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Abstract

Machine learning algorithms are becoming more and more important in everyday life.
Applications in search engines, driver assistance systems, consumer electronics, and
so on use them heavily and would not be as powerful without them. Neural Networks
(NNs), for example, are state-of-the-art classification approaches and dominate the
field. However, they are difficult to interpret and not fully understood. For instance,
the existence of adversarial examples that are imperceptible to humans contradicts
the general belief that convolutional NNs classify objects in images mainly by break-
ing them down into increasingly complex object shapes. In this thesis, we study
prototype-based classification algorithms with the goal of improving the classifica-
tion capabilities of such algorithms while simultaneously preserving robustness and
interpretability properties. Moreover, we investigate how properties of prototype-
based classification algorithms can be transferred to NNs in order to increase their
interpretability. First, we derive the concept of set-prototypes and apply it in a
Learning Vector Quantization (LVQ) framework—a well-understood classification al-
gorithm. We examine the mathematical properties and show that the derived method
is provably robust against adversarial attacks. Furthermore, the method consistently
outperforms other LVQ approaches while still being interpretable. Second, we relax
the class-specific prototype concept to that of components and apply it in LVQ- and
NN-based classifiers. This framework provides promising interpretation techniques
for NNs. For example, we use them to explain how an adversarial attack is fooling an
NN. We evaluate the methods on both toy and real-world datasets, including Indian
Pine, MNIST, CIFAR-10, GTSRB, and ImageNet.





Contents

1 Introduction 1
1.1 Scope and goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Learning Vector Quantization 9
2.1 General concept: Dissimilarities and prototypes . . . . . . . . . . . . . 9

2.1.1 Dissimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Prototypes and the best matching prototype principle . . . . . 13

2.2 Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Kohonen’s learning vector quantization algorithms . . . . . . . 16
2.2.2 Generalized learning vector quantization . . . . . . . . . . . . . 17
2.2.3 Generalized matrix learning vector quantization . . . . . . . . . 20

3 Generalized Tangent Learning Vector Quantization 23
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Set-prototypes and respective learning vector quantization variants . . 27

3.2.1 Generalized tangent learning vector quantization: Affine sub-
space prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Restricted generalized tangent learning vector quantization:
ns-orthotope prototypes . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Relations to other concepts . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Hausdorff distances . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Tangent space approximations . . . . . . . . . . . . . . . . . . 46
3.3.3 Generalized matrix learning vector quantization . . . . . . . . . 48

3.4 Accuracy and interpretability evaluations . . . . . . . . . . . . . . . . 52
3.4.1 Toy datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Generalized tangent learning vector quantization as margin maximizer 68
3.5.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 73



x Contents

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Classification-by-Components Networks 89
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Probabilistic modeling of reasoning over a set of components . . . . . 93

4.2.1 Reasoning over a set of full-size components . . . . . . . . . . . 94
4.2.2 Reasoning over a set of patch components . . . . . . . . . . . . 101
4.2.3 Multiple components and reasoning strategies . . . . . . . . . . 103
4.2.4 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Joint training with a trainable feature extractor . . . . . . . . . . . . . 111
4.4 Evaluation without a feature extractor . . . . . . . . . . . . . . . . . . 113
4.5 Evaluation with a feature extractor . . . . . . . . . . . . . . . . . . . . 117

4.5.1 MNIST: Ablation study . . . . . . . . . . . . . . . . . . . . . . 117
4.5.2 MNIST: Varying the number of components . . . . . . . . . . 124
4.5.3 MNIST: Initial robustness and rejection evaluation . . . . . . 128
4.5.4 MNIST: Interpretation of the reasoning process . . . . . . . . 132
4.5.5 GTSRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.5.6 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.5.7 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Summary and Concluding Remarks 159

Publications 161

Mathematical Symbols 165

Acronyms 171

References 173



Chapter 1

Introduction

It is indisputable that we are experiencing a digital revolution right now. We
are working on the development of self-driving cars, talking about smart homes

and cities, and the transformation of the conventional industry to Industry 4.0. A
common buzzword found in all these topics is Machine Learning (ML), nowadays
better known as artificial intelligence. Even though most people only associate the
aforementioned topics with ML, it has been part of our daily life for years. For
example, spam filters, online purchase recommendations, spell checkers, translators,
movie animations, internet search engines, computer game agents, and so on have
been taking advantage of this technology for a long time now.

But to start with, what is ML? It is the selection or definition of an algorithm
based on data or available information to generate or imitate a desired behavior.
As a simple and naive example, consider the common mathematical school task of
fitting a polynomial function of a certain degree based on a set of support points.
The support points are the dataset and the polynomial function of a certain degree
is the ML model. By fitting the polynomial to the support points (usually by solving
a system of linear equations), we train the model on the dataset. After the training,
we can evaluate the polynomial for arbitrary arguments to obtain predictions. In
school, such trained “ML models” are linked to questions about the deepest point of
a suspension bridge.

So what is different in current ML applications? Instead of having a simple
polynomial function, we have complex concatenations of several nonlinear operations
with thousands or millions of trainable parameters. Additionally, fitting these models
is—very often—based on big datasets and the common idea to describe a desired be-
havior by data. Based on this, we usually train the models via iterative optimization
schemes. This relatively simple principle is very powerful and has led to models with
human or superhuman performance. For instance, Silver et al. (2017) have created
a model called AlphaGo Zero that defeats the best players in the board game Go.
Moreover, this principle was used to train an algorithm that generated a modern art
image that was sold at the famous auction house Christie’s for a groundbreaking
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price of $ 432 500.1

If we measure the difficulty of a particular task by how many people in the world
can do it, we might wonder why we do not have self-driving cars yet, considering
that most people—even if they cannot play Go or draw like an artist—can drive a
car. Leaving aside the fact that this argumentation is not really scientific, it clearly
reflects the discrepancy between humans and ML methods in terms of the ability to
solve tasks.2

With the development and provision of ML, there comes responsibility and, more
notably, liability for the providers—especially in the field of self-driving cars. Both
AlphaGo Zero and a self-driving car have to interact with humans, but the latter
could cause a hazard for other humans in case of false decisions. Therefore, it is
natural to ask whether an ML method always works correctly. Unfortunately, this
question cannot be easily answered in modern ML architectures as it requires a certain
understanding and interpretation of how the model arrives at its decision.

Currently, the most frequently used ML architectures are (deep) Neural Networks
(NNs)—for example, see I. Goodfellow, Bengio, and Courville (2016) for an introduc-
tion to NNs. Usually, these methods far surpass other methods like support vector
machines, k-nearest neighbors classifiers, logistic regression approaches, and so on
in terms of accuracy. However, NN architectures frequently act as black-boxes and,
hence, are hard to interpret.

An example of this difficulty is that it is not fully understood how an NN models
a decision or, more generally, what an NN has learned about the dataset. These
problems have led to the very active field of research about adversarial examples
(e. g., I. J. Goodfellow, Shlens, & Szegedy, 2015; Szegedy et al., 2014). Roughly
speaking, adversarial examples are input samples that are manipulated in such a
way that they cause a drastic change of the network prediction compared to the
original input. Furthermore, this manipulation should be imperceptible to humans
or the manipulated input should still be correctly predicted by a human expert. At
the moment, it seems that all NNs can be fooled and every defense proposed so far
can be broken (e. g., Carlini, 2019; Carlini & Wagner, 2017; Eykholt et al., 2018;
D. Wang, Li, Wen, Nepal, & Xiang, 2019). Therefore, the question of how this is
possible remains, even though there already have been attempts to provide formal
guarantees for the robustness of NNs (e. g., Croce, Andriushchenko, & Hein, 2019;

1Christie’s. (2018, December 12). Is artificial intelligence set to become art’s next medium?
Retrieved from https://www.christies.com/features/A-collaboration-between-two-artists-
one-human-one-a-machine-9332-1.aspx

2This observation is sometimes called the difference between weak and strong, or narrow and full
artificial intelligence.

https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx
https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx
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Hein & Andriushchenko, 2017; Singla & Feizi, 2019; Wei & Ma, 2019; H. Zhang,
Weng, Chen, Hsieh, & Daniel, 2018).

Another example for the demanded interpretability of NNs is the ongoing research
about visualization techniques. In the last years, a lot of different visualization tech-
niques have been proposed to explain the decision of NNs (e. g., Erhan, Bengio,
Courville, & Vincent, 2009; Nguyen, Yosinski, & Clune, 2019; Zeiler & Fergus, 2014;
Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016). Recently, however, the trustwor-
thiness of some of these techniques for the interpretation of a model decision has been
questioned (Adebayo et al., 2018). But much worse, Geirhos et al. (2019) showed
that the widely accepted property that Convolutional NNs (CNNs) “[recognize] ob-
jects by learning increasingly complex representations of object shapes” (p. 1) might
generally not be true and that image texture is much more important than expected.

All of these aforementioned aspects prevent companies from deploying NNs for
high-stakes decisions as nobody can guarantee their correct operation in every sit-
uation. This could also be the reason why there are still no commercially available
self-driving cars. Rudin (2019) summarized these difficulties of explaining black-
box models and requested: “Stop explaining [black-box] machine learning models for
[high-stakes] decisions and use interpretable models instead” (title of the publication).

1.1 Scope and goal

The objective of this thesis is to study new prototype concepts in the field of classi-
fication learning with the goal to design interpretable and high performing models.
Classification learning is a subfield of ML and especially of supervised learning—for
an introduction, we refer to the book Deep Learning by I. Goodfellow et al. (2016).
Throughout the whole thesis, we define a classification task as the prediction of a
class label c ∈ C = {1, 2, . . . ,#C} for a given input x ∈ Rnx .3 Moreover, we want
to find a classifier function f : Rnx → R#C such that the predicted class label c∗ (x)

is equal to the desired class label of x. In particular, the predicted class label is
computed by applying the winner-takes-all rule to f :4

c∗ (x) = arg max
c∈C

fc (x) . (1.1)

3Without loss of generality, we always define the tasks for vectorial inputs knowing that they
can be extended to multidimensional inputs such as images.

4A letter written in boldface like x refers to a vector or vector function, and a letter written in
normal text mode like xi refers to the i-th element of the vector or vector function.



4 1. Introduction

The classifier function f is parameterized by a parameter vector ϑ of trainable param-
eters (also called weights) and, hence, can be written as f (x;ϑ).5 Given a training
dataset T of labeled inputs (x, c (x)), where c (x) ∈ C is the correct label of x, and a
loss function (also denoted as cost function) l (f (x;ϑ) , c (x)), we adjust the classifier
function f by an empirical risk minimization (also called averaged loss minimization)
with respect to the trainable parameters:

E (f (x;ϑ) , T ) =
1

#T
∑

(x,c(x))∈T

l (f (x;ϑ) , c (x))→ min . (1.2)

Usually, the loss function l mimics a differentiable approximation of the zero-one loss.
According to Bottou and Bousquet (2008), the function E is denoted as the empirical
risk or averaged loss and is iteratively optimized by a form of Stochastic Gradient
Descent (SGD). Given a learning rate η ∈ R>0 and a training sample from T , an
update step in SGD is defined by

ϑ← ϑ− η∇ϑl (f (x;ϑ) , c (x)) . (1.3)

Therefore, we train the classifier by optimizing the parameter vector ϑ. For a proper
convergence, a learning rate scheduler, a mini-batch SGD (e. g., LeCun, Bottou, Orr,
& Müller, 2012), or an advanced SGD version like Adam (introduced by Kingma
& Ba, 2015) can be applied. The computation of the parameter updates by the
gradient with respect to the trainable parameters of the loss function at the given
input point is called back-propagation because we propagate the error—measured by
the loss function between the predicted and the desired output—back to the trainable
parameters of the classifier function.6

The human ability to solve problems by using knowledge of similar problems
solved in the past is called case-based reasoning and is a widely used concept in ML
algorithms (e. g., Aamodt & Plaza, 1994; Slade, 1991). A subfield of these algorithms
is formed by prototype-based methods. In these methods, the knowledge of problems
solved in the past is stored centralized and problem-specific in so-called prototypes.
One of the most prominent prototype-based methods are Learning Vector Quanti-
zation (LVQ) approaches introduced by Kohonen (1990, 1995). These methods are

5Even when we speak of a vector of trainable parameters, we do not write it as one. We use
more comprehensible structures such as sets that can be restructured into vectors.

6Usually, we compute a gradient by the relation ∇xf (x) = ∂
∂x
f (x) and thus by calculating the

partial derivatives. Note that this relationship only holds if f is differentiable in x, or if all the
partial derivatives exist and are continuous in x. Unless otherwise specified, we always assume that
the function is differentiable in all points that are important for the consideration. Consequently,
we use the notations ∇x and ∂

∂x
interchangeably depending on the best readability and always call

it gradient.
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known to be interpretable, and according to Biehl, Hammer, and Villmann (2016),
“the conceptual simplicity and interpretability facilitates efficient exchange with the
domain experts and promotes [transdisciplinary] collaborations” (p. 107). This con-
cept of interpretability is in accordance with the description of Rudin (2019) that
interpretability is a domain-specific notation and, thus, there is no general-purpose
definition. We adopt this concept and call a model interpretable if it is explicitly
constrained in such a way that the learned classification function makes sense to
domain experts.

Besides interpretability, there are various other quantitative measures for trained
classifier functions to evaluate their performance depending on the objective. The
most frequently used measure in classification learning is the classification accuracy.
Given a test dataset of labeled inputs, this is the ratio of how many predictions are
correct to all predictions made. Another commonly used set of measures is created
around the topic of robustness against adversarial examples.

The thesis presents extensions of the prototype concept frequently used in classi-
fication learning. In particular, the thesis contributes

• a framework to extend prototypes to sets such as ns-dimensional affine sub-
spaces or orthotopes and

• a relaxation of the class-specific prototype principle.

These two extensions are exemplarily applied to LVQ methods and the resulting
algorithms are compared to basic LVQ variants. Additionally, the second contribution
is used to construct NN architectures. The goals of these algorithmic extensions are

• to improve the classification capabilities of LVQmethods while preserving or im-
proving the robustness and interpretability properties compared to commonly
used LVQ variants and

• to improve the interpretability properties of feedforward NNs (simply denoted
as NNs) in classification tasks while preserving or improving the performances
compared to architecturally equivalent ordinary NNs.

Therefore, we provide possible solutions for interpretable ML methods with high
performance that could be applicable for high-stakes decisions. Even though the
methods are mostly evaluated for image classification problems, they are data input
generic and can be extended to other data types.7

7Unless otherwise specified, all evaluations are performed on a single Nvidia Tesla V100 32 GB

GPU using the Keras framework (https://www.keras.io) with the Tensorflow back end (https:
//www.tensorflow.org).

https://www.keras.io
https://www.tensorflow.org
https://www.tensorflow.org
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1.2 Overview

This thesis consists of five chapters. After this introductory Chapter 1, we continue
with Chapter 2 about the fundamentals of LVQ. Then, the following two main
chapters are presented.

Chapter 3: This chapter studies the extension of the point-prototype (prototype
vector) principle to set-prototypes and applies the derived point-set dissimilar-
ity in an LVQ framework.

Chapter 4: The focus of this chapter is on the relaxation of the class-specific pro-
totype principle, which results in the classification-by-components framework.
The framework is applied in LVQ-like algorithms as well as in NNs.

These two main chapters can be read independently of each other. The final Chapter 5
presents a summary of this thesis and concluding remarks.

In all chapters, mathematical symbols are used consistently and are summarized
in a list of mathematical symbols. However, sometimes it is inevitable that we re-
define the meaning of a symbol for some paragraphs. In such cases, we make sure
that the meaning is clear from the respective context. For instance, the symbol H
generally denotes the Heaviside step function according to Equation (2.14) but de-
scribes a subgroup in Lemma 3.3. If a symbol is not in the list of mathematical
symbols, then this symbol is only used in a small scope of the thesis with different
meanings in different sections (e. g., the variables x and y). Additionally, acronyms
are summarized in a list of acronyms.

We collected a list of publications that have been published in the context of
this thesis. References to such contributions are marked by square brackets. For
example, [2019c] links to Saralajew, Holdijk, Rees, Asan, and Villmann (2019) with
the title “Classification-by-components: Probabilistic modeling of reasoning over a
set of components.” Hence, instead of making the reference by the author names and
year, we use a shorthand notation for such references that might be substituted by
“a contribution by colleagues and the author” during reading.

The next chapter gives a brief introduction to the fundamentals of LVQ algorithms
used in this thesis. In the first section, we describe the two core concepts of LVQ
algorithms: dissimilarity measures and prototypes. These two concepts are used
to derive basic LVQ schemes in a subsequent section. The first realization is the
heuristically motivated LVQ1 algorithm introduced by Kohonen. Even though we
do not use this algorithm for further considerations in this work, it is an illustrative
example to show how LVQ is motivated by intuitive principles. After that, we describe
the generalized LVQ algorithm that is designed with the goal to have a differentiable
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loss function so that the algorithm can be trained by SGD. Generalized LVQ is the
basis for several advanced LVQ versions—exemplarily, we introduce the generalized
matrix LVQ algorithm. This LVQ type has many similarities with an LVQ concept
described in Chapter 3. Furthermore, we have adapted ideas from LVQ into the
method proposed in Chapter 4.

The main Chapter 3 presents all findings and results about the extension of the
point-prototype concept to sets and the application in LVQ algorithms. Some of the
results are generic and independent of the particular definition of the set-prototypes—
for instance, Theorem 3.3 about the relation of point-set dissimilarities and Hausdorff
distances. However, most discussions are regarding generalized tangent LVQ, a new
LVQ variant in which the prototypes are defined as affine subspaces. For example, we
show that generalized tangent LVQ is a constrained version of the local generalized
matrix LVQ and that the resulting dissimilarity measure is a single-sided tangent
distance. In the experimental evaluation, we show that the derived LVQ method
usually outperforms other LVQ variants while being interpretable. Additionally, we
prove that generalized tangent LVQ is a hypothesis margin maximizer and evaluate
this experimentally by showing that the method is robust against adversarial attacks.

In the following main Chapter 4, we examine the relaxation of the class-specific
prototype principle. Because the prototypes are no longer class-specific, we call them
components and the resulting classification method classification-by-components. To
motivate this framework, we start with an intuitive motivation based on Biederman’s
recognition-by-components theory. Inspired by this, we formulate a probabilistic
reasoning model and extend it to several versions in order to handle different tasks.
After that, we explain how this framework can be used to train an NN-based feature
extractor jointly with the proposed classification network by SGD. In an extensive
evaluation, we present how this classification principle works in an LVQ-like setting
and in combination with an NN-based feature extractor. This evaluation shows
that both frameworks LVQ and NN can benefit from the proposed classification
scheme. Applied in an LVQ-like setting, the method boosts the accuracy results
beyond the usually achievable accuracies with standard LVQ while preserving the
interpretability. When trained with an NN-based feature extractor, the method can
compete with the accuracies of modern NN architectures and preserves a certain
degree of interpretability, as shown in some experiments.

The final Chapter 5 presents an overall summary and concluding remarks, such
as open problems that require further investigation.





Chapter 2

Learning Vector Quantization

L
earning vector quantization is a supervised classification algorithm introduced by
Kohonen (1990, 1995) as the supervised counterpart of vector quantization. It

can be considered as an NN and was originally motivated by a Hebbian learning
rule. Presently, there exist various realizations of LVQ, each designed for different
applications or objectives. In this chapter, we introduce the LVQ algorithms consid-
ered in this thesis. We start with an overview of the common concept. After that,
we describe the basic LVQ1, the Generalized LVQ (GLVQ), and Generalized Matrix
LVQ (GMLVQ). The reason why there are so many different realizations of LVQ is
that the dissimilarity has to be selected with respect to the classification task. Con-
sequently, the choice of an appropriate dissimilarity measure is considered a major
topic of LVQ methods. We refer the interested reader to the articles of Biehl et al.
(2016); Nova and Estévez (2014); and T. Villmann, Bohnsack, and Kaden (2017) for
an overview.

2.1 General concept: Dissimilarities and prototypes

Even though there are several different realizations of LVQ algorithms, the common
concept is always the same: the use of prototypes and the measuring of dissimilar-
ities. Usually, the difference between all realizations is defined by the used dissim-
ilarity. Therefore, we first define the concept of dissimilarities, which are related
to similarities, followed by some example definitions. After that, we continue with
the explanation of the prototype concept and the classification principle of the best
matching prototype.

2.1.1 Dissimilarities

In everyday life, we use distance concepts to a great extent: For example, to describe
how far two points are apart or to describe the time difference between two events.
Generally, a mathematical distance (mathematical metric) is well-defined and an
essential part of prototype-based classification. Furthermore, a distance function is
not restricted to points or scalars. Instead, it can be defined for arbitrary objects.
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Definition 2.1 (metric and metric space). A metric d on a non-empty set S is a
function

d : S × S −→ R

that satisfies the following conditions for all x, y ∈ S:

• d (x, y) ≥ 0 (nonnegativity);

• d (x, y) = 0 if and only if x = y (identity of indiscernibles);

• d (x, y) = d (y, x) (symmetry);

• d (x, y) ≤ d (x, z) + d (z, y) for all z ∈ S (triangle inequality).

A metric space (S, d) is a set S with a metric d defined on S. The function d is also
denoted as distance function or simply distance.

The definition of a metric is the mathematical formalization of the intuitive hu-
man understanding of distances in the three-dimensional space. For instance, the
distance between two points x and y is always positive and zero if and only if x
equals y (nonnegativity and identity of indiscernibles). Furthermore, it does not
matter whether the distance is measured from x to y or from y to x—the distance
is the same (symmetry). The triangle inequality expresses the idea that the direct
path must always be the shortest.

Definition 2.2 (translation-invariant metric). Let (S, d) be a metric space equipped
with an operation

+ : S × S −→ S
that forms a group (S,+) on S. The metric d is called translation-invariant if

d (x, y) = d (x+ z, y + z) (2.1)

for all x, y, z ∈ S.

If we continue the example from above and assume that the operation + is a vector
shift, then the translation invariance specifies distances that remain unchanged if the
points x and y are shifted in the same direction.

According to Nebel, Kaden, Villmann, and Villmann (2017), a dissimilarity can
be obtained by relaxing or skipping some of the fundamental axioms of a metric.
However, the minimal required property is the minimum principle:

d (x, x) ≤ d (x, y) and d (x, x) ≤ d (y, x) .

Such a dissimilarity measure is also called basic dissimilarity. In the following, we
consider a dissimilarity measure as some kind of distance function with potentially
relaxed metric axioms (unless otherwise stated).
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Definition 2.3 (semimetric). A semimetric is a function d like in Definition 2.1
that fulfills all the metric axioms except the identity of indiscernibles. Instead, the
following relaxed version must hold:

x = y =⇒ d (x, y) = 0.

This means that the elements are not always distinguishable by their dissimilarity
value. Several elements can have a dissimilarity value of zero to each other without
being identical.

Definition 2.4 (quasimetric). A quasimetric1 is a function d like in Definition 2.1
that fulfills all the metric axioms except the triangle inequality.

The Euclidean distance is named after the Greek mathematician Euclid. This
distance measures the length of the line segment between two points in a real vector
space. Thus, it corresponds to the natural definition of a distance in the human sense
and is the most frequently used distance measure.

Definition 2.5 (Euclidean distance). Let x and y be vectors of the nx-dimensional
real vector space Rnx . The Euclidean distance is defined by

dE (x,y) =

√√√√ nx∑
i=1

(xi − yi)2

or in terms of vector operations by

dE (x,y) =

√
(x− y)

T
(x− y). (2.2)

The Euclidean distance is a metric and, moreover, a translation-invariant met-
ric. If the squared version d2E (x,y) is considered, the Euclidean distance becomes
a quasimetric (see Definition 2.4). Additionally, dE is a special case of a Minkowski
distance of order two.

A generalization of the Euclidean distance is the Mahalanobis distance. The goal
of this distance is to model a more appropriate distance measure if the information
about the underlying data distribution is available. For example, suppose we have
collected two-dimensional feature vectors consisting of the body weight in kilograms
and the stature in meters for a group of people. Furthermore, the averaged body

1Sometimes, this is also denoted as a usual dissimilarity.
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weight is assumed to be (83± 10) kg and the stature (1.7± 0.1) m.2 Now, if we
compare two people by computing the Euclidean distance between the two feature
vectors, the comparison is dominated by the body weight as the weight shows much
greater variations than the stature. To avoid such a behavior, the Mahalanobis dis-
tance normalizes the feature dimensions before calculating the Euclidean distance.

Definition 2.6 (Mahalanobis distance). Let x,y ∈ Rnx be two random vectors
drawn from a probability distribution with a covariance matrix Σ of full rank. The
Mahalanobis distance is defined by

dM (x,y) =

√
(x− y)

T
Σ−1 (x− y), (2.3)

where Σ−1 is called precision matrix.

The full rank of Σ preserves that the covariance matrix is invertible and, hence,
that the probability distribution is nondegenerate. Additionally, the precision matrix
is positive definite and symmetric so that a Cholesky decomposition into the form
Σ−1 = LLT exists. If we rewrite Equation (2.3) by this decomposition, we get

dM (x,y) =

√
(LT (x− y))

T
LT (x− y). (2.4)

This equation corresponds to the Euclidean distance between the mapped input vec-
tors LTx and LTy. In general, the Mahalanobis distance becomes the Euclidean
distance if the covariance matrix is the identity matrix.

To generalize Equation (2.4), we drop the full rank assumption of Σ and define
the so-called quadratic-dissimilarity.

Definition 2.7 (quadratic-dissimilarity). Let x,y ∈ Rnx and Q ∈ Rmx×nx . The
quadratic-dissimilarity is defined by

dQ (x,y) =

√
(Q (x− y))

T
Q (x− y), (2.5)

where Q is a transformation matrix that performs a linear mapping.3

In general, the quadratic-dissimilarity is a metric (see Definition 2.1) if the rank of
Q equals nx. Otherwise, it is a semimetric (see Definition 2.3). The hyperparameter
mx determines the dimensionality of the vector space after the linear mapping. If mx

is less than or equal to nx, then the linear mapping is performed onto a linear subspace
2A notation like (12± 11) % stands for an arithmetic mean (sample mean) of 12 % with a cor-

rected sample standard deviation of 11 %.
3Note that we make a strict distinction between a transformation (matrix) and a projection

(matrix) in the mathematical sense.
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of Rnx and to the higher-dimensional vector space Rmx otherwise. Similar to the
Mahalanobis distance, the quadratic-dissimilarity measures the Euclidean distance
on the transformed input vectors and can be written as

dQ (x,y) =

√
(x− y)

T
Λ (x− y), (2.6)

where Λ equals QTQ.

All LVQ methods use some kind of dissimilarity measure, as we will see in the
following sections. However, the quadratic-dissimilarity is the most frequently used
dissimilarity measure in LVQ methods (e. g., Bunte et al., 2012; Schneider et al.,
2010) and ML algorithms in general (e. g., Globerson & Roweis, 2006; Weinberger &
Saul, 2009; Xing, Ng, Jordan, & Russell, 2003).

2.1.2 Prototypes and the best matching prototype principle

Besides a formal definition, the concept behind a prototype tries to capture the
intuitive human understanding of prototypical things. This is “the premise that the
prototypes of class [c] should consist of points that are close to many training points
of class [c] and are far from training points of other classes” (Bien & Tibshirani, 2011,
p. 2404) and, moreover, the idea to describe as many objects of a class as possible
by unique objects that best describe the whole class. The first part of this statement
already uses the wording close and far, and thus prototypes are always related to a
respective dissimilarity measure to describe how similar or dissimilar objects are.

Definition 2.8 (prototype). Given a classification task, a prototype4 (vector) wk is
an element of the data space Rnx equipped with a fixed class label c (wk) ∈ C. All
prototypes are collected into a set

W = {wk ∈ Rnx | k = 1, 2, . . . ,#W} , (2.7)

where #W is the overall number of prototypes. This set contains at least one proto-
type per class.

Depending on the ML approach, the definition could be equipped with more
conditions—for example, the prototypes have to be elements of the training dataset,
specific interpretability constraints, and so on.

To measure the fit of the prototypes wk regarding a given data point x, we use
a dissimilarity measure d. Let d (x) be the prototype response vector, that is, the
vector with the dissimilarities to each prototype with respect to x:

d (x) = (d (x,w1) , d (x,w2) , . . . , d (x,w#W))
T
. (2.8)

4Also denoted as reference vector, codebook vector, weight vector, or point-prototype.
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Based on d (x), we derive the classifier function f (x) by calculating and negating the
smallest dissimilarity value for each class:

f (x) = −


min {dk (x) | c (wk) = 1}
min {dk (x) | c (wk) = 2}

...
min {dk (x) | c (wk) = #C}

 , (2.9)

where fc (x) is the negative value of the smallest dissimilarity of x to a prototype of
class c. Note that we have to negate the dissimilarities to fit in the definition of the
winner-takes-all rule of Equation (1.1). The computation of the smallest dissimilarity
within a class is also called competition as the prototypes compete with each other
to be the closest prototype.

The closest prototype w∗ regarding the input x is determined by

w∗ (x) = arg min
wk∈W

d (x,wk) (2.10)

and is called the best matching prototype with respect to x. This prototype determines
by its class label c (w∗) the predicted class c∗ (x) of x. In the context of prototype-
based learning, this strategy is denoted as the Best Matching Prototype Principle
(BMPP) because only w∗ is used for the class determination. Furthermore, the
BMPP represents a winner-takes-all rule.

Based on a training dataset T , the goal of prototype-based learning is to find
a proper set of prototypes. Therefore, the trainable parameters ϑ of the classifier
function f are the prototypes in W.5 According to Bien and Tibshirani (2011), we
search for a set of prototypes such that

• the prototypes of class c are the closest points for as many training data points
of class c as possible,

• the prototypes of class c are the closest points for as few training data points
of a class other than c as possible, and

• the number of prototypes #W is as small as possible.

In LVQ, this is realized by an iterative adaptation scheme of the prototypes in W
and a predefined number of prototypes #W. However, depending on the specific
prototype-based method, the set of prototypes W could also be determined by a
different mathematical scheme, for instance, a convex optimization problem (e. g.,
Bien & Tibshirani, 2011).

5As we will see in Section 2.2.3, there can be more trainable parameters.
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2.2 Realizations

LVQ algorithms are considered as interpretable ML approches. This interpretability
assumption is based on the idea of having an understanding of the used dissimilarity
measure and that prototypes can be interpreted by a human expert. For example, if
the learning task is handwritten digit classification, we interpret the learned model
by visualizing the prototypes as images and trying to understand them. More specif-
ically, we hope that they resemble class-specific objects such as the usual writing
styles of a particular digit.

In Hammer, Nebel, Riedel, and Villmann (2014), it is discussed that newer LVQ
methods can be difficult to interpret. Roughly described, this is the case if all proto-
type vectors lie outside the class distributions, that is, if they are not close to a data
input. However, the authors show that this effect can be controlled by an appropriate
regularization.

Another point related to interpretability is that the data space could only be a
subset of Rnx—for instance, images are frequently defined in [0, 1]

nx . In this case,
we have to prevent the violation of the respective data constraints by the prototype
updates. This can be achieved by

• a proper coding of the prototypes—for example, the coding that Carlini and
Wagner (2017) used for the attacks to avoid box-constraints—or

• a projected update rule, also known as projected gradient descent learning (e. g.,
Suárez, García, & Herrera, 2018).

If we do not restrict the prototypes to the respective space, they could again be
difficult to interpret.

Regardless of this, some understanding can be obtained by analyzing the dissimi-
larity distribution over each class or the entire dataset. This can provide information
about what is far and close in the classification model and how confident the model is
with respect to a classification decision. Additionally, such an analysis may be useful
to identify the problems described by Hammer et al. (2014).

The next sections describe several realizations of the LVQ method. First, we de-
scribe Kohonen’s LVQ algorithms as heuristically motivated classification methods.
After that, we describe the GLVQ algorithm, which is a version of Kohonen’s LVQ
algorithms with a differentiable loss function so that it can be trained by SGD. Fi-
nally, we present an extended version of GLVQ called GMLVQ, where the prototypes
are learned in parallel with a quadratic-dissimilarity measure, see Equation (2.5).
Although there may be difficulties in interpreting these methods, we will consider
them interpretable since we know that this is possible to a certain extent.
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Algorithm 1 LVQ1 with learning rate η and a maximum number of steps N .

1: procedure LVQ1(T , d,W, η,N)
2: W ← initialize the set of prototypes
3: i← 0

4: while i < N do
5: i← i+ 1

6: x, c (x)← randomly pick a training sample from T
7: w∗ ← w∗ (x) . evaluate the closest protoype, see Equation (2.10)
8: if c (w∗) = c (x) then
9: s← −1 . prototype of correct class: attract

10: else
11: s← 1 . prototype of incorrect class: repel
12: 4w∗ ← s (x−w∗) . evaluate the vector shift
13: w∗ ← w∗ − η4w∗ . update of the prototype in W
14: return W . return the trained prototypes

2.2.1 Kohonen’s learning vector quantization algorithms

The original LVQ models proposed by Kohonen (1990, 1995) are heuristic approaches
motivated by Bayes decision theory and vector quantization. Heuristic means that we
do not directly optimize a loss function like Equation (1.2). All basic LVQ approaches
distribute the prototypes via iteratively applied small vector shifts proportional to
x−w to improve the classifier function, see Equation (2.9).6 The precise realization
of the prototype selection and shifting scheme determines the LVQ approach. In
general, the shifts are motivated by a Hebbian learning principle as attraction and
repulsion forces on the prototypes. Even if the principle of attraction and repulsion
forces is no longer explicitly modeled in modern LVQ variants, it can still be identified
and is a typical property of these methods.

The method LVQ1, see the pseudocode in Algorithm 1, is the simplest LVQ
scheme and consists of the following steps: We define the set of prototypes W such
that each class is represented by at least one prototype. After that, the prototypes
are initialized with a suitable scheme—for instance, as random vectors, as randomly
selected data samples from the respective class, as k-means over the data samples of
the respective class, and so on. Then, we iterate over the following two steps:

1. Randomly pick a training sample (x, c (x)) from the training dataset T and
determine the closest prototype w∗ using Equation (2.10).

6We omit the prototype index k if the statements are independent of a specific prototype k.
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2. If the class label c (w∗) of the closest prototype is equal to the class label c (x)

of the input, we push the prototype w∗ a little bit towards x (attraction) and
pull it slightly away (repulsion) otherwise.

The magnitude of the applied shift is controlled by a learning rate η ∈ R>0. After
the model is trained, we use the BMPP to assign class labels to arbitrary data points.

Usually, LVQ1 uses the Euclidean distance dE according to Equation (2.2). The
gradient of dE with respect to a prototype is

∇wdE (x,w) = − 1

dE (x,w)
(x−w) (2.11)

if dE (x,w) 6= 0. By considering step 12 in the Algorithm 1, we can conclude that the
differentiation of the Euclidean distance with respect to a prototype yields a scaled
version of the vector shift. Together with the update rule of step 13, the prototype
update of LVQ1 is similar to Equation (1.3), the update rule of SGD. Nevertheless,
LVQ1 cannot be interpreted as a form of SGD since the variable s, which defines
whether a prototype is attracted or repelled, is not differentiable with respect to the
prototypes and, moreover, has only trivial gradients at points where the gradient
exists. The gradient at a given point is called trivial if it is the zero vector.

The characteristic property of LVQ1 is the update of exactly one prototype per
iteration. This idea was extended in LVQ2.1 and LVQ3 to update up to two proto-
types per iteration. LVQ2.1 determines the two closest prototypes and attracts and
repels them simultaneously if one of the prototypes belongs to the correct class and
the other to the incorrect class. Like in LVQ1, the correct prototype is attracted and
the incorrect one is repelled. Additionally, this update is only performed if the given
training point falls within a certain midplane window between the two prototypes.
If both prototypes are from the correct or incorrect class, no update is performed.

2.2.2 Generalized learning vector quantization

In 1996, Sato and Yamada proposed the GLVQ algorithm. The goal of GLVQ is to
provide

• a generalization of Kohonen’s LVQ algorithms,

• an LVQ algorithm that can be trained by an empirical risk minimization ac-
cording to Equation (1.2) using SGD, and

• an LVQ learning rule that satisfies the convergence condition.7

7Given a training sample and the corresponding closest prototype of the correct and incorrect
class, the convergence condition is satisfied if the attraction force on the prototype of the correct
class is greater than the repulsion force on the prototype of the incorrect class.
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Sato and Yamada have realized this by developing a differentiable loss function called
GLVQ loss.

Given a classifier function f (x) as defined in Equation (2.9) and a training sample
(x, c (x)), we calculate the smallest dissimilarity to a prototype of the correct class
c (x) of x by

d+ (x) = −fc(x) (x) .

Furthermore, we compute the smallest dissimilarity to a prototype of a class different
than c (x) of x by

d− (x) = min {−fc (x) | c 6= c (x)} .

Using these two dissimilarities, we define the relative distance difference8 as

µ (x) =
d+ (x)− d− (x)

d+ (x) + d− (x)
∈ [−1, 1] . (2.12)

The function returns negative values if and only if x is correctly classified, otherwise
it returns positive values.9 This is similar to the behavior of the variable s in Al-
gorithm 1, which is minus one for correct classifications and one otherwise. But in
contrast to s, the function µ is differentiable with respect to w and generally has
nontrivial gradients.

The relative distance difference can be used to compute the empirical classification
error by

error (f (x;ϑ) , T ) =
1

#T
∑

(x,c(x))∈T

H (µ (x)) (2.13)

with

H (x) =

{
1 if x ≥ 0,

0 otherwise,
(2.14)

being the Heaviside step function that realizes the zero-one loss function. Since H(x)

is not differentiable, Sato and Yamada replaced the Heaviside step function with a
monotonically increasing, differentiable squashing function φ : [−1, 1] → R. Finally,
this results in the GLVQ loss function:

l (f (x;ϑ) , c (x)) = φ (µ (x)) . (2.15)

This loss function is used in the empirical risk E to approximate the empirical clas-
sification error, see Equation (1.2) and Equation (2.13), respectively. Common real-
izations of φ are the identity function (i. e., id (x) = x) or a sigmoid function like the

8Even if the relative distance difference is calculated with dissimilarities, we call it relative dis-
tance difference to keep the original formulation of Sato and Yamada.

9Due to this property, the function µ is sometimes called the LVQ classifier function.
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logistic function given by

sigmoidσ (x) =
1

1 + exp
(
− x
σ

) , (2.16)

where the slope parameter σ has to be greater than zero. If σ becomes arbitrar-
ily small, the function sigmoidσ (x) converges to the Heaviside step function H (x).
We refer to T. Villmann, Ravichandran, Villmann, Nebel, and Kaden (2019) for an
extensive study about other possible squashing functions.

