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Abstract
In this paper, we consider continuous-time Markov
chains with a finite state space under nonlinear expecta-
tions. We define so-calledQ-operators as an extension of
Q-matrices or rate matrices to a nonlinear setup, where
the nonlinearity is due to model uncertainty. The main
result gives a full characterization of convexQ-operators
in terms of a positive maximum principle, a dual rep-
resentation by means ofQ-matrices, time-homogeneous
Markov chains under convex expectations, and a class of
nonlinear ordinary differential equations. This extends a
classical characterization of generators ofMarkov chains
to the case ofmodel uncertainty in the generator.We fur-
ther derive an explicit primal and dual representation of
convex semigroups arising from Markov chains under
convex expectations via the Fenchel–Legendre transfor-
mation of the generator. We illustrate the results with
several numerical examples, where we compute price
bounds for European contingent claims under model
uncertainty in terms of the rate matrix.
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1 INTRODUCTION ANDMAIN RESULT

Inmathematical finance,model uncertainty or ambiguity is an almost omnipresent phenomenon,
which, for example, appears due to incomplete information about certain aspects of an underly-
ing asset or insufficient data in order to perform reliable statistical estimation methods for the
parameters of a stochastic process. The latter typically leads to so-called parameter uncertainty in
the generator of a stochastic process. Prominent examples for this type of uncertainty include
a Black–Scholes model with uncertain volatility, the so-called uncertain volatility model, cf.
Avellaneda, Levy, and Parás (1995), Avellaneda and Parás (1996), and Vorbrink (2014), and a
Brownian motion under drift or volatility uncertainty leading to the g-framework, see, for exam-
ple, Coquet, Hu, Mémin, and Peng (2002) or the G-framework by Peng (2007) and Peng (2008),
respectively. Lately, these approaches have been generalized to Lévy processes with uncertainty in
the Lévy triplet, cf. Denk, Kupper, and Nendel (2020), Hu and Peng (2009), and Neufeld and Nutz
(2017), and uncertainty in the generator of Feller processes, cf. Nendel and Röckner (2019). While
these works give sufficient conditions in order to guarantee the existence of stochastic processes
under model uncertainty and to establish a connection to nonlinear partial differential equations,
there is no necessary condition that determines the maximal degree of ambiguity that can be cap-
tured by an uncertain process.
In the present paper, we address this issue in a simplified setup, where we consider a finite

state space. We provide sufficient and necessary conditions in terms of the generators of time-
homogeneous continuous-time Markov chains that guarantee the existence of a continuous-time
Markov chain under a convex expectation. We further establish a one-to-one relation between
the transition operators of convex Markov chains and a class of nonlinear ordinary differential
equations. In particular, we extend a classical relation betweenMarkov chains, rate matrices, and
ordinary differential equations to the case of model uncertainty. The ordinary differential equa-
tion related to a convex Markov chain is a spatially discretized version of a Hamilton–Jacobi–
Bellman equation, and the nonlinear transition operators are related, via a dual representation, to
a control problem where, roughly speaking, “nature” tries to control the system into the worst
possible scenario (see Remark 4.18). The explicit description of the transition operators gives
rise to a numerical scheme, different from Runge–Kutta methods, for the computation of price
bounds for European contingent claims under model uncertainty. We illustrate this method and
other numerical methods in several examples, where we consider an underlying Markov chain,
which is a discrete version, more precisely, the generator is a finite difference discretization of
the generator of a Brownian motion with uncertain drift, cf. Coquet et al. (2002), and uncertain
volatility, cf. Peng (2007) and Peng (2008). The main tools, we use in our analysis, are convex
duality, a semigroup-theoretic approach to control problems due to Nisio (1976/77), see also Denk
et al. (2020) and Nendel and Röckner (2019), and a convex version of Kolmogorov’s extension
theorem due to Denk, Kupper, and Nendel (2018), which allows to extend the expectation to
functionals that depend on the whole path. Restricting the time parameter, in the present work,
to the set of natural numbers leads to a discrete-time Markov chain, in the sense of Denk et al.
(2018, Example 5.3).
The conceptwe use to describe ambiguity is the notion of a nonlinear expectation introduced by

Peng (2005). Nonlinear expectations closely relate to other concepts describingmodel uncertainty,
backward stochastic differential equations (BSDEs), cf. Cohen (2012), andCoquet et al. (2002), and
2BSDEs, cf. Cheridito, Soner, Touzi, and Victoir (2007) and Denis, Hu, and Peng (2011). We refer
to Pardoux and Peng (1992), Pardoux and Peng (1990), and El Karoui, Peng, and Quenez (1997)
for a detailed study of BSDEs and their applications within the field of mathematical finance. If a



476 NENDEL

nonlinear expectation  is sublinear, then 𝜌(𝑋) ∶= (−𝑋) defines a coherent monetary risk mea-
sure as introduced by Artzner, Delbaen, Eber, and Heath (1999), Delbaen (2000), and Delbaen
(2002), see also Föllmer and Schied (2011) for an overview of monetary risk measures. Moreover,
if  is a sublinear expectation, then  is a coherent upper prevision, cf. Walley (1991), and vice
versa. There is a similar one-to-one relation between convex expectations, convex upper previ-
sions, cf. Pelessoni and Vicig (2003) and Pelessoni and Vicig (2005), and convex risk measures,
cf. Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002). Further concepts, which
are closely related to nonlinear expectations and describe model uncertainty, are Choquet capac-
ities (see, e.g., Dellacherie & Meyer, 1978), game-theoretic probability by Vovk and Shafer (2014),
and niveloids, see, for example, Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2014).
Our setup is inspired by Peng (2005), where Markov chains under nonlinear expectations are

considered in an axiomatic way. However, the existence of stochastic processes under nonlinear
expectations has only been considered in terms of finite-dimensional nonlinear marginal distri-
butions, whereas completely path-dependent functionals could not be regarded. Markov chains
under model uncertainty have been considered among others by Avellaneda and Buff (1999),
De Cooman, Hermans, and Quaeghebeur (2009), Hartfiel (1998), and Škulj (2009). Avellaneda
and Buff (1999) study a finite difference discretization of the uncertain volatility model lead-
ing to a Markov chain setting. Hartfiel (1998) considers so-called Markov set-chains in discrete
time, using matrix intervals in order to describe model uncertainty in the transition matrices.
Later, Škulj (2009) approached Markov chains under model uncertainty using Choquet capaci-
ties, which results in higher dimensionalmatrices on the power set, while DeCooman et al. (2009)
considered imprecise Markov chains using an operator-theoretic approach with upper and lower
expectations. In Denk et al. (2018, Example 5.3), Denk et al. describe model uncertainty in the
transition matrix via a nonlinear transition operator, which, together with the results obtained in
Denk et al. (2018), allows the construction of discrete-time Markov chains on the canonical path
space. In continuous time, in particular, computational aspects of sublinear imprecise Markov
chains have been studied amongst others by Krak, De Bock, and Siebes (2017) and Škulj (2015).
Another concept that is closely related to Markov chains under nonlinear expectations, as dis-

cussed in the present paper, are BSDEs onMarkov chains by Cohen and Elliott (2008) and Cohen
and Elliott (2010a), see also Cohen and Szpruch (2012), Cohen and Hu (2013), and Cohen and
Elliott (2010b) for the discrete-time case. Here, a reference Markov chain 𝑋 = (𝑋𝑡)𝑡≥0 with gener-
ator (𝑞𝑡)𝑡≥0 is fixed, and one considers BSDEs driven by 𝑋. This can be viewed as a discretization
of the classical BSDE setup, where the state space isℝ, the driving process is a Brownian Motion,
and the generator is 1

2
𝜕𝑥𝑥. Cohen and Szpruch (2012) show that Markovian solutions to BSDEs on

Markov chains are related via their driver to a system

𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) + 𝐴(𝑡)𝑢(𝑡) for all 𝑡 ≥ 0, 𝑢(0) = 𝑢0

of nonlinear ordinary differential equations with a nonlinear function 𝑓 that is assumed to be
globally Lipschitz in the variable 𝑢. In the present paper, 𝑓(𝑡, 𝑢) = 𝑢 for a convex operator .
The biggest difference between our approach and the theory of BSDEs on Markov chains lies in
the fact that we do not consider a fixed referenceMarkov chain that drives themodel. On the other
hand, our approach is restricted to considering Markovian solutions to BSDEs onMarkov chains.
From a technical standpoint, further differences are that the theory of BSDEs allows formore gen-
erality in terms of nonlinearity of the driver, while we do not require global Lipschitz continuity
of the generator allowing for a possibly unbounded convex conjugate. Additionally, we only focus
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on the time-homogeneous case. However, regarding the existence of Markov chains under con-
vex expectations and their connection to nonlinear ordinary differential equations (ODEs), this
restriction could easily be overcomewith a slightmodification of the construction of the transition
operators.
Dentcheva and Ruszczyński (2018) consider Markov risk measures for a countable state space,

see also Fan and Ruszczyński (2018a), Fan and Ruszczyński (2018b), and Ruszczyński (2010)
for the discrete-time case. Here, the focus lies on time-consistent risk measurement related to
a fixed reference continuous-time Markov chain 𝑋 = (𝑋𝑡)𝑡≥0. Using so-called semiderivatives in
the direction of the generator𝐴, the authors derive, in the case of a coherent risk measure, a sub-
linear ordinary differential equation related to the risk measure, where the dual representation
of the nonlinear generator depends on the generator 𝐴 of the baseline model 𝑋. Clearly, in the
theory of Markov risk measures, the focus lies more on law-invariant risk measures such as the
average value at risk, and is therefore not directly comparablewith our approach, wherewe explic-
itly avoid to fix a baseline model but rather try to capture very general forms of uncertainty in the
generator. However, on a technical level, our approach also allows to consider risk evaluations
related to convex generators that do not depend on a fixed reference generator.
In view of the aforementioned existing literature on imprecise versions of Markov chains, the

contribution of this paper can be summarized as follows (see Remark 2.6 for further details):

– We propose a framework describing Markov chains under model uncertainty in terms of the
ratematrix. Our approach complements the existing literature on BSDEs onMarkov chains and
Markov risk measures covering a different range of examples and applications in a consistent
way. The key difference between our framework and the aforementioned existing approaches
lies in the fact that we do not consider a fixed reference Markov chain describing the dynam-
ics of an underlying asset. Moreover, our approach relies on analytic rather than stochastic
methods using distributional rather than pathwise properties, and thus leading to restrictions
in certain directions but advantages in other directions.

– We show that, as in the linear case, Markov chains under convex expectations with certain
regularity at time 0 are linked via a one-to-one relation to certain convex functions (their gen-
erator) and to solutions to convex differential equations, which can be solved, for example, by
using an explicit Euler method or any other Runge–Kutta method. In particular, we prove the
global existence of solutions to a class of convex differential equations with unbounded convex
conjugate, that is, without a global Lipschitz condition on the generator.

– We show that the transition semigroup of a convex Markov chain can be explicitly constructed
using any (!) dual representation of the generator. In particular, for numerical computations, a
“minimal” dual representation in terms of certain “corner points” can be used to solve the non-
linear Kolmogorov equation. Based on the explicit construction of the semigroup, we propose a
novel algorithm for the numerical computation of solutions to a class of nonlinear ODEs.More-
over, we show that every convex transition semigroup is the least upper bound (in the sense of
semigroups) of a family of linear transition semigroups, and vice versa.

– The convex expectations we consider are defined on the whole path space without fixing any
reference measure. We show that the nonlinear expectation, although possibly undominated,
always admits a dual representation in terms of countably additive probabilitymeasures. More-
over, we derive an explicit dual representation in terms of an optimal control problem, where
nature tries to control the system into the worst possible scenario, giving a control-theoretic
interpretation to Markov chains under convex expectations.
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1.1 Structure of the paper

In Section 2, we fix the notation, introduce our setup and basic definitions, and state the main
result (Theorem2.5). In Section 3,we prove the first part of Theorem2.5 (implications (𝑣) ⇒ (𝑖𝑖) ⇒

(𝑖) ⇒ (𝑖𝑖𝑖)). The main tool, we use in this part, is convex duality inℝ𝑑. Moreover, we discuss how,
in the sublinear case, computational efficiency can be improved by reducing compact and suitably
convex sets of generator matrices to their “corner points.” The effectiveness of this reduction is
demonstrated in Section 5. In Section 4, we prove the remaining implications (𝑖𝑖𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣)

of Theorem 2.5. Here, we use a combination of so-called Nisio semigroups, as introduced in Nisio
(1976/77), the theory of ordinary differential equations, and aKolmogorov-type extension theorem
for convex expectations derived inDenk et al. (2018).We conclude this section by showing that the
semigroup envelope admits a dual representation as a cost functional related to an optimal control
problem. In Section 5, we use and compare two different numerical methods, based on the results
from Sections 3 and 4, in order to compute price bounds for European contingent claims, where
the underlying is a discrete version of a Brownian motion with drift uncertainty (g-framework)
and volatility uncertainty (G-framework).

