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Abstract

This thesis analyses the psychological concept of “scaffolding” as a candidate for
being able to facilitate the learning process not only of human learners but also of
artificial agents. The original concept employs a range of techniques to improve the
learning process of novices by analysing their current skill level, adjusts the task’s
complexity, directs their attention and provides temporary support. By transferring
these methods to the field of machine learning and proposing scaffolding as a
general principle for guiding the learning process of an artificial agent, this work
demonstrates that the learning performance can be improved significantly and even
enables the learning of new skills that would otherwise be impossible.

First, the relations of the individual key aspects of this psychological theory to
historical and recent findings in the field of machine learning are discussed. Second,
a suitable refined definition of “scaffolding for machine learning” is put forward
by positioning scaffolding as a special form of meta-learning that is inspired by
psychology. As a result, four different scaffolds for reinforcement learning agents
are designed for supporting different parts of the learning process by facilitating
efficient acting, perception or pre-learning of sub-skills. In the final analysis, their
positive impact is demonstrated by testing these supportive approaches on selected
interaction problems.
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Introduction 1
Since ancient times, the craving for controllability appears to be one of the main
catalysts of learning. The desire of humans and animals to control their environment
and to make use of it for their own benefits determines their behaviour and leads
to the eagerness to learn new skills in order to reach this goal. Adapted from this
behaviour, one of the main issues in the field of intelligent systems is the question
how to endow systems like robots with new interaction capabilities in the simplest
possible way to optimize their control over the environment.

In the last years, robotic systems have become an essential part in industry, but
also strive to become a more and more important aspect in our daily lives. The
development of self-driving cars, kitchen gadgets, robots for automatic gardening
or hoovering strongly influences the society, potentially leading to a point where
robots might be accepted as native interactive tools in nearly every kind of situation.
At present, the accustomed assistance of robots in daily life tasks is a challenging
matter. It not only requires the fast learning of new assigned duties but also the
ability to learn in ways that enables a human to easily instruct the robot. Many daily
actions for example require some form of “mediated interaction” such as pouring the
contents of a mug, accessing a book in a drawer or taking clothes out of a wardrobe.
In order to handle these kind of scenarios, the robot can interact with the target
object only after having actively prepared access via the intermediate use of some
auxiliary “mediator object”. Closely related to those activities is tool use, a learned
capability found in humans, but also in some other species, such as some primates
or birds [1]. It has been linked to higher cognition and is obviously also a desirable
capability for robots to become more adapt at many daily tasks typically arising in
human environments [2, 3]. Especially when the robot’s morphology is resembling
a human, the learning of affordances, i.e. the ability to reasonably use a tool or
object within the current tasks context, is also an important aspect that is brought
into focus[2, 4].

The challenge of robot learning Endowing artificial agents like robots with the
ability to learn these kind of tasks in a fast and efficient manner is a challenge that
has not yet been solved. Especially when the tasks require the robot to physically
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interact with its surroundings, many demands have to be faced. An adequate
learning performance has to be reached within a short amount of time in order
to reduce wear and tear, together with the likeliness that the robot harms itself or
its environment because of suboptimal behaviour. The most encouraging way to
achieve this goal is offered by the behaviour of natural cognitive agents themselves
[5]. Stimulated by discoveries in psychology and neuroscience [6], advances in
machine learning methods (deep learning [7], hierarchical reinforcement learning
[8–10], efficiently solvable Markov decision problems [11]) have led to impressive
improvements of what artificial systems can learn. In this context, reinforcement
learning has been considered as an attractive method to enable robots to master
various kinds of tasks. In this biologically inspired class of algorithms, the learner
explores the environment via direct interaction while adapting its behaviour to the
gathered experience in order to maximize a task dependent reward signal. While
conceptually very attractive, a major problem arises from often prohibitively large
numbers of required learning steps to achieve reasonable performance. Especially in
cases when the sensory information of the environment’s current state is represented
using complex non-linear function approximators such as deep neural networks, the
attending long training times might render learning impossible when real robots are
involved in the learning process.

Scaffolding: a possible remedy? Long training times or even the absence of learn-
ing due to complex hierarchical problems and sparse rewards are popular issues that
are discussed in many works within the field of machine learning [12–16]. So far,
many different strategies have been introduced and proposed within the literature
that all attempt to improve the learning process by inventing new algorithms or
improvements for extending present methods. In this work, the learning process
of reinforcement learning methods is examined under the perspective of a general
principle called scaffolding. On the one hand, scaffolding is the term for a temporary
structure outside of buildings that supports the process of constructing, repairing
or cleaning. On the other hand, it is also a principle from educational psychology
[17–20]. In this field, scaffolding is a theory for fostering expert-learner interaction
and employs a range of techniques for guiding the learner. As a consequence, the
learning process of a novice can be greatly improved. Scaffolding even has the ability
to enable the learning of new skills that would else be rendered impossible.

2 Chapter 1 Introduction



1.1 Outline

The content of this thesis is mainly based on the following publications:

• Sascha Fleer and Helge Ritter. “Comparing Action Sets: Mutual Information
as a Measure of Control”. In: Artificial Neural Networks and Machine Learning
– ICANN 2017. Cham: Springer International Publishing, Oct. 2017, pp. 68–75

• Sascha Fleer and Helge Ritter. “Skill Transfer for Mediated Interaction Learn-
ing”. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids). Nov. 2018, pp. 1–8. DOI: 10.1109/HUMANOIDS.2018.8624951

• Sascha Fleer and Helge Ritter. “Solving a Tool-Based Interaction Task Us-
ing Deep Reinforcement Learning with Visual Attention”. In: Advances in
Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visual-
ization. Ed. by Alfredo Vellido et al. Cham: Springer International Publishing,
2019, pp. 231–240

• Sascha Fleer et al. “Learning efficient haptic shape exploration with a rigid
tactile sensor array”. In: PLOS ONE 15.1 (Jan. 2020), pp. 1–22. DOI: 10.1371/
journal.pone.0226880

In summary, the principle objective of this work is to shed light on the following
question:

Can the principle of scaffolding be applied to the area of reinforcement
learning as a general guiding principle for improving and accelerating
the learning process?

At first, the psychological theory of scaffolding is transferred to the field of machine
learning. It is then exploited for deriving four different kinds of approaches which
are offering possible ways to aid the learning process for an artificial agent. The
approaches are invented with a special focus on learning tasks that are connected to
mediated interaction. For this reason, they are eventually examined and analysed
using testbeds that are related to these kind of problems.

The thesis can be divided into four parts:

Part 1: the toolbox In the first part, the basic mechanisms of reinforcement learn-
ing are introduced, together with some common algorithms that are utilized
within this work (Chapter 2).

1.1 Outline 3
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This work proposes scaffolding for machine learning as a universal concept
that offers ways of supporting different parts of the learning process and is
thus able to tackle the problems of slow or inefficient learning. The basic
idea of this theory from educational psychology is presented in Chapter 3. It
is related to various approaches from the field of machine learning to find
commonalities and eventually to refine the psychological concept into a general
guiding concept for developing supportive approaches for artificial learners.
Based on these results, general parts of the learning process — with emphasis
on reinforcement learners — are identified to have a promising potential for
optimization. These parts are then studied in order to create a suitable scaffold
which is able to offer temporary or permanent support.

Part 2: four approaches for scaffolding the learning process In this work, two
important parts of the learning process are studied that have a promising po-
tential for optimization (see Figure 1.1). The first part is the perception of
the learning domain. Therefore, three different scaffolds are constructed
in Chapter 4 – 6 for supporting different kinds of perception: “perceptive
acting”, “active visual perception” and “active haptic perception”. The second
part, presented in Chapter 7, examines the internal representation of the
employed learning model.

All in all, four scaffolding approaches are presented in this work:

• A permanent scaffold for the learning process by identifying and selecting
the most suitable action set for the given learning environment [21].

• A permanent scaffold that enables the integration of efficient active
perception [23].

• A scaffold for endowing an agent with the ability of active haptic per-
ception which can be used to learn efficient haptic exploration of the
domain [24].

• A temporary support for improving the learning through the pre-training
of sub-skills using a combined transfer and curriculum learning approach
that is refined by key characteristics of scaffolding [22].

Part 3: testing the proposed scaffolding apporoaches The next step is to test
the applicability and efficiency of the four introduced ways of scaffolding. For
this purpose, two learning scenarios are designed that are considered as a
reasonable choice to be employed as testbeds. Although the goal of this work
is to design scaffolds that might be able to widen the applicability of robots to
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Scaffolding perception

Perceptive actingActive perception Haptic perception

Scaffolding the learning process

The learning model’s
internal representation

Le
ar

ni
ng

Fig. 1.1.: Illustration of the four presented scaffolding strategies. The first three target the
different ways an artificial agent can perceive its surroundings. The last strategy
tries to directly scaffold the internal representation of the employed learning
model. The arrow on the left side indicates the chronological order of these two
stages during learning as the agent first has to perceive its surroundings before it
is able to learn based on the gathered information.

a new class of learning problems, simulations are the most promising way to
get useful results and a clear outline of this research area. This simplification
allows laying the focus on the investigation of scaffolding the learning process
while circumventing hardware issues and low-level control problems that come
along with a real robot.

In the first scenario, an artificial agent has to learn to solve “mediated
interaction tasks”. For that reason, a simplified 2D world with simulated
physics was designed that is described in detail in Chapter 8. As mentioned
before, in these tasks the desired effects cannot be generated through direct
interaction, but instead require the learner to discover how to exert suitable
effects on the target object through involving a suitable “mediator object” or
“tool”. The need to learn first how to use the tool in a meaningful way before
trying to solve the actual task indirectly imposes a hierarchy on the learning
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process. Within this learning domain, it is then possible to test the scaffolding
based on “perceptive acting” (Chapter 9), “active visual perception” (Chapter
11) and the “model’s internal representation” (Chapter 10).

One scaffold is designed to enable efficient “active haptic perception” and
thus has specific requirements to the learning domain like the existence of
an artificial agent that is capable of tactile sensing. For this case, a special,
simulated 3D world is constructed for learning. In this simulation, a KUKA
robot has to learn to identify different objects solely based on tactile data
and the sensor’s position and orientation (Chapter 12).

Part 4: discussion Chapter 13 gives a comprehensive summary of the whole thesis,
together with a conclusion and some suggestions for future work.

6 Chapter 1 Introduction
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Reinforcement learning — a
paradigm of human inspired
artificial intelligence

2

One of the bigger visions in the field of intelligent systems is to endow an artificial
agent with the ability to solve human-level problems. To deal with such complicated
tasks, the agent has to explore the learning domain autonomously by performing
actions that affect the environment directly and learn from these effects. Unfortu-
nately, most approaches in machine learning bypass this part of direct interaction
between the agent and the environment. As a consequence, the effects of the agent-
environment interaction during the learning process are scarcely investigated. A
strong opposition is given by reinforcement learning, where the agent learns through
the direct interaction with the environment [25]. Because of this human-like way
of learning, it is treated as one of the best paradigms for artificial intelligence.
Even though learning based on this class of methods tends to be slow, it played an
important role in major breakthroughs in the field of machine learning. Examples
can be found in various fields, while recently learning to play games has become
one of the rising areas for test beds. Beginning with Checkers [26, 27] in the 1960s
and Backgammon [28–30] in the 1990s, it is now possible to create a reinforcement
learner that is capable of learning Go — currently the most complex board game [31,
32]. Some years ago, even video-games were utilized as challenging learning sce-
narios for newly developed reinforcement learning algorithms and are now seen as
popular benchmarks. As a result, artificial agents are performing better than humans
on games that were developed for the ATARI platform by relying only on the raw
visual input of the environment [7, 33]. Encouraged by solving this kind of games
better than a human, many other video-games were utilized as challenging learning
scenarios for newly developed reinforcement learning algorithms. Examples are
arcade-like fighting games like “Super Smash Bros” [34], first person shooters like
“Doom” [35–37], the popular game “Minecraft” [38, 39] and also first approaches
in complex strategy games such as “Starcraft II” [40]. The fruitful results in this
area have not only increased the popularity of this specific class of machine learning
algorithms, but also played an important role in developing learning architectures
in the complex field of robotics. Some examples are learning to flip pancakes [41],
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to grasp objects using raw camera images [42, 43], efficient collision avoidance for
real-world quadrotors, and real-world RC cars [44], stacking blocks with a robot
arm [45] or — at least in simulation — complex dexterous manipulation [46, 47].

Outline In this chapter, the basic concepts of reinforcement learning that are nec-
essary in order to understand the methods and approaches that are developed
throughout this work are presented. First, the basic concepts of reinforcement learn-
ing such as the state and state-action value or the Bellman-equation are explained. In
a next step, popular learning methods are presented, ending with a short introduc-
tion into the field of reinforcement learning using non-linear function approximators
like (deep) neural networks.

2.1 The basic description of a reinforcement learning
problem

Reinforcement learning is a class of machine learning algorithms whose underlying
mechanism is inspired by behaviourist psychology, where the learner and decision
maker — called agent — learns through direct interaction with the environment [25].
To explore and interact with the given learning domain, the agent executes actions
that directly alter its surroundings. The resulting new states of the environment
are presented through a state or sensory signal that encodes every information the
agent is able to receive about the current situation into a state vector. It should thus
provide the agent with all relevant information for solving the encountered problem.
A second important characteristic demanded by the state signal is that it has to fulfill
the Markov property, i.e. being independent of the history from previously visited
states. The agent also receives a scalar control signal called the reward, leading to a
feedback how much the chosen action benefits the agent in its current situation with
respect to the primary learning goal.

Using this information, a reinforcement learning problem can be formulated as a
Markov decision process [48]. It is then defined by the tuple (S,A, PA,R, γ,S0),
where S denotes the set of states and A the set of admissible actions. PA is the
set of transition matrices, one for each action a ∈ A with matrix elements P as,s′
specifying the probability to end up in state s′ ∈ S after taking action a when in state
s ∈ S. The value r ∈ R ⊂ R specifies the scalar reward which the agent receives
after ending up in s′. S0 ⊆ S defines the set of starting states. The discount factor
γ ∈ [0, 1) balances the weighting between present and future rewards.

10 Chapter 2 Reinforcement learning — a paradigm of human inspired artificial
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The interaction of the agent with its environment is — in most cases — realized
through a sequence of discrete steps as illustrated in Figure 2.1. At every discrete
time step t, the agent is in a state st ∈ S, in which it applies an action at ∈ A(st).
The action induces the transition to the next state st+1 with probability p(st+1|st, at),
were the agent receives a reward rt ∈ R.

Agent

Environment

Action at = π(st)

rt

st+1

Reward rt−1State st

Fig. 2.1.: Schematic visualization of reinforcement learning as described in [25]

Maximizing the reward In reinforcement learning, the agent tends to maximize the
reward over time. So, if the agent has to learn to solve a specific problem, it has to
be formulated entirely in terms of the reward signal. This formulation of tasks in
terms of a reward signal is one of the features which defines this class of machine
learning algorithms inspired by the behaviour of humans and animals. Nevertheless
the correct formulation of a task in terms of the reward is an important factor of
the learning success. It is important to keep in mind that the reward signal should
always define what the agent should achieve and not how it has to be achieved. An
example would be to reward the agent for winning a game of chess rather than for
specific intermediate configurations of the chess-pieces. As a consequence, rewards
may be sparse as many actions of the agent may not be rewarded at all.

To maximize the reward over time, the agent has to adapt its strategy for interacting
with the environment, i.e. the decisions which actions to choose in which situations.
This is realized through the agent’s policy π : S ×A → [0, 1]. The policy π(at|st) is a
function which maps a state st at time-step t to the probability of selecting a specific
action at. Reinforcement learning algorithms are now aiming for the optimal policy
in order to maximize the accumulated discounted future reward

Rt =
T∑
k=0

γkrt+k. (2.1)

Here, T is set to infinity for continuous tasks. When the task is episodic and ends
after a certain terminal step, T is finite.
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2.2 The Bellman equation

The reward signal rt indicates how good it is to be in the current state st. As the
reward rates the state st in the current situation, it does not indicate the advantage
of visiting the current state in the long run. In order to quantify this measurement,
the state value or value function V π(st) is introduced. The state value measures the
expected return Rt the agent is able to achieve by starting in the current state st and
following π afterwards. It thus depends on the current policy and can be learned
through the experience the agent gathers during its exploration of the environment.
For Markov decision processes, V π can be formulated as

V π(s) ≡ Eπ [Rt | st = s, π] . (2.2)

Here, Eπ denotes the expected value of a random variable under the condition that
the agent follows the policy π.

From (2.2) an important recursive relation can be derived. After explicitly writing
the expected reward and taking the first term out of the sum, the first time-step st
can be written in terms of probabilities.

V π(s) = Eπ
[
T∑
k=0

γkrt+k

∣∣∣∣ st = s, π

]

= Eπ
[
rt + γ

T∑
k=0

γkrt+1+k

∣∣∣∣ st = s, π

]

=
∑
a∈As

π(a|s)
∑
s′,r

p(s′, r|s, a)

r + γ Eπ
[
T∑
k=0

γkrt+1+k

∣∣∣∣ st+1 = s′, π

]
︸ ︷︷ ︸

V π(s′)


=

∑
a∈As

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γV π(s′)

]
(2.3)

In (2.3) the value function for the next step Vπ(s′) can be inserted. This formula,
called the Bellman equation [49], is able to look ahead to the next successor states
by weighting the value function for the next step with the probabilities of the triple
(a, r, s′). If (2.3) is rewritten in the form

V π(s) =
∑
a∈As

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γV π(s′)

]
=

∑
a∈As

π(a|s)
[∑
r

r · p(r|s, a) + γ
∑
s′

p(s′|s, a)V π(s′)
]
, (2.4)
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it can be seen that the value function is the sum over the expected reward r for
ending up in the next state s′ plus the reward which is expected in the future.