To adapt the classifier function, we optimize the obtained empirical risk function
by SGD. Accordingly, we randomly pick a training sample (x, c (x)) ∈ T and perform
a gradient descent step regarding l (f (x;ϑ) , c (x)). Due to µ (x), the loss function
only depends on two prototypes, called w+ and w−. The prototype w+ is the closest
prototype of the correct class associated with d+ (x) and w− is the closest prototype
of an incorrect class associated with d− (x). Hence, the derivatives of the GLVQ loss
with respect to the elements of ϑ are nonzero only for the parameters of the two
prototypes w± so that we only have to calculate the gradient with respect to w±.
The gradient of the loss function given (x, c (x)) with respect to w± is10

∂

∂w±
φ (µ (x)) = ±2φ′ (µ (x))

d∓ (x)

(d+ (x) + d− (x))
2

∂d (x,w±)

∂w±
. (2.17)

Thus, the updates of the SGD are proportional to

4w± = ±∂d (x,w±)

∂w±
, (2.18)

the so-called signed gradients of the respective dissimilarity measure. The terms

ξ± = 2φ′ (µ (x))
d∓ (x)

(d+ (x) + d− (x))
2 ≥ 0 (2.19)

act as scaling factors. In summary, Equation (2.17) can be written as

∂

∂w±
φ (µ (x)) = ξ±4w±

and the learning rule of the prototypes in a SGD according to Equation (1.3) is

w± ← w± − ηξ±4w±. (2.20)

10The used notation must be read as follows: The expression z± = x± ∓ a∓

a++a−
combines two

alternatives in one equation. These are z+ = x+ − a−

a++a−
and z− = x− + a+

a++a−
. That is, each

time we have an alternative due to ± or ∓, we consistently choose the expression of the upper or
lower sign.
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This update rule is similar to the one in Algorithm 1 with the difference that we up-
date both prototypes at the same time—like in LVQ2.1. Accordingly, the prototype
w+ is attracted towards the training sample and the prototype w− is repelled. In
contrast to Kohonen’s LVQ algorithms, the derived scaling factors ξ± ensure that
the attraction forces are stronger than the repulsion forces. Consequently, the con-
vergence condition is fulfilled.

In the original GLVQ experiments performed by Sato and Yamada, the dissimi-
larity d was defined as the squared Euclidean distance d2E . In this case, the signed
dissimilarity gradients, see Equation (2.18), are

4w± = ∓2
(
x−w±

)
.

With this result in Equation (2.20), we get the GLVQ learning rule regarding d2E as

w± ← w± ± 2ηξ±
(
x−w±

)
.

This update scheme represents the initially motivated LVQ attraction and repulsion
forces on the prototypes w±.

2.2.3 Generalized matrix learning vector quantization

Schneider, Biehl, and Hammer (2009) proposed the GMLVQ classifier as an extension
of the generalized relevance LVQ of Hammer and Villmann (2002). Both methods
are versions of GLVQ with adaptable dissimilarity measures. The goal is to use dis-
similarity measures that improve the class discrimination in the presence of different
covariances or variances or both in the data. Considering the usually used Euclidean
distance, we observe that implicitly equal importance of the input dimensions of Rnx
is assumed—as described in the example before the Definition 2.6 about the moti-
vation of the Mahalanobis distance compared to the Euclidean distance. Obviously,
this assumption might not be beneficial for class discrimination in general.

To overcome this problem, GMLVQ uses the squared quadratic-dissimilarity d2Q
according to Definition 2.7 and extends the learning rules of GLVQ by adaptation
rules for Q ∈ Rmx×nx . By adjusting Q, the method tries to learn a proper transforma-
tion of the data points before the dissimilarity is measured by the Euclidean distance.
This extends the parameter vector ϑ of GLVQ by Q. Apart from this change, we
retain the general learning framework of GLVQ, which includes the GLVQ loss and
the derived learning rules of the prototypes.

Equivalent to GLVQ, the GLVQ loss function regarding d2Q has only nontrivial
gradients for the prototypes w± and, consequently, we only have to compute the
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gradients with respect to these prototypes. The learning rule for the prototypes in a
basic SGD is identical to Equation (2.20) with the gradient

∇wd
2
Q (x,w) = −2QTQ (x−w) (2.21)

for ∂d
∂w± in the signed gradient 4w±, see Equation (2.18).
In the same way, we derive the update formula for the matrix Q. The gradient

of the GLVQ loss with respect to the matrix is

∇Qφ (µ (x)) = ξ+ · ∇Qd
2
Q

(
x,w+

)
− ξ− · ∇Qd

2
Q

(
x,w−

)
,

where ξ± are the same scaling factors as in GLVQ. Moreover, the gradient of d2Q
with respect to Q yields

∇Qd
2
Q (x,w) = 2Q (x−w) (x−w)

T (2.22)

and a basic SGD rule according to Equation (1.3) to learn Q is

Q← Q− η
(
ξ+ · ∇Qd

2
Q

(
x,w+

)
− ξ− · ∇Qd

2
Q

(
x,w−

))
. (2.23)

Note that the matrix receives an update from w+ and w− simultaneously. As a
result, the matrix Q is adjusted to become more discriminative with respect to the
class of w+ and the class of w−.

The matrix Q and the implied transformation have several interpretations. One
is that we perform a linear mapping from Rnx to Rmx via

x̂ = Qx

before we measure the dissimilarity by the Euclidean distance. Particularly, the
following relation holds:

dE (x̂, ŵ) = dQ (x,w) .

Depending on the precise setting of the hyperparameter mx, the dissimilarity per-
forms a linear mapping into a higher-dimensional (mx > nx) or lower-dimensional
(mx < nx) space compared to the input space Rnx or maps into the input space. Since
we learn this mapping while optimizing the GLVQ loss, the goal of this mapping is
to improve the class separability and, therefore, implicitly the classification accuracy.
The properties of such mappings, especially into the two- and three-dimensional
space, have been studied extensively—we refer to the articles of Bunte, Hammer,
Wismüller, and Biehl (2010); and Bunte et al. (2012).

Another interpretation is inspired by the connection of dQ with the Mahalanobis
distance and the alternative formulation of dQ, see Equation (2.3) and Equation (2.6),
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respectively. If we constrain Q to a Frobenius norm of one (i. e., ‖Q‖F = 1) during
training, the matrix Λ = QTQ is considered as a classification correlation matrix
(e. g., T. Villmann, Bohnsack, & Kaden, 2017).11 Now, the sum of the diagonal ele-
ments Λii equals one and the values Λii are interpreted as relevance factors reflecting
the importance of each input dimension for class discrimination. The off-diagonal el-
ements Λij indicate the correlation between the different input dimensions to support
the discrimination of the classes. This information can be used to perform a pruning
(reduction) of input dimensions after the training or to gain an understanding of the
learned classifier function.

A natural extension of the GMLVQ algorithm proposed above is to use for each
prototype wk an individual (local) transformation matrix Qk in the dissimilarity
dQ. This leads to a prototype-index specific quadratic-dissimilarity and the derived
method is called local-GMLVQ . We denote the corresponding matrix of w± by Q±

and mark the dependency of dQ from Qk by respective subscripts or superscripts at
Q—for instance, dQk refers to the dissimilarity of wk with Qk. The update formulas
for the matrices Q± are given by splitting the update rule of Equation (2.23) into
the corresponding parts:

Q± ← Q± ∓ ηξ±
∂d2Q± (x,w±)

∂Q±
. (2.24)

Thus, the trainable parameter vector ϑ of GLVQ is now extended by all the pro-
totype specific transformation matrices Qk. The previously discussed interpretation
techniques of GMLVQ can be transferred to the local version.

11Besides better interpretability, the constraint ‖Q‖F = 1 is often applied to avoid numerical
instabilities and degenerations (e. g., Schneider et al., 2009). However, in order to guarantee this
property, the constraint to a sufficiently large constant ω > 0 is sufficient (i. e., ‖Q‖F = ω). It
should also be noted that ‖Q‖F equals

√
trace (Λ).
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Chapter 3

Generalized Tangent Learning Vector
Quantization

G
enerally, classification learning from noisy or corrupted data is one of the major
topics in ML as it leads to reduced classification performance if not considered

in the model. In principle, LVQ is able to adequately process noisy data because
the prototypes are weighted averages of the training samples (e. g., Biehl, Hammer,
Schleif, Schneider, & Villmann, 2015). However, as an alternative to noise, the data
may also show systematic variations such as naturally occurring transformations.
These data variations also contribute to reduced classification performance if the
model cannot process these variations properly.

The mathematical properties of systematic variations and how they are treated
in ML differ significantly from data noise. If these variations are known before-
hand, respective data preprocessing methods can be applied in advance to remove
or decrease their impact on the classification model. For instance, transformation
invariant feature extraction methods such as the scale-invariant feature transform of
Lowe (2004) are well-known techniques for image processing. If such a preprocessing
is not possible, the data variations might be directly approximated by continuous
transformations of the data inside the ML model. For example, Simard, LeCun, and
Denker (1993) defined a set of transformations (consisting of line thickness variations,
rotations, shifts, etc.) for handwritten digits to improve the accuracy of a classifier.
However, such a definition might not be easy in general—for instance: What is a
suitable transformation in image space to model different facial expressions for face
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recognition? To overcome this difficulty, a common scheme is to define a param-
eterized transformation model. The parameters of the transformation model are
estimated on a training dataset before or parallel to the training of the classification
model. Today, this framework is one of the main components of modern NNs and is
generally referred to as a trainable feature extractor.

Currently, LVQ approaches try to model systematic variations by distributing
several prototypes per class or by learning a dissimilarity measure such that the
dataset is adequately represented. In contrast, we propose to relax the concept
of prototype vectors and introduce set-prototypes to model a high amount of data
variations directly by a single prototype. Based on this idea, we show how to derive
respective dissimilarity measures and how to train a resulting GLVQ network. The
derived dissimilarity measures are closely related to the concept of tangent distances
proposed by Simard et al. (1993) as they learn a set of tangent approximations
around each prototype vector to improve the class discrimination. Therefore, we
call the obtained GLVQ scheme Generalized Tangent Learning Vector Quantization
(GTLVQ). According to the objectives of the thesis, we show that GTLVQ

• consistently trains to higher accuracies than standard LVQ methods,

• preserves the interpretability, and

• is a hypothesis margin maximizer and, therefore, very robust.

In particular, we present how the hypothesis margin maximization property is re-
lated to the smallest adversarial distance required to generate adversarial examples.
Based on numerical evaluations, we show that this property can be used to train
adversarially robust LVQ models that can compete with current state-of-the-art NNs
in terms of adversarial robustness. Additionally, we show that GTLVQ

• is a constrained version of the local-GMLVQ approach described in Section 2.2.3
with limited rank (i. e., with mx < nx),

• is related to a Hausdorff distance regarding the used dissimilarity, and

• can be derived as a linear approximator of data manifolds.

In the next section, we describe how the GTLVQ method is motivated by previous
work on tangent distances. Subsequently, we define the framework of set-prototypes
and derive GTLVQ as a nontrivial realization of LVQ with set-prototypes. Thereby,
the set-prototypes are ns-dimensional affine subspaces. Moreover, we define a re-
stricted version of GTLVQ in which the set-prototypes are orthotopes. This section
is followed by a study about the relation of the derived dissimilarity measures to
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Hausdorff distances. By taking advantage of this relation, we show that the de-
rived dissimilarity measures satisfy certain metric axioms. Then we demonstrate
that GMLVQ methods and GTLVQ are related and that local-GMLVQ is equivalent
to GTLVQ if trained with a sufficiently large regularization parameter. After that,
we present a numerical evaluation of GTLVQ regarding accuracy and interpretability
on several toy and benchmark datasets.

A generally important finding about LVQ methods is that they maximize the
hypothesis margin. This topic is covered by the subsequent section. Additionally, we
show how the hypothesis margin is related to adversarial perturbations and present
a numerical evaluation. Finally, we discuss related work and give a summary of
this chapter. The created software and the scripts of the experiments are avail-
able at https://github.com/saralajew/thesis_GTLVQ_experiments as a Keras
package. The robustness evaluations are made available at https://github.com/
LarsHoldijk/robust_LVQ_models as pretrained Tensorflow graphs and as part
of the Foolbox1 model zoo.

Research chronology

The research about the application of tangent distances in LVQ was initiated by the
statement of Crammer, Gilad-Bachrach, Navot, and Tishby (2003) to apply tangent
distances in LVQ algorithms. After formulating the GTLVQ learning rules in [2016b],
we studied the refinement regarding restricted tangent distances and formulated a
first theorem about the relation to Hausdorff distances in [2016c]. Motivated by
findings in the field of transfer learning, we focused in [2017c] on relations of GTLVQ
to transfer learning and manifold learning. In [2017a] and [2017b], we presented
the results about restricted tangent distances. This framework triggered the general
considerations about set-prototypes and point-set dissimilarities and has led to the
general formulation of the theorems presented in this thesis.

At the same time, we began to investigate the relationship of LVQ methods to NNs
[2017d]. A first attempt to merge LVQ and NN methods was presented in [2018d].
Motivated by the results obtained with such models, we started to analyze LVQ
methods regarding their adversarial robustness. In [2019b], we analyzed the different
LVQ methods regarding adversarial robustness and explained why LVQ methods are
provably robust classifiers. The results of this publication are extended and refined
in this thesis.

1https://foolbox.readthedocs.io

https://github.com/saralajew/thesis_GTLVQ_experiments
https://github.com/LarsHoldijk/robust_LVQ_models
https://github.com/LarsHoldijk/robust_LVQ_models
https://foolbox.readthedocs.io
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Author contributions

David Nebel: He conducted the experiments for the methods other than GTLVQ
on the Spiral dataset in [2016c]. Additionally, David contributed during the
writing of the respective publication.

Lars Holdijk: The idea to study the robustness properties of LVQ methods was ini-
tiated by him after he participated in the conference competition Adversarial
Vision Challenge 20182 of the conference Neural Information Processing Sys-
tems where he applied the technologies presented in [2018d]. He evaluated the
adversarial robustness of all the LVQ methods and also trained and evaluated
the baseline NNs. Additionally, he created the online available models. The
analysis of the robustness results and their implications were discussed with
Lars. Finally, he wrote a substantial part of the corresponding publication.

Maike Rees: Maike contributed substantially to writing, designing, and structuring
the respective publication. Moreover, she implemented the early evaluation
pipelines for the Adversarial Vision Challenge 2018 and contributed to the
discussion of the results of the robustness evaluation in [2019b].

Thomas Villmann: Based on the first application of tangent distances in LVQ,
Thomas helped to formalize the framework. Furthermore, he motivated fur-
ther research about restricted tangent distances and their relation to Hausdorff
distances and GMLVQ. Additionally, he initiated the considerations about the
relationship of GTLVQ to transfer learning and discussions with him resulted
in the ideas about the theory of Crammer et al. (2003). Finally, he contributed
to all publications with writing, proofreading, and a lot of advice.

3.1 Motivation

Tangent distances were introduced by Simard et al. (1993) to have a more suitable
distance measure than the Euclidean distance in the presence of data variations
for distance-based classification algorithms. As an example, Simard et al. applied
the tangent distance in a k-nearest neighbors algorithm. In their final discussion,
they emphasized that “many distance-based classification schemes could be used in
conjunction with [the] tangent distance, among them LVQ” (p. 58).

2Brendel, W. (2018, November 9). Results of the NIPS Adversarial Vision Challenge 2018.
Retrieved from https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-
challenge-2018-e1e21b690149

https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-challenge-2018-e1e21b690149
https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-challenge-2018-e1e21b690149
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Later, their work was refined by Hastie, Simard, and Säckinger (1995) and they
stated that “the tangent centroid or subspace models can be used to seed LVQ algo-
rithms (Kohonen 1989), but so far we have not much experience with them” (p. 1004).
Moreover, in this work, they already introduced the tangent distance as an approach
“for generalizing the concept of a mean or centroid for a set of images, taking into ac-
count the tangent families” (p. 1001) and, hence, they extended the point-prototype
concept to affine subspaces.

In the important work of Crammer et al. (2003) about the margin maximization
properties of LVQ, the conclusion is that an interesting extension of the margin
maximization theory is to use a different distance measure than the Euclidean norm.
However, they expect complicated gradient equations for the update rules but suspect
that this modification could significantly improve the results. In particular, they
emphasize that an “interesting distance measure is the [t]angent [d]istance” (p. 486).

Interestingly, the investigation of tangent distances was not realized in LVQ al-
gorithms, although this has been proposed in several publications for decades. The
GTLVQ approach presented here closes this gap and learns prototype models with
prototypes that are sets. These set-prototypes are able to model local variations of
the data points so that the resulting classifier becomes locally invariant. This prin-
ciple is advantageous if a dataset is affected by local transformations—for instance,
in handwritten digit recognition where the digits can be slightly rotated or shifted.

From another point of view, GTLVQ increases the capacity of an LVQ classifier
to capture information about the dataset. In basic LVQ approaches, the information
storage is restricted to points, the prototypes, and parameters of the dissimilarity
measure in use. This limits the model capacity of basic LVQ methods, and the only
solution for this problem is to increase the number of prototypes. In contrast, each
set-prototype in GTLVQ is an affine subspace and therefore contains infinitely many
points. These additional degrees of freedom increase the model capacity enormously
and raise the flexibility of LVQ methods to solve appropriate problems.

3.2 Set-prototypes and respective learning vector
quantization variants

In the following, we extend the concept of prototype vectors to set-prototypes, discuss
respective dissimilarity measures, and derive tractable solutions for LVQ variants.

Definition 3.1 (set-prototype). Given a classification task, a set-prototype wk is a
non-empty subset of the data space Rnx equipped with a fixed class label c (wk) ∈ C.
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Similar to prototype vectors (point-prototypes)—see Definition 2.8—we collect all
set-prototypes into a set W. This set contains at least one set-prototype per class.

Now, the dissimilarity definition of Section 2.1.1 cannot be applied because it
defines a dissimilarity as a function d : S × S → R. Therefore, we extend this
definition to a dissimilarity function between points and sets.

Definition 3.2 (point-set dissimilarity). Given a dissimilarity d on S, the point-set
dissimilarity d is defined as

d (x, Y ) = inf {d (x, y) | y ∈ Y } , (3.1)

where x ∈ S and Y is a non-empty subset of S. In this context, the dissimilarity d
is called underlying dissimilarity.

Usually, S is defined as Rnx , Y is a set-prototype w, and x is an input sam-
ple x. Applying these two definitions to the classification principles introduced in
Section 2.1.2, we can construct set-prototype-based classifiers. For instance, trivial
realizations are

• LVQ methods with set-prototypes as singletons wk = {wk},

• LVQ methods with several prototypes per class in which all prototypes of a
certain class c are collected into a set-prototype, and

• k-nearest neighbors classifiers where all the training points of a class are col-
lected into a respective set-prototype.

These examples imply that the evaluation of the classifier becomes computationally
expensive if the cardinality of the set-prototypes increases. Therefore, we are in-
terested in nontrivial realizations where the set-prototypes contain infinitely many
elements, but the evaluation of Equation (3.1) is tractable.

3.2.1 Generalized tangent learning vector quantization:
Affine subspace prototypes

This section derives the basic GTLVQ scheme, which is based on prototypes as affine
subspaces and dE as underlying dissimilarity. For example, if we assume the data
space Rnx with nx ≥ 2, then

• a line is a one-dimensional affine subspace of Rnx and

• a plane is a two-dimensional affine subspace of Rnx .
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Definition 3.3 (affine subspace). An affine subspace (linear manifold) is a set

{t + Bθ | θ ∈ Rns} ,

where θ is a parameter vector, B ∈ Rnx×ns is a basis of an ns-dimensional linear
subspace, and t ∈ Rnx is a vector called translation. Two affine subspaces that share
the same linear subspace are said to be parallel.

Model derivation

To derive the GTLVQ method, we define the set-prototypes as affine subspaces with
predefined subspace dimension ns—that is, wk = {tk + Bkθ | θ ∈ Rns}—and derive
the point-set dissimilarity by

d (x,w) = min {d (x, t + Bθ) | θ ∈ Rns} . (3.2)

This dissimilarity measure is equivalent to a general single-sided tangent distance (see
Schwenk & Milgram, 1995, for single-sided tangent distances). However, we call this
dissimilarity simply general tangent distance. The dissimilarity becomes tractable if
we have an analytical expression to calculate the minimum value. This is ensured
if we use the Euclidean distance dE as the underlying dissimilarity, resulting in the
so-called tangent distance:

d (x,w) = min {dE (x, t + Bθ) | θ ∈ Rns} . (3.3)

The necessary condition for a minimum is

∇θd (x,w) = 0.

Solving this equation leads to the explicit formula

θ∗ = BT (x− t) , (3.4)

assuming that B is an orthonormal basis (i. e., BTB = Ins).3 Furthermore, it follows

∂2d (x,w)

∂θ∂θ
= Ins

so that the solution θ∗ determines a minimum.4 Therefore, we can substitute the
solution θ∗ into the dissimilarity Equation (3.3) and obtain

d (x,w) = dE
(
x, t + BBT (x− t)

)
,

=

√
(P (x− t))

T
(P (x− t)), (3.5)

3The orthonormality assumption is not necessary to solve the minimization problem (e. g., Simard
et al., 1993). However, it is beneficial to keep the equation simple.

4Note that if x ∈ {t + Bθ | θ ∈ Rns}, the solution θ∗ is still valid even though the gradient
∇θd (x,w) does not exist.
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where P = Inx−BBT can be identified as the orthogonal projector onto the comple-
ment of the linear subspace spanned by B. Hence, the Equation (3.5) determines the
dissimilarity as the shortest path regarding the Euclidean distance after projecting
the vectors x and t to the complement of the linear subspace. This is, in fact, the
smallest dissimilarity of x to the affine subspace defined by w.

Since the matrix P ∈ Rnx×nx is an orthogonal projector, it has some special
properties:

• P is idempotent (i. e., P2 = P);

• P is symmetric (i. e., PT = P).

Thus, we can simplify the Equation (3.5) further to

d (x,w) =

√
(x− t)

T
P (x− t).

This equation is used to determine the best matching set-prototype w∗ according to
Equation (2.10). Additionally, according to the BMPP, we assign the class c (w∗)

to a given data point x. Note that we transfer all the mathematical notations from
prototype vectors to set-prototypes accordingly. For example, we use w± to de-
note the closest correct and incorrect set-prototype and t± and B± to denote the
corresponding translations and bases.

Training

Similar to GMLVQ defined in Section 2.2.3, we train a GTLVQ model by the GLVQ
loss function according to Equation (2.15) and by adapting all the learning rules
accordingly. Therefore, the vector of trainable parameters ϑ is defined by all pa-
rameters of all set-prototypes wk—that is, by the parameters of each tk and Bk.
Consequently, we learn all the affine subspaces. In the following, we derive the learn-
ing rules for the squared tangent distance. The use of the squared tangent distance
simplifies the learning rules, and the learning rules for the non-squared version result
directly from these equations.

Based on a training sample (x, c (x)), we determine the closest correct set-
prototype w+ and incorrect set-prototype w−. Only for these set-prototypes, the
gradients are nontrivial. Similar to Equation (2.20), the update rule for the transla-
tion is

t± ← t± ∓ ηξ± ∂d
2 (x,w±)

∂t±
(3.6)

with the gradient
∇td

2 (x,w) = −2P (x− t)
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of the squared tangent distance with respect to t. The variables ξ± are the gradient
scaling factors according to Equation (2.19). Moreover, similar to Equation (2.24),
the learning rule for the basis matrices is given by

B± ← B± ∓ ηξ± ∂d
2 (x,w±)

∂B±
. (3.7)

The gradient of d2 with respect to the basis matrix is

∇Bd2 (x,w) = −2 (x− t) (x− t)
T

B.

After we have adjusted the bases, we must orthonormalize the two new bases B+ and
B−—for instance, by applying the Gram–Schmidt process. This is necessary to guar-
antee the orthonormality assumption that was used for solving the tangent distance
minimization problem of Equation (3.3). At the same time, this step prevents pos-
sible degeneration effects: Suppose that we initialized each Bk as an ns-dimensional
basis and that we only apply small updates. Then, the orthonormalization avoids
that the basis vectors of Bk can become linearly dependent and thus do not form
an ns-dimensional basis. Additionally, this step provides a regularization for the
matrices Bk by restricting the solution space.

The complete learning process of the bases is a kind of projected gradient descent.
This means that we apply an update that may result in a violation of the solution
assumption—that is, that the matrices are orthonormal bases. Therefore, we then
apply an appropriate projection strategy to map the updated bases back to the
solution space.

Considering the learning rules, see Equation (3.6) and Equation (3.7), we notice
that the SGD updates the affine subspaces in such a way that the correct affine
subspace becomes more similar to data points of the respective class and is thus
attracted. At the same time, the updates try to make the incorrect class more
dissimilar by pushing away the corresponding affine subspace. In summary, this
leads to a discriminative learning of the affine subspaces with respect to the given
classification task.

Initialization

To determine the number of prototypes per class, we apply strategies known from
basic LVQ methods. Furthermore, the translations tk can be treated as prototype
vectors and thus can be initialized by LVQ strategies, see Section 2.2.1. We recom-
mend to use a k-means initialization for each class in which the number of means
corresponds to the number of prototypes in the respective class.

After that, we initialize each basis Bk using the following procedure:
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1. Determine all the training samples of the correct class for which tk is the closest
prototype vector in terms of the underlying dissimilarity. Hence, we consider
tk as a prototype vector of an ordinary LVQ approach and determine all the
training samples that belong to the receptive field of tk.

2. Compute the ns eigenvectors that belong to the ns largest eigenvalues of the
estimated covariance matrix over these training samples.

3. Use these ns eigenvectors as initialization for Bk and orthonormalize the re-
sulting matrix if necessary.

In principle, the whole procedure is similar to a principal component analysis with
the predefined mean vector tk and the training samples from the receptive field.
Thereby, the computationally expensive step is the calculation of the eigenvectors.
This usually performed by a singular value decomposition. However, if the number
of dimensions nx becomes large, then this could be a bottleneck. In this case, we
recommend to use the Oja–Sanger method,5 which estimates the eigenvectors of the
covariance matrix in an online process (Sanger, 1989). If we do not have access to the
training dataset in advance, we initialize the bases by random orthonormal bases.

As opposed to GLVQ, we have to define the additional hyperparameter ns, the
subspace dimension, in advance. In general, this parameter should be much smaller
than the data space dimension nx (i. e., ns � nx) so it is unlikely that a training
sample is simultaneously an element of two set-prototypes of different classes. In
consequence, a division by zero in the GLVQ loss is avoided. To find a good setting
for ns, we recommend slowly increasing ns starting from a very small value. For each
setting of ns, we train the model for only a few iterations or apply the initialization
approach to get an estimate of the model performance. As a baseline, we start
with a GLVQ method that uses the same underlying dissimilarity. After that, we
use a GTLVQ model with ns = 1. Then, we increase ns as long as no significant
performance gain can be observed. The resulting value is used to train the algorithm.
In addition, techniques for estimating the intrinsic dimension of the dataset can be
used to determine an estimate for ns.

3.2.2 Restricted generalized tangent learning vector quanti-
zation: ns-orthotope prototypes

An extension of the GTLVQ method and, moreover, another realization of set-
prototypes is the application of a restriction on the affine subspaces. In the fol-
lowing, we will consider box-constraints on θ so that the affine subspaces become
ns-dimensional orthotopes.

5Also denoted as generalized Hebbian algorithm or Sanger’s rule.
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Definition 3.4 (ns-orthotope). An ns-orthotope (box or hyperrectangle) is a set

{t + Bθ | θ ∈ R ⊂ Rns} ,

where θ is a parameter vector, B ∈ Rnx×ns is a basis of an ns-dimensional linear
subspace, and t ∈ Rnx is a translation. The set R ⊂ Rns is a centered and axis-
aligned hyperrectangle:

R = [−a1, a1]× [−a2, a2]× · · · × [−ans , ans ] .

In this context, the symbol × denotes the Cartesian product. The nonnegative
parameters ai (i. e., ai ≥ 0) define the edges of the centered and axis-aligned hyper-
rectangle. We combine all the parameters ai to a vector a.

Note that the assumption of a centered and axis-aligned hyperrectangle is not a
limitation: Every ns-orthotope that is constructed on a non-centered and axis-aligned
hyperrectangle is equivalent to an ns-orthotope constructed on a centered and axis-
aligned hyperrectangle. For a proof of this claim and all the following theorems, we
refer to [2017a].

Model derivation

To derive the restricted-GTLVQ method, we define the set-prototypes as ns-
orthotopes with predefined subspace dimension ns according to Definition 3.4—that
is, wk = {tk + Bkθ | θ ∈ Rk ⊂ Rns}. Similar to GTLVQ, we use the Euclidean dis-
tance as underlying dissimilarity to keep the point-set dissimilarity tractable. We
call this point-set dissimilarity restricted tangent distance because the set-prototypes
are restricted affine subspaces:

d (x,w) = min {dE (x, t + Bθ) | θ ∈ R ⊂ Rns} . (3.8)

The following theorem provides the solution for this optimization problem.

Theorem 3.1. Assume that B is an orthonormal basis. The set of optimal solutions
of Equation (3.8) is a singleton with the element

θ∗ = H
(
a−

∣∣∣θ̂∣∣∣) ◦ θ̂ + sgn
(
θ̂
)
◦
(
1−H

(
a−

∣∣∣θ̂∣∣∣)) ◦ a, (3.9)

where θ̂ = BT (x− t) is the solution of the unrestricted tangent distance problem,
see Equation (3.4) and Equation (3.3), respectively.

Thereby, H (·) denotes the Heaviside step function defined in Equation (2.14), |·|
denotes the absolute value operation, and sgn (·) denotes the sign function—the func-
tions are extended to vectorial inputs by applying them element-wise. The symbol ◦
denotes the Hadamard product (element-wise multiplication).
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The solution θ∗ is element-wise equivalent to

θ∗i =


ai if θ̂i ≥ ai,
θ̂i if

∣∣∣θ̂i∣∣∣ < ai,

−ai otherwise.

This shows how the solution is constructed: We compute the unrestricted solution
and clip all the values outside of R to the boundary.

Proof sketch. The theorem is proven by the following two steps:

1. We prove that there exists a solution and that the solution is unique.

2. We prove that the vector θ∗ is optimal by verifying the Karush–Kuhn–Tucker
and Slater condition.6

With θ∗, we derived a tractable solution of the Equation (3.8) so that we can
efficiently determine the BMPP. Similar to GTLVQ, we transfer all the mathematical
notations from ordinary prototypes to the defined set-prototypes accordingly.

Training

To derive the learning equations, we need the gradients with respect to all the train-
able parameters—that is, with respect to t, B, and a. As opposed to GTLVQ, it
is not obvious that the Equation (3.8) is differentiable because the solution θ∗ con-
tains non-differentiable parts like the Heaviside step function. The following theorem
ensures the differentiability on the required domain for SGD.

Theorem 3.2. Let x ∈ Rnx be arbitrary but fixed. The restricted tangent distance
according to Equation (3.8) is differentiable with respect to the variables t, B, and a

on the domain{
(t,B,a) ∈ Rnx × Rnx×ns × Rns≥0 | x− t 6= Bθ∗ and ai > 0 for all i

}
. (3.10)

Proof sketch. A function f (x) defined on an open domain D (f) ⊆ Rnx is differen-
tiable if

• f (x) is continuous on D (f),

• the partial derivatives ∂f(x)
∂xi

exist on D (f) for all i, and

• the partial derivatives ∂f(x)
∂xi

are continuous on D (f) for all i.

6We refer to Boyd and Vandenberghe (2004) regarding the two conditions.
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These three conditions are sufficient for the differentiability of f and we prove the
theorem by validating them.

Note that we ensure the open set assumption in Equation (3.10) by excluding
the boundary points (i. e., by the condition ai > 0 for all i). We have also excluded
points where the derivative of the real square root does not exist:

dE (x, t + Bθ∗) = 0,

x = t + Bθ∗,

x− t = Bθ∗.

Based on this theorem, the relation between the gradient and the partial deriva-
tives holds so that we can derive the learning equations. The learning rule for the
translations is equivalent to Equation (3.6) with the gradient

∇td
2 (x,w) = −2 (x− t) + 2Bθ∗.

Note that this gradient becomes equal to the gradient of the tangent distance if θ∗

equals θ̂. This has to be true because, in this case, the restricted tangent distance is
equal to the tangent distance. A similar result holds for the gradient with respect to
the basis—this gradient is

∇Bd2 (x,w) = −2 (x− t) (θ∗)
T
.

Using this gradient in the learning rule according to Equation (3.7), we obtain the
learning rule for the basis matrices.

As opposed to GTLVQ, we learn the centered and axis-aligned hyperrectangle R
represented by the vector a. The respective SGD rule is given by

a± ← a± ∓ ηξ± ∂d
2 (x,w±)

∂a±
, (3.11)

where the gradient is
∇ad

2 (x,w) = −2
∣∣∣θ∗ − θ̂∣∣∣ .

Equivalent to GTLVQ, we perform a projected gradient descent learning and
project the bases B+ and B− back into the space of orthonormal basis matrices after
each update. However, we cannot apply an arbitrary orthonormalization method, be-
cause a basis representation B of a linear subspace is not unique and an ns-orthotope
is not invariant to B. The repeated application of an orthonormalization method
could, therefore, result in different basis representations B. For example, suppose
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that we permute the order of the basis vectors. On the one hand, the result is that
the basis spans the same linear subspace as before.7 On the other hand, we permute
the orthotope because the dimensions of R are related to the basis vectors and we
do not permute the intervals accordingly. Consequently, we have to use an orthonor-
malization method that returns the closest basis representation regarding the given
matrix.

A possible solution for this problem is related to the so-called orthogonal Pro-
crustes problem with which an orthogonal matrix B can be determined that is closest
to a given matrix B̃ in terms of the Frobenius norm (Schönemann, 1966). Assume
that B̃ ∈ Rnx×ns is the basis after an SGD update. Moreover, UΣVT is the singular
value decomposition of B̃—that is, B̃ = UΣVT, where U ∈ Rnx×nx , Σ ∈ Rnx×ns≥0 ,
and V ∈ Rns×ns . Then, we search for a matrix B ∈ Rnx×ns such that

B = arg min
Ω∈Rnx×ns

∥∥∥Ω− B̃
∥∥∥2
F

subject to ΩTΩ = Ins .

Using the relationship to the trace and the linearity property, the expression of the
Frobenius norm can be rewritten to

B = arg min
Ω∈Rnx×ns

(
tr
(
ΩTΩ

)
− 2tr

(
B̃TΩ

)
+ tr

(
B̃TB̃

))
subject to ΩTΩ = Ins .

Since Ω is an orthonormal basis, this optimization is equivalent to

B = arg max
Ω∈Rnx×ns

tr
(
B̃TΩ

)
subject to ΩTΩ = Ins .

By substituting B̃ with the singular value decomposition and by the property that
the trace is invariant under cyclic permutations, we get

B = arg max
Ω∈Rnx×ns

tr
(
ΣTUTΩV

)
subject to ΩTΩ = Ins .

Because U and V are orthogonal matrices—characteristic of the singular value
decomposition—and Ω is an orthonormal basis, the product UTΩV is an orthonor-
mal basis matrix of size nx × ns. Since Σ is a nonnegative diagonal matrix of size
nx × ns,8 the trace is maximum if

UTΩV = Inx×ns ,

Ω = UInx×nsV
T,

7Thus, an affine subspace is invariant to the basis representation B of the linear subspace, so
GTLVQ does not depend on a specific orthonormalization method.

8A rectangular diagonal matrix Σ is a matrix where all the entries Σij with i 6= j are zero.
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where Inx×ns is a diagonal matrix of size nx × ns with ones on the main diagonal.
Finally, the optimal orthonormal basis is

B = UInx×nsV
T.

If we take the compact singular value decomposition9 of B̃—that is, B̃ = UΣVT,
where U ∈ Rnx×ns , Σ ∈ Rns×ns≥0 , and V ∈ Rns×ns—the solution simplifies to

B = UVT

and the computation becomes more efficient. Similar to GTLVQ, the orthonormal-
ization prevents possible degeneration effects and provides a regularization during
training.

In addition to the orthonormalization, we have to ensure that each element ai of
the vector a is greater than zero to guarantee the differentiability. This can be realized
by encoding the vector a into a vector ã ∈ Rns with the element-wise decoding rule
ai = exp (ãi). Then, the learning rule of Equation (3.11) is modified to a learning
rule with respect to ã.

In general, the learning behavior of the restricted-GTLVQ is similar to that of the
GTLVQ—it tries to make the orthotopes more discriminative for the classification
task. This consists of

• the attraction of the orthotope of the correct class and an increase of the size
in the direction of the data point and

• the repulsion of the orthotope of the incorrect class and a decrease of the size
with respect to the data point.

Initialization

Restricted-GTLVQ can be initialized with the same methods that are used for
GTLVQ. For instance, during the initialization phase, we set the elements of a

to such large values that restricted-GTLVQ is like GTLVQ. Then, we initialize the
translations and the bases with the proposed GTLVQ initialization methods. After
that, we set the elements in a to such small values that restricted-GTLVQ is similar
to GLVQ. In this setting, we start the training, and during this time, the orthotopes
will grow to a size that is necessary to solve the classification task.

9Sometimes referred to as thin or economical singular value decomposition.
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3.3 Relations to other concepts

The previously derived GTLVQ algorithms have some commonalities with other ap-
proaches or concepts. This section examines these relations. In the first subsection,
we analyze the relation of point-set dissimilarities to Hausdorff distances. The pre-
sented theorem provides an important result about the tangent distance: The tangent
distance can be interpreted as a Hausdorff distance and thus can be considered as a
metric. Subsequently, we describe how the concept of (restricted) tangent distances
is related to tangent space approximations of manifolds. This relation helps to un-
derstand the learning behavior and the way the set-prototypes are aligned during
training. Finally, we investigate similarities between GMLVQ methods and GTLVQ.
The result of this study is that the mathematical properties of GTLVQ prevent
oversimplification and that GTLVQ performs a self-regularization. Furthermore, the
results show that local-GMLVQ can become equivalent to GTLVQ if local-GMLVQ
is trained with the commonly used regularization term. This strong relation provides
new interpretation techniques for the learned transformation matrices in standard
GMLVQ and local-GMLVQ.

3.3.1 Hausdorff distances

Felix Hausdorff was a German mathematician and is considered to be one of the
founders of modern topology. He defined the so-called Hausdorff distance, which
measures the dissimilarity between two subsets of a metric space (S, d).

Definition 3.5 (Hausdorff distance). Let (S, d) be a metric space and X,Y ⊆ S be
two non-empty subsets of S. Their Hausdorff distance dH (X,Y ) is defined by

dH (X,Y ) = max

{
sup
x∈X

inf
y∈Y

d (x, y) , sup
y∈Y

inf
x∈X

d (x, y)

}
. (3.12)

The Hausdorff distance can be constructed by several extensions of the metric
d. Suppose we have the metric space (R, dE), a set A = {1, 2, 7, 9}, and another set
B = {2, 7}. As usual in the Euclidean geometry, we define the distance between a
point and a non-empty set by the point-set dissimilarity d (x, Y ) (e. g., d (1, B) = 1).
The next extension is that we define a dissimilarity between X and Y by

d (X,Y ) = sup
x∈X

d (x, Y ) .

With the previously defined sets, d (A,B) = 2 and d (B,A) = 0. In general, d (X,Y )

is not symmetric and we define a symmetric version by taking the maximum value
over both expressions. The reason to take the maximum and not the minimum value
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is that we want to measure the difference (dissimilarity) between the two sets. Finally,
the Hausdorff distance between A and B is dH (A,B) = 2.

Lemma 3.1. Let P (S) be the power set of S without the empty set. The Hausdorff
distance on P (S), defined by

dH : P (S)× P (S) −→ R̄,

is an extended semimetric. This is a semimetric according to Definition 2.3 with
output values in the extended real numbers R̄ = R ∪ {−∞,∞}.