2 NOTATION, BASIC DEFINITIONS, ANDMAIN RESULT

Given a measurable space (Ω,), we denote the space of all bounded measurable functionsΩ →
ℝ by ∞(Ω,). A nonlinear expectation is then a functional  ∶ ∞(Ω,) → ℝ, which satisfies

∙ (𝑋) ≤ (𝑌) whenever 𝑋(𝜔) ≤ 𝑌(𝜔) for all 𝜔 ∈ Ω,
∙ (𝛼1Ω) = 𝛼 for all 𝛼 ∈ ℝ.
If  is additionally convex, that is, for all 𝑋,𝑌 ∈ ∞(Ω,) and 𝜃 ∈ [0, 1],

(𝜃𝑋 + (1 − 𝜃)𝑌) ≤ 𝜃(𝑋) + (1 − 𝜃)(𝑌),
we say that  is a convex expectation. It is well known (see, e.g., Denk et al., 2018 or Föllmer &
Schied, 2011) that every convex expectation admits a dual representation in terms of finitely addi-
tive probability measures. If  , however, even admits a dual representation in terms of (countably
additive) probability measures, we say that (Ω, , ) is a convex expectation space. More precisely,
we say that (Ω, , ) is a convex expectation space if there exists a set  of probability measures on
(Ω,) and a family (𝛼ℙ)ℙ∈ ⊂ [0,∞) with infℙ∈ 𝛼ℙ = 0 such that

(𝑋) = sup
ℙ∈

(𝔼ℙ(𝑋) − 𝛼ℙ)

for all 𝑋 ∈ ∞(Ω,). Here, 𝔼ℙ denotes the expectation w.r.t. a probability measure ℙ on (Ω,).
If 𝛼ℙ = 0 for all ℙ ∈  , we say that (Ω, , ) is a sublinear expectation space. Here, the set
 represents the set of all models that are relevant under the expectation  . In the case of a sublin-
ear expectation space, the functional  is the best case among all plausible models  . In the case
of a convex expectation space, the functional  is a weighted best case among all plausible models
 with an additional penalization term 𝛼ℙ for every ℙ ∈  . Intuitively, 𝛼ℙ can be seen as a mea-
sure for how much importance we give to the prior ℙ ∈  under the expectation  . For example,
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a low penalization, that is, 𝛼ℙ close or equal to 0, gives more importance to the modelℙ ∈  than
a high penalization.
Throughout, we consider a finite nonempty state space 𝑆 with cardinality 𝑑 ∶= |𝑆| ∈ ℕ. We

endow 𝑆 with the discrete topology 2𝑆 and w.l.o.g. assume that 𝑆 = {1, … , 𝑑}. The space of all
bounded measurable functions 𝑆 → ℝ can therefore be identified by ℝ𝑑 via

𝑢 = (𝑢1, … , 𝑢𝑑)
𝑇 with 𝑢𝑖 ∶= 𝑢(𝑖) for all 𝑖 ∈ {1, … , 𝑑}.

Therefore, we denote bounded measurable functions 𝑢 as vectors of the form 𝑢 = (𝑢1, … , 𝑢𝑑)
𝑇 ∈

ℝ𝑑, where 𝑢𝑖 represents the value of 𝑢 in the state 𝑖 ∈ {1, … , 𝑑}. On ℝ𝑑, we consider the norm

‖𝑢‖∞ ∶= max
𝑖=1,…,𝑑

|𝑢𝑖| = max
𝑖∈{1,…,𝑑}

|𝑢(𝑖)|
for a vector 𝑢 ∈ ℝ𝑑. Moreover, for 𝛼 ∈ ℝ, the vector 𝛼 ∈ ℝ𝑑 denotes the constant vector 𝑢 ∈ ℝ𝑑
with 𝑢𝑖 = 𝛼 for all 𝑖 ∈ {1, … , 𝑑}. For an arbitrary matrix 𝑞 = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑑 ∈ ℝ𝑑×𝑑, we denote by ‖𝑞‖
the operator norm of 𝑞 ∶ ℝ𝑑 → ℝ𝑑 w.r.t. the norm ‖ ⋅ ‖∞, that is,

‖𝑞‖ = sup
𝑣∈ℝ𝑑⧵{0}

‖𝑞𝑣‖∞‖𝑣‖∞ = max
𝑖=1,…,𝑑

(
𝑑∑
𝑗=1

|𝑞𝑖𝑗|).
Inequalities of vectors are always understood componentwise, that is, for 𝑢, 𝑣 ∈ ℝ𝑑,

𝑢 ≤ 𝑣 ⟺ ∀𝑖 ∈ {1, … , 𝑑} ∶ 𝑢𝑖 ≤ 𝑣𝑖.
In the sameway, all concepts inℝ𝑑 that include inequalities are to be understood componentwise.
For example, a vector field 𝐹 ∶ ℝ𝑑 → ℝ𝑑 is called convex if

𝐹𝑖(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝐹𝑖(𝑢) + (1 − 𝜆)𝐹𝑖(𝑣)
for all 𝑖 ∈ {1, … , 𝑑}, 𝑢, 𝑣 ∈ ℝ𝑑 and 𝜆 ∈ [0, 1]. A vector field 𝐹 is called sublinear if it is convex and
positive homogeneous (of degree 1). Moreover, for a set 𝑀 ⊂ ℝ𝑑 of vectors, we write 𝑢 = sup𝑀
if 𝑢𝑖 = sup𝑣∈𝑀 𝑣𝑖 for all 𝑖 ∈ {1, … , 𝑑} and 𝑢 = max𝑀 if 𝑢 = sup𝑀 and, for all 𝑖 ∈ {1, … , 𝑑}, there
exists some 𝑣 ∈ 𝑀 with 𝑢𝑖 = 𝑣𝑖 .
In the following, we briefly recall the basic definitions and concepts from the theory

of (time-homogeneous) Markov chains. A (time-homogeneous) Markov chain is a quadruple
(Ω, , (ℙ1, … , ℙ𝑑), (𝑋𝑡)𝑡≥0), where:
(M1) (Ω,) is a measurable space.
(M2) 𝑋𝑡 ∶ Ω → {1,… , 𝑑} is  -measurable for all 𝑡 ≥ 0.
(M3) (ℙ1, … , ℙ𝑑) is a collection of probability measures, where, for 𝑖 ∈ {1, … , 𝑑}, ℙ𝑖(𝑋0 = 𝑖) = 1,

that is, ℙ𝑖 denotes the probability distribution under which the Markov chain starts in the
state 𝑖. Moreover, we use the notation

𝔼𝑖(𝑌) ∶= 𝔼ℙ𝑖 (𝑌) and 𝔼(𝑌) ∶= (𝔼1(𝑌), … , 𝔼𝑑(𝑌))
𝑇

for 𝑖 ∈ {1, … , 𝑑} and all random variables 𝑌 ∶ Ω → ℝ.
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(M4) For all 𝑠, 𝑡 ≥ 0 and 𝑖 ∈ {1, … , 𝑑},
𝔼𝑖(𝑢(𝑋𝑠+𝑡)|𝑠) = 𝔼𝑖(𝑢(𝑋𝑡+𝑠)|𝑋𝑠) = 𝔼𝑋𝑠 (𝑢(𝑋𝑡)).

In particular, 𝔼𝑖(𝑢(𝑋𝑡+𝑠)|𝑋𝑠 = 𝑗) = 𝔼𝑗(𝑢(𝑋𝑡)) for all 𝑖, 𝑗 ∈ {1, … , 𝑑}.

A matrix 𝑞 = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑑 ∈ ℝ𝑑×𝑑 is called a Q-matrix or rate matrix if it satisfies the following
conditions:

(Q1) 𝑞𝑖𝑖 ≤ 0 for all 𝑖 ∈ {1, … , 𝑑},
(Q2) 𝑞𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ {1, … , 𝑑} with 𝑖 ≠ 𝑗,
(Q3)

∑𝑑

𝑗=1
𝑞𝑖𝑗 = 0 for all 𝑖 ∈ {1, … , 𝑑}.

It is well known that every continuous-time Markov chain with certain regularity properties at
time 𝑡 = 0 can be related to a Q-matrix and vice versa. More precisely, for a matrix 𝑞 ∈ ℝ𝑑×𝑑, the
following statements are equivalent:

(i) 𝑞 is a Q-matrix.
(ii) There is a Markov chain (Ω, , (ℙ1, … , ℙ𝑑), (𝑋𝑡)𝑡≥0) such that

𝑞𝑢0 = lim
ℎ↘0

𝔼(𝑢0(𝑋ℎ)) − 𝑢0
ℎ

for all 𝑢0 ∈ ℝ𝑑,

where 𝑢0(𝑖) is the 𝑖th component of 𝑢0 for 𝑖 ∈ {1, … , 𝑑}.

In this case, for each vector 𝑢0 ∈ ℝ𝑑, the function 𝑢 ∶ [0,∞) → ℝ𝑑, 𝑡 ↦ 𝔼(𝑢0(𝑋𝑡)) is the unique
classical solution 𝑢 ∈ 𝐶1([0,∞);ℝ𝑑) to the initial value problem

𝑢′(𝑡) = 𝑞𝑢(𝑡), 𝑡 ≥ 0,
𝑢(0) = 𝑢0,

that is, 𝑢(𝑡) = 𝑒𝑡𝑞𝑢0 for all 𝑡 ≥ 0, where 𝑒𝑡𝑞 is thematrix exponential of 𝑡𝑞. We refer to Norris (1998)
for a detailed illustration of this relation.
We say that a (possibly nonlinear) operator  ∶ ℝ𝑑 → ℝ𝑑 satisfies the positive maximum prin-

ciple if, for every 𝑢 = (𝑢1, … , 𝑢𝑑)𝑇 ∈ ℝ𝑑 and 𝑖 ∈ {1, … , 𝑑},

(𝑢)𝑖 ≤ 0 whenever𝑢𝑖 ≥ 𝑢𝑗 for all 𝑗 ∈ {1, … , 𝑑}.
This notion ismotivated by the positivemaximumprinciple for generators of Feller processes, see,
for example, Jacob (2001, Equation (0.8)). Notice that a matrix 𝑞 ∈ ℝ𝑑×𝑑 is a Q-matrix if and only
if it satisfies the positive maximum principle and 𝑞1 = 0, where 1 ∶= (1, … , 1)𝑇 ∈ ℝ𝑑 denotes the
constant 1 vector. In fact, Property (Q3) is just a reformulation of 𝑞1 = 0. Moreover, if 𝑞 satisfies
the positive maximum principle, then 𝑞𝑖𝑖 = (𝑞𝑒𝑖)𝑖 ≤ 0 for all 𝑖 ∈ {1, … , 𝑑} and −𝑞𝑖𝑗 = (𝑞(−𝑒𝑖))𝑗 ≤
0 for all 𝑖, 𝑗 ∈ {1, … , 𝑑} with 𝑖 ≠ 𝑗. That is, 𝑞 fulfills (Q1) and (Q2). On the other hand, if 𝑞 is a
Q-matrix, 𝑢 = (𝑢1, … , 𝑢𝑑)𝑇 ∈ ℝ𝑑 and 𝑖 ∈ {1, … , 𝑑} with 𝑢𝑖 ≥ 𝑢𝑗 for all 𝑗 ∈ {1, … , 𝑑}, then (𝑞𝑢)𝑖 =∑𝑑

𝑗=1
𝑞𝑖𝑗𝑢𝑗 ≤ 𝑢𝑖∑𝑑

𝑗=1
𝑞𝑖𝑗 = 0, which shows that 𝑞 satisfies the positive maximum principle.
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To state the main result, we introduce the following definitions.

Definition 2.1. A (possibly nonlinear) map  ∶ ℝ𝑑 → ℝ𝑑 is called a Q-operator if the following
conditions are satisfied:

(i) (𝜆𝑒𝑖)𝑖 ≤ 0 for all 𝜆 > 0 and all 𝑖 ∈ {1, … , 𝑑},
(ii) ((−𝜆𝑒𝑗))𝑖 ≤ 0 for all 𝜆 > 0 and all 𝑖, 𝑗 ∈ {1, … , 𝑑} with 𝑖 ≠ 𝑗,
(iii) 𝛼 = 0 for all 𝛼 ∈ ℝ, where we identify 𝛼 with (𝛼, … , 𝛼)𝑇 ∈ ℝ𝑑.
Definition 2.2. A convexMarkov chain is a quadruple (Ω, ,  , (𝑋𝑡)𝑡≥0) that satisfies the following
conditions:

(i) (Ω,) is a measurable space.
(ii) 𝑋𝑡 ∶ Ω → {1,… , 𝑑} is  -measurable for all 𝑡 ≥ 0.
(iii)  = (1, … , 𝑑)𝑇 , where (Ω, , 𝑖) is a convex expectation space for all 𝑖 ∈ {1, … , 𝑑} and

(𝑢0(𝑋0)) = 𝑢0. Here and in the following, we use the notation
(𝑌) ∶= (1(𝑌), … , 𝑑(𝑌))𝑇 ∈ ℝ𝑑

for 𝑌 ∈ ∞(Ω,).
(iv) The following version of the Markov property is satisfied: For all 𝑠, 𝑡 ≥ 0, 𝑛 ∈ ℕ, 0 ≤ 𝑡1 <

⋯ < 𝑡𝑛 ≤ 𝑠, and 𝑣0 ∈ (ℝ𝑑)(𝑛+1),
(𝑣0(𝑌, 𝑋𝑠+𝑡)) = [𝑋𝑠,𝑡(𝑣0(𝑌, ⋅ ))], (1)

where 𝑌 ∶= (𝑋𝑡1 , … , 𝑋𝑡𝑛 ) and 𝑖,𝑡(𝑢0) ∶= 𝑖(𝑢0(𝑋𝑡)) for all 𝑢0 ∈ ℝ𝑑 and 𝑖 ∈ {1, … , 𝑑}.
We say that the Markov chain (Ω, ,  , (𝑋𝑡)𝑡≥0) is linear or sublinear if the mapping  ∶
∞(Ω,) → ℝ𝑑 is, additionally, linear, or sublinear, respectively.