The action-state value Similar to the value function V π one can define the state-
action value1 Qπ(s, a). It has the interpretation of the discounted future reward,
expected from following the current policy π after taking a single freely choosable
(and possibly suboptimal) action at from state st at time-step t. The action-value
function is connected to the state-value function through

V π(s) =
∑
a

π(a|s)Qπ(s, a)

and can be seen as a more informative form of V π that measures the advantage
of choosing action a while being in state s. It is also possible to again formulate a
Bellman equation for Qπ(s, a) which is given by

Qπ(s, a) = Eπ
[
T∑

0=k
γkrt+k

∣∣∣∣ st = s, at = a, π

]
=

∑
s′,r′

p(s′, r′|s, a)
[
r′ + γV π(s′)

]
=

∑
s′,r′

p(s′, r′|s, a)
[
r′ + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
]
. (2.5)

2.3 Optimal value functions

The goal in reinforcement learning problems is to find a policy that leads to the
highest possible accumulated reward. This policy is called the optimal policy π?.
As seen in Section 2.2, there exists a relation between the used policy π and the
corresponding state value V π. For finite Markov decision processes it is possible
to derive some useful statements2 so that the optimal policy can (in principle) be
calculated analytically.

1Alternative terms for the state-action value are action-value or Q-value.
2As (2.5) shows, is Qπ implicitly included in V π. Thus, all statements that are true for V π are also

true for Qπ.
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The optimal action-state value function If the target policy π is deterministic, one
can replace

∑
a′
π(a′|s′) in (2.5) by a deterministic target policy η : S → A to avoid

inner expectation:

Qη(s) =
∑
s′,r′

p(s′, r′|s, a)
[
r′ + γQη(s′, µ(s′))

]

As the expectation of the next action is depending only on the environment, it is
possible to learn Qη off-policy by using state transitions that are generated from a
different stochastic behaviour policy than π. A commonly used choice for η is the
greedy policy

η(s) = argmax
a∈A(S)

Q(s, a), (2.6)

that finally specifies the Bellman optimality equation

Q?(s) =
∑
s′,r′

p(s′, r′|s, a)
[
r′ + γ max

a′∈A(S)
Q?(s′, a′)

]
(2.7)

as presented in [50].

The optimal state value function As the state value can be computed by using the
Bellman-Equation (2.3), the optimal state value can be computed through the same
iterative principle with the help of the Bellman optimality equation [49].

The optimal state value represents the expected return for the best choice of actions.
It leads to the relation

V ?(s) = max
a∈A(S)

Q?(s, a).

With the help of (2.5) this can be rewritten into the Bellman optimality equation

V ?(s) = maxa∈A(S)
∑
s′,r′

p(s′, r′|s, a) [r′ + γV ?(s′)] .

Finding the optimal policy The computation of V π leads to a partial ordering of
the policies π. In this ordering one policy π′ is only equal or better than the policy π
if their respective value functions are behaving in the same manner, i.e.

π′ ≥ π ⇔ V π′(s) ≥ V π(s) ∀s ∈ S.
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Although there can be more than one policy π? that is optimal as there always exists
a π? which is equal or better than the actual optimal policy, all these policies share
the same optimal state-value

V ?(s) = max
π

V π(s) ∀s ∈ S

and hence the same optimal action-value

Q?(s, a) = max
π

Qπ(s, a) ∀s ∈ S, a ∈ A(S).

Consequently, if V ?(s) is known, an optimal policy is given by choosing the action a
which induces the transition into the state s′ with the highest possible state-value
function V ?(s′). If Q?(s, a) is known, an optimal policy is given by choosing the
action a according to the greedy policy (2.6).

2.4 Q-learning using linear function approximators

For finite Markov decision processes, the Bellmann optimality equation has a unique
solution which is also policy independent and leads to a set of non-linear equations
with one equation for each state s. If the Markov property is given for the system
and all dynamics of the environment are known, the optimal value function can be
computed. In order to compute the solution, one has to do a forward search which
includes all possible events with their probabilities of occurrence plus their expected
reward. However, the expected reward is often precluded by the lack of sufficient
computational power for environments with lots of states. To overcome this difficulty,
most of the reinforcement learning algorithms approximate the Bellman optimality
equation which, nevertheless, leads to remarkable results.

One important breakthrough in reinforcement learning was the development of the
Q-learning algorithm by Watkins in his dissertation nearly thirty years ago [51].
As the name Q-learning already emphasizes, it is an algorithm that adapts to
approximate the action-state value in a fully incremental fashion. Therefore, at every
time-step t, the agent uses the tuple (st, at, rt, st+1) in order to update the Q-values
on-line3. Additionally, Q-learning is an off policy method4, directly approximating
the optimal action-value function Q? independently of the current active policy.

3If the learning step is expected only at a certain number of time-steps, for example at the end of a
learning episode, the algorithm is called an off-line learning method.

4This is caused by the fact, that the greedy policy η, defined in (2.6), is used as the policy for selecting
the next action within the Bellman optimality equation (2.7).
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If the dimension of the state space is huge, which is the case in most complicated
learning scenarios, a common approach is to approximate Q(s, a) by using a linear
function

Q(s, a,w) = wᵀ ·Φ(s, a) (2.8)

with a weight vector w ∈ Rn and a function Φ(s, a) ∈ Rn of lower dimensional
features that represents the state-action pair (s, a). The optimal state-action value
can then be approximated by iteratively minimizing the mean-squared Bellman
error

Lt(wt) = E
[
(rt + γ ·max

a
Q(st+1, a;wt)−Q(st, at;wt))2

]
. (2.9)

By differentiating the Bellman error with respect to the weights, the resulting
gradient is given by

∇wtLt(wt) = E
[
rt + γ · max

a∈A(st+1)
Q(st+1, a;wt)−Q(st, at;wt)

]
·

∇wtQ(st, at;wt). (2.10)

If the state is approximated using a linear function approximator as shown in (2.8),
the derivative ∇wtQ(st, at;wt) is given as

∇wtQ(st, at;wt) = Φ(st, at). (2.11)

By inserting (2.11) in (2.10), a general gradient descent update for the weights w
at time step t+ 1 can be derived:

wt = wt + αt
[
rt + γ ·max

a
Q(st+1, a;wt)−Q(st, at;wt)

]
·Φ(st, at)

The state-action value Q(s, a) can now be updated iteratively, while the update size
is determined by a (typically decreasing) learning rate αt ∈ [0, 1].

ε-greedy Q-learning: exploration vs. exploitation In order to ensure the collection
of the maximal reward, the agent should follow the greedy policy (2.6) as it chooses
the action at each time step which maximizes the current state-action value. While
this deterministic policy is a good choice in the late stages of learning, it can
undermine the learning process at the beginning as many potentially good states
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might not be visited due to the initialization of the Q-values. In order to nevertheless
provide an overarching exploration that is potentially suboptimal according to the
greedy policy η introduced in (2.6), a scalar exploration factor ε ∈ [0, 1] is introduced.
During learning, it forces the agent to select a random action with a probability ε.

Eligibility traces for Q-learning One problem with the presented version of Q-
learning is that the Q-value is updated only based on the information of the current
step. Thus, learning could be improved by also taking the information of previously
visited states into account which can be achieved by employing eligibility traces
[50]. They can be seen as an implementation of a short-term memory into the
learning algorithm that fades away according to a decay-factor λ ∈ R within the
range λ ∈ [0, 1]. During learning, an eligibility trace et ∈ Rn is generated by
accumulating the decayed variation of the action-state value with respect to the
weights from previous steps, until a random action is taken or the episode terminates.
This variation is given by the derivative ∇wQ(st, at;w). For Q-Learning with linear
function approximation it thus directly corresponds to the feature vector Φ(st, at)
according to (2.11).

A pseudocode for “linear greedy Q-learning with eligibility traces” can be found in
Algorithm 4 in Appendix A.

2.4.1 Approximating the state-action space for a set of discrete
actions

To approximate the state-action value Q(s, a), the used feature vector must be able
to represent not only the state s, but a state-action pair (s, a). For a set of discrete
actions A, one option is to expand the utilized state representation φ(s) to

Φ(s, a) =
[
φ1(s), . . . ,φa(s), . . . ,φ|A|(s)

]ᵀ
(2.12)

with dim(Φ(s, a)) = |A| · dim(φ(s)) and |A|, the total number of actions in A.

This approach, proposed by Lagoudakis and Parr [52], creates a sequence of feature
vectors according to the number of possible actions |A|.

After choosing action a ∈ A(s), the entries φα(s) of Φ(s, a) are created according
to

φα(s) =
{
φ(s) α = a

0 otherwise
, a ∈ A
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by flipping all feature vectors Φα(s) to 0, except the one corresponding to action
a.

Therefore, equation (2.12) for state s and action a, which is taken from a set of
actions a = 1, . . . , |A| can be written as

Φ(s, a) = [0, . . . , 0︸ ︷︷ ︸
α=1

, . . . , 0,φ(s)︸ ︷︷ ︸
α=a

, . . . , 0, . . . , 0︸ ︷︷ ︸
α=|A|

]ᵀ.

2.5 Policy gradient methods

Instead of choosing the actions according to a learned state or action-state value, it is
also possible to directly learn a stochastic action policy π(a|s;w) with its own set of
weights w. In order to learn an efficient policy, an appropriate performance measure
has to be designed, which has then to be maximized. This performance measure
can be defined for episodic problems as the “true” state value for the current policy
π(a|s;w), specified by the weights w, that is given within the starting state s0 of the
current episode

L(w) = V πw(s0).

Now, one important question is how to appropriately change the parameters of the
approximated policy in a way that improves it. This is a problem that is not easily
solved, as the effects of the policy on the environment are not only depending on the
chosen action, but also on the environment’s generally unknown state distribution.
At this point, the policy gradient theorem [53] offers a way out of this dilemma even
when general differentiable function approximators are used. It provides a version
of policy iteration that guarantees to converge to a local optimal policy. For episodic
scenarios the gradient of the performance measure L is then given as

∇wL(w) ∝ Eπ
[∑
a∈A

Qπ(st, a)∇π(a|st;w)
]
. (2.13)

The gradient can now be used in order to formulate an update algorithm for the
weights of the policy

wt+1 = wt + αt ·
∑
a∈A

Q(st, a,wQ)∇ log(π(at|st;wt)),
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where αt defines the learning rate. Although this update method is efficient, the
state-action value Q(st, a,wQ) has to be learned using its own set of weights. As an
additional drawback, all possible actions a are involved in the update process.

Actor-critic models One class of methods that is based on the policy gradient
theorem and is used in many early attempts of reinforcement learning is called
actor-critic methods. First presented in [54] and more extensively studied in [55], an
actor-critic learner, illustrated in Figure 2.2, is directly updating its actor through
learning a stochastic action policy with its own set of weights π(s, a;w). In addition,
the executed actions are rated by an additional critic like the estimated V - or Q-value
that are learned independently from the policy5.

Actor

Critic

Environment

Action at

Reward rtState st

st+1

Error

Fig. 2.2.: Schematic visualization of an actor-critic architecture as described in [25]

5Note that it can only be called an actor critic if the (action-)state value is used for bootstrapping, i.e.
it is updated from the estimates of subsequent states.
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2.5.1 The REINFORCE algorithm

While the last section has used the policy gradient theorem to derive a method that
involves all possible actions for updating the weights of the to-be-learned stochastic
action-policy π(a|s;w), this section presents a variant that depends only on the
action at that is taken at time-step t. Therefore, (2.13) is rewritten as

∇wL(w) ∝ Eπ
[∑
a∈A

π(a|st;w)Qπ(st, a)∇π(a|st;w)
π(a|st;w)

]
.

In a next step, the resulting expectation term
∑
a∈A π(a|st;w) is replaced by intro-

ducing the sampled expected action at, resulting in

∇wL(w) ∝ Eπ
[
Qπ(st, at)

∇π(at|st;w)
π(at|st;w)

]
.

Now, the Bellman-equation for the Q-value (2.5) and (2.1) can be used to replace
the state-action value Qπ(st, at) = Eπ [Rt|st, at].

The resulting equation

∇wL(w) ∝ Eπ
[
Qπ(st, at)

∇wπ(at|st;w)
π(at|st;w)

]
= Eπ

[
Rt ·
∇wπ(at|st;w)
π(at|st;w)

]

now depends only on the policy π, the action at that is actually taken in this time-step
and the total reward Rt, leading to the REINFORCE6 update rule [56, 57]

wt+1 = wt + αt · [Rt − b(st;wb)]
∇wπ(at|st;w)
π(at|st;w) . (2.14)

It increments the weights proportionally to the gained reward in the direction of
the gradient of the policy when at is executed. The update is then divided by
the policy in order to correct the oversampling of actions that are preferred by π.
In order to reduce the variance, a suitable baseline bt is additionally subtracted
from the accumulated reward Rt. As the baseline tries to approximate the total
accumulated reward, it is common to use the state value function, i.e. bt ≈ V π

t (st).
Doing this, (Rt − bt) can be interpreted as an estimate of the advantage function
Aπ(st, at) = Qπ(st, at) − V π(st) which indicates how beneficial it is to take the

6The acronym REINFORCE is a representation for “REward Increment = Nonnegative Factor × Offset
Reinforcement × Characteristic Eligibility”.
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action at for solving the given task with respect to the expected outcome. Using
REINFORCE to modify the policy π, while also using an approximated state-value
V̂ (st,w′) as the baseline bt can thus be seen as an actor-critic method.

The REINFORCE update can not only be used for action policies but for any kind
of continuous and differentiable function f . A general rule for updating the corre-
sponding weights w of the network is given by

∆w = αt · [Rt − b(st;wb)] ζ(st;w). (2.15)

In (2.15), ζ is called the characteristic eligibility. It is defined as

ζ(st;w) = ∇wf(st;w)
f(st;w)

= ∇w log f(st;w) (2.16)

where f(st;w) determines the approximated kind of policy as a function of its
input st and its weight parameters w. For a differentiable parametrization of the
action-policy π(st,w), ζ becomes again

ζπ = ∇w log π(st,w).

Additionally it is also possible to develop learning algorithms for an output that is
determined via stochastic distributions which might depend on multiple parameters,
like an adaptable Gaussian with the mean µ and the standard deviation σ. Instead
of directly modeling the Gaussian by updating its corresponding weights wµ and
wσ, µ and σ themselves can be treated as the adaptable parameters of the Gaussian
N (x;µ, σ).

Using this simplification, the characteristic eligibility for µ is given by

ζµ = ∂ logN (x;µ, σ)
∂µ

= x− µ
σ2 , (2.17)

where x is the corresponding value, sampled from the Gaussian distribution N .
Analogously, the characteristic eligibility for σ is

ζσ = ∂ logN (x;µ, σ)
∂σ

= (x− µ)2 − σ2

σ3 . (2.18)
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2.6 Going deeper with neural networks

One drawback of using a linear function for approximating the (action-)state value is
that the type of function representing the state of the environment has to be chosen
very carefully to achieve a good learning performance. The difficulty of finding a
reasonable representation increases with the complexity of the given state space.
A way out of this dilemma is to replace the linear function with a non-linear one
like a neural network7. Neural networks are built out of “artificial neurons” that are
organized in layers as illustrated in Figure 2.3. They are modeled as continuous
functions

fj(x) =
∑
i

xiwji + bj

that compute the scalar product of the input vector x with their corresponding
row wj of the layer’s adaptable weight matrix which is then added to a small fixed
scalar-valued bias bj . By stacking multiple layers together, arbitrary functions can be
approximated.

Input x1

Input x2

Input x3

Input x4

Output y

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Fig. 2.3.: A simple illustration of a neural network with a four dimensional input vector x,
two hidden layers and a scalar output y

Activation functions The non-linearity is integrated via the additional processing
of each layer through an activation function σ(x), i.e. σ (f(x)). While in the early
days of neural networks, S-shaped activation functions like the sigmoid unit

σ(x) = 1
1 + e−x

, (2.19)

7For a comprehensive introduction to “neural networks” and “deep learning” see for example [58].
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or the tanh

σ(x) = ex − e−x

ex + e−x
, (2.20)

were the most popular ones, rectified non-linearities [59] like the rectified linear unit
(ReLU) [60]

σ(x) = max(0, x) (2.21)

are nowadays present in nearly all neural network architectures (see Figure 2.4).

−1

−0.5

0

0.5

1

−2.5 0 2.5

sigmoid

−2.5 0 2.5

tanh

−1 0 1

ReLU

Fig. 2.4.: Illustration of the sigmoid, tanh and ReLU activation function.

Each neuron j of the lth layer can thus be computed via

f lj(f l−1) = σ

(∑
i

f l−1
i wlji + blj

)
,

while f l−1
i specifies the ith neuron of the previous layer.