Thus, Definition 3.5 defines an extended semimetric. Interestingly, by a small
modification, dH can become a metric.

Lemma 3.2. Let F (S) be the set of all non-empty compact subsets of S. The
Hausdorff distance on F (S), defined by

dH : F (S)×F (S) −→ R,

is a metric according to Definition 2.1 and dH can be simplified to

dH (X,Y ) = max

{
max
x∈X

min
y∈Y

d (x, y) ,max
y∈Y

min
x∈X

d (x, y)

}
. (3.13)

We refer to Henrikson (1999) for a proof of the lemma. It is notable that these
results are independent of the particular distance measure d.

In the following, we formulate a lemma about the relation between the general
tangent distance according to Equation (3.2) and the Hausdorff distance. This lemma
requires a translation-invariant metric and we then discuss whether the lemma would
be generally provable without this property. Based on these results, we derive the
theorem that describes the relationship between an arbitrary point-set dissimilarity
according to Equation (3.1) and the Hausdorff distance.

Relation to the general tangent distance according to Equation (3.2)

By definition, the point-set dissimilarity is part of the Hausdorff distance and, hence,
it is obvious to investigate the relationship. The following lemma is a special case of
the theorem that we will introduce later and so the proof is provided by the theorem.

Lemma 3.3. Let (S, d) be a metric space with d being a translation-invariant metric
according to Definition 2.2, (S,+) be a group, and Y be a left coset—that is,

Y = {g + h | h ∈ H} ,
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where g ∈ S is a translation element and H ⊆ S is a subgroup. Then the following
holds:

dH (X,Y ) = d (x, Y ) , (3.14)

where
X = {x+ h | h ∈ H}

is a left coset that has the same subgroup as Y but the element x as translation.

This lemma states that we can always construct a left coset X such that the
general tangent distance is equivalent to the Hausdorff distance.

In the definition of the tangent distance according to Equation (3.3), we used the
Euclidean distance as underlying dissimilarity that is a translation-invariant metric.
Moreover, an affine subspace is a left coset of the vector space. Consequently, the
lemma applies to the definition of the tangent distance. The statement of the lemma
is now that we can always construct an affine subspace with x as the translation such
that it is parallel to the prototypew so that the Hausdorff distance between these two
parallel subspaces is equal to the tangent distance between x and w. Therefore, we
know that we can formulate the tangent distance in the form of a Hausdorff distance so
that the distance function is an extended semimetric. This result becomes important
if a mathematical statement, method, or algorithm requires metric properties.

Is the lemma provable for non-translation-invariant metrics?

In general, it is not. Suppose that the lemma is true without the translation invari-
ance assumption. We use the non-translation-invariant railway metric10 to construct
a counterexample where the dissimilarity values between the general tangent distance
and the Hausdorff distance are different.

We define the railway metric over the normed vector space
(
R2, ‖·‖E

)
by

dR (x,y) =


‖x− y‖E if there exists a line L

such that x,y,o ∈ L,
‖x− o‖E + ‖y − o‖E otherwise,

(3.15)

where ‖·‖E denotes the Euclidean norm, o ∈ R2 is an arbitrary but fixed element—
denoted as origin—and x,y ∈ R2 are arbitrary input elements. This metric is a
common example for a non-translation-invariant metric. The general tangent dis-
tance according to Equation (3.2) with one-dimensional affine subspaces and dR as
underlying dissimilarity is

d (x,w) = min {dR (x, t + αr) | α ∈ R} . (3.16)
10Also denoted as British rail metric, post office metric or SNCF metric.
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In addition, for the counterexample, we define the variables to t = (2, 0)
T, r = (0, 1)

T,
x = (1, 0)

T, and the origin to o = (0, 0)
T. Consequently, the railway metric according

to Equation (3.15) simplifies to

dR (x,y) =

{
‖x− y‖E if x and y are linear dependent,

‖x‖E + ‖y‖E otherwise.
(3.17)

Compute the general tangent distance: We calculate the general tangent dis-
tance for the defined vectors. Hence, we search for the minimum value along the line
w = t+αr with respect to the parameter α. The first case of Equation (3.17) applies
to all values s and α for which

t + αr = sx,(
2

0

)
+ α

(
0

1

)
= s

(
1

0

)
.

This is true for s = 2 and α = 0. However, if α = 0, the dissimilarity value is
calculated to

dR (x, t + αr) = ‖x− t‖E ,

=

∥∥∥∥−( 1

0

)∥∥∥∥
E

,

= 1.

The second case of Equation (3.17) applies if α 6= 0. Now, the railway metric equals

dR (x, t + αr) = ‖x‖E + ‖t + αr‖E ,

=

∥∥∥∥( 1

0

)∥∥∥∥
E

+

∥∥∥∥( 2

0

)
+ α

(
0

1

)∥∥∥∥
E

,

= 1 +
√

4 + α2.

If both results are combined, the general tangent distance, according to Equa-
tion (3.16), is computed to

d (x,w) = min

{
1 if α = 0,

1 +
√

4 + α2 otherwise,

= 1.



42 3. Generalized Tangent Learning Vector Quantization

Compute the Hausdorff distance: We calculate the Hausdorff distance
dH (Z,w), where

Z =
{
z ∈ R2 | there exists a β ∈ R such that z = x + βr

}
is the left coset according to the lemma and, hence, the parallel line to w.

The first condition of the railway metric can be formulated by the parameters α
and β. The vectors are linear dependent if

t + αr = s (x + βr) ,(
2

0

)
+ α

(
0

1

)
= s

((
1

0

)
+ β

(
0

1

))
is fulfilled. This implies s = 2 and α = 2β. The Hausdorff distance is computed by
evaluating both expressions of the maximum in Equation (3.12). The first expression
can be simplified to

sup
z∈Z

inf
w∈w

dR (z,w) = sup
β∈R

inf
α∈R


√

1 + (α− β)
2 if α = 2β,√

1 + β2 +
√

4 + α2 otherwise.
(3.18)

Assume an arbitrary but fixed β ∈ R. The infimum of the first case with α = 2β

calculates to
inf

w∈w
dR (z,w) =

√
1 + β2.

Since β was arbitrary, the first expression of the Hausdorff distance under the condi-
tion α = 2β is infinite:

sup
z∈Z

inf
w∈w

dR (z,w) = sup
β∈R

√
1 + β2,

=∞.

Note that we computed the Hausdorff distance on the extended real numbers.
The second case of Equation (3.18) applies if α 6= 2β. Therefore, the infimum

equals

inf
w∈w

dR (z,w) = inf
α∈R

(√
1 + β2 +

√
4 + α2

)
,

=
√

1 + β2 + 2

with α = 0, which implies β 6= 0. Finally, this case is also infinite:

sup
z∈Z

inf
w∈w

dR (z,w) = sup
β∈R, β 6=0

(√
1 + β2 + 2

)
,

=∞.
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Consequently, the first expression of the Hausdorff distance is infinite. Due to the
outer maximum operation of the Hausdorff distance, see Equation (3.12), we can
conclude that the Hausdorff distance with the underlying railway metric is infinite—
that is, dH (Z,w) =∞.

In summary, we have constructed an example in which the general tangent dis-
tance provides a different dissimilarity value than the Hausdorff distance. Hence, we
found a counterexample. Therefore, the lemma is generally not provable for non-
translation-invariant metrics.

Generalization of the lemma

Lemma 3.3 is limited to cosets and, thus, to the general tangent distance, see Equa-
tion (3.2). Now, we generalize the lemma to the following theorem that is valid for
an arbitrary set definition and, hence, also applies to the restricted-GTLVQ from
Section 3.2.2.

Theorem 3.3. Let (S,+) be a group and (S, d) be a metric space with d being a
translation-invariant metric. Given an element x and a non-empty subset Y of S,
we assume that the resulting point-set dissimilarity problem has an optimal element
y∗ in the closure of Y so that

d (x, y∗) = d (x, Y ) = inf
y∈Y

d (x, y) .

Then the following holds:
dH (X,Y ) = d (x, Y ) ,

where
X = {x− y∗ + y′ | y′ ∈ Y } .

Note that we use −y to denote the inverse element to y and that we do not
assume an Abelian group.11 Additionally, in the following proof, the identity element
is denoted by e.

Proof. According to Definition 3.5, the Hausdorff distance is given by

dH (X,Y ) = max

{
sup
x′∈X

inf
y∈Y

d (x′, y) , sup
y∈Y

inf
x′∈X

d (x′, y)

}
.

We prove the theorem by the following steps:
11An Abelian group is a group (S,+) with the additional property that the operation is commu-

tative (i. e., x+ y = y + x).
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1. We show that d (x, Y ) is an upper bound for the first expression of the maximum
evaluation of dH (X,Y ).

2. We prove that this bound is the least upper bound and, thus, the supremum.

3. For the second expression of the maximum evaluation of dH (X,Y ), we show
that d (x, y∗) is also an upper bound.

4. Due to the outer maximum operation, this proves the theorem.

Step 1: Applying the definition of the set X from the theorem, we obtain

sup
x′∈X

inf
y∈Y

d (x′, y) = sup
y′∈Y

inf
y∈Y

d (x− y∗ + y′, y) .

Since the metric d is translation-invariant, we can reformulate the expression to

sup
x′∈X

inf
y∈Y

d (x′, y) = sup
y′∈Y

inf
y∈Y

d (x, y − y′ + y∗) .

Now, we show that d (x, Y ) is an upper bound. Let the element y′ ∈ Y of the
supremum be arbitrary but fixed. Because we calculate the infimum, it holds that

inf
y∈Y

d (x, y − y′ + y∗) ≤ d (x, y′ − y′ + y∗) = d (x, y∗) .

Since y′ was arbitrarily chosen, it follows that the point-set dissimilarity is an upper
bound:

sup
x′∈X

inf
y∈Y

d (x′, y) ≤ d (x, y∗) .

Step 2: Assume that d (x, y∗) is not the least upper bound and, therefore, not the
supremum. This means that there is an element y′′ ∈ S such that

inf
y∈Y

d (x, y − y′′ + y∗) < d (x, y∗) (3.19)

and all evaluations for y′ ∈ Y are less than or equal to

inf
y∈Y

d (x, y − y′ + y∗) ≤ inf
y∈Y

d (x, y − y′′ + y∗) . (3.20)

Given an arbitrary y′, we define the element in terms of y∗ by

y′ = y′ − y∗︸ ︷︷ ︸
δ

+ y∗,

= δ + y∗. (3.21)
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Since y∗ is in the closure of Y , we can conclude that

inf
y′∈Y

d (y′, y∗) = 0.

Due to the metric properties, we can further conclude that if y∗ ∈ Y , then this implies
that y′ = y∗. Moreover, if y∗ /∈ Y , then there is a sequence such that y′ converges
to y∗ if d (e, δ) → 0. Furthermore, by substituting y′ in Equation (3.20) with the
expression from Equation (3.21), we obtain

inf
y∈Y

d (x, y − δ) ≤ inf
y∈Y

d (x, y − y′′ + y∗) .

From the previous discussion, we know that we can either select the element y′

directly such that d (e, δ) = 0, or that we can find an element y′ that is arbitrarily
close to y∗ so that d (e, δ)→ 0. Applying this result in the previous equation yields

inf
y∈Y

d (x, y) ≤ inf
y∈Y

d (x, y − y′′ + y∗) .

Because infy∈Y d (x, y) = d (x, y∗), this contradicts the initial assumption in Equa-
tion (3.19) and it follows that d (x, y∗) is the supremum.

Step 3: Similar to the first step, we use the translation invariance of the metric to
obtain

sup
y∈Y

inf
x′∈X

d (x′, y) = sup
y∈Y

inf
y′∈Y

d (x, y − y′ + y∗) .

Let the element y ∈ Y of the supremum be arbitrary but fixed. Because we calculate
the infimum, it holds that

inf
y′∈Y

d (x, y − y′ + y∗) ≤ d (x, y − y + y∗) = d (x, y∗) .

Since y was arbitrarily chosen, it follows that the point-set dissimilarity is an upper
bound:

sup
y∈Y

inf
x′∈X

d (x′, y) ≤ d (x, y∗) .

Step 4: Since we compute the maximum over both expressions, we have proven
that

dH (X,Y ) = d (x, Y ) .

It should be noted that, in general, the equality—that is, dH (X,Y ) = d (x, Y )—
holds for the first argument of the maximum expression. Similar to the interpretation
of the Lemma 3.3, the theorem provides an answer about the relation of the Haus-
dorff distance to an arbitrary point-set dissimilarity. Because we made no assumption
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M

x
B

t

w (θ)w (θ)

Figure 3.1: Illustration of a tangent space approximation by w (θ) of a manifoldM
at point t with tangent basis B in a two-dimensional embedding space.

about the subset Y and only assumed a group, this theorem applies to the restricted
tangent distance according to Equation (3.8), and we can conclude that the distance
evaluation can be interpreted as an evaluation of an extended semimetric. Addition-
ally, because the set-prototypes of the restricted tangent distance are compact sets,
the distance can be interpreted as a metric evaluation. Furthermore, since the evalu-
ation of a k-nearest neighbors algorithm or a GLVQ method with several prototypes
per class can be interpreted as a kind of set-prototype approach, the theorem also
applies to these methods and answers the question how the BMPP is related to a
metric function.

3.3.2 Tangent space approximations

Tangent distances are inspired by the idea that a certain (maybe technical) system
generates data vectors (signals) x ∈ Rnx for a considered task. This system is de-
termined by an intrinsic state that is controlled by a parameter vector θ ∈ Rns .
Moreover, the intrinsic state influences the signal generation and, therefore, the sig-
nal generation depends on θ. For instance, in the first publication about tangent
distances, Simard et al. (1993) assumed that the variations in each class of hand-
written digits are generated by seven dominating transformations: horizontal and
vertical translations, rotation, scaling, two hyperbolic transformations (which can
generate shearing and squeezing), and line thickening or thinning. Accordingly, they
assumed that the intrinsic state of the system generating the variations for a digit
of a given class is only seven-dimensional even though the embedded samples in the
image space have a much higher dimension.12 Therefore, by the application of the
tangent distance, they tried to capture information about the data manifold instead
of only exploring the high-dimensional embeddings as individual data points.

In Figure 3.1, we present an illustrative example of a tangent space approximation.
Assume that the data points x are (maybe noisy) embedded samples x ∈ M of an

12This concept is equivalent to the intrinsic dimension.
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(usually) unknown smooth ns-dimensional manifoldM.13 We linearly approximate
the embedded manifold curve at t ∈ Rnx by the tangent basis B ∈ Rnx×ns resulting
in a linear approximation. This approximation is represented by the points t + Bθ,
where θ ∈ Rns is a local coordinate vector. All these approximation points are
collected into a set w and we define by w (θ) the mapping from a local coordinate
vector θ to the corresponding embedding in Rnx—this set w is an affine subspace.

Relation to GTLVQ

If we assume that the data samples of a class are embedded samples of a manifold,
then the GTLVQ algorithm tries to approximate the class manifold by respective
tangent spaces. Each tangent space is a set-prototype and, in particular, an affine
subspace. By presenting samples from the class during training, the algorithm aligns
the set-prototypes such that they capture the data structure and thus the unknown
manifold structure. In addition, the basis vectors of B will capture the directions of
variations within the class. Hence, the basis can be considered as tangent basis and
the basis vectors as tangent vectors. Additionally, the vector θ∗ determines the local
coordinates for a given data point.

The tangent distance computes the shortest distance from a given point to the
affine subspace (the tangent space). Therefore, the distance estimates a kind of
approximation error between the given data point and the best approximation. This
best approximation x∗ of a point x is determined by

x∗ = t + Bθ∗,

= t + BBT (x− t) . (3.22)

Using this approximation, the tangent distance, see Equation (3.3), becomes equal
to the Euclidean distance between the given point and the best approximation:

d (x,w) = dE (x,x∗) . (3.23)

In Figure 3.1, this approximation is accurate as long as the data points are close
to the set-prototype. Moreover, in this case, the tangent distance returns a much
more accurate dissimilarity measure than the frequently used Euclidean distance.
However, if points are not well approximated by w, then the tangent distance and
the Euclidean distance often return similar values (e. g., the point x in the figure).

GTLVQ uses affine subspaces as set-prototypes. Thus, the method implicitly
assumes that all tangent space approximations are globally valid. In theory, this
could lead to difficulties in distinguishing different classes. For example, suppose

13A bold symbol like t refers to the embedded manifold point t ofM.
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we classify handwritten digits and learned a tangent that perfectly approximates
rotations of a six. If we rotate a six by 180 degrees, then the six is similar to a
nine and, hence, the method would have problems to distinguish between sixes and
nines. In practice, however, we learn the set-prototypes and, thus, the tangent space
approximations discriminatively so that the method only learns tangents that support
the class discrimination. Consequently, tangents that lead to confusion between
classes are unlikely to be learned—this is a result of the learning rules because they
pull and push the set-prototypes.

Relation to restricted-GTLVQ

Restricted-GTLVQ is a generalization of GTLVQ and, hence, almost all the state-
ments made for GTLVQ remain true. The difference is in the definition of the
set-prototypes and their relation to tangent space approximations. In Figure 3.1,
this difference is highlighted by the boundaries (small right-angled strokes) on the
set-prototype w (θ) so that the set-prototype becomes a line segment and thus an
ns-orthotope.

The approximation of the manifold can be derived in terms of a Taylor series
centered at t. Particularly, the tangent spaces are the first-order approximations of
the manifold at point t. As usual with a Taylor series approximation, the approxi-
mation is only accurate in a certain vicinity around the center point (i. e., around t).
Therefore, the approximation is less accurate for points that are far from the cen-
ter point. As already mentioned, we implicitly assume through the affine subspaces
in the standard GTLVQ that this approximation is globally valid, that is, for all
θ ∈ Rns . In contrast, restricted-GTLVQ applies a constraint on θ and, consequently,
learns indirectly that the approximation is only valid in a certain range around the
center point—this range is described by the hyperrectangle R.

The idea to interpret the tangent space approximation as a Taylor series was used
to study similarities between transfer learning realized by LVQ methods and both
GTLVQ and restricted-GTLVQ. A detailed description can be found in [2017c].

3.3.3 Generalized matrix learning vector quantization

Considering the tangent distance, see Equation (3.5), of GTLVQ and the quadratic-
dissimilarity, see Equation (2.5), of GMLVQ, then it is obvious that the methods are
similar to some extent—especially, in the local version of GMLVQ where each proto-
type wk is equipped with an individual transformation matrix Qk ∈ Rmx×nx . Both
methods transform the data point as well as the prototype or translation vector before
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calculating the dissimilarity by the Euclidean distance. However, local-GMLVQ ap-
plies an arbitrary transformation to an mx-dimensional space, while GTLVQ applies
a projection onto a linear subspace and, hence, stays in the input space Rnx .

The methods become even more similar if we use local-GMLVQ with a limited
rank mx ≤ nx or, moreover, with a limited rank equivalent to the dimension of
the complementary subspace—that is, mx equals nx − ns. Then, the projector P ∈
Rnx×nx has the rank mx and the transformation matrix Q also has the rank mx,
assuming the full rank of Q—this is always assumed in the following discussion.
Now, if we write the quadratic-dissimilarity as

dQ (x,w) =

√
(x−w)

T
Λ (x−w),

where Λ = QTQ ∈ Rnx×nx ,14 and the tangent distance as

d (x,w) =

√
(x− t)

T
P (x− t),

then the dissimilarity measures appear to be completely equivalent but differ in the
properties of the matrix: Λ is an arbitrary transformation matrix, while P is an
orthogonal projector.15

Even if GMLVQ could also learn a projector, it will generally not do so. Without
regularization, GMLVQ will oversimplify to a few dimensions and thus map the
data points onto a low-dimensional subspace. According to Schneider et al. (2010),
oversimplification is “an overly pronounced elimination of dimensions in [the] feature
space [that] can have negative effects on the performance and may lead to instabilities
in the training” (p. 831). They also note that “the computation of the distance values
is finally based on a strongly reduced number of features compared to the original
input dimensionality of the data” (p. 833). This effect is sometimes called collapsing
dimensions and was examined by Xing et al. (2003) and Globerson and Roweis (2006)
for quadratic-dissimilarities and by Biehl et al. (2015) intensively for GMLVQ.

In Schneider et al. (2010), the authors proposed a regularization method for GM-
LVQ to control the oversimplification based on a measure of uniformity of the eigen-
value profile of Λ under the assumption that mx ≤ nx.16 Since Λ is the Gram matrix
of Q, the matrix is positive semidefinite and, therefore, we can find a decomposition
of the form

Λ = UΣUT

14Note that rank (Λ) equals rank (Q).
15This strong relation is the reason why the learning rule for the translation of the affine subspace

is equivalent to the learning equation for the prototype vector in GMLVQ.
16Similar statements can be derived for the case mx > nx.
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by computing a singular value decomposition. Because we assume that the rank of
Q equals mx, the matrix Λ has exactly mx nonzero singular values, and a compact
singular value decomposition with U ∈ Rnx×mx and Σ ∈ Rmx×mx≥0 yields

Λ =
(
UΣ

1
2

)
︸ ︷︷ ︸

Q̃T

(
UΣ

1
2

)T
.

Thus, we can find a decomposition of Λ as a function of the transformation matrix Q̃.
The matrix U is an orthonormal basis and it follows immediately that the column
vectors of U are the eigenvectors to nonzero eigenvalues of Λ. Additionally, the
singular values in Σ are the nonzero eigenvalues.

If the transformation matrix QT of GMLVQ is considered as a basis representa-
tion of the feature space, then Q̃T provides a basis representation where the basis
vectors (column vectors) are orthogonal. In general, the basis Q̃T is not orthonormal
because the basis vectors are eigenvectors scaled with respect to the square root of
the corresponding eigenvalue. Exactly this scaling is responsible for the oversimpli-
fication effect as it scales the dimensions individually and, consequently, could lead
to the effect that dimensions are overemphasized or almost squashed to zero vectors.
Therefore, to control the oversimplification effect, we regularize the eigenvalue profile
of nonzero eigenvalues of Λ such that it becomes more uniform.

A direct optimization of the eigenvalues is difficult, so we take advantage of the
property that the product over the mx nonzero eigenvalues λi is equal to the deter-
minant of QQT:17

det
(
QQT) =

mx∏
i=1

λi.

If the trace of the matrix Λ is equal to mx, then the sum over the nonzero eigenvalues
λi is also equal to mx:

tr (Λ) =

mx∑
i=1

λi = mx.

If we apply this trace condition as a constraint—which is assumed in the following—
then the determinant of the matrix QQT is maximized if and only if all λi = 1.18

17Eigenvalues are counted with respect to the algebraic multiplicity.
18As explained in Section 2.2.3 and, in particular, in Footnote 11, such a constraint is often used in

GMLVQ to avoid the degeneration of single entries in the matrix Λ. The constraint to tr (Λ) = mx

is applied in the form of a projected gradient descent approach by applying the transformation

Λ←− mx
Λ

tr (Λ)

after each matrix update.
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Finally, a regularization term that avoids oversimplification is obtained by

−α ln
(
det
(
QQT)) ,

where α > 0 is the regularization parameter that controls the impact of the regular-
ization term on the training. The gradient of the regularization term with respect to
Q is −2α

(
Q†
)T, where Q† is the Moore–Penrose pseudoinverse of Q. Note that the

regularization term is greater than or equal to zero.
In view of the previous discussion, this regularization term penalizes differences

between the nonzero eigenvalues and is zero if and only if all nonzero eigenvalues
are equal to one. If the term is zero, then the matrix Λ is an orthogonal projector
because it is symmetric and idempotent. To show that Λ is idempotent, consider the
following proof:

ΛΛ = Q̃TQ̃Q̃TQ̃,

= UUTUUT,

= UImxU
T,

= Λ.

Additionally, the transformation matrix QT has to be an orthonormal basis because Λ

equals QTQ and UUT. Finally, this implies that the regularization term is zero if and
only if QT is an orthonormal base matrix. Therefore, if we add the regularization term
for each transformation matrix Qk with an arbitrarily high regularization parameter
α, then the local-GMLVQ algorithm becomes equivalent to the GTLVQ algorithm.
The implicit affine subspace dimension ns of the set-prototypes associated with local-
GMLVQ is given by nx −mx and the dimension of the complement by mx.

In summary, we can say that GTLVQ is not affected by the oversimplifica-
tion effect and is more efficient in terms of using parameters. GTLVQ mod-
els a set-prototype by nx (ns + 1) parameters. However, local-GMLVQ requires
nx (nx − ns + 1) parameters to implicitly learn a set-prototype of the same dimen-
sion. Thus, as long as we assume that the intrinsic dimension of the dataset is small
and we model the data by affine subspaces with a dimension ns � nx, GTLVQ
uses fewer parameters. Furthermore, the relation to GTLVQ makes clear that the
transformation Q tends to map the dimensions that are discriminative for the classi-
fication task to Rmx—this is similar to the complement of an affine subspace learned
by GTLVQ. Additionally, it maps the dimensions in which the dataset is invari-
ant for the classification task to the kernel (null space) of Q with the dimension
nx −mx—this is similar to an affine subspace learned by GTLVQ.
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3.4 Accuracy and interpretability evaluations

This section presents a numerical evaluation of the derived GTLVQ and restricted-
GTLVQ approach. We concentrate on the interpretability properties and the com-
parison of GTLVQ with other LVQ methods. In the first part of the experiments,
we use two widely used toy datasets: Circle and Spiral. These datasets are two-
dimensional and, therefore, useful to visualize the basic behavior of GTLVQ and
restricted-GTLVQ. Subsequently, we analyze GTLVQ on two real-world datasets:
MNIST and Indian Pine.

In the following, all networks use the squared Euclidean distance as dissimilarity
or underlying dissimilarity measure. Moreover, unless otherwise specified, they were
trained with the identity activation function (i. e., φ (x) = x) for the GLVQ loss
according to Equation (2.15). The used optimizer was the Adam method of Kingma
and Ba (2015) with the default settings from Keras. During training, we monitored
the validation loss and automatically adjusted the learning rate accordingly. If the
validation loss has not decreased over five epochs, we have reduced the learning
rate by a factor of 0.5. Furthermore, we trained without a box-constraint on the
prototypes: If the dataset consists of images and the image space is defined over the
unit interval, then we have not restricted the prototypes to this space during training.

3.4.1 Toy datasets

The analysis of toy datasets is a common approach to study basic properties of ML
methods. They are helpful to give users a first impression of how the methods work
and also to get a feeling for certain hyperparameters. For NNs, there are several
online tutorials for this purpose—one widely used is Tensorflow Playground.19

This web interface provides access to several two-dimensional toy datasets and an
interactive interface for the definition and training of NNs with the aim to give
newcomers an impression on how NNs work. We took from this tutorial the Circle
and the Spiral dataset—two highly nonlinear datasets—to evaluate the following
three LVQ methods.20

GLVQ: The GLVQ algorithm was trained without constraints or regularizations.
We initialized the prototypes by computing class-wise a k-means, where the
number of means was equal to the number of prototypes in the respective class.

Local-GMLVQ: The transformation matrices Qk are defined to be of size 2 × 2.
At the beginning of the training, we initialized the prototypes by calculating

19https://playground.tensorflow.org
20We want to motivate the reader to visit Tensorflow Playground to find NN architectures

that perform on the same level as the LVQ methods on the two datasets used.

https://playground.tensorflow.org
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(a) GLVQ after training.
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(b) Local-GMLVQ after training.

Figure 3.2: Visualization of the trained GLVQ and local-GMLVQ model on the Cir-
cle dataset. The training samples (white border) and test samples (black border)
of the classes are color-coded, and the whole input spaces are color-coded regard-
ing the class assignments. Therefore, the visible boundaries represent the decision
boundaries. The corresponding prototypes are drawn as big color-coded stars.

class-wise a k-means—similar to GLVQ—and initialized each matrix as 1
2I2

(i. e., as a scaled identity matrix). During training, we normalized the trace of
the matrices to one after each update step, as discussed in Section 2.2.3.

Restricted-GTLVQ: The set-prototypes are defined to be line segments. Hence,
we used one-dimensional affine subspaces. The orthogonal normalization of the
matrices and the initialization were performed as described in Section 3.2.2.

The Adam optimizer was used with an initial learning rate of 0.001 and a batch size
of 24. We trained all networks until they converged, which always happened in less
than 200 epochs. The datasets were randomly split into 80 % training and 20 % test
data.21 Moreover, we have not applied a normalization method to the datasets.

Circle dataset

The Circle dataset consists of an inner and an outer circle. Each circle corresponds
to one class. Thus, the dataset is a binary classification problem. We generated 500

data points with a noise level of 10 for each class of the dataset—see Figure 3.2 for
a visualization of the dataset. GLVQ is used with five prototypes per class and the

21Because we have no training-validation-test split, the validation and test data are identical.
Therefore, the validation loss or accuracy is the same as the test loss or accuracy, respectively.
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(a) Restricted-GTLVQ after initialization.
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(b) Restricted-GTLVQ after training.

Figure 3.3: Visualization of the initialized and trained restricted-GTLVQ model on
the Circle dataset. The figure description is the same as in Figure 3.2 except for
the prototypes: A set-prototype is represented by the translation point tk (marked
by the star) and the affine subspace (the black line segment). Note that after the
initialization, the set-prototypes are close to prototype vectors, which is the reason
for the tiny line segment (black dot) in the middle of each star.

other two LVQ methods with only one prototype for the inner circle and only two
prototypes for the outer circle.

The training of the models is stable and the final test accuracy for each method
is around 99 %. The training accuracy is significantly lower (around 96 %) for all
methods because the dataset has an overlap of the two classes at the inner circle.
However, almost none of the test points are in this overlap, so this difficulty is not
reflected in the test accuracy. It is noteworthy that despite this overlap, the training
results are not affected by this since the models do not show a tendency to overfit to
these points.

Considering Figure 3.2, we can visually inspect the training results from GLVQ.
GLVQ with five prototypes per class approximates the decision boundary with a
polygon. This polygon is non-smooth but has no artifacts in the sense that regions
outside the outer circle are labeled as the inner circle.

Local-GMLVQ learns a similar decision boundary as restricted-GTLVQ, see Fig-
ure 3.2 and Figure 3.3, respectively. Therefore, it seems that local-GMLVQ naturally
converges to restricted-GTLVQ on this highly nonlinear dataset. However, the classi-
fied input space has unwanted artifacts—note the two spots of the inner circle class at
the top and bottom of the image. The nonlinear decision boundary is the result of the
local transformation matrices applied before the Euclidean distance measurement.
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(a) GLVQ after training.
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(b) Local-GMLVQ after training.

Figure 3.4: Visualization of the trained GLVQ and local-GMLVQ model on the Spi-
ral dataset. The figure description is the same as in Figure 3.2.

In addition to the result of restricted-GTLVQ after training, Figure 3.3 shows
the decision boundary after the initialization of restricted-GTLVQ. Because we ini-
tialized the parameter vectors ak of the axis-aligned hyperrectangles Rk by 10−7 for
each value and each set-prototype wk, the one-dimensional orthotopes are close to
prototype vectors. After the initialization, the orthotopes grow during training and
classify the dataset by a fairly smooth decision boundary. Unlike local-GMLVQ, the
classified input space has no artifacts. Due to the properties of restricted-GTLVQ,
this is true for the entire input space: The decision boundary is determined by the
points that have at least two closest set-prototype of different classes at the same
time. Thus, if we consider a point on the decision boundary, the shortest distances
from that point to at least two set-prototypes of different classes are equal. Conse-
quently, the learned restricted-GTLVQ model cannot have artifacts like the learned
local-GMLVQ model.

Spiral dataset

This dataset is motivated by the equation of the Archimedean spiral and consists
of two spiral arms. The binary classification task is to classify the two arms and
is, therefore, a more difficult task than the Circle dataset. Similar to the Circle
dataset, we generated 500 data points for each class but with a noise level of 25—see
Figure 3.4 for a visualization of the dataset. GLVQ is used with 10 prototypes per
class and the other two LVQ methods with only 6 prototypes per class.

In contrast to the Circle dataset, the test accuracies of the algorithms differ.
Restricted-GTLVQ achieves the highest accuracy of almost 99 %—the incorrectly
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(a) Restricted-GTLVQ after initialization.
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(b) Restricted-GTLVQ after training.

Figure 3.5: Visualization of the initialized and trained restricted-GTLVQ model on
the Spiral dataset. The figure description is the same as in Figure 3.3.

classified samples are located in the middle of the spiral arms. Local-GMLVQ has a
test accuracy of 97 % and GLVQ of 96 %. The training of all methods was stable and
converged consistently to similar results.

The classification results of GLVQ are comparable with the results on the Circle
dataset. GLVQ tries to approximate the decision boundary by a polygon. However,
due to the limited number of prototype vectors, the decision boundary is zigzagged,
see Figure 3.4.

Again, local-GMLVQ and restricted-GTLVQ classify the dataset similarly—see
Figure 3.4 and Figure 3.5, respectively. Especially in the middle of the spiral arms,
the learned decision boundaries are very similar. In general, however, the classified
input space of the local-GMLVQ model contains many artifacts and is littered with
alternating class assignments—this is similar to the results of NNs on this dataset.22

Unlike the behavior of local-GMLVQ, restricted-GTLVQ classifies the Spiral
dataset with a suitable approximation of the data manifold, see Figure 3.5. The
line segments approximate the manifold structure of the data and take into account
the vicinity in which the approximation is valid, see Section 3.3.2 for a theoretical
discussion. At the beginning of the training, restricted-GTLVQ has the lowest ac-
curacy between all methods. After the line segments have grown to an appropriate
size during training, restricted-GTLVQ achieves the highest accuracy and provides
the smoothest approximation of the decision boundary.

22We want to encourage the reader once again to visit Tensorflow Playground in order to try
to train an NN to a similar result as restricted-GTLVQ.
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Summary

The presented results for the two toy datasets show the basic classification principle
of restricted-GTLVQ. As it was theoretically forecasted in Section 3.3.3, this could be
similar to local-GMLVQ. However, restricted-GTLVQ is explicitly regularized and
produces smoother decision boundaries compared to local-GMLVQ, which is also
reflected in the visual results.

The training of restricted-GTLVQ was slower than all the other methods: GLVQ
and local-GMLVQ converged within 50 to 100 epochs, whereas restricted-GTLVQ
needed 200. This is because we initialized the method with 10−7 for the bounds of
the centered and axis-aligned hyperrectangles. Normally, such a small initialization
value is not necessary. If we increase the value to 0.1, restricted-GTLVQ has the
same learning behavior and converges almost as fast as local-GMLVQ.

The application of the standard GTLVQ algorithm on these two-dimensional toy
datasets is not appropriate as the required minimum subspace dimension is one. This
means that the set-prototypes are lines and not line segments. These lines will likely
cover regions of the other class, and therefore the GTLVQ algorithm is not applicable
here. In [2016c] and [2017c], we solved this problem by using prior knowledge to mix
set-prototypes and prototype vectors in a targeted manner. Even though this “trick”
has solved the problem of GTLVQ on two-dimensional toy datasets, it seems to
be an unrealistic approach for real-world tasks. For this reason, we have not used
GTLVQ with such a parameterization in this evaluation. Nonetheless, the described
and presented results about the alignment of the orthotopes also apply to the affine
subspaces of GTLVQ, with the difference that they do not learn a vicinity in which
the approximation is valid.

The application of the standard GMLVQ method is also not appropriate because
the dataset is so nonlinear that the learned linear transformation cannot produce an
improvement. More precisely, the algorithm learns an identity matrix and thus be-
comes equivalent to GLVQ. Consequently, we skipped the presentation of numerical
GMLVQ results and used the local-GMLVQ algorithm instead.

3.4.2 Real-world datasets

We took two real-world datasets to evaluate the performance of GTLVQ: MNIST and
Indian Pine. MNIST is an image dataset created by LeCun, Bottou, Bengio, and
Haffner (1998),23 and Indian Pine is a spectral dataset created by Baumgardner,
Biehl, and Landgrebe (2015). In the first experiment on MNIST, we show how the
subspace dimension of the affine subspace prototypes can be estimated. Then, we

23LeCun, Y., Cortes, C., & Burges, C. J. C. (n.d.). The MNIST database of handwritten digits.
Retrieved from http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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compare the performance of GTLVQ with other LVQ methods on this dataset. The
purpose of this evaluation is to demonstrate that GTLVQ consistently outperforms
the other LVQ variants while being interpretable. After that, we present how the
proposed interpretation techniques from the image dataset MNIST are applied to
the spectral dataset Indian Pine. During this experiment, we do not evaluate other
methods since the objective of this experiment is to demonstrate the transferability
of interpretation properties.

We have not applied a feature extraction method to the datasets and hence trained
all LVQ algorithms on the raw data. Therefore, we do not compare the methods
with NNs in terms of accuracy because they will consistently outperform LVQ if
the NN architecture is appropriate. However, we refer to Section 3.5, where we
evaluated an NN on MNIST regarding robustness against adversarial attacks, and
to the evaluations in Chapter 4. For further evaluations, see [2016b] for results on a
face recognition dataset and [2016c] for results on another spectral dataset.

MNIST dataset: Subspace dimension estimation

As already mentioned, for this experiment, we used the MNIST24 dataset, which is
one of the most studied datasets in ML. MNIST is a 10-class image classification task
of handwritten digits, see Figure 3.7 for instance images. Each image has a size of
28× 28 pixels, is given in grayscale, is centered, and is size normalized. Additionally,
the images do not contain background noise—all digits are placed with white color
on a clear black background. The official dataset consists of 60 k training images and
10 k test images. All images are 8 bit coded, so we first transformed each image value
into the unit interval before we reshaped the images into vectors. Consequently, the
input space of the data is defined by [0, 1]

28·28.

In Section 3.2.1, we proposed to estimate the subspace dimension of the affine sub-
space prototypes by incrementally increasing the subspace dimension while monitor-
ing the training accuracy. Instead of training the model for each subspace dimension,
we simply used the initialization procedure to get an accuracy estimate—this keeps
the estimation of the subspace dimension fast. The used initialization procedure was
the proposed strategy consisting of a k-means algorithm followed by a singular value
decomposition.

We used GTLVQ with one prototype per class and repeated each initialization
three times. The initialization was performed over 10 k random samples of the train-
ing dataset and we evaluated the initialized GTLVQ network over the entire training
and test dataset. We stopped the experiment at a subspace dimension of 50.

24Modified National Institute of Standards and Technology.
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Figure 3.6: Estimation of the subspace dimension for GTLVQ by the proposed tech-
nique on the MNIST dataset. The plot shows the training and test accuracy over
the subspace dimension. We calculated the means (solid lines) and the standard
deviations (shaded regions) over three runs. The vertical line indicates the selected
subspace dimension for the MNIST experiments. A subspace dimension of zero cor-
responds to prototype vectors—thus, the resulting model is a GLVQ network.

In Figure 3.6, we plotted the training and test accuracy after the initialization
procedure over the subspace dimension. As can be seen, there is a saturation point
around a subspace dimension of 30. However, we decided to choose a subspace
dimension of 12 (12-dimensional affine subspaces, 12-dimensional tangent spaces) for
the following experiments in order to keep the computational effort low and to be
comparable with earlier experiments on tangent distances (e. g., Hastie et al., 1995).
It is noteworthy that although we initialized the method with only 10 k samples from
the training dataset, the method generalized well to the test dataset and achieved high
test accuracies. This indicates that the proposed initialization strategy for GTLVQ
is extremely efficient.