Notice that the properties (𝑖)–(𝑖𝑖𝑖) in the previous definition are a one-to-one translation of
(M1)–(M3) to a convex setup. The Markov property given in (𝑖𝑣) of the previous definition is the
nonlinear analog of the classical Markov property (M4) without using conditional expectations.
Due to the nonlinearity of the expectation, the definition and, in particular, the existence of a
conditional (nonlinear) expectation are quite involved, which is why we avoid to introduce this
concept. In order to get the idea behind the formulation in (iv), choose 𝑣0 = 𝑢(𝑋𝑠+𝑡)1𝐵(𝑌) for a
measurable function 𝑢 ∶ {1, … , 𝑑} → ℝ and arbitrary 𝐵 ⊂ {1, … , 𝑑}𝑛. Then, if  is linear, Equation
(1) reads as

(𝑢(𝑋𝑠+𝑡)1𝐵(𝑌)) = (𝑋𝑠,𝑡(𝑢)1𝐵(𝑌)),
which is equivalent to (M4). On the other hand, for every linear Markov chain, Property (M4)
implies Property (𝑖𝑣). Hence, in the linear case, Definition 2.2 is consistent with the classical def-
inition of a Markov chain.
In line with Denk et al. (2018, Definition 5.1), we say that a (possibly nonlinear) map  ∶ ℝ𝑑 →

ℝ𝑑 is a kernel, if  is monotone, that is, (𝑢) ≤ (𝑣) for all 𝑢, 𝑣 ∈ ℝ𝑑 with 𝑢 ≤ 𝑣, and  preserves
constants, that is, (𝛼) = 𝛼 for all 𝛼 ∈ ℝ.
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Definition 2.3. A family S = (S(𝑡))𝑡≥0 of (possibly nonlinear) operators S(𝑡) ∶ ℝ𝑑 → ℝ𝑑 is
called a semigroup if

(i) S(0) = 𝐼, where 𝐼 = 𝐼𝑑 is the 𝑑-dimensional identity matrix,
(ii) S(𝑠 + 𝑡) = S(𝑠)S(𝑡) for all 𝑠, 𝑡 ≥ 0.
Here and throughout, we make use of the notation S(𝑠)S(𝑡) ∶= S(𝑠) ◦S(𝑡). If, additionally,
S(ℎ) → 𝐼 uniformly on compact sets as ℎ ↘ 0, we say that the semigroup S is uniformly con-
tinuous. We callSMarkovian ifS(𝑡) is a kernel for all 𝑡 ≥ 0. We say thatS is linear, sublinear, or
convex if S(𝑡) is linear, sublinear, or convex for all 𝑡 ≥ 0, respectively.
Definition 2.4. Let  ⊂ ℝ𝑑×𝑑 be a set of Q-matrices and 𝑓 = (𝑓𝑞)𝑞∈ a family of vectors with
sup𝑞∈ 𝑓𝑞 = 𝑓𝑞0 = 0 for some 𝑞0 ∈  , that is, 𝑓𝑞 ≤ 0 for all 𝑞 ∈  and there exists some 𝑞0 ∈ 
with 𝑓𝑞0 = 0. We denote by

𝑆𝑞(𝑡)𝑢0 ∶= 𝑒
𝑞𝑡𝑢0 + ∫

𝑡

0

𝑒𝑞𝑠𝑓𝑞 d𝑠 = 𝑢0 + ∫
𝑡

0

𝑒𝑠𝑞
(
𝑞𝑢0 + 𝑓𝑞

)
d𝑠

for 𝑡 ≥ 0, 𝑢0 ∈ ℝ𝑑 and 𝑞 ∈  . Then, 𝑆𝑞 = (𝑆𝑞(𝑡))𝑡≥0 is an affine linear semigroup. We call a semi-
groupS the (upper) semigroup envelope (later also Nisio semigroup) of ( , 𝑓) if
(i) S(𝑡)𝑢0 ≥ 𝑆𝑞(𝑡)𝑢0 for all 𝑡 ≥ 0, 𝑢0 ∈ ℝ𝑑 and 𝑞 ∈  ,
(ii) for any other semigroup T satisfying (i) we have that S(𝑡)𝑢0 ≤ T(𝑡)𝑢0 for all 𝑡 ≥ 0 and

𝑢0 ∈ ℝ
𝑑.

That is, the semigroup envelope S is the smallest semigroup that dominates all semigroups
(𝑆𝑞)𝑞∈ .

The following main theorem gives a full characterization of convex Q-operators.

Theorem 2.5. Let  ∶ ℝ𝑑 → ℝ𝑑 be a mapping. Then, the following statements are equivalent:

(i)  is a convex Q-operator.
(ii)  is convex, satisfies the positive maximum principle, and 𝛼 = 0 for all 𝛼 ∈ ℝ, where 𝛼 ∶=

(𝛼,… , 𝛼)𝑇 ∈ ℝ𝑑 .
(iii) There exists a set  ⊂ ℝ𝑑×𝑑 of Q-matrices and a family 𝑓 = (𝑓𝑞)𝑞∈ ⊂ ℝ𝑑 of vectors with

𝑓𝑞 ≤ 0 for all 𝑞 ∈  and 𝑓𝑞0 = 0 for some 𝑞0 ∈  , such that
𝑢0 = sup

𝑞∈
(
𝑞𝑢0 + 𝑓𝑞

)
(2)

for all 𝑢0 ∈ ℝ𝑑, where the supremum is to be understood componentwise.
(iv) There exists a uniformly continuous convex Markovian semigroupS with

𝑢0 = lim
ℎ↘0

S(ℎ)𝑢0 − 𝑢0
ℎ
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for all 𝑢0 ∈ ℝ𝑑 .
(v) There is a convex Markov chain (Ω, ,  , (𝑋𝑡)𝑡≥0) such that

𝑢0 = lim
ℎ↘0

(𝑢0(𝑋ℎ)) − 𝑢0
ℎ

for all 𝑢0 ∈ ℝ𝑑 .

In this case, for each initial value 𝑢0 ∈ ℝ𝑑, the function 𝑢 ∶ [0,∞) → ℝ𝑑, 𝑡 ↦ (𝑢0(𝑋𝑡)) is the
unique classical solution 𝑢 ∈ 𝐶1([0,∞);ℝ𝑑) to the initial value problem

𝑢′(𝑡) = 𝑢(𝑡) = sup
𝑞∈

(
𝑞𝑢(𝑡) + 𝑓𝑞

)
, 𝑡 ≥ 0, (3)

𝑢(0) = 𝑢0.

Moreover, the Markovian semigroup S from (iv) is the (upper) semigroup envelope of ( , 𝑓), and
𝑢(𝑡) = S(𝑡)𝑢0 for all 𝑡 ≥ 0.
Remark 2.6. Consider the situation of Theorem 2.5.

(a) The dual representation in (𝑖𝑖𝑖) gives a model uncertainty interpretation to Q-operators. The
set  can be seen as the set of all plausible rate matrices, when considering the Q-operator
. For every 𝑞 ∈  , the vector 𝑓𝑞 ≤ 0 can be interpreted as a penalization, which measures
how much importance we give to each rate matrix 𝑞. The requirement that there exists some
𝑞0 ∈  with 𝑓𝑞0 = 0 can be interpreted in the following way: There exists at least one rate
matrix 𝑞0 within the set of all plausible rate matrices  to which we assign the maximal
importance, which is the minimal penalization.

(b) The semigroup envelope S of ( , 𝑓) can be constructed more explicitly, in particular, an
explicit (in terms of ( , 𝑓)) dual representation can be derived. For details, we refer to Sec-
tion 4 (Definition 4.2 and Remark 4.18). Moreover, we would like to highlight that the semi-
group envelope S can be constructed w.r.t. any dual representation ( , 𝑓) as in (𝑖𝑖𝑖) and
results in the unique classical solution to (3) independent of the choice of the dual represen-
tation ( , 𝑓) of . This gives, in some cases, the opportunity to efficiently compute the semi-
group envelope numerically via its primal/dual representation (see Remark 3.3 and Exam-
ple 5.2).

(c) The same equivalence as in Theorem 2.5 holds if convexity is replaced by sublinearity in (𝑖),
(𝑖𝑖), (𝑖𝑣), and (𝑣) and 𝑓𝑞 = 0 for all 𝑞 ∈  in (𝑖𝑖𝑖). In this case, the set  in (𝑖𝑖𝑖) can be chosen
to be compact as we will see in the proof of Theorem 2.5.

(d) Theorem 2.5 extends and includes the well-known relation between (linear) Markov chains,
Q-matrices, and ordinary differential equations.

(e) A remarkable consequence of Theorem 2.5 is that every convexMarkovian semigroup, which
is differentiable at time 𝑡 = 0, is the semigroup envelopewith respect to the Fenchel–Legendre
transformation (or any other dual representation as in (𝑖𝑖𝑖) of its generator, which is a convex
Q-operator.
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(f) Although  has an unbounded convex conjugate, the convex initial value problem

𝑢′(𝑡) = 𝑢(𝑡) for all 𝑡 ≥ 0, 𝑢(0) = 𝑢0, (4)

has a unique global solution.
(g) Solutions to (4) remain bounded. Therefore, a Picard iteration or Runge–Kuttamethods, such

as the explicit Euler method, can be used for numerical computations, and the convergence
rate (depending on the size of the initial value 𝑢0) can be derived from the a priori estimate
in Banach’s fixed point theorem.

(h) As in the linear case, by solving the differential equation (4), one can (numerically) compute
expressions of the form

𝑢(𝑡) = (𝑢0(𝑋𝑡)).
We illustrate this computation procedure in Example 5.1.

3 PROOF OF (𝒗) ⇒ (𝒊𝒊) ⇒ (𝒊) ⇒ (𝒊𝒊𝒊)

We say that a set  ⊂ ℝ𝑑×𝑑 of matrices is row-convex if, for any diagonal matrix 𝜃 ∈ ℝ𝑑×𝑑 with
𝜃𝑖 ∶= 𝜆𝑖𝑖 ∈ [0, 1] for all 𝑖 ∈ {1, … , 𝑑},

𝜃𝑝 + (𝐼 − 𝜃)𝑞 ∈  for all 𝑝, 𝑞 ∈  ,
where 𝐼 = 𝐼𝑑 ∈ ℝ𝑑×𝑑 is the 𝑑-dimensional identity matrix. Notice that, for all 𝑖 ∈ {1, … , 𝑑}, the
𝑖th row of the matrix 𝜃𝑝 + (𝐼 − 𝜃)𝑞 is the convex combination of the 𝑖th row of 𝑝 and 𝑞 with 𝜃𝑖 .
Notice that a set  ⊂ ℝ𝑑×𝑑 is row-convex if and only if it is convex and, for arbitrary 𝑝, 𝑞 ∈  , the
matrix that results from replacing the 𝑖th row of 𝑝 by the 𝑖th row of 𝑞 is again an element of  .
For example, the set of all Q-matrices is row-convex.

Remark 3.1. Let  be a convex Q-operator. For every matrix 𝑞 ∈ ℝ𝑑×𝑑, let

∗(𝑞) ∶= sup
𝑢∈ℝ𝑑

(𝑞𝑢 −(𝑢)) ∈ [0,∞]𝑑

be the conjugate function of . Notice that 0 ≤ ∗(𝑞) for all 𝑞 ∈ ℝ𝑑×𝑑, since (0) = 0. Let
∗ ∶= {

𝑞 ∈ ℝ𝑑×𝑑
|||∗(𝑞) ∈ [0,∞)𝑑}

and 𝑓∗𝑞 ∶= −∗(𝑞) for all 𝑞 ∈ ∗. Then, the following facts are well-known results from convex
duality theory in ℝ𝑑.