Adjusting the weights Neural networks create their output-vector y by propagating
the information of the input vector x forward through the layers. To adjust the
weights w, the input data x and the corresponding desired network output in form
of a target vector yT are used to compute a scalar-valued error function L(x,yT ;w).
Optimization algorithms like stochastic gradient descend (with Nesterov momentum
[61–63]) or extended algorithms with adaptive learning rates such as AdaGrad
[64], AdaDelta [65], RMSProp [66] and Adam [67] are then utilized to perform the
weight update. These methods are first generating mini-batches (x(b),y

(b)
T ) ∈ B by

randomly sampling from the available training-data. In order to update the weights
w, the information of the gradients ∇wL(x(b),y

(b)
T ;w) are exploited which can be

computed via back-propagation [68].
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Deep neural networks While a very simple neural network8 can be built out of an
input layer, one hidden layer and one output layer, many more complex configurations
are possible. Although it is in general possible to approximate any kind of function
to an arbitrary accuracy with shallow neural networks using just one sufficiently
large layer with sigmoid units as non-linear activation functions [70], it is much
more efficient to represent complex functions by stacking multiple small layers in
order to create a hierarchical composition of low-level abstractions. This leads to the
concept of deep neural networks [71, 72], describing neural networks that are built
out of more than 2 hidden layers. Additionally to the enormous increase of available
computation power and size of available datasets, newly invented techniques like
dropout [73], batch normalization [74] or the ReLU, combined with concepts like
convolutional neural networks [75] have led to the undeniable success and lasting
popularity of deep neural networks as a universal tool for solving various complex
machine learning problems.

Recurrent neural networks Introduced in [68], recurrent neural networks (RNN)
are specialized in the processing of sequential data like time-series or sentences.
Therefore, simple RNNs are exploiting one hidden state h(t) for storing and combin-
ing the relevant features of the past data of the current sequence by reusing it. The
recurrent equation for computing h(t) is therefore given by

h(t) = g
(
h(t−1),x(t);w

)
,

with some mapping function g and the input data of the sequence at position t given
as x(t). As simple RNNs have problems dealing with long sequences and storing
long-term dependencies, more refined recurrent architectures were developed. One
of them is the long short-term memory [76], proposing a refined controlling of the
inner loop of the hidden state h(t) by introducing additional hidden units that are
gating the flow of information. As the size and computation time of the LSTM
increased significantly compared to a simple RNN with one hidden state, gated
recurrent units (GRU) [77, 78] were designed. GRUs change or omit pieces of the
LSTM architecture in order to speed up the computation time while trying to hold
the performance. Other recurrent approaches are given by echo state networks [79,
80] or liquid state machines [81] that use fixed weights for mapping from h(t−1) to
h(t) and x(t) to h(t) and learn only the weights for the output.

8The simplest neural network would be one without a hidden layer as Rosenblatt’s single layer
perceptron [69].
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2.6.1 Deep Q-learning

One popular reinforcement learning algorithm that relies on deep neural networks
as a non-linear function approximator for learning the state-action value Q(s, a) is
the deep Q-network (DQN) [7, 33]. The high abstraction capacity of the deep neural
network enables to use, for example the raw visual information of the learning
domain as the sensory input. While the weights of the network can be updated
by employing the gradient (2.10) of the mean-squared Bellman error (2.9) as for
“Q-learning with linear function approximation”, some additional general concepts
have to be presented in order to achieve satisfactory learning results.

Experience replay To reduce unwanted temporal correlations of the gathered
training data and stabilize the algorithm, the experience replay buffer is introduced.
Following the very first idea of a replay buffer that was proposed by Lin [82],
the experienced transitions (st, at, rt, st+1) are stored. At each step, experience is
sampled from the buffer which is then utilized to train the network weights via
mini-batch gradient descent. Following the crucial importance of this concept for
designing a functioning learning algorithm, different variants were developed over
time such as “prioritize experience replay” [83, 84] or “experience replay with
adaptable memory size” [85].

Target network The second important concept minimizes divergence and oscilla-
tions within the updates by generating the target Q-values using an older set of
weights w−. These weights are updated only within a predefined interval and are
thus delaying the adaption of the Q-values that are used for learning. The gradient
of the mean-squared Bellman error is then given by

∇wtLt(wt) = E
[
rt + γ · max

a∈A(st+1)
Q(st+1, a;w−t )−Q(st, at;wt)

]
·

∇wtQ(st, at;wt).

A pseudocode for training the DQN can be found in Algorithm 5 in Appendix A.

2.6.2 Asynchronous models

It is quite safe to assume that the presentation of the deep Q-network by Mnih et
al. [7, 33] was a milestone within the field of deep learning. The demonstration of
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a reinforcement leaner that used a deep neural network as a non-linear function
approximator in order to learn to play a battery of ATARI arcade games while always
relying on the same hyperparameters and only the raw visual image of the game
scene as an input has inspired many subsequent contributions within the field.
Despite the impressive results, the approach highlighted common and to this day
unsolved problems. One problem is that millions of training-steps are required in
order to achieve the presented results, while the actual computations are heavily
relying on GPUs in order to make the computation time tolerable. In the following
years, the framework of the DQN was continuously bolstered up using various ideas
like double Q-learning [86, 87] or the dueling architecture [88]. Many of these ideas
were then eventually combined into one efficient rainbow architecture [89]. Another
approach that was studied intensively was to exploit learning models that are using
parallelized architectures. This method relies on multiple distributed learners in
order to solve a single-agent problem [90, 91].

Gorila One parallelized architecture, named Gorila (General Reinforcement Learn-
ing Architecture), was presented by Nair et al. [91]. It employs multiple DQN-
processes that all have agents interacting within their own copy of the environment
while sharing their gradient with a parameter server. The server updates a master
network and then distributes its new weights to the processes. By using 100 pro-
cesses and 30 parameter servers, the Gorila architecture outperformed the original
approach on a significant level.

The asynchronous advantage actor-critic model While the Gorila model needs a
massive amount of computation power, Mnih et al. presented an architecture that
is also able to outperform the vanilla Deep Q-Network while using only a single
computing machine with a standard multi-core CPU [92]. They introduced a
network architecture that does not exploit the off-policy Q-Learning algorithm but
relies on on-policy actor-critic methods. The key idea of this asynchronous advantage
actor-critic model (A3C) is again to use multiple, independent (actor-critic) workers
(see Figure 2.5) that all are exploring their own copy of the domain in parallel. For
training, they independently compute their own gradient, which is then used to
asynchronously update a master-network, for example by applying the REINFORCE
update rule (2.14). This asynchronous update disentangles the gathered training
data and enables a stable learning process. The workers then update themselves
after a fixed number of episodes, receiving a copy of the master-network’s weights.

A pseudocode for training the A3C can be found in Algorithm 6 in Appendix A.
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Master-network

WorkerWorker Worker

Fig. 2.5.: The basic structure of an asynchronous model. The key idea of this model is to
use multiple independent workers that are all exploring their own copy of the
domain in parallel. For training, they all compute their own gradient which is
then used to asynchronously update a master-network.

2.7 Summary

In this section, some basic concepts of reinforcement learning were presented,
together with the algorithms that are employed throughout this thesis. After giving
an introduction into the general methodology of reinforcement learning, the Bellman
(optimality) equation was shown for the state and action-state value. Using this
information, the “Q-Learning” algorithm was derived for the case when the Q-value
is approximated using a linear function for representing the sensory input which
is received by the agent. As it is not only possible to create an efficient learning
algorithm via learning the state or state-action value, the “policy gradient theorem”
and the REINFORCE algorithm were put forward. They can be used to develop an
iterative algorithm for directly learning the agents policy.

The approaches were then extended to the field of non-linear function approximators.
Therefore, artificial neural networks were introduced, together with necessary
methods that allow their efficient use as non-linear function approximators.

The next step This chapter has presented the necessary tools for understanding the
designed learning models that are utilized throughout this thesis. The next chapter
is now introducing the concept of scaffolding in machine learning that is exploited as
the inspirational corner stone of all applications that will be described in the next
part of this work.
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The guiding principle of
scaffolding

3
Human learning has always been an inspiration for machine learning. Only recently,
machine learning has been able to reach (and sometimes surpass) learned human
skills [7, 31]. However, the employed methods are in stark contrast to how humans
learn and current machine learning can so far in no way compete with the flexibility
of human learning. This has motivated many researchers to study how machine
learning might benefit from a better understanding of how humans learn. One
particularly interesting phenomenon related to human learning is their ability to
teach. While the learning process of specific skills like playing an instrument or
learning a foreign language might be very difficult to figure out by oneself, a skillful
teacher is able to guide the learner and in doing so enables or improves the learning
of a particular competence. In this regard, the modality of teaching can significantly
influence the quality and speed of a novice’s learning [93]. A skillful teacher is able
to provide adaptable guidance in learning tasks that would usually be beyond the
learner’s own capabilities or to speed up and refine the learning of already partially
mastered problems. This observation opened up a new field of research that can
be dated back to the ancient Greek. At this time, philosophers like Aristotle and
Plato conducted research in the field of education and for that matter the nature of
teaching and learning. Later in the 1860s, “educational psychology” was founded by
Johann Friedrich Herbart to study the art of teaching.

The art of teachingmachines Studying the “art of teaching humans” by educational
psychologists had a striving impact on modern human culture. Their inventions are
shaping the educational system of schools and universities, improving the transfer of
knowledge to the next generation in order to bring humanity forward. Over the past
years, artificial intelligence has been getting more and more involved in human life,
making it easier by knowing our daily routines, taste in music or enabling interaction
with machines via voice or gestures. This and much more is only possible through
learning. As a consequence, it is no longer only essential to explore how humans
can be educated efficiently, but it is also important to study the “art of teaching
machines”.
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The root of inspiration for many approaches within the fields of machine learning
and artificial intelligence can be found in areas of research that are related to
neurosciences1 such as biology or psychology [5]. A particular example is given
by the impact of the psychological Gestalt theory [94, 95] on the field of computer
vision. The resulting laws of visual reconstruction that are explaining various
perceptual phenomena were translated to the field of artificial intelligence in order
to bring forward the research on perceptive systems. It did not only lead to efficient
algorithms. Recent results also suggest that neural networks that are trained with
natural images indeed exhibit the “law of closure” Gestalt phenomenon [96]. Other
research has shown that it is possible to expose hidden computational properties of
deep neural networks by exploiting tools from cognitive psychology. [97]

Organizing learning on a meta-level The above examples have shown that espe-
cially psychology has a huge potential of providing concepts that are able to be
ported and to advance the field of artificial intelligence. Another concept from
psychology that is not only intensively studied for humans but also for artificial
agents is called meta-learning [98–100]. It circles around one central question:

How can meta-knowledge, i.e. the knowledge about learning, be
efficiently exploited in order to improve the performance of the learning
process of humans?

There are many different views regarding the exact meaning of the term meta-
learning in the field of machine learning [101]. Consequently, it is interpreted in
different ways in literature and therefore led to various different approaches. Mostly,
however, it is connected with research where artificial agents are learning to learn
by adapting their learning processes based on acquired meta-knowledge.

Instead of imposing the task of meta-learning on the artificial agent, this work
proposes to exploit the collected meta-knowledge about machine learning and embed
it into generic concepts in machine learning that are organizing learning on a
meta-level as it is done for human learners by using concepts from educational
psychology. In particular, this thesis aims to analyse the potential of one popular
theory developed by educational psychologists. It systematizes a number of empirical
observations that are showing evidence of positively influencing the learning process
when facing novel or challenging tasks. A central role is played by the concept
of providing a temporary support that is tailored to the individual needs of the

1The term neuroscience covers all fields of study that investigate the neural processes within the
brains of humans and animals. In order to achieve that goal, the knowledge and methods from
various fields like biology, psychology, physics, etc. are combined.
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learner. The idea of diagnosing available capabilities of the learner mixed with other
concepts as simplification, demonstration and structuring are building the basis for
the theory called scaffolding [17–20].

Outline Many of the theory’s core ideas— which are explained in detail in the
following sections — can already be related to approaches that were successfully
integrated in the learning process of artificial agents (see the following Section 3.4).
This makes scaffolding a promising candidate for not only shaping human learning
but also the learning of machines in a beneficial way. The goal of this chapter
is therefore to propose scaffolding as a general guiding principle that exploits
available meta-knowledge from the field of machine learning for developing
approaches that are able to improve and accelerate the learning process of
artificial agents.

To reach this goal, the possibilities and limits when transitioning from the “art of
teaching humans” to the “art of teaching machines” have to be analyzed. In order
to study this process for the theory of scaffolding, a basic understanding of its key
characteristics is essential. The next Section 3.1 therefore covers a comprehensive
summary of the concept in educational psychology. As an intermediate step, the
employment of tools for scaffolding human learners is discussed (see Section 3.2),
finally opening up the path for elucidating the improvement of machine learning
methods by artificial scaffolding. On the one hand, it is demonstrated that many
approaches are already partly utilizing features that are connected to scaffolding.
On the other hand, the inevitable limitations that have to be faced when trying to
transfer the concept to machine learning are highlighted. The essential concepts
and propositions are then taken as the point of departure for compiling a refined
definition of scaffolding as a principle for facilitating the learning of an artificial
intelligence on a meta-level that uses the emerging key-aspects as a computational
skeleton for a possible research agenda. In the end, the invented principle is used
for proposing four new scaffolding approaches that are then presented, analysed
and discussed throughout the remaining part of this thesis.

Definitions This chapter deals with human learners, as well as with artificial agents
that are capable of acquiring new skills. In the following, the human student that
performs the process is called the learner or novice. The artificial learner is called
the agent. Furthermore, when the verb scaffolding is used in this work, the object
which is scaffolded is always the learning process, i.e. the learning itself. Scaffolding
the learner thus means to apply scaffolding techniques to its learning process.
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3.1 The concept of scaffolding in educational
psychology

During the time when educational psychology was growing to a highly studied
field of research, two problems arose. The first one addressed the question how
to correctly assess the abilities of children. The second issue dispatches the query
for a way to evaluate the efficacy of developed instructional practices. As one
solution to cope with these two issues, Vygotsky introduced the “zone of proximal
development” [102, 103], illustrated in Figure 3.1. It describes the distance between
the developmental level of an unguided learner for solving a specific problem and
the possible level that can be reached through the guidance of an expert or the
collaboration with more versed peers. In addition, it can also be seen as the ability
of a learner to unconsciously recognize the value of encountered assisting props
before consciously evaluating their significance for the task [103].

Learner is not able to learn
even with external guidance

Zone of proximal
development

Learner’s current
capability

Fig. 3.1.: Illustration of the zone of proximal development. The zone is placed in-between
the space of the learner’s current skills and the zone of skills that the learner is
not even able to learn through an external teacher.

An important concept that grew out of Vygotsky’s work was scaffolding2 [17–20],
illustrated in Figure 3.2. The support provided by scaffolding reduces the learner’s
cognitive load, which allows performing parts of tasks that he or she usually would
not be capable of [106].

2The term scaffolding was defined by Wood et al. [104]. Later Bruner claimed that the origin of this
concept lies within the “zone of proximal development” [105].
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Fig. 3.2.: A simple illustration of the concept of scaffolding. Over time, the teacher’s support
is fading, while the responsibility of the task is also gradually transferred to the
learner.

3.1.1 Learning how to ride a bicycle: an example for scaffolded
learning

Nowadays, the metaphor of scaffolding is often used in a very broad sense [107],
for example as a synonym of support [108], and is thus removed from its original
theoretical context [109, 110]. The original concept of scaffolding consists of a
set of specific, but not yet standardized characteristics. The key characteristics
of scaffolding are stated in [19] as “contingency”, “fading” and the “transfer of
responsibility”. The key aspect “contingency” refers to responsive and adjusted
support that is tailored to the current capabilities of the learner in order to reduce
the amount of frustration he or she receives during the learning process [19, 111,
112]. As this term comprises many different techniques, it is possible to fan out
the feature of contingency to three sub-features that are given as “modelling and
demonstration”, “simplification” and “ongoing diagnosis and assessment”. Hence,
it is possible to associate scaffolding with five common features [20] that are
summarized in Figure 3.3. By scaffolding the learning process of riding a bicycle
as an example, the general concept of scaffolding and its five key aspects are now
discussed in detail.
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The five key aspects of scaffolding:

• Recruiting and maintaining the learner’s attention towards a goal

• Simplifying the task

• Ongoing diagnosis and assessment

• Modelling and demonstration

• Fading support and eventual transfer of responsibility

Fig. 3.3.: A listing of the five key aspects of scaffolding.

Recruiting and maintaining the learner’s attention towards a goal When a new
problem is faced by a learner, an essential element of productive learning is
his or her motivation and willingness to learn. For initializing such a fruitful
learning process, the teacher has to recruit and then maintain the learner’s
attention towards a goal. A shared understanding of the learning goal has to
be developed in order to raise the learner’s interest and motivation to learn.
The goal should be clearly formulated, while the benefits of reaching it should
be explained in a way that motivates the learner to achieve them. With respect
to the given example of riding a bicycle, the teacher might explain the new
possibilities that come with the ability to ride a bike. This could be the option
to travel faster, the sheer fun of riding a bike or also the possibility to go on
bicycle tours with friends. During the whole learning process, the teacher
would then occasionally remind the learner of the learning goal and why it
is worthwhile to achieve it in order to maintain the direction of learning and
control possible upcoming frustration during the process.

Simplifying the task For many problems, it might not be beneficial to start with
the corresponding learning process immediately. According to the theory of
scaffolding, it is better to learn a simpler version of the task first. This can for
example either be done by reducing the main problem’s degrees of freedom
or by splitting it into suitable sub-problems or. Simplifying the task can also
be combined with directing the attention of the learner (introduced in the
previous paragraph) by focusing the learner’s attention on relevant features
or characteristics of the learning task [107]. This can help to reduce the
degrees of freedom of a complex problem. When riding a bicycle, the novice
has to maintain his or her balance while pedalling. By temporarily providing
training wheels, the complexity of this process can be reduced. In addition, the
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learner’s attention should be focused on maintaining his or her balance while
pedaling at a steady pace. The learner should drive short and easy routes with
the bicycle. Ideally, it should be flat with few curves.