MNIST dataset: Accuracy and interpretability evaluations

The style of the handwritten digits of a class of the MNIST dataset varies greatly,
making it a challenging dataset for LVQ algorithms. To compare GTLVQ with other
LVQ methods, we use the following models.

GLVQ: A GLVQ network with one prototype per class. The network was trained
without constraints or regularizations. We initialized the prototypes by com-
puting class-wise a k-means, where the number of means was equal to the
number of prototypes in the respective class.
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Table 3.1: Accuracies in percentage of the evaluated LVQ methods on MNIST.

model type GLVQ GMLVQ GTLVQ

train accuracy
one prototype 73.8± 0.33 81.3± 0.09 89.7± 0.12

1 M parameter 93.5± 0.12 89± 0.07 95.6± 0.09

test accuracy
one prototype 83.3± 0.02 88.3± 0.05 94.5± 0.05

1 M parameter 95.9± 0.15 92.8± 0.08 97.4± 0.1

GLVQ-1M: Identical to the GLVQ model but with 128 prototypes per class.

GMLVQ: A GMLVQ network with one prototype per class. The transformation
matrix Q is defined to be of size nx × nx. At the beginning of the training,
we initialized the prototypes by calculating class-wise a k-means—similar to
GLVQ—and initialized each matrix as 1

nx
Inx (i. e., as a scaled identity matrix).

During training, we normalized the trace of the matrix to one after each update
step, as discussed in Section 2.2.3.

GMLVQ-1M: Identical to the GMLVQ model but with 49 prototypes per class.

GTLVQ: A GTLVQ network with one set-prototype per class. The set-prototypes
are defined to be 12-dimensional affine subspaces. We initialized and con-
strained the network using the methods proposed in Section 3.2.1.

GTLVQ-1M: Identical to the GTLVQ model but with 10 set-prototypes per class.

The multiple prototype settings were selected such that each method is as close as
possible to the limit of 1 M trainable parameters—the choice of the 1 M parameter
limit was arbitrary. In addition, this configuration followed the idea of increasing
the number of prototypes in all models but making them comparable in terms of
the number of trainable parameters—each model should have the same degrees of
freedom to adapt to the dataset.

All models were trained for 150 epochs with a batch size of 128 and an initial
learning rate of 0.001. During training, we applied basic data augmentations in the
form of random shifts of up to ±2 pixels and random rotations of up to ±15 de-
grees. Each model was trained three times and we calculated the mean and standard
deviation of the training and test accuracies.

In Table 3.1, we collected the accuracy results of the evaluation. With one set-
prototype per class, GTLVQ clearly surpasses all other LVQ methods. If we increase
the number of prototype vectors, the accuracy of GLVQ approaches the accuracy
of GTLVQ and exceeds the results of GMLVQ. The accuracy gain of GTLVQ with
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Figure 3.7: Class-specific prototypes learned by the GLVQ model on the MNIST
dataset. The class is indicated by the MNIST digit below.

the increased number of set-prototypes is small (around 2 %). This can be explained
by the already high accuracy of GTLVQ with only one set-prototype per class since
this shows that the approximation of a class by a single tangent space is already
sufficiently accurate. Therefore, the use of additional set-prototypes does not improve
the generalizability of the model so much. If we add more prototypes in GLVQ, the
prototype vectors will begin to approximate the data manifold and, thus, implicitly
the set-prototypes used in GTLVQ. Consequently, the results of GLVQ with more
prototypes per class will become similar to the results of GTLVQ.

Comparing the results of Table 3.1 with Figure 3.6, the training accuracy of
GTLVQ appears to be less than the initialization accuracy. However, the initialization
was performed without augmentation so that the accuracies are not comparable.
Nevertheless, the comparison shows that the test accuracy after initialization and
after training is almost the same (around 94.5 %), and therefore the model does not
seem to have improved during training. But if we compare the validation loss after
initialization and after training, we observe an improvement: The validation loss is
−0.30 after the initialization and is −0.38 after the training (a similar result can
be found for the GTLVQ-1M model). Therefore the relative distance difference has
improved and with it the robustness and generalizability of the model—see also the
results of Chapter 3.5.

To get an impression of the learned classifier function, we visualize the learned
prototypes. However, they cannot be plotted directly as images because the proto-
types are elements of R28·28. Therefore, we convert each prototype vector into an
image using the following procedure:

1. We reshape the vector to the original image size of 28× 28 pixels.

2. We replicate the matrix to a tensor of size 28× 28× 3. Now, this is something
like an RGB image but with values in R.

3. We change the color of a pixel to blue if the intensity value is less than zero
and to red if the intensity value is greater than one. This means that instead
of simply clipping intensity values outside the intensity range (i. e., outside the
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Figure 3.8: Randomly selected prototypes of the class 2 learned by the GMLVQ-1M
model on the MNIST dataset.

Figure 3.9: Randomly selected points from the learned affine subspaces of three
different classes learned by the GTLVQ model on the MNIST dataset. The class of
each set-prototype is indicated by the MNIST digit on the left.

interval [0, 1]), we color them to indicate the violation of the image space. The
intensity values within the unit interval are not changed so that the image is
displayed as a grayscale image at these pixel positions.

In Figure 3.7, we visualize the prototypes learned by the GLVQ model. The prototype
vectors can be viewed as blurred images of real looking digits—compare the prototype
images with the MNIST samples—and the violation of the image space restriction
mostly occurs in the background. Especially, the fact that we can interpret the
prototypes directly as digits suggests that the GLVQ model has learned what a digit
looks like and that the classification decision is based on finding the most similar
digit class. Additionally, we can discover biases in the MNIST dataset: MNIST is a
collection of American handwritten digits, so the prototypes of the class 1 and the
class 7 clearly show the American writing style.

The GMLVQ model learns prototypes similar to GLVQ: All prototypes look
like blurred images of real digits. Unlike GLVQ, the GMLVQ prototypes do not
consistently violate the image space restriction in the background. Similar to the
images of the GMLVQ-1M model in Figure 3.8, the background shows a salt and
pepper structure (i. e., some pixels violate the image space restriction and others do
not). This behavior is caused by the learned transformation matrix, but it is not
clear how this property is advantageously used to model the classification decision.
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Figure 3.10: Best approximation for each set-prototype for three different input sam-
ples of the learned GTLVQ model on the MNIST dataset. The input samples are
visualized in the left column and the class correspondences are indicated by the
MNIST digits at the top.

Figure 3.8 shows some prototypes from the GMLVQ-1M model. The prototypes of
the GLVQ-1M model look similar, and again the only difference is in the structure of
the violations of the image space restriction. For both models, the prototype images
resemble real digits of different writing styles. As opposed to the one-prototype
models, the digits appear less blurry.

The GTLVQ models learn an infinite number of representations of the digits.
Each point of a set-prototype is a possible realization of a prototype vector. So it is
not enough to visualize a single prototype vector to illustrate what a set-prototype
has learned from the dataset. However, to give an idea of what a set-prototype has
learned about a class, we sample several points from each set-prototype and apply
the visualization concept described for prototype vectors. We create a sample point
according to t + Bθ, where the parameters θi are drawn from a normal distribution
with zero mean and unit standard deviation. Figure 3.9 shows sample points of
the GTLVQ model for three different classes. Although the model learns only one
set-prototype per class and the set-prototype model is linear, the variations in the
image space appear nonlinear. For the class 0, the model learned to vary the circle
style. The variations of the class 2 include different styles of the lower left circle, line
end variations, and aspect ratios. Similar to the results of GLVQ and GMLVQ, the
violation of the image space usually occurs in the background and all images appear
blurred. Furthermore, some of the sampled images contain artifacts such as double
lines, black spots, and so on and therefore resemble unreal digits.

In Figure 3.10, we present the best approximation of an input x for each set-
prototype, which is the closest point to the given input—see Equation (3.22). For
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(a) Ground truth of the dataset. (b) Predicted labels on the entire dataset.

alfalfa
corn-no-till
corn-min-till
corn-clean
grass/pasture
grass/trees
grass/pasture-mowed
hay-windrowed
oats
soybean-no-till
soybean-min-till
soybean-clean
wheat
woods
buildings/grass/trees/drives
stone-steel towers

alfalfa
corn-no-till
corn-min-till
corn-clean
grass/pasture
grass/trees
grass/pasture-mowed
hay-windrowed
oats
soybean-no-till
soybean-min-till
soybean-clean
wheat
woods
buildings/grass/trees/drives
stone-steel towers

Figure 3.11: Ground truth and predicted results of the GTLVQ model on the Indian
Pine dataset. The background is colored black.

the input of the seven, we see that the best approximation is realized by the set-
prototype of the class 7. Therefore, the prototype of this class has the shortest
distance and the class 7 is the winning class. All the other approximations are not
suitable. However, note how the diagonal line of the class 4 and 9 matches the
diagonal line of the input. Similar interpretations are possible for the other inputs.

Indian Pine dataset: Transferability of interpretation properties

The Indian Pine dataset is a spectral dataset that was collected by an AVIRIS
sensor over the area of northwestern Indiana. The 16 classes consist of agricultural
crops, forests, and other natural vegetation that are not mutually exclusive, see
Figure 3.11 for a visualization of the dataset. The original recording consists of
145× 145 pixels (corresponding to an area of 2× 2 miles), where each pixel is a 224

spectral reflectance band in the wavelength range of 0.4 to 2.5 nanometers. We used
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(a) Input samples of the class.
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(b) Random samples of the set-prototype.

Figure 3.12: Visualization of the input samples and the learned set-prototype of the
GTLVQ model on the Indian Pine dataset for the class alfalfa. We plotted all
input samples of the class with a light blue color in the diagram so that a darker
color indicates frequent spectra and a lighter color indicates rare spectra. The same
visualization principle is applied to the set-prototypes using sampled random points.
Additionally, the average value is plotted in dark blue.

the reduced dataset for the experiments in which the water-absorbing bands were
removed. This dataset contains 200 instead of 224 reflectance bands. In general, the
dataset is very unbalanced because the number of sample points varies between 20

(class oats) and 2 455 (class soybean-min-till). We generated the training and
test dataset by a stratified random split into 80 % training and 20 % test samples.25

Each sample was normalized to zero mean and unit standard deviation.

In this experiment, we used a GTLVQ model with a subspace dimension of 15.
Moreover, we defined the number of prototypes per class as a function of the number
of training samples in that class. In particular, the function was defined by

ceiling
(

min

{
number_of_training_samples_in_class_c

100
, 5

})
.

However, since the classes corn-min-till and buildings/grass/trees/drives
have fewer variations, we excluded them and set the number of prototypes to four
and two, respectively. The model was trained by optimizing the GLVQ loss with
the squashing function φ (x) = ReLU (x+ 0.3).26 This loss function sets a relative

25This means that we split class-wise into training and test such that the class distribution is
maintained.

26The Rectified Linear Unit (ReLU) activation is defined as ReLU (x) = max {0, x} and applies
element-wise for vectors.
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(a) Input samples of the class.
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(b) Random samples of the set-prototype.

Figure 3.13: Visualization of the input samples and the learned set-prototype of the
GTLVQ model on the Indian Pine dataset for the class stone-steel towers. The
figure description is the same as in Figure 3.12.

distance difference limit of −0.3 for correctly classified inputs. The training was per-
formed with a batch size of 64, an initial learning rate of 0.001, and a training time
of 20 epochs. In addition, the sampling of the batches during training was performed
with respect to the class distribution, and GTLVQ was initialized and constrained
by the proposed schemes, see Section 3.2.1.

The training and test accuracy of the trained GTLVQ model is (97.96± 0.25) %

and (86.5± 0.11) %, respectively. We illustrate the predicted output in Figure 3.11.
Note that most confusions are between classes that are not mutually exclusive, such
as soybean-min-till and corn-min-till.

In Figure 3.12 and Figure 3.13, we visualize the set-prototype and the correspond-
ing input data for two classes. The visualization of a set-prototype is realized by the
presentation of randomly sampled points in a diagram. In particular, we generated
50 random points by sampling θi from a normal distribution with a mean value of
zero and a standard deviation of one third. For both classes, the set-prototypes show
high variability in regions where the input data also show high variations, whereas
they show low variability in regions with low variations. This suggests that the
set-prototypes have learned variations that are useful to approximate the dataset.

Summary

In this section, we evaluated the performance of GTLVQ regarding interpretabil-
ity and accuracy and showed how to estimate the subspace dimension required for
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plane car bird cat deer dog frog horse ship truck

Figure 3.14: One random sample from each set-prototype of a GTLVQ model trained
on CIFAR-10. The class is indicated by the name above.

GTLVQ. Additionally, we compared GTLVQ with GMLVQ and GLVQ as these
methods are the most commonly used versions of LVQ. In general, GTLVQ outper-
forms both methods in terms of accuracy and maintains the interpretability at the
same time.

We have not presented the evaluation of restricted-GTLVQ, because as long as
the data dimension nx is much greater than the subspace dimension ns, restricted-
GTLVQ has produced the same results as GTLVQ in all the experiments. However,
due to the higher computational complexity, the training progress of an equivalent
restricted-GTLVQ model is much slower than that of the corresponding GTLVQ
model. If the data dimension is close to the subspace dimension, restricted-GTLVQ
may have advantages over GTLVQ—see the evaluations on the toy datasets in Sec-
tion 3.4.1, for instance.

Although GTLVQ can model variations within the data better than other LVQ
variants, it is still not able to perfectly model general real-world variations of objects
in images. For example, if we apply GTLVQ on the CIFAR-10 dataset, the test
accuracy with one set-prototype per class and a subspace dimension of 12 is only
around 52 %—see Section 4.5.6 for a description of the dataset. By examining the
visualized sample points of the learned set-prototypes in Figure 3.14, the model shows
that it is not able to model the variations appropriately.27 These sample points are
mostly like blurred color stains and not like images of real objects. However, some
of the points highlight the general object shape of the class, such as the samples for
the class horse and car, or they show the dominant colors, such as the sample for
the class ship.

In summary, GTLVQ is inadequate if the dataset contains strong background noise
or transformations that cannot be approximated by the set-prototypes and thus by
affine subspaces. Therefore, such a case requires an appropriate feature extraction
method that supports the class discrimination.

27The visualizations were created without clipping of the intensity values since the points were
all elements of the image space.
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3.5 Generalized tangent learning vector quantiza-
tion as margin maximizer

This section discusses the margin maximization property of GTLVQ. In the first
part, we discuss the theory of margin maximization from a theoretical point of view
using the hypothesis margin. This theory is the basis for proving that LVQ meth-
ods are robust against adversarial attacks and that the hypothesis margin is a lower
bound for adversarial perturbations. In the second part, we present an adversarial
robustness evaluation of LVQ models on the MNIST dataset to support the theo-
retical results. By comparing the achieved robustness scores of GTLVQ with the
hypothesis margin values, we show that the hypothesis margin is, indeed, a lower
bound for adversarial perturbations. Additionally, we discuss several implications of
these results, for instance, why GMLVQ is not robust against the evaluated attacks.

The presented robustness evaluation was partly published in [2019b]. In contrast
to this version, the presented evaluation is performed with state-of-the-art attacks,
and the robustness results are discussed from the perspective of the margin maximiza-
tion theory of LVQ. However, this evaluation does not repeat the analysis of the NN
architecture proposed by Madry, Makelov, Schmidt, Tsipras, and Vladu (2018)—this
architecture is considered as one of the best in terms of robustness against adversar-
ial attacks on the MNIST dataset. Additionally, we use a baseline NN consisting of
more layers than in the previous evaluation in order to be comparable to the models
used in Chapter 4. Note that the robustness of this model is less than the robustness
of the shallow NN from [2019b]. Nevertheless, this is not too important since the
overall results remain the same.

3.5.1 Theoretical analysis

In the following, we analyze the margin of LVQ and GTLVQ. First, we review the
results of Crammer et al. (2003), who performed a margin analysis of LVQ. Second,
we discuss how these results apply to GLVQ variants and, especially, to GTLVQ.

Margin analysis of LVQ algorithms

We summarize the results of the margin analysis by Crammer et al. (2003) analo-
gously to the original publication, however, we adjust the mathematical notations
accordingly and focus on the Euclidean distance. The mathematical proofs of this
theory are not part of the original publication but are included in the supplementary
material.28 It should be noted that the formulations of the lemmas and the theorem

28The supplementary material is available at https://www.cse.huji.ac.il/labs/learning/
Papers/NNk_with_theory.ps.pdf, for example.

https://www.cse.huji.ac.il/labs/learning/Papers/NNk_with_theory.ps.pdf
https://www.cse.huji.ac.il/labs/learning/Papers/NNk_with_theory.ps.pdf
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differ slightly between the main body and the supplementary material of the publica-
tion. The lemmas and the theorem that we present here correspond to the versions of
the supplementary material because the proofs make them comprehensibly correct.
As this is a summary of the results of Crammer et al., we emphasize that the follow-
ing descriptions are highly related to Crammer et al. (2003) and that all quotations
also refer to this publication.

The margin of a classifier is roughly described as “margins measure the level of
confidence a classifier has with respect to its decisions” (p. 479). The analysis of
margins and their relation to the generalization error is a key concept of successful
supervised ML algorithms (e. g., support vector machines). Thereby, the generaliza-
tion error is the probability that an input is misclassified.

Support vector machines are analyzed by the so-called sample margin—sometimes
just called margin (e. g., Schölkopf & Smola, 2002). That is the shortest dissimilarity
(distance) of an input to the decision boundary induced by the classifier. This defi-
nition of margin is intuitive but not practical for LVQ algorithms. LVQ induces the
decision boundaries implicitly by the prototypes and thus by the associated Voronoi
tessellation. These induced decision boundaries are very sensitive to the position of
the prototypes: A small displacement of the prototypes could lead to strong changes
in the boundaries. Consequently, the use of the sample margin to analyze LVQ is
inappropriate because it is numerically unstable and also difficult to calculate. There-
fore, LVQ is analyzed by another margin definition, the so-called hypothesis margin.

Definition 3.6 (hypothesis margin). Given a set of prototypes W and a dissimilar-
ity d. The hypothesis margin of W with respect to a set S of inputs is the maximum
radius r such that the following condition holds: If we define a ball29 with radius r
induced by d around each prototype, every change in the position of the prototypes
within its ball does not change the class labels assigned to the inputs of S. In symbols,
we write marginh (S,W).

This definition follows a description by Gilad-Bachrach30 and is equivalent to the
definition by Crammer et al. The advantage of this formulation, however, is that it
does not require a countable set of prototypes, which is beneficial for applying the
hypothesis margin to GTLVQ and restricted-GTLVQ. Also, note that this definition
does not require labeled data points. Similarly to marginh (S,W), we denote the
sample margin by margins (S,W). The following lemma describes how the hypothesis
margin can be calculated for the Euclidean distance and a single input.

29A ball is always considered open.
30Gilad-Bachrach, R. (2004, December 7). Two types of margins. Retrieved from https://www.

cse.huji.ac.il/labs/learning/code/feature_selection/tutorial/node3.html

https://www.cse.huji.ac.il/labs/learning/code/feature_selection/tutorial/node3.html
https://www.cse.huji.ac.il/labs/learning/code/feature_selection/tutorial/node3.html
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Lemma 3.4. Let dE (x,w) be the Euclidean distance and x ∈ Rnx be an input. The
hypothesis margin of W with respect to x is

marginh ({x} ,W) =
1

2
(dE (x,wj)− dE (x,wi)) ,

where wi is the closest prototype to x and wj is the closest prototype to x with a
different label than the label of wi.

This lemma provides a surprisingly simple equation for calculating the hypothesis
margin regarding a single input. Additionally, we can prove the following lemma,
which relates the hypothesis margin to the sample margin.

Lemma 3.5. Let dE (x,w) be the Euclidean distance and S be a set of inputs. The
hypothesis margin of W with respect to S is a lower bound of the sample margin of
W with respect to S:

marginh (S,W) ≤ margins (S,W) .

This lemma states that if we find a prototype configuration with a large hypothesis
margin, then the sample margin is large as well.

To formulate the theorem, we must define a signed version of the hypothesis
margin that incorporates the class label of a training sample. We also use this
definition to define the margin error: A training sample causes a margin error if it
has a signed hypothesis margin that is less than a certain threshold.

Definition 3.7 (signed hypothesis margin and margin error). Given a labeled input
sample (x, c (x)) of a training dataset T with #T training samples and a set of
prototypes W. The signed hypothesis margin of an input sample is

marginch (x, c (x) ,W) =

{
marginh ({x} ,W) if x is correctly classified,

−marginh ({x} ,W) otherwise.

The margin error of W with respect to T and margin threshold t > 0 is

errorth (T ,W) =
# {(x, c (x)) ∈ T | marginch (x, c (x) ,W) < t}

#T
,

where # denotes the cardinality.

Note that the signed hypothesis margin is lower bounded by the absolute distance
difference 4d (x):

4d (x) = d− (x)− d+ (x) ,

≤ 2 ·marginch (x, c (x) ,W) , (3.24)
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whereby the equality holds if w+ (x) = wi or w+ (x) = wj in accordance to the nota-
tion of Lemma 3.4. Also note the similarity between the absolute distance difference
and the relative distance difference according to Equation (2.12).

Theorem 3.4. Assume the following setting:

• Let dE (x,w) be the Euclidean distance and W be a set of prototypes with p

prototypes per class.

• Let T be a (training) dataset of labeled inputs drawn from some underlying
distribution D.

• For all the (training) samples (x, c (x)) ∈ T holds ‖x‖E ≤ R for some chosen
constant R ∈ R>0.

• The selected margin threshold t is an element of the interval (0, 0.5).

• Let errorD (W) be the generalization error of the LVQ algorithm with respect
to the distribution D:

errorD (W) = P(x,c(x))∼D (c (x) 6= c (w∗)) .

For every ε > 0, with probability 1− ε over the choices of the training data

errorD (W) ≤ errorth (T ,W) +

√
8

#T

(
nvc · log2 32 ·#T

t2
+ log

4

ε

)
︸ ︷︷ ︸

upper bound of the generalization gap

,

where nvc is the VC dimension (Vapnik–Chervonenkis dimension)

nvc = 2 ·min

{
nx + 1,

64R2

t2

}
· p#C · log

(
e · p2

)
and e is Euler’s number.

This theorem gives a bound for the generalization error by a sum of the margin
error and an upper bound of the generalization gap. It can be used to characterize
some important facts about LVQ methods: First of all, the bound does not directly
depend on the input dimension nx, but the VC dimension nvc grows with the number
p of prototypes per class. Second, the bound decreases if we reduce the margin error.
This can be achieved by increasing the classification accuracy or by decreasing the
margin threshold t. However, lowering the margin threshold can increase the VC
dimension and, thus, the upper bound of the generalization gap and, eventually,
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the bound. Additionally, an increase in accuracy is usually achieved by using more
prototypes, which also increases the upper bound of the generalization gap. Overall,
this indicates that there is a nontrivial optimal number of prototypes and a nontrivial
optimal margin threshold.

One implication of the nontrivial optimal number of prototypes is that an LVQ
method could not only be faster than a k-nearest neighbors algorithm—in terms of
computational speed due to dissimilarity calculations—it could also be more accurate
as well. Once we have chosen the number of prototypes, we want to find a margin
threshold t such that the margin error is small for a large t. However, these are
contradictory goals because a large margin threshold causes a higher margin error.
To overcome this, we define a corresponding loss function depending on the absolute
distance difference 4d (x) and indirectly optimize the margin threshold to a com-
promise. Since the absolute distance difference lower bounds the signed hypothesis
margin and is equivalent for positive margins, see Equation (3.24), maximizing this
expression within a proper loss function balances the two contradictory objectives
and maximizes the hypothesis margin. This means that we generally weigh large
margins of correctly classified samples against the margin error.

In summary, an LVQ algorithm is a margin maximizer if the loss function max-
imizes a function of the absolute distance difference 4d (x). The choice of the loss
function controls the trade-off between a large margin and a small margin error.
Remarkably, the proofs of the lemmas are norm independent and only require the
triangle inequality and absolute homogeneity of the norm. Thus, the lemmas can be
extended to homogeneous, translation-invariant semimetrics.

Margin analysis of GLVQ algorithms

Now, we adapt the result from LVQ to GLVQ variants. As already mentioned, the
theory of Crammer et al. states that LVQ is a margin maximizer if we maximize a loss
function that depends on the absolute distance difference 4d (x). This, of course,
corresponds to minimizing a loss function based on −4d (x), and this expression
corresponds to the numerator of the relative distance difference µ (x) according to
Equation (2.12). Thus, the GLVQ loss function is based on a kind of margin value.
Normally, however, GLVQ uses the squared Euclidean distance so that the norm
assumption to proof the Lemma 3.4 is violated and the lemma cannot be applied
directly. Therefore, the question arises how this GLVQ loss optimization is related
to the margin maximization theory of LVQ.

If we consider the relative distance difference µ (x) and assume that we use the
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squared Euclidean distance, then we can rewrite µ (x) to

µ (x) =
d+ (x)− d− (x)

d+ (x) + d− (x)
,

=
d2E (x,w+)− d2E (x,w−)

d2E (x,w+) + d2E (x,w−)
,

= −4d (x)
dE (x,w+) + dE (x,w−)

d2E (x,w+) + d2E (x,w−)
. (3.25)

Consequently, the GLVQ loss is based on the absolute distance difference4d (x) and,
hence, the GLVQ method is a margin maximizer. The fraction is an input sample
dependent scaling factor that controls the trade-off between a large margin value and
a small margin error. If we use GLVQ with the Euclidean distance, then the relative
distance difference µ (x) is equal to

µ (x) = −4d (x)
1

dE (x,w+) + dE (x,w−)
,

and GLVQ is again a margin maximizer. The difference between the two versions
is that they train for different trade-offs. Overall, we can say that the GLVQ loss
produces a margin maximization if the dissimilarity is induced by a norm. However,
the identity of indiscernibles of a dissimilarity measure or the positive definiteness of
a norm need not be valid. Therefore, for instance, GMLVQ is a margin maximizer
with respect to dQ.

How does this theory of margin maximization apply to GTLVQ? In GTLVQ,
we are dealing with set-prototypes w and a point-set dissimilarity d. To apply
Definition 3.6 of the hypothesis margin, we consider all points from the set-prototypes
as individual prototype vectors. Together with the underlying dissimilarity dE of d,
the hypothesis margin definition is applicable, although a GTLVQ network in this
sense consists of an infinite number of prototypes.

The proofs for the lemmas presented by Crammer et al. (2003) are based on a
countable set of prototypes. However, they can easily be extended to uncountable
sets by replacing all index assignments of prototypes with a general set notation.
Therefore, the two lemmas apply to GTLVQ, and we can state that GTLVQ is a
margin maximizer with respect to the Euclidean distance. The same result holds for
the restricted version of GTLVQ.

3.5.2 Experimental evaluation

As discussed in the introduction of this thesis, the robustness of NNs against ad-
versarial attacks has become one of the most discussed topics in ML. By making



74 3. Generalized Tangent Learning Vector Quantization

almost imperceptible changes to the input of a classifier, attackers can force a mis-
classification of the input or even change the prediction to an arbitrary class. In this
section, we show that GLVQ algorithms and, particularly, GTLVQ are very robust
methods against adversarial attacks. Moreover, they are provably robust and the hy-
pothesis margin provides a lower bound for the adversarial perturbation with respect
to the Euclidean norm. The basis of this study is the relation between adversarial
perturbations and the hypothesis margin.

The adversarial attacks and robustness measures used here are similar to those
used by Schott, Rauber, Bethge, and Brendel (2019) with a few minor modifications
in order to evaluate LVQ methods. The evaluation was performed with the MNIST
dataset since it is one of the most frequently used datasets for robust model evalua-
tions in the literature. Although it is considered by many to be a solved “toy dataset”
that achieves almost perfect classification accuracy with state-of-the-art NNs, the
defense against adversarial attacks on MNIST is anything but trivial (Schott et al.,
2019). To demonstrate this, we evaluate an NN and, further, use it for comparisons
with the LVQ models.

The structure of this section is as follows: First, we introduce a commonly used
definition of an adversarial attack. Second, we define the robustness measures that
are used to quantify the robustness. After that, we describe the evaluation setup and
models before presenting and discussing the results.

Adversarial attacks

Given a classification task and a labeled input sample (x, c (x)), an adversarial ex-
ample x̃ of the sample x is defined as the smallest required perturbation of x by ε
to find a point on the decision boundary or in the classification region of a different
class than c (x):

min
ε
‖ε‖ such that c∗ (x̃) 6= c (x) and x̃ = x + ε ∈ X . (3.26)

It should be noted that the magnitude of the perturbation is measured by a norm
‖·‖ and that the adversarial example has to be an element of the input space X . For
MNIST and, hence, for the evaluation performed here, this is the space X = [0, 1]

28·28.
Thus, the adversarial examples have to be images from the image space of MNIST.

The (optimization) algorithm to find such a perturbation is called adversarial
attack and is denoted by a. Adversarial attacks can be grouped into two different
approaches, white-box and black-box, distinguished by the amount of knowledge
about the model available to the attacker. White-box or gradient-based attacks are
based on exploiting the interior gradients of the NNs, while black-box attacks rely
only on the output of the model, either the logits, the probabilities, or just the
predicted discrete class labels.
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Each attack is designed to optimize the adversarial example regarding a given
norm, usually an Lp-norm (p-norm). For a p ≥ 1, the Lp-norm is defined by

‖x‖p =

(
nx∑
i=1

|xi|p
) 1
p

,

where x ∈ Rnx . If p → ∞, the Lp-norm is denoted as maximum norm and is
calculated by ‖x‖∞ = max {|x1| , |x2| , . . . , |xnx |}. For the cases 0 < p < 1, the
function ‖x‖p does not define a norm but a quasinorm. If p = 0, we define the
function ‖x‖0 as the number of elements xi that are nonzero. This definition of ‖x‖0
by the nonzero counting function is frequently used in scientific computing.

As the LVQ methods were not designed with a specific thread model in mind, the
robustness was evaluated over three different Lp-norms using the following black-box
and white-box attacks:

• DeepFool by Moosavi-Dezfooli, Fawzi, and Frossard (2016);

• Carlini&Wagner (C&W) by Carlini and Wagner (2017);

• Pointwise by Schott et al. (2019);

• Fast Gradient Sign Method (FGSM) by I. J. Goodfellow et al. (2015);

• Boundary by Brendel, Rauber, and Bethge (2018);

• Projected Gradient Descent (PGD) by Madry et al. (2018);

• Salt&Pepper noise attack (S&P) by Rauber, Brendel, and Bethge (2017).

The difference between these attacks lies in the precise definition of the optimization
procedure. Each attack optimizes regarding a certain Lp-norm and each attack han-
dles the box-constraint of X = [0, 1]

28·28 differently. The different norms that are
used by these attacks are p ∈ {0, 2,∞}, see Table 3.2 for the Lp-norm definition of
each attack. Note that some of the attacks are defined for several norms. We call an
attack a an Lp-attack if it optimizes with respect to the Lp-norm. All the attacks are
implemented in Foolbox (Rauber et al., 2017), which was used for the evaluation
with the default settings for each attack.

Robustness measures

To evaluate the robustness, we tried to compute an adversary for each sample of the
MNIST test dataset (10 k images in total) with each attack a—hence, the evaluation
dataset T was the entire test dataset of MNIST. Then, we calculated the adversarial
distance δa (x, c (x)) proposed by Schott et al. (2019).
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Definition 3.8 (adversarial distance). Given a sample (x, c (x)), an attack a, and
a classification model f , the adversarial distance δa (x, c (x)) is defined as: zero if
the sample x is misclassified by the model; ‖ε‖ if the attack a found an adversarial
example x̃; infinite if no adversarial example was found by the attack a. In symbols:

δa (x, c (x)) =


0 if c∗ (x) 6= c (x) ,

‖ε‖ if a found an adversary x̃,

∞ if a found no adversary to x.

Based on this definition, we computed four robustness evaluation measures pro-
posed by Schott et al. (2019) to summarize the robustness of a model.

Median adversarial distance: For each attack a, the median adversarial distance
score is defined as

median-δa (T ) = median {δa (x, c (x)) | (x, c (x)) ∈ T } ,

describing an averaged adversarial distance over T robust to outliers. Note that
the median adversarial distance can be infinite.

Worst-case median adversarial distance: The worst-case median adversarial
distance score with respect to an Lp-norm is

median-δ∗p (T ) = median
{
δ∗p (x, c (x)) | (x, c (x)) ∈ T

}
,

where δ∗p (x, c (x)) is defined as the worst-case adversarial distance of the sample
(x, c (x)):

δ∗p (x, c (x)) = min {δa (x, c (x)) | a is an Lp-attack} .

This score is a worst-case evaluation of the median adversarial distance, as-
suming that each sample is disturbed by the respective worst-case attack (the
attack with the smallest perturbation).

Threshold accuracy: The threshold accuracy of a model over T with respect to an
Lp-attack a is defined as the relative proportion of adversarial examples found
with an adversarial distance greater than an Lp-norm specific threshold tp:

acc-a (T ) =
# {(x, c (x)) ∈ T | δa (x, c (x)) > tp}

#T
.

This measure represents the remaining accuracy of the model if only adver-
saries below the specified threshold are considered to be valid. The idea behind
this score is to indicate how good a model would perform if we could reject
adversarial examples up to a certain threshold.
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Worst-case threshold accuracy: The worst-case threshold accuracy of a model
over T with respect to Lp-attacks is defined as the relative proportion of ad-
versarial examples found with a worst-case adversarial distance greater than an
Lp-norm specific threshold tp:

acc-a∗p (T ) =
#
{

(x, c (x)) ∈ T | δ∗p (x, c (x)) > tp
}

#T
.

Similar to Schott et al. (2019), we used the following thresholds for the evaluation:
t0 = 12, t2 = 1.5, and t∞ = 0.3.

Evaluation setup and models

We evaluated three LVQ methods: GLVQ, GMLVQ, and GTLVQ. The training,
as well as the model setups, are equivalent to Section 3.4.2. Since we trained each
algorithm with one prototype per class and with so many prototypes per class that the
model had roughly 1 M parameters, we have six LVQ models in total. Additionally,
we trained a six-layer CNN with the following architecture:31

1. Convolution: 32 filters, kernel size 3 × 3, stride 1 × 1, bias, no padding, and
ReLU activation;

2. Convolution: 64 filters, kernel size 3 × 3, stride 1 × 1, bias, no padding, and
ReLU activation;

3. Max pooling: pool size and stride 2× 2;

4. Convolution: 64 filters, kernel size 3 × 3, stride 1 × 1, bias, no padding, and
ReLU activation;

5. Convolution: 128 filters, kernel size 3 × 3, stride 1 × 1, bias, no padding, and
ReLU activation;

6. Max pooling: pool size and stride 2× 2;

7. Fully connected: 512 units, bias, and ReLU activation;

8. Dropout: dropout rate 0.5;

9. Fully connected: 10 units, bias, and softmax activation.

31To determine the network depth, we only count layers with trainable parameters.
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Furthermore, we applied a batch normalization layer with the Keras default setting
after the first max pooling layer. The network was trained with the cross-entropy
loss using the same augmentation and training pipeline as for the GLVQ algorithms.
Unlike the GLVQ algorithms, we used an initial learning rate of 0.003. The initializa-
tion of the layers was performed by the default routines of Keras. In the following,
this CNN architecture is denoted as CNN-0—see also Section 4.5, where we used this
architecture fur further evaluations.

Results

In Table 3.2, we present the results of the robustness evaluation of the models. The
robustness measures show outstanding robustness scores against adversarial attacks
for GLVQ and GTLVQ models. GLVQ-1M, GTLVQ, and GTLVQ-1M significantly
exceed the CNN-0 model for all attacks. As expected, however, they have a consid-
erably lower baseline accuracy (accuracy on the original test dataset).

The reason for the high robustness of LVQ models is that the norm of the ad-
versarial perturbation, see Equation (3.26), is lower bounded by the sample margin
and, moreover, the sample margin is lower bounded by the hypothesis margin, see
Lemma 3.5. Overall, the following relation holds:

‖ε‖ = ‖x̃− x‖ ≥ margins ({x} ,W) ≥ marginh ({x} ,W) . (3.27)

In addition, we know that GLVQ and GTLVQ are hypothesis margin maximizers.
The margin maximization is performed with respect to the Euclidean distance and,
thus, with respect to the L2-norm. Therefore, these methods have to be robust
against L2-attacks because they were optimized for a large hypothesis margin. Con-
sequently, we can say that LVQ methods are provably robust against adversarial at-
tacks.

The result of Lemma 3.4 and the inequality of Equation (3.27) allows us to calcu-
late a lower bound for adversarial perturbations based on the optimized norm of the
LVQ method. For example, consider the results in Table 3.3, where we calculated the
hypothesis margins for the GTLVQ model, and compare them to the results of the
strongest L2-attack, the C&W attack.32 As can be seen, the attack is unable to find
an adversarial example with a perturbation less than the hypothesis margin—this
is a numerical representation of the theoretical result. Furthermore, if we compute
the hypothesis margin for each sample and set the hypothesis margin to zero if an
image is misclassified, then the median over these values provides a statistical value
similar to the (worst-case) median adversarial distance. For instance, the median

32Note that according to Equation (3.25) and Lemma 3.4, we have to calculate the hypothesis
margin with the non-squared tangent distances even if we have trained with squared versions.
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Table 3.3: Comparison of the hypothesis margin to the adversarial perturbation. We
used the first nine test images from the MNIST dataset. The model was GTLVQ
with one prototype per class and the attack was the C&W attack.

sample index 1 2 3 4 5 6 7 8 9
marginh ({x} ,W) 1.86 0.74 1.69 1.61 1.05 1.95 1.01 0.54 0.31

‖ε‖2 3.1 1.72 2.83 2.76 1.95 2.87 1.96 1.35 0.71

over these hypothesis margin values of the previously considered GTLVQ model is
1.07. This value is indeed a lower bound for all the median adversarial distances
based on L2-attacks in the experiment, see Table 3.2.

In Figure 3.15, we present an adversarial example for each attack and each
method. The images show a large semantic difference between the adversarial
examples for GLVQ-1M, GTLVQ-1M, and the other models. For GLVQ-1M and
GTLVQ-1M, a large part of the adversarial examples looks like an interpolation be-
tween the original digit and another digit—for example, the interpolation between
a one and a four in the first sample. Such a sample corresponds to a sample that
has a high hypothesis margin with respect to the classification model. Therefore, we
can say that an input sample that has a large hypothesis margin cannot easily be
transformed into an adversarial example with a perturbation that is imperceptible
to humans.

Considering the results in Table 3.2 and Figure 3.15, then the question arises
why GMLVQ is not robust against the adversarial attacks presented. Obviously,
GMLVQ has the lowest robustness values across all attacks and methods. Taking
into account the strong relationship between GTLVQ and GMLVQ, see Section 3.3.3,
it is a remarkable and surprising result because we know from the theoretical analysis
that GMLVQ is a hypothesis margin maximizer. However, the margin maximization
is performed regarding the corresponding norm (seminorm) to dQ (x,y), which is

dQ (x,0) = ‖x‖Q = ‖Qx‖2 .

Unfortunately, this norm is not optimized by the adversarial attacks and, therefore,
GMLVQ does not seem to be robust in the evaluation. A better statement than
GMLVQ is not robust against adversarial attacks is that GMLVQ is robust against
adversarial attacks but with respect to another norm. If we would generate attacks
regarding ‖Qx‖2, then GMLVQ would be robust. In contrast, GTLVQ and GLVQ
would generate non-robust scores in this scenario.