(a) The set ∗ is row-convex and the mapping ∗ → ℝ𝑑, 𝑞 ↦ ∗(𝑞) is lower semicontinuous.
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(b) Let 𝑀 ≥ 0 and ∗
𝑀
∶= {𝑞 ∈ ℝ𝑑×𝑑 |∗(𝑞) ≤ 𝑀}. Then, ∗

𝑀
⊂ ℝ𝑑×𝑑 is compact and row-

convex. Therefore,

𝑀 ∶ ℝ𝑑 → ℝ𝑑, 𝑢 ↦ max
𝑞∈∗

𝑀

(
𝑞𝑢 + 𝑓∗𝑞

)
(5)

defines a convex operator, which is Lipschitz continuous. Notice that the maximum in (5) is
to be understood componentwise. However, for fixed 𝑢0 ∈ ℝ𝑑, themaximum can be attained,
simultaneously in every component, by a single element of ∗

𝑀
, that is, for all 𝑢0 ∈ ℝ𝑑, there

exists some 𝑞0 ∈ ∗
𝑀
with

𝑀𝑢0 = 𝑞0𝑢0 + 𝑓∗𝑞0 .
This is due to the fact that ∗

𝑀
is row convex and that, for 𝑞 ∈ ∗, the 𝑖th component of the

vector 𝑓∗𝑞 only depends on the 𝑖th row of 𝑞.
(c) Let 𝑅 ≥ 0. Then, there exists some𝑀 ≥ 0, such that

𝑢0 = max
𝑞∈∗

𝑀

(
𝑞𝑢0 + 𝑓

∗
𝑞

)
= 𝑀𝑢0

for all 𝑢0 ∈ ℝ𝑑 with ‖𝑢0‖∞ ≤ 𝑅. In particular,  is locally Lipschitz continuous and

𝑢0 = max
𝑞∈∗

(
𝑞𝑢0 + 𝑓

∗
𝑞

)
for all 𝑢0 ∈ ℝ𝑑,

where, for fixed 𝑢0 ∈ ℝ𝑑, themaximum can be attained, simultaneously in every component,
by a single element of ∗. In particular, there exists some 𝑞0 ∈ ∗ with 𝑓∗𝑞0 = sup𝑞∈∗ 𝑓∗𝑞 =(0) = 0.

Proof of Theorem 2.5. (𝑣) ⇒ (𝑖𝑖): As 𝑖 is a convex expectation for all 𝑖 ∈ {1, … , 𝑑}, it follows that the
operator is convex with𝛼 = 0 for all 𝛼 ∈ ℝ. Now, let 𝑢0 ∈ ℝ𝑑 and 𝑖 ∈ {1, … , 𝑑}with 𝑢0,𝑖 ≥ 𝑢0,𝑗
for all 𝑗 ∈ {1, … , 𝑑}. Let 𝛼 > 0 be such that

‖𝑢0 + 𝛼‖∞ = (𝑢0 + 𝛼)𝑖 = 𝑢0,𝑖 + 𝛼,

and define 𝑣0 ∶= 𝑢0 + 𝛼. Then,

𝑣0 = lim
ℎ↘0

(𝑢0(𝑋ℎ) + 𝛼) − 𝑣0
ℎ

= lim
ℎ↘0

(𝑢0(𝑋ℎ)) − 𝑢0
ℎ

= 𝑢0.

Assume that (𝑢0)𝑖 > 0. Then, there exists some ℎ > 0 such that
𝑖(𝑣0(𝑋ℎ)) − 𝑣0,𝑖 > 0.

Hence,

‖‖‖(𝑣0(𝑋ℎ))‖‖‖∞ ≥ 𝑖(𝑣0(𝑋ℎ)) > 𝑣0,𝑖 = ‖𝑣0‖∞,
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which is a contradiction to

‖‖‖(𝑣0(𝑋ℎ))‖‖‖∞ ≤ ‖𝑣0‖∞.
This shows that  satisfies the positive maximum principle.
(𝑖𝑖) ⇒ (𝑖): This follows directly from the positive maximum principle, considering the vectors

𝜆𝑒𝑖 and −𝜆𝑒𝑖 for all 𝜆 > 0 and 𝑖 ∈ {1, … , 𝑑}.
(𝑖) ⇒ (𝑖𝑖𝑖): Let be a convexQ-operator. Moreover, let∗ and 𝑓∗ = (𝑓∗𝑞)𝑞∈∗ be as in Remark 5.

Then, by Remark 5 (c), it only remains to show that every 𝑞 ∈ ∗ is aQ-matrix. To this end, fix an
arbitrary 𝑞 ∈ ∗. Then, for all 𝛼 ∈ ℝ,

𝑞𝛼 =
1

𝜆
𝑞(𝜆𝛼) ≤ 1

𝜆
((𝜆𝛼) +∗(𝑞)) = 1

𝜆
∗(𝑞) → 0 as 𝜆 → ∞.

Therefore, 𝑞𝛼 ≤ 0 for all 𝛼 ∈ ℝ. Since 𝑞 is linear, it follows that 𝑞1 = 0. Now, let 𝑖 ∈ {1, … , 𝑑}.
Then, by definition of a Q-operator, we obtain that

𝑞𝑖𝑖 ≤ 1

𝜆
((𝜆𝑒𝑖) +∗(𝑞))𝑖 ≤ 1

𝜆
(∗(𝑞))𝑖 → 0 as 𝜆 → ∞,

that is, 𝑞𝑖𝑖 ≤ 0. Now, let 𝑖, 𝑗 ∈ {1, … , 𝑑} with 𝑖 ≠ 𝑗. Then, again by definition of a Q-operator, it
follows that

−𝑞𝑖𝑗 ≤ 1

𝜆
((−𝜆𝑒𝑖) +∗(𝑞))𝑗 ≤ 1

𝜆
(∗(𝑞))𝑗 → 0 as 𝜆 → ∞,

that is, 𝑞𝑖𝑗 ≥ 0. Therefore, 𝑞 is a Q-matrix.
It remains to show the implications (𝑖𝑖𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣), which is done in the entire next

section. □

Before we start with the proof of the remaining implications (𝑖𝑖𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣), we would like
to point out how, in the sublinear case, the set ∗ of Q-matrices from Remark 3.1 can be reduced
to certain “corner points.” This can be done using the concept of row convexity, introduced at the
beginning of this section, together with Minkowski’s theorem on extremal points of convex sets
in ℝ𝑑. Let ⊂ ℝ𝑑×𝑑 be a nonempty set of matrices. Then, we define the row-convex hull of
by

rch() ∶=

{ 𝑛∑
𝑖=1

𝜃𝑖𝑞𝑖
||||𝑛 ∈ ℕ, 𝜃1, … , 𝜃𝑛 ∈ [0,∞)𝑑×𝑑,

𝑛∑
𝑖=1

𝜃𝑖 = 𝐼, 𝑞1, … 𝑞𝑛 ∈
}
.

For a convex set 𝐶 ⊂ ℝ𝑑, we denote the set of all extreme points of 𝐶 by 𝐸(𝐶). Recall that an
extreme point of a convex set 𝐶 ⊂ ℝ𝑑 is an element 𝑥 ∈ 𝐶 such that 𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧, for 𝜆 ∈
(0, 1) and 𝑦, 𝑧 ∈ 𝐶, implies that 𝑥 = 𝑦 = 𝑧. For a matrix 𝑞 ∈ ℝ𝑑×𝑑 and 𝑖 ∈ {1, … , 𝑑}, we denote by

𝑞𝑖 ∶= (𝑞𝑖1, … , 𝑞𝑖𝑑) ∈ ℝ
𝑑
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the 𝑖th row of 𝑞. Let  ⊂ ℝ𝑑×𝑑 be a nonempty compact row-convex set of matrices. Then, we say
that a set ⊂  is -row-extreme if

{𝑞𝑖 | 𝑞 ∈ } = 𝐸({𝑞𝑖 | 𝑞 ∈ }) for all 𝑖 ∈ {1, … , 𝑑}.

That is, the set of all 𝑖th rows of is the set of all extreme points of the 𝑖th rows of  . We say that
a set ⊂  is minimal -row-extreme, if is row-extreme for  and  ⊂ implies  =
for any -row-extreme set ⊂  .
Proposition 3.2. Let  ⊂ ℝ𝑑×𝑑 be nonempty, compact, and row-convex. Then, there exists a min-
imal -row-extreme set  ⊂  . Moreover,  = rch() is the row-convex hull of any (minimal)
-row-extreme set ⊂  and

max
𝑞∈ 𝑞𝑢0 = max𝑞∈ 𝑞𝑢0 for all 𝑢0 ∈ ℝ𝑑, (6)

where the maxima are to be understood componentwise.

Proof. By Minkowski’s theorem, the set of all -row-extreme sets is nonempty, and one readily
verifies that the latter together with the partial order ⪯, given by1 ⪯ 2 if and only if1 ⊃ 2,
has the chain property. Hence, by Zorn’s lemma, there exists a maximal element  within the
set of all -row-extreme sets, which, by definition, is a minimal -row-extreme set. Now, let 
be an arbitrary -row-extreme set and 𝑢0 ∈ ℝ𝑑. Then,

max
𝑞∈ (𝑞𝑢0)𝑖 = max

𝑞∈ (𝑞𝑖 ⋅ 𝑢0) = max
𝑞∈ (𝑞𝑖 ⋅ 𝑢0) = max

𝑞∈ (𝑞𝑢0)𝑖.

□

Remark 3.3. Let  ∶ ℝ𝑑 → ℝ𝑑 be a sublinear Q-operator, and ∗ as in Remark 3.1. Then,
∗ = {

𝑞 ∈ ℝ𝑑
|||𝑓∗𝑞 = ∗(𝑞) = 0}

is a nonempty, compact, and row-convex set. By the previous proposition, there exists a minimal
∗-row-extreme set ⊂ ∗, and, for all 𝑢0 ∈ ℝ𝑑,

𝑢0 = max
𝑞∈ 𝑞𝑢0,

where themaximum is to be understood componentwise. Since 𝑓∗ = (𝑓∗𝑞)𝑞∈∗ = 0, it follows that
(, 0) is a dual representation as in Theorem 2.5(iii). Notice that, in many cases, the cardinality
of is way smaller than the cardinality of ∗. Therefore, concerning computational aspects, the
dual representation (, 0) is often way more tractable than the dual representation (∗, 0), and,
by Theorem 2.5, both representations result in the same semigroup envelope, and thus, the same
solution to the ODE (3).



488 NENDEL

Example 3.4. Let 𝑞0, 𝑞 ∈ ℝ𝑑×𝑑 be two fixed Q-matrices and 𝜆𝑙, 𝜆ℎ ∈ ℝ with 𝜆𝑙 ≤ 𝜆ℎ. We define
the sublinear Q-operator  ∶ ℝ𝑑 → ℝ𝑑 by

𝑢0 ∶= 𝑞0𝑢0 + max
𝜆∈[𝜆𝑙,𝜆ℎ]

𝜆𝑞𝑢0 for all 𝑢0 ∈ ℝ𝑑.

We consider the maximal row-convex set ∗ ⊂ ℝ𝑑×𝑑 representing , defined as in Remark 3.1.
Then,

∗ = {
𝑝0 + 𝜆𝑝

||| 𝜆 ∈ diag ([𝜆𝑙, 𝜆ℎ])
}
,

where diag([𝜆𝑙, 𝜆ℎ]) denotes the set of all diagonal matrices 𝜆 ∈ ℝ𝑑×𝑑 with diagonal entries 𝜆𝑖𝑖 ∈
[𝜆𝑙, 𝜆ℎ] for all 𝑖 ∈ {1, … , 𝑑}. Now, let

 ∶= {𝑞0 + 𝜆𝑙𝑞, 𝑞0 + 𝜆ℎ𝑞}.

Then, is a minimal ∗-row-extreme set, and thus, ∗ = rch(). In particular, by the previous
remark, the tuple

({𝑞0 + 𝜆𝑙𝑞, 𝑞0 + 𝜆ℎ𝑞}, (0, 0))

is a dual representation as in Theorem 2.5(iii), which is way more tractable than the dual repre-
sentation (∗, 0).

4 PROOF OF (𝒊𝒊𝒊) ⇒ (𝒊𝒗) ⇒ (𝒗)

Throughout, let  ⊂ ℝ𝑑×𝑑 be a set of Q-matrices and 𝑓 = (𝑓𝑞)𝑞∈ ⊂ ℝ𝑑 with 𝑓𝑞 ≤ 0 for all 𝑞 ∈ 
and 𝑓𝑞0 = 0 for some 𝑞0 ∈  , such that the map

 ∶ ℝ𝑑 → ℝ𝑑, 𝑢 ↦ sup
𝑞∈

(
𝑞𝑢 + 𝑓𝑞

)
is well-defined. For every 𝑞 ∈  , we consider the linear ODE

𝑢′(𝑡) = 𝑞𝑢(𝑡) + 𝑓𝑞, for 𝑡 ≥ 0, (7)

with 𝑢(0) = 𝑢0 ∈ ℝ𝑑. Then, by a variation of constant, the solution to (7) is given by

𝑢(𝑡) = 𝑒𝑞𝑡𝑢0 + ∫
𝑡

0

𝑒𝑞𝑠𝑓𝑞 d𝑠 = 𝑢0 + ∫
𝑡

0

𝑒𝑠𝑞
(
𝑞𝑢0 + 𝑓𝑞

)
d𝑠 =∶ 𝑆𝑞(𝑡)𝑢0 (8)

for 𝑡 ≥ 0, where 𝑒𝑡𝑞 ∈ ℝ𝑑×𝑑 is the matrix exponential of 𝑡𝑞 for all 𝑡 ≥ 0. Then, the family 𝑆𝑞 =
(𝑆𝑞(𝑡))𝑡≥0 defines a uniformly continuous semigroup of affine linear operators (seeDefinition 2.3).

