green, blue, and
yellow targets. Moreover, they found that the dimension of stimuli,
the distance between stimuli, and the lag of the<-sequence should
be selected as large as possible; furthermore, the code length should
be as long as possible.

3.3 Classification - Minimum Energy
Combination

Various factors, such as background processes in the brain, respira-
tory artifacts, movements of the electrical cable, and environmental
noise, impede the interpretation of the brain signals via BCI. Friman
et al. [104] proposed the MECmethod for SSVEP signal processing,
which determines a suitable weight set for the electrode signals
with respect to noise cancellation.

Model

To interpret the SSVEP response to a specific stimulus frequency
5 , we consider the following linear model, which describes the
voltage H8(C) between the 8-th electrode and a reference electrode
at time point C [42, 104]:

H8(C) =
=ℎ∑
:=1

(
08 ,: sin

(
2�: 5 C

)
+ 18 ,: cos

(
2�: 5 C

) )
+ 48(C). (3.11)

The sum over the sine and cosine terms describes the SSVEP re-
sponse to the stimulus frequency 5 , represented by =ℎ harmonics;
the set of coefficients 08 ,: and 18 ,: determines the amplitude and
phase of the signal; the term 48(C) denotes the remaining informa-
tion, i.e., the channel-specific noise and nuisance attributes to the
signal.

This model can be generalized for multi-channel signals. We con-
sider adatawindowof = samples from< electrode signals recorded
at a sampling rate of �B Hz. The multi-channel EEG data are then
represented as a matrix Y ∈ ℝ=×< . For the sinusoidal terms, we
construct a reference matrix R ∈ ℝ=×2=ℎ ,

R =



sin
(
2� 5 C

)
cos

(
2� 5 C

)
...

sin
(
2�=ℎ 5 C

)
cos

(
2�=ℎ 5 C

)


)

, C =
1
�B
,

2
�B
, . . . ,

=

�B
. (3.12)
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We can now generalize (3.11) to

Y = RA + E, (3.13)

where the coefficients corresponding to the sine and cosine entries
of R are stored in the matrix A ∈ ℝ2=ℎ×< , and the noise signals are
stored in the matrix E ∈ ℝ=×< .

Design of Spatial Filters

The MEC uses principal component analysis (PCA) to find an
optimalweight combination for the electrode channels. Suchweight
vector, w ∈ ℝ< , is then used to create a virtual channel, s ∈ ℝ= ,
holding the spatially filtered data,

s = Yw. (3.14)

Several of such weights and virtual channels can be created: Let
=B denote the total number of created virtual channels. By setting
S = [s1 , . . . s=B ], we can generalize (3.14) to

S = YW, (3.15)

where the columns of the weight matrix W ∈ ℝ<×=B contain
the weight vectors to the corresponding virtual channels, i.e.,
W = [w1 , . . .w=B ].

To determine the optimal weight matrix W, the MEC approximates
the noise matrix E from equation (3.13) and tries to minimize its
energy. For this, an orthogonal projection is used to remove any
SSVEP activity from the recorded signal; the signal matrix Y is
projected onto the orthogonal complement of the reference model
R:

E = Y − R(R)R)−1R)Y. (3.16)

As the Matrix E ≈ E approximates the noise signal, the MEC
searches a weight w that minimizes its energy,

min
w
‖Ew‖2 = min

w
w)E)Ew. (3.17)

To solve this optimization problem the eigenvalues�1 ≤ �2 ≤ . . . ≤
�< and corresponding eigenvectors v1 , . . . , v< of the symmetric
matrix E)E are determined.

As E)E is a symmetric matrix, the eigenvectors are pairwise or-
thogonal, and, in accordance with the Courant-Fischer min-max
theorem (e.g., [105]), the quadratic form in (3.17) is bounded by
the minimal and maximal eigenvalues. Hence, the solution of the
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optimization problem is the eigenvector v1 corresponding to the
smallest eigenvalue �1. The weight vectors can be selected as

w8 =
v8√
�8
, 8 = 1, . . . , =B , (3.18)

yielding pairwise uncorrelated channels

s8 = Yw8 , 8 = 1, . . . , =B . (3.19)

The number of virtual channels, =B , can be selected arbitrary, as
long as 1 ≤ =B ≤ <. As suggested by Friman et al. [104], the
number of channels can be selected to filter out 90% of the noise
signal. For this, =B is determined as the largest number such that∑=B

8=1 �8∑<
9=1 � 9

< 0.1, (3.20)

where the nominator represents the noise energy remaining in the
=B virtual channel, and the denominator represents the total noise
energy of the signal.

Target Identification

The SSVEP signal energy %̂ of a frequency 5 and its =ℎ harmonics
in the spatially filtered channels s1 , . . . , s=B is calculated as

%̂ =
1

=B=ℎ

=B∑
9=1

=ℎ∑
:=1
‖ R)

:
s9 ‖

2
, (3.21)

where R: ∈ ℝ<×2 refers to the sub-matrix of the frequency refer-
ence model R consisting only of the columns associated with the
:-th harmonic,

R: =

[
sin

(
2�: 5 C

)
cos

(
2�: 5 C

) ]) , C =
1
�B
,

2
�B
, . . . ,

=

�B
. (3.22)

For signal classification, the MEC assumes all stimuli to be the tar-
get frequency and attempts to minimize the noise; virtual channels
s1 , . . . , s=B are determined for all  stimulation frequencies indi-
vidually, as described in the previous section. To identify the actual
target frequency, signal energies %̂8 , 8 = 1, . . . ,  corresponding
to the individual frequencies are determined using (3.21) with
the frequency-specific virtual channels. These energies are then
normalized,

?8 =
%̂8∑ 
9=1 %̂9

, 8 = 1, . . . ,  . (3.23)
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The class label of the BCI-target � is determined as the index of
the frequency with the highest normalized signal energy,

� = arg max
8=1,..., 

?8 . (3.24)

Asynchronous SSVEP applications can be realized by introducing
threshold values for the classification. For example, the BCI output
associated with the label � may only be produced if ?� surpasses
a pre-set threshold, which is usually determined manually during
a test session (see [42]).

To simplify the manual setup of these threshold parameters,
Volosyak [42] suggested to increase the gap between the nor-
malized signal energies of the stimulation frequencies by applying
a softmax function:

?′8 =
4?8∑ 
9=1 4

? 9
, (3.25)

where  can be determined on the basis of the number of fre-
quencies. By increasing , the gap between the normalized signal
energies is enhanced. If  is too large, many misclassifications
might occur. In many practical experiments where four or five
frequencies were used, a value of  = 25 resulted in high detection
accuracies [42, 63]. The softmax function always outputs values
between 0 and 1 with sum equal to 1. Instead of applying equation
(3.24), the BCI-target � is determined as the index maximizing
?′
8
.

3.4 Classification - Canonical-Correlation
Analysis

CCA, introduced in 1935 by Hotelling [106], is an established
method to investigate the relationships between two multi-
dimensional variables. CCA finds a transformation of these
variables, such that the transformed variables show maximal
similarity to each other. The CCA can, therefore, be used to extract
relevant information from the multi-channel EEG data while also
reducing noise and nuisance signals. CCA is easy to implement
and available in many programming languages, such as Python, R
and MATLAB. Lin et al. [107] were the first to apply the CCA in
the field of VEP-based systems. Meanwhile, CCA has also been
applied to P300-based BCIs [108].
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Design of Spatial Filters

We consider two multi-dimensional variables X ∈ ℝ?×B and Y ∈
ℝ@×B . CCA finds a pair of basis vectors (weight vectors) w- ∈ ℝ?

and w. ∈ ℝ@ , such that the correlation � between the linear
combinations x = X)w- and y = Y)w. is maximized. The weights
w- and w. are found by solving

max
w- ,w.

�(G, H) =
�[w)

-
XY)w

.
]√

�[w)
-

XX)w-] · �[w)
.

YY)w.]
, (3.26)

where � denotes the expectation operator. The value � is the first,
also called maximal canonical correlation. To construct further
pairs x, y, the CCA searches additional weight vectors maximizing
(3.26) subject to the restriction that they are uncorrelated with the
first pair of canonical variables; this results in the second pair of
canonical variables. This procedure can be repeated several times;
in total, CCA can generate up to min{?, @} canonical correlations
with corresponding weights.

For BCIs, the number of employed signal electrodes is usually
more than twice the number of harmonics that are considered for
signal classification (< > 2=ℎ). In this case, the maximal number
of canonical correlations is 2=ℎ .

Similarly to the MEC, which creates successive orthogonal eigen-
vectors, the first canonical variable yields the weight vector that
yields maximum correlation. In most BCI-studies, and in this work,
only the first canonical correlation is considered for the design
of spatial filters and classification [107, 109]. With respect to the
above, it should be noted that recent studies yielded significantly
better results when employing additional correlations [110].

Target Identification

Weconsider an SSVEP-BCIwith stimulation frequencies 51 , . . . 5 .
The EEG signals that the BCI interprets are stored in a signal matrix
Y ∈ ℝ<×= , where = denotes the number of samples and < the
number of EEG channels.

For classification, we again use the sine and cosine reference
signals defined in section 3.3, equation (3.12). For each of the  ref-
erence signalsR1 , . . . ,R constructedwith stimulation frequencies
51 , . . . , 5 , the maximal canonical correlation with respect to the
signalmatrixY is determined via CCA: InsertingY andR)

8
in (3.26),

yields  canonical correlation coefficients �8 , 8 = 1, . . . ,  . The
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class �, associated with the BCI-target that the user is presumably
focusing on is then determined, as

� = arg max
8=1,..., 

�8 . (3.27)

3.5 Classification - Template Matching Method

For the c-VEPparadigm, a templatematching approach can be used
to identify the targets [9, 46]. For this approach, a training stage
is required, where individual reference templates for all stimuli
classes are created, and where spatial filters are designed. In a
test stage, the spatial filters are applied to the reference templates
and the test data (for example, data recorded in real-time on-line
sessions). The spatially filtered templates are then individually
compared to the spatially filtered test data.

The template matching method can also be used for the SSVEP
paradigm. According to Nakanishi et al. [111], the waveforms of
individual SSVEP EEG data and sinusoidal reference templates
show consistent frequency components. As phase and amplitude of
the fundamental and harmonic VEP responses vary among users,
the collection of individual templates for the SSVEP paradigm
could lead to higher classification accuracies. For the hybrid fre-
quency and phase coding approach, the recording of individual
EEG data is required to maintain the phase information. While
some SSVEP classification methods incorporate both sinusoidal
reference templates and individual EEG data (see, e.g., [66]), recent
research yielded even better results, when only the individual EEG
data were used for classification [52].

For the SSVEP paradigm, the spatial filters and templates need to
be designed for each class individually. For the c-VEP paradigm,
one spatial filter and one template are sufficient as the remaining
targets can be generated via circularly shifting, as described in the
following section. More details regarding the difference between
the SSVEP and the c-VEP template generation are discussed in
section 5.3 and section 5.4.

Design of Spatial Filters and Generation of Templates

For c-VEP systems, the recording of several trials of only one target
is sufficient as the stimuli patterns are circularly shifted versions
of each other. In the recording stage, the user needs to focus on the
reference target for several trials. A trial usually consists of the data
collected during one stimulation cycle of the flickering stimulus.
To determine the beginning of a trial, the data acquisition and the
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stimulus presentation must be synchronized; section 3.6 provides
more details regarding the synchronization. The recorded data
are then segmented into single trials T8 ∈ ℝ<×= , where = denotes
the number of samples per trial and < the number of electrodes.
Thereby we assume that the rows of these trials are centered, i.e.,
each channel has zero means. (This is achieved by subtracting
the mean across channels of each channel individually.) These
centered trials are then averaged resulting in a reference template
R,

R =
1
#

#∑
8=1

T8 , (3.28)

where # refers to the total number of recorded trials.

By shifting the columns of the generated template R circularly,
templates R: ∈ ℝ<×= , : = 1, . . . ,  associated with the remaining
targets can be generated:

R:(8 , 9) = R(8 , 9 − (�: − �1)), 8 = 1, . . . , <; 9 = 1, . . . , =, (3.29)

where �: − �1 refers to the time lag in samples between the target
corresponding to class : and the reference target (here, target 1).
Here, we assume that the actual time lags between targets are
multiples of 1/�B ; the bit lags between the code patterns and the
sampling rate of the amplifier must be selected accordingly.

The training data can further be used to generate a CCA-based
spatial filter w ∈ ℝ< , as suggested by Spüler et al. [54] and Bin
et al. [46]. For this, two matrices are constructed with the training
trials and the reference template,

T = [T1T2 . . .T# ] and R = [RR . . .R︸   ︷︷   ︸
#

]. (3.30)

These matrices are inserted into the CCA equation (3.26), which
yields the weight vectors wT̃ and wR̃. The former, w = wT̃, is
selected as a spatial filter, as it mimics the optimization of the
correlation between single trials of unknown labels and reference
templates.

Target Identification

Pearson’s correlation method (PCM) [112] can be used to classify
a recorded EEG test data set of an unknown label. First, the data
set is centered by subtracting the mean value in each channel
individually. Let the resulting data be stored in a matrix X ∈ ℝ<×= ,
where < represents the number of channels, and = represents
the number of samples. Applying the spatial filter w, we get a
one-dimensional vector x = X)w.
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The Pearson sample correlation coefficient �: between the spatially
filtered test dataset x and the spatially filtered template r: = R:

)w
is determined as

�: =
x)r:√

x)x · r)
:
r
:

. (3.31)

The classified label � is identified as the index that maximizes the
correlation coefficient,

� = arg max
:=1,..., 

�: . (3.32)

3.6 Synchronizing Stimulus Presentation and
Data Acquisition

For SSVEP-based BCIs using hybrid frequency and phase coding
and for c-VEP-based BCIs, synchronization between the amplifier
and stimulus presentation is required, because, in practice, the
integer values used for the sampling frequency of the amplifier
�B and for the monitor refresh rate A are not precise, and small
differences might accumulate over time. For synchronization, stim-
ulus onset markers are typically sent to the EEG hardware. These
time-stamps can be acquired using a photo-resistor or photo-diode
attached to the screen [58, 113]. Another approach is to send the
time-stamps from the stimulation computer to the amplifier using
the parallel port [103].

In [72], we proposed a purely software-based approach, allowing
the detection of stimulus onset without the need for additional
hardware. Two timers were used to calculate the stimulus onset
delay, 3B , which describes the time interval between the acquisition
of EEG data blocks and stimulus onset.

The first time-stamp, C1, was acquired directly after the flickering
was initiated (in the thread dedicated to the stimulus presentation).
The amplifier transmits the EEG data in blocks; the number of
samples, =1 , of one block of EEG data is a variable of the amplifier
software. The duration of the collection of one EEG data block in
seconds is 31 = =1/�B . The second time-stamp, C2, was acquired
directly after receiving a block of EEG data (in the thread dedicated
to signal classification).

The time interval between the start of data acquisition and stimulus
onset can thus be calculated as 3B = C2 − 31 + C1. The number of
samples collected before stimulus onset, =B , can be determined
as =B = [3B�B], where [·] denotes the rounding operator, which
rounds to the nearest integer. Figure 3.8 illustrates the software-
based synchronization approach.
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Figure 3.8: Software-based synchronization between signal acquisition and stimulus presentation. (a) The data collected
during a full stimulus cycle (with a duration of 32 ms) is shown. Displayed are the stimulus pattern and the EEG response
recorded in one EEG channel. The amplifier sends the EEG data block-wise (i.e., in fixed time intervals of 31ms). The
EEG-data collected prior to stimulus onset needs to be shuffled out. (b) The first amplifier block is shown. The time passed
until stimulus onset, 3B , was determined after receiving the first block. It was calculated using the block duration, 31 ,
and two time-stamps (C2 and C1), which were set in the threads dedicated to the stimulus presentation and the signal
acquisition, respectively. The dashed blue line indicates the last sample that is shuffled out. Figure adapted from Gembler
and Volosyak [72].

3.7 Concluding Remarks

In general, BCI classification methods can be categorized into three
groups with respect to the training aspect [114]:

Training-free methods:
These methods do not require any form of training data and
can, therefore, be used immediately.

Subject-independent training methods:
For these methods, recorded data from various subjects are
analyzed to determine fixed system parameters suitable for
general users.

Subject-specific training methods:
These methods require the user-specific recording of EEG
data; a training phase is used to optimize features and system
parameters.

Examples of training free methods are the CCA and the MEC. Both
of these methods can generally be used without any previous EEG
recordings. The described template matching method, on the other
hand, requires a recording session (subject-specific training).

Chapter 4 focuses on a training free application using the MEC
(section 4.3). Someof the conducted experiments give insights to op-
timize fixed parameters such as the number of targets (section 4.5),
addressing the second type of training (subject-independent op-
timization). A subject-specific calibration session for frequencies,
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classification timewindows, and thresholds, a so-called BCIwizard
[115], will also be presented (section 4.4).

All c-VEP applications discussed in chapter 5 use subject-specific
training in the form of personalized EEG data recordings.





Investigating SSVEP Parameters 4
Efforts to prevent BCI illiteracy when using the SSVEP paradigm
usually include adjustments of key systemparameters. This chapter
provides insights into these critical parameters and their interac-
tions.

The standard performance measure in BCI research, the ITR, de-
pends on the average classification time, the classification accuracy,
and the number of targets. Balancing these parameters ensures
usability in regards to accuracy and efficiency. For maximal ITRs,
the average classification time needs to be as low as possible, and
the number of classes and the classification accuracy need to be
as high as possible. In practice, however, these variables are not
positively correlated. Long classification time windows lead to
slow but accurate selections, and short time windows lead to
fast but often undesired selections. For asynchronous systems,
classification thresholds can balance speed and accuracy if care-
fully adjusted. Another essential factor in SSVEP-based systems
is frequency selection. All of these parameters are dependent on
the user; for example, some stimulation frequencies yield higher
accuracies for some users. The question if optimal parameters
could be anticipated with information about the user’s age and
gender is worth addressing.

In this chapter, several practical experiments conducted at Rhine-
Waal University in order to investigate these parameters and their
impact on BCI performance are summarized. In addition to that,
methods to automatically determine these parameters using stan-
dard performance metrics are presented. It should be stressed that
the optimization based on performance metrics does not address
user-friendliness. The complexity of the GUI, initial orientation,
and pleasantness of use are, however, critical points in regards
to practical applications. In most of the reported experiments,
questionnaires were conducted to address this aspect. The pre-
sented and discussed results were published before in journals
and conference proceedings [61–63, 86, 116].

The chapter starts with a discussion of frequency selection (sec-
tion 4.1) and classification time windows (section 4.2) for SSVEP
systems. After that, the chapter investigates the impact of age
on BCI performance. The multi-step spelling application used in
the experiments summarized in this chapter is introduced, and
the spelling performance of young and elderly users is compared
(section 4.3). Following that, a wizard software that automatizes
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the setup of critical parameters, namely frequencies, classification
time windows, and thresholds, is presented. The summarized
study about the wizard’s functionality (61 participants) also in-
vestigates BCI performance differences between female and male
subjects (section 4.4). The chapter ends with a report on two stud-
ies conducted to investigate the optimal number of stimuli for
SSVEP-based BCI applications (section 4.5).

4.1 Impact of the SSVEP-Frequency Choice on
SSVEP Performance

The period length of the stimulation frequency that the user is
focusing on has a high impact on the strength of the evoked SSVEP
response [43, 117]. The strength of the SSVEP response impacts the
classification accuracy: The stronger the evoked SSVEP amplitudes,
the more robust the target identification of the corresponding
stimulation frequency.

In numerous studies, the relationship between frequencies and
SSVEP amplitudes has been investigated to optimize BCI stimuli
selection [6, 92, 118]. The SSVEP stimulus frequencies can be
roughly divided into three ranges: Low frequencies up to 12Hz
(theta and alpha-band), medium frequencies between 12 and 30Hz
(beta-band), and high frequencies above 30Hz (gamma-band) [26].
low and medium frequencies in the range of 6-20Hz, i.e., the
outermost part of the theta-band, the entire alpha-band, and the
lower beta-band are the most popular choices for frequencies
in SSVEP research [40, 52, 92]. For instance, the fastest SSVEP
system tested to this date employed frequencies in the range from
8 to 15Hz [52]. This range is suitable for multi-target systems,
as overlapping effects between fundamental and harmonics are
avoided.

Gao et al. [40] summarized the advantages of low-frequency stimuli
for BCIs:

Larger signal amplitudes:
The amplitudes of SSVEPs elicited with low frequencies are
higher in comparison to SSVEPs elicited with medium or
high frequencies (see also [43]).

No mutual influences:
SSVEPs corresponding to medium and high stimulation
frequencies may be misinterpreted as harmonic components
of low-frequency stimuli or vice versa. If both low and
mediumor lowandhigh frequencies areused simultaneously,
the SSVEP response can not be uniquely matched to the
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corresponding target stimulus. For example, a 16Hz response
could be elicited from both 8Hz and 16Hz stimuli.

More robust against varying brightness:
The SSVEP response that occurs when low stimulation fre-
quencies are used is saturated more easily. The system is,
therefore, robust if the surrounding brightness varies.

Wider topographical distribution:
The topographical distribution of brain responses evoked
from low and high stimulation frequencies differ. For high
stimulation frequencies, the topography of the SSVEPs is
more restricted; for low stimulation frequencies, the SSVEPs
distribute over a larger area of the head (see also [119]). Hence,
if low stimulation frequencies are used, it is easier to find a
suitable electrode configuration.

A disadvantage of the use of low stimulation frequencies is that
users may perceive them as annoying and tiring [120, 121]. Visual
fatigue of the user, especially when considering long-time use,
limits the practicability of the BCI. Another disadvantage is a risk
of photosensitive epileptic seizures triggered by the stimuli [121].

Because of these issues, many researchers tested high stimulation
frequencies for BCIs [8, 118, 120, 122]. Although their SSVEP
amplitudes are much weaker, some systems that employed high
frequencies achieved promising results.