Modelling and demonstration The teacher demonstrates the aspired skill or par-
ticular sub-skills and explains useful hints for enabling imitation. Possible
ways to integrate this into the learning process would be the demonstration
of riding a bicycle and the theoretical explanation how to do it, together with
some useful tips regarding speed control and manoeuvrability. The teacher
might also ride alongside or behind the novice to provide him with permanent
verbal support. In addition, one could support the novice by exemplifying the
functionality from a simplified technical perspective. In this way, the novice
might be able to build an internal model of the vehicle that leads to a better
understanding how to ride it.

Ongoing diagnosis and assessment During learning, the teacher has to perma-
nently assess the learner’s current level of skill. By diagnosing the learner’s
competence at the present time, the teacher should be able to align the diffi-
culty of the learning sessions to the learner’s current capabilities. In a next step
of learning how to ride a bicycle, the routes might thus include more curves
or become uneven in certain parts. In this way upcoming difficulties can be
analysed and tackled, like problems to control the bicycle in certain situations.

Fading support and eventual transfer of responsibility If the skill level of the
novice has reached a certain threshold, the simplification can be gradually
reduced, leading to a fading of the provided support and the transfer of
responsibility to the learner. In the given example, this process could be
initialized by omitting the training wheels on an easy route and providing only
temporary support by manually stabilizing the bike by hand when necessary.
The stabilizing phase is then more and more reduced until it is completely
omitted and the learner is able to maintain the balance on his or her own.
The teacher might then start to pedal in front of the novice and thus reduce
the amount of direct support. If the learner is able to fully control the bicycle
without help, the difficulty of the courses can again be raised under ongoing
diagnose and assessment of the learner’s skills until he or she has fully mastered
to control the vehicle in all situations without help.

Conclusion Scaffolding is an interactive process. At every point of learning, the
teacher has to analyse the learners current level of competence or level of motivation
and then determine if the current way of learning is still productive. According to
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these factors, the teacher has to provide tailored support and adjust the learners
attention so that he or she again pursues the goal. The teacher also has to calculate
the best moment to initialize the process of fading out the given support and to
transfer more and more responsibility to the novice.

3.2 Teaching devices: employing computer-based tools
for scaffolding the learning process of humans

When “educational psychology” was founded in the 1860’s, the world’s level of
technology was far away from the one we have today. Neither was electric power
publicly available, nor was the telephone patented. Things that were described in
science fiction novels at that time are now everyday items. Personal computers —
available in many different forms like notebooks, tablets or smartphones — combined
with the internet are available as a platform for social communication and nearly
any kind of information that is publicly available. This has not only changed our way
of living but also of learning. When in the 1980’s the design of computers started to
become more user friendly through the invention of a graphical user interface and the
mouse, many researchers recognized the possible potential of computers as “teaching
tools” that are used alongside or — at least temporarily — replace the human teacher.
However, when switching from the human teacher to a computer program during
parts or even the whole learning process, new challenges like human-computer
interaction had to be faced. The software also had to be designed in a way that was
learner-centered, but also user friendly [113]. One kind of tools that emerged from
this educational innovation is given by “computer-based instructional programs” that
might be additionally augmented with “electronic support tools” such as hyperlinks,
text-boxes or calculators when dealing with mathematics [114, 115]. Another line
is called social computing which extends the collaborative learning activities from
learner-learner interaction with the option of leaner-machine interaction, improving
the learning process and also fostering the collaboration between learners [116].

Even in the early days of computer-based learning tools, the idea to incorporate
scaffolding into the software was presented [117]. Simultaneously, it was realized
that the attempt to combine scaffolding with this new technologies was not straight
forward. It was a challenge to combine the conceptual and methodological design
of the traditional theory [118]. Popular issues that were discussed within literature
are related to the implementation of fading [117], but also the possible violation of
associated key aspects such as ongoing diagnosis or support aligned to the learners
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current capabilities [108]. As a consequence, an evolved notion of scaffolding
was needed. The refined concept had to cope with these limitations when using
different kinds of assistive technologies, but had nevertheless to keep the root
idea of the theory. For artificial teachers like an instructional program, different
design questions had to be addressed than for an open-ended collaborative or a
web-based learning environment. As a consequence, not the whole concept was
implemented but different scaffolding techniques that laid the focus on different key
aspects of the traditional theory [119]. When, for example developing approaches
that should foster the adaptive support of the learner, the implementation of the
traditional scaffolding is now constrained to specific key aspects like on-going
diagnosis, combined with some degree of fading [120, 121]. Other analyzed
scaffolds are placing more emphasis on self-diagnosis without individualized support
or fading [122, 123]. Despite these constrains, scaffolding nevertheless plays an
important role when learning complex topics with the help of computer-based
learning environments. Studies have shown that the absence of scaffolding in
these kinds of learning environments has a strong negative impact on the learning
performance [124–126].

3.2.1 Scaffolding the learning of a foreign language with the help of
a computer-based tool

In order to get a better understanding of the difference between the scaffolding
through a human teacher and a tool, a representative example is analysed within
this section. The chosen class of teaching devices is given by computer-based tools
like software that should support the learner while learning a foreign language.
When utilizing a computer program as a teaching device, a shared understanding of
the problem, focussing the learner’s attention on critical features of the task and also
assistance for completing the task can be easily implemented. The program might
be able to motivate the learner through the presentation of intermediate goals like
having short conversations or being able to read simple texts. During the different
lessons, the appearance of hints can assist the learner to understand and solve the
given task like for example a cloze test.

The general limitation of teaching devices At the same time, tools have problems
to adjust the difficulty of the current learning session to the individual learner.
The different lessons that are provided by the language program are usually built
on specific vocabulary and grammatical understanding. When the learner wants

3.2 Teaching devices: employing computer-based tools for
scaffolding the learning process of humans
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to tackle this lesson, he or she thus has to fulfill exactly these requirements. In
consequence, the difficulty of the lessons is not adapted to the skills of each learner
on a personal scale, but just demands a specific knowledge of the language which is
the same for every learner. In addition, tools are — in most cases — designed to
support one specific aspect of the learning process. Most computer programs for
learning a language are, for example specialized on a specific aspect, such as learning
the vocabulary, the grammar or improving free writing through word processing. As
a possible solution, multiple scaffolding tools could be used for providing different
kinds of help on different levels of difficulty. This, however, leads to the question
how the learner knows at which point he or she needs the specific non-adapting
scaffold. A possible answer is to once again employ a human teacher for monitoring
the learner’s progress and to decide which kinds of scaffolding tools should be
provided and how they have to be used [127].

The problems of fading support Although there exists very little empirical research
studying the effects of “fading” in educational psychology [20], it is seen as one of
the most salient and defining features of correct scaffolding [107]. Fading describes
a temporary support which is gradually reduced within the learning process. It
is argued that leaving out fading within the scaffolding process would reduce it
to a process of “distributed intelligence” or “distributed cognition”, as parts of the
task are just off-loaded onto tools or persons [107, 128]. Especially in the field of
technology-based scaffolding, the implementation of fading is a challenging task. On
the one hand, machines do not yet have the ability to efficiently analyse the learner’s
learning progress at that point that is necessary to determine the starting point for
the fading process. On the other hand, computer programs that are developed in
order to support the learning process are intentionally designed as tools that provide
constant, rather than a temporary support. If a tool is used for scaffolding, its nature
might prevent the integration of fading. When, for example people use software for
learning vocabulary or word processing, it is not in the interest of the learner to stop
using it but to keep relying on the tool’s assistance for maintaining or improving
the learned word pool or the writing skills. Thus, it might be only possible to raise
the challenge for the learner up to a certain point. Having the software stopping
its support and transferring the whole responsibility of learning to the novice might
also not be a feature that was projected by its developer.
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3.3 Scaffolding artificial agents by organizing learning
on a meta-level

The concepts that were introduced in the last sections are all circling around the
central question how meta-learning, i.e the process of exploiting knowledge for
understanding and improving the performance of learning, can be exploited to
facilitate the performance of the learning process of humans. The collective response
was given by proposing scaffolding: A theory that synergizes a battery of techniques —
emerged from meta-knowledge which was gathered in many studies — that together
provide a net of support that greatly enhances the learner’s learning performance.

The transition from scaffolding humans to scaffolding machines In this section,
this knowledge is now employed to organize not human learning but the learning of
machines on a meta-level by establishing ties between the theory of scaffolding and
state of the art methods for refining the learning processing of artificial agents. On
that account, this thesis proposes to apply scaffolding not to a human learner but an
artificial one by utilizing a refined version of the original theory as a principle for
organizing learning. Again, the theory’s five key-features are seen as the fundamental
pillars. The difference is, however, that they now guide the learning process of an
artificial agent instead of a human. This leads to the imperative of taking its five
key aspects that were developed for humans and to reinterpret them for machine
learners. One approach for transferring a concept from the human realm to the
realm of machines is to extract the essential key ideas and techniques in order to
find analogues for machines. The result should be as close as possible to the original
ideas. As artificial learners are in many aspects different from human learners,
this is of course not always possible. In this case, one has to search for alternative
approaches that are different but share as many aspects as possible with the original
one. This can, however, lead to cases where the transferred concept might have an
alternative meaning and purpose.

Outline In summary, the proposed way enables the reinterpretation of scaffolding
humans to a concept with the potential of enhancing the learning of machines.
One drawback is, however, that one has to be careful that the required altering of
specific aspects does not diverge the result too much from the original ideas. In the
worst case the resulting concept might be too different to still be called scaffolding.
While the last sections have introduced the concept of scaffolding the learning
process of human learners not only by a human teacher but also through tools like
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computer programs, this section therefore now addresses the scaffolding of artificial
learners. Although it is an interesting topic to use a human teacher for scaffolding
the learning process — leading to the research field of social guided learning as it
is, for example studied in [129–133] — this work is solely focusing on “tools” for
scaffolding machines, i.e. methods or modules that can be applied without the need
of a human instructor. Following this guideline, many modern approaches in the
field of machine learning can be related to scaffolding. Most of them are, like the
teaching devices, not implementing the full concept, but are designed based on ideas
that are all encapsulated aspects of the theory. As mentioned earlier, there are also
some inevitable limitations that are leading to the need to adapt the full definition
of the concept. In the following text, a selection of approaches is presented that can
be related to at least one of the key aspects (see again Figure 3.3) of scaffolding that
were listed in Section 3.1.

3.3.1 Recruiting and maintaining the learner’s attention

While one of the key aspects of scaffolding is stated as “recruiting and maintaining
the learner’s attention towards a goal”, it might not be a reasonable quality when
augmenting the learning of machines. Human learners need the motivation and
the willingness to learn in order to achieve fruitful results. They are also likely to
wander off from the subject and need to be pushed again into the right direction.
Artificial agents neither need to be recruited nor motivated to learn to solve a
problem. It is also not necessary to direct the agent’s attention to a goal, as it is
— at least in reinforcement learning — completely defined by the reward signal.
Thus, immediately at the beginning of formulating a redefinition of the concept of
scaffolding via its key characteristics, a problem arises as it is not possible to directly
port the given aspect.

Adjusting key aspect’s focus In Section 3.1.1 a second way of exploiting the
learner’s attention for augmenting the learning process was mentioned. Instead of
or in addition to directing the learner’s focus towards a goal, his or her awareness is
guided to important features of a (sub-) task in order to simplify it by, for example
reducing its degrees of freedom. In contrast to the aforementioned way of using
attention, guiding the agent’s attention towards the task-relevant information of the
environment in order to speed up the learning is also an important aspect in machine
learning. A way to achieve this goal is for example to refine the agent’s perception
towards better control and awareness of its surroundings. Based on these statements,
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an adjusted key aspect that lays the focus on supporting the agent’s attention can
be proposed: recruiting and maintaining the agent’s attention through guided
perception.

The perception-action cycle Perception in humans and animals is claimed to be an
exploratory process [134–136]. Both kinds of biological agents are directing their
interactions with the environment in a way that tries to reveal as much sensory
information as possible, while moving the system closer to its current goal state.
This fundamental behaviour of organisms — linking the strive for an efficient “flow
of sensory information” with the simultaneous exploitation of this information for
taking actions that narrow the distance of the system to the goal state — is called
perception-action cycle [137, 138] (see Figure 3.4).

PerceptionAction

Efficient perception facilitated by suitable actions

Choice of good actions facilitated by efficient perception

Fig. 3.4.: The perception-action cycle: It describes the flow of information that is circulating
between an organism and its environment in a closed feedback loop.

Guiding perception in machine learning There is evidence that

“The right choice of actions can augment the perception of the en-
vironment, while an efficient perception facilitates the choice of good
actions in order to solve the given goal.”

is a principle which is also valid for artificial agents [139]. The optimized interplay
between action and perception is able to enhance the agent’s control over the envi-
ronment, i.e. the reduction of uncertainty in the process of gathering information
while acting in the world. This again can greatly enhance the process of exploration.
Depending on the way the agent interacts with the environment and also the type of
sensory information it receives from it, it ends up in sub-categories of perception that
all shape the acquisition process in different ways. In the following, three different
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categories are introduced, together with related approaches. These proposed meth-
ods show that the implementation or guidance of the agent’s perceptual attention
can have a positive influence on the agent’s control over the environment and thus
facilitates the learning process.

Perceptive acting This proposed sub-category summarizes all approaches that are
strengthening the coupling between the agent and the world by reformulating
the options or degrees of freedom that it has at its disposal in order to en-
hance the sampling of meaningful sensory data. These approaches exploit the
knowledge of regularity in the combined space S ×A of sensory information
and actions by narrowing down the space of possible action parameters A to a
subset of actions that leads to the highest amount of meaningful information.

One famous approach that belongs to this category is the free-energy principle
proposed by Friston [140–142]. It is a mathematical formulation that de-
scribes how well biological agents are able to adapt to a constantly changing
environment. According to the free-energy principle, the biological agent has
two choices to minimize its free energy: It can either improve its perception by
enhancing its internal model of the world or by optimizing the actions through
enforcing a sampling of the sensory data that is consistent with its current
representation. Another approach was introduced by Klyubin et al. under the
name empowerment [143, 144]. Here, the basic idea is to choose the sequence
of actions that is maximizing the achievable amount of sensory information
according to the existing model of the agent. A modern application that cou-
ples the concept of perceptive acting with deep reinforcement learning is given
by Jaderberg et al. [13]. Using sampled sequences of past experience, the
unsupervised agent learns pixel and feature-control. For “pixel control” the
visible scene is divided into cells. Now, the agent has to learn a per-cell policy
for maximally changing the sensory information of the cell with its actions.
The received reward is a measure of the average absolute change between
the current and next frame. Additionally, feature control is introduced where
agents are rewarded for learning policies that are maximizing the activation
of units in specific linear layers. Another way to improve the perception in
the deep learning domain by introducing a way to innervate the exploration
process of the agent was proposed by Bellemare et al. [12]. The presented ap-
proach generates an additional auxiliary reward that measures the uncertainty
of the agent’s knowledge. This reward facilitates the encountering of novel
sensory states during the exploration phase of the agent.
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Active “visual” perception Bajcsy et al. [145] define an agent that is actively
perceiving its environment as an “[. . . ] active perceiver if it knows why it
wishes to sense, and then chooses what to perceive, and determines how, when
and where to achieve that perception”. Thus, the agent is not only passively
observing its environment, but reasoning about how its actions might be able
to maximise the flow of sensory information. Examples of designed models
that implement this concept of active perception [139] by controlling the agent’s
sensory apparatus are models of visual attention [146–148]. In these vision
systems, the agent uses actions for guiding its gaze and in this way improves
the quality of gathered sensory information. While the above mentioned
examples change only the sensory apparatus and are not interacting with the
environment using physical contact, there are also approaches where physical
interaction is used to improve the perception of the scene. An early example
of this interactive perception [139] is given by Tsikos and Bajcsy [149], who
proposed to use a robot-arm for interacting with certain objects in a scene. This
setup is then exploited to simplify the scene and thus improve the effectiveness
of a vision system.

Active “haptic” perception Haptic exploration is only possible by applying phys-
ical contact with the (in many cases static) environment. Additionally, it is
often necessary to look into a time series of varying tactile sensory information
instead of relying only on one single physical contact. This requires the devel-
opment of efficient exploration policies that generate action sequences which
support beneficial haptic sensing. In contrast to early studies that are heading
towards an active haptic perception, see e.g. [145, 150], recent developments
added machine learning techniques to their applications in order to learn, for
example exploration strategies, feature extraction or to improve the estimation
of different quantities. This led to approaches that are able to learn haptic
object representations [151], object detection and pose estimation [152–154],
texture classification or description [155–157] and reconstructing the shape of
objects or the environment [158–160].

3.3.2 Simplifying the task

The “simplification” of a task can be seen as one of the most basic ways to make
learning easier. In machine learning, many different ideas were developed to
implement techniques into the learning process that are able to directly or indirectly
simplify the task for the learner. In the following, two classes of methods are
presented. While the first one provides a temporary simplification that helps to
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refine the internal representation of the applied learning model, the second one
is based on the design of hierarchical models that are specialized in creating a
beneficial structure of sub-tasks in order to simplify the learning problem.