Remark 4.1. Note that, for all 𝑞 ∈  and 𝑡 ≥ 0, the matrix exponential 𝑒𝑡𝑞 ∈ ℝ𝑑×𝑑 is a stochastic
matrix, that is,
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(i) (𝑒𝑡𝑞)𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ {1, … , 𝑑},
(ii) 𝑒𝑡𝑞1 = 1.

Therefore, 𝑒𝑡𝑞 ∈ ℝ𝑑×𝑑 is a linear kernel, that is, 𝑒𝑡𝑞𝑢0 ≤ 𝑒𝑡𝑞𝑣0 for all 𝑢0, 𝑣0 ∈ ℝ𝑑 with 𝑢0 ≤ 𝑣0 and
𝑒𝑡𝑞𝛼 = 𝛼 for all 𝛼 ∈ ℝ, which implies that 𝑆𝑞(𝑡) is monotone for all 𝑞 ∈  and 𝑡 ≥ 0.
For the family (𝑆𝑞)𝑞∈ or, more precisely, for ( , 𝑓), we will now construct theNisio semigroup,

and show that it gives rise to the unique classical solution to the nonlinear ODE (3). To this end,
we consider the set of finite partitions

𝑃 ∶=
{
𝜋 ⊂ [0,∞)

||| 0 ∈ 𝜋, |𝜋| < ∞}
.

The set of partitions with end point 𝑡 ≥ 0will be denoted by 𝑃𝑡, that is, 𝑃𝑡 ∶= {𝜋 ∈ 𝑃 | max 𝜋 = 𝑡}.
Notice that

𝑃 =
⋃
𝑡≥0
𝑃𝑡.

For all ℎ ≥ 0 and 𝑢0 ∈ ℝ𝑑, we define
ℎ𝑢0 ∶= sup

𝑞∈
𝑆𝑞(ℎ)𝑢0,

where the supremum is taken componentwise. Note that ℎ is well-defined since

𝑆𝑞(ℎ)𝑢0 = 𝑒
ℎ𝑞𝑢0 + ∫

ℎ

0

𝑒𝑠𝑞𝑓𝑞 d𝑠 ≤ 𝑒ℎ𝑞𝑢0 ≤ ‖𝑢0‖∞
for all 𝑞 ∈  , ℎ ≥ 0 and 𝑢0 ∈ ℝ𝑑, where we used the fact that 𝑒ℎ𝑞 is a kernel. Moreover, ℎ is a
convex kernel, for all ℎ ≥ 0, as it is monotone and

ℎ𝛼 = 𝛼 + sup
𝑞∈ ∫

ℎ

0

𝑒𝑠𝑞𝑓𝑞 d𝑠 = 𝛼

for all 𝛼 ∈ ℝ, where we used the fact that there is some 𝑞0 ∈  with 𝑓𝑞0 = 0. For a partition 𝜋 =
{𝑡0, 𝑡1, … , 𝑡𝑚} ∈ 𝑃 with𝑚 ∈ ℕ and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚, we set

𝜋 ∶= 𝑡1−𝑡0 …𝑡𝑚−𝑡𝑚−1 .
Moreover, we set {0} ∶= 0. Then, 𝜋 is a convex kernel for all 𝜋 ∈ 𝑃 since it is a concatenation
of convex kernels.

Definition 4.2. The Nisio semigroup S = (S(𝑡))𝑡≥0 of ( , 𝑓) is defined by
S(𝑡)𝑢0 ∶= sup

𝜋∈𝑃𝑡

𝜋𝑢0

for all 𝑢0 ∈ ℝ𝑑 and 𝑡 ≥ 0.
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Notice thatS(𝑡) ∶ ℝ𝑑 → ℝ𝑑 is well-defined and a convex kernel for all 𝑡 ≥ 0 since 𝜋 is a convex
kernel for all𝜋 ∈ 𝑃. Inmany of the subsequent proofs, wewill first concentrate on the case, where
the family 𝑓 is bounded and then use an approximation of the Nisio semigroup by means of other
Nisio semigroups. This approximation procedure is specified in the following remark.

Remark 4.3. Let 𝑀 ≥ 0, 𝑀 ∶= {𝑞 ∈  | ‖𝑓𝑞‖∞ ≤ 𝑀} and 𝑓𝑀 ∶= (𝑓𝑞)𝑞∈𝑀 . Notice that, by
assumption, there exists some 𝑞0 ∈  with 𝑓𝑞0 = 0, which implies that 𝑞0 ∈ 𝑀 . Since 𝑀 ⊂ 
(and by definition of 𝑓𝑀), the operator

𝑀 ∶ ℝ𝑑 → ℝ𝑑, 𝑣 ↦ sup
𝑞∈𝑀

(
𝑞𝑣 + 𝑓𝑞

)
is well-defined. LetS𝑀 be the Nisio semigroup w.r.t. (𝑀, 𝑓𝑀) for all𝑀 ≥ 0. Since⋃

𝑀≥0
𝑀 =  ,

it follows that 𝑀 ↗  and S𝑀(𝑡) ↗ S(𝑡), for all 𝑡 ≥ 0, as 𝑀 →∞. Moreover, for all 𝑞 ∈ 𝑀 ,
𝑢0 ∈ ℝ

𝑑 with ‖𝑢0‖∞ = 1, and 𝑖 ∈ {1, … , 𝑑},

(𝑞𝑢0)𝑖 ≤ (𝑢0 − 𝑓𝑞)𝑖 ≤ ‖𝑢0‖∞ + ‖𝑓𝑞‖∞ ≤ 𝑀 + max
𝑣∈𝕊𝑑−1

‖𝑣‖∞,
where 𝕊𝑑−1 ∶= {𝑣 ∈ ℝ𝑑 | ‖𝑣‖∞ = 1} and, in the last step, we used the fact that  ∶ ℝ𝑑 → ℝ𝑑

is convex and therefore continuous. This implies that the set 𝑀 is bounded in the sense that
sup𝑞∈𝑀 ‖𝑞‖ < ∞. In particular,

sup
𝑞∈𝑀

‖𝑞𝑢0 + 𝑓𝑞‖∞ ≤ sup
𝑞∈𝑀

(‖𝑞‖‖𝑢0‖∞ + ‖𝑓𝑞‖∞) ≤ 𝑀 + sup
𝑞∈𝑀

‖𝑞‖‖𝑢0‖∞ < ∞ (9)

for all 𝑢0 ∈ ℝ𝑑.

Lemma4.4. Assume that the family𝑓 is bounded, that is, ( , 𝑓) = (𝑀, 𝑓𝑀) for some𝑀 ≥ 0. Then,
for all 𝑢0 ∈ ℝ𝑑, the mapping [0,∞) → ℝ𝑑, ℎ ↦ ℎ𝑢0 is Lipschitz continuous.
Proof. Let 𝑢0 ∈ ℝ𝑑 and 0 ≤ ℎ1 < ℎ2. Then, by (8), for all 𝑞 ∈  , we have that

‖𝑆𝑞(ℎ2)𝑢0 − 𝑆𝑞(ℎ1)𝑢0‖∞ ≤ ∫
ℎ2

ℎ1

‖‖‖𝑒𝑞𝑠(𝑞𝑢0 + 𝑓𝑞)‖‖‖∞ d𝑠 ≤ (ℎ2 − ℎ1)‖𝑞𝑢0 + 𝑓𝑞‖∞,
which implies that

‖ℎ2𝑢0 − ℎ1𝑢0‖∞ ≤ sup
𝑞∈

‖𝑆𝑞(ℎ2)𝑢0 − 𝑆𝑞(ℎ1)𝑢0‖∞ ≤ (ℎ2 − ℎ1)
(
sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)
. (10)

Note that sup𝑞∈ ‖𝑞𝑢0 + 𝑓𝑞‖∞ < ∞ by (9). □
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Lemma 4.5. Assume that the family 𝑓 is bounded. Then,

‖S(𝑡)𝑢0 − 𝑢0‖∞ ≤ 𝑡
(
sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)

for all 𝑡 ≥ 0 and 𝑢0 ∈ ℝ𝑑 . In particular, the map [0,∞) → ℝ𝑑, 𝑡 ↦ S(𝑡)𝑢0 is Lipschitz continuous
for all 𝑢0 ∈ ℝ𝑑.

Proof. Let 𝑢0 ∈ ℝ𝑑. Then, for any partition 𝜋 ∈ 𝑃 of the form 𝜋 = {𝑡0, 𝑡1, … , 𝑡𝑚} with𝑚 ∈ ℕ and
0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚, (10) together with the fact that ℎ is a kernel, for all ℎ ≥ 0, implies that

‖𝜋𝑢0 − 𝑢0‖∞ ≤
𝑚∑
𝑘=1

‖ℎ𝑘𝑢0 − 𝑢0‖∞ ≤
𝑚∑
𝑘=1

ℎ𝑘

(
sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)

= 𝑡𝑚

(
sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)
,

where ℎ𝑘 ∶= 𝑡𝑘 − 𝑡𝑘−1 for all 𝑘 ∈ {1, … ,𝑚}. By definition of S(𝑡), for 𝑡 ≥ 0, it follows that

‖S(𝑡)𝑢0 − 𝑢0‖∞ ≤ sup
𝜋∈𝑃𝑡

‖𝜋𝑢0 − 𝑢0‖∞ ≤ 𝑡
(
sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)
.

Now, let 𝑠, 𝑡 ≥ 0. Then, since S(ℎ) is a kernel for all ℎ ≥ 0, it follows that

‖S(𝑡)𝑢0 −S(𝑠)𝑢0‖∞ ≤ ‖S(|𝑡 − 𝑠|)𝑢0 − 𝑢0‖∞ ≤ |𝑡 − 𝑠|(sup
𝑞∈

‖𝑞𝑢0 + 𝑓𝑞‖∞)
.

□

For a partition 𝜋 = {𝑡0, 𝑡1, … , 𝑡𝑚} ∈ 𝑃 with 𝑚 ∈ ℕ and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚, we define the
(maximal)mesh size of 𝜋 by

|𝜋|∞ ∶= max
𝑗=1,…,𝑚

(𝑡𝑗 − 𝑡𝑗−1).

Moreover, we set |{0}|∞ ∶= 0. Let 𝑢0 ∈ ℝ𝑑. In the following, we consider the limit of 𝜋𝑢0 when
the mesh size of the partition 𝜋 ∈ 𝑃 tends to zero. For this, we first remark that, for ℎ1, ℎ2 ≥ 0,

ℎ1+ℎ2𝑢0 = sup
𝑞∈

𝑆𝜆(ℎ1 + ℎ2)𝑢0 = sup
𝑞∈

𝑆𝜆(ℎ1)𝑆𝜆(ℎ2)𝑢0

≤ sup
𝑞∈

𝑆𝜆(ℎ1)ℎ2𝑢0 = ℎ1ℎ2𝑢0,

which implies the inequality

𝜋1𝑢0 ≤ 𝜋2𝑢0 (11)
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for 𝜋1, 𝜋2 ∈ 𝑃with 𝜋1 ⊂ 𝜋2. The following lemma now states thatS(𝑡), for 𝑡 ≥ 0, can be obtained
by a pointwise monotone approximation with finite partitions letting the mesh size tend to zero.

Lemma 4.6. Let 𝑡 ≥ 0 and (𝜋𝑛)𝑛∈ℕ ⊂ 𝑃𝑡 with 𝜋𝑛 ⊂ 𝜋𝑛+1 for all 𝑛 ∈ ℕ and |𝜋𝑛|∞ ↘ 0 as 𝑛 → ∞.
Then, for all 𝑢0 ∈ ℝ𝑑,

𝜋𝑛𝑢0 ↗ S(𝑡)𝑢0, 𝑛 → ∞.

Proof. Let 𝑢0 ∈ ℝ𝑑. For 𝑡 = 0 the statement is trivial. Therefore, assume that 𝑡 > 0, and let

𝑢∞ ∶= sup
𝑛∈ℕ

𝜋𝑛𝑢0. (12)

As 𝜋𝑛 ⊂ 𝜋𝑛+1 for all 𝑛 ∈ ℕ, (11) implies that

𝜋𝑛𝑢0 ↗ 𝑢∞, 𝑛 → ∞.

Since (𝜋𝑛)𝑛∈ℕ ⊂ 𝑃𝑡, we obtain that

𝑢∞ ≤ S(𝑡)𝑢0.