For example, Sakurada et al. [120] tested a BCI using three LEDs
flickering at 61, 63, and 65Hz. The participants achieved an average
classification accuracy of 90% without experiencing visual fatigue.
Chen et al. [118] also reached remarkably good results with high
frequencies. In their study, the sinusoidal stimulation method was
used to present 45 visual stimuli (ranging from 35.6 to 44.4Hz)
on a conventional LCD screen with a 120Hz vertical refresh rate.
A relatively high on-line average classification accuracy of 88.7%
and an ITR of 61 bpm was achieved. Moreover, Volosyak et al. [8]
compared medium-frequency range (13, 14, 15, and 16Hz) to high-
frequency range (34, 36, 38, and 40Hz) using four LEDs as stimuli.
In their study, 86 participants navigated a miniature robot through
a labyrinth. The authors confirmed that BCI performance was
influenced by the stimulation frequency. The medium-frequency
setup could be controlled by 84 of 86 subjects with a mean ITR of
17.1 bpm and a mean accuracy of 92.3%; the high-frequency setup
could be controlled by only 56 of 86 subjects with a mean ITR of
12.1 bpm and a mean accuracy of 89.2%. On the other hand, the
authors stated thatmany subjects preferred the high-frequency BCI
(although it yielded inferior speed and accuracy), as the flickering
was less tiring for them.
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4.2 Impact of the Classification Time Window
on SSVEP Performance

In various studies, a strong correlation between BCI accuracy and
the length of the timewindowdedicated to the SSVEP classification
during EEG analysis has been observed [69, 123]. A short time
window results in classification errors, but a long time window
slows down the BCI performance.

In 2010, Volosyak et al. [123] addressed the relevance of the choice of
appropriate time window length in a study with 10 participants: In
a performance comparison on eight different time window lengths
using five isolated frequencies (6.66, 7.5, 8.57, 10 and 12Hz), the
authors analyzed the distribution of the time window length for
all correct classifications and reported an average time window
length of 2.8 s for obtaining an SSVEP response recognition above
95%. The authors further observed that BCI control varied strongly
across participants. This inter-subject variability was translated
into notable speed differences between subjects. For instance, some
users were able to successfully use the system with a time window
as low as 0.5 s. Other users needed a time window of 3 s or more
to achieve reliable control. The categorization of BCI performance
with respect to demographic differences could lead to a better
understanding of inter-subject variability. Some information about
the user (e.g., age and gender) could be used to estimate optimal
time windows and thus speed up the calibration.

Despite that, the BCI performance can also vary for one subject from
one session to another (intra-subject variability or within-subject
variance). Reasons for this kind of variability include lowered
motivation, increased tiredness, or external distractions. Both intra-
subject variability and inter-subject variability in classification time
windows justify the use of asynchronous applications.

In asynchronous systems, the classification window length is
closely linked to the classification threshold. If the classification
threshold is not surpassed, further EEG data are collected; the
classification window either increases (the new data are appended)
or maintains its length (the new data are appended, and old data
are shuffled out). The latter type of time window mechanism
is referred to as sliding window (see, e.g., [42]). Sometimes, a
combination of sliding and extending time windows is used [42,
63, 90]. The classification threshold needs to be calibrated carefully:
If the threshold is set too low, misclassifications might be produced
too often; on the other hand, if set too high, the system is slowed
down toomuch. As the SSVEP amplitudes for different stimulation
frequencies differ, the threshold should be set individually for each
target. Indeed, in the aforementioned study, Volosyak et al. [123]
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observed a difference in accuracy for different frequencies. For
example, 12Hz, the highest stimulation frequency in their study,
yielded theweakest performance in comparison to the other stimuli
for all tested time windows.

When performing a spelling task with a BCI speller, the user needs
to shift his or her gaze between different stimulation frequencies.
The transition phase from one stimulus to another can generate
noise, which can interfere with the relevant EEG data (i.e., the data
collected when gazing at the target). For this reason, gaze shifting
phases, during which the flickering and data collection pause (see
section 2.6), are integrated into these systems. Taking into account
that the duration for frequency detection can be less than 0.5 s, the
time for gaze shifting can be longer than the time for detection.

In this thesis, if not explicitly mentioned, the term classification
window refers to the detection time only and does not include
the gaze shifting phase, whereas the term selection time refers
to the duration between two selections. For the calculation of the
ITR, the latter is considered, i.e., the gaze shifting phase is always
included. Some researchers employ gaze shifting phases as low as
0.5 s, which might be too low for untrained users (e.g., [52, 66]).
In this thesis, gaze shifting phases of approximately 1 or 2 s are
used.

4.3 Effect of Age on SSVEP Performance

Severe disorders affect people from all age groups; This section is an amended version of
[62]: Gembler et al. (2015), ‘A
Comparison of SSVEP-Based BCI-
Performance Between Different Age
Groups’,
[63]: Volosyak et al. (2017), ‘Age-
Related Differences in SSVEP-Based
BCI Performance’.

the effects of
aging alone present a range of physical limitations that prevent an
interaction with the environment. Unfortunately, BCI prototypes
are usually tested with young participants, typically students and
employees of the research facilities. The age distribution is therefore
strongly skewed to younger participants, roughly between 20
and 30 years. This age range is not representative of the general
population; elderly participants are underrepresented.

A fewfield studies have been conducted to investigate demographic
factors and their impact onBCI performance [8, 82]. In these studies,
a trend that elderly users perform worse than young users was
observed.

Several studies with smaller subject groups also suggest that BCI
performance depends on the age of the users. Dias et al. [124]
conducted a study with 12 participants to investigate the latency
and distribution of P300. They found that elderly subjects (>51
years) show smaller P300 amplitudes than younger ones. Grosse-
Wentrup and Schölkopf [125] reviewed performance variations in
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SMR-BCIs and stated that a negative correlation between age and
BCI performance is conceivable.

So far, very few studies investigated the effects of subject age with
the SSVEP paradigm. Macpherson et al. [126] investigated age-
associated changes in SSVEP amplitude and latency with memory
performance. They found that older participants demonstrated
reduced neural activity during lower task demands, whereas with
greater task demands, their neural activity was increased. Ehlers et
al. [127] reported age group distinctions concerning classification
accuracies with an SSVEP-based spelling application; however,
only children and young adults between 6 and 33 years were tested
in this study. According to their findings, young adults obtained
higher accuracy rates compared to children. Hsu et al. [128] studied
the amplitude-frequency characteristics of frontal and occipital
SSVEPs in young, elderly, and ALS patients. They found that the
amplitudes of occipital SSVEPs in the young group (mean age
24.3 years) were significantly larger than the amplitudes of the
elderly group (mean age 54.1 years). Norton et al. [129] reported
that young children between 9 and 11 years could reliably control
an SSVEP-BCI.

The mentioned field studies focusing on SSVEP-BCI demograph-
ics also reported age-associated performance differences. Allison
et al. [82] analyzed the spelling performance of 106 participants
(mean age 30.6 years, range 18-79) with the Bremen BCI spelling
application. It was observed that younger subjects were less an-
noyed by the flickering and tended to attain higher ITRs; however,
no statistical effect was found. In the subsequent demographics
study [8], 86 subjects (mean age 25.8 years, range 18-55) were tested,
but again, neither a statistically significant effect of age, gender,
nor their interaction was observed.

Thus, the impact of age on the performance of SSVEP-based BCIs
is worth further investigation. Based on the results of the studies
mentioned before, we expected a negative correlation between age
and BCI performance. The remainder of this section provides a
summary of the experiment conducted in [63], where two equally
sized groups with different age ranges (young and elderly) used
an SSVEP-spelling application.

A critical factor in ensuring effective control is the arrangement
and number of visual stimuli. Especially for older adults, the
simplicity of the GUI and the readability of the letters are essential.
In general, the BCI literacy rates and accuracies tend to be higher if
a low number of targets is used (see section 2.6). For the presented
experiment, an asynchronous four-target spelling application was
designed. The impact of the number of targets on BCI performance
will be addressed more thoroughly in section 4.5.
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As discussed in the previous section, the choice of the classifica-
tion time window is a crucial factor in ensuring reliable control.
Therefore, in the presented study, selection time windows for the
different age groups were investigated. Moreover, the standard
measures (classification accuracy, ITR, and OCM)were analyzed.

Methods

This section provides details about the subject group, the hardware,
the software, and the experimental procedure. Furthermore, the
design of the three-step spelling application, which uses four target
stimuli, is presented. In terms of signal classification, the MEC was
used (see section 3.3).

Participants

Twenty subjects participated in the study. The participants were
divided into two equally sized groups (i.e., ten subjects per group)
according to their age.

Participants from the group of younger participants (in the fol-
lowing referred to as the young group) were recruited among
the students of the Rhine-Waal University of Applied Sciences.
Participants from the group of elderly participants (in the fol-
lowing referred to as the elderly group) were recruited among
relatives from staff members and volunteers from nearby retire-
ment homes.

Participants from the young group had a mean (SD) age of 22.4
(2.9) years, ranging from 19 to 27; four participants of this group
were female. Participants from the elderly group had a mean (SD)
age of 67.3 (5.7) years, ranging from 54 to 76; seven participants of
this group were female.

All participants were BCI naïve (i.e., they had never used a BCI
system before). All subjects had normal or corrected-to-normal
vision. Spectacles were worn if needed.

Ethical principles were taken into consideration during all BCI
experiments reported in this thesis. In this respect, all subjects gave
written informed consent in accordance with the Declaration of
Helsinki before participating. The research was carried out under
best practice guidelines: The participants had the opportunity to
withdraw from participation at any time; information needed for
the analysis of the experimentswas stored anonymously during the
experiment; subjects questionnaire and signed consent forms were
stored separately; results cannot be traced back to the participant.
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The consent form included the following questions: “Do you
understand that you are free to withdraw from the study at any
time and without having to give a reason?”, “Do you understand
that your participation is completely voluntary, and if you do
decide to be a subject, you may choose to leave at any time without
penalty?”; the experiment was only conducted if the participant
positively answered these questions and signed the consent form.

The entire session lasted approximately 60 minutes for each par-
ticipant. The experiments were conducted in a typical laboratory
setting with low background noise and luminance. The subjects
did not receive any financial reward for their participation.

Hardware

Participants were seated at a distance of about 60 cm in front of an
LCD screen (BenQ XL2420T, resolution: 1920 × 1080 pixels, vertical
refresh rate: 120Hz). The computer system operated on Microsoft
Windows 7 Enterprise running on an Intel processor (Intel Core i7,
3.40 GHz).

StandardAg/AgCl electrodeswere used to acquire the signals from
the surface of the scalp. Electrodes were mounted in accordance
with the 10-5 system of EEG electrode placement (see section 2.2).
The ground electrode was placed over AFz, the reference electrode
over Cz (quite common locations for the ground and reference
electrodes for BCI studies based on visual stimuli [18]). Eight signal
electrodes were used; they were placed at the occipital region over
the visual cortex: Pz, PO3, PO4, O1, O2, Oz, O9, and O10. Standard
abrasive electrolytic electrodegel (Theodor-Körner-Apotheke,Graz,
Austria) was applied between the electrodes and the scalp. The
scalp was prepared by light abrasion until impedances were below
5kΩ. An EEG amplifier, g.USBamp (Guger Technologies, Graz,
Austria), was used with sampling frequency set to 128Hz. During
the EEG signal acquisition, a digital bandpass filter (between 2
and 60Hz) and a notch filter (around 50Hz) were applied.

Sliding window mechanism for SSVEP signal classification

An asynchronous threshold-based signal classification approach
on the basis of theMECwas used (see section 3.3). Three additional
pseudo-targets (selected as means between the four stimulation
frequencies) were considered during classification. The recorded
EEG-data were processed in blocks of 13 samples (approximately
0.1 s with the sampling rate of 128Hz). An output command was
only produced if the probability associated with the classified label
met a threshold criterion. If no frequency probability exceeded
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Figure 4.1: Dynamic classification
times during on-line SSVEP spelling.
If no output is generated and the ac-
tual time C allows the extension to
the next predefined value. After a
performed classification, additional
time for gaze shifting was included
(dark gray). During this phase, the
flickering paused, and no classifica-
tion was performed. Figure modified
from Gembler et al. [86].

the corresponding classification threshold �8 , or if one of the
additional frequencies (8 > 4) had the highest probability, the
classification was rejected. For each stimulation frequency, the
associated classification threshold was determined manually by
the experimenters during the familiarization run (see experimental
protocol, for more details).

When the threshold criterion was met, the system generated an
output. Afterward, a gaze shifting period followed. During this
period, the classifier output was rejected for the duration of 0.914 s
(9 blocks), and the targets did not flicker.

Figure 4.1 illustrates the time window mechanism. The SSVEP
signal classification was performed using sliding windows of
stepwise increasing length =H (representing thenumber of recorded
samples per channels) [42]. If the threshold criterion was not met,
the time window slid, and only the newest data were used for
classification. The EEG blocks were collected in several data buffers
of different length that could store between 0.8125 s and 16.25 s of
EEGdata:)1 = 8 ·13,)2 = 10 ·13,)3 = 15 ·13,)4 = 20 ·13,)5 = 30 ·13,
)6 = 40 · 13, )7 = 50 · 13, )8 = 60 · 13, )9 = 70 · 13, )10 = 80 · 13 and
)11 = 160 · 13 samples. If the actual time C allowed the extension of
the classification window =H to the next predefined value )8 , this
new value was used instead.

Three-step spelling application

The three-step spelling application that was designed for this
experiment allowed the selection of individual letters in three
steps. It resembled earlier developed GUIs [42, 130]. The GUI
presented four selection options to the user (see Figure 4.2).

At least three steps were necessary to choose a single letter. In the
case of mistakes or misclassifications, the user needed to select the
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Figure 4.2: GUI of the three-step
speller. A participant is writing
the German pangram ‘ZWEI_-
BOXKAEMPFER_JAGEN_EVA_-
QUER_DURCH_SYLT’. Individual
letters could be selected in three
steps. In the figure, the selection of
the letter ‘B’ is presented.

ZWEI_
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J K L
M N O
P Q R

A B C
D E F
G H I

S T U
V W X
Y Z _

LÖSCHEN

ZWEI_
ZWEI_BOXKAEMPFER_JAGEN_EVA_QUER_DURCH_SYLT

A B C G H I

ZURÜCK

D E F

ZWEI_B
ZWEI_BOXKAEMPFER_JAGEN_EVA_QUER_DURCH_SYLT

A C

ZURÜCK

B

correction option and the number of steps increased. In the first
step, three boxes were arranged horizontally in the upper part of
the screen containing the letters ‘A-I’, ‘J-R’, and ‘S-_’, respectively.
A fourth box, positioned on the far-right of the screen, represented
the correction option (‘Löschen’, the German word for delete).
When the user selected this box, the last spelled character was
removed from the written word.

In the second step, the content of the three boxes containing the
alphabet changed to more specific sets. The boxes contained either



4.3 Effect of Age on SSVEP Performance 61

‘A B C’, ‘D E F’, ‘G H I’ or ‘J K L’, ‘M N O’, ‘P Q R’ or ‘S T U’, ‘V W
X’, ‘Y Z _’, depending on the first selection. After selection in this
second step, the content of the boxes changed to the individual
letters, e.g., A, B, and C, if ‘A B C’ was selected in the second step.
In both the second and the third step, the far-right box contained
the command ‘Zurück’ (back), which allowed the user to return
to the previous step. To reduce the cognitive load in the visual
channel, the BCI provided audio feedback voicing the selected
command or letter (also in German). The size of the boxes varied
in relation to the SSVEP power distribution during the spelling (as
described in [42]), providing continuous feedback of the classifier
state. The default size of the boxes was 175 × 175 pixels. The boxes
were outlined by a frame which determined their maximum size.
The GUI presented the texts of the output word and the spelling
task in the center of the screen.

Experimental protocol

After signing the consent form, each participant went through a
pre-questionnaire, answering questions regarding gender, age, and
previous BCI experience. Afterward, the subjects were prepared
for the EEG recording. The stimulation frequencies were generated
with dividers of the refresh rate (120Hz), as described in section 3.1.
Subjects participated in a familiarization run where the words
‘BCI’, ‘KLEVE’, and a word of choice (e.g., the own first name)
were spelled. If repeated false classifications occurred during this
test run, the experimenters manually adjusted the classification
thresholds or chose different frequencies (all between 6 and 12Hz).
After the familiarization run, each subject used the GUI to spell
the German pangram ‘ZWEI BOXKAEMPFER JAGEN EVA QUER
DURCH SYLT’. The flickering stopped automatically when the
participant finished the copy spelling task. Spelling errors needed to
be corrected via the implemented delete function. After the on-line
spelling task, the subjects completed a brief post-questionnaire.

Results

Differences in BCI performance between the young and elderly
participantswere assessed by comparing the classification accuracy,
ITR, andOCMachievedwith the pangram task. Figure 4.3 A shows
the individual accuracies and ITRs for the young and elderly group,
respectively; Figure 4.3 B compares the classification accuracy, ITR,
and OCM of the two tested age groups.

For both groups, all participants were able to complete the spelling
task achieving reliable control, reaching accuracies above 70%;
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Figure 4.3: Comparison of SSVEP
on-line spelling performances of el-
derly and young participants. The
task was to spell the sentence ‘ZWEI
BOXKAEMPFER JAGEN EVA QUER
DURCH SYLT’ (a German pangram).
(A) Individual ITRs and accuracies
of the ten participants per age group.
The dashed lines indicate the mean
values. (B) Compared are ITR, classi-
fication accuracy, and OCM for the
two different age groups. The signifi-
cance of Welch’s C-test are marked by
asterisks; * indicates ? < 0.05, and **
indicates ? < 0.01.
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most participants achieved accuracies above 90%. The accuracies
varied among participants (range 95-100% and range 80-98% for
the young and elderly participants, respectively). Subjects from the
young age group reached amean (SD) accuracy of 98.5 (1.7)%. Three
subjects from this group completed the spelling taskwithout errors,
achieving an accuracy of 100%. Subjects from the elderly group
reached amean accuracy of 91.1 (5.4)%, and no subject of this group
reached 100% accuracy. AWelch’s C-test (also referred to as unequal
variances C-test) revealed a significant difference between the mean
accuracies of young and elderly subjects (C = 3.88, ? = 0.002).

In respect to the OCM measure, the young age group achieved,
on average, 4.7 char/min (SD 1.1, range 2.8 - 6.3 char/min). The
elderly group achieved, on average, 3.0 char/min (SD 1.1, range
1.4 - 4.6 char/min). For this measure, the difference between the
groups was also significant (C = 3.36, ? = 0.003).

The number of targets of the three-step speller, # = 4, was used
to determine the ITR (calculated as described in 2.7). The lower
bound of the average time of a selection is the sum of the duration
of the gaze shifting phase (0.914 s) and the minimal classification
time window of the detection algorithm (0.813 s). Inserting # = 4,
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for elderly and young participants.
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Figure 4.5: SSVEP-BCI ability for the
three-step speller in relation to the
achieved ITRs for young and elderly
participants. The gray band indicates
the 95% confidence interval around
linear regression lines for the two
groups.

C = 1.727, and ? = 1 into the ITR formula yields a theoretical
maximal ITR of 69.5 bpm.

In practice, however, the average times for correct commands
were much longer than the theoretical minimum value: Young
participants needed 4.4 s and elderly participants needed 6.5 s on
average. The difference between the groups was significant (C =
2.98, ? = 0.008). Figure 4.4 shows the distribution of classification
times for all selections in the experiment for young and elderly
users. It can be seen that for elderly users, the BCI more frequently
used long classification time windows (>5 s) to produce outputs.

The achieved ITRs were lower than the theoretical ITR as well.
Subjects from the young group achieved a mean ITR of 27.4 (6.5)
bpm; subjects from the elderly group achieved a mean ITR 16.2
(5.9) bpm. The difference in ITR between the groups was again
significant (C = 3.85, ? = 0.001).

Furthermore, Figure 4.5 displays the BCI ability (see section 2.8).
Each dot in the figure presents the percentage of young and
elderly participants, respectively, who achieved or surpassed the
corresponding ITR on the G-axis in the on-line copy spelling task.
The data from the 10 subjects for each age group were fit into linear
models to generalize the percentage of young or elderly users
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Table 4.1: Questionnaire results. The
numbers are represented as number
of respondents. The subjective im-
pressions regarding fatigue levelwere
measured using a five-point Likert
scale [131]: (1) not tired, (2) little tired,
(3) moderately tired, (4) tired, (5) very
tired. Data from Volosyak et al. [63].

Level of tiredness

Young Elderly

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Before the
experiment 2 2 6 0 0 3 4 2 1 0

After the
experiment 2 2 6 0 0 2 1 6 1 0

Flickering was annoying

Young Elderly

Yes No Yes No

After the
experiment 5 4 4 6

that can achieve specific ITR values for the tested application. For
example, based on these models, it is expected that about 82% of
young and about 30% of elderly users can reach an ITR of at least
20 bpm. As noted, the theoretical maximal ITR with this system is
69.5 bpm. However, following the model for young subjects, the
max ITR is around 40 bpm; i.e., in practice, the theoretical value is
not achievable for untrained users.

Table 4.1 summarizes the questionnaire replies regarding tiredness
and level of annoyance from the pre- and post-questionnaire.

Discussion

Significant differences between the BCI performance of young
and elderly users were observed. Results based on twenty healthy
subjects demonstrated that thanks to the implementation of large
classification time windows (up to 16 s), every subject gained
control over the system. Commands were classified faster and
more accurately for subjects of the young group. The results
reveal that subject age influences BCI performance significantly
and indicate that the subject age needs to be considered when
designingGUIs and calibrating system parameters. The knowledge
of the user age certainly helps to determine critical parameters for
the BCI.

In the presented study, the classification time windows for sub-
jects from the elderly group were usually larger (see Figure 4.4).
Generally, the study confirms that the implementation of larger
time windows is beneficial for some users.

A reason for the performance difference between the two age
groups could be smaller SSVEP amplitudes of older adults, as
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observed in many other studies, e.g., in the study of Hsu et al. [128]:
The authors measured SSVEPs induced by different stimulation
frequencies (ranging from 13 to 31Hz) measured from both the oc-
cipital region and the frontal region. Eight young participants with
a mean (SD) age of 24.3 (2.43) years and eight elderly participants
withmean (SD) age of 54.1 (1.96) years were tested. They found that
for all stimulation frequencies, the elderly group reached lower
mean SSVEP amplitudes than the young group.

Another explanation for the performance difference could be
shorter reaction times of the younger participants with respect to
the spelling interface.