But why are GLVQ and GTLVQ robust against adversarial attacks that are dif-
ferent from L2-attacks—see the results in Table 3.2—considering that they are only
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CNN-0

GLVQ-1M

GMLVQ-1M

GTLVQ-1M

Figure 3.15: For each model, adversarial examples are generated for the following
classes by the following attacks (from left to right): class 1 – DeepFool L2-attack;
class 2 – C&W L2-attack; class 3 – Pointwise L2-attack; class 4 – Boundary L2-
attack; class 5 – FGSM L∞-attack; class 6 – DeepFool L∞-attack; class 7 – PGD
L∞-attack; class 8 – Pointwise L0-attack; class 9 – S&P L0-attack. For each class,
we used the first image in the test dataset that was correctly classified by all models.
We show the prediction of the model after the adversarial attack by the green number
in the lower right corner of each image.

provably robust for L2-attacks? First, we know that all norms in a finite-dimensional
vector space are equivalent. Second, the equivalence between Lp-norms implies that
the relationship between the L2-norm and other Lp-norms is good, in the sense that
the optimization of the L2-norm also preserves acceptable results for the other Lp-
norms. To demonstrate this relation: For all Lp-norms with 0 < q < p in Rnx , it
holds that

‖x‖p ≤ ‖x‖q ≤ n
1
q−

1
p

x ‖x‖p . (3.28)

Therefore, a high hypothesis margin regarding the L2-norm ensures a high hypothesis
margin for all Lp-norms with p < 2 and, moreover, a high adversarial robustness for
Lp-attacks with p < 2. Furthermore, the inequality in Equation (3.28) implies that
a hypothesis margin maximization with respect to the L∞-norm might be desirable
to train a robust model.

In addition to explaining the robustness behavior of GMLVQ based on hypothesis
margin theory, we present another description with the theory of oversimplification.
In Section 3.3.3, we discussed that GMLVQ tends to oversimplify (to collapse data
dimensions) without regularization. This is a good property to achieve higher accu-
racies (better generalization) as it helps the model to focus on the relevant features to
solve the classification task. For instance, this is why the GMLVQ model outperforms
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the GLVQ model, and the CNN-0 model outperforms all other models in terms of
accuracy. However, the GMLVQ and CNN-0 model are good examples to show that
a model that generalizes well is not necessarily robust.

Oversimplification may induce heavy distortions in the mapping between the in-
put and the transformation space, potentially creating dimensions in which a small
perturbation in the input space can be mapped to a large perturbation in the transfor-
mation space. These dimensions are later used to place adversarial attacks efficiently.
To improve the robustness of GMLVQ, penalizing the collapse of dimensions may be
a successful approach, see the discussed GMLVQ regularization in Section 3.3.3. This
idea is supported by the fact that GTLVQ is just a constrained version of GMLVQ.
In general, the relation between the methods provides evidence that a proper regu-
larization or constraint or both can force a model to be more robust.

Another result of this robustness investigation is that an increase in the number of
prototypes improves both generalizability and robustness. For all three LVQ methods
the robustness improves if the number of prototypes per class increases. Additionally,
increasing the number of prototypes leads to a better ability to generalize (higher
test accuracy). This observation provides empirical evidence supporting the results
of Stutz, Hein, and Schiele (2019): Generalization and adversarial robustness are not
necessarily contradictory objectives, which is discussed recently.

Mathematically, this result is also supported by Theorem 3.4. One implication of
this theorem is that the selection of the margin threshold is not trivial. If we increase
the margin threshold to obtain a more robust model, we may increase the margin
error and thus also increase the generalization error. Therefore, if we want a model
that is robust and accurate, then we have to search for a good trade-off, or if we
want a robust model with a large margin threshold, then we may have to increase
the model capacity (by increasing the number of prototypes) to mitigate a decrease
of the accuracy due to the large threshold. In summary, the theorem does not state
that generalization and adversarial robustness are necessarily contradictory goals.

What does the present evaluation say about the robustness behavior of NNs?
In [2017d] and [2018e], we investigated the relationship between GMLVQ and NNs.
Conceptually, the two methods are not that different and closer to each other than
one might expect—see also the results of the robustness evaluation in Table 3.2.
Therefore, some of the conclusions we have drawn for GMLVQ might also apply
to NNs. For example, as mentioned above, GMLVQ is robust against adversarial
attacks calculated with respect to the seminorm ‖Qx‖2. Accordingly, NNs could also
be robust against adversarial attacks calculated with a different norm or measure
than those usually used in the evaluation.
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In general, the discussion about adversarial robustness of NNs is driven by the
goal of developing methods that classify like humans. Thus, we try to use robustness
measures that reflect human perceptual abilities. However, the methods we evaluate
are optimized to work as good as possible on one dataset and not in the diverse
human world. Consequently, it might be wrong to expect a method to become robust
in the human sense of perception after training in a fairly limited world—the training
dataset—without constraints or regularizations.

3.6 Related work

The tangent distance concept was first defined by Simard et al. (1993) and used for
a k-nearest neighbors classifier. There they used predefined tangents and thus more
or less predefined affine subspaces. Moreover, the respective tangent distance was a
double-sided version (i. e., they measured the distance between two affine subspaces).
With their discussion on the application of constraints (restrictions) to the tangent
distance, they motivated the investigation of restricted-GTLVQ.

The potential drawback that the tangents have to be predefined was improved
by Hastie et al. (1995). By proposing the tangent-centroid and tangent-subspace
algorithm, they presented two methods to estimate the affine subspaces for a k-
means clustering. However, the resulting iterative estimation of the tangents is not
class discriminative. The proposed initialization scheme for the GTLVQ algorithm
is motivated by the tangent-subspace algorithm. Furthermore, the idea to study set-
prototypes is motivated by this work because the authors motivated the algorithms
by the goal to leverage the point or centroid principle of prototypes.

In the work of Schwenk and Milgram (1995), the concept of a single-sided and
double-sided tangent distance was clearly defined for the first time. Additionally,
they proposed a classification algorithm similar to the LVQ1 algorithm but based on
tangent distances. Therefore, they invented the first algorithm that estimates the
tangents discriminatively regarding the classes. The presented point-set dissimilarity
is motivated by a single-sided tangent distance.

We proposed to estimate the subspace dimension by a stepwise increase of the
dimension followed by the initialization procedure to evaluate the model performance.
This estimation is inspired by the training algorithm of the tangent-distance-neuron
described by Sona, Sperduti, and Starita (2000). In addition, their algorithm also
estimates the tangents discriminatively regarding the classes but starting from an
NN perspective.

The idea of estimating subspaces or applying the tangent distance concept is
used in various ML frameworks. Keysers et al. investigated the derivation of tangent
distances from a probabilistic point of view (Keysers, 2000; Keysers, Macherey, Ney,
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& Dahmen, 2004). Moreover, Haasdonk and Keysers (2002) applied the tangent
distance concepts in support vector machines. In the work of Bengio and Monperrus
(2005), the authors considered the task of estimating the tangent space for each point
in the input space by an NN. In general, subspace estimation techniques are studied
by several authors (e. g., Chi, 2013; Fukui & Maki, 2015; Mi, Huang, Wang, & Zhu,
2013; X. Wang & Tang, 2004; Zhu, Fukui, & Xue, 2017). However, their methods
are often reduced to the orthogonal projector equation and therefore turn out to be
similar to the tangent distance. Recently, L. Zhang, Edraki, and Qi (2018) presented
a capsule NN that uses subspace approximations, and Devos and Grossglauser (2019)
investigated the benefits of subspace approximations for few-shot learning.

In the work of Hammer, Strickert, and Villmann (2005), the authors derived a
generalization bound for generalized relevance LVQ based on Gaussian complexity.
This bound is similar to that of Crammer et al. (2003) and all conclusions drawn
in Section 3.5.1 are also reflected in their bound. For instance, the selection of the
margin threshold (in their publication denoted by ρ) is not trivial or that there is a
nontrivial optimal number of prototypes. In particular, all variables with a similar
meaning between the two bounds are in similar dependencies. However, the theory
of Hammer et al. is limited to diagonal matrices of size nx × nx in the quadratic-
dissimilarity dQ but applies directly to the squared version.

One motivation for the derivation of another bound was that Hammer et al.
assumed that the margin maximization theory of Crammer et al. is only valid for
the Euclidean norm. However, as explained in Section 3.5.1, the lemmas apply to an
arbitrary seminorm. That this was assumed is not surprising since the publication
of Crammer et al. is partly difficult to read. On page 481, for example, they denote
the Euclidean norm by ‖·‖2 and on page 483 by ‖·‖. Additionally, the proofs are not
part of the main publication and not easily accessible, and the versions of the lemmas
differ between the available versions with and without proofs.

3.7 Summary and discussion

In this chapter, we formalized the concept of set-prototypes and derived two nontriv-
ial realizations where the set-prototypes contain infinitely many points: GTLVQ and
restricted-GTLVQ. The methods learn the set-prototypes regarding the classification
task by SGD and are an extension of the GLVQ framework. The naming generalized
tangent learning vector quantization refers to this relationship. Moreover, the exten-
sions are called generalized tangent LVQ because the methods can be constructed
from the idea of approximating the dataset manifolds by tangent spaces. The differ-
ence between the two versions is that restricted-GTLVQ explicitly models that the
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approximation by a tangent space is only valid in a certain vicinity around the center
point. On the contrary, GTLVQ assumes the global validity.

From another perspective, GTLVQ uses set-prototypes that are affine subspaces
and restricted-GTLVQ uses set-prototypes that are orthotopes. Looking at the
amount of information that can be captured by a prototype, GLVQ is limited to
vectors and, therefore, to a single point of the data space. In contrast, GTLVQ
and restricted-GTLVQ can capture information about infinitely many points by the
set-prototypes.

We evaluated both methods on several datasets and showed that the additional
degrees of freedom introduced by the set-prototypes are beneficial to achieve high
classification accuracies. More specifically, GTLVQ and restricted-GTLVQ consis-
tently outperform other state-of-the-art LVQ methods in all experiments and are
interpretable at the same time.

To underline the robustness of the derived algorithms, we presented a theoretical
robustness analysis and a numerical evaluation of the robustness against adversarial
attacks. The theoretical analysis is based on the result that LVQ algorithms are
hypothesis margin maximizers. In the first part, we summarized these results and
discussed how they apply to GLVQ and GMLVQ. As far as we know, this is the first
time that it has been shown how the theory of Crammer et al. (2003) can be applied
to GLVQ and GMLVQ.

A consequence of this finding is an explanation for the observed effects of T.
Villmann et al. (2019) in experiments with different squashing functions φ in model
training. In this study, it was found that the Swish function, see Equation (4.21) for
a definition, surpasses all other squashing functions tested in terms of accuracy and
training speed. The fast convergence is the result of the good numerical properties
of the derivative of the Swish function, and the high accuracy results from the prop-
erty that the model is optimized for weak classification decisions when using Swish
activation (depending on the exact parameterization). Swish has a global minimum
in the negative range before converging to zero, so the SGD optimizes the model to a
relative distance difference µ equal to this local minimum. If the minimum is close to
zero, the SGD optimizes for a small hypothesis margin and thus for a less robust pro-
totype configuration. Furthermore, if the hypothesis margin is small, we can choose
a small margin threshold to reduce the margin error. According to Theorem 3.4, this
implies a smaller generalization error and, therefore, a higher accuracy.

The original formulation of GLVQ assumes that the squashing function φ is mono-
tonically increasing. However, the Swish function does not fulfill this property but
represents a margin maximizer according to the results presented. What we influ-
ence by using different activation functions is the compromise between a small margin
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error and a large margin threshold.
In the second part, we discussed how the margin maximizer theory applies to

GTLVQ and restricted-GTLVQ. The results show that GTLVQ and restricted-
GTLVQ preserve the robustness properties of GLVQ. To confirm this numerically,
we performed a robustness evaluation of the methods against adversarial attacks.
The result of this evaluation is that GTLVQ is a very robust method on the MNIST
dataset and far surpasses NNs. The reason for this good result is that the hypothesis
margin is a lower bound of the adversarial perturbation. So if we optimize for a large
hypothesis margin, we optimize for an adversarially robust method. A first attempt
to transfer the margin maximizer principle to NNs to design adversarially robust
methods was made by Elsayed, Krishnan, Mobahi, Regan, and Bengio (2018) by a
first-order approximation of the sample margin. In summary, the overall robustness
of LVQ models is impressive. Due to the margin maximizer theory, LVQ methods
are provably robust against adversarial attacks, which can be a valid reason to deploy
them instead of NNs in safety-critical applications.

The GTLVQ algorithm is highly similar to the local-GMLVQ algorithm, and
we have shown that local-GMLVQ converges to GTLVQ if trained with the fre-
quently used regularization term and a sufficiently high regularization parameter.
This relationship is helpful to get a deeper understanding of both methods. For
instance, it implies that GTLVQ is not affected by collapsing dimensions and thus
by oversimplification. In terms of computational complexity, the GTLVQ method is
more expensive during training because we have to orthonormalize the bases after
each update step. However, during the inference phase, local-GMLVQ and GTLVQ
have the same computational complexity. In contrast, restricted-GTLVQ is always
slightly more complex since the equations require more floating-point operations. In
terms of memory complexity, the GTLVQ versions are more efficient than the local-
GMLVQ. This is because local-GMLVQ explicitly learns the transformation spaces,
while the GTLVQ versions explicitly learn the null spaces and implicitly the transfor-
mation spaces. Consequently, as long as the dimension of the transformation spaces
is higher than the dimension of the null spaces—which is usually given—the GTLVQ
and restricted-GTLVQ algorithms have a lower memory complexity.

Regardless of the derived LVQ algorithms, we have proven that the point-set
dissimilarity is related to a Hausdorff distance. If metric properties of the point-set
dissimilarity are required, this result states that we can perform the computation in
terms of a Hausdorff distance so that the metric properties are valid.

The presented algorithms are a promising extension of GLVQ methods and mo-
tivate further research. For example, on the following topics.
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Set-prototype definitions: It is natural to look for other definitions of set-
prototypes than the two presented: affine subspaces and orthotopes. We believe
that there are more definitions with tractable solutions and that such concepts
can further improve the performance of LVQ algorithms. One possible realiza-
tion could be the definition of ns-balls by restricting the parameter vector θ
of an ns-dimensional affine subspace to a Euclidean norm less than or equal
to a certain radius R (i. e., ‖θ‖E ≤ R). We claim that the solution for the
respective point-set dissimilarity with the Euclidean distance as the underlying
dissimilarity is given by

d (x,w) = min {dE (x, t + Bθ) | θ ∈ Rns , ‖θ‖E ≤ R} ,

=

√
d2E (x,x∗) + (ReLU(dE (t,x∗)−R))

2
,

where x∗ is the best-approximating element in the affine subspace, see Equa-
tion (3.22). Another idea is to use a sphere instead of a ball.

Underlying dissimilarity: In all constructed point-set dissimilarities, we used the
Euclidean distance as the underlying dissimilarity to derive a tractable solu-
tion. Thus, an interesting research topic is to study the tractability of other
dissimilarity measures such as divergences, other Lp-norms, and so on. One
special case of the Lp-norm could be important if someone is interested in
an adversarially robust model for a wide range of Lp-norms, the L∞-norm—
see Equation (3.28) and the following discussion. This norm is related to the
Chebyshev distance and could lead to a tractable solution.

Properties of restricted-GTLVQ: In all the experiments we conducted with real-
world datasets, restricted-GTLVQ had no significant advantages over GTLVQ
that justified the additional computational effort. Both methods worked almost
identically and the only benefit of the restricted version was observed in toy
datasets. The idea of restricting the affine subspaces was already studied by
Simard et al. (1993), and they concluded: “One may worry that the tangent
planes [wi (θi)] and [wj (θj)] may be parallel and be very close at a very dis-
tant region (a bad side effect of the linear approximation). This effect can be
limited by imposing a constraint of the form [‖θi‖E < Ri] and [‖θj‖E < Rj ].
This constraint was implemented but did not yield better results. The reason
is that tangent planes are mostly orthogonal in high-dimensional [spaces] and
the norms of [‖θi‖E ] and [‖θj‖E ] are already small.” This constraint is com-
parable to the constraint in the restricted-GTLVQ (i. e., |θi| ≤ ai). According
to these early results on tangent distances, we believe that this conclusion is
the reason why restricted-GTLVQ does not perform better than GTLVQ when
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low-dimensional affine subspaces are used in high-dimensional spaces. However,
we will continue the research on restricted-GTLVQ to understand the observed
effects and to investigate whether the restriction parameters ai can be related
to confidence values.

Robustification approaches: The GTLVQ versions are provably robust algo-
rithms against adversarial L2-attacks. GMLVQ is robust against ‖Qx‖2-attacks
and does not seem to be robust against commonly used L2-attacks. The rela-
tionship between local-GMLVQ and GTLVQ is strong and local-GMLVQ can
converge to GTLVQ. Furthermore, both methods can be interpreted as an NN.
In the presented robustness evaluation, GMLVQ performs more like an NN and
has low robustness scores, while GTLVQ is highly robust. An interesting im-
plication is now the following: Currently, there is a lively discussion about how
to train an NN to enhance its robust against adversarial attacks. With local-
GMLVQ, we have an algorithm that behaves similar to NNs and is not robust
against state-of-the-art attacks.33 In contrast, GTLVQ can be considered as
an equivalent algorithm that is highly robust and the result of a successful ro-
bustification method. Thus, GTLVQ can be considered as a desirable solution
in terms of robustness, and the success of a proposed robustification method
can be measured by applying the method to local-GMLVQ and comparing it
with GTLVQ. This evaluation is fast and provides a deeper understanding of a
robustification approach due to the inherent interpretability properties of LVQ
methods. One of the reasons why GTLVQ is highly robust is the orthonormal-
ization of the transformation matrices. This concept was recently studied by
Cisse, Bojanowski, Grave, Dauphin, and Usunier (2017) for NNs by orthonor-
malizing each weight matrix. Beyond that, the applicability of the GMLVQ
regularizer (see Section 3.3.3) in NNs should be investigated in the context of
adversarial robustness of NNs.

33A local-GMLVQ network with one prototype vector per class and a transformation dimension
mx = 282 − 12, which corresponds to the subspace dimension of the GTLVQ model used in the
robustness evaluation, achieves a test accuracy of 97 %. The robustness scores with respect to the
C&W attack are 0.47 for the median adversarial distance and 0.6 % for the threshold accuracy.
Therefore, the local-GMLVQ model is one of the worst models regarding the C&W attack in the
evaluation. Moreover, the local-GMLVQ model has 282 ·

(
282 − 12 + 1

)
= 606 032 parameters per

prototype, including the transformation matrix, and the GTLVQ model has 282 · (12 + 1) = 10 192

parameters per set-prototype.



This chapter is mainly based on the following joint work:

[2019c] Saralajew, Holdijk, Rees, Asan, and Villmann (2019). Classification-by-components:
Probabilistic modeling of reasoning over a set of components.

Chapter 4
Classification-by-Components Networks

Class-specific prototypes are the core concept of prototype-based ML methods.
Unfortunately, this concept becomes computationally and memory intensive if

the classification task consists of a large number of classes or a large input dimension
nx or both. This restricts the applicability of LVQ algorithms—for example, of the
previously proposed GTLVQ. For instance, if we apply a GLVQ network to datasets
from the ImageNet project of Deng et al. (2009) without applying appropriate
data preprocessing techniques, the complexity can be enormous. The usual size of
the images used as network input on ImageNet is 224 × 224 × 3. Moreover, the
ILSVRC-20121 dataset from the ImageNet project is a 1 000-class problem. If we
train with at least one prototype per class defined in the input space, we get a
total of approximately 150 M parameters without considering possible parameters of
adaptive dissimilarity measures. In comparison, a relatively small Residual neural
Network (ResNet) like the ResNet-50 proposed by He, Zhang, Ren, and Sun (2016)
has about 26 M parameters and converges to unattainably high accuracies for LVQ
algorithms.2 Despite the high accuracies, this NN type is also difficult to interpret,
see Chapter 1, and questions such as which regions in the image may provide evidence
in favor of or against the current classification decision are not easy to answer.

In this chapter, we relax the concept of class-specific prototypes by drawing in-
spiration from Biederman’s (1987) Recognition-By-Components (RBC) theory from
cognitive psychology. Based on that idea, we derive a probabilistic classification
principle called Classification-By-Components networks (CBCs), which is restricted
to follow an intuitive reasoning-based decision process. There, the prototypes are not
equipped with a class label and, hence, are called components instead of prototypes.
The network is trained to learn and detect generic components that characterize ob-
jects. In parallel, a class-wise reasoning strategy based on these components is learned
to solve the classification problem. In contrast to other approaches on reasoning (as
discussed later), we propose three different types of reasoning: positive, negative, and

1ImageNet Large Scale Visual Recognition Challenge 2012.
2Pretrained ResNet-50 model from the Keras Applications library.
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indefinite. These three types together form a probability space to provide a prob-
abilistic classifier. The decomposition of objects into generic components combined
with the probabilistic reasoning ensures a clear interpretation of the classification
decision process.

The proposed CBC architecture can be interpreted as a commonly used NN ar-
chitecture with a special constraint on the last two layers defined by the probability
model of a CBC. This special constraint

• preserves the interpretability,

• gives a concrete meaning to the last two layers of an NN,

• ensures the applicability in almost all NNs designed for classification tasks, and

• preserves a probabilistic output.

Thereby, the probabilistic output in CBCs is not obtained by applying an artificial
squashing operation, as it is often performed in NNs with the final softmax operation.
Recently published results suspect that the final softmax operation in NNs causes
some of the intriguing properties associated with adversarial robustness (e. g., Hein,
Andriushchenko, & Bitterwolf, 2019; Nar, Ocal, Sastry, & Ramchandran, 2019).

In the next section, we describe in detail how the CBC architecture is inspired by
Biederman’s RBC theory and which intuitive parts we try to model in a mathematical
framework. We then construct the basic classification paradigm called reasoning and
show how this can lead to different classifier types. Although the method is closely
related to principles of NNs, in this section, we keep the perspective of prototype-
based ML methods. For example, we show how learning rules are derived in a simple
SGD. In the following section, we present how the CBC architecture can be trained in
conjunction with a feature extractor based on a CNN. The presented evaluations are
performed to show that the CBC architectures have properties comparable to LVQ
methods. In particular, these evaluations present new approaches to interpret NNs
and show that CBCs achieve state-of-the-art accuracies. Finally, we discuss related
work and provide a summary of this chapter. The software and example scripts for
the most important experiments are available at https://github.com/saralajew/
cbc_networks as a Keras package.

Research chronology

The research into the direction of CBCs began with a study about the relations
between LVQ methods and NNs, as first discussed in [2017d]. Later we refined the
findings and presented first results where we transferred ideas from NNs to LVQ

https://github.com/saralajew/cbc_networks
https://github.com/saralajew/cbc_networks
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methods, see [2018a], [2018b], [2018c], and [2019a]. Some of these ideas are based on
incorporating cross-entropy learning in LVQ, for instance, see [2018b]. Additionally,
in [2018e], we investigated the close relationship between robust soft learning vector
quantization proposed by Seo and Obermayer (2003) and NNs with final softmax
activation and cross-entropy loss.

A first attempt to define a general framework for hybrid LVQ and NN architec-
tures was presented in [2018d]. This approach is mainly based on the idea to integrate
a robust soft learning vector quantization layer into NNs. Although the method has
worked well in some experiments, applying it to arbitrary datasets and tasks is a
challenge. Sometimes the method trained to interpretable results and sometimes
not. Later we identified two reasons for this: First, the training of prototypes by
the cross-entropy loss does not force the model to learn data-point-like prototypes
because, even with very different prototypes, an output probability of one for the
correct class can be achieved, see also Section 4.2.4.3 Second, the output does not
depend on the dissimilarities of the intermediate LVQ layers. By applying NN layers
before and after each LVQ layer, the NN layers learn to transmit the information
only through the vector outputs and completely ignore the dissimilarity coding. In
general, this is possible because, in modern NN architectures, the intermediate layers
are not limited to transfer information through high activations, so the intermediate
layers only learn a transformation of the input data. This backdoor is used by the NN
layers to encode the information unexpectedly so that the proposed model generally
does not work well.

Several remarks about LVQ and NNs, including ideas we used later to design the
CBC architecture, are discussed in [2018e]. For example, the formulation of sliding
operations with prototypes, the training with a GLVQ-loss-like function, and the
restriction of models to preserve interpretability.

Author contributions

Lars Holdijk: The idea to classify with prototypes in a kind of positive and nega-
tive argumentation was first mentioned by him after he had realized that LVQ
cannot gain information in favor of a class from a mismatch of a prototype.
Moreover, he was deeply involved in the entire development process of the
CBC architecture through numerous discussions. The extension of the CBC
architecture with several versions of a component was proposed by Lars, see
Section 4.2.3. Additionally, he conducted the evaluations on ImageNet, per-
formed the robustness and rejection experiments on MNIST, and contributed
to the writing of the publication.

3This is also possible by training with the GLVQ loss (Hammer et al., 2014).
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Maike Rees: She was involved in several discussions about the relationship between
CBCs and Biederman’s RBC theory. The first version of the evaluation pipeline
for the ablation study was developed by Maike. Furthermore, she contributed
significantly to the writing of the publication.

Ebubekir Asan: The source code for the GTSRB evaluations and the first exper-
imental results were created by him. Ebubekir also designed the initial CNN
baseline models and made the first evaluations on the real-world adversarial
examples, which were later refined to the versions used in the publication.

Thomas Villmann: After we had found the equation to calculate the class hypoth-
esis probabilities by heuristic considerations, several long discussions and brain-
storming sessions with him led to the probabilistic framework. To emphasize
this: Thomas has made a profound contribution to unraveling and understand-
ing the heuristic equation so that it can now be so beautifully formalized. In
addition, the clear mathematical formulation and the relation to prototype-
based learning were worked out with him. Additionally, he contributed to the
writing of several sections of the publication and helped to select the experi-
ments for publication.

4.1 Motivation

Starting from a cognitive science perspective, Lake, Ullman, Tenenbaum, and Ger-
shman (2017) suggested rethinking current trends in ML to build truly human-like
learning and thinking machines: “We argue that these machines should

(1) build causal models of the world that support explanation and understanding,
rather than merely solving pattern recognition problems;

(2) ground learning in intuitive theories of physics and psychology to support and
enrich the knowledge that is learned; and

(3) harness compositionality and learning-to-learn to rapidly acquire and generalize
knowledge to new tasks and situations” (p. 1).

The method proposed in this chapter aims to provide a possible solution for some of
these requirements by drawing inspiration from Biederman’s RBC theory. Roughly
speaking, Biederman’s theory describes how humans visually recognize complex ob-
jects by assuming that objects can be decomposed into generic parts that operate as
structural primitives, called components. Objects are then classified by matching the
extracted decomposition plan with a class Decomposition Plan (DP) for each poten-
tial object class. Intuitively, the class DPs describe which components are important
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✔ ✔ ✔ ✔ ✔ ✔

Figure 4.1: An example realization of the classification process of a CBC on a digit
classification task. For simplicity, we illustrate a discrete case where “1” corresponds
to detection or positive reasoning, “0” to no detection or negative reasoning, and “�”
to indefinite reasoning.

to be detected and which components are important to not be detected for an object
to belong to a specific class. For example, if we consider the classification of a digit,
as illustrated in Figure 4.1, the detection of a component representing a vertical bar
provides evidence in favor of the class 1. In other words, we reason positively over the
vertical bar component for the class 1. Similarly, we can reason negatively over all
curved components. In contrast to other works on reasoning, the presented approach
extends these two intuitive reasoning states by a third type, the so-called indefinite
reasoning. In Figure 4.1, not all components will be important for the recognition
of a one. For instance, we reason neither positively nor negatively over the serif and
bottom stroke because not all writing styles use them.

The next section presents a mathematical framework that models the described
classification process in an end-to-end trainable framework so that the components
and the class DPs can be learned. This process is a simplified realization of the
RBC theory. However, we will show that it is a step forward to design an ML model
that is not only based on pattern recognition but also has advanced interpretation
properties and uses compositionality to some extent.

4.2 Probabilistic modeling of reasoning over a set of
components

This section derives the probabilistic model based on the idea of reasoning over a set
of components. These components may have a dimension that is not necessarily the
same as the input dimension.4

4Such a relaxation is also possible for prototypes if an appropriate dissimilarity operation is used
(e. g., C. Chen et al., 2019).
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Definition 4.1 (component). Given a classification task with the input space Rnx ,
a component κk is an element of the space Rnκ . All components are collected into a
set

K = {κk ∈ Rnκ | k = 1, 2, . . . ,#K} , (4.1)

where #K is the overall number of components. A component is called

• full-size component if nκ = nx,

• patch component if nκ < nx, and

• oversize component if nκ > nx.

Compared to the prototype Definition 2.8, the components are not equipped with
a class label and, thus, are class-independent. Based on Biederman’s RBC theory
and the idea that components are structural primitives, the patch definition seems
to be the most suitable one. In terms of prototype theory and LVQ models, however,
the full-size components are related to prototypes.

The main differences between the different reasoning realizations result from the
appropriate handling of the dimension of the components. However, the basic reason-
ing principle is the same in all realizations and is therefore described in detail in the
next part with full-size components. After that, we show how this basic classification
paradigm is generalized to patch components, which shows how the principle can be
extended to oversize components. The third part deals with approaches to increase
the performance of CBCs using multiple components or reasoning strategies.

In general, the CBCs return a possibility vector p (x) ∈ [0, 1]
#C and not a prob-

ability vector as is usual for NNs. The difference between a possibility vector and
a probability vector is that the requirement

∑
c pc (x) = 1 does not necessarily hold

for a possibility vector. In the final part, we show that the possibility vector can
be transformed into a probability vector in terms of the probability model to avoid
naive normalization. Additionally, we discuss several theoretical aspects of CBCs,
including the relationship to NNs, initialization schemes, and so on.

4.2.1 Reasoning over a set of full-size components

The proposed framework relies on a probabilistic model based on a probability tree
diagram T . This tree T can be decomposed into sub-trees Tc for each class c with
the prior class probability P (c) on the starting edge. Such a sub-tree is depicted
in Figure 4.2. The entire probability tree diagram is modeled by the following five
random variables:

• c ∈ {1, . . . ,#C}, indicator variable of the class;
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⋮

⋯

⋮

Figure 4.2: The probability tree diagram Tc representing the reasoning about a class c.
For better readability, the variable of class c is dropped in the mathematical expres-
sions and we only show the full sub-tree for the first component. The solid line paths
are the paths of agreement.

• k ∈ {1, . . . ,#K}, indicator variable of the component;

• I, binary random variable for importance;

• R, binary random variable for reasoning by detection;

• D, binary random variable for detection.

The probabilities in the tree Tc are interpreted in the following way:

• P (k), prior probability that the k-th component occurs;

• P (I | k, c), probability that the k-th component is important for class c;

• P (R | k, c), probability that the k-th component has to be detected for class c;

• P (D | k,x), probability that the k-th component is detected in the input x.

The horizontal bar indicates the complementary event—for instance, P
(
D | k,x

)
is

the probability that the k-th component is not detected in the input x. Accordingly,
the remaining probabilities are derived.

Based on these definitions, we derive the CBC architecture. This mathematical
derivation follows the intuitive motivation from Section 4.1. We begin by describing
the extraction of the DP depending on an input and a set of components. After
that, we specify the class DPs and derive the mathematical model of the reasoning
process and thus the equation for calculating a class hypothesis probability. Finally,
we introduce the loss function for the training of CBCs and derive the corresponding
gradients to formulate the learning rules for a simple SGD.
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Extracting the decomposition plan

Given an input x ∈ Rnx and a set of trainable full-size components K, the first
part of the network detects the presence of a component κk in x. This is realized by
calculating the probability P (D | k,x) for the detection of a component by an appro-
priate detection probability function dk (x) = d (x,κk) ∈ [0, 1] with the requirement
that x = κk implies dk (x) = 1. The interval [0, 1] ensures that we can interpret the
value as a probability. By the other requirement, we guarantee that it is a detection
probability that assigns a probability of one if the component is equal to the input.
Note that we do not require that dk (x) = 1 if and only if x = κk (i. e., dk (x) = 1 can
also hold for some x 6= κk). To finalize the first part of the network, the detection
probabilities are collected into the extracted DP in the form of a possibilistic vector

d (x) = (d1 (x) , . . . , d#K (x))
T ∈ [0, 1]

#K
,

similar to the prototype response vector Equation (2.8).
The idea of the detection probability function is to model a kind of similarity

measure. Nebel et al. (2017) described a similarity s (x, y) as a function that “in-
creases with x and y sharing more properties and decreases with the number and the
degree of discriminating features. Thus, a similarity is taken as a function of object
commonalities and differences” (p. 43). This fully reflects the goal and idea of the de-
tection probability function. Additionally, the simple requirements for the detection
probability function are sufficient to fulfill their definition of a basic-similarity.

Knowing that the detection probability function is a kind of similarity measure,
we can use several known mathematical functions to define a suitable realization. For
example, the cosine similarity with a special handling of the negative part gives a
possible realization:

dk (x) = ϕ (cos (x,κk)) = ϕ

(
xTκk

‖x‖E ‖κk‖E

)
, (4.2)

where ϕ is a transformation function to handle the negative part. The transformation
can be the frequently used shift and scaling operation ϕ (x) = 1

2 (x+ 1), the clipping
of the negative part by ϕ (x) = ReLU (x), and so on. Another realization for a
detection probability is

dk (x) = exp

(
−d

2
E (x,κk)

σ

)
. (4.3)

The scaling parameter σ ∈ R>0 is important to control the distribution of distances
over the given dataset. If this parameter is not carefully set, the gradients of the
detection probability function with respect to the components suffer from the problem
of vanishing gradients so that the components cannot be learned by SGD (Ghiasi-
Shirazi, 2019).
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Modeling of the class decomposition plans

The second part of the network models the class DPs for each class c using the
three forms of reasoning discussed earlier. Mathematically, the probabilities of these
reasoning types are defined as follows.

Positive reasoning: r+c,k = P (I,R | k, c), that is, the probability that the k-th
component is important (event I) and must be detected (event R) to support
the class hypothesis c.

Negative reasoning: r−c,k = P
(
I,R | k, c

)
, that is, the probability that the k-th

component is important (event I) and must not be detected (event R) to sup-
port the class hypothesis c.

Indefinite reasoning: r0c,k = P
(
I | k, c

)
, that is, the probability that the k-th com-

ponent is not important (event I) for the class hypothesis c.

The reasoning probabilities r+c,k, r
−
c,k, and r

0
c,k are trainable parameters of the model.

Additionally, they form a probability space:

r+c,k + r−c,k + r0c,k = P (R | k, c)P (I | k) + P
(
R | k, c

)
P (I | k, c) + P

(
I | k, c

)
,

=
(
P (R | k, c) + P

(
R | k, c

))
P (I | k, c) + P

(
I | k, c

)
,

= 1.

All reasoning probabilities are collected class-wise into vectors

r+c = (r+c,1, . . . , r
+
c,#K)T ∈ [0, 1]

#K

and r−c , r0c , respectively. It should be noted that the idea of explicitly modeling
the state in which a component does not contribute and thus avoiding the general
probabilistic approach r+c,k = 1 − r−c,k is related to the Dempster–Shafer theory of
evidence (Shafer, 1976).

Reasoning

We compute the class hypothesis probability pc (x) regarding the paths of agreement
under the condition of importance. An agreement A is a path in the probability tree
diagram T where either a component is detected (event D) and requires reasoning by
detection (event R), or a component is not detected (event D) and requires reasoning
by no detection (event R). The paths of agreement are marked with solid lines in



98 4. Classification-by-Components Networks

Figure 4.2. Accordingly, we calculate pc (x) by P (A | I,x, c):

P (A | I,x, c) =
P (A, I | x, c)
P (I | c)

,

=

∑
k P (A, I | k,x, c)P (k)∑

k P (I | k, c)P (k)
.

Using the definition of A, the probability P (A | I,x, c) is obtained as

P (A | I,x, c) =

∑
k

(
P (R,D, I | k,x, c) + P

(
R,D, I | k,x, c

))
P (k)∑

k

(
1− P

(
I | k, c

))
P (k)

,

=

∑
k

(
P (I,R | k, c)P (D | k,x) + P

(
I,R | k, c

)
P
(
D | k,x

))
P (k)∑

k

(
1− P

(
I | k, c

))
P (k)

.

Substituting the probabilities with the short form notations, using the relations
P (D | k,x) = dk (x) and P

(
D | k,x

)
= 1 − dk (x), and further assuming that

P (k) = 1
#K leads to5

P (A | I,x, c) =

∑
k

(
r+c,kdk (x) + r−c,k (1− dk (x))

)
∑
k

(
1− r0c,k

) .

A rewriting of this equation with matrix calculus yields

pc (x) = P (A | I,x, c) ,

=
(d (x))

T · r+c + (1− d (x))
T · r−c

1T · (1− r0c)
, (4.4)

where 1 is the one vector of dimension #K. This equation can be further simplified
to

pc (x) =
(d (x))

T · r+c + (1− d (x))
T · r−c

1T ·
(
r+c + r−c

) , (4.5)

and finally to
pc (x) = (d (x))

T · r̄+c + (1− d (x))
T · r̄−c , (4.6)

where r̄±c are the effective reasoning possibility vectors defined by

r̄±c =
r±c

1T ·
(
r+c + r−c

) .
5We experimented with networks in which the priors P (k) were kept as trainable parameters.

The assumption that they must add up to one was modeled by a softmax squashing. We found
no real advantage in keeping these parameters trainable. However, it can be advantageous to train
sparse models or to reduce the number of components (pruning) after training by clipping low
probability components.
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The probabilities for all classes are then collected into the class hypothesis possibility
vector

p (x) = (p1 (x) , . . . , p#C (x))
T ∈ [0, 1]

#C

to create the network output.
We emphasize again that p (x) is a possibility vector. Throughout this chapter,

we consider p (x) to be the network output and, thus, as the classifier function.6 The
winner-takes-all rule, according to Equation (1.1), applied on p (x) returns the class
prediction of the network.

Training of a CBC

The trainable parameters of a CBC are the components κk and the reasoning possibil-
ity vectors r+c and r−c —note that we do not have to learn r0c explicitly as it results from
r+c and r−c by r0c = 1−r+c −r−c . We collect all these trainable parameters in a param-
eter vector ϑ that provides the CBC classifier function p (x;ϑ). Given p (x;ϑ) and
a training sample (x, c (x)) ∈ T , we define the probability p+ (x) = pc(x) (x) of the
correct class c (x) of the input x and the probability p− (x) = max {pc (x) | c 6= c (x)}
of the highest probable incorrect class of the input x. We use these probabilities to
define the signed probability gap:

ν (x) = p− (x)− p+ (x) ∈ [−1, 1] . (4.7)

This function is similar to the relative distance difference µ (x) of GLVQ, see Equa-
tion (2.12), with the distinction that this function measures an absolute difference
instead of a relative difference. Similarly to Equation (2.12), the function is negative
for correct classifications and positive otherwise.