Next, we assume that the family 𝑓 is bounded. Let 𝜋 = {𝑡0, 𝑡1, … , 𝑡𝑚} ∈ 𝑃𝑡 with 𝑚 ∈ ℕ and 0 =
𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 𝑡. Since |𝜋𝑛|∞ ↘ 0 as 𝑛 → ∞, we may w.l.o.g. assume that |𝜋𝑛| ≥ 𝑚 + 1 for
all 𝑛 ∈ ℕ. Again, since |𝜋𝑛|∞ ↘ 0 as 𝑛 → ∞, there exist 0 = 𝑡𝑛

0
< 𝑡𝑛

1
< ⋯ < 𝑡𝑛𝑚 = 𝑡 for all 𝑛 ∈ ℕ

with 𝜋′𝑛 ∶= {𝑡𝑛0 , 𝑡
𝑛
1
, … , 𝑡𝑛𝑚} ⊂ 𝜋𝑛 and 𝑡𝑛𝑖 → 𝑡𝑖 as 𝑛 → ∞ for all 𝑖 ∈ {1, … ,𝑚}. Then, by Lemma 4.4,

we have that

‖𝜋𝑢0 − 𝜋′𝑛𝑢0‖∞ → 0, 𝑛 → ∞,

and therefore,

𝑢∞ ≥ 𝜋𝑛𝑢0 ≥ 𝜋′𝑛𝑢0 ≥ 𝜋𝑢0 − ‖𝜋𝑢0 − 𝜋′𝑛𝑢0‖∞.
Letting 𝑛 → ∞, we obtain that 𝑢∞ ≥ 𝜋𝑢0. Taking the supremum over all 𝜋 ∈ 𝑃𝑡 yields the asser-
tion for bounded 𝑓.
Now, let 𝑓 again be (possibly) unbounded. It remains to show that 𝑢∞ ≥ S(𝑡)𝑢0. By the previ-

ous step, we have that 𝑢∞ ≥ 𝑢∞,𝑀 = S𝑀(𝑡) for all 𝑀 ≥ 0, where 𝑢∞,𝑀 is given by (12) but w.r.t.
(𝑀, 𝑓𝑀) instead of ( , 𝑓). Since S𝑀(𝑡)𝑢0 ↗ S(𝑡)𝑢0 as 𝑀 →∞, we obtain that 𝑢∞ ≥ S(𝑡)𝑢0,
which ends the proof. □

Choosing, for example,𝜋𝑛 = {
𝑘𝑡

2𝑛
∶ 𝑘 ∈ {0, … , 2𝑛}} or𝜋𝑛 =

{
𝑘𝑡

𝑛!
∶ 𝑘 ∈ {0, … , 𝑛!}

}
in Lemma 4.6,

we obtain the following corollaries.

Corollary 4.7. For all 𝑡 ≥ 0, there exists a sequence (𝜋𝑛)𝑛∈ℕ ⊂ 𝑃𝑡 with
𝜋𝑛𝑢0 ↗ S(𝑡)𝑢0

as 𝑛 → ∞ for all 𝑢0 ∈ ℝ𝑑 .
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Corollary 4.8. For all 𝑡 ≥ 0 and 𝑢0 ∈ ℝ𝑑,
S(𝑡)𝑢0 = sup

𝑛∈ℕ
𝑛1
𝑛

𝑢0 = lim
𝑛→∞

2𝑛
2−𝑛
𝑢0.

Proposition 4.9. The family S = (S(𝑡))𝑡≥0 defines a semigroup of convex kernels from ℝ𝑑 to ℝ𝑑.
In particular, for all 𝑠, 𝑡 ≥ 0, we have the dynamic programming principle

S(𝑠 + 𝑡) = S(𝑠)S(𝑡). (13)

Moreover, the Nisio semigroup S of ( , 𝑓) coincides with the semigroup envelope of ( , 𝑓) (cf. Defi-
nition 2.4).

Proof. We have already shown thatS(𝑡) is a convex kernel for all 𝑡 ≥ 0, and, by definition,S(0) =
𝐼𝑑. Let 𝑢0 ∈ ℝ𝑑. If 𝑠 = 0 or 𝑡 = 0, the statement is trivial. Therefore, let 𝑠, 𝑡 > 0, 𝜋0 ∈ 𝑃𝑠+𝑡 and
𝜋 ∶= 𝜋0 ∪ {𝑠}. Then, 𝜋 ∈ 𝑃𝑠+𝑡 with 𝜋0 ⊂ 𝜋. Hence, by (11), we obtain that

𝜋0𝑢0 ≤ 𝜋𝑢0.
Let𝑚 ∈ ℕ, 0 = 𝑡0 < 𝑡1 < ⋯𝑡𝑚 = 𝑠 + 𝑡 with 𝜋 = {𝑡0, … , 𝑡𝑚} and 𝑖 ∈ {1, … ,𝑚} with 𝑡𝑖 = 𝑠. Then,

𝜋1 ∶= {𝑡0, … , 𝑡𝑖} ∈ 𝑃𝑠 and 𝜋2 ∶= {𝑡𝑖 − 𝑠, … , 𝑡𝑚 − 𝑠} ∈ 𝑃𝑡

with

𝜋1 = 𝑡1−𝑡0 …𝑡𝑖−𝑡𝑖−1 and 𝜋2 = 𝑡𝑖+1−𝑡𝑖 …𝑡𝑚−𝑡𝑚−1 .
We thus see that

𝜋0𝑢0 ≤ 𝜋𝑢0 = 𝑡1−𝑡0 …𝑡𝑚−𝑡𝑚−1𝑢0 =
(𝑡1−𝑡0 …𝑡𝑖−𝑡𝑖−1

)(𝑡𝑖+1−𝑡𝑖 …𝑡𝑚−𝑡𝑚−1𝑢0
)

= 𝜋1𝜋2𝑢0 ≤ 𝜋1(S(𝑡)𝑢0) ≤ S(𝑠)S(𝑡)𝑢0.

Taking the supremum over all 𝜋0 ∈ 𝑃𝑠+𝑡, it follows thatS(𝑠 + 𝑡)𝑢0 ≤ S(𝑠)S(𝑡)𝑢0.
Now, let (𝜋𝑛)𝑛∈ℕ ⊂ 𝑃𝑡 with 𝜋𝑛𝑢0 ↗ S(𝑡)𝑢0 as 𝑛 → ∞ (see Corollary 4.7), and fix 𝜋0 ∈ 𝑃𝑠.

Then, for all 𝑛 ∈ ℕ,

𝜋′𝑛 ∶= 𝜋0 ∪ {𝑠 + 𝜏 ∶ 𝜏 ∈ 𝜋𝑛} ∈ 𝑃𝑠+𝑡

with 𝜋′𝑛 = 𝜋0𝜋𝑛 . Therefore,
𝜋0(S(𝑡)𝑢0) = lim

𝑛→∞
𝜋0𝜋𝑛𝑢0 = lim

𝑛→∞
𝜋′𝑛𝑢0 ≤ S(𝑠 + 𝑡)𝑢0.

Taking the supremumover all𝜋0 ∈ 𝑃𝑠 yields thatS(𝑠)S(𝑡)𝑢0 ≤ S(𝑠 + 𝑡)𝑢0. Therefore,S satisfies
the semigroup property (13).
It remains to show that the family S is the semigroup envelope of ( , 𝑓). We have already

shown thatS is a semigroup and, by definition,S(𝑡)𝑢0 ≥ 𝑆𝑞(𝑡)𝑢0 for all 𝑡 ≥ 0,𝑢0 ∈ ℝ𝑑 and 𝑞 ∈  .
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Let (T(𝑡))𝑡≥0 be a semigroup with T(𝑡)𝑢0 ≥ 𝑆𝑞(𝑡)𝑢0 for all 𝑡 ≥ 0, 𝑢0 ∈ ℝ𝑑, and 𝑞 ∈  . Then,
ℎ𝑢0 ≤ T(ℎ)𝑢0 for all ℎ ≥ 0 and 𝑢0 ∈ ℝ𝑑.

Since (T(𝑡))𝑡≥0 is a semigroup and ℎ is monotone for all ℎ ≥ 0, it follows that
𝜋𝑢0 ≤ T(𝑡)𝑢0 for all 𝑡 ≥ 0, 𝜋 ∈ 𝑃𝑡 and 𝑢0 ∈ ℝ𝑑.

Taking the supremum over all 𝜋 ∈ 𝑃𝑡, it follows that S(𝑡)𝑢0 ≤ T(𝑡)𝑢0 for all 𝑡 ≥ 0 and
𝑢0 ∈ ℝ

𝑑. □

To finish the proof of the implication (𝑖𝑖𝑖) ⇒ (𝑖𝑣), it remains to show that the Nisio semigroup
S is uniformly continuous and that it gives rise to the unique classical solution to the nonlinear
ODE (3).

Remark 4.10. Assume that the set  is bounded, that is, sup𝑞∈ ‖𝑞‖ < ∞.

(a) Since  is bounded, it follows that  is Lipschitz continuous. Therefore, the Picard–Lindelöf
Theorem implies that, for every 𝑢0 ∈ ℝ𝑑, the initial value problem

𝑢′(𝑡) = 𝑢(𝑡), 𝑡 ≥ 0, (14)

𝑢(0) = 𝑢0,

has a unique solution 𝑢 ∈ 𝐶1([0,∞);ℝ𝑑). We will show that this solution 𝑢 is given by
𝑢(𝑡) = S(𝑡)𝑢0 for all 𝑡 ≥ 0. That is, the unique solution of the ODE (14) is given by the Nisio
semigroup.

(b) Since  is bounded, the mapping

𝔮 ∶ ℝ𝑑 → ℝ𝑑, 𝑢 ↦ sup
𝑞∈

𝑞𝑢

is well-defined.

The following key estimate and its proof are a straightforward adaption of the proof of (Nisio,
1976/77, Proposition 5) to our setup. Recall that, by Remark 4.3, the boundedness of the family 𝑓
implies the boundedness of the set  .
Lemma 4.11. Assume that the family 𝑓 is bounded. Then,

S(𝑡)𝑢0 − 𝑢0 ≤ ∫
𝑡

0

Σ(𝑠)𝑢0 d𝑠

for all 𝑢0 ∈ ℝ𝑑 and 𝑡 ≥ 0. Here, (Σ(𝑡))𝑡≥0 is the Nisio semigroup w.r.t. the sublinear Q-operator 𝔮
from the previous remark, or more precisely, the Nisio semigroup w.r.t. ( , 𝑓), where 𝑓𝑞 = 0 for all
𝑞 ∈  .
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Proof. Let 𝑢0 ∈ ℝ𝑑 and ℎ > 0. Then, by (8), we have that

𝑆𝑞(ℎ)𝑢0 − 𝑢0 = ∫
ℎ

0

𝑒𝑠𝑞
(
𝑞𝑢0 + 𝑓𝑞

)
d𝑠 ≤ ∫

ℎ

0

Σ(𝑠)𝑢0 d𝑠.

Notice that, by Lemma 4.5, the mapping [0,∞) → ℝ𝑑, 𝑡 ↦ Σ(𝑡)𝑣0 is continuous and therefore
locally integrable for all 𝑣0 ∈ ℝ𝑑. Hence, for all 𝜏 ≥ 0,

ℎ𝑢0 − 𝑢0 ≤ ∫
ℎ

0

Σ(𝑠)𝑢0 d𝑠 = ∫
𝜏+ℎ

𝜏

Σ(𝑠 − 𝜏)𝑢0 d𝑠. (15)

Next, we show that

𝜋𝑢0 − 𝑢0 ≤ ∫
max 𝜋

0

Σ(𝑠)𝑢0 d𝑠 (16)

for all 𝜋 ∈ 𝑃 by an induction on𝑚 = |𝜋|, where |𝜋| denotes the cardinality of 𝜋. If𝑚 = 1, that is,
if 𝜋 = {0}, the statement is trivial. Hence, assume that

𝜋′𝑢0 − 𝑢0 ≤ ∫
max 𝜋′

0

Σ(𝑠)𝑢0 d𝑠

for all𝜋′ ∈ 𝑃with |𝜋′| = 𝑚 for some𝑚 ∈ ℕ. Let𝜋 = {𝑡0, 𝑡1, … , 𝑡𝑚} ∈ 𝑃with 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚
and 𝜋′ ∶= 𝜋 ⧵ {𝑡𝑚}. Then, we obtain that

𝜋𝑢0 − 𝜋′𝑢0 ≤ Σ(𝑡𝑚−1)(𝑡𝑚−𝑡𝑚−1𝑢0 − 𝑢0)
≤ Σ(𝑡𝑚−1)

(
∫

𝑡𝑚

𝑡𝑚−1

Σ(𝑠 − 𝑡𝑚−1)𝑢0 d𝑠
)

≤ ∫
𝑡𝑚

𝑡𝑚−1

Σ(𝑠)𝑢0 d𝑠,

where, in the second inequality, we used (15) with ℎ = 𝑡𝑚 − 𝑡𝑚−1 and 𝜏 = 𝑡𝑚−1, and, in the last
inequality, we used the sublinearity of Σ(𝑡). Using the induction hypothesis, we thus see that

𝜋𝑢0 − 𝑢0 = (𝜋𝑢0 − 𝜋′𝑢0) + (𝜋′𝑢0 − 𝑢0)

≤ ∫
𝑡𝑚

𝑡𝑚−1

Σ(𝑠)𝑢0 d𝑠 + ∫
𝑡𝑚−1

0

Σ(𝑠)𝑢0 d𝑠 = ∫
max 𝜋

0

Σ(𝑠)𝑢0 d𝑠.

By (16), it follows that

𝜋𝑢0 − 𝑢0 ≤ ∫
𝑡

0

Σ(𝑠)𝑢0 d𝑠

for all 𝜋 ∈ 𝑃𝑡. Taking the supremum over all 𝜋 ∈ 𝑃𝑡, we obtain the assertion. □

The following proposition states that the Nisio semigroup (S(𝑡))𝑡≥0 is differentiable at zero if
the family 𝑓 is bounded.
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Proposition 4.12. Assume that 𝑓 is bounded. Then, for all 𝑢0 ∈ ℝ𝑑,‖‖‖‖S(ℎ)𝑢0 − 𝑢0
ℎ

−𝑢0‖‖‖‖∞ → 0, ℎ ↘ 0.