The performance gap might increase even further if a higher
number of stimulation targets is used. Older people might have
more problems with the increased information load on the visual
channel. Low target systems offer more freedom in stimulus size,
allow for a greater distance between stimuli, and require less precise
gaze direction. As discussed in section 4.1, an important issue
regarding user comfort in SSVEP-based BCIs is frequency selection.
When asked about the discomfort caused by the flickering, 45% of
the subjects stated that they found the flickering annoying; four
of the elderly subjects even reported a slightly increased level of
tiredness after the experiment (see Table 4.1).

It is well known that high frequencies produce less visual fatigue
than lower frequencies and show no stimulus-related seizures
(see section 4.1). However, the age-related performance gap might
increase when using higher flickering rates. This issue will be
investigated in chapter 5 with the c-VEP paradigm.

4.4 Automated Calibration for SSVEP-based
BCIs

Automated calibration phases This section is an amended version of
[86]: Gembler et al. (2015), ‘Au-
tonomous Parameter Adjustment for
SSVEP-Based BCIs with a Novel BCI
Wizard’.

to obtain subject-specific system BCI
parameters could yield higher literacy rates. In the study summa-
rized in this section, we presented awizard, that determines critical
SSVEP parameters for each subject individually. Many researchers
emphasized the importance of practical BCI prototypes that will
have an impact on the life quality of disabled people (e.g., [132]).
Usability challenges have impeded the use of BCIs in everyday
scenarios for a long time. Extensive effort has beenmade to conduct
practical studies with the intended end-users [133–137]. Conduct-
ing and validating studies with the target population is much
more challenging than proof-of-concept prototype tests in research
facilities. Due to the preparation and setup, BCI experiments are
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time intensive. Some of the studies with end-users highlight the
importance of expert-independent system setup.

For example, Sellers et al. [137] tested a BCI used by a 51-year-
old ALS-patient at his home. The system was used successfully
for over 2.5 years and restored the user’s independence in so-
cial interactions. Recalibration was performed remotely (over the
Internet). Holz et al. [133] also installed a BCI controlled applica-
tion at a locked-in ALS-patient’s home. The authors demonstrated
expert-independent home-use in their study, but they also reported
varying performance and stressed the importance of regular cal-
ibration. In terms of practical solutions for clinical applications
using SSVEP-BCIs, Punsawad and Wongsawat [138] proposed a
system that can be enabled or disabled by alpha-band EEG and
thus requires less assistance from the caregiver.

SSVEP systems rely on a variety of different parameters that
influence BCI performance. As discussed in the previous sections,
optimal stimulation frequencies and classification time windows
can vary between users and need to be adjusted precisely to achieve
reliable performance.

Such precise parameter set up cannot be expected from users
or caregivers. Therefore automatized calibration methods are an
essential step for BCIs to progress from laboratory demonstrators
to practical real-life applications.

It should be noted that calibration methods have already become
standard for P300-based BCIs. Typically, in a supervised classifier,
EEG data are recorded in a calibration phase during which the user
is asked to perform specific tasks. The recorded brain signals are
then analyzed and decoded to customize control parameters. For
example, Kaufmann et al. [75] developed a user-centered P300-BCI
application that adjusts classifier weights and control parameters
individually in the background. At the same time, research also
focuses on so-called zero-training BCIs with shortened or omitted
calibration periods [35, 139, 140]. Although a wizard that sets
up essential parameters for the SSVEP-paradigm was suggested
already in 2010 [92], calibration software for SSVEP-based BCIs has
rarely been reported. An explanation for this is that many research
groups use synchronous systems that require less setup (e.g., no
calibration of thresholds is required) but might be less accurate
and intuitive. In the study presented in this section, a wizard, that
allows parameter setup with one click, was designed and tested
with 61 participants. We further explored BCI demographics based
on the data of this comparably large number of participants. BCI
studies of this size have been conducted with the P300 [37], the MI
[141], and the SSVEP paradigm [8, 82, 142]. Most of these studies
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reported subjects that were not able to gain satisfactory control
over the system, i.e., BCI illiteracy.

In spite of the ongoing incremental improvements in software
algorithms, the BCI illiteracy phenomenon remains a reoccurring
problem in SSVEP studies [1, 8, 82].

The overall aims of this research were:

I to investigate optimal stimuli selection for SSVEP-based BCIs
through analysis of the wizard outputs;

I to show that the vast majority, if not all BCI users can control
an SSVEP-based BCI application; and

I to prove that generally higher classification accuracies can
be achieved (through autonomous parameter adaption by
the wizard).

To demonstrate the functionality of the presented wizard soft-
ware, we conducted an on-line copy spelling experiment after
autonomous parameter setup.

Methods

This section summarizes the methods and materials of the exper-
iment. The focus is put on the presented wizard software. The
hardware setup and signal processing methods were identical to
the study presented in the previous section 4.3. The MEC was
used for signal classification (see section 3.3), and the stimulus
presentation was based on dividers of the vertical refresh rate (see
section 3.1). For the copy spelling task, we used the three-step
spelling interface with minor modifications.

Participants

All 61 subjects (healthy adult volunteers) gave written informed
consent following the Declaration of Helsinki. The participants
had a mean (SD) age of 22.8 (5.0) years (range 17-49). The impact
of gender on BCI performance was also evaluated in this study;
17 participants were female, 44 participants were male. Female
participants had a mean (SD) age of 22.7 (4.4) years (range 18-36).
Male participants had a mean (SD) age of 22.8 (5.3) years (range
17-49).

All subjects were students or employees of the Rhine-Waal Uni-
versity of Applied Sciences. The EEG recording took place in a
standard laboratory room with low background noise and lumi-
nance. None of the subjects had neurological or visual disorders.
Spectacles were worn when appropriate. Subjects did not receive
any financial reward for participating in this study.
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Wizard

Figure 4.6: Illustration of the wiz-
ard’s calibration procedure. In phase
1 (alpha test), EEGdatawere recorded
(with the user’s eyes closed) and an-
alyzed to determine the alpha fre-
quency. In case the alpha frequency
overlapped with a stimulation can-
didate, this stimulus was neglected
in the further procedure. In phase 2
(multi-target stimulation), EEG-data
were recorded while the subject faced
two circles containing stimulation
candidates in sequence (each flick-
ered for 10 s). The four frequencies
yielding the strongest signal power
were used as SSVEP targets. In phase
3 (sequential stimulation), partici-
pants gazed at each of the four deter-
mined frequencies individually. With
the recorded data, SSVEP key param-
eters were determined.
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The wizard ran the user through three phases in order to provide
subject-specific stimulation frequencies (phases 1 and 2), classi-
fication thresholds, and classification time windows (phase 3).
Figure 4.6 illustrates the entire calibration procedure for one sub-
ject. The techniques used in each step were derived from several
previous findings. The so-called multi-target technique for the
selection of individual subject-dependent stimulation frequencies,
presented by Volosyak et al. [92], was based on the dual stimula-
tion technique suggested by Mukesh et al. [143] where frequency
combinationswere used to increase the number of SSVEP targets.

The first task of the wizard was to select four optimal stimulus
frequencies. Because of the advantages of low-frequency stimuli
for SSVEP-based BCI (see section 4.1), the wizard was restricted to
frequencies up to 20Hz. As the number of suitable frequencies on
the LCD monitor was limited by the vertical refresh rate of 120Hz,
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the wizard took only fourteen candidate stimuli into consideration.
More specifically, the four optimal frequencies were determined
from the frequencies 6.32, 6.67, 7.06, 7.50, 8.00, 8.57, 9.23, 10.00,
10.91, 12.00, 13.33, 15.00, 17.14, and 20.00Hz (obtainedwith dividers
of the refresh rate between 6 and 19, see Table 4.2).

Classification method As in the experiment summarized in sec-
tion 4.3, to increase system robustness, three additional pseudo-
targets, selected as means between two target frequencies, were
considered for classification.

The MEC classifier output, $, was set to the index of the 8-th
frequency if the following conditions were met:

I the 8-th frequency had the highest probability ?8 ;
I the detected frequencywas one of the stimulation frequencies

(i.e., none of the pseudo-targets had the highest probability);
and

I the probability ?8 exceeded a predefined threshold �8 .

If no frequency probability exceeded the corresponding threshold
�8 or if one of the additional frequencies had the highest probability,
the output label $ was set to zero.

EEG-data were processed by the computer in blocks of 13 samples
(sampling rate 128Hz). For classification, these EEG blocks were
collected in several data buffers of different length )8 (for more
details, see section 4.3). The following pre-set time windows were
used: )1 = 8 · 13, )2 = 10 · 13, )3 = 15 · 13, )4 = 20 · 13, )5 = 30 · 13,
)6 = 40 · 13, )7 = 50 · 13, )8 = 60 · 13, )9 = 70 · 13 und )10 = 80 · 13
samples.

Period length 19 18 17 16 15 14 13
Frequency [Hz] 6.32 6.67 7.06 7.50 8.00 8.57 9.23

Period length 12 11 10 9 8 7 6
Frequency [Hz] 10.00 10.91 12.00 13.33 15.00 17.14 20.00

Table 4.2: List of suitable SSVEP fre-
quencies that can be generated with
a refresh rate of A = 120Hz. The fre-
quency is calculated as A/!, where !
denotes the number of frames in a
period. The frequencies overlapping
with the alpha-band are marked bold.

Phase 1 (Alpha test). In the first phase of the wizard, it was
tested if high alpha wave activity occurred. The low-frequency
band overlaps with the alpha-band, which may be a cause for
false classifications (see section 4.1). The candidate frequencies
(see Table 4.2) were tested for interference with the user’s alpha
wave. This was realized as follows. After the wizard program was
started, the user was instructed to close his or her eyes (by an audio
instruction and a text message displayed on the screen). During
the closed eye period, EEG data were recorded. After 10 s, a second
audio message instructed the user to open his or her eyes again.
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Alpha frequency interferencewas tested as follows. Using theMEC,
averaged probabilities for the five stimulation frequencies 5st=8.57,
9.23, 10.00, 10.91, 12.00Hz (all frequency candidates that belong to
the alpha-band) and ten neighboring frequencies 5st±0.3Hz were
generated on the basis of the recorded data.

For these frequencies, the MEC probability distributions for dif-
ferent classification time windows were calculated and averaged.
More specifically, the power distributions for ?8 ,)9 were calculated
for all classification timewindows and for all frequencies (e.g., after
receiving 8 blocks, a value for ?8 ,)1 was determined). In total, 100
blocks of EEG-data were recorded. For all time windows of lengths
)9 , the MEC probabilities were averaged. For example, 100-8+1=93
overlapping blocks, each containing )1 samples per channel, were
analyzed and an averaged probability ?̄8 ,)1 was determined. Finally,
the mean value over all averaged probabilities was calculated,

?̄8 =
1
10

(
?̄8 ,)1 + ?̄8 ,)2 + . . . + ?̄8 ,)10

)
. (4.1)

If one of the possible target frequencies had the highest averaged
probability and surpassed a threshold of 0.1, it would be further
on neglected. As a result, all of the remaining frequencies differed
from the alpha wave by 0.15Hz or more.

Phase 2 (Multi-target stimulation). In the second phase, multi-
target stimulation was used to determine a set of four frequencies
out of the fourteen suitable stimulation frequencies (see Table 4.2).
For this frequency selection, the user faced a circle that represented
seven of the candidate frequencies. The circle (radius 245 pixels)
was divided into 147 segments (seven rings, each containing 21
segments). Each of these segments flickered during the recording,
and each of the seven candidate frequencies was represented by 21
segments, which were scattered randomly.

After subjects were instructed by an audio message to shift their
gaze on the circle, the flickering started, and EEG data were col-
lected for approximately 10 s (100 blocks of EEG-data). Thereafter,
the flickering paused for 2 s. The user then faced a second circle,
which represented the seven remaining candidate frequencies.
EEG data were recorded for another 10 s.

Each circle represented a mix of higher and lower frequencies.
The frequencies represented in the first circle were 6.32, 7.50, 8.00,
10.00, 10.91, 13.33, and 17.14Hz; the frequencies represented in the
second circle were 6.67, 7.06, 8.57, 9.23, 12.00, 15.00, and 12.00Hz.
For each circle, to avoidmutual influences between frequencies, the
additional restrictions rules 58 ≠ [ 59 + 5:]/2, 58 ≠ 2 59 − 5: (see [8])
were satisfied.
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� 9 [%] ?correct [%] ?false [%] ?zero [%]

30 97.5 0 2.5
31 96.3 0 3.7
...

...
...

...

50 44.4 0 55.6
51 43.2 0 56.8
52 39.5 0 60.5
...

...
...

...

69 23.5 0 76.5
70 21.0 0 79.0

Table 4.3: Example of the threshold
determination of the wizard software.
Provided are the distributions of clas-
sifier outputs ?correct, ?false, and ?zero
for a fixed frequency 8 and afixed time
window of length )B . In this example,
the threshold for the corresponding
frequency was set to 51%.

If one of the fourteen frequency candidates interfered with the
user’s alpha wave, this frequency was left out. In that case, one of
the circles represented only six frequencies (it had only six rings).

After the data for both circles were recorded, for each circle, the
probabilities (4.1) of the represented frequencies were determined.
Thereafter, the fourteen candidate frequencies were ranked from
the highest averaged probability to the lowest. The four highest-
ranked frequencies were selected as suitable target frequency.
However, the four selected frequencies needed to meet the restric-
tion rules. If theywere notmet, the lowest-ranked of the frequencies
causing the violationwas replaced by the highest-ranked frequency
from the remaining stimuli. For example, if 6Hz had the highest
and 12Hz the second-highest averaged probability, the latter was
replaced, as otherwise the restriction rules were violated.

Phase 3 (Sequential stimulation). In the third phase of the wiz-
ard, optimal classification thresholds were determined for each
of the four frequencies determined in the previous step. The user
needed to gaze at these frequencies in sequence for 10 s each. The
target frequency was represented by a white circle (radius 150
pixels), initially flickering at the frequency, which was ranked
highest in phase 2.

When gazing at a target in a typical SSVEP-BCI application, the
neighboring stimuli in the user’s peripheral vision add to the
noise signal. To simulate this noise, four green rings (144 segments
in total, outer diameter 500 pixels) surrounded the white circle
(representing the target frequency). Within these rings, each of
the remaining three frequencies from the determined frequency
set was represented by 144/3=48 segments, which were scattered
randomly. Before the flickering and the recording started, the user
was instructed by an audio message to gaze at the inner white
circle.
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The circle and the surrounding rings flickered for 10 s while EEG
data were recorded. Then the flickering paused for 2 s. This pause
ensured that the SSVEP-responses from the first recording did
not influence the following recording. After that, the white circle
represented the second-ranked frequency from phase two, and
the rings represented the remaining three frequencies accordingly.
This procedure was repeated until individual EEG recordings for
all four optimal frequencies were collected. In total, the recording
time in phase 3 was 40 s.

To determine the optimal classification thresholds and the op-
timal time window the MEC classifier outputs $8(), �) of the
individual frequency recordings (8 = 1, 2, 3, 4), were determined
for all preset time windows ) = )1 , . . . , )10 and the suitable thresh-
olds � = 0.30, 0.31, . . . , 0.69, 0.70. The outputs $8(), �) were then
categorized into three classes:

I if $8(), �) = 8, i.e., if the output was equal to the index
of the stimulation frequency, it was categorized as ‘correct
classification’;

I if $8(), �) ≠ 8 and if $8(), �) > 0, i.e., if the output was
equal to the index of one of the remaining three stimulation
frequencies, it was categorized as ‘false classification’; and

I if $8(), �) = 0, i.e., if no frequency probability exceeded the
threshold � or if an additional frequency had the highest
probability, the outputwas categorized as ‘zero classification’.

For each stimulation frequency (8 = 1, 2, 3, 4) the distributions
of correct classifications, ?correct(8 , �, )), false classifications,
?false(8 , �, )), and zero classifications, ?zero(8 , �, )), were deter-
mined.

The frequency-specific optimal thresholds �8 and the optimal
minimal time window lengths were determined in an iterative
process: First, for each frequency, the largest threshold value
� = 0.30, 0.31, . . . , 0.70, which satisfied the conditions

?correct(8 , �, )) ≥ 0.4 and ?false(8 , �, )) = 0, (4.2)

where ) was set to the smallest segment length )1, was searched.
If such values existed for all four frequencies, the optimal time
window was set to )1 and the optimal thresholds �8 were set to the
corresponding value of � satisfying (4.2). If such � did not exist
for at least one of the four stimulation frequencies, ) was set to
the next higher segment length, and again, thresholds satisfying
the conditions (4.2) were searched. This procedure was repeated
with increasing time window lengths until suitable thresholds
satisfying (4.2) were found. Table 4.3 shows an example of the
threshold calibration process.
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Three-step spelling application

The three-step spelling application presented in section 4.3 was
used to test the on-line performance after calibration. Two small
changes were made: The language of the speller was set to English,
and the size of the boxes was decreased to 125 × 125 pixels. Again,
a sliding classification time window was used [63], with the mod-
ification that the minimal time window was determined by the
wizard software.

Results

This section presents an overview of the wizard outputs, the
results of the on-line spelling performance, and the questionnaire
answers.

Wizard

In total, 70 s of recorded EEG data were analyzed during the three
phases of the wizard (10 s for the first, 20 s for the second, and 40 s
for the third phase).

The second phase (multi-target stimulation) yielded a set of four
optimal stimulation frequencies. Figure 4.7 A shows the percentage
of participants each candidate frequency was determined for by
the wizard. The most frequently determined stimulation frequency
was 7.5Hz. Generally, frequencies lower than 8 Hz were sug-
gested more often than higher frequencies. The highest candidate
frequencies 13.33, 15, 17.14, and 20Hz were not determined at all.

In the thirdphase (sequential stimulation), the selected stimuliwere
presented in sequence, and an optimal minimal time window was
determined. Figure 4.7 B shows the percentage of participants each
minimal time window was determined for. For most participants,
the smallest time window, 813ms, was selected; the longest time
window, 8125ms, was not selected for any user.
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Figure 4.7:Outputs of thewizard soft-
ware. (A) Distribution of stimulation
frequenciesdeterminedby thewizard
as part of the optimal set. (B) Relative
frequencies of optimal classification
timewindows determined by thewiz-
ard. Data from Gembler et al. [86].
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Figure 4.8: Individual ITRs and accuracies of the on-line experiment. The dashed lines indicate the mean values. Data from
Gembler et al., 2015 [86].

On-line spelling performance

All 61 subjects were able to complete the spelling task; None of the
subjects reported any discomfort during the experiment. Figure 4.8
shows the overall results of the spelling task. The analysis of the
spelling performance reveals a mean (SD) ITR of 21.9 (7.6) bpm,
a mean accuracy of 97.1 (3.7)%, and mean values for OCM of 3.7
(1.2) char/min. All participants reached accuracies above 85%; 24
of the 61 subjects even completed the spelling task without errors,
achieving an accuracy of 100%.

Impact of gender on BCI performance and questionnaire
results

Figure 4.9 shows the differences in BCI performance for female
and male participants. Female participants reached an ITR of
25.4 (6.5) bpm and males reached an ITR of 20.1 (7.3) bpm; a
Welch’s C-test revealed a significant difference between these mean
values (C = 2.64, ? = 0.012). Similarly, significant differences in
accuracy and OCMwere found according to Welch’s C-tests: The
mean (SD) accuracies were 98.5 (2.6)% and 96.5 (4.0)% for female
and male participants; the difference of means was significant
(C = 2.34, ? = 0.024). The mean (SD) values for OCM were 4.3 (1.1)
char/min and 3.5 (1.2) char/min for female and male participants;
the difference of means was significant (C = 2.46, ? = 0.019).

In the pre- and post questionnaires, participants were asked ques-
tions regarding gender, the need for vision correction, tiredness,
and BCI experience. For most subjects, the calibration and the use
of the spelling interface did not produce fatigue, 5 participants



4.4 Automated Calibration for SSVEP-based BCIs 75

●

●

●

* * *

Accuracy [%] ITR [bpm] OCM [chars/min]

2

3

4

5

6

10

20

30

85

90

95

100

Female

Male

Figure 4.9: Comparison of SSVEP on-
line spelling performances of female
and male participants. The task was
to spell the sentence ‘RHINE WAAL
UNIVERSITY’. Compared are ITR,
classification accuracy and output
characters perminute (OCM). The sig-
nificance ofWelch’s C-tests aremarked
by asterisks; * indicates ? < 0.05. Data
from Gembler et al. [86].

reported decreased tiredness, and 14 participants reported slightly
increased tiredness. The questionnaire answers are provided in
Table 4.4.

Discussion

The presented wizard for SSVEP-based BCIs determined SSVEP
key parameters in a short time. The calibrated system was tested
with a four target on-line spelling application and yielded high
classification accuracies and a literacy rate of 100%.

Only a single click was required for the calibration procedure. Thus
inexperienced personnel could set up the SSVEP system. Overall,
including pauses between steps, the presented calibration process
took less than two minutes.

Regarding the frequency choice, for the majority of subjects, lower
frequencies were determined (see Figure 4.7 A). For nine partic-
ipants, the lowest possible frequency set (6.32, 6.67, 7.06, and
7.50Hz) was determined. Interestingly, the most frequently se-
lected frequency was 7.5Hz, which might be explained by the
fact that its second harmonic is 15Hz, which is the stimulation
frequency at which the SSVEP response is maximum, according to
Pastor et al. [144].

It should be noted that the presented wizard determined the
optimal frequencies on the basis of the classification accuracy;
user-friendliness was not taken into account. In general, users tend
to be more annoyed by lower frequencies, and visual fatigue is
more likely to occur (as discussed in section 4.1). Indeed, according
to the user questionnaire, nearly a third of the subjects reported
being annoyed by the flickering.
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Table 4.4: Questionnaire results. The
results are provided as number of
respondents. Data from Gembler et
al. [86].

Pre-questionnaire Number of Mean SD Range
respondents

Age (Years) 61 22.8 5.0 17-49

Gender F 44
M 17

Need for Yes 22
vision correction No 39

Hours of sleep 6.8 1.2 4-9
last night

Are you tired? 2.0 0.9 1-4
(1) Not tired 19
(2) Little tired 25
(3) Moderately tired 15
(4) Tired 3
(5) Very tired 0

Did you use Yes 6
a BCI before? No 55

Post-questionnaire

Are you tired? 2.2 1.0 1-4
(1) Not tired 17
(2) Little tired 20
(3) Moderately tired 20
(4) Tired 1
(5) Very tired 3

Was the flickering Yes 20
annoying? No 41

Would you recommend Yes 58
the BCI system? No 3

Amajor challenge in SSVEP-based BCIs lies in finding a compro-
mise between accuracy and speed. In asynchronous applications,
such as the presented three-step spelling application, commands
corresponding to the stimulation frequencies are produced only if
their probabilities exceed predefined thresholds. The careful cali-
bration of the thresholds and the minimal time windows balances
system speed and system accuracy.