We train the CBCs end-to-end by minimizing a contrastive loss function based
on the signed probability gap using SGD. In the following, this loss is denoted as
CBC loss function and defined by

l (p (x;ϑ) , c (x)) = φ (ν (x)) . (4.8)

Similar to the GLVQ loss in Equation (2.15), the function φ : [−1, 1] → R is a
monotonically increasing, almost everywhere differentiable squashing function. It
regulates the generalization-robustness-trade-off over the probability gap between
the correct and the highest probable incorrect class.

Given a training sample (x, c (x)) ∈ T , the SGD on l (p (x;ϑ) , c (x)) is based on
the following gradients: Assume c+ = c (x) to be the correct class and c− to be the

6Note that we do not use f (x) as the symbol for a classifier function to clearly highlight the
difference between the probabilistic and the general network output.
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highest probable incorrect class of x according to p− (x). Furthermore, we denote
by r+c± and r−c± the corresponding reasoning possibility vectors to c±. The CBC loss
function, see Equation (4.8), has nontrivial gradients for the parameters r+c± , r−c± ,
and all components κk. These gradients are

∂

∂r+c±
φ (ν (x)) = ∓ ξ±

(
d (x)− p± (x) 1

)
, (4.9)

∂

∂r−c±
φ (ν (x)) = ∓ ξ±

(
1− d (x)− p± (x) 1

)
, (4.10)

∂

∂κk
φ (ν (x)) =

(
ξ−
(
r+c−,k − r

−
c−,k

)
− ξ+

(
r+c+,k − r

−
c+,k

)) ∂d (x,κk)

∂κk
, (4.11)

where
ξ± =

φ′ (ν (x))

1T
(
r+c± + r−c±

) ≥ 0 (4.12)

are the gradient scaling factors similar to the GLVQ scaling factors, see Equa-
tion (2.19).7 The learning rules for a basic SGD, according to Equation (1.3), are
derived accordingly. Note that this approach requires a differentiable detection prob-
ability function. Since the components κk are not class-specific, we update all com-
ponents at each step. This is an essential difference to the updates in LVQ approaches
and results from the class independence of the components.

If the components are trained, it could be necessary to constrain the components
to remain in the input space, as discussed in Section 2.2. This can be achieved by a
form of projected gradient descent learning where the components are clipped back
to the correct range after each update.

As already mentioned, an essential requirement for CBCs is that the trainable
reasoning vectors r+c , r0c , and r−c are elements of [0, 1]

#K and add up to one—that
is, r+c + r0c + r−c = 1. This condition is preserved by encoding the three reasoning
vectors for each class into two vectors that can be learned. These two vectors are
denoted as ac and bc and are defined to be elements of [0, 1]

#K. The decoding into
the reasoning vectors is defined by

r+c = ac,

r−c = (1− ac) ◦ bc, (4.13)

r0c = 1− ac − (1− ac) ◦ bc.

7In a correct configuration, the expression 1T
(
r+c + r−c

)
is always greater than zero and therefore

the division is well-defined. This is because r+c + r−c = 0 implies r0c = 1, which means that all
components are unimportant and, thus, the class hypothesis probability of class c is ill-defined.
Assuming that each class is represented in the dataset and that the CBC is initialized and trained
accordingly, this situation is unlikely.
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During training of a network, the parameter vectors ac and bc are constrained to
[0, 1]

#K by clipping values outside the interval after each update, which can be con-
sidered as a form of projected gradient descent learning.

Another possible coding scheme is the encoding of r+c , r0c , and r−c into three
real-valued vectors. The decoding could then be realized by the application of a
probability squashing like a softmax transformation over each triplet

(
r+c,k, r

0
c,k, r

−
c,k

)
.

In addition, a corresponding back-projection of the updated r+c and r−c can be
performed instead of a coding scheme. For example, the following back-projection
algorithm can be used, which is applied to all updated reasoning probability pairs(
r+c,k, r

−
c,k

)
after each update step:

1. Clip r+c,k and r−c,k back into the interval [0, 1].

2. If r+c,k + r−c,k > 1, then normalize both probabilities by the sum of r+c,k + r−c,k.

4.2.2 Reasoning over a set of patch components

Suppose a set of patch components K. To measure the detection probability dk (x)

between an input x ∈ Rnx and a patch component κk ∈ Rnκ , we extend dk (x)

to a sliding operation (Ghiasi-Shirazi, 2019). For instance, this could be done by
cropping a patch of size nκ from x at position i and calculating the detection prob-
ability to the patch component κk. If we do this for all components, we obtain a
detection possibility vector di (x) of size #K. Moreover, by sliding this operation
over all positions i ∈ {1, . . . , vd} accordingly, we get the detection possibility vec-
tor at each position, where vd is the spatial dimension after the sliding operation.
We stack all di (x) together and obtain a detection possibility stack (extracted spa-
tial DP) d (x) ∈ [0, 1]

vd×#K.8 Following Ghiasi-Shirazi (2019), the most commonly
used dissimilarity measures can be efficiently extended to sliding operations by linear
convolution operations. However, the reasoning Equation (4.5) can only handle one
detection probability per component so that the reasoning process must be redefined.

Downsampling

A simple approach is to downsample the detection possibility stack over the spatial
dimension vd such that the output is a detection possibility vector and Equation (4.5)
can be applied. This can be achieved by applying global pooling techniques like global
max pooling (computation of the component-wise maximum detection probability).

8The i-th element of a stack s ∈ Rm×n is a vector si ∈ Rn and is therefore shown in bold too.
We do not use a new symbol for stacks to keep the equations generic with the one symbol. However,
we make sure that the meaning is clear from the respective content.
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With this operation, we consider only the best match of each patch component with
the input. This strategy is implicitly used in the introductory example, see Figure 4.1.

Spatial reasoning

Another approach is to extend the reasoning process to a calculation over the entire
extracted spatial DP, which we call spatial reasoning. For this purpose, we retain the
detection possibility stack d (x) of size vd × #K, and we learn a reasoning process
for each spatial position i ∈ {1, . . . , vd} resulting in a total number of vd processes.
To calculate the class hypothesis probabilities pc (x), Equation (4.5) is redefined to
be a weighted mean over the reasoning at each spatial position i ∈ {1, . . . , vd}:

pc (x) =

vd∑
i=1

αc,i
(di (x))

T · r+c,i + (1− di (x))
T · r−c,i

1T ·
(
r+c,i + r−c,i

) , (4.14)

where αc,i ∈ [0, 1] with
∑
i αc,i = 1 are the trainable or non-trainable class-wise

pixel probabilities that reflect the importance of each pixel position i.9 The reasoning
possibility vectors for position i are denoted by r±c,i ∈ [0, 1]

#K and are stacked to rea-
soning possibility stacks r±c ∈ [0, 1]

vr×#K. We use vr to denote the spatial dimension
of the reasoning stack. For spatial reasoning, vr = vd must hold.

By this reasoning strategy, we force the model to reason over the complete possi-
bility stack. If, for example, αc,i = 1

vd
for all i, then the model has to reason perfectly

over each spatial position i to achieve an output probability of pc (x) ≈ 1. Perfectly
means that the class hypothesis probability at position i must be close to one for
each i. This forces the CBC to understand the entire spatial representation of the
input because each pixel position i is equally important.

If the class-wise pixel probabilities αc,i are trainable parameters of the CBC, then
we apply the following coding scheme: By definition, it is required that αc,i ∈ [0, 1]

and
∑
i αc,i = 1. This is achieved by learning encoded parameters α̃c,i ∈ R that can

be decoded using a softmax activation to obtain the pixel probabilities αc,i:

αc,i =
exp (α̃c,i)∑
i′ exp (α̃c,i′)

.

Now, the CBC can learn the importance of each pixel position i for the class decision
of class c.

9One could use another strategy than a weighted mean to process the class hypothesis prob-
abilities of each position i, for instance, take the maximum probability of all spatial positions i.
Throughout this thesis, however, we focus on a weighted mean because the motivation for the spa-
tial reasoning is that a CBC has to understand the input at each spatial position i instead of relying
on a potentially weak reasoning over one position.



4.2. Probabilistic modeling of reasoning over a set of components 103

See Figure 4.3 for an illustration of an image processing CBC with Siamese CNN
feature extractor for similarity learning and spatial reasoning applied.

Partial spatial reasoning

In the following, the most generic model of the presented reasoning processes is
described. Each reasoning process (spatial reasoning or reasoning over full-size com-
ponents) can be derived in terms of this generic model. In the initial description of
spatial reasoning, it is assumed that the spatial dimension of the reasoning possibility
stack vr is equal to the spatial dimension of the detection possibility stack vd. We
relax this assumption to vr ≤ vd. For example, in the case of image inputs, the
detection possibility stack d (x) has a dimension of vd × hd ×#K and the reasoning
possibility stack r±c has a dimension of vr×hr×#K with vr ≤ vd and hr ≤ hd. Now,
instead of calculating only one class hypothesis probability pc (x) as in spatial rea-
soning, we slide the spatial reasoning process, see Equation (4.14), with the smaller
reasoning possibility stack over the detection possibility stack. The result is a class
hypothesis probability map of size vp × hp. Additionally, we collect the probabilities
of all classes into a stack of size vp × hp ×#C. As a final step, we downsample the
possibility stack to a class hypothesis possibility vector, for instance, by applying
global max pooling.

The idea behind this approach is that we search for a match of the learned class
DP (expressed by r±c ) in the extracted spatial DP d (x) at different positions. This
allows us to handle local shifts and thus enables us to detect objects at different
positions. In this case, the reasoning process is only applied over a part of the
detection possibility stack and, therefore, we call it partial spatial reasoning. This can
be efficiently implemented by linear convolution operations as the reasoning process
of Equation (4.5) corresponds to an affine transformation, see Section 4.2.4.

4.2.3 Multiple components and reasoning strategies

Similar to multiple prototypes per class in LVQ algorithms, it is obvious to create
similar extensions of CBCs. Since CBCs are two-phase classifiers—calculation of
the extracted DP followed by reasoning—there are three ways to include multiple-
concepts, which we describe below.

Multiple component versions

Usually, we equip each component index k with exactly one component κk. If the
reasoning depends on this component, then this component has to match the input
regarding the detection probability dk (x) of the desired reasoning. Depending on the
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variations that may occur in the input, this can be difficult to model with dk (x). For
example, suppose we have image inputs that show exactly one object per image and
the task is to classify the images according to their object class. If the objects in the
images appear shifted or rotated, then it is unlikely that this is adequately modeled
by the detection probability functions of Equation (4.2) and Equation (4.3).

To overcome this problem, we propose to learn instead of one component for each
component index k multiple component versions κk,i and select the best matching
component κk by a respective downsampling over i. For instance, assume we have
three versions for each component index k and select the most appropriate component
based on the highest detection probability value:

κk = arg max
y∈{κk,1,κk,2,κk,3}

d (x,y) . (4.15)

Note that choosing an appropriate downsampling strategy is not trivial because we
may induce an unintended bias in the CBC. By the downsampling strategy of Equa-
tion (4.15), we bias the model towards positive reasoning since the detection probabil-
ity function dk (x) prefers larger output values. Consequently, another downsampling
strategy is to select κk by the minimum instead of the maximum.

Multiple reasoning processes

In the reasoning processes defined above, we learn exactly one set of reasoning prob-
abilities (the class DP) for each class c. This can be extended to multiple reasoning
probabilities for each class c. For example, consider a classification task similar to
Figure 4.1, where the set of patch components is capable of modeling both the Ameri-
can and Latin writing styles of a one. However, by limiting the model to one class DP
per class, the model has to learn a trade-off between the two concepts. By learning
multiple class DPs, this can be overcome so that both concepts can be learned.

Assuming that pc,i (x) is the class hypothesis probability of class c and concept i
(the i-th class DP)—that is, pc,i (x) is calculated with the i-th reasoning possibility
vectors r+c,i, r0c,i, and r−c,i of class c

10—we compute the class hypothesis probability
of class c by

pc (x) = max
i
{pc,i (x)} .

Multiple CBC processes

The combination of the two strategies described above is the learning of multiple
CBC processes. This means that we assign a special set of components to the i-th

10If there are more trainable parameters (e. g., αc,i in spatial reasoning), then these parameters
can be extended to multiple versions as well.
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reasoning probabilities of all classes. More precisely, the i-th set of components
belongs exclusively to the i-th reasoning possibility vectors r+c,i, r0c,i, and r−c,i. The
result is that the multiple reasoning processes are decoupled with respect to the sets
of components. Therefore, this strategy learns multiple CBC processes. Similar to
multiple reasoning processes, the class hypothesis possibility vector is computed by
calculating class-wise the maximum class hypothesis probability.

4.2.4 General remarks

This section contains some remarks about the proposed CBC architecture. In the
first part, we discuss similarities between the proposed CBC architecture and NNs.
The results are useful to conclude that the CBC architecture is a kind of two-layer
NN, which can be used as the final layers of almost every classification NN. After
that, we present theoretical results about the classification behavior of the class
hypothesis probability Equation (4.5). In the third part, we discuss the derived
learning rules regarding attraction and repulsion forces. Following this, we describe
the initialization process of a CBC and suitable data normalization techniques. The
fifth part shows how the class hypothesis probability vector can be transformed into
a probability vector in terms of the probability tree diagram. Finally, we discuss why
we do not train with a loss function based on the relative signed probability gap.

Interpretation of CBCs as NNs

If we consider Equation (4.6) to calculate pc (x), we can conclude that the computa-
tion of a class hypothesis probability is an affine transformation of d (x):

pc (x) = (d (x))
T (

r̄+c − r̄−c
)

+ 1Tr̄−c .

Furthermore, if we stack all the vectors r̄+c − r̄−c to a matrix and all the scalars 1Tr̄−c
to a vector, we can conclude that this operation is equivalent to the operation of a
fully connected layer with #K input units and #C output units. Additionally, the de-
tection probability function d (x) can be interpreted as a kind of fully connected layer
as well. For instance, if we consider the cosine similarity defined in Equation (4.2)
and assume that the inputs are normalized to a Euclidean norm of one, then the
normalized components κk

‖κk‖2
are the weights of the linear transformation and ϕ is

the activation function of the layer. A similar interpretation holds for reasoning over
patch components where the respective NN layer is a convolution layer instead of a
fully connected layer.

In summary, the CBC architecture can be understood as a two-layer NN. The
output layer has the identity activation and both layers are implicitly constrained.
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This constraint is defined by the probabilistic CBC framework and can generally be
applied to the last two layers of suitable NNs. The detection probability layer is
an extension of a convolution layer with the requirement to measure the detection
of convolution filters called components, expressed in probabilities.11 Additionally,
the final reasoning layer is still affine but follows a special implicit constraint defined
by the probability model. The overall output is a probability value for each class
without an artificial squashing. That this framework can be applied to deeper NN
architectures is part of Section 4.3 and the evaluation presented in Section 4.5.

Analysis of the class hypothesis probability

Lemma 4.1. Let x ∈ Rnx be an input sample, dmin be the minimum probability of
detection or no detection across all components, that is,

dmin = min {dk (x) , 1− dk (x) | k = 1, 2, . . . ,#K} ,

and dmax be the maximum probability of detection or no detection across all compo-
nents, that is,

dmax = max {dk (x) , 1− dk (x) | k = 1, 2, . . . ,#K} .

Moreover, assume 1T (r+c + r−c ) > 0 for all c ∈ C. Then the following holds for all
c ∈ C:

dmin ≤ pc (x) ≤ dmax.

Proof. Since dmax is the maximum element, it follows that

pc (x) =
(d (x))

T
r+c + (1− d (x))

T
r−c

1T
(
r+c + r−c

) ,

≤ dmax · 1Tr+c + dmax · 1Tr−c
1T
(
r+c + r−c

) ,

≤ dmax.

Additionally, since dmin is the minimum element, it follows that

pc (x) =
(d (x))

T
r+c + (1− d (x))

T
r−c

1T
(
r+c + r−c

) ,

≥ dmin · 1Tr+c + dmin · 1Tr−c
1T
(
r+c + r−c

) ,

≥ dmin,

which completes the proof.
11This includes fully connected layers as they can be modeled by convolution layers.
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This lemma states that the class hypothesis probability is bounded by the detec-
tion probability with respect to an input. Consequently, it states that the classifier
cannot be more discriminative than the detection probability function. Hence, if
we want a truly discriminative classifier, we need a highly discriminative detection
probability function.

Lemma 4.2. Let x ∈ Rnx be an input sample, dmin and dmax defined as in the
previous Lemma 4.1, and also 1T (r+c + r−c ) > 0 for all c ∈ C. Then the following
holds for all k ∈ {1, 2, . . . ,#K}: dmax = pc (x) if and only if

r+c,k

{
= 0 if dk (x) < dmax,

≥ 0 otherwise,
r−c,k

{
= 0 if 1− dk (x) < dmax,

≥ 0 otherwise,
(4.16)

and dmin = pc (x) if and only if

r+c,k

{
= 0 if dk (x) > dmin,

≥ 0 otherwise,
r−c,k

{
= 0 if 1− dk (x) > dmin,

≥ 0 otherwise.
(4.17)

Proof. We prove the lemma for dmax = pc (x). By definition of pc (x), this is equiv-
alent to

(dmax · 1− d (x))
T

r+c︸ ︷︷ ︸
≥0

+ (dmax · 1− (1− d (x)))
T

r−c︸ ︷︷ ︸
≥0

= 0

and, moreover, equivalent to the following two conditions:

0 = (dmax · 1− d (x))
T

r+c ,

=
∑
k

(dmax − dk (x))︸ ︷︷ ︸
≥0

r+c,k︸︷︷︸
≥0

,

and

0 = (dmax · 1− (1− d (x)))
T

r−c ,

=
∑
k

(dmax − (1− dk (x)))︸ ︷︷ ︸
≥0

r−c,k︸︷︷︸
≥0

.

Since all values in the products are greater than or equal to zero, we can conclude
that the sums are zero if and only if at least one of the factors in each product is
zero. This is equivalent to the conditions for r+c,k and r−c,k in the lemma. A similar
proof holds for dmin = pc (x).
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Because 1T (r+c + r−c ) > 0 has to be valid, the lemma states that to reach the
extreme values of pc (x) at least one of the reasoning possibility vectors has to be
nontrivial and orthogonal to the corresponding shifted detection possibility vector.
Surprisingly, the lemma does not state that the nontrivial reasoning probabilities have
to be equal to one, which means that the extreme values of pc (x) can be reached
with small reasoning probabilities.

Interpretation of the learning rules

If we consider the Equations (4.9), (4.10), and (4.11), the gradients can be related
to attraction and repulsion forces similar to LVQ methods, see Section 2.2. These
forces attract and repel the reasoning factors and the components. For example,
to update the positive reasoning vector r+c+ of the correct class c+, the gradient of
Equation (4.9) reinforces all probabilities to which

dk (x)− p+ (x) > 0

applies. Thus, if the component κk has a greater detection probability than the
predicted class hypothesis probability p+ (x), then the reasoning probability r+c+,k
is increased. Otherwise, r+c+,k is decreased. This observation is in accordance with
Lemma 4.1 and Lemma 4.2 because as long as p+ (x) is not equal to dmax and, hence,
has not reached the optimal value, the update increases and decreases the reasoning
probabilities such that p+ (x) converges to the limit and the reasoning probabilities
to the solution of Equation (4.16). The interpretation of the update of the negative
reasoning probabilities r−c+ , see the gradient of Equation (4.10), is the same as the
previous explanation except that the complementary event 1 − dk (x) of dk (x) is
used to decide whether a reasoning probability has to be increased or decreased.
Moreover, the gradient scaling factors of Equation (4.12) normalize the gradients
regarding the total amount of probability mass used to reason for the class. For the
highest probable incorrect class c−, the interpretations are reversed and p− (x) is
updated towards dmin so that r±c− converges to the solution of Equation (4.17).

As mentioned in Lemma 4.2, the nontrivial entries of r±c± have to be nonzero
to reach an extreme value of p (x). In general, we update the values with a non-
infinitesimal small learning rate so that the SGD update usually oscillates around
the extreme values. Therefore, the SGD will tend to find a stable solution in the
sense of a fixed point iteration. This is achieved if the nontrivial entries are as
large as possible and thus as close as possible to a value of one. In this case, a small
deviation from the optimal value of zero has the least effect on the output probability.
Consequently, the training will tend to generate zero-one vectors for the reasoning
possibility vectors.
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If we consider Equation (4.11), we can see that the components are attracted by
the input if

ξ−
(
r+c−,k − r

−
c−,k

)
< ξ+

(
r+c+,k − r

−
c+,k

)
and repelled otherwise. Thus, the reasoning probabilities determine whether the
component is adjusted to be more similar or dissimilar to the input. For instance, if
the correct class relies on positive reasoning and the highest probable incorrect class
relies on negative reasoning, then the component is attracted to increase the output
probability of the correct class and decrease the output probability of the highest
probable incorrect class. If both classes reason over the component in the same way,
then the update is performed in favor of the more important class.

Initialization of CBCs and data normalization

Similar to LVQ models, a correct initialization of CBCs is important to achieve
fast and stable convergence during training. As we will see in the evaluations, it
is possible to train CBCs based on randomly initialized components, even if this is
slower and requires a more careful selection of the learning rate. However, due to
the clear interpretation of CBCs, this random initialization scheme is not optimal
in most cases. Usually, we have access to the training dataset so that we can use
training samples as initialization. Furthermore, we could also calculate averages with
a k-means algorithm and use these to initialize the components. In both cases, the
components are initialized to be similar to a certain class so that we could initialize
the respective positive reasoning probabilities with a bias towards these components
while keeping the positive reasoning probabilities significantly lower for all other
components. The negative reasoning probabilities can be set to values close to zero.
The remaining probability mass for each component is then concentrated in the
respective indefinite reasoning probabilities. Note that these initialization schemes
can be extended to patch components and spatial reasoning.

In addition to a suitable initialization, the components and data samples must be
normalized accordingly, as is common in ML. The gradient of the cosine similarity,
according to Equation (4.2), with respect to a component is

∇κd (x,κ) = ϕ′ (cos (x,κ))

(
x

‖x‖E ‖κ‖E
− cos (x,κ)

κ

‖κ‖2E

)
.

If the components or the data are not adequately normalized, the similarity could
suffer from exploding or vanishing gradients due to the division with the Euclidean
norms. A similar effect could occur if a similarity function based on the Euclidean
distance is used, for instance, see Equation (4.3). Without a proper normalization of
the data and scaling of the distance by the variance σ, the detection probability will
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always be close to zero so that the gradients vanish. For the cosine similarity, the
normalization of all input values to the unit interval worked well in the experiments.
However, we cannot give a general recommendation for a good variance value σ or a
normalization approach of the data for a similarity function based on the Euclidean
distance since both are strongly data- and task-dependent.

Probability transformation of the class hypothesis possibility vector

For some applications, it is useful to have a class probability vector instead of a
class hypothesis possibility vector—for instance, for the model training with a cross-
entropy loss or a Kullback–Leibler divergence. The normalization into a class prob-
ability vector can be achieved by the derivation of the probability for a class c under
the condition of an agreement A and importance I:

P (c | A, I,x) =
P (c, A, I,x)

P (A, I,x)
,

=
P (c, A | I,x)

P (A | I,x)
,

=
P (A | I,x, c)P (c)∑

c′∈C P (A | I,x, c′)P (c′)
,

=
pc (x)P (c)∑

c′∈C pc′ (x)P (c′)
, (4.18)

where P (c) is the prior probability of class c. Hence, the transformation is obtained
by dividing each class hypothesis probability by the sum of all class hypothesis prob-
abilities. It should be noted that this normalization is derived using the probability
tree diagram and is not the result of a naive normalization or squashing.

In general, this transformation is similar to the frequently applied softmax trans-
formation in NNs except that we are not applying an exponential squashing. We will
not further study the application of this transformation in this thesis for the following
two reasons:

• A suitable estimate for P (c) is usually not available.

• We consider a possibility output as more desirable because it enables an un-
biased class probability comparison. For example, assume a network output
where all pc6=c(x) (x) are zero and pc(x) (x) is nonzero but arbitrarily small (i. e.,
pc(x) (x) = ε > 0). The winner-takes-all rule applied to the probability and
possibility output returns the correct class prediction in both cases, but should
we trust these predictions? In case of a class probability vector, the output
for the correct class would be P (c (x) | A, I,x) = 1. So the probability vector
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would be a unit vector that could be interpreted as a certain classification de-
cision. In contrast, the possibility output p (x) is close to a zero vector and
predicts correctly an uncertain classification. In particular, the class hypothesis
probability for the correct class is pc(x) (x) = ε.

Training with a loss based on the relative signed probability gap

Similar to the relative distance difference µ (x) of GLVQ, see Equation (2.12), we
could train CBCs with a loss based on the relative signed probability gap defined by

p− (x)− p+ (x)

p− (x) + p+ (x)
∈ [−1, 1]

instead of a loss based on the absolute signed probability gap ν (x), see Equation (4.7).
The reason why we do not use this relative gap can be explained with the following
example: Assuming we have p− (x) = 0 and p+ (x) = 0.1, then the relative gap
would be −1 and thus the minimum value. Now, suppose we have p− (x) = 0.9 and
p+ (x) = 1, in which case the relative gap would be approximately −0.05. However,
both configurations have an absolute signed probability gap of −0.1. This example
shows that such a transformation scales the same absolute signed probability gap
differently depending on its position within the unit interval. Therefore, such a
transformation leads to a biased optimization towards class hypothesis probabilities
close to zero.

4.3 Joint training with a trainable feature extractor

In the CBC architectures described above, we assumed that the input and the com-
ponents are processed directly by the detection probability function. This can be
extended by a feature extraction step before we measure the detection probability.
Together with the detection probability layer d (x), this is comparable to similarity
learning through a Siamese NN (Bromley, Guyon, LeCun, Säckinger, & Shah, 1994).
A Siamese NN architecture is an architecture where we apply the same transforma-
tion f (x) ∈ Rmx to more than one input at the same time to obtain the output—as
the name suggests, f is an NN.12 For CBC architectures, this similarity learning can
be formalized by

dk (x) = d (f (x) , f (κk)) ,

where we require that f (x) = f (κk) implies dk (x) = 1. If the feature extractor
has trainable weights, then we can learn them in parallel with the weights of the

12Note again that we do not use f (x) as the symbol for a classifier function—for CBCs, this is
p (x)—but as the symbol for a feature extractor.
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⋯ ⋯

Figure 4.3: Example CBC for image processing with patch components, a Siamese
NN as feature extractor, and spatial reasoning.

CBC architecture. This concept of similarity learning is useful for handling larger
variations within the data and training CBCs on more complex datasets.

We can use an arbitrary feature extractor for full-size components, while we have
to make additional requirements for patch components. Suppose the feature extractor
f processes different input sizes up to a minimum dimension (receptive field size) of
n0, as most CNNs do. Additionally, we define the set of patch components K with
nx ≥ nκ ≥ n0 so that f (κk) ∈ Rmκ , where mx ≥ mκ. Then the techniques from
Section 4.2.2 can be applied. For instance, in Figure 4.3, we visualize a CBC with a
CNN feature extractor for image processing inputs and spatial reasoning. The input
is an image of size vx × hx, which is transformed by the CNN to the spatial size
v′x × h′x. In parallel, the Siamese CNN architecture processes the patch components
of size vκ × hκ to size v′κ × h′κ. After that, we calculate dk (x) as a sliding operation,
denoted as ~. The result is a detection possibility stack (extracted spatial DP) of
size vd × hd ×#K, which is further used for spatial reasoning.

End-to-end training of a CBC with a Siamese feature extractor

A remarkable observation is that the components usually do not correspond to an
element of the dataset. This is important for training CBCs that use a Siamese setup
to extract features from inputs and components: One path of the Siamese feature
extractor processes the input samples and the other the components. For adequate
learning, it is essential that the feature extractor is only updated by the dataset
samples and not by the non-dataset samples (the components) because the feature
extractor is supposed to extract useful features regarding the dataset distribution.
Consequently, the gradient backflow from the components to the parameters of the
feature extractor must be stopped. The gradient backflow from the components
is only used to update the parameters of the components (if they are trainable).
Although this is a slight deviation from the usual training procedure of a Siamese
architecture, it improves the training of interpretable components significantly and
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is theoretically justified.

Definition of the components in the feature space

Instead of defining the components in the input space according to Definition 4.1,
it is also possible to define the components directly in the feature space Rmκ in
order to reduce the Siamese architecture to an ordinary feedforward NN.13 In this
case, the components are similar to convolution filters of the penultimate layer. The
advantage of this approach is that the computational effort to train the CBC is
reduced as we only have to evaluate the feature extractor for one input. However,
we lose the interpretability of the components in the input space. C. Chen et al.
(2019) proposed a back-projection of learned prototypes by approximating f−1 to
recover the interpretability in the input space—this technique can also be applied
to components. Regardless of the exact network architecture, we can always project
the components into the feature space after training to remove the computational
overhead of the Siamese architecture during inference without losing interpretability.

4.4 Evaluation without a feature extractor

In this section, we compare CBCs with GLVQ, defined in Section 2.2.2, on MNIST—
see Section 3.4.2 for a dataset description. The goal is to show that CBCs can classify
with the same strategy as GLVQ but can also discover other classification principles.

Evaluation setup and models

We trained three models: a GLVQ model with 10 prototypes (one prototype per class)
and two CBCs with 10 full-size components. The GLVQ model uses the squared Eu-
clidean distance as dissimilarity and was trained with the identity activation function
(i. e., φ (x) = x) for the GLVQ loss according to Equation (2.15). The CBCs use
the cosine similarity according to Equation (4.2) with ϕ (x) = ReLU (x) activation
as detection probability function and were trained with the margin loss defined as
Equation (4.8) with

φ (ν (x)) = ReLU (ν (x) + β) , (4.19)

where β is the margin parameter. This loss function optimizes for a fixed margin
(signed probability gap) β between the correct and highest probable incorrect class.
We trained two CBC versions: one with β = 0.3 and one with β = 0.1. All three
models were trained from scratch, and we initialized the reasoning probabilities with

13After back-propagating the component size into the input space, Definition 4.1 can be used to
determine the component type.
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uniform random noise values from the interval [0, 1] and the component and prototype
values with uniform random noise values from the interval [0.45, 0.55]. We selected
a random initialization to challenge the CBC architecture.

The input spaces are defined over [0, 1] and the datasets are normalized appro-
priately. The components and the prototypes are defined in the input space and
constrained to it. Consequently, we applied a projected gradient descent learning.
The reasoning probabilities were coded by Equation (4.13). All models were trained
for 150 epochs with a batch size of 128 and the default Adam optimizer from Keras
with an initial learning rate of 0.003. During training, we monitored the validation
loss and automatically adjusted the learning rate accordingly. If the validation loss
has not decreased over five epochs, we have reduced the learning rate by a factor of
0.9. Moreover, we applied basic data augmentations in the form of random shifts of
up to ±2 pixels and random rotations of up to ±15 degrees. Each model was trained
three times and we calculated the mean and standard deviation of the accuracies.

We compare the different CBCs by calculating the average probability gap over
a given test set. The probability gap for a sample x is defined as

max {pc (x) | c ∈ C} −max

{
pc′ (x) | c′ ∈ C, c′ 6= arg max

c∈C
pc (x)

}
. (4.20)

This value differs from the signed probability gap ν (x) that is optimized by the CBC
loss function because it is always positive and does not require a labeled input sample.

Accuracy results

The CBC with a margin β of 0.3 achieves a test accuracy of (83.5± 0.12) % and
slightly exceeds the GLVQ model, which has a test accuracy of (81.7± 0.22) %.14 If
the margin is reduced to 0.1, the accuracy increases to (89.5± 0.12) % and the CBC
significantly surpasses the learned GLVQ model.15 We suspect that the reason for
this is that the network with a smaller margin has the freedom to classify by weak
decisions, while the margin of 0.3 forces the network to make robust decisions, which
has disadvantages in terms of accuracy. In contrast, GLVQ is a hypothesis margin
maximizer—see Section 3.5—so that the model is optimized for a trade-off between
incorrect classifications and a large hypothesis margin across all samples. Therefore,
the model is optimized for robust decisions.

Empirical evidence supporting this weak decision hypothesis can be found by
calculating the average probability gap of the CBC classifications. While this gap

14The lower GLVQ accuracy than in the GTLVQ robustness evaluation in Section 3.5 is due to
the box-constraint applied to the prototypes.

15Note that this accuracy is still less than the accuracy of the GTLVQ model in Section 3.5.
However, the CBC has about 12 times fewer parameters than the GTLVQ model.
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Figure 4.4: Learned reasoning process of a CBC without feature extractor, 10 com-
ponents, and trained with a margin of β = 0.3 on MNIST. The top row shows the
learned components and the bottom row shows the learned reasoning probabilities
collected in reasoning matrices. In addition, the class of each reasoning matrix is
indicated by the MNIST digit below. The top row of a reasoning matrix corresponds
to r+c,k, the middle row to r0c,k, and the bottom row to r−c,k. A white square represents
a probability of one and a black square represents zero.

is 0.16 ± 0.11 for a margin of 0.3, it is only 0.1 ± 0.05 for a margin of 0.1. In this
calculation, only the correctly classified images were taken into account so that the
direct comparison is possible.

Interpretation of the reasoning with a margin of 0.3

In Figure 4.4, we show the learned reasoning process with a margin of β = 0.3. The
network consistently converges towards the BMPP and turns the class-independent
components into prototypical (class-specific) components. The learned components
can be directly recognized as class-specific components as they resemble digit shapes.
The BMPP is learned when the indefinite reasoning probabilities for all but one com-
ponent are close to one and the remaining component is used for positive reasoning.
Only for the class 1, the CBC performs weak negative reasoning over the compo-
nent f, which is indicated by the grayish color. It is a remarkable observation that
the CBC consistently converges towards the BMPP without a regularization or con-
straint over the reasoning process. This behavior shows that the BMPP is a stable
solution for a robust classification process.

The learned components are similar to the learned prototypes of the GLVQ model
in Figure 4.5 (e. g., compare the strong component of the class 5 with the learned
GLVQ prototype). This provides additional evidence to support the claim that a
CBC can act similarly to a prototype-based classifier, but only if this is the best
classification principle for the task. The differences between the learned prototypes
and components are the result of the different similarity measures. If we use the
function of Equation (4.3) as a detection probability function in the CBC, then the
learned components cannot be distinguished from the learned prototypes.
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Figure 4.5: Prototypes learned by the GLVQ model. The class is indicated by the
MNIST digit below.
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Figure 4.6: Learned reasoning process of a CBC without feature extractor, 10 com-
ponents, and trained with a margin of β = 0.1 on MNIST. The figure description is
the same as in Figure 4.4.

Interpretation of the reasoning with a margin of 0.1

In contrast to the learned reasoning process with a margin of β = 0.3, the reasoning
process over a low margin is complementary to the BMPP, see Figure 4.6. Almost
all the decisions are based on strong negative reasoning over one component. Only a
few classes show weak positive reasoning over a few components. Hence, the learned
components can be interpreted as negative examples of the classes: To make a correct
classification of a given image, the strong (negative) component of the correct class
should have the lowest detection probability in the image. The interpretation of
negative samples is difficult because it is not an intuitive human reasoning process.

Although somewhat less intuitive, it is still possible to understand the classifica-
tion decision. For instance, the reasoning process of the class 0 is based on strong
negative reasoning over the component h. This component has a bright dot in the
middle and the rest remains almost black. It is not difficult to see that this is indeed
a negative example of the class 0 as the zero is the only digit that has no stroke in
the middle. The same interpretation can be applied to the class 1 and the respective
component. A more complex interpretation is the reasoning of the class 7 and the
corresponding negative component i. The black top horizontal line shows a unique
property of a seven and a five, the horizontal top stroke. In order to avoid confusion
to a five, the component strongly highlights the area where a five has the transi-
tion from the vertical stroke to the arc—which means this should not be present.
The property that the classification is sometimes based on finding unique parts and
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not understanding the whole input has generally been observed in some low margin
experiments, even beyond MNIST.

4.5 Evaluation with a feature extractor

Depending on the experiment, different CNNs are used as feature extractors for
the CBC architecture. However, all feature extractors except the one used in the
ImageNet experiment have some settings in common. In particular, the convolution
filters in a feature extractor are constrained to have a Euclidean norm of one16 and
are activated by the Swish activation function defined by

Swish (x) = x · sigmoid1 (x) , (4.21)

for instance, see the study of Ramachandran, Zoph, and Le (2018). Additionally,
the feature extractors do not contain batch normalization (Ioffe & Szegedy, 2015).
This setting is chosen based on the results of the ablation study presented in Sec-
tion 4.5.1. In the following, this setting of a CNN feature extractor in combination
with the margin loss Equation (4.19), a margin parameter β of 0.3, and the cosine
similarity with ReLU activation as detection probability function is referred to as
the default setting. On the contrary, if a CNN feature extractor is used that is more
in line with common CNN architectures (i. e., no convolution filter constraint, ReLU
activation, and batch normalization), we refer to it as the non-default setting. Un-
less otherwise specified, CBCs with the non-default setting still use the margin loss
and the ReLU activated cosine similarity as detection probability function. All other
settings (evaluation setup, etc.) follow the description in Section 4.4.

Parallel to the cosine similarity as detection probability function, we studied in
some experiments the use of the Euclidean distance activated by the negative expo-
nential, see Equation (4.3). Using this approach with σ as a trainable parameter, a
CBC with the Euclidean distance could achieve similar results to a CBC with the
cosine similarity. However, the stability of the training is sensitive to the initializa-
tion of σ and tended to diverge so that we will not consider this similarity measure
in the following evaluation.

4.5.1 MNIST: Ablation study

In the first experiments with trainable feature extractors, we found a strong variation
in the interpretability of the components. This study shows how different settings of
a CBC influence the interpretability of the components.

16The idea is similar to the weight normalization approach of Salimans and Kingma (2016).
However, we do not encode the constraint into the weights but apply a projected gradient descent.
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Experimental setup

We used 10 full-size components and the following four-layer CNN as basic feature
extractor architecture:17

1. Convolution: 32 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

2. Convolution: 64 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

3. Max pooling: pool size and stride 2× 2;

4. Convolution: 64 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

5. Convolution: 128 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

6. Max pooling: pool size and stride 2× 2.

We trained all CBCs that can be constructed by combinations of the following pa-
rameters and their configurations (parameter description: configuration-1, configu-
ration-2, and so on):

• activation function of convolution layers: ReLU, Swish;

• constraint of convolution filters to the Euclidean norm of one: true, false;

• application of batch normalization after the first max pooling layer: true, false;

• activation of the cosine similarity to provide the detection probability function:
ϕ (x) = ReLU (x), ϕ (x) = (ReLU (x))

2;

• squashing function φ of the CBC loss Equation (4.8): ELU18 function, margin
loss Equation (4.19) with β = 0.1, margin loss with β = 0.3, margin loss with
β = 0.5, margin loss with β = 0.7, margin loss with β = 0.9.

Evaluation

After the networks were trained, we extracted the final components for each combina-
tion. We asked 10 human experts to give scores to the interpretability of components
by visual examination. For each combination, we asked for exactly one score for all
resulting components. The score values were described according to the following
definitions and supplemented by the sample images in Figure 4.7.

17Note that the architecture is equivalent to the first four layers of the CNN in Section 3.5.2.
18The Exponential Linear Unit (ELU) is defined as

ELU (x) =

{
x if x ≥ 0,

exp (x)− 1 otherwise,

and is applied element-wise for vectors (Clevert, Unterthiner, & Hochreiter, 2016).
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0 points 1 point 2 points 3 points 4 points

Figure 4.7: Example components for the visual evaluation of the interpretability. We
excluded examples with a score of five because they are assumed to be real images.