Proof. Since 𝑓 is bounded, it follows that  is bounded (see Remark 4.3). Let 𝜀 > 0 and 𝑢0 ∈ ℝ𝑑.
Using Lemma 4.5, the boundedness of  and (9), there exists some ℎ0 > 0 such that, for all 0 <
ℎ ≤ ℎ0, ‖‖‖𝑒ℎ𝑞(𝑞𝑢0 + 𝑓𝑞) − (

𝑞𝑢0 + 𝑓𝑞
)‖‖‖∞ ≤ ‖𝑒ℎ𝑞 − 𝐼𝑑‖ ⋅ ‖𝑞𝑢0 + 𝑓𝑞‖∞

≤ (
𝑒‖𝑞‖ℎ − 1)‖𝑞𝑢0 + 𝑓𝑞‖∞ ≤ 𝜀,

for all 𝑞 ∈  , and
Σ(ℎ)𝑢0 −𝑢0 ≤ 𝜀.

Let 0 < ℎ ≤ ℎ0. Then,

S(ℎ)𝑢0 − 𝑢0 ≥ 𝑆𝑞(ℎ)𝑢0 − 𝑢0 = ∫
ℎ

0

𝑒𝑡𝑞
(
𝑞𝑢0 + 𝑓𝑞

)
d𝑠 ≥ (

𝑞𝑢0 + 𝑓𝑞 − 𝜀
)
ℎ

for all 𝑞 ∈  . Dividing by ℎ and taking the supremum over all 𝑞 ∈  , it follows that
S(ℎ)𝑢0 − 𝑢0

ℎ
≥ 𝑢0 − 𝜀. (17)

Moreover, by Lemma 4.11,

S(ℎ)𝑢0 − 𝑢0 − ℎ𝑢0 ≤ ∫
ℎ

0

Σ(𝑠)𝑢0 d𝑠 − ℎ𝑢0 = ∫
ℎ

0

(Σ(𝑠)𝑢0 −𝑢0) d𝑠 ≤ ℎ𝜀.

Dividing again by ℎ > 0 yields

S(ℎ)𝑢0 − 𝑢0
ℎ

−𝑢0 ≤ 𝜀,
which, together with (17), implies that‖‖‖‖S(ℎ)𝑢0 − 𝑢0

ℎ
−𝑢0‖‖‖‖∞ ≤ 𝜀.

□

Corollary 4.13. Let 𝑓 be bounded, 𝑢0 ∈ ℝ𝑑, and 𝑢(𝑡) ∶= S(𝑡)𝑢0 for all 𝑡 ≥ 0. Then, 𝑢 ∈
𝐶1([0,∞);ℝ𝑑) is the unique classical solution to the ODE

𝑢′(𝑡) = 𝑢(𝑡), 𝑡 ≥ 0
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with 𝑢(0) = 𝑢0.

Proof. Let 𝑢0 ∈ ℝ𝑑 and 𝑡 ≥ 0. Then, by Proposition 4.12,

lim
ℎ↘0

S(𝑡 + ℎ)𝑢0 −S(𝑡)𝑢0
ℎ

lim
ℎ↘0

S(ℎ)S(𝑡)𝑢0 −S(𝑡)𝑢0
ℎ

= S(𝑡)𝑢0.

This shows that the map 𝑢 ∶ [0,∞) → ℝ𝑑, 𝑡 ↦ S(𝑡)𝑢0 is continuous (see Lemma 4.5) and right
differentiable with continuous right derivative

[0,∞) → ℝ𝑑, 𝑡 ↦ S(𝑡)𝑢0,

where we used that the fact that  ∶ ℝ𝑑 → ℝ𝑑 is convex and thus continuous. Therefore, 𝑢 is
continuously differentiable with 𝑢′(𝑡) = 𝑢(𝑡), for all 𝑡 ≥ 0, and 𝑢(0) = 𝑢0. The Picard–Lindelöf
theorem together with the local Lipschitz continuity of the convex map ∶ ℝ𝑑 → ℝ𝑑 implies the
uniqueness of 𝑢. □

Corollary 4.14. Let 𝑓 be bounded. Then, there exists some constant 𝐿 > 0 such that

‖S(𝑡)𝑢0 − 𝑢0‖∞ ≤ 𝐿𝑡‖𝑢0‖∞
for all 𝑡 ≥ 0 and 𝑢0 ∈ ℝ𝑑.
Proof. Since 𝑓 is bounded, we have that  is bounded, and therefore,  is Lipschitz continuous
with Lipschitz constant 𝐿 ∶= sup𝑞∈ ‖𝑞‖. For all 𝑢0 ∈ ℝ𝑑, we thus obtain that

‖S(𝑡)𝑢0 − 𝑢0‖∞ ≤ ∫
𝑡

0

‖S(𝑠)𝑢0‖∞ d𝑠 ≤ ∫
𝑡

0

𝐿‖S(𝑠)𝑢0‖∞ d𝑠 ≤ 𝐿𝑡‖𝑢0‖∞.
□

In order to end the proof of Theorem 2.5, we have to extend Corollary 4.13 to the unbounded
case. We start with the following remark, which is the key observation in order to finish the proof
of Theorem 2.5.

Remark 4.15. Let ∗ ∶= {𝑞 ∈ ℝ𝑑×𝑑 |∗(𝑞) < ∞} and 𝑓∗𝑞 ∶= −∗(𝑞) for all 𝑞 ∈ ∗, where ∗ is
the conjugate function of (cf. Remark 3.1). For all𝑀 ≥ 0, let∗

𝑀
and𝑀 be as inRemark 4.3with

 being replaced by∗. Moreover, let (S∗
𝑀
(𝑡))𝑡≥0 be the Nisio semigroup w.r.t. (∗𝑀, (𝑓∗𝑞)𝑞∈∗𝑀 ) for

𝑀 ≥ 0. As ⋃
𝑀≥0

∗
𝑀
= ∗,

it follows that S∗
𝑀
(𝑡) ↗ S∗(𝑡) as 𝑀 →∞ for all 𝑡 ≥ 0, where (S∗(𝑡))𝑡≥0 is the Nisio semigroup

w.r.t. (∗, 𝑓∗). Let 𝑅 > 0 be fixed. Then, there exists some 𝑀0 ≥ 0 such that 𝑢 = 𝑀0
𝑢 for all

𝑢 ∈ ℝ𝑑 with ‖𝑢‖∞ ≤ 𝑅, by choice of ∗ and 𝑓∗. Let 𝑢0 ∈ ℝ𝑑 with ‖𝑢0‖∞ ≤ 𝑅. Then, it follows
that ‖S∗

𝑀
(𝑡)𝑢0‖∞ ≤ 𝑅 for all 𝑡 ≥ 0 and 𝑀 ≥ 0, which implies that S∗

𝑀
(𝑡)𝑢0 = S∗

𝑀0
(𝑡)𝑢0 for all
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𝑡 ≥ 0 and𝑀 ≥ 𝑀0 by the uniqueness obtained from the Picard–Lindelöf theorem. In particular,
S∗(𝑡)𝑢0 = S∗

𝑀0
(𝑡)𝑢0 for all 𝑡 ≥ 0, which shows that the nonlinear ODE (3) has a unique classical

solution 𝑢∗ ∈ 𝐶1([0,∞);ℝ𝑑) with 𝑢∗(0) = 𝑢0. This solution is given by 𝑢∗(𝑡) = S∗(𝑡)𝑢0 for all
𝑡 ≥ 0. By Corollary 4.14, we thus get that S∗(𝑡) → 𝐼 as 𝑡 ↘ 0 uniformly on compact sets.

We are now able to finish the proof of Theorem 2.5. The following proposition summarizes the
results from this section, and proves the implication (𝑖𝑖𝑖) ⇒ (𝑖𝑣).

Proposition 4.16. The Nisio semigroup (S(𝑡))𝑡≥0 is a uniformly continuous convex Markovian
semigroup and, for all 𝑢0 ∈ ℝ𝑑, the function 𝑢 ∶ [0,∞) → ℝ𝑑, 𝑡 ↦ S(𝑡)𝑢0 is the unique classical
solution 𝑢 ∈ 𝐶1([0,∞);ℝ𝑑) to the initial value problem

𝑢′(𝑡) = 𝑢(𝑡), 𝑡 ≥ 0,
𝑢(0) = 𝑢0.

Moreover, the Nisio semigroupS of ( , 𝑓) coincides with the semigroup envelope of ( , 𝑓).
Proof. In view of Proposition 4.9, it remains to show that the Nisio semigroup is uniformly con-
tinuous and that 𝑢 is the unique solution to the ODE 𝑢′ = 𝑢 with initial value 𝑢(0) = 𝑢0. By
Remark 4.15, the initial value problem

𝑢′(𝑡) = 𝑢(𝑡), 𝑡 ≥ 0,
𝑢(0) = 𝑢0,

has a unique classical solution 𝑢∗ ∈ 𝐶1([0,∞);ℝ𝑑), which is given by

𝑢∗(𝑡) ∶= S∗(𝑡)𝑢0 for all 𝑡 ≥ 0.
We show that 𝑢∗(𝑡) = S(𝑡)𝑢0, for all 𝑡 ≥ 0. Let 𝑅 ∶= ‖𝑢0‖∞. For all𝑀 ≥ 0, let (𝑀, 𝑓𝑀), 𝑀 and
S𝑀 = (S𝑀(𝑡))𝑡≥0 be as in Remark 4.3. Let 𝜀 > 0. Since  ∶ ℝ𝑑 → ℝ𝑑 is convex, it is locally Lips-
chitz. Hence, by Dini’s lemma, there exists some𝑀0 ≥ 0 such that

‖𝑣0 −𝑀0
𝑣0‖∞ ≤ 𝜀

for all 𝑣0 ∈ ℝ𝑑 with ‖𝑣‖∞ ≤ 𝑅. Further, there exists some constant 𝐿 > 0 such that
‖𝑣1 −𝑣2‖∞ ≤ 𝐿‖𝑣1 − 𝑣2‖∞

for all 𝑣1, 𝑣2 ∈ ℝ𝑑 with ‖𝑣1‖∞ ≤ 𝑅 and ‖𝑣2‖∞ ≤ 𝑅. Since ‖𝑢∗(𝑡)‖∞ ≤ 𝑅 and ‖S𝑀(𝑡)𝑢0‖∞ ≤ 𝑅 for
all𝑀 ≥ 0 and 𝑡 ≥ 0, we obtain that

‖S𝑀(𝑡)𝑢0 − 𝑢
∗(𝑡)‖∞ =

‖‖‖‖∫
𝑡

0

𝑀S𝑀(𝑠)𝑢0 −𝑢∗(𝑠) d𝑠‖‖‖‖∞
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≤ ∫
𝑡

0

‖𝑀S𝑀(𝑠)𝑢0 −𝑢∗(𝑠)‖∞ d𝑠
≤ ∫

𝑡

0

(‖S𝑀(𝑠)𝑢0 −𝑢∗(𝑠)‖∞ + 𝜀) d𝑠
≤ ∫

𝑡

0

𝐿‖S𝑀(𝑠)𝑢0 − 𝑢
∗(𝑠)‖∞ + 𝜀 d𝑠

for all 𝑡 ≥ 0 and𝑀 ≥ 𝑀0. By Gronwall’s lemma, we thus get that

‖S𝑀(𝑡)𝑢0 − 𝑢
∗(𝑡)‖∞ ≤ 𝜀𝑡𝑒𝐿𝑡

for all 𝑡 ≥ 0 and𝑀 ≥ 𝑀0, showing thatS𝑀(𝑡)𝑢0 → 𝑢∗(𝑡) as𝑀 →∞ for all 𝑡 ≥ 0. However, since
S𝑀(𝑡)𝑢0 ↗ S(𝑡)𝑢0 as𝑀 →∞ for all 𝑡 ≥ 0, we obtain that 𝑢∗(𝑡) = S(𝑡)𝑢0. This shows thatS(𝑡) =
S∗(𝑡) for all 𝑡 ≥ 0, which, together with Remark 4.15, implies thatS(𝑡) = S∗(𝑡) → 𝐼 uniformly on
compact sets as ℎ ↘ 0. This ends the proof of this proposition and also the proof of the implication
(𝑖𝑖𝑖) ⇒ (𝑖𝑣) in Theorem 2.5. □

The remaining implication (𝑖𝑣) ⇒ (𝑣) is a direct consequence of (Denk et al., 2018, Theorem
5.6), which we summarize in the following proposition.

Proposition 4.17. LetS be a uniformly continuous convexMarkovian semigroup. Then, there exists
a convex Markov chain (Ω, ,  , (𝑋𝑡)𝑡≥0) such that

(S(𝑡)𝑢0)𝑖 = 𝑖(𝑢0(𝑋𝑡))
for all 𝑢0 ∈ ℝ𝑑, 𝑡 ≥ 0 and 𝑖 ∈ {1, … , 𝑑}.
Restricting the time parameter of this process to ℕ0 leads to a discrete-time Markov chain with

transition operator S(1) (cf. Denk et al., 2018, Example 5.3). We conclude this section with the
following remark, where we derive a dual representation of the semigroup envelope.