Figure 4.7 B reveals awide variety of ideal minimum timewindows
among the 61 participants; The longest minimal time window
determined was 7109ms, but in most cases, the shortest possible
window length of 812ms was determined. Although longer time
windows result in lower ITR, they yield higher accuracies, and for
some users, they are necessary to achieve reliable control. Thus,
user-specific calibration, as provided by the presented wizard, is a
necessary step to ensure a high BCI literacy rate.

All participants, 100%, achieved more than 85% accuracy, 93%
achieved more than 90% accuracy, 77% achieved more than 95%
accuracy, and still, 39% achieved 100% accuracy. These accuracies
are comparably high; in a previous smaller sized study, the same
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Table 4.5: Comparison of SSVEP-BCI results of several larger sized studies. In the first two studies (2009 and 2011) all BCI
illiterate subjects were excluded from further calculation of mean values. Table modified from Gembler et al. [86].

Volosyak et al.
2009 [1]

Volosyak et al.
2011 [8]

Guger et al.
2012 [142]

Gembler et al.
2015 [86]

Number of subjects 37 86 57 61
Mean accuracy [%] 92.9 92.3 95.5 97.1
Literacy rate [%] 86.5 97.7 100 100
Number of classes 5 4 4 4
Time-window [s] 2 2 3 0.8 - 8

GUI as in the presented study was tested with six healthy subjects,
and a mean accuracy of 87.4 (6.7)% was reached [130]; frequencies
were not calibrated user dependently and time windows were not
determined automatically. In comparison, the mean (SD) accu-
racy of 97.1 (3.7)% achieved in the presented study is significantly
higher, which supports our hypothesis that the classification accu-
racy can be improved through automated user-specific parameter
selection.

Closely related to the achieved classification accuracy is the BCI
illiteracy rate. Throughout previous SSVEP studies, the BCI literacy
rate has been gradually improved. Volosyak et al. [1] reported a
BCI illiteracy rate of 14%. Due to further modifications, the BCI
illiteracy rate was reduced to 2.33% two years later [8]. Guger
et al. [142] showed that their SSVEP-BCI could provide effective
communication for all 53 subjects. One explanation for a high liter-
acy rate in SSVEP-systems is a low number of stimulation targets.
Guger et al. [142] and Volosyak et al. [8] used only four stimulation
frequencies (see Table 4.5). In addition, Guger et al. [142] used a
relatively large classification time window of 3 s and achieved a
BCI literacy rate of 100% (see Table 4.5).

It should be noted that BCI literacy among all participants was
also achieved in studies using other BCI approaches. Kaufmann
et al. [75] reported that all 19 subjects were able to complete a
spelling task with a P300 speller with an average accuracy of 91.2%
and an ITR of 15.1 bpm and in a study with 99 subjects, Guger
et al. [141] reported a BCI literacy rate of 100% as well. Guger
et al. [37] also achieved full BCI literacy with 81 subjects using the
motor imagery paradigm.

Interestingly, in the presented study, a significant difference in BCI
performance between female and male participants was observed.
Trends that female subjects performed better were also observed
in previous works [8, 82]. Further investigations are needed to es-
tablish to what extent the difference is dependent on the frequency
range. As investigated in the previous section, subject age impacts
performance as well. In this sense, the presented study might not
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be reflective of the general population due to the low mean age of
22.8 years.

It should be noted that on rare occasions (four participants in
total), the determined classification threshold corresponding to the
fourth target (box ‘Del’) was too low, resulting in poor performance
during the familiarization run. In these cases, the calibration
process was repeated. An explanation for this issue is that the
wizard did not consider the spatial arrangement of the boxes.
Especially the undo function, i.e., the box containing ‘Del’ or ‘Back’,
had a rather prominent position (see Figure 4.2). Further software
improvements are necessary; the wizardmay be integrated directly
in the applications, such as the three-step speller so that spatial
proximity and the size of the targets in the calibration GUI and the
spelling GUI are consistent.

In summary, the study demonstrates that through user-specific
parameter setup, reliable BCI control can be achieved by a broad
population. The presented system yielded a 100% literacy rate and
high accuracies for the following reasons:

I frequencies, time windows, and thresholds were calibrated
individually for each user;

I sufficiently long classification time windows were used for
poor performers; and

I the number of stimulation frequencies was only four.

The latter point will be addressed more thoroughly in the next
section, where we investigate the impact of the number of SSVEP
targets on performance. In principle, the presented calibration
methods are extensible to systems with a higher number of tar-
gets.

4.5 Impact of the Number of Targets on SSVEP
Performance

Although the mean accuraciesThis section is an amended version of
[61]: Gembler et al. (2017), ‘Suitable
Number of Visual Stimuli for SSVEP-
Based BCI Spelling Applications’,
[116]: Gembler et al. (2016), ‘Exploring
the Possibilities and Limitations
of Multitarget SSVEP-Based BCI
Applications’.

achieved with the four-target
spelling application were quite high (see, section 4.3 and sec-
tion 4.4), a higher ITR is desirable.

One way to achieve higher ITRs is by increasing the number of
targets. It is worth investigating to what extent the accuracy and
BCI literacy depend on this variable. Two studies were conducted
to investigate the impact of the number of targets on BCI literacy
rate, classification accuracy, and ITR.

In the first study, ‘Exploring the Possibilities and Limitations of
Multitarget SSVEP-Based BCI Applications’ [116], a cue guided
on-line test was performed with different sized stimulus matrices.
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In the second study, ‘Suitable Number of Visual Stimuli for SSVEP-
Based BCI Spelling Applications’ [61] results from copy spelling
tasks with 4, 6, and 28-target BCI spellers were analyzed. This
section summarizes the two studies.

The number of classes of a BCI impacts the design of the GUI and
is linked to its complexity. SSVEP-based spelling systems using
stable frequencies by employing divisors of the monitor refresh
rate, as discussed in section 3.1, typically present a single-digit
number of targets. For example, the three-step speller presented in
section 4.3 presents only four targets, the Bremen BCI presents five
targets [42], the modified Bremen BCI with dictionary integration
presents up to seven targets [76]. A significant disadvantage of
these applications is that several steps are required to select a letter;
the character output speed is therefore limited (see section 2.6).

Using the frequency approximation method [65], as described in
section 3.1, more complex multi-target interfaces can be realized.
Indeed, applications with twelve stimuli to select numbers to dial
a telephone [145], and even 40 stimuli to select characters [52] have
been developed.

Although multi-target BCIs allow high ITRs, a negative correlation
between thenumber of targets and the accuracyhas been repeatedly
reported [103, 130, 146]. For example, Carvalho et al. [146] tested
GUIs using different numbers of targets with two stroke patients
and eight healthy participants. They reported mean accuracies
of 97%, 77%, and 57% for a two, four, and six class interface,
respectively.

The literacy rate is usually high for BCIs employing a low number
of SSVEP stimuli. As discussed in section 4.4, some BCI studies
with a large number of participants (>50) reported that all partici-
pants were able to gain control over applications employing four
targets [86, 142].

The goal of the experiments presented in this sectionwas to explore
how many targets can be reliably distinguished using the SSVEP
paradigm.

To this purpose, in [116], seven healthy subjects underwent a cue
guided simulated on-line experiment with a variable number of
targets; accuracy and ITR were measured for systems with 15, 24,
28, 35, 60, and 84 stimulation frequencies.

We also investigated the number of BCI targets undermore practical
conditions, as results from on-line and simulated on-line tasks
usually differ. In [61], a series of copy spelling experiments were
conducted to explore the suitable numbers of visual stimuli in terms
of user-friendliness and performance. Three different custom-made
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spellers were tested: a three-step speller with four stimuli, a two-
step speller with six stimuli, and a single-step speller (resembling
a German QWERTZ-style keyboard) with 28 stimuli.

Methods

In this section, we summarize the methods and materials for
the cue guided selection experiment [116]) and the copy spelling
experiment [61], in the following referred to as matrix experiment
and speller experiment. In terms of hardware, the setup presented
in section 4.3 was used.

Participants

In the matrix experiment, seven subjects (three females, four males)
without disabilities participated. The mean (SD) age was 24.9 (3.8)
years (range 22-30).

In the speller experiment, ten subjects (one female, nine males)
without disabilities participated. The mean (SD) age was 25.5 (4.0)
years (range 21-32).

All subjects had normal or corrected-to-normal vision; spectacles
were worn if needed. All participants were students or employees
of Rhine-Waal University. The subjects did not receive monetary
compensation for participation.

Experimental protocol

Participants performed cue guided selection tasks with six dif-
ferent stimulation matrices in the matrix experiment and copy
spelling tasks with three different applications in the speller exper-
iment. Figure 4.10 and Figure 4.11 show the GUIs used in the two
experiments.

Matrix experiment Cue guided copy selection tasks with matri-
ces of different sizes were performed (see Figure 4.10). Initially, a
stimulus matrix presenting fifteen boxes, containing the numbers 0
to 14, was presented to the participant. A green frame highlighted
the target the user needed to gaze at. When the target was classi-
fied correctly, the flickering paused for 1 s, and another box was
highlighted. The boxes were highlighted in random order. When
the participant successfully selected each box once, the next larger
matrix was presented, the participant took a short break, and the
procedure was repeated. If the participant could not complete the
task with one of the stimulation matrices, the experiment ended;
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(e) 60 targets, 6.00-11.31Hz, Δ 5 = 0.09Hz
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(f) 84 targets, 6.00-11.81Hz, Δ 5 = 0.07Hz

Figure 4.10: Multi-target test matrices. Displayed are the GUIs of the test applications from [116]. (a-f) Provided are the
number of classes, the frequency range, and the frequency resolution, i.e., the interval between neighboring stimuli, Δ 5 .
Participants performed cue guided selection tasks starting with the 15-target interface. The targets were cued in random
order. When the selection task was completed, the next larger matrix was presented.

in this case, the tasks with a higher number of targets were not
performed. For all stimulation matrices, equidistant stimulation
frequencies were employed. The frequency resolutions ranged
from 0.07Hz for the 84-target stimulus matrix to 0.49 for the 15-
target stimulus matrix., and the lowest frequency was 6Hz for all
matrices (see Figure 4.10).

For signal classification, the MEC was used (see section 3.3), and
for stimulus presentation, the frequency approximation method
was used (see section 3.1).

Speller experiment Copy spelling tasks with three spelling ap-
plications were performed. The three-step speller and the two-step
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speller allowed the selection of single letters and complete words
in three or two steps, respectively. The single-step speller allowed
the selection of letters in a single step. For all spellers, stimuli
were represented by flickering boxes containing letters. To increase
the user-friendliness of the spellers, we implemented an audio
feedback corresponding to the generated outputs.

The GUI of the three-step speller was a modified version of the
application presented in section 4.3. The four stimulation frequen-
cies were selected as divisors of the vertical refresh rate, yielding a
constant number of frames in each cycle, as explained in section 3.1.
Before testing this application, participants went through the steps
of the wizard software, which determined the stimulation frequen-
cies (see section 4.4). In the first step, nine boxes, each containing
three letters of the alphabet (26 letters plus and ‘space’), were
presented. The frames of the boxes had different colors, and each
stimulation frequency was associated with a unique color (see
Figure 4.11 c); an additional 10-th box, ‘Dict/Del’ (delete the last
spelled character or switch to the dictionary mode) was displayed
on the far left side of the screen. The sizes of the boxes varied in
relation to the SSVEP power distribution between 140 × 130 and
230 × 210 pixels. In the second step, the boxes of the selected row
were outlined with distinct colors (green, red, and blue), and the
boxes of the remaining rows were grayed out. Only the frequencies
(and the corresponding frame colors) changed; the position of the
target letter remained the same, i.e., no gaze shifting was necessary
between the first and the second step. The user was able to select
one out of three boxes containing three letters each. In the third
step, the boxes were rearranged. Three individual boxes, each
containing individual letters, were presented. The functioning of
the yellow-framed target (on the left) was dependent on the current
selection step. In the first step, it enabled the user to delete the
last selected letter or select word suggestions that were positioned
above the ‘Dict/Del’ button. In the second and third steps, the far
left box contained the command ‘back’, which lead to the previous
step.

For the two-step speller, six frequencies were selected as divisors of
the vertical refresh rate, which were also determined by the wizard
software before the copy spelling task was conducted. A matrix
presenting 30 white boxes (containing individual letters) and six
additional gray boxes (containing five dictionary suggestions and
a ‘back’ button) was displayed (see Figure 4.11 a). The sizes of the
white boxes varied between 140 × 90 and 170 × 130 pixels, and the
size of the gray boxes varied between 370 × 90 and 400 × 130 pixels
in relation to the SSVEP power distribution. The lower row of
the matrix contained the special targets ‘Dictionary’, ‘Delete’, and
‘Clear word’. Selecting the ‘Dictionary’ button allowed the user to
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Figure 4.11: Single-step, two-step, and three-step speller from [61]. (a) The two-step speller. The subject spelled the letter ‘H’.
Every row of the stimulation matrix flickered with a different frequency (same frequencies for columns). To select a letter,
the user needed to select the corresponding row first. (b) In the second step, all characters of the selected row flickered with
different frequencies; the desired letter ‘H’ could be selected. Characters could be selected in two steps; 6 frequencies were
used. (c) The three-step speller. Characters could be selected in three steps; 4 frequencies were used. (d) The single-step
speller. Characters could be selected in a single step; 28 frequencies were used.

choose one of up to five word suggestions. The boxes ‘Delete’ and
‘Clear word’ allowed the user to delete the last selected character
or word, respectively. As only six distinct frequencies were used,
each row of the white boxes was coded with a single stimulation
frequency. For example, the boxes ‘F’,‘G’,‘H’,‘I’, and ‘J’ all flickered
in unison; by gazing at a particular box, the entire rowwas selected.
In the second step (see Figure 4.11 b), the boxes of the selected row
were coded with individual frequencies and the remaining rows
were grayed out. Only six boxes (the five boxes from the selected
row and the box containing ‘back’) were flickering. The output of
the two-step speller was displayed at the center of the screen.

For the single-step speller, 28 frequencies were employed using
the frequency approximation method, as explained in section 3.1.
Frequencies ranging from 6.1 to 11.7Hz (resolution 0.2Hz) were
used. The GUI displayed 28 buttons, which were arranged into
four rows resembling a German QWERTZ-keyboard layout (see
Figure 4.11 d). Each button flickered with a specific frequency. The
size of the boxes varied between 130 × 90 and 170 × 120 pixels. The
rows contained 10, 9, 7, and 2 buttons from top to bottom. A ‘space’
and a ‘delete’ button were presented in the bottom row.
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Figure 4.12: Impact of the number of stimuli on SSVEP-BCI performance. (A) Shown are the results from a cue guided on-line
experiment utilizing 15, 24, 28, 35, 60, and 84-targetmatrices. (B) Shown are the results from on-line copy spelling experiments
with the three-step, two-step, and single-step speller, using 4, 6, and 28 frequencies, respectively. The performance is
compared on the basis of classification accuracy, ITR. In case a participant was unable to control a system, accuracy and ITR
were set to 0. Data from Gembler et al. [116]. and Gembler et al. [61]

Subjects tested the spelling applications in random order. Prior
to the copy spelling tasks, familiarization runs were performed.
For all applications, the copy spelling task was ‘RHINE WAAL’.
Spelling errors needed to be corrected with the integrated delete
function. In case a participant was not able to complete the task
in a certain time frame, or if repeated misclassifications occurred,
the task was stopped, and the next application was tested. The
experiment took, on average, 40 minutes for each participant.

Results

Figure 4.12 summarizes ITRs and accuracies for both experiments.
In the following, the detailed results are provided.

Matrix experiment The performance was evaluated using classi-
fication accuracy and ITR. For each stimulus matrix, the individual
accuracies and literacy rates are listed in Table 4.6 (a); the corre-
sponding ITRs are listed in Table 4.6 (b).

To keep the duration of the experiment short, we decided to start
the selection tasks with the smallest matrix and continued in
ascending order of the number of frequencies used. If the subject
could not control a system, the experiment ended. Therefore,
results might be distorted by mental fatigue or training effect. To
avoid a performance decrease due to fatigue, participants were
instructed to take a short break before they continued with the
next matrix.
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Table 4.6: Accuracies, literacy rates, and ITRs achieved with the multi-target SSVEP test matrices. Seven healthy participants
controlled stimulation matrices of different sizes. The dash indicates that no control over the system was achieved. Data
from Gembler et al. [116].

(a) Accuracies and literacy rates

Subject 15 Targets 24 Targets 28 Targets 35 Targets 60 Targets 84 Targets

# Accuracy [%]

1 83 86 100 73 - -
2 100 100 100 100 100 91
3 94 77 80 - - -
4 94 100 85 83 94 -
5 100 86 90 71 - -
6 44 - - - - -
7 83 92 82 88 - -

Literacy
rate [%] 86 86 86 71 29 14

(b) Information transfer rate (ITR)

Subject 15 Targets 24 Targets 28 Targets 35 Targets 60 Targets 84 Targets

# ITR [bpm]

1 31.0 32.4 39.4 24.5 - -
2 130.2 116.9 120.3 122.1 73.7 67.0
3 29.7 33.1 22.4 - - -
4 40.3 55.7 52.0 34.6 24.5 -
5 83.6 49.8 59.3 39.7 - -
6 7.1 - - - - -
7 61.8 38.5 70.9 41.2 - -

The number of targets yielding best performance varied strongly
between participants. One participant (S6) had poor performance
from the beginning, achieving an accuracy of only 44% for the
15-target system. For the remaining participants (six out of seven),
reliable control was achieved up to the 28-target matrix. Two
participants (S2 and S4) were able to complete the task with the 60-
target matrix. Remarkably, one participant (S2) could still control
the 84-target system (achieving 91.3% accuracy). For this matrix,
the frequency resolution was only 0.07Hz.

The peak ITR in the experiment was 130.15 bpm; it was achieved
by S2 with 15 targets. Three participants (S1, S5, and S7) achieved
their peak performance with 28 targets.

Speller experiment Figure 4.13 provides individual results of
participants for the tested spelling applications; Table 4.7 summa-
rizes these results. Every participant stated to be familiar with the
QWERTZ-layout and reported to use computers regularly in daily
life.
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Figure 4.13: Impact of the number of
stimuli on SSVEP-BCI spelling per-
formance. (A) The classification accu-
racies and (B) the ITRs from the on-
line copy spelling experiments of the
three-step, two-step, and single-step
speller using 4, 6, and 28 frequencies,
respectively, are shown. If a partici-
pant was unable to control a system,
accuracy and ITR were set to 0. Data
from Gembler et al. [61]
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All participants were able to control the three-step speller, reaching
a mean accuracy of 96.1%. For the spellers with a higher number of
targets, BCI literacy rate and average accuracy were lower. While
80% of the participants were able to control the two-step speller,
only 70% were able to control the single-step speller.

The average command selection time windows (including gaze
shifting phases) were 5.9, 6.6, and 7.3 s for the three-step speller,
two-step speller, and single-step speller, respectively.

For the ITR calculation, the overall number of possible choices
depended on the spelling application (4, 6, and 28 for the three-step
speller, two-step speller, and the single-step speller, respectively).
The highest ITR, 51.8 bpm, was achieved by S1 with the two-step
speller. Four participants (S2, S3, S7, and S9) achieved their peak
performance with the single-step speller.

Table 4.7: Performance comparison between three-step, two-step, and one-step SSVEP-BCIs. Participants that could not
successfully control a speller were excluded from the calculation of mean values for that particular system. Data from
Gembler et al. [61].

Number of Literacy Max Mean Mean Mean time
displayed rate ITR ITR ACC window

stimuli [%] [bpm] [bpm] [%] [s]

Three-step speller 4 100 27.9 18.9 96.1 5.9
Two-step speller 6 80 51.8 22.3 93.4 6.6
Single-step speller 28 70 47.5 29.2 83.9 7.3
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Discussion

Both experiments confirm that increasing the number of targets
can decrease classification accuracy and BCI literacy rate. In both
experiments, participants stated that it was harder to focus on the
boxes with the higher target systems. Due to the closer proximity
of targets, neighboring stimuli contributed to the SSVEP response
and were sometimes falsely classified. A similar phenomenon has
also been reported for P300-based systems (see, e.g., [147]).

Regarding the BCI speller experiment, performance varied con-
siderably between participants. Some subjects achieved maximum
ITR with the one-step speller (28 stimuli), others with the two-step
speller (6 stimuli). One participant (S10) even reached the highest
ITR with the three-step speller (4 stimuli), mainly due to lower
accuracies with the other spellers.

The overall highest accuracies were achieved with the three-step
speller, which was the only system that could be controlled reliably
by all participants. For the higher target systems, the accuracies
and literacy rates were lower. This is in line with other studies
which reported a drop in accuracy when the number of stimuli
increased (e.g., [146]).

Apart from the higher accuracy and literacy rate, a further advan-
tage of the three-step speller is that it was least stressful for the
participants. According to the questionnaire answers, the single-
step speller was the most fatiguing application out of the three.
Some participants also stated that they became frustrated due to
the lower accuracy of the single-step system. In addition to that,
the time windows for accurate classification of SSVEP responses
were generally larger, if more stimuli were used.

As the optimal number of targets in terms of accuracy and ITR
differed among participants, an additional calibration step to
determine the optimal number of stimuli could be integrated into
thewizard software. However, the aspect of user-friendliness needs
to be taken into consideration as well; some users may prefer high
accuracies and a less visual fatiguing interface over a high ITR.
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The main difference between the c-VEP and SSVEP approach is
that the former requires a training session where personal EEG
templates are generated. Recent research strongly suggests that
using personal EEG data rather than frequency templates yields
higher accuracies (for a detailed review on this topic, see Zerafa
et al. [114]). As BCI illiteracy is, in essence, defined by accuracy
thresholds, personalized EEG templates may also reduce BCI
illiteracy.

Due to the required synchronizationbetween stimuluspresentation
and hardware acquisition, c-VEP systems are typically realized
with fixed classification time windows (synchronous BCIs).