Transfer learning The first class of methods is called transfer learning [161, 162].
The transfer of learning is a concept that has been known a long time in
psychology [163, 164]. It has also become very popular for improving machine
learning approaches. The main idea of transfer learning is to generalize
knowledge across tasks. It claims that solving a problem gets easier when
a task with one or more similar modalities was learned before. This can be
exploited as a way to speed up the learning process by pre-training an artificial
agent on simpler related challenges which are generated by varying one or
more of the main problem’s modalities. Examples are to train the agent on
a different but related task, to utilize an alternative learning environment
or to modify the agent’s action set. It is also possible to vary other things
like the agent’s sensory information, the reward, the start state, the goal
state or the entire problem space. After a “temporary restricted” training
phase that can for example be defined by a fixed number of training steps
or a performance threshold, the initialized model is then employed to learn
to solve the main problem. The knowledge that is transferred can be the
agent’s policy, the (action-)state value, reward functions or something entirely
different [162]. There are also other approaches like transferring knowledge
through advice [165].

In the last years, researchers were able to successfully apply transfer learning
on many different problems. Examples include maze navigation tasks [166],
simulated robot soccer [165, 167], the DeepMind Lab [168] and also first
attempts to learn tasks using a physical robot [169]. Moreover, it is one of the
concepts that is not only restricted to reinforcement learning methods. Transfer
learning can also be combined with supervised learning models like classifiers,
for example by reusing a pre-trained model on a different or enhanced set of
classes [170, 171].

Hierarchical models In addition to transfer learning, which can be seen as a
temporary support of the learning process, it is also an option to use permanent
approaches. The question how to endow an artificial agent with the ability to
split its problem into smaller sub-tasks was extensively studied during the last
decade (see e.g. [172] for a survey). One class is called hierarchical learning
models. It comprises specified learning algorithms that have the ability to learn
to tailor the main problem in a hierarchy of simpler sub-tasks and thus reduce
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the overall complexity. The structure of the hierarchy either has to be pre-
defined by the programmer — like the number of sub-tasks or their individual
reward functions — or has to be learned by the agent. While a temporary
simplification is more in the spirit of scaffolding, a permanent support for
structuring the problem might be more efficient in the long run.

Feudal architectures One of the first ideas was feudal reinforcement learning,
presented by Dayan and Hinton [173]. They constructed a hierarchy of
managers and sub-managers that are perceiving the world on their own level
of resolution. The managers do not necessarily need to know the full amount
of details of the world as they have to perceive it only on the level of their own
tasks. Consequently, high-level managers are perceiving the world on a coarser
level than low-level sub-managers. The managers have full control over their
sub-managers in defining goals for them, setting rewards and giving penalties.
By stacking these managers into a hierarchy, one ends up with an approach
that is learning in a bottom-up manner. Inspired by this approach, Vezhnevets
et al. [16] invented a hierarchical reinforcement learner that is able to utilize
the concept of the feudal architecture within the deep learning domain.

Options Another way to create hierarchical agents for Q-learning was pro-
posed by Sutton et al. [174] through the introduction of the options framework.
The approach defines a new concept called options that is similar to actions
but has a duration which is longer than one time-step. Each option has its own
Q-learner that is coupled to a sub-problem of the complete problem. Every
Q-learner has its own pseudo-reward, signaling the agent how good it is to
execute a specific option in the given state. On a global scale, however, they are
treated like regular actions that can be executed from a meta-Q-learner, which
leads to the extension of the regular Markov decision process to semi-Markov
decision processes. Following this principle, the regular actions are options
with a duration of one time-step. In the following years this approach was
improved in order to learn options at real time [175–177]. It was also ported
to the setting of deep learning [178–180] and refined by the idea to define
abstract sketches of task-specific policies [15].
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3.3.3 Modelling and demonstration

In machine learning, many different techniques were developed that can be related
to modelling and demonstration. Especially in reinforcement learning, there are
many approaches that rely on a provided or learned model of the world for learning.
The fact that reinforcement learning is inspired by the learning process of biological
agents also gave rise to the idea to use an expert for exemplifying a good way to
solve the given problem. In a following step, the expert’s demonstration is then
exploited for augmenting the artificial learner’s process of adapting a favourable
policy.

Model-based methods In reinforcement learning, there is a class of “model-based”
methods, that employ a model of the world in order to predict the next step or
to efficiently sample new data [25]. These kind of methods were successfully
used for learning legged swimming gaits [181] or to teach a simulated biped
robot to walk [182]. Although these kinds of algorithms are considered very
capable, their performance is limited by the accuracy of the provided model. It
is, in many cases, a troublesome task to invent an accurate model for complex
domains with high-dimensional state spaces. Thus, it has become more popular
to rely on model-free methods, like the (deep) Q-learner, despite the fact that
they require millions of samples to learn good policies. In view of this, recent
research proposed hybrid attempts, where a model-based approach is taken to
initialize a model-free one [183].

Demonstration learning The idea of using demonstrations for facilitating learning
has become a quite popular idea and has given rise to a battery of techniques.
Even though a human expert is necessary for this kind of concept and it is
thus not studied within this work, it is nevertheless worth mentioning some
successful ideas for the sake of completeness. Behaviour cloning exploits state-
action pairs that are generated by demonstration for learning a good policy. It
was put to use for learning complex dexterous manipulation [46] or quadcopter
navigation [184]. A second approach is based on inverse reinforcement
learning that estimates a reward function from demonstrations [185, 186]. It
was for example applied to learning autonomous helicopter aerobatics [187].
A last proposed way to improve the learning process of a reinforcement learner
is given by initializing the policies or internal models of the learner through
demonstration. It was used to accelerate the learning process of a deep Q-
learner [188] or tackle the problem of sparse rewards during exploration [45].
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3.3.4 Ongoing diagnosis and assessment

The diagnosis of the learner’s current level of competence, also called “dynamic
assessment” [107], is seen as one of the key factors that distinguishes scaffolding
from other concepts that facilitate learning.

Performance metrics In machine learning, the general concept to measure a
model’s current quality is given by performance metrics, like the accuracy
to classify data, the success rate to perform a certain task or — in case of
reinforcement learning — the average reward per trial. When continuously
evaluating the model, learning trends can be generated by analysing the time
course of learning with respect to the model’s performance. One drawback of
these methods is that the model can only be evaluated “after” performing the
given task.

Exploiting V & Q for dynamic assessment In reinforcement learning, the diag-
nosis of the agent’s behaviour is a natural aspect of the learning process. As
explained in Section 2.2, it is possible to compute a measurement during the
learning process in form of the (action-) state value that rates the agent’s
current state with respect to the expected long-term behaviour for solving the
current task. One kind of reinforcement learner that relies on this specific key
aspect of scaffolding are actor-critic models (see Section 2.5). In these models
the ongoing diagnosis plays a very important part, as a critic in form of the V -
or Q-value is separately learned from the acting part of the model. The value
function is then utilized in order to rate the actor’s performance, i.e. diagnose
its current skill level, which is then exploited for learning a good policy.

Curriculum learning Another presented technique — that is also on the border to
“task simplification” — is curriculum learning [189]. The idea of this concept is
to enhance the learning process by not providing the agent with random but
instead with thoughtfully chosen sequences of training data that are tailored to
its current capabilities. While in early attempts of curriculum learning the train-
ing sequences were constructed manually, there are nowadays some promising
approaches for autonomously generating structured training data [190–194].
By now, curriculum learning has become an attractive approach to tackling
complex problems within the field of deep reinforcement learning. Examples
are learning to play first-person shooter games by adapting the difficulty of the
computer-controlled opponents according to the learner’s performance [191]
or by automatically generating a curriculum for increasing the training on rare
events [193].
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Curriculum learning can also be used to extend transfer learning, where the
sequence of tasks during the pre-training is then structured in a way that
is beneficial for the agent [162, 192, 194]. An example for the success of
combining transfer and curriculum learning can be found in nature as well.
Skinner demonstrated in a study that it is possible to facilitate the training of
dogs through the creation of a task hierarchy with increasing difficulty [164].

3.3.5 Fading support and eventual transfer of responsibility

During the discussion about employing tools for scaffolding the learning process
of humans, an important issue was raised by the implementation of the concept
of “fading” and the connected aspect of “transfer of responsibility”. It has been
argued that the nature of the applied tool — as it could for example be designed for
a permanent support — might prevent the integration of fading. When designing
scaffolding approaches for machine learning, one can now resort to the same
argumentation. For this field, however, the decision is mainly influenced by whether
the “scaffold” is merged with the learner or if they are separate entities. One way is
to integrate the method for enhancing the learning process into the learning model.
Another way is to invent methods that are more like an auxiliary gantry which can
be easily turned on and off without influencing the operational reliability of the
main algorithm. Examples of approaches that are intended to be used permanently
during learning are hierarchical models, but also algorithms that integrate special
ways of perception as recurrent attention models. Transfer learning, on the other
hand, is a good example for a class of methods that is independent of the applied
learning algorithm and can be seen as temporary support. It might thus be possible
to integrate a “transfer of responsibility” into the learning process by pre-training the
learner on a related problem where the degrees of freedom are reduced. An example
for a classifier might be a reduced number of classes that is then increased step-wise.
For a reinforcement learner, the “transfer of responsibility” could be integrated by
training the agent at first on a problem where only a subset of actions is needed for
solving it. Other proposed ideas that can at least be identified as temporary support
are the ones that use “demonstration” to initialize the learner or pre-train policies.
However, there is no fading but just a hard cut between the pre-learning and the
learning of the main problem. Fading might be found in methods that are related to
curriculum learning, where the sequence of training data increases in complexity
and eventually fades into the usual policy of generating the training data.
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3.3.6 Summary

Following the proposed guideline for transferring a psychological concept from the
human world to the world of machines, the last sub-sections have derived relations
from different modern approaches in machine learning to specific key aspects of
scaffolding, as visualized in Figure 3.5. It was possible to discover many similarities
between scaffolding techniques for human learners and approaches that are support-
ing the learning process of an artificial agent. Only the idea to “recruit and maintain
the learner’s attention towards a goal” had to be adapted by shifting the focus from
guiding attention towards a goal to guiding attention towards important aspects
of the learning problem by “refining the learners attention”. These fruitful results
are strengthening the hypothesis that human scaffolding is a good prototype when
developing a general guiding principle for improving and accelerating the learning
process of artificial learners. The next sections are now utilizing the conclusions
drawn from these findings. At first, the essential concepts and propositions are taken
as the point of departure for compiling a refined definition of scaffolding as a prin-
ciple for facilitating the learning of an artificial intelligence on a meta-level
that uses the five refined key-aspects as a computational skeleton for a prospective
research agenda.
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Fig. 3.5.: The figure illustrates the relation between the discussed machine learning meth-
ods and the key aspects of scaffolding.

3.4 Reformulating scaffolding as a principle for guiding
the learning process of machines

The previous part of this chapter created a bridge from human scaffolding to scaffold-
ing machines. Section 3.1 introduced the theory of human scaffolding. Section 3.2
leads it further into the field of artificial teachers by discussing the special case of
scaffolding via teaching tools like computer programs. The last Section 3.3 then
translated the five emerged key aspects to the realm of machine learning by con-
necting them with different kinds of existing approaches for improving the time
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course of learning. Some of them are motivated by psychology, others are based on
a neurobiological, mathematical or heuristic motivation. The findings were then
compressed and visualized in a mind map, given by Figure 3.5.

Figure 3.5 is now taken as the fundamental skeleton for a guideline how to design
scaffolding techniques for artificial agents. While the five key aspects of scaffolding
(see again Figure 3.3) were extracted from the meta-knowledge of human learning,
their conceptual ideas could be connected — either directly or after necessary
refinement — to efficient approaches in machine learning, building a computational
skeleton for scaffolding artificial agents that are listed in Figure 3.6. This insight
gives rise to the assumption that there exist notable similarities between human and
machine learning on a meta-level. For that reason, the five aspects can be exploited
for machine learning. Following the presented methodology, they are forming the
fundamental pillars for creating scaffolds for artificial agents.

The computational skeleton for scaffolding artificial agents:

• Refining the learner’s attention through guided perception

• Simplification

• Ongoing diagnosis and assessment

• Modelling & demonstration

• Fading & transfer of responsibility

Fig. 3.6.: A listing of the computational skeleton for scaffolding artificial agents.

3.4.1 Scaffolding in practice: inject meta-knowledge by compiling
individual auxiliaries

Combining the insights of the last sections it is now possible to formulate a general
definition of scaffolding in machine learning:

The principle of scaffolding is seen as the general process of providing
the artificial agent with a practical supportive construct — the scaffold
— that is either integrated into or used as an extension alongside the
learning framework. The function of the scaffold is either to directly
bolster the learning of a task by refining the inner processes of the

3.4 Reformulating scaffolding as a principle for guiding the learning
process of machines
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utilized model or endowing it with the ability to learn a new auxiliary
skill.

The scaffolds can be assigned to one or more of the five scopes of assistance, listed
in Figure 3.6. They categorize the basic direction how the time course of learning is
intended to be supported.

Besides these findings, some additional observations could be made in the last
section. They are now seen as general rules which are exploited as guiding posts
when inventing new scaffolds. The last sections gave strong evidence that the
constructs and techniques which contain the resulting properties are more likely to
be able to successfully improve the learning process.

Focusing on specific aspects While in the original psychological theory of scaf-
folding, it is desirable to design approaches that fulfill all five key aspects (see
again Figure 3.3), it is not a necessary criterion for machine learning. As for
teaching devices (see again Section 3.2), the concept of scaffolding a machine
learning algorithm should be decoupled from the original one and refined in a
way that is suited for the given field of research. Thus, instead of implementing
all key aspects, it might be more beneficial to lay the focus only on one or two.

Scaffolds can be permanent or temporary When using (computer-based) tools
for scaffolding human learning, the requirements of being a temporary support
with fading have to be relaxed. It has to be decided based on the nature of
the designed approach if it is more beneficial to implement a temporary or
a permanent support. The same argumentation appears to hold when using
machines for scaffolding machines. Many of the proposed ideas for refining
the learning process of artificial agents are not designed as external tools that
can be used as a temporary support. They are rather directly implemented
into the learning model as a permanent auxiliary gantries which endow the
learner with the technical modalities for learning new skills it would usually
not be capable of. Examples are hierarchical models or the integration of
active perception. On the other hand, it can also be implemented as temporary
support that helps the learner to fruitfully initialize the learning process, given
by transfer learning, curriculum learning or demonstration learning.

Scaffolds as self-regulating modules There are many cases where explicit guid-
ance such as demonstration learning or feedback from either a human or
artificial expert is required. The focus in this study, however, are supportive
approaches that are not relying on a human expert. Thus, in this work scaffolds
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are seen as self-regulating modules that are able to operate autonomously
and self contained without the guidance of a human expert.

The proposed definition of scaffolding for artificial agents at the beginning of this
section, together with the three general rules for designing good scaffolds for machine
learning is composing the basic framework that is utilized in this thesis. In the next
section, it is employed to create a research map for scaffolding artificial agents by
suggesting parts of the learning process in machine learning that are good candidates
for further scaffolding approaches. In the end, four research questions are selected
that are then employed for the rest of the thesis as practical applications for designing
and testing new scaffolds.

3.5 A research map for scaffolding in machine learning

Section 3.3 has shown that many of the different ideas in machine learning which
aim to facilitate the learning process could also be associated with the educational
concept of scaffolding. In addition, a lot of them are apparently similar to key
aspects of the psychological theory. As many approaches rely on this class of
methods as a basic learning framework, there is strong evidence that especially
reinforcement learning is a very good candidate for possible refinement that is
inspired by psychology. The aim of this section is now to point out the stages of the
learning process of an artificial agent that have the most potential to significantly
improve the result in speed and quality when being efficiently scaffolded.

A research map for scaffolding One stage of the learning process that seems to
get much attention in the field of machine learning is the early learning phase.
Techniques like transfer learning, curriculum learning or demonstration learning are
employed as pre-learning routines in order to get a good initialization of the learner.
Another aspect of the learning process that seems to be intensively discussed and
appears to have lots of potential left is the active perception of the environment.
While the literature indicates that the process of gathering information has long been
seen as something independent from the learning process, concepts like interactive
perception [139], empowerment [143, 144] or the different ways of encouraging a
deep learner to encounter novel states [12, 13], demonstrate that seeing perception
as an interactive and adaptable process is a promising way to enhance learning.
Section 3.3.1 has shown that perception has a strong influence on the learning
process. Being connected to the agent’s capabilities of interacting and also its way
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of sensing the environment, it is also very versatile. As a consequence, there exists
no universal solution to augment the agents perceptional abilities. Instead, the
supportive techniques have not only to be aligned to the specific learning problem,
but also to the agent’s individual modalities to sense and interact with the world.
With this conclusion in mind, one part of this thesis lays its focus on the design of
different scaffolds that intend to support the learning process through refining the
perception of the agent with respect to its way of sensing the world and enhance
its attention to task-relevant information.

3.5.1 Four research questions for scaffolding an artificial agent

This thesis presents two different ways of designing scaffolds. The first way is to
concentrate on one specific pillar instead of trying to cover all five pillars of artificial
scaffolding that are listed in Figure 3.6. In this work, the chosen pillar is given by
refining the learner’s attention. By analysing the individual characteristics of the given
artificial agent in combination with the given learning problem, supportive modules
can be designed that are able to bolster the learner’s abilities or endow it with new
ones that help to solve the given problem. For studying and demonstrating this
idea, three different categories of perception are analysed and individual supporting
scaffolds are designed. The second way combines the aspects of simplification,
ongoing diagnosis and assessment together with fading & transfer of responsibility.
This approach is not only putting the improvement of the learning process into focus
but also offers a platform to study how well the different key aspects of scaffolding
work together.