0 points: The images resemble unstructured noise without visible digit shapes.

1 point: The images show something that resembles digits, but each image contains
a lot of noise.

2 points: The images show something that resembles digits, but each image may
also contain artifacts of other digits.

3 points: The images show real looking digits, but the background contains a lot of
noise.

4 points: The images show real looking digits and the background contains almost
no noise.

5 points: The images are indistinguishable from real inputs.

The total interpretability score is calculated as the arithmetic mean, and the max-
imum test accuracy is calculated as the maximum test accuracy over all runs and
epochs.

Results

Since the overall goal of the ablation study is to find a CBC setting in which the
components are learned to be interpretable by humans, the first evaluation criterion
is the interpretability score. Two of the combinations achieved an interpretability
score of 3.8—the highest score that was given to a model by a single expert was 4.
The difference between these two models is the loss function with which the models
were trained, see Figure 4.8. The first model was trained with the ELU function for φ,
while the other model was trained with the margin loss and a margin value of β = 0.3.
To decide which model performs better, we compared their final test accuracies. The
model with the margin loss performed significantly better: (99.27± 0.1) % average
test accuracy with the margin loss and (97.86± 0.19) % with the ELU function.
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Figure 4.8: Impact of the squashing function φ on the interpretability score and the
test accuracy.

Therefore, the parameter combination of this point was chosen as the default setting
for CBCs in all experiments. Interestingly, the whole evaluation showed that the
accuracy is not correlated with the interpretability score, see Figure 4.8—that is, a
model with non-interpretable components could achieve high accuracies.

Figure 4.9 shows the effect of the other parameters. There is no clear trend
regarding the cosine similarity activation, but there is a clear trend with respect to
the other parameters. In summary, the defined default setting clearly surpasses all
other parameter combinations.

Analysis of the results

In general, the Euclidean constraint seems to have the strongest impact on the inter-
pretability, see Figure 4.9. We observed the positive effect of this constraint during
an experiment with convolution filters predefined as Sobel operator. The idea behind
this constraint is to make all filters comparable and normalize them in such a way
that each filter can distribute 100 % energy to its weights. Later we noticed that in
the non-default setting (i. e., ReLU activation of convolution layers, batch normal-
ization, and no constraint), the activations seem to explode with increasing network
depth of the feature extractor—see Figure 4.10a and especially the different scales
of the horizontal axes of the two plots. Regardless of this, the CBC with the non-
default setting achieved an acceptable accuracy of (98.86± 0.26) %, which is slightly
less than the accuracy with the default setting. To understand how the network in
the non-default setting classifies, we make some conclusions about the CBC used:

1. The cosine similarity is equivalent to a dot product (Euclidean inner product)
after the two input vectors were normalized to a Euclidean norm of one.
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(a) Impact of the convolution activation.
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(b) Impact of the Euclidean constraint.
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(c) Impact of batch normalization.
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(d) Impact of the cosine similarity activation.

Figure 4.9: Results of the ablation study regarding the impact of the parameters con-
volution activation, Euclidean constraint, batch normalization, and cosine similarity
activation on the interpretability score and the test accuracy.

2. If there are elements in the vector that are orders of magnitude larger than
all the other elements, then after the normalization only the largest values are
nonzero and only these values can contribute to a high output similarity.

3. After the normalization, a high detection probability of dk (x) ≈ 1 implies
f(x)
‖f(x)‖2

≈ f(κk)
‖f(κk)‖2

and, thus, that the input is similar to the k-th component.

4. If the model classifies by the BMPP using the prototypical component κk for
class c (x) and pc(x) (x) ≈ 1 is valid, then dk (x) ≈ 1.

Both networks classify by the BMPP with high output probabilities of pc(x) (x) ≈ 1

for correct classifications using prototypical components—see Figure 4.11 for exam-
ple components of both networks. The components of the CBC with the non-default
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(a) CBC with the non-default setting.
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(b) CBC with the default setting.

Figure 4.10: Distribution of the input values to the detection probability function
(i. e., output activations of the feature extractor) with the non-default setting and
the default setting shown as histograms. We calculated the histograms on the entire
training dataset.

setting are not comprehensible to humans, whereas the components of the CBC with
the default setting are. From Conclusion 4 and 3 we know that after the normal-
ization an input has to be nearly identical to the strong prototypical component.
Furthermore, we know from Conclusion 2 that only nonzero values contribute to the
classification decision.

In the non-default setting, the most commonly used setting for CNNs, the nonzero
values are those of high activation. Therefore, the model outputs high activations to
suppress small values. In addition, the network relies on only a few significant features
for each class—see Figure 4.11a for an example activation pattern after normalization.
The complete classification of a four is based on a few features from two different
feature maps.19 By this trick, the network does not learn to extract useful features
that can be used across classes but instead reinforces a particular feature map for
each class. The activation pattern of a particular class is not understandable because
the components cannot be interpreted.

In the default setting, the classification works differently. The network cannot
overemphasize single features because the filters are normalized by the Euclidean
norm so that the filters cannot have all weights zero (dead filters). Thus, the net-
work has to incorporate each filter and, therefore, learns highly discriminative fea-
tures. Looking at the activation patterns across all classes, we observe that the
network learns features that are used across various classes and that it classifies by

19A feature map is the output generated by a filter of a convolution layer. Moreover, the feature
map index refers to the filter index.
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(a) CBC with the non-default setting.

0 20 40 60 80 100 120
feature map index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ac
tiv

at
io

n
(b) CBC with the default setting.

Figure 4.11: Activations of the feature maps of the last convolution layer in the
feature extractor after Euclidean normalization. The activations are shown for the
strong positive component of the class 4 for the non-default setting and the default
setting. The colors within a plot correspond to the spatial dimensions and show
the activation of different pixels within the 4 × 4 feature stack. Additionally, the
corresponding learned components are displayed above the plots.

combining several features—see the activation pattern after the normalization shown
in Figure 4.11b. We suspect that the components become human interpretable be-
cause the network with the default setting learns to decode the whole digit into a
high-level representation, such as strokes and arcs. In contrast, the network with the
non-default setting learns only a unique pattern, such as possibly the distribution of
intensities.

The different losses do not show a clear trend regarding a specific setting except
that a too large margin value in the margin loss is harmful to both interpretability
and accuracy. We know from Xing et al. (2003) and Globerson and Roweis (2006)
that optimizing a similarity measure (or metric) with a contrastive loss can cause the
feature extractor to project all points of a given class into a single point. This effect
is known as collapsing dimensions—see also Section 3.3.3—and is the main reason
why we do not apply losses such as mean squared error or cross-entropy since they
are based on the optimization towards one-hot labels. Furthermore, this effect leads
to highly nonlinear regions in the learned mapping. We believe that the model needs
space to distribute the feature vectors smoothly and well scattered to converge to the
desired interpretability. A compromise between optimizing for correct classifications
and increasing the margin is the loss induced by the ELU squashing. The ELU
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Figure 4.12: Evolution of a component over the number of epochs.

function has a derivative of one for incorrectly classified samples and slowly reduces
the updates of already correctly classified images to avoid a dimensional collapse. The
loss induced by the ELU squashing is an alternative to the margin loss and worked
well in all experiments. However, the accuracies of the trained CBCs were always
slightly below the accuracies of the CBCs trained with the margin loss. Additionally,
we observe that even when optimized for a fixed margin of β = 0.3, the resulting
margin is often much larger, as shown in Figure 4.16. This is an indicator that the
feature vectors are smoothly distributed across the feature space.

So far, we do not know why batch normalization seems to be harmful to the
interpretability. In contrast, we believe that the better behavior of Swish is due to
the property that the function is differentiable everywhere and has almost always
nonzero derivatives.

4.5.2 MNIST: Varying the number of components

In this section, we present the results of CBCs with 10, 9, and 8 full-size components
and show that CBCs can handle a varying number of components and still classify
well on MNIST. After that, we show that the sparseness of a CBC (fewer compo-
nents) is associated with reduced performance since the models show a much smaller
probability gap, see Equation (4.20). This means that the models start to classify
by weaker decisions. For this experiment, the default setting for CBCs with the
four-layer CNN feature extractor from the previous section is used, see Section 4.5.1.

CBC with 10 components

To give an impression on how the model learns the components, Figure 4.12 presents
the evolution of a component starting from the initialization (random noise). After
a few epochs, the rough shapes of the modeled digit are visible and the remaining
epochs are used for fine-tuning to remove the background noise. In general, the
training of the model is stable and consistently converges to high test accuracies
of (99.27± 0.1) %. Interestingly, the model does not always converge clearly to the
BMPP with prototypical components, as shown in Figure 4.13. It occurred quite
frequently that the model solves the reasoning for the class 1 with strong negative
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Figure 4.13: Learned reasoning process of a CBC with feature extractor and 10
components on MNIST. The figure description is the same as in Figure 4.4.
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Figure 4.14: Learned reasoning process of a CBC with feature extractor and 9 com-
ponents on MNIST. The figure description is the same as in Figure 4.4.

reasoning over one component. In this case, 9 components were clearly class-specific
in a human-comprehensible sense and the strong component for the class 1 remained
in a state similar to the strong negative component in Figure 4.14.

CBC with 9 components

To analyze if the network is able to classify by sharing the components across classes,
we restricted the number of components to be smaller than the number of classes.
Figure 4.14 shows the learned reasoning process of a CBC with 9 components. Similar
to the 10 component version, the CBC learns to classify as many classes as possible
by the BMPP. In the example, these are all classes except the class 1, for which the
CBC uses weak positive reasoning over the components a, c, f, and h but mostly
depends on negative reasoning over the component i. This indicates that if an input
image is classified as a one, the network requires it to not look like an eight. A
comparison of the shapes of the digits one and eight supports this observation, the
eight consists only of curved edges, while the one contains none. In addition, the
one has on average the fewest white pixels, while the eight requires the most. This
result shows again that by incorporating the negative and indefinite reasoning state,
the CBCs can learn both the well-understood BMPP and unrestricted approaches
beyond the intuitive classification principles by themselves. The test accuracy of the
CBC is (99.27± 0.1) % and, thus, close to state-of-the-art results.
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Figure 4.15: Learned reasoning process of a CBC with feature extractor and 8 com-
ponents on MNIST. The figure description is the same as in Figure 4.4.

CBC with 8 components

If we train a CBC with 8 components and compare it to the models discussed before,
we can observe a slight drop in the accuracy to (99.07± 0.1) %. To classify MNIST
with only 8 components, the model learns to reason negatively over a couple of
components. Similar to the other CBCs, a one is classified via negative reasoning.
Moreover, the model classifies a two with negative reasoning too. In contrast to all
models before, the CBC classifies a six with a combination of positive and negative
reasoning. Although some of the components are easy to interpret, it is not easy to
answer how the model uses the component g for positive reasoning for the class 8
and for negative reasoning for the class 2.

Comparison of the models

The reduced number of components has some drawbacks: First, the models become
harder to interpret, as the comparison between the 10 component model in Figure 4.13
and the 8 component model in Figure 4.15 shows. Second, the networks begin to
classify by weaker decisions when the number of components is reduced. However,
this is not directly reflected in the accuracy, which is still above 99 % for all three
models.

All networks are optimized with the margin loss in such a way that a probability
margin of 0.3 should arise between the correct and the highest probable incorrect
class. However, the trained CBC with 10 components has an average probability
gap of 0.59 ± 0.14 over correctly classified images. This shows that even though
we only optimize for a margin of 0.3, the networks can become more discriminative
by themselves and distribute the probabilities over the whole range if possible, see
Figure 4.16a. Furthermore, this figure clearly shows that incorrectly classified images
are classified with high uncertainty because the probability gap is much smaller. This
indicates that the probabilities for the runner-up class and the predicted class are
almost equal. In other words, the model is not sure of its classification decision.



4.5. Evaluation with a feature extractor 127

0.0 0.2 0.4 0.6 0.8 1.0
probability gap

0

2

4

6

8

10

de
ns

ity

correct classifications
incorrect classifications

(a) CBC with 10 components.

0.0 0.2 0.4 0.6 0.8 1.0
probability gap

0

2

4

6

8

10

de
ns

ity

correct classifications
incorrect classifications

(b) CBC with 9 components.
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(c) CBC with 8 components.

Figure 4.16: Distributions of probability gaps of incorrectly and correctly classified
images by CBCs on MNIST with different numbers of components. We visualize
discrete approximations of the continuous density functions.
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If we decrease the number of components in the CBCs, we observe that the
probability gap of correctly classified images becomes smaller, see the shift of the
distribution in Figure 4.16b and Figure 4.16c. At the same time, the distribution
of incorrectly classified images does not change that much. Overall, the densities
clearly show that the decreased number of components reduces the credibility of the
classification decision.

4.5.3 MNIST: Initial robustness and rejection evaluation

During the ablation study, we found that for some settings of the feature extrac-
tor, the learned components were easier to interpretable than with other settings.
Interestingly, the network was able to achieve an almost perfect classification with
both interpretable and non-interpretable components. Since the CBCs of the abla-
tion study are based only on positive reasoning by the BMPP and the components
are defined in the same space as the input, we know that the components should be
interpretable if pc(x) (x) ≈ 1 because this implies dk (x) ≈ 1 for the prototypical com-
ponent κk. Therefore, we make the following hypothesis: If the CBC converged to the
BMPP, but the learned components are not interpretable even though pc(x) (x) ≈ 1,
then it is safe to assume that the network could be susceptible to adversarial attacks.

We performed a robustness evaluation to provide empirical evidence that this hy-
pothesis is correct. Additionally, based on these results, we show that the distribution
of class hypothesis probabilities of a CBC can be used to detect whether an image
has been manipulated. As we show later, this property can be used for rejection
strategies. The same property is observed with GTSRB on real-world adversarial
examples, see Section 4.5.5.

Evaluation setup and models

Two CBCs and two CNNs are used for the evaluation. The first CBC architecture cor-
responds to the CBC with the default setting from the ablation study in Section 4.5.1
with a high interpretability score of 3.8 and is called CBC-4 in the following. The
second CBC architecture corresponds to the CBC with the non-default setting that
was also used in the ablation study. This model achieved an interpretability score of
0.4 and is called CBC-0.

The two CNNs are constructed by taking the feature extractor networks of the
CBCs and adding two fully connected layers on top. The fully connected layers have
512 and 10 units and are separated by a dropout layer with a dropout rate of 0.5.
The activation function of the first fully connected layer is the same as that of the
convolution layers, while for the final fully connected layer the softmax activation
function is used to generate a probability vector. Both CNNs were trained with
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Table 4.1: Results of the robustness evaluation. The attacks are grouped according
to the norm that they optimize. Moreover, the boxes indicate whether the attack is
a white-box or black-box attack. For each model, we report the baseline accuracy in
percentage, the median adversarial distance median-δa (left value) and the threshold
accuracy acc-a (right value) in percentage for each attack, and the worst-case analysis
of Lp-attacks by presenting the median-δ∗p value (left value) and the acc-a∗p score (right
value) in percentage. Higher scores mean better robustness. For each attack, the best
median-δa is printed in bold.

CNN-0 CNN-4 CBC-0 CBC-4

baseline accuracy 99.6 99.6 98.6 99.4

L
2

DeepFool � 1.01 9.6 1.2 22 0.64 30.3 1.98 71
C&W � 0.86 5.2 0.99 5.1 0.58 28.5 1.27 29.6
Pointwise � 2.62 88.9 2.79 93.2 1.59 53.5 3.19 94.4
Boundary � 1.12 19.2 1.29 28.2 0.32 3 1.69 66
worst-case 0.84 1.5 0.98 4.8 0.28 0.12 1.26 27.5

L
∞

FGSM � 0.19 21 0.16 12.6 0.11 25.2 0.24 30.6
DeepFool � 0.1 0.1 0.11 0 0.08 24.4 0.18 15.2
PGD � 0.09 6 0.1 2.5 0.04 1.9 0.15 0.2
worst-case 0.09 0 0.09 0 0.04 1.9 0.15 0.02

L
0

Pointwise � 5 3.3 5 5.9 2 0.1 7 16
S&P � 29 78 32 82.2 11 46.6 60 94.2
worst-case 5 3.3 5 5.9 2 0.01 7 16

the cross-entropy loss. The other parameters of the two CNN baseline models were
chosen in such a way that the CNN-0 is consistent with the CBC-0 and the CNN-4
is consistent with the CBC-4.

Since the CBCs were not designed with a specific thread model in mind, the
robustness was evaluated with the setup from Section 3.5 of the GTLVQ robustness
evaluation. It should be noted that the CNN-0 from Section 3.5 corresponds to the
CNN-0 evaluated here and, therefore, the numerical results are also the same.

Results of the robustness evaluation

The results of the robustness evaluation are presented in Table 4.1. As shown in
bold, the CBC-4 with interpretable components far surpasses all other models in
all nine attacks (including the worst-case). It should also be noted that the CBC-0
has by far the lowest robustness scores across all attacks. This empirically confirms
the hypothesis that the interpretability of components is a good indicator for the
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(a) Distributions of the predicted class prob-
abilities of correctly and incorrectly classified
clean images.
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(b) Distributions of the probability gaps of
correctly and incorrectly classified clean im-
ages.
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(c) Distributions of the predicted class prob-
abilities of clean and adversarial examples.
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(d) Distributions of the probability gaps of
clean and adversarial examples.

Figure 4.17: Discrete approximations of the continuous density functions of different
distributions of correctly and incorrectly classified images and of clean and adversarial
images. Additionally, we display the used rejection thresholds. To generate the plots,
we used the adversarial examples from all nine attacks.

robustness of CBCs.
In general, the CNN baseline models have a higher robustness than the CBC-0.

However, in contrast to the relationship between the CBC-0 and the CBC-4, we do
not observe a significant improvement in robustness when we use the preferred feature
extraction parameters in the CNN baselines. Consequently, this suggests that the
preferred default setting is specific to the CBCs.

Compared to the robustness results of GLVQ and GTLVQ, the CBC-4 model
scores significantly lower. Considering the fact that we have not proven that CBCs are
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Table 4.2: TP and FP rates in percentage for the four different rejection strategies
using the adversarial examples from all nine attacks. Threshold values of tp∗ = 0.4

and tβ = 0.3 were used.

dataset count tp∗ tβ tp∗ or tβ tp∗ and tβ

clean (FP)
correct classified 9 938 2.0 3.8 4.1 1.7
incorrect classified 62 58.1 91.9 91.9 58.1

adversarial (TP) 90 000 77.3 99.5 99.5 77.3

margin maximizers, this result is not surprising. Nevertheless, these first robustness
results in combination with the interpretable components are an interesting outcome
and could be useful for future work.

Rejection of adversarial examples

In Figure 4.17, a collection of statistics is shown that illustrate the differences between
clean and adversarial examples of the CBC-4 model.20 Figure 4.17a and Figure 4.17c
visualize the distributions of the predicted probabilities. The probability gaps are
illustrated in Figure 4.17b and Figure 4.17d.

The distribution of adversarial images is similar to the distribution of incorrectly
classified images. Both have a significantly lower prediction probability and a smaller
probability gap compared to correctly classified clean images. Consequently, using
these two properties, it should be possible to construct a rejection strategy in which
the False Positives (FPs)—rejected clean examples—are mostly misclassified any-
way. Table 4.2 shows the True Positives (TPs) and FPs of four such strategies:
The prediction-reject strategy rejects all input samples where the predicted class hy-
pothesis probability (winner-takes-all rule applied to p (x)) is below a probability
threshold tp∗ . The margin-reject strategy rejects all inputs with a probability gap,
see Equation (4.20), below tβ . These two rejection strategies are combined using
both the logical and and or operations.

From the results in Table 4.2, we can conclude that it is indeed possible to use
the class hypothesis probability and the probability gap of an input to efficiently
reject adversaries. Using only the margin-reject strategy with tβ = 0.3, it is possible
to reject almost all adversarial examples generated for the CBC-4 model (99.5 % of
90 k samples) at a low cost in terms of FP rate of correctly classified clean samples
(3.8 %). Only the application of the prediction-reject strategy with tp∗ = 0.4 results
in an even lower FP rate for correctly classified clean samples (2.0 %) but fails to
reject a large portion of the adversarial examples (22.7 %). Due to the excellent

20A clean image, example, or sample is a non-manipulated image from the original dataset.
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performance of the margin-reject strategy, the combinations of the two strategies do
not yield significant benefits in terms of FP and TP rates.21

A clear benefit from combining both rejection strategies can be observed if we re-
peat the robustness evaluation of the CBC-4 model performed in the previous section
in combination with the rejection strategies—that is, an adversarial example is only
considered valid if it is misclassified and not rejected by the strategy. We realized the
generation of such adversarial examples by updating the optimization goal of adver-
sarial attacks to the goal of fooling the rejection strategy and the classification of the
model. The Foolbox implementations of the C&W, DeepFool, and FGSM attacks
were consistently unable to find an adversarial example when the or-combined re-
jection strategy was used. Non-gradient based approaches, which are less restricted
by the inclusion of the rejection strategy, required almost twice the adversarial dis-
tance compared to the previous robustness evaluation to fool both the model and the
rejection strategy.

4.5.4 MNIST: Interpretation of the reasoning process

In this section, we show the interpretability of CBCs. Similar to interpretation tech-
niques from NNs, we do this by considering input-dependent and input-independent
visualizations. In its simplest form, we can interpret the learned reasoning process
by visualizing the reasoning probabilities or the learned components or both, as we
showed several times before, for instance, in Section 4.5.2. If the CBC uses patch
components, it is also possible to visualize the learned model using heatmaps and
reconstructions. In the following, we will focus on the creation of these visualizations
and their relation to the probabilistic model and the corresponding probability tree
diagram T . Furthermore, to stress the visualizations to make it clear that they really
show how a model classifies, we

• train two CBCs with patch components similar to Figure 4.3 and interpret the
learned classification process,

• generate an adversarial example for both models with the Boundary attack and
explain the success of the attack and why the attack explicitly manipulates the
specific region in the input sample to fool the CBC, and

• create artificial input images in which we remove all regions marked as irrelevant
for the detection of a certain class and show that this removal does not influence
the classification decision.

21For further research, we plan to study rejection strategies based on the measure probability gap
times predicted class probability.
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While this section focuses primarily on CBCs with patch components, some of the
visualization techniques can also be applied to CBCs with non-patch components,
even if the components are not defined in the input space. Additionally, we can
construct further interpretation techniques by exploiting the similarity properties, as
shown in Section 4.5.1.

CBC architectures

The first CBC—denoted as α-CBC—has trainable pixel probabilities αc,i,j and the
second—denoted as �-CBC—has non-trainable pixel probabilities, which are set to
αc,i,j equals (vr · hr)−1. In general, the models follow the Siamese architecture de-
picted in Figure 4.3 except that we apply a max pooling operation of pool size and
stride 3 × 3 after the measuring of the detection probability to downsample the de-
tection possibility stack to a spatial size of vd×hd equal to 7× 7. Both models share
the same two-layer CNN feature extractor architecture:

1. Convolution: 32 filters, kernel size 5× 5, stride 1× 1, bias, and no padding;

2. Convolution: 64 filters, kernel size 3× 3, stride 1× 1, bias, and no padding.

The eight patch components are defined in the input space with a size of vκ × hκ
equal to 7 × 7.22 Thus, the feature stacks have a spatial size of v′x × h′x equal to
22× 22 and v′κ× v′κ equals 1× 1 after the feature extraction—the depth of the stacks
is 64, according to the number of convolution filters. We applied multiple reasoning,
see Section 4.2.3, with two reasoning stacks per class and increased the number of
training epochs to 300, accordingly. All other parameters (the training procedure
and the initialization) were set to the default setting.

The �-CBC is restricted to reason over each pixel position because, by definition,
each pixel position has the same importance. In contrast, the α-CBC can select which
pixel positions are important to make a correct prediction. Therefore, this model can
exclude pixels from the reasoning process.

Theoretical basis of the visualizations

The interpretability of the CBCs is based on visualizations of how the probability
mass is distributed over the probability tree diagram T . The class hypothesis proba-
bility pc (x), see Equation (4.6), is the probability of agreement under the condition
of importance—denoted by A|I—and is computed by

P (A | I,x, c) = (d (x))
T · r̄+c + (1− d (x))

T · r̄−c .
22The idea is to learn patches of four quarters of a circle plus two diagonal, horizontal, and vertical

lines.
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This event describes the correct matching of the extracted DP with the class DP.
Moreover, we decompose an agreement into the positive and the negative agreement:

• A positive agreement A+ is a path in the tree diagram T where a component
is detected (event D) and requires reasoning by detection (event R).

• A negative agreement A− is a path in the tree diagram T where a component
is not detected (event D) and requires reasoning by no detection (event R).

These events are used to split the probability P (A | I,x, c) into two parts:

• The positive agreement under the condition of importance is the event that a
component is detected that should be detected—denoted by A+|I—and the
probability is calculated by

P
(
A+ | I,x, c

)
= (d (x))

T · r̄+c . (4.22)

• The negative agreement under the condition of importance is the event that a
component that should not be detected is not detected—denoted by A−|I—and
the probability is calculated by

P
(
A− | I,x, c

)
= (1− d (x))

T · r̄−c . (4.23)

Both events can be related to paths in the trees Tc from the root to the leaves. In
particular, A+|I is the upper solid line path and A−|I is the lower solid line path in
Figure 4.2. In addition, the two probabilities represent the probability mass in favor
of class c: P (A+ | I,x, c) is the probability in favor of class c with respect to positive
reasoning and P (A− | I,x, c) is the probability in favor of class c with respect to
negative reasoning.

Similarly, we can consider the complementary event of A|I, which is disagreement
under the condition of importance—denoted by A|I—and occurs when the extracted
DP does not match the class DP. The probability of this event is computed by

P
(
A | I,x, c

)
= 1− P (A | I,x, c) ,

= (1− d (x))
T · r̄+c + (d (x))

T · r̄−c .

Again, we decompose a disagreement into the positive and the negative disagreement:

• A positive disagreement A
+
is a path in the tree diagram T where a component

is not detected (event D) and requires reasoning by detection (event R).

• A negative disagreement A
−
is a path in the tree diagram T where a component

is detected (event D) and requires reasoning by no detection (event R).
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Figure 4.18: Detection probability heatmaps of the α-CBC on a test sample. At the
top of each heatmap, we show the respective patch component. We use the colormap
jet to map a probability of zero to blue and a probability of one to red. Each image
is the weighted sum of the input sample (weight 0.5) and the heatmap (weight 0.5).

These events are used to split the probability P
(
A | I,x, c

)
into two parts:

• The positive disagreement under the condition of importance is the event that
a component is not detected that should be detected—denoted by A

+|I—and
the probability is calculated by

P
(
A

+ | I,x, c
)

= (1− d (x))
T · r̄+c . (4.24)

• The negative disagreement under the condition of importance is the event that
a component is detected that should not be detected—denoted by A

+|I—and
the probability is calculated by

P
(
A
− | I,x, c

)
= (d (x))

T · r̄−c . (4.25)

The corresponding paths in the tree Tc in Figure 4.2 are the dashed line paths without
non-importance. Additionally, the two probabilities represent the probability mass
against class c: P

(
A

+ | I,x, c
)

is the probability against class c with respect to

positive reasoning and P
(
A
− | I,x, c

)
is the probability against class c with respect

to negative reasoning.

Detection heatmap visualizations

We can use the detection probability function dk (x) for a particular component κk
to get an indication where a component had a detection in the input. In Figure 4.18,
all eight detection probability heatmaps for the α-CBC are visualized using a test
input. If we consider the component b, we see that it models almost a horizontal
stroke. This is reflected in the heatmap, which shows that the horizontal lines of the
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two have a high detection for this component. Since the horizontal stroke is modeled
in the upper part of the patch, it might appear in the heatmap that the detection
of the stroke is in a lower region and has a slight offset. Another example is the
component g. This component is almost a vertical line and correctly detects the
vertical part of the two. In contrast, the component d models the lower left part of
a circle and hence has no similarities with parts of the input.

The detection heatmaps are useful to gain an understanding of the similarity
measure, especially if the representation of the components are learned in the input
space and are interpretable. If this is not the case, it could be difficult to understand
what a component really represents. In this case, a back-projection strategy of the
components to the nearest (patch of a) training example, see Section 4.3, can be
helpful.

Incorporation of pixel probabilities

In spatial reasoning, the pixel probabilities have to be included in the visualizations.
The pixel probabilities indicate how important a pixel position i, j is for the class c.
They also determine how the individual probabilities pc,i,j (x) are combined to pro-
vide the class output pc (x). The pixel probabilities are included into the reasoning
heatmaps and reconstructions by a final scaling step. The algorithm is as follows:

1. Collect all the pixel probabilities αc,i,j of a class c into a map.

2. Normalize the map with the maximum probability (i. e., with maxi,j αc,i,j).

3. Resize the map to the respective size of the target map (e. g., a particular
heatmap).

4. Multiply the resized map with the target map.

Reasoning heatmaps: Input-independent visualizations

To answer the question of what a model has learned about a certain class, we con-
sider input-independent heatmaps. The idea is to stimulate the effective reasoning
possibility vectors r̄±c by the respective optimal detection possibility vector and to
visualize the regions in favor of class c regarding the positive and negative reasoning.
The optimal detection possibility vector for A+|I is d (x) = 1 and d (x) = 0 for A−|I,
see Equation (4.22) and Equation (4.23). With these optimal inputs, we compute a
reasoning heatmap for a class c by the following procedure:

1. Resize the effective reasoning possibility stack of size vr × hr ×#K to the size
vx × hx ×#K.
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Figure 4.19: Input-independent reasoning heatmaps of the α-CBC and the �-CBC
for all classes. For each class, we present one reasoning stack—note that we used
multiple reasoning and learned two reasoning stacks for each class. The class labels
are shown at the top. We use the colormap jet to map a probability of zero to blue
and a probability of one to red, see Figure 4.18 for the colorbar.

2. Calculate the pixel-wise dot products with the respective optimal detection
possibility vector to obtain the heatmap of size vx × hx.

3. Overlay the pixel probability map.

Via these heatmaps, we find the regions of a model where components have to be
detected and have to not be detected. Figure 4.19a shows the learned sparse rep-
resentations of the α-CBC. For example, the model learns to classify handwritten
digits of the class 3 by recognizing specific line endings. In contrast, the class 1 is only
recognized by negative reasoning—by checking that no component matches around
the vertical stroke.

Figure 4.19b shows the reasoning heatmaps for the �-CBC (i. e., the model with
non-trainable pixel probabilities). Since all probabilities αc,i,j are identical, the final
overlay of the pixel probability maps does not change the visualizations since each
pixel probability has the same importance. In addition, the model is forced to reason
correctly over each position to achieve a high output probability. The probability
model requires that the sum of positive and negative effective reasoning has to be
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Figure 4.20: Input-dependent reasoning heatmaps of the α-CBC and the �-CBC for
particular classes and for a test sample of the class 7 from the MNIST dataset. We
use the colormap jet to map a probability of zero to blue and a probability of one
to red, see Figure 4.18 for the colorbar. Each image is the weighted sum of the test
sample (weight 0.34) and the heatmap (weight 0.66).

one. Therefore, A+|I and A−|I are complementary to each other. If a background
component is learned, the reasoning heatmaps can be hard to interpret because they
could highlight the background with positive reasoning. For instance, if we consider
the learned concept of the class 0, we see how the model detects the outer shape
of the zero with A+|I and the black middle with A−|I. Another good example is
the class 4, where the shape of a four is clearly visible in the heatmap of A+|I.
Furthermore, the model checks with A−|I that there is nothing detected at the top
and bottom to avoid confusion with other digits, such as a nine.

Reasoning heatmaps: Input-dependent visualizations

The input-dependent heatmaps are created in the same way as the input-independent
heatmaps except that we take the detection possibility vector from the respective
position of the detection possibility stack d (x) as possibility vector. Additionally, we
highlight the input image in the background. Now, we can visualize A±|I and A

±|I
resulting in four possible visualizations for each class.

Figure 4.20 shows the input-dependent heatmaps for a given input and five dif-
ferent classes. Each heatmap represents the evidence for or against the class. In
combination with the optimal heatmaps in Figure 4.19, these heatmaps can be used
to see where the decision of a given class deviates from the optimum. For example,
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the α-CBC requires the detection of the end of the upper arc, the significant lower-left
corner, and the end of the lower line to classify an input as two. The failure of the
model to detect these features in the given image is illustrated by the A

+|I heatmap,
which highlights the areas where these features should be detected to support the
decision of a two. However, the A−|I heatmap shows that the negative reasoning
requirements are fulfilled to be classified as a two. In contrast, the A+|I heatmap
and the A−|I heatmap of the class 7 show that all requirements are fulfilled to be
classified as a seven—the correct class. Almost no A|I is observed for this correct
class. Note how the heatmaps correctly highlight the similarities between the correct
class and every other class, such as the class 9.

The behavior of the �-CBC is similar to that of the α-CBC except that it requires
correct reasoning over the entire image instead of reasoning over a few regions. First,
note how the combination of the heatmaps of A±|I and A

±|I for a class results in
the respective input-independent heatmap of Figure 4.19. Looking at the class 4
heatmaps of the �-CBC, we see that the A+|I heatmap correctly emphasizes that
the diagonal line of a seven could be the vertical line of a four. Therefore, the
method reasons in favor of the class 4 over this part of the image. However, the A

+|I
heatmap emphasizes that the left part of the four is not detected. Additionally, the
important plausibility check that there is no upper stroke at a four fails because the
A
−|I heatmap clearly highlights this area. Overall, the heatmaps of this class show

a lot of disagreement (event A|I) for the classification decision of a four. In contrast,
there is almost no disagreement (event A|I) for the correct class so that the input is
correctly classified as a seven.

Reasoning reconstructions: Input-independent visualizations

The reconstructions are similar to the heatmaps with the difference that we incorpo-
rate the learned patch components. A requirement for this visualization technique
is that the components are defined in the input space. Additionally, we assume that
the input space is defined over the interval [0, 1]. Again, we use the optimal detection
possibility vectors and create the reconstructions by the following algorithm:

1. Initialize a matrix of zeros of size (vr + vκ)× (hr + hκ) as target image.23

2. For each pixel position i, j in vr × hr and component κk do:

(a) Scale the component κk by the probability i, j, k from the effective rea-
soning possibility stack.

23It is possible to resize the reasoning stack first to get a higher resolution in the target image. In
the results presented, we first resized to a size of v′x × h′x ×#K, resulting in a target image of size
vx × hx.
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(b) �-CBC reconstructions.

Figure 4.21: Input-independent reasoning reconstructions of the α-CBC and the
�-CBC for all classes. For each class, we present one reasoning stack—note that we
used multiple reasoning and learned two reasoning stacks for each class. The class
labels are shown at the top.

(b) Add the scaled component of size vκ × hκ to the target image at the
corresponding receptive field. This is the area

{i, i+ 1, . . . , i+ vκ − 1} × {j, j + 1, . . . , j + hκ − 1} .

3. Determine for each pixel the frequency with which a filter of size vκ×hκ covers
that pixel during a convolution of an image with the target size, and use these
values to normalize each intensity value in the target image.

4. Overlay the pixel probability map.

The visualizations generated by this principle contain the same information as the
corresponding heatmaps. Consequently, it is just another way of visualizing the
learned concepts. The advantage is that the reconstructions of the �-CBC are easier
to interpret. Figure 4.21b, for instance, clearly shows digit shapes in A+|I for the
most classes. Additionally, the learned plausibility checks by A−|I are easier to
understand. For the class 3, the model checks that the ends of the three are not
closed, which is an important difference to an eight. As opposed to the heatmaps,
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Figure 4.22: Input-dependent reasoning reconstructions of the α-CBC and the
�-CBC for particular classes and for the third test sample from the MNIST dataset—
the sample belongs to the class 0.

the summation of the reconstructions A+|I and A−|I does not result in a white image
since we included the components that normally consist of black regions or shapes
that are not perfectly white.

In contrast to the �-CBC reconstructions, the α-CBC reconstructions are almost
black images with white blobs. This underlines the sparse representation that is
learned for MNIST. For example, the classification of a six is based on the recognition
of the intersection between the lower and upper part, the end of the top stroke,
and that no stroke connects the end of the upper stroke with the lower circle (to
distinguish it from an eight).

Reasoning reconstructions: Input-dependent visualizations

Similar to the heatmaps, we obtain these visualizations by exchanging the optimal
possibility vector with the detection possibility vector from the respective position
of the detection possibility stack d (x). Except for this change, we follow the algo-
rithm for input-independent reconstructions. In Figure 4.22, we show the reconstruc-
tions of a test sample from the MNIST dataset. We present the reconstructions for
those classes that were not displayed in Figure 4.20. Both models make a correct
prediction—as we see in the A

±|I reconstructions—but the way they achieve this is
very different and we leave it to the interested reader to interpret why the models do
not classify the input as another digit.
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Figure 4.23: Visualization of the α-CBC heatmaps and the �-CBC reconstructions
for an adversarial input. For simplicity, we illustrate the more meaningful visual-
ization for each model. The model visualizations correspond to the best matching
reasoning stack regarding the input. We use the colormap jet to map a probability
of zero to blue and a probability of one to red, see Figure 4.18 for the colorbar. Each
image is the weighted sum of the test sample (weight 0.34) and the corresponding
heatmap (weight 0.66).

Explaining the success of an adversarial attack

Now, we use the different visualization techniques to explain the success of an adver-
sarial attack. For each model, we generated an adversarial image with the Boundary
attack. The left side of Figure 4.23 shows the clean input image (an image of the
class 4), the adversarial perturbations (normalized by the minimum and maximum
value to the interval [0, 1]), and the resulting adversarial images. Additionally, we
show the distributions of p (x) for both the clean and adversarial images. The right
side of the figure shows the different visualizations. First, we present the input-
independent visualizations again to facilitate the comparison and to understand which
concepts the models have learned. Second, we show the input-dependent visualiza-
tions to understand how the attack fools the model. For both models, we depict the
correct and the adversarial class to see how the model deviates from the correct to
the adversarial prediction.

We consider the input-independent visualizations (x independent) in Figure 4.23,
to answer the question of what the models have learned about the dataset : For both
models, the learned concepts of the clean and adversarial class are visualized by the
optimal A+|I and A−|I. As visible in the heatmaps, the α-CBC learned to recognize
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only a small number of parts necessary to distinguish the two classes. For the class 4,
this consists of checking that there is no stroke at the top and bottom, see A−|I,
while there is a corner on the left, see A+|I. Such a radically sparse representation
is learned for all classes. The reasoning for the class 9 is similar except that it
requires A+|I instead of A−|I for the top stroke. In contrast, the �-CBC learned the
whole concept of digits and not just a sparse representation since the reconstructions
show real digit shapes in the A+|I visualizations. Moreover, the model performs
interpretable plausibility checks via A−|I, for instance, no top stroke at a four.