For synchronous systems, the manipulation of two key parame-
ters, the time window and the classification thresholds, which has
improved the BCI literacy rate for SSVEP systems, cannot be per-
formed. The initial goal, therefore, was to develop an asynchronous
c-VEP application.

The first study in this chapter introduces an eight-target c-VEP
spelling application that achieves this goal (section 5.1). The pre-
sented speller incorporates novel features such as a slidingwindow
mechanism and an =-gram based dictionary integration. The chap-
ter further addresses the impact of user age and flickering speed
on c-VEP performance (section 5.2). Following that, automatic
calibration of ideal time windows and thresholds are explored. In
addition to that, the stimulus paradigms SSVEP and c-VEP, both
implemented using personal EEG data, are compared (section 5.3).
Lastly, the sliding window mechanism and the =-gram based
dictionary integration were adopted to a multi-target interface
(section 5.4).

All sections presented in this chapter are based on published
journal articles and conference proceedings about c-VEP-based
BCIs [72, 148–150].

5.1 A Dictionary-driven Asynchronous c-VEP
Spelling Application

Typical use cases of c-VEP-based BCIs This section is an amended version of
[72]: Gembler and Volosyak (2019),
‘A Novel Dictionary-Driven Mental
Spelling Application Based on Code-
Modulated Visual Evoked Potentials’.

are spelling applications for
peoplewith severe disabilities [13]. An issuewith c-VEP-BCIs is that
usually fixed timewindows are used to produce command outputs.
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Almost all c-VEP systems employ a fixed stopping approach, i.e.,
the classification is performed after exactly one full stimulation
cycle has been completed. After that, the flickering usually stops
giving the user a short time for gaze shifting. The length of the code
pattern then becomes a bottleneck for the overall responsiveness
of the system. Furthermore, classification methods based on fixed
time windows do not take individual differences between users
into account. As discussed in the previous chapter, the required
time window to produce accurate commands can vary strongly
between participants.

Thielen et al. [53] developed a 36-target VEP spelling application
based on pseudo-random gold codes and implemented a criterion
to decide when trials can be stopped. They reported an average
accuracy of 86%, an ITR of 48 bpm, and an OCM of approximately
9 char/min. Still, an output was produced, when the classification
window reached the trial length. It is, however, preferable that
the system is also able to distinguish between intentional and
unintentional target fixations. This way, more complex interfaces
could be realized.

The study reported in this section presents a dynamic classification
time window mechanism based on classification thresholds for
the c-VEP paradigm. The classification confidence (certainty) was
checked each calculation interval before the system produces out-
puts. This approach could reduce misclassifications and improve
the overall usability of the system. It further allows the integration
of prediction models (see section 2.6); if unintentional fixations
do not produce output commands, the user has enough time to
process changing elements of the user interface. Word prediction
methods can enhance the character output speed, even if a low
number of targets is used. In this study, an =-gram word predic-
tion model was employed [89]. While prediction models based on
=-gram models are quite common in BCIs [73], they are typically
applied on the character level; in the presented study, the =-gram
model was applied on the word level.

Regarding the signal classification, ensemble-based methods,
which are usually used in machine learning, have recently boosted
performance in SSVEP-based BCIs [52]. Here, an ensemble-based
classification method was adopted for the spatial filters used with
the c-VEP paradigm.

In summary, the contributions of the researchwere the following:

I improvements in c-VEP speller usability due to the dynamic
sliding classification window mechanism;

I improvements in c-VEP detection due to an ensemble-based
classification approach; and
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I improvements in output effectiveness due to the integration
of an =-gram based word prediction model.

The study evaluated the feasibility of the proposed methods based
on an on-line experiment with 18 healthy participants. To this
end, an eight-target two-step spelling interface with =-gram based
word prediction feature providing three word suggestions was
developed.

Methods

This section describes the subject group, the hardware setup, the
software, and the experimental design. The detailed descriptions of
the sliding window mechanism and the dictionary-driven speller
were also published in our publication [149].

Participants

Eighteen non-disabled participants (eight female and ten male)
with mean (SD) age of 23.3 (4.4) years, ranging from 19 to 31, were
recruited from the Rhine-Waal University of Applied Sciences.
Participants had normal or corrected-to-normal vision. In this
study, participants received a small financial reward.

Hardware

The used computer (MSI GT 73VR with Nvidia GTX1070 graphics
card) operated on Microsoft Windows 10 Education running on an
Intel processor (Intel Core i7, 2.70 GHz). A liquid crystal display
screen (Asus ROG Swift PG258Q, 1920 × 1080 pixel, 240Hz refresh
rate) was used to display the user interface and to present the
stimuli.

All 16 channels of the EEG amplifier (g.USBamp, Guger Tech-
nologies, Graz, Austria) were used; the electrodes were placed
according to the 10-5 system of electrode placement (see section 2.2
for more details): Pz, P3, P4, P5, P6, PO3, PO4, PO7, PO8, POO1,
POO2, O1, O2, Oz, O9, and O10. In general, reliable control may
be achieved with a smaller number of channels. However, a high
number of channels is needed to maximize accuracies and ITRs.
The impact of the number of electrodes on accuracy is addressed in
the results section. The common reference electrode was placed at
Cz and the ground electrode at AFz. Standard abrasive electrolytic
electrode gel was applied between the electrodes and the scalp
to bring impedances below 5kΩ. The sampling frequency of the
amplifier, �B , was set to 600Hz.
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Figure 5.1: Stimulus pattern of the
63 bit <-sequence used in the experi-
ment. The refresh rate of the monitor
was 240Hz. Each ‘1’ corresponded
to four frames where the associated
stimulus was shown and each ‘0’ to
four frames where the stimulus was
not shown. The duration of the stimu-
lation cycle was 1.05 s. Figure adapted
from Gembler and Volosyak [72].
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Stimulus design

In the c-VEP system used in this study,  = 8 stimulus classes were
used. The color of a target stimuli alternated between ‘black’ (the
color of the background, represented by ‘0’) and ‘white’ (repre-
sented by ‘1’) in accord with the underlying code pattern. To this
end, the well-established 63 bit <-sequences were used (please
refer to section 3.2 for more details).

The <-sequences 28 , 8 = 1, . . . ,  were assigned to the stimulus
matrix employing a circular shift of 2 bit (21 had no shift, 22 was
shifted by 2 bit to the left, 23 was shifted by 4 bit to the left, etc.).

As explained in section 3.2, <-sequences can be generated with
LFSRs. In all experiments in this chapter, the initial code 21 was
generated with an LFSR represented by the generator polynomial
G6+G5+1with the initial value 111110. Figure 5.1 shows the resulting
code pattern.

In terms of synchronization between stimulus presentation and
data acquisition, the software-based approach, described in sec-
tion 3.6, was used.

Experimental protocol

First, each of the 18 participants went through a training phase,
which was required to generate individual templates and spatial
filters for on-line classification. After that, on-line copy spelling
tasks were performed.

In the training phase, data for each of the stimuli were collected.
The data collection was grouped in six blocks, =1 = 6; in each block,
each of the  = 8 targets was gazed at once. Hence, =1 ·  = 48
trials were collected in total.

Each of these trials lasted for 3.15 s, i.e., the code patterns repeated
for 3 cycles. A green frame highlighted the box at which the user
needed to focus. At the beginning of each of the =1 recording
blocks, the user started the flickering by pressing the space bar.
After each trial, the next box the user needed to focus on was
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Table 5.1: Individual sentence tasks of the on-line experiment.

# Sentence # Sentence

1 I FORGOT TO DOMY HOMEWORK 10 THE DIVING SUIT IS TOO SMALL
2 I LIKE TO EAT CHEESE 11 THE SUN IS SLOWLY RISING
3 I BOUGHT EGGS TODAY 12 IT IS GOING TO RAIN TOMORROW
4 I COULD NOT HEAR THAT 13 THE DOG BARKED LOUDLY
5 I DO NOT SPEAK FINNISH 14 THE LIGHT BULB HAS BURNED OUT
6 WHAT DID YOU HAVE IN MIND 15 HE SANG OUT OF TUNE
7 I AM NOT YET HUNGRY 16 MY BIKE HAS NOT BEEN STOLEN
8 HOW LATE IS IT 17 THEY OWN A BLACK CAT
9 I COULD EAT PIZZA EVERYDAY 18 AND THAT IS IT

highlighted, and the flickering paused for one second. The boxes
were highlighted sequentially from upper left to lower right. After
every eighths trial (i.e., after every block), the user was allowed to
rest.

The training phase was followed by a familiarization run where
participants spelled the word BCI. The classification threshold for
the certainty was adjusted manually during this familiarization
run to ensure adequate speed and accuracy.

Three spelling tasks were performed: First, the word BRAIN was
spelled (letter-by-letter task), thereafter, the sentence THAT_IS_-
FUN was spelled (familiarization task, to learn the functioning
of the integrated dictionary), and lastly, an additional sentence,
different for each user was spelled (individual sentence task, see
Table 5.1). For each task, participants needed to correct errors using
the integrated UNDO function. In the sentence spelling tasks,
dictionary suggestions could be selected.

Dictionary-driven spelling application

The dictionary-driven eight-target spelling interface presented
eight boxes (230 × 230 pixel), each corresponding to one of the
 = 8 stimulus classes, arranged as 2 × 4 stimulus matrix, were
presented. The first row of the GUI contained 28 characters (26
letters, underscore, and full stop character) divided into four boxes
(seven characters each). The second row offered three dictionary
suggestions and a correction option. By selecting the correction
option, the last typed character or word was deleted. By selecting a
letter group from the first row, the associated characters were pre-
sented individually; thus, selecting individual characters required
two steps.

The copy spelling sentence and the user output were presented
in the center of the screen. If the classifier produced an output
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Figure 5.2: Item groupings of =-
grams on the word level.

command, audio and visual feedback were provided: The size of
the selected box increased for a short time, and a sound file, voicing
the selected command, was played. Additionally, a progress bar
displayed the current certainty level of the associated class label.

The dictionary suggestions were updated after each performed
selection on the basis of an =-gram prediction model, which is
used in computational linguistics. This model considers a sequence
of = items from a text database. For a given sequence of items
(here words), G8−(=−1) , . . . , G8−1, the next item G8 is suggested on
the basis of the conditional probabilities %(G8 |G8−(=−1) , . . . , G8−1).
In this application, an =-gram of size 2 (also called bi-gram, see
Figure 5.2) was integrated, i.e., next word candidates were ranked
according to their probability on the word level.

The text database was extracted from the Leipzig Corpora Collec-
tion, a ready to use corpora [151]. It contains a word frequency
list and a list of word bi-grams (co-occurrences as next neigh-
bors) containing observed frequency counts, which were gener-
ated from approximately 1 million sentences publicly accessible.
Structured query language (SQL), a query language for relational
databases, was used to retrieve word suggestions from the Leipzig
text database. Based on the already typed part of the current word,
three word suggestions were extracted using SQL statements. First,
all co-occurrence pairs, including the previously typed word and
the words beginning with the already typed part of the current
word, were ordered according to their frequency. If this proce-
dure resulted in less than three candidates, the suggestions were
complemented with the word frequency list (independent of the
precedent word), i.e., the most frequent words matching the al-
ready typed string were added. An example of the functioning of
the dictionary-driven speller is provided in Figure 5.3.

Spatial filtering and template matching

In this study, two approaches of spatial filtering, the conventional
approach (as described in section 3.5) and an ensemble-based
approach,were investigated. In both cases, theCCA (see section 3.4)
was applied to design the spatial filters.

Each training trial was stored in an < × = matrix, where < denotes
the number of electrode channels (here all 16 signal channels of the
amplifier were used for computation, i.e., < = 16) and = denotes
the number of sample points (here, = = 1.05 · �B · 3 = 1890).

In the conventional template matching approach, as introduced
in section 3.5, all training trials are circularly shifted to match the
phase of the first trial. The shifted trials, denoted Z8 , 8 = 1, . . . , =1 ,
were then averaged yielding an averaged template Z̄.
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Figure 5.3: GUI of the dictionary-driven c-VEP spelling application. A participant was spelling the sentence "JUST_DO_IT".
The selection of individual letters required two steps: First, the group containing the character needed to be selected (Layer
I), and second, the box with the desired character needed to be selected (Layer II). In total, seven selections were required
to complete the sentence (10 characters). Due to the sliding time window mechanism, there were no time constraints for
selections.
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With these trials, the matrices

Z = [Z1Z2 . . .Z=1 ] and Z = [ZZ . . .Z︸   ︷︷   ︸
=1 

] (5.1)

were inserted into the CCA formula (section 3.4), yielding a filter
vector w(1) = wẐ. Class-specific templates X(1)

8
, 8 = 1, . . . ,  were

generated by circularly shifting Z in accordance with the bit-shift
of the underlying code 28 (please also refer to section 3.5 for more
details).

For the ensemble-based approach, individual templates X(2)
8
∈

ℝ<×= and filters w(2)
8

were determined for each stimulus (8 =
1, . . . ,  ) independently. LetT8 , 9 , 8 = 1, . . . ,  , 9 = 1, . . . , =1 denote
the trial of class 8 recorded in block 9. Class-specific trial averages
X8 were generated by averaging all trials corresponding to the 8-th
class,

X8 =
1
=1

=1∑
9=1

T8 , 9 , 8 = 1, . . . ,  . (5.2)

To design the spatial filters, for all classes 8 = 1, . . . ,  the matrices,

T8 = [T8 ,1T8 ,2 . . .T8 ,=1 ] and X(2)i = [X8X8 . . .X8︸      ︷︷      ︸
=1

] (5.3)

were constructed and, using CCA, filter vectors w(2)
8
= wT̂8 , 8 =

1, . . . ,  were created.

For both methods, the on-line classification was performed after
receiving new EEG data blocks, which were automatically added
to a data buffer Y ∈ ℝ<×=H with dynamically changing column
dimension =H .

The data buffer Y was compared to reference signals R(9)
8
∈ ℝ<×=H ,

8 = 1, . . . ,  which were constructed as sub-matrix of the cor-
responding training template from rows 1, . . . , < and columns
1, . . . , =H from X(9)

8
for the conventional (9 = 1) and ensemble

method (9 = 2), respectively.

To identify the class label of the data contained in the buffer Y,
the classifier determined the Pearson correlations between the
spatially filtered reference signals and the spatially filtered EEG
data in the buffer. For the conventional approach, correlations �(1)

:
,

were determined as

�(1)
:
= �

(
Y)w(1) ,R(1)

:

)
w(1)

)
, : = 1, . . . ,  ; (5.4)

for the ensemble-based approach, the ensemble correlations, �(2)
:
,
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were determined as

�(2)
:
= �

©«

Y)w(2)1
...

Y)w(2)
 

 ,

R(2)
:

)
w(2)1
...

R(2)
:

)
w(2)
 


ª®®®¬ , : = 1, . . . ,  . (5.5)

In both cases, the classification output class label � was set to

� = arg max
:=1,..., 

�
(9)
:
, 9 = 1, 2. (5.6)

Sliding window mechanism for c-VEP signal classification

The output command corresponding to a classified label was only
performed if a threshold criterion was met. In this regard, sliding
classification time windows of dynamic length were used [63],
i.e., in the case where no classification could be made, a new
classification was performed, after receiving the new EEG data.

The multichannel EEG signals that were about to be classified were
stored in a matrix Y ∈ ℝ<×=H , where =H represents the length of
the classification time window in samples. In practice, =H needs to
be selected carefully. Too small time windows can lead to errors;
on the other hand, if =H is too large, data unrelated to the desired
target (e.g., due to gaze movements at the beginning of the time
window) stays in the buffer and remains to be considered for
classification, which can slow down performance. Therefore, =H
needs to be restricted,

=Hmin ≤ =H ≤ =Hmax. (5.7)

The selection of the minimum time window, the lower bound in
(5.7), is critical. Recall that the duration of one stimulus cycle was
1.05 s and the number of samples collected in this period, =2 , was
=2 = 630. The upper bound, =Hmax, was selected as a multiple of
=2 .

In the on-line BCI, the time window extended incrementally. The
amplifier transfers EEG data in blocks A8 ∈ ℝ<×=0 , where =0
denotes the number of samples per block. For the implementation
of the sliding window mechanism, =0 was selected as divider of
the cycle length, i.e., =0 |=2 .

A further restriction to =0 was given by the amplifier manufacturer.
For the g.USBamp, the buffer needed to contain at least 20-30ms
of data. Here, =0 was set to 30 samples (50ms recordings with the
sampling rate of 600Hz).
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Figure 5.4: Illustration of the threshold-based sliding window mechanism used in the on-line experiment. Displayed are
the classification times needed to spell the word BCI for (A) the synchronous implementation and (B) the threshold-based
sliding window mechanism. Each row represents one classification. The cells contain the label classified after the received
block and the certainty associated with the label (color-coded from red to green). The gray boxes indicate the gaze shifting
phases (here, 7 blocks each). For the synchronous approach, output commands are is produced at fixed time intervals,
i.e., after 1.05 s. For the sliding window mechanism, output commands are produced if a threshold criterion is met. In the
example, the sliding window mechanism yields a shorter spelling time and higher accuracy. Figure adapted from Gembler
and Volosyak [72].

The amplifier blocks were accumulated in a buffer A ∈ ℝ<×=0̂ ,

A = [A1A2 . . .].

If the number of samples of the buffer, = 0̂ , was too small, i.e.,
= 0̂ < =Hmin, no classification was performed.

If =Hmin ≤ = 0̂ ≤ =Hmax, the classification time window gradually
increased (with step width =0). The classification was performed
using the data matrix Y = A, i.e., all data from the buffer were con-
sidered for classification. If the classifier did not meet a threshold
criterion, as described later, further EEG data were collected.

Lastly, if = 0̂ > =Hmax, data were shuffled out. The data matrix Y
was defined as the sub-matrix of A formed from rows 1, . . . , <
and columns =2: + 1, . . . , = 0̂ ,

Y = A[1, . . . , < ; =2: + 1, . . . , = 0̂],

where : is the smallest integer such that =H is bound by (5.7).
Since =0 |=2 , data collection and stimulus presentation remain
synchronized.

The BCI output associated with a classified label � was only
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Figure 5.5: Classification accuracies achieved with the conventional c-VEP classification approach and the ensemble c-VEP
classification approach. In the box plots, outliers (data points outside 1.5 times the interquartile range) are located outside
the “whiskers”.

performed if a threshold criterion was met, which is described in
the following. The decision certainty, Δ� , which was determined
as the distance between highest and second-highest correlation,
needed to surpass a threshold value, �. This threshold was set for
each participant individually after the training. In other words, the
output command was only performed if =H ≥ =Hmin andΔ� ≥ �.

After a produced output command, the data buffers A and Y were
cleared, and a 2 s gaze shifting period followed. In this gaze shifting
period, the amplifier data blocks, A8 , were ignored and the stimuli
did not flicker, allowing the user to shift his or her gaze to the
next target. The BCI did not require a full cycle of the stimulation
pattern for classification. If a command was classified before the
stimulus pattern completed a full cycle, the flickering stopped.
Figure 5.4 illustrates the sliding windowmechanism and compares
it to the conventional method.

Results

The conventional and the ensemble-based classification approaches
were compared off-line via stratified 6-fold cross-validation (see
section 2.7). All but one recording blocks were used for the training,
and one block was used as validation data. The cross-validation
process was repeated =1 times, with each recording block used
once as the validation data. The =1 results were then averaged.

Figure 5.5 shows accuracies across all participants for classifica-
tion time windows up to 1 s. For both approaches, the classifier
reached high mean accuracies above 90% for the 1 s time window.
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Figure 5.6: Mean accuracies across participants with different numbers of training blocks for each method. The red dashed
line represents the ensemble-based classification, the solid black line the conventional c-VEP classification. The error bars
indicate standard errors of the means. (A) The classification time window was 0.3 s. (B) The classification time window was
1 s.

As expected, the accuracy increased for larger time windows. Nev-
ertheless, it can be seen that for the ensemble-based approach, a
time window as low as 0.4 s still yielded accuracies around 90% for
most participants, indicating that reliable control can be achieved
long before a full stimulation cycle is completed.

To further compare the performance of the two classification
methods, the effect of training length (i.e., the number of blocks)
on the classification accuracy was investigated. Figure 5.6 shows
the classification accuracy for different numbers of training blocks
at classification time windows of 0.3 s and 1 s. For the conventional
approach, 1 block yields 8 trials. For the ensemble approach, 1 block
yields 1 trial per class. The ensemble-based approach generally
requires more training data to yield its maximum performance, as
each class is recorded separately.

For both methods, the classification accuracy increased when
increasing the number of training blocks. For the 0.3 s timewindow
(see Figure 5.6A), the ensemblemethod outperformed the standard
approach if more than two training blocks were used. For the
1 s time window (see Figure 5.6 B), both methods yielded high
classification accuracies. However, the ensemble method required
three training blocks to reach mean accuracies above 95%; the
conventional method achieved this threshold at all numbers of
training blocks.

In contrast to the studies in the previous chapter, we used 16 signal
channels instead of only 8. The effect of the number of channels
on the classification accuracy and signal-to-noise ratio (SNR) was
investigated. For c-VEP signals, the SNR can be estimated by
calculating the similarity index (SMI), which describes the power
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Figure 5.7: (A) Mean accuracies and (B) signal-to-noise ratios (SNRs) across participants with different numbers of electrode
channels for each method. The red dashed line represents the ensemble-based classification, the solid black line the
conventional c-VEP classification. The classification time window was 0.3 s. The error bars indicate standard errors of the
means.

ratio between the test trial and the residual (see, e.g., [101]). Let X̄
denote the averaged training signal and let x8 denote the 8-th test
signal. We then calculate S, the orthogonal projection of x8 onto X̄,
and N, the residual part:

S =
X̄)x8
X̄)X̄

X̄ and N = x8 − X̄. (5.8)

The SMI in decibels (dB) is calculated as

SMI = 10 log10(�2(S)/�2(N)), (5.9)

where �2 represents the variance. The more similar training and
test trials are to each other, the higher the SMI. For this reason, the
SMI can be used to approximate SNRs of c-VEP signals [101]. To
asses the SNRs, the SMIs were calculated for the spatially filtered
training and test signals during off-line cross-validation.