A scaffold based on perceptive acting While the sub-category of active percep-
tion summarizes many interesting concepts like the free-energy principle and
empowerment, there seems to be no existing modular procedure that rates
whole interaction strategies according to their influence on the agent’s per-
ception. Especially in reinforcement learning, where the agent learns through
direct interaction with the environment, a good choice of actions is essential.
By analysing their quality with respect to the given environment before learn-
ing, the problem’s degrees of freedom might be significantly reduced even
before starting the learning process. All things considered, one can ask the
question:

Are there general features that distinguish action sets that facilitate
exploration, learning and control (“good” action sets) from action
sets for which exploration, learning and control is more difficult?
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A scaffold based on active visual perception There also exist some approaches
that try to integrate active visual perception as an adaptable module into
the learning process, they cannot yet be applied to more complex learning
problems. Refining and extending one of these approaches could thus be a
good starting point to exploit this kind of active perception. As a result, it
would be possible to integrate an attention mechanism into the learning of
these kinds of problems that helps to reduce the amount of information the
agent has to process. In conclusion, one can investigate the following matter:

Is it possible to scaffold the learning process of complex learning
problems by using visual attention in order to implement active
perception into the learning process of artificial agents that rely on
visual input as their sensory information?

A scaffold based on active haptic perception Unlike humans, who after years
of developmental process acquire goal- directed haptic exploration capabilities,
it is still a great challenge even for very advanced robotic platforms to perform
contact-rich interaction tasks. The integration of a scaffold into the learning
model that enables the agent to learn to control its tactile sensing through
active haptic perception has the potential to endow robots in future with the
necessary skills. One can thus ask:

Is it possible to scaffold the learning process of haptic problems by
using recurrent attention in order to learn synthetical exploratory
procedures for robots using optimization of motor control?

Scaffolding hierarchical problems Recent works indicate that learning temporal
abstraction and hierarchical task solving are very promising. Hence, there
exist many different approaches. Hierarchical reinforcement learning is — in
many cases — tackled by designing new architectures that are able to learn to
segment the main problem into smaller sub-tasks. It might thus be an interest-
ing attempt to employ a variant of transfer learning combined with curriculum
learning for refining the internal representation of a non-hierarchical model
in order to better cope with learning tasks that have a hierarchical structure.
In this way, it would be possible to better solve hierarchical tasks without the
design of a specialized learning architecture but only through a scaffold in the
form of a temporary support in the early stage of learning. Notwithstanding
the fact that the last section listed some promising ways for learning an au-
tomatic generation of an optimal curriculum, it is an interesting attempt to
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design a curriculum close to the key aspects of scaffolding and study its effects
on learning by studying the questions:

Can a scaffold, based on the combined approach of transfer and
curriculum learning, augment the learning process of established
learning models? How is the integration of key characteristics of the
refined concept of scaffolding influencing the learning process?

3.6 Summary

In this chapter, the general idea of scaffolding the learning process in the field of
machine learning was discussed. At first, the original concept from educational
psychology was presented. After the application and influence of the derived
techniques on the learning process of humans was discussed, the idea was extended
by taking the scaffolding of human learners through teaching devices like computer
programs under consideration. In a further step, the transition to scaffolding
machines without a human teacher was induced by relating the five key aspects
of the original scaffolding theory to different kinds of popular machine learning
approaches that were able to improve the training process by utilizing various kinds
of methods. There are, however, good indicators that the concept of scaffolding
has to be refined in order to be more adaptable to the characteristics and needs
of the field. During the discussion of the different approaches, some collective
features have been detected that were then used to adjust the key aspects and
hence align them more to the realm of machine learning. In the end, a mind
map was created that is shown in Figure 3.5. This knowledge was then used
for reformulating the concept of scaffolding as a general guiding principle that
exploits available meta-knowledge from the field of machine learning and to
sketch a rough research map that highlighted regions of the learning process that
seem to be good starting points for designing scaffolds.

The next step As a last step, the collected information was utilized to propose four
different approaches with the intention to support the learning process of different
kinds of learning problems. For the concretisation and realisation of these supportive
techniques in the next part of the thesis, the reformulated concept of scaffolding
(see again Section 3.4) is utilized as the main source of inspiration.
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Part II

Scaffolding: a universal approach for
fostering the learning process





Scaffolding attention control
by exploiting “perceptive
acting”

4

Actions play a crucial role in reinforcement learning as they determine how much
control the agent has over the environment and thus influence the effectiveness
of exploration and learning. If an agent has to navigate itself or objects through
the environment, there are many different ways to design the underlying sensori-
motor coordinate system that directs the way of motion. The objects can either be
maneuvered in a way that is completely uncorrelated to the characteristics of the
environment or by taking its features into account so that desired events are more
likely to occur. By following the idea of perceptive acting and raising the probability
of these events (e.g. object-object interaction) occurring, the learning process can
be accelerated.

As the sensorimotor coordinate systems shape the agent’s modality of interacting
with the world, they can be used to create different action sets that define the agent’s
motions. This gives rise to the following question:

Are there general features that distinguish action sets that facilitate
exploration, learning and control (“good” action sets) from action sets
for which exploration, learning and control is more difficult?

Obviously, criteria to recognize such action sets would be of interest for designing
interactive learning algorithms that are fast and efficient. It would also be possible
to scaffold existing learning frameworks by replacing the currently used and
- according to the proposed criteria - suboptimal action set with a better one.
This simple adjustment is likely to be able to improve the learning process “without”
explicitly modifying the utilized learning algorithm. In order to tackle this kind
of problem, the current chapter proposes an approach for evaluating the general
performance of specific action sets via the computation of the mutual information
(see also [21]).
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4.1 The concept of entropy and mutual information in
the context of reinforcement learning

This section deals with the concept of entropy and mutual information [195–197]
within the framework of reinforcement learning. As mentioned in Section 2.1,
state transitions within a Markov decision process can be described through a tuple
(s, a, s′), while each tuple is also statistically independent. If the agent induces a
state transition from state s ∈ S, the final state s′ is within a subset of possible
states S ′ ⊆ S. These kind of arbitrary transitions can be described by the conditional
probability Pss′ : S −→ S ′, which is completely defined by the dynamics of the
environment. These state transitions can be controlled by the agent through the
execution of actions a ∈ A in state s with the conditional probability Pas : S −→ A.
Pas = π(a|s) is also called the “policy” of the agent. Both probabilities Pss′ and Pas
have to satisfy

∑
s′

Pss′ = 1 and
∑
a

Pas = 1 ∀s, s′ ∈ S and ∀a ∈ A. (4.1)

With the help of the joint probability1 to execute an action a and then end up in a
state s′, given by Ps(s′ ∩ a), the transition probabilities for ending up in state s′ after
executing action a in a given state s can be computed as

Pass′ = Ps(s
′ ∩ a)
Pas

. (4.2)

Thus, using an action a is narrowing down the number of final states s′ by increasing
the probability to end up within a smaller subset S ′(a) ⊆ S ′, specified by the used
action (see Figure 4.1). This controlled probability Pass′ : S ×A −→ S ′ is connected
to the uncontrolled probability via

Pss′ =
∑
a∈A
P(s′ ∩ a) =

∑
a∈A
PasPass′ ∀s, s′ ∈ S. (4.3)

1In this work the notation of [196] is employed: If there are two events E1 and E2 existing, then the
event E1 ∪ E2 is the one in which either E1 or E2 or both events occur. E1 ∩ E2 is defined as the
event in which both events E1 and E2 are happening.

60 Chapter 4 Scaffolding attention control by exploiting “perceptive acting”



s

s′ ∈ S ′

Uncontrolled probability Pss′ : s −−−−→
lalalala

s′

(a) Illustration of an uncontrolled state transition
from state s

s

s′ ∈ S ′

a
a′

a′′

Uncontrolled probability Pss′ : s −−−−→
lalalala

s′

Controlled probability Pass′ : s a−−−−→
lalalala

s′

(b) Illustration of an controlled state transition
from state s after executing an action a

Fig. 4.1.: Using information theory in order to describe the influence of actions on the
dynamics of the environment. While the transitions from a state s into a state
s′ is usually entirely described by the passive dynamics of the world, given by a
probability function Pss′ as illustrated in (a), the execution of actions a is able to
increase the likeliness to end up in specific states, visualized in (b).

The entropy as a measure of uncertainty To measure the uncertainty about the
next state, the entropy [195] Hs of the current state s

Hs(S ′) = −
∑
s′∈S′

Pss′ ln (Pss′) (4.4)

can be defined. By introducing the surprise (or self-information) [142] for a given
state s, which is defined as the negative logarithm of the probability − ln(Pss′), the
entropy can be interpreted as the average surprise over all possible states that can
be reached within one transition step. By taking the possible actions a ∈ A into
account, the conditional surprise (or conditional self-information) − ln(Pass′) gives
information how certain it is to end up in s′ after executing a in s. Analogue to the
entropy, the conditional entropy

Hs(S ′|A) = −
∑
a∈A

∑
s′∈S′

Ps(s′ ∩ a) ln(Pass′) (4.5)

4.1 The concept of entropy and mutual information in the context of
reinforcement learning
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of state s can be computed [195, 196]. It measures the average surprise of ending
up in a state s′ ∈ S ′ after starting in state s ∈ S and executing an action a ∈ A. By
using (4.2), it can be rewritten as

Hs(S ′|A) = −
∑
a∈A

∑
s′∈S′

Ps(s′ ∩ a) ln
(Ps(s′ ∩ a)

Pas

)

= −
∑
a∈A
Pas

∑
s′∈S′

Pass′ ln (Pass′)

 . (4.6)

4.1.1 Exploiting mutual information as a ranking criteria for action
sets

The rate of influence that is enforced by one set of actions A on the uncontrolled
transitions Pss′ of a state s (by minimizing the agents prediction error) is thus given
by the difference of the states entropy and the conditional entropy of the given
actions in this state. The result is known as the mutual information [195–197]

Ms(S ′,A) = Hs(S ′)−Hs(S ′|A). (4.7)

It is also possible to relate it to the Kulbeck-Leibler Divergence [197]

D(q(x)||p(x)) =
∑
x

p(x) ln
(
p(x)
q(x)

)
,

that measures the “distance” between two probability densities q(x) and p(x). The
more different these two distributions are, the higher is the information gain. By
rewriting the mutual information using (4.3), (4.4) and (4.5) into the form

Ms(S ′,A) = Hs(S ′)−Hs(S ′|A)

= −
∑
s′∈S′

Pss′ ln (Pss′)−

−∑
a∈A
Pas

∑
s′∈S′

Pass′ ln (Pass′)


= −

∑
s′∈S′

∑
a∈A
PasPass′ ln (Pss′)−

−∑
a∈A
Pas

∑
s′∈S′

Pass′ ln (Pass′)


=

∑
s′∈S′

∑
a∈A
PasPass′ [ln (Pass′)− ln (Pss′)]

=
∑
a∈A
PasD (Pass′ ||Pss′)

= Ea∈A
[
D (Pass′ ||Pss′)

]
,
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it is possible to see that the mutual informationMs(S ′,A) measures the expected
information gain when actions a from the action set A are used to control the state
transitions from state s ∈ S instead of relying only on the passive dynamics of the
environment.

Ranking action sets A with respect to their control over the environment As the
mutual information of state s, given by Ms(S ′,A), measures the reduction of
uncertainty of the possible next states S′ due to the influence of A, it is a promising
candidate for building a scaffold for reinforcement learning algorithms that tries to
give support through a good selection of actions for the selected learning domain. In
the presented approach, the mutual information is employed to compare different
action sets A. The ranking order is then used as a criterion for predicting the agent’s
learning performance while using the respective action set. The best coordinate
system A∗ should therefore be the one which induces the most control on the
complete system and thus provides the learning agent with the highest gain of
sensory information via perceptive acting. The action set A∗ which reduces the
uncertainty within the domain by the highest amount can thus be formally described
as the one with the highest expected mutual information when taking all available
states under consideration:

A∗ = argmax
A

Es∈S
[
Ms(S ′,A)

]
= argmax

A

〈
M(S ′,A)

〉

If the model of the environment is fully available, it is possible to compute the
mutual information directly. Unfortunately, the model is not known in most cases.
Hence, the uncontrolled and controlled probability densities for the state transitions
and thus the mutual information have to be estimated.

4.2 Applying the concept to complex environments

Both artificial and biological agents are perceiving the world by utilizing special
sensors which are for example eyes, nose and ears for biological agents and cameras,
laser scanners or pressure sensors for robots. From a mathematical perspective,
these sensors can be seen as functions F :W −→ S that map the full information of
the environmentW to the sensor space2 S which is defined by the kind of sensor
that is applied (see Figure 4.2).

2The terms sensor space and state space are used interchangeable in this work.
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World spaceW State space S

F :W −→ S

Fig. 4.2.: Sensors are mapping the full information of the domain onto a smaller subspace
S called the sensor space or state space. Often, this space is of a lower dimension
but also is not including the full information of the world-state. In many cases,
there exists no exact inverse F−1.

If now the mutual information has to be estimated in order to measure the reduction
of uncertainty during the state transitions through the influence of the defined
actions, the probabilities of the state transitions should not be measured within the
world spaceW. Instead they should be estimated within the space that contains the
information that the agent is actually perceiving, i.e. within the sensor space S.

4.2.1 Estimating the probability distribution of state transitions

When working with artificial agents that are interacting in real-world environments,
the access to sensory data might be limited as it is only accessible by direct explo-
ration of the environment. In this work, the probabilities are estimated in a two-step
process:

Approximating the state space At first, a set of randomly generated sensory data
is recorded. While in real-world environments this might be only possible by
direct random exploration of the agent, it can be achieved easier in simulated
environments, as different configurations of the environment can be easily sampled.
The recorded sensory data is then used to generate K clusters ck within the recorded
sensor space, for example using the K-Means algorithm3 [199, 200]. The set of
recorded data should be large with respect to the number of to-be-generated clusters.
The resulting clusters should then cover the whole visited state-space on the one
hand, while additionally taking the inner structure of the sensor space into account.
Consequently, they should be more concentrated in the regions which are visited
more often and sparse in regions that are less frequently visited. The generated

3For a modern and comprehensive introduction, see e.g. [198].
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cluster-points are then used as data for dividing the sensor space into cells using
Voronoi tessellation4 [201–203]. An illustration of a Voronoi tessellation can be
found in Figure 4.3. It separates the given space into cells, where each cell is built
around one cluster-point ck. Each cell, defined by a cluster-point ck, comprises all
points whose distance to ck is smaller than or equal to any other cluster-point cj .

The sensor space is now segmented into cells, where the coarseness of the cells
depends on the placed clusters ck and thus how frequently the part of the sensor
space is truly visited during the exploration of the agent. This approximated sensor
space is defined as S.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.3.: Illustration of a Voronoi tessellation in the euclidean space of 10 data-points
{p1, . . . , p10} that are uniformly sampled between 0 and 1. The distance of all
points within in the cell, corresponding to point pi, is smaller or equal to the
distance to any other point pj .

Estimating the transition probabilities In a second step, the transition probabilities
have to be estimated while utilizing the created approximation S of the sensor space.
For that reason, the agent has to perform a random walk within the domain while
using the to-be-tested set of actions A in order to gather tuples (s, a, s′). These
tuples are then used to count how often the cells in the discretized sensor space S

4Also called Voronoi diagram, Dirichlet tessellation or Thiessen polygons.
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are visited. Using this information, the two probability densities Pss′ and Pas can be
directly estimated utilizing (4.1), while Pass′ is computed via (4.2) and (4.3).

4.2.2 Estimating the entropy & mutual information

Estimating entropies from finite samples of probability densities can be a challenging
problem and has been discussed in many works, e.g [204–208]. The most basic
approach is the maximum likelihood estimator5 (MLE). It simply computes the
entropy via (4.4), leading to

H(Pss′) = −
∑
s′∈S′

Pss′ ln (Pss′) .

To estimate the mutual information (4.7), an estimation for the conditional entropy
H(P(s′ ∩ a) is also needed. Like H, the maximum likelihood estimator of the con-
ditional entropy can be computed using (4.6) and the approximated probability
densities. The estimated conditional entropy is thus

H(S′|A) = −
∑
a∈A

Pas

∑
s′∈S′

Pass′ ln (Pass′)

 .
Finally, the estimated average mutual information of the approximate sensor space
S for a given action set A is given by

〈
M(S′,A)

〉
= 1
|S|
∑
s∈S

[
Hs(S′)− Hs(S′|A)

]
,

with |S| the number of cells within the approximated sensor space.

Improvements of the Maximum Likelihood Estimator According to Basharin [209]
and Harris [210], the entropy might be underestimated when using the simple
MLE. Thus, there exist different approaches that are trying to improve the results.
Examples of these kind of approaches are the MLE with Miller-Madow correction
[204] or the jackknifed version of the MLE [205, 208, 211]. As this work is not

5Also called naive estimator[206] or plug-in estimator[207]
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directly interested in a perfectly correct measure of the mutual information but just
the difference of its measurements for particular action sets, it should be safe to
assume that even the simple MLE is able to provide reliable results.

4.3 Summary

In this chapter, the idea of “perceptive acting” was put to use for designing a first
scaffold. It is built on the concept of relying on mutual information for ranking
the impact of different interaction strategies on the control of the environment.
The scaffolding takes place by choosing the strategy which endows the agent with
the highest control. As the agent now encounters novel and meaningful sensory
states more often, the learning is faster and more efficient. As complex learning
environments have huge state spaces, techniques for approximating it and extracting
the probabilities for state transitions are discussed. In addition, ways to estimate the
entropy and thus the mutual information from these estimated probability densities
are reviewed.