The right side of Figure 4.23 presents the input-dependent visualizations (x de-
pendent) that we use to answer the question of which parts of the input provide
evidence for or against the current classification decision: By considering the clean
probability histogram p (x) of the α-CBC, we see that the clean input perfectly fits
the learned concept of a four because it has a probability of one. The adversarial
attack has turned the input into a four and a nine at the same time, see adversarial
p (x). Remarkably, the attack found the high similarity between the two learned
concepts and attacks the model by highlighting a few pixels in the upper bar region
in the form of a patch—the manipulation only changes one pixel in d (x). Hence,
the concept of a four is slightly violated as we see a highlighting of the top stroke
region in the A

−|I heatmap. This causes the probability drop of the class 4. At the
same time, these few pixels provide A+|I for the top stroke of a nine and thus raise
the probability. For the �-CBC, the attack behavior is completely different. Since
the clean input already does not match the learned concept perfectly as p4 (x) ≈ 0.8,
the attack fools the model by reducing the contrast via background noise. For ex-
ample, via the A

+|I reconstruction, the model highlights that the clear detection of
the upper part of a four is not given. It also recognizes that there could be a top or
bottom stroke, see A

−|I. A similar interpretation applies to the adversarial class.

The �-CBC with αc,i,j = (vd · hd)−1 is trained to learn a strong concept as it
can only achieve py (x) ≈ 1 if it reasons perfectly at each pixel position. Therefore,
the probability histogram shows a relatively high base probability for each class,
as the overlap between encoded digits to a spatial size of vd × hd equal to 7 × 7

is often around 50 %. Furthermore, this restrictive classification principle violates
the motivating example in Figure 4.1 because the model cannot apply indefinite
reasoning over a pixel region. In contrast, the α-CBC can model the motivating
example but is at the same time a clear example of what happens if we optimize
without constraints as usually performed in NNs. Since the model is trained by
minimizing an energy function, it learns to classify correctly with the lowest effort
and, hence, oversimplifies. Therefore, the classification is performed in a non-intuitive
way. Moreover, the interpretation shows that the classification of both CBCs is based
on non-robust features of f as both are highly sensitive to background manipulations.
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Figure 4.24: Results of the cut-off experiment where we modified (mod.) a baseline
(base.) image regarding the import regions marked by the A|I heatmaps.

Cut-off experiment

The idea behind the previous experiment is to make a stress test of the visualizations
by explaining why an adversarial attack fooled the model. However, we can perform
an even more aggressive test: Based on Figure 4.19 and Figure 4.21, we know exactly
which regions of a given digit are the most important parts for a particular class.
So if the visualizations are correct, it should be possible to remove all unimportant
parts without affecting the classification decision.

In Figure 4.24, we visualize the results of such an experiment for both models.
The input sample is an image from the test dataset. Without a special tuning, we
removed the parts of a three that are not marked as important by the α-CBC, see
Figure 4.19. As we see in the baseline probability distributions of p (x), both models
classify the original input image correctly, but the α-CBC predicts a more confident
classification because the margins to other classes are higher. If we remove parts of
the input that are marked to not contribute to the class decision of the α-CBC for
a three, we do not observe a real reduction of the output probability, although the
probability for other classes changes. The image is still classified as a three, even
though it looks more like a small two.

Unlike the α-CBC, the �-CBC realizes the manipulation because the probability
decreases, but the image is still classified as a three. This is because, for the �-CBC,
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each pixel position contributes equally and, thus, every part of the three is important,
as shown in Figure 4.21. In summary, this once again underlines the explanatory
power of the visualization techniques.

Summary

In the previously presented experiments, we studied the interpretability of patch
CBCs with spatial reasoning using two different models. The proposed visualiza-
tion tools, consisting of heatmaps and reconstructions, provide a powerful tool to
gain insights into the learned reasoning process to interpret the models. While the
reconstructions are associated with specific requirements of the CBC architecture,
the proposed heatmaps are applicable independently of the CBC architecture. To
show that the proposed visualization techniques really represent the learned concepts,
we presented two experiments in which we questioned the visualizations: First, we
created an adversarial example for both models and showed that the visualization
techniques can be used to explain the success of the adversarial attacks and the ma-
nipulation of the respective regions by the adversarial attacks. Second, we designed
an experiment in which we removed the areas of an image that are marked as unim-
portant for the classification decision to show that the deletion does not affect the
classification result.

With an accuracy of (97.33± 0.19) %, the performance of the models is signifi-
cantly lower than the state-of-the-art accuracy. One reason for this might be that the
models are quite sparse—both have only about 35 k trainable parameters. The accu-
racy can be increased if we use a deeper feature extractor. A problem that emerges,
in this case, is that the receptive field size n0 increases and, therefore, the minimum
patch size. Of course, this is not a general problem, but it was obstructive in the
experiments. When we increased the network depth and thus the patch size, the net-
work began to rely mainly on positive reasoning. Furthermore, the reconstructions
became less meaningful in some cases. However, the goal of this section was to show
that the models classify by the three forms of reasoning and that the reconstruction
principle works. Therefore, we decided to accept the models with low accuracy.

The reconstructions of inputs via back-projecting the components seem to be a
visualization that should work in principle. However, so far, we have not been able
to achieve acceptable results, neither for datasets of colored images nor for deep NNs
with more than four layers. The reason for this is not clear yet and we hope to be
able to improve these results in the future.

With the α-CBC and �-CBC, we proposed two different models that behave
completely different in the classification process. The α-CBC can classify the data
by reasoning over only a few pixel positions. We consider this model type as an
example of how common NNs classify since we often do not restrict an NN regarding
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Figure 4.25: Five learned components on GTSRB. The top row shows the learned
components and the bottom row presents a similar training sample x for each κk.

how much of the image has to be understood. In contrast, the �-CBC is restricted
to understand the entire image because each pixel position is equally important. At
the moment, we are not sure what the superior method is—if there is one—or if
a compromise between the two by regularizing the probabilities αc,i,j is the right
way. However, we suspect that the �-CBC might be the better method to detect
outliers or manipulations in images since such things always led to a reduction of the
probability pc(x) (x) and the margin to the runner-up class in the experiments, see
also Figure 4.23.

4.5.5 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) created by Stallkamp,
Schlipsing, Salmen, and Igel (2012) is a dataset consisting of colored images of traffic
signs. There are 43 different classes and the image sizes vary between 15 × 15 and
250 × 250. Additionally, the images are not necessarily squared and not all traffic
signs are in the middle of the image. The official dataset contains 39 209 training and
12 630 test images. With this experiment, we show that CBCs scale to RGB images
with background noise where each class can be represented by a prototype.

We used a CBC with 43 full-size components and a slightly modified four-layer
CNN feature extractor—compared to the experiments on MNIST, see Section 4.5.1—
with the following architecture:

1. Convolution: 32 filters, kernel size 7× 7, stride 1× 1, bias, and no padding;

2. Convolution: 64 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

3. Max pooling: pool size and stride 2× 2;

4. Convolution: 64 filters, kernel size 3× 3, stride 1× 1, bias, and no padding;

5. Convolution: 128 filters, kernel size 3× 3, stride 1× 1, bias, and no padding.
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The overall CBC setting was the default setting for CBCs. We trained the network
with increasing margins in three steps, starting with β equal to 0.1 and continuing
with 0.2 and 0.3. For each margin, we trained for 150 epochs. The images were
resized to a spatial size of vx × hx equal to 64 × 64 and normalized to [0, 1]

64×64×3

using the following procedure:

1. Normalize each image by the mean and standard deviation of the image.

2. Clip each value of the normalized image to the interval [−2, 2].

3. Project the resulted image back to [0, 1]
64×64×3.

If we trained with the target margin of 0.3 from the beginning, the model converged
to a local minimum of low accuracy. In this case, the model has not learned a strong
positive component for each class because some of the components resembled the
same class. With only 43 components for 43 classes and the learned BMPP, it is
therefore impossible to classify each class correctly.

The baseline CNN is constructed by replacing the detection probability and rea-
soning layer by an ordinary convolution and a fully connected layer such that the CBC
and the baseline CNN are architecturally equivalent. To be more precise, the baseline
CNN is obtained by applying the following two layers after the feature extraction:

1. Convolution: 43 filters, kernel size 22× 22, stride 1× 1, bias, no padding, and
ReLU activation;

2. Fully connected: 43 units, bias, and softmax activation.

We trained the baseline CNN model with the cross-entropy loss for 450 epochs and
with an initial learning rate of 10−4. All other parameters were set to the non-default
setting of CBCs.

Both networks achieved a comparable accuracy of (97.2± 0.77) % for the CBC
and (97.5± 0.18) % for the baseline CNN. The CBC has a similar probability gap
distribution as the CBC with 10 components trained on MNIST, see Figure 4.16a,
and an average probability gap of 0.58 ± 0.17. In contrast, the baseline CNN has
an average probability gap of 1 ± 0.03 and thus returns almost a one-hot coding.
Similar to MNIST, the network discovers the BMPP and begins to form human-
understandable, prototypical components, see Figure 4.25. Compared to MNIST,
however, we observed stronger variations in the components between the different
runs—for example, the background noise varied strongly. But in general, the com-
ponents were always interpretable.

To underline the initial robustness evaluations performed on MNIST, see Sec-
tion 4.5.3, we tested the robustness of the CBC and the baseline CNN on the physical
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Figure 4.26: Physical stop-sign adversaries applied to the baseline CNN and the
CBC. The inputs x and the corresponding output distributions p (x) are depicted.
Additionally, the predicted label with the corresponding prediction probability is
presented below each distribution. The first image is an example from the GTSRB
test dataset and shows the probability distribution of both models on a clean image.
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Figure 4.27: Physical stop-sign adversaries applied to the baseline CNN and the
CBC—continuation of Figure 4.26.

stop-sign adversaries of Eykholt et al. (2018), see Figure 4.26 and Figure 4.27. With
the exception of one example, the baseline CNN is consistently fooled by the adver-
sarial examples and is always overconfident regarding its classification decision—such
behavior of CNNs on these examples is known from the literature (e. g., Eykholt et al.,
2018). Similar to the baseline CNN, the CBC does not classify all examples correctly.
In contrast, however, it does not predict an overconfident output probability for an
adversarial example. Moreover, compared to the probability distribution on the clean
input, we see a clear difference to the probability distributions of the adversaries: All
probabilities drop and the model is clearly uncertain about its decision. This result
is consistent with the observed behavior on MNIST and can be a promising property
for further research in outlier detection and rejection.

4.5.6 CIFAR-10

CIFAR-1024 consists of 32 × 32 colored images from 10 different classes and 5 k

training and 1 k test images for each class (Krizhevsky, 2009). The dataset is a

24Canadian Institute For Advanced Research 10 classes dataset.
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Figure 4.28: Visualizations of five learned components on CIFAR-10. The top row
shows the learned components and the bottom row presents a similar training sample
x for each κk.

labeled subset of the 80 million tiny images dataset, created by Torralba, Fergus,
and Freeman (2008), with classes that are completely mutually exclusive. Compared
to GTSRB, CIFAR-10 is harder to classify because the individual classes cannot
be represented by a single prototype due to large intra-class variations and stronger
background noise.

We used a CBC with the default setting, 10 full-size components, and the feature
extractor architecture of Section 4.5.1. For a successful training on CIFAR-10, the
10 components were initialized with the mean image of each class. Additionally, we
started the training with the mean squared error based on p (x) and a one-hot class
label vector for 25 epochs—this helps the model to converge. However, when we
trained only with the mean squared error, the network converged to a local minimum
with a low accuracy of about 73 %. After the few initial epochs with the mean squared
error, we switched to the training strategy used for GTSRB with the margin loss,
increasing margins, and an initial learning rate of 0.001.

Similar to the GTSRB experiment in Section 4.5.5, the base CNN is the architec-
turally equivalent CNN of the CBC with the following layers after feature extraction:

1. Convolution: 10 filters, kernel size 5 × 5, stride 1 × 1, bias, no padding, and
ReLU activation;

2. Fully connected: 10 units, bias, and softmax activation.

We trained the baseline CNN model with the cross-entropy loss for 475 epochs and
with an initial learning rate of 0.001. All other parameters were set to the non-default
setting of CBCs.

The CBC has an accuracy of (77.2± 0.07) %, which is close to the accuracy of
(79.9± 0.3) % of the baseline CNN.25 As expected, the CBC classifies the inputs

25If we allow the CBC to classify the data by weak decisions by lowering the margin β to 0.1, the
accuracy increases to about 82 %.
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Figure 4.29: The nine components with the highest positive reasoning probability
r+c,k for three different classes of the ImageNet dataset. Below each component, we
present the probability r+c,k (rounded to two digits) for the respective class.

by the BMPP using prototypical components. In Figure 4.28, we visualize five such
components. The components show different common characterizing properties of
the classes, such as texture (e. g., fur of the cat), rough shapes (e. g., main shape of
the horse), important arrangements of features (e. g., ears, eyes, and muzzle of the
dog), the generally dominant colors at certain positions (e. g., white and blue of the
ship), and so on. Across all runs, the learned components looked identical.

The probability distribution of the test dataset shows that the CBC has a much
smaller average probability gap of 0.29 ± 0.17 than we observed for MNIST and
GTSRB. This result is also reflected in the low accuracy compared to state-of-the-
art results. The fact that we could not train on CIFAR-10 in the same way as on
GTSRB is a good indicator that the margin loss function is not always a good choice
and can be improved.

4.5.7 ImageNet

To evaluate CBC architectures on more complex data, we trained a CBC on the
ILSVRC-2012 dataset from the ImageNet project—abbreviated as ImageNet
dataset. The project provides images regarding the WordNet hierarchy for vi-
sual object recognition of Miller (1995). ImageNet is a dataset with 1 000 classes,
about 1.3 M training images, and 50 k test images. Because the RGB images are
natural images that come from different sources, the size and format vary greatly
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between images.

The CBC was implemented using a pretrained ResNet-50 as a non-trainable fea-
ture extractor.26 In contrast to the CBCs discussed earlier, the patch components of
dimension mκ = 2 · 2 · 2 048 are defined directly in the feature space.27 This removes
the relation between the components and the input space but drastically reduces
the training time. After downsampling the detection possibility stack of spatial size
vd×hd equal to 6×6 by global max pooling, the reasoning is applied—this reasoning
strategy is the same as the downsampling strategy of Section 4.2.2.

The components were initialized by cropping the center of five images from each
class and then processing them through the feature extractor, resulting in 5 k patch
components. If the component κk was initialized by a sample of the class c, then we
initialized r+c,k as a uniform random value of [z, 1] where z equals 0.75 and otherwise
as a uniform random value of [0, 1− z]. After that, the initialization of r−c,k was

determined by r+c,k ·
(

1− r+c,k
)
. Consequently, we biased the model with positive

reasoning to components that were sampled from the respective class.
The CBC was trained with the margin loss and β = 0.1. In compliance with earlier

work on ImageNet, the input images were resized by first resizing the shortest side
to 224 and then performing a center cropping of size 224×224. For the same reason,
no image augmentation was used.

In Figure 4.29, the nine components with the highest positive reasoning probabil-
ities for three exemplary classes are presented. After training the components in the
feature space, the input representation of a component is determined by searching for
the highest detection probability in the training dataset for the given component and
cropping the corresponding image area in the input space. This method is similar to
the approach of C. Chen et al. (2019).

In general, the components with a high positive reasoning probability (above the
initialization bound of z) are found to be conceptually meaningful for the respective
class. Further investigation of the components shows that the detection of the compo-
nent with the second-highest positive reasoning probability for the class dalmatian in
an image also provides evidence in favor of the class giant panda. Similarly, the com-
ponent with the fifth-highest positive reasoning probability for the class dalmatian
is also highly important for the classes hyena, snow leopard, and English setter,
while the component with the fifth-highest positive reasoning probability for the class
trolleybus is also important for the class trolley car. Similar shared components

26Pretrained ResNet-50 model from the Keras Applications library.
27The size 2× 2× 2 048 is the size of the output feature stack of the ResNet-50.
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can be found across many classes, which shows that the CBC is capable of learning
complex class-independent structures.

Averaged over all classes, a positive reasoning probability greater than z was
learned for 5.2 ± 0.8 components per class, while 2 781.8 ± 23.3 of 5 k components
per class were assigned to a negative reasoning probability greater than z. As can be
seen in Figure 4.29, the positive reasoning probabilities assigned to the components
are close to 1.00 in most cases. This includes components that were not initialized
with a bias towards the class in question. For instance, the component with the fifth-
highest positive reasoning probability for the class dalmatian was initially biased
towards the class English setter. The ratio between the number of positive and
negative reasoning components suggests that the model relies heavily on negative
reasoning to establish a baseline for its classification decision. We assume that in this
higher-dimensional setting with a large number of components, positive reasoning is
primarily utilized to fine-tune the classification decision of the model after a rough
categorization by negative reasoning.

To evaluate the performance of CBCs, we compare both the accuracy and infer-
ence time to that of a CNN. The resulting CBC had an inference time of 371 ± 6

images per second, similar to 369± 2 images per second of a normal ResNet-50 with
global average pooling and fully connected layer. This shows that the CBC generates
no significant computational overhead. The top-five validation accuracy of the CBC
is 82.4 %, which is similar to earlier CNN generations—for example, AlexNet with
82.8 % accuracy (Krizhevsky, Sutskever, & Hinton, 2012). Note that the CBC had
a non-trainable feature extractor and no parameter tuning was performed. We are
confident that the accuracy of CBC architectures on ImageNet can be improved
with further studies.

4.6 Related work

Recently, Bouchacourt and Denoyer (2019) proposed an NN architecture that is sim-
ilar to CBCs with a feature extractor. Their NN architecture learns a concept ex-
tractor, a concept classifier, and a final classifier through a special training proce-
dure. The intermediate representation of the concept extractor is similar to the
detection probability function and detects whether a concept is present or not. Un-
like CBCs, however, the calculated representations are binary vectors of the form
{0, 1}#K. Moreover, similar to the reasoning of CBCs, the final classifier is an affine
function and classifies the data based on the extracted representations. The concept
classifier is used to regularize the NN in such a way that the concepts are homoge-
neous and distinguishable from each other. Similar to CBCs, this classifier is used
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to provide interpretation techniques. Although the proposed approach is mathemat-
ically formalized as a probability framework, it is rather heuristic since the whole
approach uses several softmax squashings. Furthermore, the method does not use
indefinite nor negative reasoning, which is an important property of CBCs.

Reasoning in NNs

In its simplest form, it can be said that NNs already provide decisions based on
reasoning. If one considers an NN as a multilayer perceptron network, the sign
of each weight can be interpreted as either negative or positive reasoning about the
corresponding feature. In this case, a weight of zero would model indefinite reasoning.
However, the use of ReLU activations forces NNs to rely entirely on positive reasoning.
Additionally, the weights and feature scores are unbounded so that they are difficult
to interpret. Nevertheless, this interpretation of weights is used in interpretation
techniques such as class activation mappings proposed by Zhou et al. (2016), making
them similar to CBC heatmap visualizations.

Explicit modeling of reasoning

The use of components and the inclusion of negative and indefinite reasoning can be
seen as an extension of the work of C. Chen et al. (2019). However, CBCs do not
rely on the complicated three-step training procedure of their work and build on a
probabilistic reasoning model. Tokmakov, Wang, and Hebert (2019) proposed a form
of reasoning similar to the indefinite reasoning state by occluding parts of the learned
representation. However, its components (attributes) are modeled in a textual form.
In general, the reasoning process has slight similarities with the ideas mentioned by
Akata, Perronnin, Harchaoui, and Schmid (2013) and the modeling of knowledge via
graph structures (e. g., X. Chen, Li, Fei-Fei, & Gupta, 2018; Jiang, Xu, Liang, & Lin,
2018; Marino, Salakhutdinov, & Gupta, 2017).

Feature visualization techniques

If the components are defined as trainable parameters in the input space, the learned
components are similar to feature visualization techniques of NNs (e. g., Erhan et al.,
2009; Nguyen et al., 2019; Zeiler & Fergus, 2014). In contrast to these common visu-
alization techniques, the components are the direct visualizations of the penultimate
layer weights (detection probability layer), are not calculated by a post-processing
step, and have a probabilistic interpretation. In addition, we are not applying regu-
larizations to the components to resemble realistic images.
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Prototype-based classification rules in NNs and similarity learning

An essential part of the proposed network is the use of a Siamese architecture to
learn a similarity measure (e. g., Bromley et al., 1994; Chopra, Hadsell, & LeCun,
2005; Koch, 2015; Salakhutdinov & Hinton, 2007) and the idea to integrate a kind of
prototype-based classification rule into NNs (e. g., Arik & Pfister, 2019; Li, Liu, Chen,
& Rudin, 2018; Mensink, Verbeek, Perronnin, & Csurka, 2012; Papernot & McDaniel,
2018; Plötz & Roth, 2018; Snell, Swersky, & Zemel, 2017; Yang, Zhang, Yin, & Liu,
2018). Recently, the prototype classification principle is gaining a lot of attention
in few-shot learning due to its ability to learn fast from few data (e. g., Gidaris &
Komodakis, 2018; Mensink et al., 2012; Santoro, Bartunov, Botvinick, Wierstra,
& Lillicrap, 2016; Snell et al., 2017; Vinyals, Blundell, Lillicrap, Kavukcuoglu, &
Wierstra, 2016). The idea of replacing full-size prototypes with patches in similarity
learning is also becoming more attractive—for instance, the object tracking method
of Bertinetto, Valmadre, Henriques, Vedaldi, and Torr (2016).

4.7 Summary and discussion

In this chapter, we have presented a probabilistic classification model called
classification-by-components network together with several possible realizations. Re-
duced to the essential change we made, these are the following.

From the perspective of prototype-based learning: The relaxation of the pre-
defined class label assignment of prototypes. The detection probability function
is related to a similarity measure so that the components perform a clustering.
Together with the reasoning probabilities, the components have an implicit
soft class label so that they can be combined to form the overall classification
output.

From the perspective of NNs: The definition of a probabilistic framework for
the final and penultimate layer of an NN. The detection probability layer is
an extension of a convolution layer with the requirement to measure the de-
tection of convolutional filters—called components—expressed in probabilities.
Additionally, the final reasoning layer is still affine but follows a special implicit
constraint defined by the probability model.

In summary, CBCs have the following important characteristics:

• The method classifies its input by applying positive, negative, and indefinite
reasoning over an extracted DP. To the best of our knowledge, this is the first
time that optionality of components (features) is explicitly modeled.
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• The method uses a probabilistic reasoning process that directly outputs class
hypothesis probabilities without requiring heuristic squashing methods such as
softmax.

• The reasoning process is easily interpretable and simplifies the understanding
of the classification decision.

• In combination with a trainable NN-based feature extractor, the method retains
advantages of NNs such as being end-to-end trainable on large scale datasets
and achieving high accuracies on complex tasks.

Parallel to the theoretical description and derivation of CBCs, we conducted several
evaluations. In the first experiment, we have shown that CBCs can classify by the
same principle as GLVQ and have a similar accuracy and interpretability on MNIST.
However, by lowering the margin value β, CBCs can discover classification strategies
that are highly efficient in terms of accuracy and are not realizable by ordinary
prototype-based methods.

Most of the evaluations were performed with CBCs with a trainable NN-based
feature extractor. We have shown that CBCs can help to understand the classifica-
tion performed by NNs and can boost the performance of prototype-based approaches
towards state-of-the-art results. All interpretation techniques are based on the prob-
ability framework. As shown in the experiments on MNIST, GTSRB, and CIFAR-10
with Siamese architectures, the method can generate human-understandable compo-
nents and can converge to the BMPP without an explicit regularization. Additionally,
we have shown by an experiment with patch components on MNIST that the models
can answer questions about the classification decisions. More precisely, the developed
interpretation techniques can answer the question of what causes the model to fail
on an adversarial example. The conclusion that can be drawn here supports the re-
cently published results of Ilyas et al. (2019): The feature extractor tends to extract
features that are not robust in human visual perception.

A drawback of the Siamese architecture is the training overhead and the possi-
ble introduction of many parameters due to components in the input space. If the
architecture is not Siamese, CBCs have almost no disadvantages compared to NNs.
However, to be able to use all the presented interpretation techniques, the back-
projection strategy presented by C. Chen et al. (2019) must first be applied—as we
have shown on ImageNet. The evaluation on ImageNet also showed that CBCs
are capable of learning high-dimensional components that can be utilized by multiple
classes. Investigation of these shared components can provide additional insight into
the classification approach of the model. The heatmap visualizations are always ap-
plicable and extend the well-known class activation mapping method of Zhou et al.
(2016) by the possibility to visualize disagreement.
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The CBC architecture is a promising new method for classification and motivates
further research. For example, on the following topics.

Initialization strategies and loss functions: Although the proposed margin loss
function worked well in some experiments, it was difficult to train CBCs on large
datasets of colored images. Why this is the case is not yet clear. We observed
several times that the method was unable to overcome the margin bound and
converged to an averaged loss value of β, which could be an indication that the
margin loss is too restrictive and can be improved. We are also certain that an
appropriate initialization technique is important. For instance, due to the Eu-
clidean constraint of the feature extractor, the recently proposed initialization
scheme of Arpit, Campos, and Bengio (2019) could be used for future work.

Robustness properties and outlier detection: An initial robustness evaluation
and the use of class hypothesis possibility vectors for outlier detection show
promising results. However, this evaluation has to be extended to be able to say
with certainty whether the CBCs have superior outlier detection capabilities.
The robustness of CBCs seems higher than for ordinary NNs. Nevertheless, the
scores are lower than the robustness values of GLVQ methods. Consequently,
future work should also focus on the study of robustification methods for the
feature extractor.

Predefined components: A remarkable property of CBCs is that we can inject
knowledge into the classifier through the components. We have done this in
the CIFAR-10 and ImageNet experiments. This concept allows us to force a
feature extractor to extract specific types of features. For example, the com-
ponents could be defined as manipulated images to make the feature extractor
robust, similar to the study of Geirhos et al. (2019). We have performed such ex-
periments on MNIST, where we initialized the components as inverted MNIST
digits (swapping black and white). During training, the components were kept
non-trainable, so we forced the feature extractor to rely on edge detection.
Moreover, predefined components can be used to extend a CBC after it was
trained. For instance, suppose we already trained a CBC with a given set of
components. Now, we add some more components to the set that are useful for
an existing or new class. By setting the indefinite reasoning probabilities of the
new components to one for the classes that we do not want to be affected by
this update, we preserve the previous performance. After that, we can start a
retraining of the new reasoning probabilities for the desired classes. In general,
this is possible because the class hypothesis probabilities are computed inde-
pendently to each other and the model can set the reasoning over components
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into the indefinite state. Finally, this property should be beneficial for few-shot
and zero-shot learning tasks.

Detection probability functions: Lemma 4.1 states an important result: The dis-
crimination ability of CBCs is bounded by the detection probability function.
Thus, it makes sense to search for better detection probability functions. Even
though the cosine similarity worked well in the experiments, we doubt that it
is generally a good choice. For example, consider Figure 4.26 and note that
an almost perfect input is far from a 100 % class hypothesis probability. This
indicates that the cosine similarity is not capable of adequately handling the
possible variations within a class. A possible alternative function is the struc-
tural similarity of Z. Wang, Bovik, Sheikh, and Simoncelli (2004), which we
want to study in future work.

Regularizations: As was shown in the patch experiments with the α-CBC and
�-CBC, it is worthwhile to investigate possible regularization strategies of train-
able parameters. In the case of the two presented patch models, a reasonable
compromise between fixed and trainable pixel probabilities seems desirable.

Mathematical analysis: Several aspects of CBCs are closely related to prototype-
based classifiers, which are well-understood in their mathematical properties.
Therefore, in future work, we want to examine whether we can derive results
similar to those of the margin or convergence analysis of GLVQ.

Interpretation techniques: In this chapter, we have developed a number of inter-
pretation techniques that worked well across several experiments and datasets.
However, the reconstruction visualizations only worked well in the MNIST
patch experiment. We could not successfully apply these visualizations to col-
ored image datasets so that they became meaningful. Additionally, we observed
that the components are more difficult to interpret when they are defined as
patch components or applied to colored image datasets. The reasons for these
problems are still unclear and also require further research.



Chapter 5

Summary and Concluding Remarks

Since the prototype-based classification principle was proposed, the definition of
prototypes remained almost unchanged. In this thesis, we made a step forward

and proposed two approaches to extend the prototype principle for classification
algorithms. The first approach extends simple prototype vectors to set-prototypes—
generalized tangent learning vector quantization, Chapter 3—and the second relaxes
the class-specific prototype principle to components—classification-by-components
networks, Chapter 4. We introduced these extensions to improve the classification
capabilities of prototype-based classification algorithms while preserving their inter-
pretability and robustness properties, and to improve the interpretability of NNs
by transferring the interpretability properties of prototype-based classification algo-
rithms. These methods were evaluated by numerical experiments on real-world and
toy datasets. Additionally, we have theoretically analyzed the properties of these
methods. Exemplarily, we applied both concepts in LVQ-based classification algo-
rithms and showed that the application of both concepts leads to higher classification
accuracies. For a detailed summary, we refer to the summary and discussion sections
of the two main chapters—see Section 3.7 and Section 4.7.

In recent years there was and still is a growing interest in using ML everywhere
and for everything. To put it somewhat exaggerated: There is a trend to replace
well-suited methods based on decades of knowledge (e.g., control theory) with an NN
architecture from last year. This trend is concerning because it is still not entirely
clear how NNs achieve their classification decision. Of course, NNs are state of the
art in terms of flexibility to model problems or in terms of accuracy. For example,
the recent achievements in object detection in images by NNs are outstanding. How-
ever, their lack of interpretability hampers their unrestricted use in safety-critical
applications such as autonomous driving, and until this is resolved, there are doubts
whether a company will soon be able to offer a fully autonomous car. The motivation
of this work was to develop methods that can bridge this described gap.

With the derived GTLVQ algorithm, we presented an alternative to NNs and
we prefer this algorithm over NNs whenever possible. In all experiments, GTLVQ
achieved good accuracies and we have shown that GTLVQ is provably robust against
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adversarial attacks. By calculating the hypothesis margin value regarding a given
sample, we get knowledge about the confidence of the GTLVQ classifier and, at the
same time, get a lower bound for the adversarial distance. Additionally, we can
interpret the classifier via sampling points from the set-prototypes. These properties
are desirable for safety-critical applications and, therefore, a good reason to deploy
GTLVQ instead of NNs. However, it is not yet clear how to scale the GTLVQ
algorithm for challenging datasets (e. g., ImageNet) such that the method achieves
reasonable accuracy. Compared to NNs, GTLVQ becomes parameter greedy when
trained on large images, which seems like a natural limitation for its application.
Consequently, in future work, we plan to investigate GTLVQ on large image datasets
after feature extraction to keep the input dimension feasible.

By drawing inspiration from prototype-based classifiers and cognitive psychology,
we derived the CBC architecture. When applied to NNs, this classification principle
provides a probabilistic framework to interpret how a classification decision is per-
formed. The presented results are promising and we believe that CBCs could spur
a new line of research. But until CBCs can compete with modern NN architectures,
there are a lot of questions to be answered and improvements to be made. Up to
now, it is much more difficult to train a CBC with ResNet-50 feature extractor on
ImageNet than an ordinary ResNet-50 with a fully connected classification layer.
Moreover, the accuracy of such CBCs is lower than the accuracy of modern NNs.
However, the current state-of-the-art initialization methods, regularization schemes,
activation functions, and so on were designed for NNs so that a direct comparison
to NNs is difficult. Consequently, future work should focus on the investigation of
suitable initialization methods and appropriate loss and detection probability func-
tions. Furthermore, due to the strong relationship between LVQ methods and CBCs,
it should be analyzed whether the margin maximization theory can be extended to
CBCs. The first experiments show good robustness scores against adversarial attacks,
but theoretical guarantees as obtained for GTLVQ are not proven. Additionally, ap-
plications of CBCs to non-image data should also be the subject of future studies.
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Mathematical Symbols

Greek letters

αc,i, αc,i,j The class-wise pixel probabilities.

α̃c,i, α̃c,i,j The encoded class-wise pixel probabilities as elements of R.

β The margin parameter of the margin loss.

δa (x, c (x)) The adversarial distance of the attack a with respect to an input
sample (x, c (x)).

δ∗p (x, c (x)) The worst-case adversarial distance for an input (x, c (x)) with re-
spect to Lp-attacks.

ε The variable for an adversarial perturbation.

η The learning rate parameter.

θ The parameter vector of a linear subspace, an affine subspace, or
an orthotope.

ϑ The vector of trainable parameters of a feature extractor or a clas-
sifier function.

κ The variable for a component.

µ (x) The relative distance difference for an input x.

ν (x) The signed probability gap for an input x.

ξ± The scaling factors of the gradients of the GLVQ or CBC loss.

σ A positive slope or variance parameter.

φ (·) A monotonically increasing, almost everywhere differentiable
squashing function.
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ϕ (·) A function to transform the cosine similarity to a detection proba-
bility function.

Latin uppercase letters

A The binary random variable for agreement.

A+, A− The binary random variable for positive and negative agreement.

A
+
, A
−

The binary random variable for positive and negative disagreement.

B A basis matrix of a linear subspace.

C The set of all class labels.

#C The number of classes.

D The binary random variable for detection.

E (·, ·) The empirical risk or the averaged loss function.

ELU (·) The exponential linear unit function.

F(S) The set of all non-empty compact subsets of S.

H (·) The Heaviside step function.

I The binary random variable for importance.

In The n-dimensional identity matrix.

K The set of all components.

#K The number of components.

P(S) The power set of S without the empty set.

P The orthogonal projector onto the complement of the linear sub-
space spanned by B.

Q The transformation matrix in dQ.

R The binary random variable for reasoning by detection.

R A centered and axis-aligned hyperrectangle.

ReLU (·) The rectified linear unit function.
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S A non-empty set.

Swish (·) The Swish function.

T The variable for a probability tree diagram.

Tc The variable for a probability sub-tree diagram regarding class c.

T A dataset of labeld data points.

#T The number of labeled data points in T .

W The set of all prototypes.

#W The number of prototypes.

Latin lowercase letters

a The variable for an adversarial attack.

a The parameter vector to define a centered and axis-aligned hyper-
rectangle.

ac, bc The variables for the coding vectors of the reasoning possibility
vectors or stacks of class c during training.

acc-a (T ) The adversarial threshold accuracy of the attack a on the dataset
T .

acc-a∗p (T ) The worst-case adversarial threshold accuracy of Lp-attacks on the
dataset T .

c A class label of C or the indicator variable of a class.

c (x) The class label of the input x.

c∗ (x) The predicted class label of x after applying the winner-takes-all
rule.

d (·, ·) A distance, metric, dissimilarity, or detection probability function.

d (·, ·) A point-set dissimilarity.

dE (·, ·) The Euclidean distance.

dH (·, ·) The Hausdorff distance.
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dQ (·, ·) The quadratic-dissimilarity.

dk (x), dk (x) The dissimilarity or detection probability function for the k-th pro-
totype or component regarding x.

d+ (x), d+ (x) The dissimilarity to the closest prototype of the correct class c (x)

given an input (x, c (x)).

d− (x), d− (x) The dissimilarity to the closest prototype of a class other than c (x)

given an input (x, c (x)).

d (x), d (x) The prototype response vector, detection possibility vector, or de-
tection possibility stack for an input x.

4d (x) The absolute distance difference regarding x.

f (x), f (x;ϑ) A classifier function or a feature extractor that takes an input x

and is parameterized by a vector ϑ.

hκ The horizontal spatial dimension of a component κ.

hd The horizontal spatial dimension of a detection possibility stack.

hp The horizontal spatial dimension of a class hypothesis possibility
stack.

hr The horizontal spatial dimension of a reasoning stack.

hx The horizontal spatial dimension of an input x.

h′κ The horizontal spatial dimension of a component κ after feature
extraction.

h′x The horizontal spatial dimension of an input x after feature extrac-
tion.

k The indicator variable to the k-th prototype or component.

l (·, ·) A loss function.

mκ The dimension of a component κ after feature extraction.

mx The dimension of an input x after feature extraction or transfor-
mation.

marginh (S,W) The hypothesis margin regarding a set of prototypes W and with
respect to a set of inputs S.
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margins (S,W) The sample margin regarding a set of prototypes W and with re-
spect to a set of inputs S.

median-δa (T ) The median adversarial distance of the attack a on the dataset T .

median-δ∗p (T ) The worst-case median adversarial distance of Lp-attacks on the
dataset T .

n0 The dimension of a receptive field.

nκ The dimension of a component κ.

ns The dimension of a linear subspace, an affine subspace, or an or-
thotope.

nx The dimension of an input x.

pc (x) The class hypothesis probability of the class c for an input x.

p+ (x) The class hypothesis probability of the correct class c (x) given an
input (x, c (x)).

p− (x) The highest class hypothesis probability of a class unlike c (x) given
an input (x, c (x)).

p (x) The class hypothesis possibility vector for an input x.

r+c,k, r
0
c,k, r

−
c,k The positive, indefinite, and negative reasoning probability of class

c and component κk.

r+c , r0c , r−c The positive, indefinite, and negative reasoning possibility vector
or stack of class c.

r̄+c , r̄−c The positive and negative effective reasoning possibility vector or
stack of class c.

sigmoidσ (·) A sigmoid function, especially the logistic function.

tp, t0, t2, t∞ The threshold parameters for the adversarial threshold accuracies.

tp∗ , tβ The prediction-reject and margin-reject threshold parameter.

t A translation vector of an affine subspace.

vκ The vertical spatial dimension of a component κ.

vd The vertical spatial dimension of a detection possibility stack.
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vp The vertical spatial dimension of a class hypothesis possibility stack.

vr The vertical spatial dimension of a reasoning stack.

vx The vertical spatial dimension of an input x.

v′κ The vertical spatial dimension of a component κ after feature ex-
traction.

v′x The vertical spatial dimension of an input x after feature extraction.

w The variable for a prototype vector.

w The variable for a set-prototype.

w+, w+ The closest prototype of the correct class c (x) regarding x.

w−, w− The closest prototype of a class other than c (x) regarding x.

w∗, w∗ The closest or best matching prototype regarding x.

4w± The signed gradients of a dissimilarity with respect to the proto-
types w±.

x The variable for an input.

x̃ An adversarial example of x.

Other symbols

0 A vector of zeros.

1 A vector of ones.

‖·‖ A norm.

‖·‖E , ‖·‖2 The Euclidean norm.

‖·‖F The Frobenius norm.

‖·‖p A p-norm or Lp-norm.

◦ The Hadamard product (element-wise multiplication).



Acronyms

BMPP Best Matching Prototype Principle, see Section 2.1.2.

C&W Carlini&Wagner attack, see Section 3.5.2 and Section 4.5.3.

CBC Classification-By-Components network, see Chapter 4.

CNN Convolutional Neural Network, see Section 4.3.

DP Decomposition Plan, see Chapter 4.

FGSM Fast Gradient Sign Method, see Section 3.5.2 and Section 4.5.3.

FP False Positive, see Section 4.5.3.

GLVQ Generalized Learning Vector Quantization, see Section 2.2.2.

GMLVQ Generalized Matrix Learning Vector Quantization, see Section 2.2.3.

GTLVQ Generalized Tangent Learning Vector Quantization, see Section 2.2.3.

LVQ Learning Vector Quantization, see Section 1.1 and Chapter 2.

ML Machine Learning, see Chapter 1.

NN Neural Network, see Chapter 1.

PGD Projected Gradient Descent, see Section 3.5.2 and Section 4.5.3.

RBC Recognition-By-Components, see Chapter 4.

ResNet Residual neural Network, see Chapter 4.

S&P Salt&Pepper noise attack, see Section 3.5.2 and Section 4.5.3.

SGD Stochastic Gradient Descent, see Section 1.1 and Section 2.2.2.

TP True Positive, see Section 4.5.3.
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