Figure 5.7 shows classification accuracies and SNRs for the en-
semble and the conventional classification for different channel
montages around the visual cortex. More precisely, the following
montages were compared

4: Pz, O1, Oz, O2
6: Pz, O1, Oz, O2, PO3, PO4
8: Pz, O1, Oz, O2, PO3, PO4, O9, O10
10: Pz, O1, Oz, O2, PO3, PO4, O9, O10, P3, P4
12: Pz, O1, Oz, O2, PO3, PO4, O9, O10, P3, P4, POz, PO8
14: Pz, O1, Oz, O2, PO3, PO4, O9, O10, P3, P4, POz, PO8, POO1, POO2
16: Pz, O1, Oz, O2, PO3, PO4, O9, O10, P3, P4, POz, PO8, POO1, POO2, P5, P6.

The channel selection for each montage was based on results from
a previous study, where we analyzed all possible combinations
for different numbers of electrodes [152]. It can be seen that the
classification accuracy and the SNR decrease with the reduction of



102 5 Investigating c-VEP parameters

Table 5.2: On-line performance of
the dictionary-driven c-VEP speller.
Provided are the information trans-
fer rates (ITRs), accuracies, and the
output characters per minute (OCM)
for the letter-by-letter spelling task
BRAIN and the subject-specific indi-
vidual sentence task as listed in Ta-
ble 5.1 (Sent.). Data fromGembler and
Volosyak [72].

Subject Accuracy [%] ITR [bpm] OCM [char/min]
BRAIN Sent. BRAIN Sent. BRAIN Sent.

1 100 97 84.7 60.1 14.1 19.3
2 100 96 65.9 45.5 12.2 15.1
3 100 95 79.3 57.5 13.2 20.1
4 100 100 74.1 58.9 12.3 24.0
5 100 100 54.9 61.6 9.1 19.7
6 100 97 71.6 58.3 11.9 18.8
7 100 100 60.8 57.0 10.1 17.3
8 100 100 79.8 80.0 13.3 19.0
9 100 100 97.0 48.1 16.2 15.4
10 100 100 125.4 95.8 20.9 22.6
11 100 97 79.0 53.7 13.2 15.0
12 86 96 43.2 49.4 7.7 19.1
13 100 100 86.1 76.0 14.4 21.4
14 100 86 85.1 46.8 14.2 18.5
15 92 90 50.2 49.0 8.1 13.8
16 100 91 91.1 62.6 15.2 23.9
17 100 100 57.2 46.1 9.5 11.4
18 100 82 77.1 34.5 12.8 16.6

Mean 98.8 95.9 75.7 57.8 12.7 18.4

the electrodes. Moreover, the accuracies and SNRs were generally
larger for the ensemble-based method in comparison to the con-
ventional method. It should be noted that increasing the number
of electrodes may decrease user comfort; more time is required for
preparation and cleaning.

All participants completed the on-line experiment. The on-line
performance for letter-by-letter and sentence spelling tasks were
evaluated with the command accuracy, the ITR, and the OCM. The
ITR evaluates performance on the level of the target identification.
It does not depend on features of the application such as integrated
dictionary suggestions; although these features can increase the
performance on the application level (e.g., a higher number of
characters per minute can be achieved due to word suggestions),
they do not affect the ITR (see section 2.7).

Table 5.2 displays the results of the on-line spelling tasks. In terms
of detection accuracy, all participants were able to complete the
task with average accuracies above 80% for the letter-by-letter and
the sentence task. For the letter-by-letter spelling task BRAIN, a
mean (SD) accuracy of 98.8 (3.7)% was reached; for the sentence
spelling task, a mean accuracy of 95.9 (5.4)% was reached. Sixteen
out of the eighteen participants completed the spelling task BRAIN
without any errors, reaching an accuracy of 100%. For the sentence
spelling tasks, still, eight participants reached 100% classification
accuracy.
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The mean (SD) ITR for the spelling task BRAIN was 75.7 (19.3)
bpm. For the individual sentence spelling task, it was significantly
lower, 57.8 (14.4) bpm (paired C-test: C = 4.66, ? < 0.001). Across
individual participants, the minimal and maximal ITR were 43.2
bpm and 125.4 bpm for the spelling task BRAIN and 34.5 bpm and
95.8 bpm for the sentence spelling task, respectively.

In terms of OCM, significantly better results were achieved when
the dictionary integration was used. The average OCM was 12.7
(3.2) char/min for spelling BRAIN and 18.4 (3.5) char/min for the
individual sentence task (C = 6.91, ? < 0.00001). Across individual
participants, the minimal and maximal OCM were 7.7 char/min
and 20.9 char/min for the spelling task BRAIN and 11.4 char/min
and 20.4 char/min for the sentence spelling task, respectively.

Discussion

In this study, we presented a dictionary-driven c-VEP spelling
application employing =-gram based dictionary suggestions. In
contrast to the typically fixed time windows used in most state
of the art c-VEP spellers, a dynamic time window mechanism
was implemented, which allowed accurate discrimination between
intentional and unintentional fixations. If the user did not focus on
a particular button or just briefly attended it, e.g., when searching
for the desired character, the threshold criterion was not met, and
no classification was performed.

Another advantage of the approach is the additional user feedback
provided through progress bars. Typically, in c-VEP-based BCIs,
feedback is given on trial base only, i.e., after fixed time intervals.
This kind of feedback is also referred to as discrete feedback [153];
for example, after each trial of fixed length, the selected letter
may be added to an output display. Here, continuous feedback
was provided throughout the trial in the form of progress bars,
which were updated each calculation interval (here 0.05 s). This
real-time information about the classification state is also valuable
to customize system parameters during familiarization. Similar
methods have been incorporated into asynchronous SSVEP-based
BCI systems and lead to increased user-friendliness and system
accuracy [42, 154].

The selection options of theGUI changed dynamically. For example,
the dictionary suggestions were updated after each selection. Such
changing elements of the GUI could be handled easily due to the
dynamic time window approach.

For two-step spelling interfaces, like the one presented here, each
letter selection comprises of two classifications and two gaze
shifting phases. It remains to be tested if the dictionary support is
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as beneficial for multi-target systems that require only one step to
select a character (see section 5.4 in this chapter).

Another addition to the state-of-the-art is the software-based
stimulus onset determination (see section 3.6). The high accuracies
achieved in the study demonstrate the reliability of this approach.
The same principle can also be adapted to SSVEP systems that
employ a hybrid frequency and phase coding stimulus design (this
will be addressed in section 5.3).

In addition to the latency of the stimulus presentation, a short time
interval elapses between stimulus presentation of the eye and the
occurrence of a VEP. Although not applied here, some researchers
achieved improvements in BCI performance by excluding samples
from the beginning of the data buffer to address the latency of the
visual system. For example, Wittevrongel et al. [102] recommended
excluding the first 150ms of the trials from the decoding for the
c-VEP paradigm. Similarly, Jia et al. [155] found SSVEP latencies of
different stimulus frequencies to be around 130ms.

As evident from the off-line analysis, the classifier produced accu-
rate labels before a full stimulation cycle was completed. In general,
the ensemble-based approach demonstrated superior off-line per-
formance (i.e., higher accuracies for short time windows). This
performance boost seems to carry over to on-line performance
as well: In our previous study [98], we used the conventional
c-VEP classification approach for copy spelling tasks using the
same interface; ten participants spelled individual sentences with
a mean ITR of 31.1 bpm. Here, the mean ITR was roughly twice as
high (i.e., 57.8 bpm).

A downside of the ensemble-based strategy is the prolonged
training duration. Performance typically increases when longer
training sessions are conducted. Here, we averaged the data over
six trials for the ensemble approach. As eight targets were used,
the same data yielded 48 trials with the conventional approach.

Recently, Nagel et al. [113] investigated the effect of monitor raster
latencies on target detection; the raster latency is dependent on the
vertical refresh rate of the screen and causes small additional time
lags between vertically separated targets. According to the authors,
the correction of these latencies can enhance detection accuracy.

It should further be noted that some c-VEP-BCIs employ additional
flickering objects around the selectable targets (principal of equiv-
alent neighbors, see section 3.2) to increase the similarity between
trials. This strategy was not applied here, as it involves additional
flickering objects which limit GUI design and is visually more
demanding.
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In general, higher ITRs than reported here can be achieved with
the c-VEP paradigm when using multi-target GUIs. For example,
the system developed by Spüler et al. [9] achieved 144 bpm and
an average of 21.3 error-free letters per minute in on-line spelling
tasks; the authors implemented a 32-target c-VEP system with
fixed classification time windows of 1.05 s. However, thanks to the
dictionary integration, the average number of error-free characters
achieved in the presented study (i.e., 18.4 char/min) was quite
similar, albeit using only eight targets.

VEP-based BCIs are often compared with eye-tracking interfaces,
as both require eye gaze control. A significant advantage of the
presented system is that it is not affected by the Midas touch
problem. The responsiveness of the presented system was also
promising; hence, the c-VEP paradigm could be hybridized, e.g.,
with eye-tracking technology, as described in our previous publi-
cation, where we combined an eye-tracker and an SSVEP applica-
tion [67].

The dynamic sliding window mechanism, the =-gram based dic-
tionary integration, and the implementation of software-based
stimulus synchronization used in the reported study add to a
growing body of literature on c-VEP-based BCIs.

5.2 Effect of Age and Flickering Speed on
c-VEP Performance

The strength This section is an amended version of
[148]: Gembler et al. (2019), ‘A
Comparison of cVEP-Based BCI-
Performance Between Different Age
Groups’.

of the VEP-responses varies across users. Similar to
the observations regarding the SSVEP paradigm, system speed is
expected to be lower for elderly participants. However, as with
SSVEP systems, the majority of studies investigating c-VEP-based
BCIs have been conducted with a young subject group.

In the reported study, we investigated the level of fatigue and
annoyance for different c-VEP flashing speeds. We tested two
equal-sized groups of different age ranges with the eight-target
spelling application presented in the previous section.

Next to system speed, overall user-friendliness is another crucial
factor in BCI research. As mentioned in section 4.1, the stimulation
pattern used to evoke the brain response may be considered as
annoying, especially for lower rate flickering. Interestingly, in
their SSVEP field study, Allison et al. [82] reported that younger
participants tended to be less annoyed by the flickering.

For c-VEP systems, several studies suggest that the flickering rate
plays a central role in the perceived level of annoyance and perfor-
mance [98, 102]. Here, three flickering speeds were investigated;
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Figure 5.8: The 63 bit <-sequences
(gray) and the reference templates of
subject 5 for 30, 60, and 120Hz setups.
For each setup, one stimulus cycle is
shown.
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the c-VEP stimuli were generated with monitor refresh rates set to
30, 60, and 120Hz.

Methods

This section presents details about the subject groups and describes
the experimental design. The hardware setup and signal processing
methods were identical to the study presented in the previous
section. Furthermore, the same spelling interface was used.

For the stimulus design, eight 63 bit <-sequences were used (as
determined in the previous section). Three setups were tested:
The update rate A of the bit pattern was set to 30, 60, and 120Hz,
respectively. The duration of the stimulus cycle, A/63, was 2.1, 1.05,
and 0.525 s.

Participants

In total, 26 healthy participants were recruited for this experiment.
The participants were divided into two groups based on their age.
The group of younger participants (referred to as the young group)
had a mean (SD) age of 23.5 (2.6) years, ranging from 20 to 28;
five participants were female. The group of elderly participants
(referred to as the elderly group) had a mean (SD) age of 72.7 (6.3)
years, ranging from 62 to 83; eight participants were female. All
subjects had normal or corrected-to-normal vision. Spectacles were
worn if needed. The entire session lasted approximately 60minutes
for each subject. All participants received a financial reward for
their participation.
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Experimental protocol

The experimental design was the same for both age-groups: The
experiment consisted of three sessions were different refresh rates
were tested (30, 60, and 120Hz). Each session consisted of a training
phase and a copy spelling phase.

As in the previous section, each training phase was grouped in six
training blocks, =1 = 6, where 6 · 8 = 48 trials were collected in
total. Each of these trials lasted for 4.2 s, i.e., the stimulation cycle
repeated 2, 4, or 8 times depending on the used refresh rate (30,
60, and 120Hz, respectively).

Before the copy spelling task, a brief familiarization run was
conducted were subjects spelled the word BCI, and, if necessary,
the classification parameters were adjusted manually to ensure
effective control. The copy spelling task (for all sessions) was to
spell three German words: BAUM, HAUS, and WELT. Participants
needed to correct errors using the UNDO function of the eight-
target speller. In each session, after completion of the copy spelling
tasks, participants rated the level of the annoyance of the flickering
on a 1-5 Likert scale.

Results

Figure 5.8 shows an example of the reference templates for the 30,
60 and 120Hz setup for one participant. The reference template at
a 30Hz refresh rate resembles the corresponding code sequence
the least as it oscillates much more than the code pattern.

Accuracies and ITRs for all participants are shown in Figure 5.9.
The results from the three spelling tasks (BAUM, HAUS, and
WELT) were averaged. Differences in ITR between refresh rate
setups and between age groups were analyzed using paired C-tests
and unpaired Welch’s C-tests, respectively.

The young group achieved mean ITRs of 53.1, 64.0, and 72.9 bpm
for the 30, 60, and 120Hz system, respectively. The differences
between refresh rate setups were significant for this age group
according to paired C-tests: The difference between 30 and 60Hz
was significant (C = 3.25, ? = 0.007), the differences between 60
and 120Hz (C = 4.61, ? < 0.001) and between 30 and 120Hz
(C = 6.86, ? < 0.0001) were highly significant.

The elderly group achieved mean ITRs of 42.03, 45.32, and 45.74
bpm for 30, 60, and 120Hz refresh rate, respectively. However, for
this age group, the differences in means between the refresh rates
were not significant.
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Figure 5.9: Individual c-VEP on-line spelling performances of elderly and young participants. The values for the three
spelling tasks (BAUM, HAUS, and WELT) were averaged. (A) Accuracies and (B) information transfer rates (ITRs) for 30, 60,
and 120Hz refresh rate setups are shown. Data from Gembler et al. [148].

In regards to the impact of age on BCI performance, Welch’s C-
tests revealed highly significant differences between the mean
ITRs of the young and the elderly group for the 120Hz setup
(C = 5.27, ? < 0.0001) and for the 60Hz setup (C = 3.93, ? < 0.001).
For the 30Hz setup, however, no statistical difference betweenmean
ITRs of the young and elderly groupwas found (C = 1.75, ? = 0.09).
An overview of the age-related performance difference is presented
in Figure 5.10.

For all refresh rate settings and age groups, average accuracies
above 95% were achieved. Young participants reached mean accu-
racies of 96.5%, 98.6%, and 99.7%, and elderly participants reached
mean accuracies of 96.4%, 97.9%, and 96.6% for the 30, 60, and
120Hz setup, respectively.

Figure 5.11 shows the results of the user questionnaire. Participants
rated their level of annoyance using a five-point Likert scale. For
the young group, the median rating was 3 for the 30Hz (range 1
to 4), 2 for both the 60Hz (range 1 to 4) and the 120Hz (range 1 to
4) setup. Similarly, for the elderly group, the median rating was
3 for the 30Hz (range 1 to 5), and 2 for both the 60Hz (range 1
to 4) and the 120Hz (range 1 to 3) setup. Most users did not find
the flickering for any refresh rate setup annoying. For the young
group, 1 participant out of 13 found the 120Hz setup annoying,
versus 2 for the 60Hz setup and 4 for the 30Hz setup. For the
elderly group, none of the 13 participants rated the 120Hz setup
annoying or very annoying, versus 1 for the 60Hz setup and 4 for
the 30Hz setup.
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Figure 5.10: Comparison of c-VEP on-
line spelling performances of elderly
and young participants. The results
from young (20 to 28 years) and el-
derly (62 to 83 years) groups are pro-
vided. Displayed are the information
transfer rates (ITRs) averaged over the
three on-line spelling tasks (BAUM,
HAUS, WELT) for three monitor re-
fresh rates that were used to gener-
ate the stimuli. The asterisks mark
statistical significance (Welch’s C-test,
∗ ∗ ∗? < 0.001 and ∗ ∗ ∗ ∗ ? <= 0.0001).
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The flickering of 
the stimuli was...

...not annoying at all.

...not annoying.

...neither annoying / not annoying.

...annoying.

...very annoying. Figure 5.11: Subjective level of user-
friendliness for young and elderly par-
ticipants when using a c-VEP-based
BCI system. Participants were asked
to state the perceived level of annoy-
ance on a 1 to 5 Likert scale.

Overall, answers indicate that the highest flickering speed was
perceived as the least annoying. Additional comments from the
participants revealed reasons why the 120Hz setup was perceived
as least annoying. One participant found that for the 120Hz setup,
it was easier to concentrate on the letters of the stimuli. Another
participant commented that the 120Hz setup was least fatiguing.

Discussion

The presented results reveal a significant difference between the
performance of young and elderly participants for the c-VEP
paradigm. The performance difference in terms of ITR was most
visible for the fastest flickering speed, (i.e., during the 120Hz
refresh rate session). The accuracies were high in all sessions for
both groups; mean accuracies were above 95% in all sessions for
the elderly and the young group. The reason for the lower ITRs
of the elderly group is longer average classification times. This
is consistent with the results from our findings with the SSVEP
paradigm reported in section 4.3. Another explanation for the
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higher mean ITR of the younger group could be that the reaction
time is shorter for young participants. To reduce this effect, we
included a familiarization run, where participants learned the
functioning of the GUI. Moreover, the gaze-shifting phase was
set to 2 s, which is comparably long but provides enough time to
locate the desired target.

Improved BCI performance for faster flickering speeds was also
observed by Wittevrongel et al. [102], who reported that a 120Hz
refresh rate enabled higher ITRs in comparison to the standard
60Hz stimulus presentation. In the presented study, however, a
difference between refresh rates was only observed for the young
group. The results achieved in this study could indicate that higher
refresh rates than tested here could yield even higher ITRs. In
preliminary experiments, we also tested with higher flickering
speeds (using a refresh rate of 200Hz). Although the flickering
was perceived as less annoying, the 200Hz yielded, on average,
the lowest accuracies. According to the questionnaire results, the
flickering speed has an impact on user comfort. The 120Hz session
was rated least annoying in terms of the flickering.

In summary, for the 60 and 120 Hz sessions, a highly significant
difference between young and elderly participantswas found. Thus
the study confirms our results obtained with the SSVEP paradigm
suggests that user age needs to be considered when designing
c-VEP BCIs. The 120Hz setup yielded higher ITRs than both the
60Hz and the 30Hz setup for the young group. As the 120Hz
setup was considered least annoying by both groups, it seems to
be the better option in general.

5.3 Automated Calibration and Comparison of
c-VEP and SSVEP

Although SSVEPs and c-VEPsThis section is an amended version of
[149]: Gembler et al. (2019), ‘Dynamic
Time Window Mechanism for
Time Synchronous VEP-Based
BCIs—Performance Evaluation with
a Dictionary-Supported BCI Speller
Employing SSVEP and c-VEP’.

are themost commonly usedVEPs in
BCI research, a direct side-by-side comparison is so far still missing.
It would be interesting to find out, which of the two stimulation
paradigms yields the fastest spelling speeds and which paradigm
causes the least visual fatigue.

The advantages and disadvantages of the two VEP paradigms
have already been touched on briefly in the introduction and the
previous chapter. Both paradigms yield high ITRs if individual
EEG recordings are used. Although SSVEP-based BCIs can be
realized without training sessions, the highest spelling speeds
are achieved for both paradigms, if pre-recorded user EEG data
are used to classify the attended target [114]. This common factor
enables a direct comparison in the sense that the visual flickering
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is the main difference between the paradigms; the same number of
classes, the same signal classification algorithms based on template
matching can be used.

To compare the two paradigms, an experiment with twelve healthy
subjects was conducted. After off-line recording phases, word and
sentence spelling tasks were performed, once with SSVEP and
once with c-VEP. For both paradigms, the eight-target spelling
interface was used. In this sense, the sliding window approach
(presented in section 5.1) was adopted for SSVEP-BCIs using
individual EEG templates; so far, these systems have mainly been
implemented as synchronous systems (i.e., the system employs
predefined classification time windows). In addition to that, the
study explores autonomous calibration of minimal classification
time windows and thresholds for both paradigms.

The BCI performance of the two flickering methods was assessed
using the standardmeasures accuracy,OCM, and ITR. The usability
was assessed using user questionnaires.

Methods

In the following, the subject group, the stimulus presentation,
the experimental protocol, and the automated parameter setup
are described in detail. The hardware setup and signal process-
ing methods were similar to the study presented in section 5.1.
Moreover, the dictionary-driven eight-target speller was used.

Participants

Twelve healthy participants were recruited for this experiment,
eight females and four males (average age 23.8 years, SD 2.35,
range 21 to 30 years). All participants had normal or corrected to
normal vision. The subjects received a financial reward for their
participation.

Stimulus presentation

Two stimulus types, SSVEP- and c-VEP stimuli, were tested con-
secutively. The target stimuli consisted again of eight boxes (230
× 230 pixel) arranged as 2 × 4 stimulus matrix (see section 5.1).
Accordingly, the number of stimulus classes,  , was set to 8.

For the c-VEP flashing pattern, eight 63 bit <-sequences were used
(where the initial code 21 was defined as in section 5.1). According
to Wei et al. [103], a lag of 4 bit between adjacent stimuli yields
better performance for a modulation sequence with a length of
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63 bit. Therefore, in this study, the remaining  − 1 targets were
generated by employing a circular shift of 4 bit (21 had no shift, 22
was shifted by 4 bit to the left, 23 was shifted by 8 bit, and so on).
The duration of one stimulus cycle was 1.05 s. As the sampling rate
was set to 600Hz, the number of samples per cycle, =2 , was 630
samples.

For the SSVEP flashing pattern, hybrid frequency and phase coding
was used (see section 3.1). A specific frequency 5 and phase
Φ were assigned to each target. The flickering was realized by
sinusoidally modulating their transparencies in accordance with
the frequency and phase combination, as described in section 3.1.
Frequencies 58 = 50 + (8 − 1)Δ 5 and phases Φ8 = Φ0 + (8 − 1)ΔΦ,
8 = 1, . . . ,  , with 50 = 8Hz, Δ 5 = 1Hz, Φ0 = 0 and ΔΦ = 0.35�,
where assigned column-wise to the stimulusmatrix. The frequency
range from 8 to 15Hz was chosen, as it avoids mutual influences
between fundamental and harmonic frequencies (as discussed
in section 4.1). Furthermore, due to the 1Hz difference between
stimuli, the stimulus repetition period is 1 s.