Remark 4.18. We will now derive a dual representation of the semigroup envelope by viewing
the semigroup envelope as the cost functional of an optimal control problem, where, roughly
speaking, “nature” tries to control the system into the worst possible scenario (using controls
within the set ). For 𝑞 = (𝑞1, … 𝑞𝑑) ∈ 𝑑 and 𝑡 ≥ 0, let 𝑆𝑞(𝑡) ∈ ℝ𝑑×𝑑 be given by(

𝑆𝑞(𝑡)𝑢0
)
𝑖
∶=

(
𝑆𝑞𝑖 (𝑡)𝑢0

)
𝑖

(18)

for all 𝑢0 ∈ ℝ𝑑 and 𝑖 ∈ {1, … , 𝑑}. That is, 𝑆𝑞(𝑡) is the matrix whose 𝑖th row is the 𝑖th row of 𝑆𝑞𝑖 (𝑡)
for all 𝑖 ∈ {1, … , 𝑑}. Here, the interpretation is that, in every state 𝑖 ∈ {1, … , 𝑑}, “nature” is allowed
to choose a different model 𝑞 ∈  . We now add a dynamic component, and define

𝑄𝑡 ∶=

{
(𝑞𝑘, ℎ𝑘)𝑘=1,…,𝑚 ∈

(𝑑 × [0, 𝑡])𝑚 ||||𝑚 ∈ ℕ,

𝑚∑
𝑘=1

ℎ𝑘 = 𝑡

}
.
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Roughly speaking, 𝑄𝑡 corresponds to the set of all (space-time discrete) admissible controls for
the control set  . For an admissible control 𝜃 = (𝑞𝑘, ℎ𝑘)𝑘=1,…,𝑚 ∈ 𝑄𝑡 with 𝑚 ∈ ℕ and 𝑢0 ∈ ℝ𝑑,
we then define

𝑆𝜃𝑢0 ∶= 𝑆𝑞1(ℎ1)⋯𝑆𝑞𝑚(ℎ𝑚)𝑢0,

where 𝑆𝑞𝑘 (ℎ𝑘) is defined as in (18) for 𝑘 = 1,… ,𝑚. Then, for all 𝑢0 ∈ ℝ
𝑑,

S(𝑡)𝑢0 = sup
𝜋∈𝑃𝑡

𝜋𝑢0 = sup
𝜃∈𝑄𝑡

𝑆𝜃𝑢0. (19)

In fact, by definition of 𝑄𝑡, it follows that 𝑆𝑞(𝑡)𝑢0 ≤ sup𝜃∈𝑄𝑡 𝑆𝜃𝑢0 ≤ S(𝑡)𝑢0 for all 𝑞 ∈  , 𝑡 ≥ 0
and 𝑢0 ∈ ℝ𝑑. On the other hand, one readily verifies that T(𝑡)𝑢0 ∶= sup𝜃∈𝑄𝑡 𝑆𝜃𝑢0, for 𝑡 ≥ 0 and
𝑢0 ∈ ℝ

𝑑, gives rise to a semigroup (T(𝑡))𝑡≥0. Since (S(𝑡))𝑡≥0 is the semigroup envelope of ( , 𝑓),
it follows that T(𝑡) = S(𝑡) for all 𝑡 ≥ 0.

5 COMPUTATION OF PRICE BOUNDS UNDERMODEL
UNCERTAINTY

In this section, we demonstrate how price bounds for European contingent claims under uncer-
tainty can be computed numerically in certain scenarios, first, via the explicit primal/dual descrip-
tion (19) of the semigroup envelope and, second, by solving the pricing ODE (3). Throughout, we
consider two Q-matrices 𝑞0 ∈ ℝ𝑑×𝑑 and 𝑞 ∈ ℝ𝑑×𝑑 and, for 𝜆𝑙, 𝜆ℎ ∈ ℝ with 𝜆𝑙 ≤ 𝜆ℎ, the interval
[𝜆𝑙, 𝜆ℎ]. Then, we consider the Q-operator  ∶ ℝ𝑑 → ℝ𝑑 given by

𝑢0 ∶= 𝑞0𝑢0 + max
𝜆∈[𝜆𝑙,𝜆ℎ]

𝜆𝑞𝑢0 for all 𝑢0 ∈ ℝ𝑑.

Then, by Example 3.4,  is sublinear and has the (minimal) dual representation ({𝑞0 + 𝜆𝑙𝑞, 𝑞0 +
𝜆ℎ𝑞}, (0, 0)). Choosing the latter as a dual representation as in Theorem 2.5 (iii), we may compute
 and ℎ, for ℎ ≥ 0, via

𝑢0 = max
𝜆=𝜆𝑙,𝜆ℎ

𝜆𝑞0𝑢0 + 𝑞𝑢0 for all 𝑢0 ∈ ℝ𝑑, (20)

and

ℎ𝑢0 = max
𝜆=𝜆𝑙,𝜆ℎ

𝑒ℎ(𝑞0+𝜆𝑞)𝑢0 for all 𝑢0 ∈ ℝ𝑑. (21)

In the sequel, we use (20) and (21) in order to compute upper bounds for prices of European
contingent claims under uncertainty. Replacing the maximum by a minimum in (20) and (21),
we obtain lower bounds for the prices. In the examples, we consider, for suitable 𝛿 > 0, the rate
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F IGURE 1 Upper and lower price bounds for a butterfly spread (24) with 𝐾 = 4 and 𝐿 = 5 under drift uncer-
tainty depending on the current price in red and green, respectively. In blue and black, we see the value of the
butterfly in the Bachelier model with drift −1 and 0, respectively [Color figure can be viewed at wileyonlineli-
brary.com]

matrix

𝑎 ∶=
1

𝛿2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 ⋯ 0

1 −2 1 0 0 ⋯ 0

0 1 −2 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 1 −2 1 0

0 ⋯ 0 0 1 −2 1

0 ⋯ 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

which is a discretization of the second space derivative with Neumann boundary conditions, and
the rate matrix

𝑏 ∶=
1

𝛿

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 ⋯ 0

0 −1 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 −1 1 0

0 ⋯ 0 0 −1 1

0 ⋯ 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
(23)
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F IGURE 2 Upper and lower price bounds for a bull spread (25) with 𝐾 = 4 and 𝐿 = 5 under volatility uncer-
tainty depending on the current price in red and green, respectively. In black and blue, we see the value of the
butterfly in the Bachelier model with drift 1 and 1.5, respectively [Color figure can be viewed at wileyonlineli-
brary.com]

as a discretization of the first space derivative. Then, the rate matrix

𝜎2

2
𝑎 + 𝜇𝑏, for 𝜎 > 0 and 𝜇 ∈ ℝ,

is a finite-difference discretization of 𝜎
2

2
𝜕𝑥𝑥 + 𝜇𝜕𝑥, which is the generator of a Brownian motion

with volatility 𝜎 and drift 𝜇.
We start with an example, where we demonstrate how the semigroup envelope can be com-

puted by solving the nonlinear pricing ODE (3). In the following example, we compute the upper
and lower semigroup envelope for a discretized version of a Brownian motion (Bachelier model)
with drift or volatility uncertainty. The solutions resemble the price bounds resulting from the
parameter uncertainty of the underlying asset (the discretized version of a Brownian Motion) for
a particular European contingent claim with fixed maturity as a function of the current price of
the underlying asset.

Example 5.1. In this example, we compute the semigroup envelope (S(𝑡))𝑡≥0 by solving the ODE
𝑢′ = 𝑢 𝑢(0) = 𝑢0 ∈ ℝ𝑑 with the explicit Euler method. The latter could be replaced by any other
Runge–Kuttamethod.We consider the case, where 𝑑 = 101, 𝛿 = 1

10
. The state space is 𝑆 = {𝑖𝛿 | 𝑖 ∈

{0, … , 100}}, which as a discretization of the interval [0,10], the maturity is 𝑡 = 1, and we choose
1,000 time steps in the explicit Euler method. We consider the following two examples.
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F IGURE 3 Upper and lower price bounds for a butterfly spread (24) with 𝐾 = 4 and 𝐿 = 5 under drift uncer-
tainty from Example 5.1(a) in red and green, respectively. In blue and black, the upper and lower price bounds,
computed via (26), respectively [Color figure can be viewed at wileyonlinelibrary.com]

(a) Let  be given by (20) with 𝑞0 ∶= 𝑎, 𝑞 ∶= 𝑏, 𝜆𝑙 ∶= −1, and 𝜆ℎ ∶= 1, that is, we consider the
case of an uncertain drift parameter in the interval [−1, 1]. We price a butterfly spread, which
is given by

𝑢0(𝑥) = (𝐿 − 𝐾 − |𝑥 − 𝐿|)+, for 𝑥 = 𝑖𝛿 and 𝑖 ∈ {1, … , 100}, (24)

with 𝐾 = 4 and 𝐿 = 5. In Figure 1, we depict the upper and lower price bounds as well
as the prices corresponding to the Bachelier model with drift −1 and 0 in blue and black,
respectively.

(b) Now, let 𝑞0 ∶= 0, 𝑞 ∶= 𝑎, 𝜆𝑙 ∶= 0.5, and 𝜆ℎ ∶= 1.5 in (20). That is, we consider the case of an
uncertain volatility in the interval [0.5,1.5]. We price a bull spread

𝑢0(𝑥) = min
{
(𝑥 − 𝐾)+, 𝐿 − 𝐾

}
, for 𝑥 = 𝑖𝛿 and 𝑖 ∈ {1, … , 100}, (25)

with 𝐾 = 4 and 𝐿 = 5. In Figure 2, we see the upper and lower price bounds as well as the
prices corresponding to the Bachelier model with volatilities 1 and 1.5 in black and blue,
respectively.

The following example presents a second algorithm, using the primal/dual representation of
the semigroup envelope, for the computation of price bounds for European contingent claims
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F IGURE 4 Upper and lower price bounds for a bull spread (25) with 𝐾 = 4 and 𝐿 = 5 under volatility uncer-
tainty from Example 5.1(b) in red and green, respectively. In blue and black, the upper and lower price bounds,
computed via (26), respectively [Color figure can be viewed at wileyonlinelibrary.com]

undermodel uncertainty.We compare the results with the ones from the previous example, which
were obtained using Euler’s method.

Example 5.2. For a fixed maturity 𝑡 ≥ 0, we consider the partitions
𝜋𝑛 ∶= {𝑘2

−𝑛𝑡 | 𝑘 = 0,… , 2𝑛}, for 𝑛 ∈ ℕ0,

of the time interval [0, 𝑡]. We are then able to approximate the upper bound for prices of European
contingent claims under uncertainty with maturity 𝑡 = 1 by computing, for 𝑛 ∈ ℕ0 sufficiently
large,

2−𝑛𝑡 ⋯ 2−𝑛𝑡
⏟⎴⎴⎴⏟⎴⎴⎴⏟

2𝑛−times

𝑢 (26)

with ℎ given by (21) for ℎ ≥ 0. The fundamental system 𝑒ℎ(𝑞0+𝜆𝑞), for 𝜆 = 𝜆ℎ, 𝜆𝑙, appearing in (21)
can either be computed via the Jordan decomposition of 𝑞0 + 𝜆𝑞, by the approximation(

𝐼 +
ℎ

𝑘
(𝑞0 + 𝜆𝑞)

)𝑘
(27)
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with 𝑘 ∈ ℕ0 sufficiently large or by numerically solving the matrix-valued ODE

𝑈′ = (𝑞0 + 𝜆𝑞)𝑈 with 𝑈(0) = 𝐼,

where 𝐼 = 𝐼𝑑 is the 𝑑 × 𝑑-identity matrix. We illustrate the approximation of the semigroup enve-
lope via (26) in the following two examples, where 𝑎 and 𝑏 are given by (22) and (23). Again, we
consider the case, where, 𝑑 = 101, 𝛿 = 1

10
and the maturity is 𝑡 = 1. In both examples, we choose

𝑛 = 10, that is, we consider the partition 𝜋10 with 𝑡 = 1, and use (27) with 𝑘 = 10 for the compu-
tation of 𝑒ℎ(𝑞0+𝜆𝑞) for 𝜆 = 𝜆ℎ, 𝜆𝑙.

(a) As in Example 5.1(a), let 𝑞0 ∶= 𝑎, 𝑞 ∶= 𝑏, 𝜆𝑙 ∶= −1 and 𝜆ℎ ∶= 1. Again, we compute the price
of a butterfly spread,which is given by (24)with𝐾 = 4 and𝐿 = 5. In Figure 3, we see the upper
and lower price curves from the previous example as well as the price bounds computed in
this example. We observe that the price bounds match very well.

(b) We consider the case of an uncertain volatility parameter from Example 5.1(b), that is, let
𝑞0 ∶= 0, 𝑞 ∶= 𝑎, 𝜆𝑙 ∶= 0.5, and 𝜆ℎ ∶= 1.5. As in Example 5.1(b), we price a bull spread given
by (25) with 𝐾 = 4 and 𝐿 = 5. In Figure 4, we again depict the upper and lower price bounds
from the previous example and this example. As in part (a), we observe that the price bounds
perfectly match. □
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