The next step The next chapter deals with the integration of “active visual per-
ception” into the learning process of a deep reinforcement learner. Therefore, the
“recurrent model of visual attention” is combined with an “asynchronous advantage
actor-critic model” in order to create a scaffolded reinforcement learner that is able
to actively search for the salient information within a visual scenery, accumulate
them and use these compressed features to solve the given problem.
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Scaffolding attention control
by exploiting “active visual
perception”

5

In the last years, many exciting approaches were presented in the field of deep
reinforcement learning (for a brief survey, see e.g. [212]). Numerous different
models were proposed which endow an artificial agent with the capability to use the
raw visual input of the scene in order to learn to grasp objects [42] or to play games
[7, 213]. Despite these rapid developments, there are some open problems left to
solve for those kinds of models that undermine and slow down the learning process.
One issue is given by the fact that the whole visual scene of the environment is
processed through the presented models although only a part of it may contain the
relevant information that is needed to solve the given problem. A way to tackle this
problem is to switch from a simple perception of static images to an active visual
perception of the scene. While humans subjectively perceive a scene as a whole image,
they are only able to recognize details of the scenery in a small central zone while
the location of these fixations depends on the current task [214, 215]. Directed by
image-based and task-dependent saliency cues, they are able to gather the important
information about the environment [146, 216]. The information contents from these
foveal “glimpses” is then combined in order to get an accumulated understanding of
the visible scene.

Based on this observation from neuro- and cognitive science, some successful at-
tempts were made to integrate this human-like way of visual perception into deep
learning approaches [5]. One recently introduced example is the recurrent model of
visual attention (RAM) [148]. The presented model is not only able to classify the
MNIST training data set [217] with a success rate of more than 98% using a small
number of fovea-like glimpses. It is also able to “search” for the written letters when
the original images of 28× 28 pixels are embedded with random location within a
larger 60× 60 image. It has also been shown that the same model can be exploited
as a reinforcement learner that is able to solve a simplified pong task with a success
rate of 85% by actively searching the scene for the ball and then adjusting the paddle
to catch it. Therefore, the model has to be trained for about 20 million frames in
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order to achieve this performance. The fact that training takes quite long and that
the paddle can be controlled using only two actions (move it left or move it right)
leads to the assumption that the model needs to be improved in order to apply it to
more complex tasks.

While the original RAM is a deep network that relies purely on one recurrent unit
and linear layers, Ba et al. [218] presented an improved version that also implements
convolutional layers [219, 220] in order to process the glimpses. They also replaced
the single recurrent unit by two long short-term memory (LSTM) networks [76] and
introduced some other advancements like the utilization of a special context network
in order to initialize the inner states of one of these LSTM networks. This and
other enhancements endowed the RAM with the ability to localize and recognize
multiple objects within one image in order to transcribe house number sequences
from Google Street View images.

Research question and new contribution The argumentations within the previous
paragraphs lead to the generic question:

Is it possible to scaffold the learning process of complex learning prob-
lems by using visual attention in order to implement active perception
into the learning process of artificial agents that rely on visual input as
their sensory information?

Switching from perception of the whole scenery to a more refined way is not only a
promising way to reduce the number of weights and thus the complexity of the to-be-
used learning model. Also the training time is likely to be reduced and new insights
of the process of gathering and processing segments of information might be gained.
For this reason, a new learning architecture is presented in the next section that
integrates the RAM’s abilities into a deep asynchronous actor-critic architecture in
order to construct a scaffold for active perception around the reinforcement learner.

5.1 The recurrent attention asynchronous advantage
actor-critic model

In this section, a variant of the recurrent model of visual attention is presented that
should be able to solve tasks in learning environments that are more challenging
than the classification of the MNIST dataset or the simplified pong task. An example
could be an environment that provides a raw sensory input in form of an image of the
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current scene and a learning task that might only be solvable through the learning
of physical interaction with different parts of the environment in a hierarchical
manner. To enable the model to cope with such difficult kinds of tasks, the RAM
is combined with the famous asynchronous advantage actor-critic algorithm (A3C)
[92]. While the recurrent model of visual attention is able to scaffold the learning
process by narrowing down the amount of required sensory information via active
perception, asynchronous models are able to significantly reduce the computation
time of complex learning problems by distributing the learning process to many
independent workers.

The novel approach, presented in this section, now combines these two approaches
in order generate a learning architecture that provides a permanent scaffold for
controlling the process of perception while also alleviating the generation of data and
the learning process by exploiting the asynchronous interplay of multiple learners.
As the RAM can be trained using REINFORCE (see again Section 2.5.1), it is possible
to see it as an actor-critic approach. This fact makes it an ideal candidate to be
combined with the A3C architecture, leading to the recurrent attention asynchronous
advantage actor-critic model (RAA3C) (also see [23]). Thus, the overall framework
of the proposed architecture is an asynchronous model in which multiple workers
are acting within their own domain in parallel. While the design of the individual
workers is based on the RAM, there are visible changes within the architecture as
illustrated in Figure 5.1.

Like the RAM, the workers are composed of five different neural network modules:
the “glimpse network”, the “location network”, the “actor-critic network” and the
“context network”, that are all connected by a “memory network”. If not stated
otherwise, all layers use a rectified linear unit (ReLU) [60] as their activation function.
Instead of receiving the raw visual information of the whole scene as the input,
the workers are only able to process a sequence of small glimpse-like pixel patches.
While the first “glimpse” of wg × hg pixels is random, the agent chooses a location of
the scenery, using the “location network” at each consecutive time-step in order to
select a new region where to look next.

As suggested in [218], a second coarser image version of the glimpse is also taken.
This coarser image covers twice as many pixels as the first patch and is then also
rescaled to a size of wg × hg and concatenated with the original glimpse in order to
create the effect of a “fovea”, where the image is sharp in the center and gets blurry
towards the outside. The combined glimpse image is then flattened to create the
glimpse vector g that is processed through the “glimpse network”, together with
its corresponding location xg. The extracted features are transferred through the

5.1 The recurrent attention asynchronous advantage actor-critic
model
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Fig. 5.1.: An illustration of the workers of the presented model. The location of the first
glimpse tg = 0 is chosen randomly. The location of all other glimpses tg > 0 is
chosen by the location network.
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“memory network” in order to generate the next glimpse location x′g with the help of
the “location network”. After a predefined number of these glimpses, the agent takes
the accumulated information of the full glimpse sequence to choose an available
action a based on its current policy using the “actor-critic network”.

Glimpse network Like the input, the glimpse network receives a vector g of the
dimension dim(g) = 2 · wg · hg, where hg is the pixel-height and hg the pixel-
width of the glimpse. It encodes the flattened information of the current foveal
glimpse, taken at location xg. The module then combines the current glimpse
vector g with its corresponding location xg ∈ [−1, 1] in order to generate
suitable features that are processed through the rest of the network. Both
the glimpse vector g and the location xg are processed through one linear
layer with 256 neurons each. One important factor that has to be carefully
considered is how to combine the location of the glimpse with the visual
information. Different options were presented in different works, such as
element-wise addition [148], element-wise multiplication [218, 221] and
concatenation [222]. In this work, using a concatenation, followed by two
additional linear layers of 512 neurons in order to generate the input for LSTM
1, was the method that performed best. The architecture of the designed
glimpse network is illustrated in figure 5.2.

Memory network Rather than relying on one simple recurrent neural network
[148] or two connected LSTM networks [218] for storing and combining the
received glimpse features, a memory network is introduced that is built out of
three LSTM networks with decreasing sizes that are all connected using a ReLU
activation function. While all internal states within LSTM 1 have 512 neurons,
LSTM 2 is constructed using 128 neurons and thus reduces the features to 1/4
of the original size. This value is again halved for LSTM 3 which is therefore
designed by using hidden states with 64 neurons. Reducing the size of the
LSTM networks is not only done to reduce the overall number of trainable
weights within the model but also to compress the information stored within
the features. It is important to notice that the actor-critic network receives the
features that are generated by LSTM 2, while the location network receives
the features that are generated by LSTM 3.

Location network The location network is built out of layers with 64 neurons and
illustrated in figure 5.3. It uses the accumulated features of LSTM 2 (see Fig.
5.1) in order to generate a new 2-dimensional pair of coordinates xg that
define the center of the next glimpse g. The coordinates are chosen using
a stochastic policy, modeled by a two-dimensional Gaussian. The output of
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Fig. 5.2.: An illustration of the glimpse network.

the network are therefore the mean µ and the standard deviation1 σ. The
Gaussian is restricted to the range between −1 and 1. The used activation
functions for the outputs are tanh for the mean µ ∈ [−1, 1] and softplus [223]
for the standard deviation σ ∈ [0,∞).

While the glimpse network is using the raw sampled coordinates xg ∈ [−1, 1],
they have to be transformed from the given coordinate system to the corre-
sponding pixels of the input image (Ix, Iy) for the creation of a new glimpse.
The transformation to the coordinate system of the image with the origin in
the bottom left corner can then be done using

xi = 1 + xg · η
2 · Ix

and for yg respectively. Additionally, a factor η is introduced that defines the
pixel range that the location policy is able to cover and suppresses the output
of locations at the image border.

Context network The context network, illustrated in Figure 5.4, is introduced in
[218, 221] to help the model to decide on the best location of the first manually

1In [148] and [218] only the mean is learned, while the standard deviation is set to a fixed value.
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Fig. 5.3.: A general illustration of the location network.

created glimpse2. Its input is a low resolution image of the whole scenery
that, in this proposed approach, is propagated through a linear layer with 64
neurons in order to generate suitable features. These features are then taken
as the initial states of LSTM 3, whose output is only used to generate the new
glimpse locations through the location network. The other LSTMs are always
initialized with zeros.

Actor-critic network The actor-critic network, illustrated in Figure 5.5, is built out
of a state value network that estimates the state value for the current state
and a policy network generating the actual action policy. The policy network
is connected to LSTM 2 as illustrated in Figure 5.1. The output of this LSTM
network is the input of a linear layer, which then outputs the probabilistic
action policy π(st,Θ) using the softmax activation function. The number of
neurons is defined by the number of possible actions |A| the agent has as its
disposal. The output of the same LSTM network is also used to approximate
the state-value function V̂ (st,Θ) which plays an important role during the
update process of the designed model.

2The very first glimpse of each step is always random.
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Fig. 5.4.: An illustration of the context network that is used to initialize the internal states
of LSTM 3.

5.1.1 Training

Both the action and the location policy can be trained using the REINFORCE algo-
rithm (2.15). For the action policy, the characteristic eligibility from (2.17) can be
used. During the current episode, the transition tuples (st, at, rt, Vt) are saved into a
worker dependent experience buffer E of size NEB. Here, st corresponds to the full
image of the environment. After the end of an episode or if the episode buffer is full,
the corresponding worker computes the weight update using the sequence of stored
tuples and clears the buffer thereafter. To compute the gradient for one transition
tuple, the network receives the recorded image st as its input, which is then used
for a full forward-pass through the network, including the creation of the glimpses g
and its corresponding locations xg, in order to get the action policy π(st,Θ) and the
approximated state value V̂ (st,Θ).

For the training of the stochastic location policy, the output layer for the mean
µ is trained using the REINFORCE algorithm with the characteristic eligibility ζµ
defined in (2.17), while the standard deviation σ is trained using the characteristic
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Fig. 5.5.: An illustration of the actor-critic network.

eligibility ζσ that is given in (2.18). It is worth mentioning that the gradient which
is propagating through the location network is stopped after LSTM 3 during the
update process. A sequence of S glimpses

g1 → g1:2 → · · · → g1:S−1 → g1:S

is constructed by starting with the first glimpse g1 and then taking the next glimpse
based on the information of the previous ones. Instead of training the network
only on the locations of the last glimpse g1:S that was generated in a sequence of
length S, the training can be improved by also using all included sub-sequences
g1:s with s ≤ S [221]. Thus, the characteristic eligibilities ζµ1:s are computed for all
sub-sequences, while the sum is used for updating the weights as

ζµ =
S∑
s=1

ζµ1:s =
S∑
s=1

(xs−µs)
σ2 .

for the mean and for the standard deviation respectively.

For training, a hybrid-loss [218, 221] is used that includes the objective functions
for the action and location policy, plus the mean-squared error between V̂t and the
current estimation of Rt, based on the tuples in the experience buffer E . The full
objective function then becomes

L = α ·
[
At(E , V̂ (st+n; Θ)) · [ζπ(st; Θ) + β · ζµ(st; Θ) + β · ζσ(st; Θ)] +

(
n−1∑
i=0

γirt+i + γnV̂ (st+n; Θ)− V̂ (st,Θ)
)2 ]

, (5.1)

5.1 The recurrent attention asynchronous advantage actor-critic
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where n− 1 is the size of the current experience buffer. If the episode is terminated,
the total reward Rt can be computed for each visited state. For the case of a full
episode buffer, the bootstrapped state-value V̂ (st+n; Θ) is used to estimate the total
reward Rt, as displayed in (5.1). The advantage function At is approximated via
generalized advantage estimation [224] using the rewards and state-values from the
experience buffer E .

The scalar β is weighting the contribution of the computed errors derived from the
location and action policy to the update. While for β = 1 both errors contribute
equally to the weight update, a smaller factor of β < 1 assigns more resources to the
action policy part, for β = 0 the location policy part is completely omitted [221].

For a practical implementation, the presented pseudocode for the A3C model, listed
in Algorithm 6 in Appendix A, can mostly be reused. The only changes that have to
be made are to use an update rule for the network’s weights that is based on the
new objective function (5.1) and to implement the computation of the advantage
function At.

5.2 Summary

In this part of the thesis, a scaffold was developed that intends to support the
learning by integrating an adaptable attention guided visual input. The designed
recurrent attention asynchronous advantage actor-critic model combines the asyn-
chronous advantage actor-critic model with the recurrent model of visual attention.
The designed framework has the ability to learn an active generation of fovea-like
glimpse-sequences as an input instead of the high-dimensional image of the whole
state of the environment. In addition, the asynchronous actor-critic part, together
with the reduced size of the input, has the capability to rapidly learn to solve complex
problems.

The next step Compared to vision, the tactile capabilities of robots are currently
hardly developed, which makes it difficult to generate learning models where an
artificial agent has to solve a task, based on tactile data as its only sensory input.
The next section presents a scaffolding approach that incorporates “active haptic
perception” into the learning process. Similar to the current chapter, the idea is to
exploit a recurrent attention model in order to endow the agent with the ability to
actively learn to generate an attention guided input based on tactile sensory data.
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Scaffolding the learning of
efficient haptic exploration
using “active haptic
perception”

6

Although the sense of touch is existential to human life, tactile capabilities of robots
are currently hardly developed. This stark contrast becomes even more apparent if
one compares touch and vision: while good camera sensors have become affordable
and ubiquitous items and huge image and video databases together with deep
learning have brought computer vision close (some would argue on par) to human
vision [43, 225, 226], comparable advances in robot touch are widely lacking [227,
228]. One reason is the very limited maturity of tactile sensors if compared to
human skin. A second and more significant reason is that touch differs from vision
in an important way: while looking at an object leaves its state unaffected, touch
requires physical contact, strongly coupling the sensor and the object in potentially
complex ways that usually also change the position, orientation or even the shape of
the object. Human haptics makes active and sophisticated use of this strong coupling
to lend us skills such as haptic exploration, discrimination, manipulation and more.
Large parts of these tasks are hard or impossible to model sufficiently accurately
to replicate them on robots, thereby calling again for machine learning approaches
similar to those that were highly successful in vision. However, the highly interactive
nature of touch makes not only the learning problem itself much more difficult
but also creates a problem for the availability of meaningful training data, since
information about interactive haptics is much harder to capture in databases of
static tactile patterns. As a consequence, learning approaches for the modality of
interactive touch are still largely in their infancy and tactile skills enabling robots to
establish and control rich and safe contact with objects or even humans are still a
largely unsolved challenge which severely limits the use of robots in both domestic
and industrial applications. Recent related work [229] presenting an approach for
learning of contact-rich tasks with a robot given a goal specification in the space of
tactile measurements, highlights the desirability of tactile sensing for robotic control
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during manipulation and also emphasizes the difficulties connected with the absence
of physics simulation for modeling of contact.

6.1 From human haptic perception to robotics

In human perception, the visual information is not acquired at once, but is accumu-
lated from details that are recognized in small zones via the central fovea. In order
to gather these pieces, the observer has to learn to pay attention to the important
salient points of the scene and then gain the information via an active process
of looking. As visual perception is a touch-like process [136], recent research
indicates the presence of similar limitations in the tactile modality [230]. In this
work, the integration of attention mechanisms is seen as an efficient way to scaffold
the perceptual process within a learning task. As a result, the idea is extended
from the visual to the haptic domain. The presented approach (see also [24]) is
again based on the recurrent model of visual attention. By taking inspiration from
insights about the organization of haptic exploration in humans, it is used to create
a potentially interesting new bridge between a computational understanding of
interactive touch in robotics and in human haptics. The focus of this section is thus
to design a learning scaffold for the synthesis of one central and important
haptic skill: the discrimination of unknown object shapes through a sequence of
actively controlled haptic contacts between a sensor and the object surface.

Exploratory procedures & haptic glances In humans, haptic capabilities are avail-
able from birth, for example those that are necessary for a neonate to suckle. During
early development, children acquire motor control and the ability to focus their at-
tention which increasingly develops sophisticated haptic exploration. By pre-school
age, children demonstrate adult-like patterns of exploration [231] that they gate
according to contextual demands [232]. This developmental process results in a
small set of optimized action patterns, widely known under the term exploratory
procedures (EPs) [233]. Robots, like humans, benefit from haptic sensors in order to
find, identify, and manipulate objects.