Experimental protocol

Participants sat on a chair facing the LCD screen (at a distance
of approximately 60 cm). After they were prepared for the EEG
recording, they went through two sessions (c-VEP and SSVEP).
Each session consisted of a training phase (for template recording
and automated parameter setup), an on-line copy spelling phase,
and a brief questionnaire. The experiment took approximately one
hour for each participant. The order of the paradigms was altered
for every other participant. Hence half of the participants started
the experiment with the SSVEP paradigm, the other half with the
c-VEP paradigm.

Training phase In the training phase, the user fixed his or her
gaze at each of the eight stimuli several times. For each trial, the
code pattern repeated for three cycles, i.e., the stimuli flickered for
3 · 1 s = 3 s for the SSVEP paradigm and for 3 · 1.05 s = 3.15 s for
the c-VEP paradigm. A green frame indicated which box the user
needed to fixate. The recording was grouped in six blocks (=1 = 6)
of eight trials, resulting in 6 · 8 = 48 trials in total. To avoid user
fatigue, the experimenters allowed the subjects to take breaks after
each block of eight trials (the recording automatically paused).
To start another recording block, the subjects needed to press the
space bar.
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Table 5.3: Individual sentence tasks of the SSVEP and c-VEP on-line experiments. The mean sentence length was 26.7 and
26.8 characters for the c-VEP and SSVEP sentences, respectively.

# Sentence c-VEP Sentence SSVEP

1 THE TRAINWAS OVERCROWDED HE IS AFRAID OF HORSES
2 THATWAS AN INTERESTING LECTURE I WANT TO BECOME A BUSDRIVER
3 THE BOOK IS WAY TOO BORING I WOULD LIKE TO PLAY THE CELLO
4 I DO NOT LIKE TO EAT FISH I DO NOT SPEAK FINNISH
5 DID YOU EVER DRIVE A SKATEBOARD ALL OF THE PHOTOS WERE BLURRED
6 THE RECORDING IS REALLY BAD I COULD EAT PIZZA EVERYDAY
7 I DO NOT LIKE THIS MUSIC AT ALL I USUALLY FALL ASLEEP IN THE CINEMA
8 DOGS ARE NOT ALLOWED THATWAS A NICE MOVIE
9 I WILL GO SWIMMING TOMORROW THEY OWN A BLACK CAT
10 I NEED TO BUY A NEW TOOTHBRUSH MY BIKE HAS NOT BEEN STOLEN
11 THE SHOPWAS CLOSED ALREADY I WANT TO LISTEN TO THE RADIO NOW
12 THE DOG BARKED LOUDLY DID YOU GO TO SCHOOL TODAY

Copy spelling phase Prior to the copy spelling task, a brief fa-
miliarization run was performed, where participants spelled the
word KLEVE, and a word of free choice (e.g., the own first name).
During this familiarization run, in some cases, the automatically
determined classification thresholds were lowered manually to
increase the responsiveness of the application. In the copy spelling
phase, participants were first asked to spell the words BCI and
BRAIN, and then a longer English sentence. For each participant
and paradigm, different sentences were used (see Table 5.3). Oc-
curring errors were corrected using the UNDO function of the
interface.

Questionnaires Before the training phase, participants filled in a
brief questionnaire, answering questions regarding gender and age.
Additionally, after each session, participants gave their subjective
impressions of the BCI answering questions regarding fatigue and
annoyance. The questions and the collected answers from these
questionnaires are provided in the results section.

Classification

Spatial filtering on the basis of the training data and ensemble-
based target identification as described in section 5.1 were used
for classification; ensemble correlations, �: , were determined by
stacking all target-specific spatially filtered data and template
vectors.

Additionally, the difference between target- and non-target correla-
tions can be enhanced further by applying a filter bank method,
which decomposes VEP-data in sub-band components as described
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in [68]. The lower and upper cut-off frequencies for the <-th sub-
band were selected as < · 8 and 60Hz. To this end, an 8-th order
Butterworth filter was employed. Forward and reverse filtering
was used to cancel the phase response [156].

The ensemble approach was then applied to each sub-band compo-
nent individually, yielding a set of correlations �(1)

:
,�(2)

:
, . . . ,�(")

:
,

: = 1, . . . ,  , where " denotes the number of considered sub-
bands. Then, the output command candidate was determined
using weighted linear combinations of the correlations,

� = arg max
:=1,..., 

�̃: , where �̃: =
"∑
<=1

0<�
(<)
:
. (5.10)

Mirroring the decrease in amplitude in the higher bands, the
weights 0< in (5.10) were set to

0< =
0′<∑"
:=1 0

′
, with 0′< = <−1.25 + 0.25, (5.11)

yielding decreasing weights for the higher bands. The opti-
mal choice of these weights needs to be investigated further
(see, e.g. [68]). For the c-VEP paradigm, the number of sub-bands,
", was set to 1 (the standard method), whereas for the SSVEP
paradigm," was set to 5.

After an output command was produced, a gaze shifting phase of
1 s followed. In this gaze shifting period, the amplifier data blocks
were ignored, and the stimuli did not flicker, allowing the user to
shift his or her gaze to the next target.

Automatic parameter calibration For the on-line copy spelling
phase, the threshold-based sliding window mechanism was used,
where the decision certainty, Δ� , was defined as the distance
between the highest and second-highest correlation. The output
was performed if =H ≥ =Hmin and Δ� ≥ �, where =H denotes the
length of the dynamic time window in samples and =Hmin denotes
the minimal time window.

Here, the values for the classification threshold � and for the
minimum time window =Hmin were determined automatically
for each participant on the basis of the training data via a cross-
validation (see section 2.7).

Using stratified 6-fold cross-validation on the training data, an
average ITR was calculated after each calculation interval, i.e., for
classification windows of =H = 30, 60, . . . , 3=2 samples. The value
of =H that maximized the ITR was selected as the minimum time
window =Hmin. The classification threshold � was selected as the
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Subject Time window [s] Off-line ITR [bpm]

# c-VEP SSVEP c-VEP SSVEP

1 0.50 1.35 98.0 76.6
2 0.35 0.30 126.7 131.6
3 0.40 0.45 122.2 124.1
4 0.60 0.90 82.4 94.7
5 0.50 0.45 108.1 118.0
6 0.55 0.80 104.6 95.0
7 1.00 0.45 76.6 71.1
8 0.45 0.65 111.8 79.9
9 0.90 0.95 63.5 66.2
10 0.80 0.45 85.1 72.5
11 0.35 0.25 120.1 117.6
12 0.45 0.45 111.8 95.2

Mean 0.57 0.62 109.0 95.2

Table 5.4: Off-line comparison c-VEP
and SSVEP. Provided are the opti-
mal time window determined in the
training (via cross-validation) and the
corresponding training ITR for each
participant. Data from Gembler et al.
[149].

minimal decision certainty, Δ� , at that time window. An example
of the parameter setup procedure is depicted in Figure 5.12.

As stated in the experimental protocol, the suggested thresholds
were sometimes loweredmanually in the on-line spelling tasks. An
explanation for lower certainty in on-line tasks is that in comparison
to the cue guided training, it was more likely that participants
were not yet gazing at the target when the flickering started.

Results

Off-line performance Optimal time windows and ITRs were
calculated via cross-validation. As expected, the highest ITRs were
achieved with different time windows for each user. The time
window yielding maximal ITR, which was used as the minimal
time window in the on-line experiment, and the corresponding
maximum ITR are listed in Table 5.4. On average, participants
reached a theoretical maximal ITR of 100.9 bpm and 95.2 bpm
with the optimal time window for the c-VEP and SSVEP paradigm.
However, the difference between the paradigms was not statisti-
cally significant according to a paired C-test (C = 1.49, ? = 0.17).
Moreover, Figure 5.13 shows off-line ITRs and accuracies across all
participants for a time window length up to 1 s with an interval of
0.1 s.

On-line spelling performance The spelling results across all
participants for each paradigm are summarized in Table 5.5. For
the single word spelling tasks (BCI and BRAIN), the average
ITR was 92.7 and 75.1 bpm for the c-VEP and SSVEP system;
the difference between the paradigms was significant (C = 2.50,
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Figure 5.12: Example of the automated parameter setup. The figure displays the results from the off-line cross-validation
of the SSVEP training data for one participant. In the training session, each of the 8 targets was attended 6 times for 3 s.
(A) The correlation values of the target stimulus (green) and the maximum correlation of the non-target stimuli (red) for
each stimulus class for time windows up to 1 s. (B) ITR averaged over the 6 training blocks. The dashed line indicates the
time window yielding the highest ITR, here 0.45 s. (C) Correlogram of the training data. Depicted are the correlations of
each target for the determined time window, averaged over the trials. The classification threshold was determined as the
minimal difference between target and non-target stimuli correlation; Here, the distance was minimal for the 10 and 14Hz
pair, yielding a difference of 0.4-0.2=0.2. Adapted from Gembler et al. [149].

Figure 5.13: Classification accuracies
achieved with the c-VEP and the
SSVEP paradigm. In the box plots,
outliers (data points outside 1.5 times
the interquartile range) are located
outside the “whiskers”.
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Table 5.5: On-line performance comparison c-VEP and SSVEP. Provided are the results (a) for the subject specific individual
sentence task as listed in Table 5.3 and (b) for the letter-by-letter spelling tasks BRAIN and BCI. Listed are the accuracies,
information transfer rates (ITRs), and output characters per minute (OCM). Data from Gembler et al. [149].

Letter-by-Letter Sentence

c-VEP SSVEP c-VEP SSVEP c-VEP SSVEP c-VEP SSVEP c-VEP SSVEP c-VEP SSVEP
Subject ACC [%] ITR [bpm] OCM [char/min] ACC [%] ITR [bpm] OCM [char/min]

1 100 100 100.6 32.8 16.8 5.5 97 100 83.9 42.2 20.8 11.9
2 100 87 76.5 70.7 12.7 12.3 100 100 36.2 62.4 12.1 16.2
3 100 100 107.8 98.8 18.0 16.5 100 100 62.1 78.6 17.9 32.8
4 100 100 85.9 45.5 14.3 7.6 96 100 58.6 53.0 24.1 18.5
5 96 100 101.7 92.5 16.8 15.4 92 95 49.1 51.2 16.4 14.2
6 100 100 107.6 91.2 17.9 15.2 94 93 59.9 41.1 19.0 10.2
7 100 100 69.8 73.2 11.6 12.2 92 95 43.8 47.7 15.9 17.1
8 100 96 111.0 76.7 18.5 12.6 100 100 89.6 77.3 37.3 28.5
9 94 96 66.3 32.7 10.9 5.6 84 91 44.0 30.4 16.7 8.0
10 96 93 84.2 88.4 13.9 15.7 88 93 46.1 63.4 13.2 26.0
11 100 100 111.9 135.3 18.7 22.5 100 95 64.8 96.4 20.8 22.5
12 96 100 88.5 62.9 15.1 10.5 85 94 47.3 43.4 12.3 14.1

Mean 98.5 97.6 92.7 75.1 15.4 12.6 94.0 96.3 57.1 57.3 18.9 18.3

? = 0.029). It should be noted that these values were lower than
the off-line ITRs as on-line outputs were only produced if the
threshold criterion was met.

For the sentence spelling tasks, no statistically significant difference
between the paradigms was found; ITRs of 57.1 and 57.3 bpmwere
achieved for the c-VEP and SSVEP paradigm.

Thanks to the integrated =-gram prediction model, the average
OCM achieved for the sentence spelling tasks was higher in com-
parison to the letter-by-letter spelling tasks for both paradigms.
For the single word spelling tasks, 15.4 and 12.6 char/min were
achieved; for the sentence spelling tasks, 18.9 and 18.3 char/min
were achieved with the c-VEP and SSVEP paradigm.

Questionnaire results The results from the questionnaires are
depicted in Figure 5.14.Most users did not find the flickering annoy-
ing or fatiguing. Overall, answers regarding the user-friendliness
were slightly more favorable for the SSVEP paradigm. Five out
of twelve participants stated that they found the flickering of the
c-VEP system annoying. Only one participant found the SSVEP
flickering annoying. In respect to the subjective level of fatigue, the
SSVEP paradigm yielded better results as well. Four participants
found the c-VEP flickering fatiguing, but only two participants
stated that the SSVEP flickering caused fatigue.
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Figure 5.14: Subjective level of user-
friendliness for SSVEP and c-VEP
paradigm. Responses were given on
a 1-5 Likert scale, 1 indicating strong
disagreement and 5 indicating strong
agreement.
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Discussion

The study provides a direct comparison between c-VEP and SSVEP
stimulation, both in terms of performance and user-friendliness.
The =-grambasedword suggestionmodule and the slidingwindow
mechanism were tested with both paradigms.

The comparison of the two stimulation approaches indicates that
c-VEP slightly outperforms SSVEP in terms of ITR (see Figure 5.13),
but SSVEP is preferred by most users in terms of user-friendliness
(see Figure 5.14).

For the SSVEPparadigm, the flickeringwas realized by sinusoidally
modulating the transparencies. This approach allowed a slightly
more subtle visual stimulation in comparison to the c-VEP flicker-
ing, which switched from full illumination to no illumination of
the target in correspondence to the code patterns. Indeed, a slight
difference regarding the subjective level of annoyance and fatigue
is evident from the questionnaires (see Figure 5.14). In general,
most participants seemed to favor the SSVEP paradigm. An even
more subtle stimulation could be achieved with motion-based
targets using the SSMVEP paradigm [50]. Another approach to
reduce the flickering sensation was tested by Chien et al. [157], who
employed a composition of red/green/blue 32Hz/40Hz flashing
lights Chien et al. [157].

The variability across subjects seems to be slightly higher for the
SSVEP paradigm than for the c-VEP paradigm (see Figure 5.13). An
explanation for this could be that the utilized SSVEP stimulation
frequencies interfere more with the natural brain activity (see
section 4.1).

A training session was conducted for both paradigms for template
recording and parameter optimization. It should be noted that in
general, c-VEP-BCIs require a training stage to obtain templates.
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SSVEP-BCIs, on the other hand, can be realized without training
(i.e., training free) using sine and cosine templates.

One of the critical parameters for BCI performance is the time
window used for the classification of the signals. User variability
justifies the user-dependent selection of a minimum classification
time interval [86]. SSVEP-BCIs have been used with time windows
as low as 0.3 s [52]. In some studies, larger classification windows
were incorporated to improve the robustness of the system. For
example, to outbalance the lower signal-to-noise-ratio with dry
electrodes, Spüler [25] used larger classification windows in a
c-VEP-BCI by averaging over multiple trials. Similarly, in the previ-
ously described SSVEP studies, we incorporated large classification
windows to handle age-related inter-subject variability in users [62,
63].

Here, the minimal time window was set user-specifically based on
the ITR using the recorded training data. A similar approach was
used in our SSVEP wizard (see section 4.4, where the time window
was determined with off-line accuracies).

On average, the optimal classification time window in terms of
off-line ITR was 0.57 s (ranging from 0.35 s to 1 s) for the c-VEP
paradigm and 0.62 s (ranging from 0.25 s to 1.35 s) for the SSVEP
paradigm. Hence, despite the comparably low number of targets,
high ITRs were achieved. This can also be attributed to the use
of ensemble methods, which can significantly increase system
speed [52]. Additionally, for the SSVEP paradigm, a filter bank
approach, as proposed by Chen et al. [68], was used to enhance
target discrimination. Similar methods could also enhance the
classification accuracy for the c-VEP approach. In a follow-up
study, which is presented in section 5.4, we applied filter bank
methods to a multi-target c-VEP system.

Regarding the copy spelling phase, the OCM was, on average,
higher for the sentence spelling tasks, in comparison to the word
spelling tasks where no dictionary suggestions were used (see
Table 5.5). These results confirm the robustness of the time win-
dow mechanism and the effectiveness of the implemented word
suggestion module. It should be noted that participants did not
always use the dictionary whenever they had the chance to do
so (suggestions were overseen). Therefore, in some cases, the sin-
gle word OCM was higher in comparison to the sentence task.
Improvements could be made regarding the arrangement of the
GUI targets to make the suggestions more prominent. For some
participants, a longer gaze shifting phase when suggestions are
presented could also be helpful. It should further be noted that
participants used the system for the first time. More experience
with the GUI could improve the OCM as well.
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Overall, there was surprisingly little performance difference be-
tween the two stimulation modalities. The c-VEP stimulation pat-
terns yielded slightly higher off-line ITRs and significantly higher
ITRs in word copy spelling tasks. In on-line sentence spelling,
the speed difference becomes negligible, as usually larger search
phases are required to locate the next letter or word.

The results suggest that the stimulation pattern (SSVEP or c-VEP)
could be selected based on user preference. In terms of speed,
the optimal paradigm could be determined individually for each
user in a short training session. However, as the evaluation of the
questionnaires suggests, the perceived level of user-friendliness
should also be taken into account, as it might be more relevant for
end-users than pure system speed.

5.4 Investigating Multi-target c-VEP-based BCI
Performance

The eight-target system presented in section 5.1This section is an amended version of
[150]: Gembler et al. (2019), ‘A
Multi-Target c-VEP-Based BCI
Speller Utilizing n-Gram Word Pre-
diction andFilter BankClassification’.

yielded high
accuracies in on-line tests. However, in terms of ITR, higher values
can be achievedwith the c-VEP paradigm by increasing the number
of targets. In this section, we applied the methods discussed at the
beginning of the chapter to a multi-target interface. Users might
need less time to get familiar with the letter arrangement if a typical
keyboard layout such as the QWERTZ layout is used; for this, at
least 26 classes for letters and additional classes for correction
options need to be incorporated.

Several research groups tested 32-target systems resulting in very
high ITRs [9, 46]. As for the SSVEP paradigm, a reduction of
classification accuracy is expectedwhen usingmulti-target systems.
For example, Bin et al. [46] tested a 16-target and a 32-target system
and reported a drop in accuracy from 92% to 85% when using the
higher number of targets.

Despite that, novel classification approaches used in SSVEP-BCIs
might also boost multi-target c-VEP classification accuracy. Re-
cently, Chen et al. [68] proposed a classification method based on a
filter bank design. This approach applies multiple band-pass filters
to the recorded EEG to separate the signal into multiple compo-
nents. Each of these components consists of frequency sub-bands
of the originally recorded signal.

Chen et al. [68] used a filter bank method for the SSVEP paradigm.
The recorded SSVEP response was segmented with respect to the
frequency range of the application; several different designs for
the filter bank sub-bands were investigated in their study: equally
spaced bandwidths, harmonic frequency bands, and overlapping
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sub-bands covering several harmonic frequency bands. From these
approaches, the latter resulted in the highest accuracy. Using this
method in an on-line experiment, the authors reported an average
ITR of 151.2 bpm, which was a significant boost in performance in
comparison to standard methods.

Here, we adopted the concept for a c-VEP application. As discussed
in section 4.4, closing the eyes during the use of the BCI can lead
to false classifications due to alpha activity. To make the system
more robust against interferences with naturally occurring brain
activity, we decomposed the original signal into alpha-band (8-
12Hz), beta-band (approx. 12-30Hz), and gamma-band (>30Hz)
related activity.

This approach was tested with a 32-target spelling application. In
addition to that, we integrated the sliding window mechanism
and the =-gram based dictionary module. An on-line experiment
with 18 healthy participants was conducted.

Methods

This section describes the methods and materials used in this ex-
periment. The sliding window mechanism and =-gram based dic-
tionary integration, as introduced in section 5.1, were implemented.
Also, in terms of hardware, the setup presented in section 5.1 was
used.

Participants

Eighteen healthy participants (eight female, ten male) with a mean
(SD) age of 23.6 (4.0) years, range 19 to 31 years, participated in the
study. All participants had normal or corrected-to-normal vision.
The participants received a small financial reward for participation
in this study.

Stimulus design

The spelling application used 32 boxes (230 × 230 pixel) as stimuli,
corresponding to  = 32 classes (see Figure 5.15). Each box alter-
nated between ’black’ (represented by ’0’) and ’white’ (represented
by ’1’) according to the 63 bit<-sequences. The initial code, 21, was
defined as in section 5.1. The remaining 31 codes 28 , 8 = 2, . . . ,  
were generated by circularly shifting 21 by (8 − 1) · 2 bit to the
left. Using this stimulus design, a QWERTZ layout presenting 32
targets (26 letters, 1 underscore, 1 full stop, 3 dictionary suggestions,
1 correction option, as shown in Figure 5.15) was implemented.
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Figure 5.15: Interface of theQWERTZ
spelling application. The word sug-
gestions based on the =-gram pre-
diction model were provided in the
lowest row.

JUST_DO_IT
J

A S D F G H J K L

H H H H H H H H H HQ W E R T Z U I O P

Y X C V B N M

. _ JULY JUNE JUST <--

Experimental procedure

Participants went through a recording phase, where the data for
the templates and the generation of spatial filters were collected.
This session was grouped in three blocks, =1 = 3; during each
block, the user gazed at each target for 2.1 s (two cycles, where the
refresh rate was 60Hz). In total, =1 ·  = 96 trials were collected.

The target the user needed to gaze at was highlighted by a green
frame. The boxes were highlighted in sequence (upper left to lower
right). A gaze shifting phase of 1 s between trials was implemented.
After each block, the user could rest until he or she decided to
initiate the flickering and recording of the next block by pressing
the space bar.

For the generation of CCA-based spatial filters, the standard ap-
proach was applied (see also section 5.1). All training trials were
shifted to be aligned in phase with the first trial. The shifted trials
Z8 , 8 = 1, . . . , =1 were averaged yielding a template Z. Following
the standard approach described in section 5.1, a filter vector w
was determined and for each class, templates, X8 , 8 = 1, . . . ,  were
generated by circular shifting Z in accordance with the bit-shift of
the corresponding code 28 . Note that in this experiment, templates
andweights were determined for" = 3 different filter banks using
the procedure above. In this respect, " different band-pass filters
(described in the following section) were applied to the recorded
trials resulting in weights w(<) and templates X(<)

8
, 8 = 1, . . . ,  

for < = 1, . . . , ".

In the on-line session, a brief familiarization run was conducted,
where participants learned the functioning of the system.After that,
two copy spelling taskswere performed: First, thewordBRAINwas
spelled (letter-by-letter task), and second, an individual sentence
(see Table 5.6)was spelled.Occurringmisclassification needed to be
corrected by gazing at the box representing the UNDO function.
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Table 5.6: Individual sentence tasks of the on-line experiment.

# Sentence # Sentence

1 WHAT TIME IS IT 10 THE YEAR PASSED BY SO QUICKLY
2 THE BEER IS IN THE FRIDGE 11 I WANT TO LISTEN TO THE RADIO NOW
3 FILL IN SOME MOREWINE 12 DO YOU HAVE A FREE ROOM
4 CAN I HAVE YOUR NUMBER 13 HE OWNS A YELLOW BICYCLE
5 MY BIKE HAS NOT BEEN STOLEN 14 THE SHOPWAS CLOSED ALREADY
6 DO YOU THINK THAT IS ENOUGH 15 MY FAVOURITE COLOUR IS BLUE
7 WHAT KIND OF MUSIC DO YOU LIKE 16 THEY OWN A BLACK CAT
8 IS THIS SEAT TAKEN 17 I WILL GO SWIMMING TOMORROW
9 JUST DO IT 18 WOULD YOU LIKE TO HAVE ICE CREAM

Filter bank classification method

Three filter banks were designed using 8-th order Butterworth
band-pass filters. The upper and lower cut-off frequencies were
set up as follows:

I the first sub-band covered the alpha, beta and gamma bands
(a band-pass filter between 8 and 60Hz was applied);

I the second sub-band covered the beta and gamma band (a
band-pass filter between 12 and 60Hz was applied); and

I the third sub-band covered the gamma band (a band-pass
filter between 30 and 60Hz was applied).

For classification, correlations between the spatially filtered ref-
erence signals and the spatially filtered EEG data buffer were
calculated for each sub-band (< = 1, . . . , ") independently, yield-
ing a set of correlations

�̃(<)
:

= �
(
Y(<)

)
w(<) ,R(<)

:

)
w(<)

)
, : = 1, . . . ,  , (5.12)

which were than averaged over the number of filter banks (here
" = 3),

�: =
1
"

"∑
<=1

�̃(<)
:
, : = 1, . . . ,  . (5.13)

The class label � was then determined as � = arg max:=1,..., �: .
For the on-line classification, a sliding window mechanism, as
described in section 5.1, was implemented.

Results

The off-line training data were evaluated using 3-fold stratified
cross-validation. More precisely, each block (32 trials) was left out
once for testing, while the remaining two blocks (64 trials) were
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Figure 5.16: Accuracies of the conventional c-VEP and filter bank c-VEP. In the box plot, outliers (data points outside 1.5
times the interquartile range) are located outside the “whiskers”.

used for training. To investigate the performance boost resulting
from the filter bank approach, averaged accuracies for different
classification time windows were calculated. Figure 5.16 shows the
off-line accuracies for time windows up to 1 s for the conventional
and for the filter bank approach. For all evaluated time windows,
the median accuracies were higher when applying the filter band
classification. Figure 5.17 A shows the individual accuracies sep-
arated by the different bands for the 1 s time window. It can be
observed that for some subjects, the filter bank approach resulted
still in much higher accuracy values in comparison to the standard
approach, where only one band is evaluated for classification. For
S2, the accuracy increased bymore than 20%. It can be seen that for
this particular subject, the accuracy and certainty increased when
the alpha-band is filtered. Figure 5.17 B shows the averaged off-line
certainty level for the 1 s time window, which might reflect on-line
performance better. The gamma-band contributed negatively to
the certainty level for S2, S11, S15, and S17. For these participants, a
filter band design with only two bands might be the better option.
Conversely, for S13, the gamma-band showed the highest positive
contribution to the certainty value.

Figure 5.18 shows the individual power spectrum density (PSD)
estimates, which reflect the variability across subjects as well. For
example, S2 showed comparably high alpha activity, most probably
unrelated to the stimulus, as filtering the alpha activity yielded
higher accuracy according to Figure 5.17. In fact, for this particular
subject, reliable control might not have been possible with the
standard approach.
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Table 5.7: On-line results of the c-VEP QWERTZ speller. Provided are the results for letter-by-letter spelling task (BRAIN)
and the subject-specific sentence task as listed in Table 5.6 (column Sent.). The individual information transfer rates (ITRs),
accuracies (ACCs), and output characters per minute (OCM) are listed.

Letter-by-letter Sentence

Subject ACC ITR OCM ACC ITR OCM
# [%] [bpm] [char/min] [%] [bpm] [char/min]

1 100 201.3 40.3 100 150.0 40.0
2 100 65.4 13.1 94 35.1 12.2
3 100 144.9 29.0 100 68.6 18.9
4 100 182.9 36.6 92 114.3 52.5
5 100 229.0 45.8 100 118.3 34.9
6 100 113.2 22.6 93 104.7 45.3
7 100 103.5 20.7 100 76.7 29.7
8 100 245.9 49.2 94 106.2 29.0
9 100 145.6 29.1 100 111.5 49.1
10 100 205.5 41.1 100 165.5 49.7
11 100 103.5 20.7 92 53.0 17.5
12 100 162.2 32.4 92 32.6 14.2
13 100 184.1 36.8 100 106.3 35.4
14 100 161.3 32.3 95 127.9 38.0
15 100 121.0 24.2 100 87.4 30.6
16 100 121.0 24.2 100 50.2 13.4
17 100 86.0 17.2 94 71.6 26.9
18 100 111.5 22.3 100 96.7 39.9

Mean 100 149.3 29.9 97 93.1 32.1

The on-line spelling tasks were evaluated with classification ac-
curacy, ITR, and OCM. Table 5.7 lists the on-line results for each
participant for the letter-by-letter and sentence spelling tasks. For
the letter-by-letter spelling task, all participants reached an accu-
racy of 100%. For the sentence spelling task, accuracies ranged
from 92% to 100%. The mean (SD) accuracies were 100% (0) for
the letter-by-letter spelling task and 97.0% (3.4) for the sentence
spelling task, respectively.

Note that S2, which achieved poor results in the off-line analysis,
also reached 100% accuracy for the letter-by-letter task. This is
because, in the on-line experiment, the sliding windowmechanism
was applied; dynamic time windows were used. For S2 the time
windows were on average much longer than for the other subjects
(the average selection time was 4.5 s for S2). For this reason, the
ITR for S2 was the lowest.

The ITR values ranged from 65.4 to 235.9 bpm and from 23.6
to 165.5 bpm for the letter-by-letter and sentence spelling task,
respectively. Mean (SD) ITRs of 149.3 (49.3) bpm and 93.1 (36.1)
bpm were achieved.

The OCM was slightly higher for the sentence spelling tasks,
where participants could use the integrated dictionary feature.
The mean (SD) values for the OCMwere 29.9 (9.9) char/min for
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the letter-by-letter task and 32.1 (12.6) char/min for the sentence
task.

Discussion

In the reported study, an asynchronous multi-target c-VEP ap-
plication was presented. The system yielded overall high on-line
classification accuracies.

Due to the integration of the sliding window mechanism, the
variability of accuracy was low, while the variability in the clas-
sification times was high across participants. These observations
are in contrast to other high-speed state-of-the-art c-VEP spellers,
where the times of the spelling tasks are the same across subjects
while accuracies vary.

Thanks to the filter bank classification approach, for most users,
reliable control was possible with small classification windows
below 0.5 s (see Figure 5.16). Because of the high number of classes,
high ITRs were achieved. Indeed, the average ITR of 149.3 bpm
achieved in the letter-by-letter spelling task is to our knowledge
the highest ITR reported in on-line applications using the c-VEP
paradigm.

Regarding the signal classification, several improvements can be
made. The filter bankswere segmented via alpha, beta, and gamma-
bands resulting in three separate classifier outputs. The research
conductedwith SSVEP-based BCIs suggests, however, that a higher
number of sub-band components results in better performance (see,
e.g., [68]). Moreover, in this study, the correlations corresponding
to the different filter banks were averaged. Optimizing weight
selection for the different bands could further improve system
reliability.

Regarding the =-gram based word prediction model, the mean
values for the OCM were slightly higher for the sentence spelling
task in comparison to the letter-by-letter spelling task. The par-
ticipants used the interface for the first time; with more training
regarding the functionality of the application, the dictionary in-
tegration might yield even better performance. The OCMmetric
is dependent on the complexity of the sentence. Since individual
sentences were used, dictionary suggestions were more helpful
for participants who had an easier sentence spelling task. For
example, subjects 9 and 10 both achieved similar OCM values of
roughly 50 char/min. However, the ITRs for these participants
were quite different (111.5 and 165.5 bpm). This difference can be
explained by the fact that the ITR does not reflect the utilization of
the dictionary.
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We want to note several limitations. First, the ITR is highly depen-
dent on the pause in between trials (i.e., gaze shifting phase). In
preliminary experiments, we explored gaze shifting windows as
low as 0.5 s. Some users were able to spell short words (e.g., BCI)
with ITRs around 300 bpm using this setup in preliminary test
runs. However, for longer sentences, this approach is not reliable;
the time to locate the next desired target is not sufficient, especially
for untrained users. Second, the study was conducted with young
and healthy participants only; their mean age does not reflect
the general population. As reported in section 5.2, subject age is
correlated with decreased BCI performance. Therefore, especially
when considering the target population for spelling applications,
the focus should lie on accuracy and a high literacy rate rather than
ITR. In preliminary tests with a prototype version of the interface,
some healthy users were unable to achieve accuracies above 70%
with the presented system. With the eight-target version of the
speller, as presented in the previous sections, this issue was not
observed.

SSVEP vs c-VEP for multi-target BCIs

Multi-target systems canbe realizedwithboth the c-VEPandSSVEP
paradigm. For the SSVEP paradigm, if sine and cosine reference
templates are used, no training session for template recording is
necessary. However, the accuracy and literacy rate can be reduced
in this case (see section 4.5). A hybrid frequency and phase coding
approach can improve performance significantly [114, 155]. When
using thismethod, a training session is also required (see, e.g., [52]).
In contrast to the c-VEPparadigm, the trials recorded in the training
phase can not be shifted to one single class to generate averages.
Because each target carries unique frequency information, the
templates need to be generated independently for each frequency
class. For a multi-target system, this can lead to much longer
training time in comparison to the c-VEP paradigm. Moreover, a
sliding window approach, as presented here, is harder to realize,
as the common repeating cycle of the targets depends on the
frequency resolution. For example, in section 5.3, where only eight
classes were used, the difference between targets was 1Hz; the
repeating cycle was 1 s. For multi-target SSVEP systems, a higher
resolution needs to be used. Most typically, a 0.2Hz difference
between targets is employed (e.g., 8Hz, 8.2Hz, 8.4Hz, and so
on). In this case, the repeating cycle is 5 s, which is rather long
for the sliding window approach, where data are shuffled out
dynamically. For c-VEP systems, the duration of the repeating cycle
is depended on the code length and the refresh rate. Therefore,
in comparison to the SSVEP paradigm, more suitable repeating
cycles can be applied (in this study, 1.05 s).
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For these reasons, the c-VEP application could be the better choice
for asynchronous multi-target BCI applications. Due to the high
classification accuracies and selection speed, combinations with
eye-tracking devices seem to be a logical next step.
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6.1 Summary

This thesis investigatedparameter optimization forVEP-basedBCIs.
BCIs translate recorded brain signals into computer commands.
Chapter 2 described, among other BCI approaches, systems based
on VEPs, where brain signals are elicited when gazing at a visual
stimulus. VEP-based BCIs enable a communication channel for peo-
ple with severe motor disabilities. Researchers developed various
kinds of BCI applications, employing frequency-modulated stimuli
(SSVEP paradigm) or code-modulated stimuli (c-VEP paradigm).
The human user is the most variable factor in the BCI framework
due to the complexity of the individual brain activity. A primary
goal of this work was to reduce the BCI illiteracy rate, which is
the percentage of users who are not able to gain control over the
system. A focus was laid on asynchronous spelling applications
as these handle inter- and within-subject better than synchronous
systems which rely on fixed time windows for classification.

Chapter 3 described implementations of the two major VEP strate-
gies, namely the SSVEP and the c-VEP paradigm. For the SSVEP
systems, the frequency-based flickering can be generated using
various kinds of modulation techniques. The frequency selection is,
however, limited by the vertical refresh rate. For the c-VEP systems,
the flickering pattern is determined by the vertical refresh rate
and the code length. As c-VEP systems rely on phase information,
data acquisition, and stimulus presentation need to be synchro-
nized. For this synchronization, a software-based approach was
presented.

Chapter 4 investigated SSVEP-BCI parameters and their influence
on BCI spelling performance. The investigated variables included
the stimuli selection, length of the classification time window, the
flickering speed, the user age, and the number of targets.

Section 4.3 investigated to what extend user age impacts BCI
performance. The reported study revealed that older adults have
slightly poorer control over the system. The mean ITR of the young
age group was 27.4 bpm and 16.1 bpm for the elderly group. The
results indicate that the user age should be considered when
designing an SSVEP-based application. The average classification
time window length, a key parameter for the BCI, was usually
larger for the participants of advanced age.
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Section 4.4 presented an automated calibration software, which
was tested with 61 participants. Unfortunately, the achieved mean
ITR of 21.9 bpm was below the values for VEP systems that can be
found in the literature. One way to yield higher ITRs, in theory, is
to increase the number of classes.

Section 4.5 investigated the possibilities and limitations in regard
to the number of targets for SSVEP-systems. Unfortunately, the
reported studies showedanegative correlation between thenumber
of targets and the classification accuracy and BCI literacy rate.

Another way to improve system speed is the incorporation of
personalized EEG data. For this, a training session needs to be
conducted, where several trials of EEG data are recorded. This is a
standard approach for the c-VEP paradigm and can also be used
for the SSVEP paradigm. A disadvantage of c-VEP based systems
is that they are typically implemented as synchronous systems (i.e.,
after fixed preset time periods, the system produces command
outputs); users have only a limited time to locate the desired target.
Chapter 5 focused on c-VEP based systems. Section 5.1 presented
an asynchronous c-VEP implementation using threshold-based tar-
get identification and a dynamic time window mechanism. These
methods were tested with a dictionary-driven spelling application
using eight flashing targets. The GUI presented three word sugges-
tions thatwere updated after each letter selection.While it achieved
lower ITRs than other c-VEP state-of-the-art spellers, in terms of
character output speed, the application could compete. Section
5.2 investigated different flickering speeds and age-related perfor-
mance differences using this interface. The elderly participants
achieved poorer BCI control again; the performance difference
between young and elderly users was most striking for the fastest
flickering speed, generated with a refresh rate of 120Hz.

Section 5.3 explored personalized dynamic classification time
windows and thresholds for the proposed asynchronous system.
The optimization techniques were not only tested with the c-
VEP paradigm but also with the frequency and phase coded
SSVEP stimulus design. The spelling performance of twelve healthy
participants was evaluated. All participants completed sentence
spelling tasks, reaching high average accuracies of 94% and 96.3%
for the c-VEP and the SSVEP paradigm, respectively. Average ITRs
around 57 bpm were achieved for both paradigms. Questionnaire
results indicate that the c-VEP flickering was perceived as slightly
more annoying.

Finally, section 5.4 presented further improvements of the c-VEP
system, with regard to the signal classification algorithms. More-
over, the number of targets was increased to 32; the slidingwindow
mechanism and the dictionary integration were transferred to a
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single-step QWERTZ style application. In the reported study, 18
participants yielded high mean accuracies in letter-by-letter and
sentence spelling, (100% and 97%, respectively). The corresponding
mean ITRs were 149.3 bpm and 93.1 bpm. Moreover, the literacy
rate and accuracy remained highwhen the number of c-VEP targets
was increased from 8 to 32. If one compares the applications which
use sine and cosine reference templates (chapter 4) to the applica-
tions using personalized EEG data (chapter 5), the following can
be observed: Using personalized EEG data can increase overall
system performance as a much shorter classification time window
can be used in asynchronous applications. The data obtained from
the recording session for the EEG templates can also be used to
optimize parameters for asynchronous applications.

6.2 Conclusion

This research aimed to identify system optimization strategies
for VEP-based BCIs. One of the general goals was to investigate
age-related differences in BCI performance. Based on comparative
studies with different age groups, it can be concluded that user age
is indeed an essential factor to consider when designing the BCI.
The results of the reported study [148] indicate that the performance
gap between elderly and young users increases with the flickering
rate.

This work was further set out to examine key system parameters
and their impact onBCI performance andBCI illiteracy. In chapter 4,
parameters of training free SSVEP systems were investigated.
Sinusoidal reference signals were used to identify the stimulation
frequency at which the user gazed. In contrast, in chapter 5,
personalized reference signals were recorded in a training session.
The overall literacy rate, accuracy, and ITR were higher using
the latter approach, which takes the inter-user variability of VEP
responses into account. This is in line with the findings of Zerafa et
al. [114], according towhich training-free systems are outperformed
by systems incorporating user-specific training data.

Another primary goal of the thesis was to improve the VEP signal
classification. In terms of spatial filtering, the well-established
methods CCA and MEC were used. For the c-VEP paradigm,
we adopted an ensemble-based approach, where multiple spatial
filters depending on the number of stimulus classes are used. This
approachyieldedbetter results than the conventional approach [72].
In the frequency domain, the filter bank approach, introduced by
Chen et al. [68] for the SSVEP paradigm was applied to the c-VEP
paradigm resulting in significantly faster performance according
to our off-line analysis [150].
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Since our main aim was, as mentioned in the introduction, to
implement auto-calibration methods, we developed a wizard for
SSVEP-based BCIs that determines the optimal time window
among other parameters on the basis of a small calibration session
[86]. Moreover, a modified calibration software has been developed
for the training-based systems (c-VEP and frequency and phase
coded SSVEP-BCIs) [149].

The above findings and observations were synthesized to im-
plement a robust BCI spelling application that can be set up by
non-experts [72, 149]. Due to the developed dynamic time win-
dow mechanism, the proposed system can be characterized as
asynchronous BCI. If the classification threshold is set carefully,
the BCI can distinguish between intentional and unintentional
fixation. This is an essential feature in terms of usability of spelling
applications, as it allows for more complex interfaces. In this re-
spect, an =-gram based word prediction model was integrated.
Eight-target and 32-target implementations of the system were
tested; the results were quite promising. The 32-target interface
yielded fast performance in a test with 18 healthy participants [150];
The eight-target interface has been tested in total with more than
50 users including 13 elderly participants [72, 89, 148, 149]. The
developed application was at the time of writing also being tested
in ongoing preliminary experiments with disabled participants.
These experiments were conducted by students of the University
of Cologne. While the reported accuracies were generally much
lower, successful tests with the developed GUI were reported with
participants suffering from ALS and cerebral palsy.

6.3 Future Work

In the following, avenues for future research are outlined:

Further optimization of the wizard software:
The setup of individual parameters was mainly focused on
parameters relevant for asynchronous on-line applications.
On the basis of off-line data, several other parameters could
be optimized: the lower and upper cutoff frequencies for the
filter bank design, the weights for the different filter banks,
and the number of weights used for the design of spatial
filters.

Classification with neural networks:
Small training sets were collected to reduce the duration of
the experiment. In most of the studies reported in chapter 5,
training data for each class were averaged over six trials.
Better performance might be achievable with longer training
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sessions. With larger data sets, deep neural networks might
yield better performancewhile simplifying feature extraction.

Evaluation of the effectiveness of continuous BCI feedback:
The type of continuous feedback given to the user could
have an impact on the overall performance. In this thesis,
continuous feedback was provided in the form of progress
bars or by varying the size of the targets. Different ideas to
provide feedback based on the current classifier state could
be investigated and evaluated.

More subtle visual stimuli for the c-VEP paradigm:
According to the conducted questionnaires, the flickering
is perceived as annoying by many users, especially for the
c-VEP paradigm where the stimulus design is realized as a
black and white pattern on the basis of a binary <-sequence.
Instead, one could employ ternary (base 3) or quinary (base
5) <-sequences for stimulus design, which have good auto-
correlation as well. Instead of a black-white pattern, different
gray shades could be used, yielding a more subtle stimula-
tion.

VEP/eye-tracking hybrid:
Eye-tracking devices are communications tools for disabled
people who have still oculomotor control. Complications
such as accidental selections, slow dwell-based classification,
and low accuracy could be improved by combining it with a
BCI. The asynchronous VEP applications described in this
thesis are not affected by the Midas touch problem.

Tests with disabled users:
Research indicates that brain responses of disabled partici-
pants are harder to interpret, resulting in lower accuracies
and literacy rates. For this population, customization based
on high accuracy rather than system speed could be a better
option. The presented application was at the time of writing
being tested with patients.

Improved dictionary implementation:
The word suggestion mechanism can be improved. For exam-
ple, automatic error correction could be implemented into
the dictionary-driven spelling interface.

Investigate recalibration for personalized EEG data:
In the experiments reported in this thesis, EEG data to gen-
erate templates was recorded immediately before the copy
spelling phases. In long term use, recalibration might be nec-
essary, depending on the quality of the calibration. During
development and testing, we found that if electrode place-
ment is the same, EEG data collected several months prior to
the test still yielded proper calibration. Future research could
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investigate the longevity of recorded EEG data in terms of
on-line BCI applications.
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Notation

ADC Analog-to-digital converter

ALS Amyotrophic lateral sclerosis

BCI Brain-computer interface

c-VEP Code-modulated visual evoked potential

CCA Canonical correlation analysis

CLM Correct letters per minute

CNS Central nervous system

CRT Cathode-ray tube

ECoG Electrocorticography

EEG Electroencephalography

ERD Event-related desynchronization

ERP Event-related potential

ERS Event-related synchronization

f-VEP Frequency-modulated visual evoked potential

FFT Fast Fourier transform

fMRI Functional magnetic resonance imaging

FN False negative

FP False positive

GUI Graphical user interface

ITR Information transfer rate

LCD Liquid-crystal display

LFSR Linear-feedback shift register

LIS Locked-in syndrome

m-VEP Motion-onset visual evoked potential



MEC Minimum energy combination

MEG Magnetoencephalography

MI Motor imagery

MND Motor neuron disease

NIRS Near infrared spectroscopy

OCM Output characters per minute

PCA principal component analysis

PCM Pearson’s correlation method

PSD Power spectrum density

SMI Similarity index

SMR Sensorimotor rhythms

SNR Signal-to-noise ratio

SQL Structured query language

SSMVEP Steady-state motion visual evoked potential

SSVEP Steady-state visual evoked potential

TN True negative

TP True positive

VEP Visual evoked potential
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