Humans use a small set of exploratory procedures to extract properties such as
texture, hardness, weight, or volume. Under some circumstances, the level of
complexity in haptic exploration can be effectively reduced to what was termed
the haptic glance by [234]. Specifically, Klatzky and Ledermann define the haptic
glance as brief, spatially constrained contact that involves little or no movement of
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the fingers. In the same work they pose the question how the information from a
haptic glance is translated into effective manipulation.

Haptic glances in robotics In order to utilize the concept of haptic glances in
the field of robotics, they are proposed as atomic, primitive exploratory entities
within this work. Exploratory procedures can be thus viewed as a sequence of such
primitives. For computational purposes the following assumptions were made:

• A haptic glance - being the simplest haptically directed action - is a foun-
dation for any more complex haptic behaviour, including haptic exploratory
procedures of any type.

• It is assumed that a haptic glance is defined by a tuple consisting of a pressure
profile yielded by the tactile sensor at contact and the associated sensor pose.

Of course, this is not the only way to define haptic glances. In [235], haptic glances
are interpreted as static images — also termed tactile imprints — and are calculated
as normals to the surface at heuristically estimated points of interests. They can also
be parameterized by a target value lying in the tactile space, similar to [229], or
specified by the magnitude of applied force, in case the contact has been previously
established.

6.2 The haptic attention model

Using the definitions of exploratory procedures and haptic glances, the idea of the
current approach can be summarized in an intermediate research question:

Is it possible to scaffold the learning process of haptic problems by using
recurrent attention in order to learn synthetical exploratory procedures
for robots using optimization of motor control?

Therefore, the recurrent model of “visual” attention [148, 218] that was previously
discussed in Chapter 5 is transferred to the tactile domain as illustrated in Figure
6.1. The design of the resulting haptic attention model (HAM) is — like the original
RAM — designed as a classifier. But instead of classifying images, the HAM has to
discriminate different objects using a sequence of tactile sensory data. While in the
visual domain an image has to be classified using the accumulated information of
visual glimpses, the image is replaced by a to-be-classified object and the glimpses
by haptic glances. These glances can be presented by a vector s = (l,p)> consisting
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of the pose l of the used tactile sensor and the associated pressure profile p that is
measured by the tactile sensor. The full target pose of a sensor can be described
by a vector l = (xg, yg, zg, e1, e2, e3) that is constructed out of three variables xg, yg
and zg that are defining its position in the global coordinate frame and three Euler
angles (e1, e2, e3), defining its orientation. Depending on the experimental setup
and the designed learning task, the HAM can be designed to either control all six
variables for generating a new haptic glance or only a subset. The HAM that is
presented in the following text is designed to modify only two of the six parameters:
the position along the x-axis (xg) and the angle around the y-axis (e2). In this
configuration, the remaining variables yg, e1 and e3 are now either staying constant
or are controlled externally. For the sake of readability, the alterable position xg is
called x and the angle e2 is called ϕ in the following text. Thus, each haptic glance
can be represented by a pose (x, ϕ) of the tactile sensor. Like an image, which is
built out of a 2-dimensional pixel-matrix, many sensors are also able to measure
the pressure profile of a 2-dimensional area. This px × py pressure matrix is then
flattened to a normalized pressure vector p.

Tactile network First, the input is processed through a tactile network which is
arranged like the glimpse network of Section 5.1 but built out of linear layers
with just 64 neurons each. Instead of processing glimpses and their respective
locations, it combines the recorded pressure profile p with its associated pose
(x, ϕ) into one single feature vector.

Memory network The features are then propagated through the memory network.
It consists of one single LSTM network with hidden state of 256 neurons. The
LSTM provides features to the object classifier and to the location network that
in turn provides a new pose.

Location network The location network uses the feature vector that is computed
by the memory network for generating a new location-orientation pair that is
then used for the next haptic glance. Except smaller linear layers with only
64 neurons, it has the same structure as the one presented within Section 5.1.
Therefore, Gaussian distributions are used for sampling the position x and
orientation ϕ respectively by adapting the mean µ and standard deviation σ.
For computing the four necessary variables µx, µϕ, σx and σϕ, the features
of the LSTM are propagated through an independent linear layer with 64
neurons for each of them. The means are sampled within the range µ ∈ [−1, 1]
using tanh as the activation function. For the standard deviations σ ∈ [0, 1]
the sigmoid function is employed. To ensure that the location and position of
the sensor is valid, the sampled values of the Gaussians are restricted to the
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Fig. 6.1.: Illustration of the overall network architecture for the haptic attention model. The
figure illustrates the overall design of the multi-module meta-controller model
and its interaction with a simulation environment.

range [−1, 1]. Thus, if the sampled x or ϕ is sampled outside this range, it is
resampled using the same mean and standard deviation.

Classification network In order to classify a given object, the generated feature
vector of the LSTM is not only transferred to the location network, but also
propagated through a different linear layer that is then used for classification.
Therefore, the output is processed through a softmax function in order to
encode the predicted class-affiliation of the current object in a probability
density π(o′|g1:s; θt), representing the current policy of the reinforcement
learning agent. Here, g1:S(θt) encodes the accumulated LSTM feature vector
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after S glimpses, using the current set of weights θt at training step t. For
classification, the class o with the highest probability

o = argmax
o′

π(o′|g1:S ; θt)

is taken as the prediction.

6.2.1 Training

One training step is given through the sequence of a pre-defined number of haptic
glances, followed by a classification attempt. The designed model can be seen as
a reinforcement learner which has to choose the right action in order to classify
the given object. For classifying the object correctly, it receives either a reward
of r = 1 or r = 0. The predicted probability of correctly identifying the target
object o after S glances is then given as π(o|τ1:S ; θ). To this end, the categorical
cross-entropy can be used to compute the loss. The classifier and the location network
are then trained together using an update rule (6.1) derived from a hybrid loss that
combines eligibility-weighted updates from the REINFORCE algorithm (2.15) with
a cross-entropy misclassification penalty. The mean µ, and standard deviation σ of
the sampled position can directly be seen as the adaptable variables of the location
network instead of its weights θ. Thus, for learning the mean µ of the location
component of the policy, the characteristic eligibility outlined in (2.17) is used. The
standard deviation σ is learned by applying (2.18).

Including a cross-entropy based penalty of misclassification then leads to

∆θ = −α ·
[
β · (rt − bt) · (ζµ + ζσ) +

O∑
o=0

log(πc(o)) · yo

]
. (6.1)

The function πc(o) gives the computed classification probability that the target object
is object o, while yo is 1 if o corresponds to the correct object and 0 otherwise. ζµ
and ζσ are the characteristic eligibilities, rating the generated mean and standard
deviations. The value β is weighting the contribution of the location policy within
the weight update as it was explained for the objective function of the RAA3C model
in Section 5.1.1.

The baseline layer is updated separately using the mean-squared error. Instead of
training the baseline b only on the accumulated tactile information of the last glance
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τ1:S , the training can be improved by also using all included sub-sequences τ1:s with
s ≤ S [221]. This leads to the update rule

∆θb =
S∑
s=1

[rt − b(τ1:s; θb)]2 . (6.2)

6.3 Summary

The presented approach extends the recurrent model of visual attention to the haptic
domain for enabling artificial agents, like robots, to learn to identify different objects
not by vision but touch. Inspired by the fact that humans are haptically exploring
their environment by exploiting various kinds of “exploratory procedures”, the
recurrent model of “haptic” attention is designed as a scaffold to endow the agent
with the ability to learn its own exploratory procedures using a pre-defined
number of atomic interaction primitives, called haptic glances.

The next step In the last three chapters, the idea of the perception-action cycle was
utilized for creating different approaches that use a permanent scaffolding of the
perception process for two families of reinforcement learning problems, where the
agent either interacts with the environment in order to solve a specific problem or
has to classify objects while relying only on tactile information. After designing
scaffolds with the aim to improve its perceptual skills, the next chapter puts the
learning process itself into focus. By carefully shaping the agent’s learning behaviour
through the generation of a suitable sequence of sub-tasks, a temporal scaffold can
be constructed that has the ability to not only speed up the learning process but also
to significantly improve the learning performance.
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Scaffolding the agent’s
internal representation
through skill transfer

7

Transfer learning has been shown to be very effective to initialize a reinforcement
learner from the results of previous learning of simpler source tasks which share
structure with or are suited as building blocks for the original target task of an
artificial learner [161, 162, 168]. Figure 3.5 of Section 3.3.6 displays a mind map
that relates machine learning methods and the key aspects of scaffolding to transfer
learning and curriculum learning. Both methods also had a special position within
the presented approaches. They could not only be affiliated with fading & transfer of
responsibility but also to a second characteristic. While transfer learning could also
be related to simplification, it was possible to connect curriculum learning to ongoing
diagnosis & assessment. As curriculum learning was also utilized to extend transfer
learning [162, 192, 194], it is a promising combination for designing a scaffold
for facilitating the learning process of already established learning models — like
existing (deep) reinforcement architectures — for mastering complex learning tasks.
One special aspect that distinguished both approaches from many others is that the
basic principle of both transfer and curriculum learning is the efficient manipulation
of training data and exploitation of existing experience of the artificial learner. They
can thus be combined with existing methods without the need to modify them.

Linear and also deep reinforcement learning architectures, for example lack the
ability to efficiently learn these kinds of hierarchical scenarios to a satisfying level.
Therefore, many approaches propose special learning models that have the ability
to learn “temporal abstraction” for splitting problems into a hierarchy of simpler
sub-tasks (see again Section 3.3.2). Alternatively, in this chapter the hypothesis is
put forward that the pre-learning of a carefully chosen selection of simpler sub-goals
before starting to learn the main problem can be used for improving non-hierarchical
learning models and thus lead to better and faster learning. The resulting approach
can thus be seen as a self-regulating module that supports existing learning
architectures by improving its internal representation. An important aspect in
this connection might be the native “gluing” of simplification and ongoing diagnosis
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& assessment to fading & transfer of responsibility by these two techniques. It is
therefore worth focussing especially on their integration into the scaffolding and
also the studying of their combined effect on learning, i.e.

Can a scaffold, based on the combined approach of transfer and cur-
riculum learning, augment the learning process of established learning
models? How is the integration of key characteristics of the refined
concept of scaffolding influencing the learning process?

Outline At first, the main idea of the designed scaffold is explained. In the next
part, the core ideas of the strategies are presented, together with some necessary
terminology and methods for representing and generating learning tasks.

7.1 The combination of a structured curriculum with
transfer learning — 4 strategies of skill transfer

While most transfer learning schemes don’t pay much attention to the fashion
in which the source tasks are provided, they can be combined with curriculum
learning [162, 189, 192]. Although curriculum learning is a promising attempt,
an important question in this regard is how to choose and how to structure the
training data for enabling an improved learning process. In the last years, various
techniques for automating this kind of process were proposed [190–194]. They vary
from formulating curriculum sequencing as a Markov Decision Process [192] and
the learning of a curriculum policy [194] to adapting a curriculum by taking the
rarity of the occurring events into account [193].

Main idea In this context, the current chapter also presents a newly invented
method for the automatic generation of a curriculum. This one, however, is not
learned but is adapting by utilizing the concept of scaffolding as it is described in
Section 3.4. Through the modeling of a temporary supporting strategy of choosing
source tasks such that the level of difficulty of each new source task increases
with the proficiency of the learner, it always stays within what psychologists
denote as the learner’s “zone of proximal development” [102, 103] (see also again
Figure 3.1 in Section 3.1) and is thus able to speed up the learning process. To
this end, a sequence of four strategies is presented, illustrated in Figure 7.1, that
should facilitate the learning and the transfer of sub-skills. Beginning with the
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key characteristic of simplification, every following strategy is gradually integrating
a new aspect for choosing suitable to-be-learned source tasks that are related to
the sub-goals. These additional aspects are fading, transfer of responsibility and
ongoing diagnosis & assessment. By applying all strategies to the same learning
setup, it is possible to get insights into the individual contribution of the different
characteristics. Although, one usually aims for the most efficient approach, this one
is intentionally split into four strategies. Doing that allows analysing how important
the different aspects are for facilitating the learning of an artificial agent and to get
hints for questions like: Is fading a necessary aspect for this kind of scaffold? How
important is the ongoing diagnosis of the agent’s current skill level?

Strategy 4 - Ongoing diagnosis & assessment

Strategy 3 - Transfer of responsibility

Strategy 2 - Fading

Strategy 1 - Simplification

Fig. 7.1.: The four different strategies are built upon another while gradually adding
more features of the “psychological concept of scaffolding” into the process of
generating and assigning source-tasks.

All strategies assume a simple and generic structure of the learning domain:

1. Learning should occur in a sequence of episodes.

a) Each episode is focused on a single task instance, attempting to solve it in
a number of consecutive time-steps (number of actions) and terminating
after success or when a step limit is exceeded.

b) After termination, another episode starts.

2. It is assumed that source and target tasks are from the same domain, so that
both can be handled by the same learning process.

The strategies are also motivated from a typical characteristic that can be found in
many different tasks: reaching the goal requires to suitably concatenate a number

7.1 The combination of a structured curriculum with transfer learning
— 4 strategies of skill transfer
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of sub-skills. One particular example is given by mediated control tasks, i.e. tasks
that involve some kinds of tools (also called mediator objects) in order to control
a second target object. In this tasks, each sub-skill refers to the target object or
to one of the (single or more) mediator objects. To solve such kinds of tasks, the
agent has to learn these sub-skills and bring them together in a suitable sequence.
For complex tasks, each sub-skill may itself require a decomposition, requiring the
agent to organize an entire hierarchy of sub-skills. This existence of sub-skills can
be exploited by pre-learning the most essential low-level ones, for example the
identification and manipulation of the target object as well as the recognition of
the goal conditions. Then, instead of learning source tasks up to perfection, the
agent only learns them a small number of times and uses the imperfectly learned
sub-skills for a “lightweight initialization” of the learning process of the target task.
This also prevents specialization on the source tasks to interfere with the learning of
the target task. In the target task the agent should learn, based on the knowledge it
has achieved in the source task, more intermediate skills like how to use objects as
tools or object-object interaction.

7.1.1 Strategy 1 & 2: simple techniques for skill transfer

Strategy 1 Formalized in Algorithm 1, Strategy 1 builds the core concept of the
presented approach by using transfer learning as a temporary support in order
to facilitate the learning process of a target task using random generated source
tasks that have to be learned within the same domain before the main task. It uses
only skill transfer based on prior learning of a number of randomly selected, easier
source tasks before switching to learning instances of the target task and is thus a
simplification approach. It has the number of to-be-solved source tasks Nsource as its
only tunable input parameter. During the learning process, a random source task is
generated at the beginning of each episode. After a given set of to-be-learned source
task instances has been solved, the learning is switched from source task to target
task learning without stopping the learning process.

Strategy 2 In the first strategy, a new source-task is always generated if the agent
has failed to solve the current one. As the source tasks are generated at random,
they might not be presented in a sequence that fosters the learning of the agent. It
could for example lead to situations where the learner has to solve difficult tasks
too early or easy tasks within the late phase of the learning process. The first stage
to suppress this kind of sequences is given by Strategy 2. The solvable source tasks
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Algorithm 1: Skill transfer — Strategy 1
Data: NSource - Number of uniformly sampled to-be-learned source task

configurations
for learning episode = 1, M do

if NSource 6= ∅ then
Random sample task instance from C
start learning episode
if Agent solves task then

NSource = NSource − 1
end

else
start episode and learn the target task

end
end

c can be merged to a set C that is provided for the source learning stage. The
number of to-be-solved source tasks, i.e. the number of elements in C is given by
Nsource. Additionally Csolved ⊆ C can be defined. Csolved is a subset of C, containing
the source tasks that already have been solved at a particular time step. Using
the set C of source tasks, Strategy 1 can be refined by generating a fixed set of
randomly generated source tasks. Now a source task is picked randomly from C
at the beginning of the episode during the first stage of the learning process. If
the agent was able to solve the given task, it is removed from C. When all source
tasks are solved, i.e. C = ∅, the agent starts to learn to solve the target tasks as in
Strategy 1. By generating a set using a fixed number of pre-sampled source tasks, a
mechanism that loosely resembles a fading support is embedded into the approach.
At first the agent is likely to solve the easy source tasks that are eventually removed
from C, leaving only the more difficult ones that the agent is now forced to learn.

Algorithm 2: Skill transfer — Strategy 2 & Strategy 3
Data: Set C of Nsource source tasks
for learning episode = 1, M do

if C 6= ∅ then
Random sample task instance from C
start learning episode
if Agent solves task then

remove task from C
end

else
start episode and learn the target task

end
end

7.1 The combination of a structured curriculum with transfer learning
— 4 strategies of skill transfer
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7.1.2 Strategy 3 & 4: refining skill transfer by analysing the learners
way of perception

The importance of the perception of the artificial learner for the learning process was
elaborately discussed in Section 3.3.1 and has also inspired the previously presented
scaffolding approaches (see Chapter 4, 5 and 6). In this approach, the agent’s way
of perception is again incorporated. This time, however, it is not directly influenced
during the learning process. Instead, it is used to create the to-be-learned source-
tasks of the agent not with respect to their physical characteristics but the agent’s
sensory information. In this way, the agent might be able to explore many more
new sensory states instead of perceiving only agglomerated sensory states within
certain regions. It was already mentioned in Section 4.2 that artificial and biological
agents perceive the world by utilizing special sensors which are for example eyes,
nose or ears for biological agents and cameras, laser scanner or pressure sensors for
robots. The sensors can then be seen as a function F :W −→ S that maps the full
information of the environmentW (the world space) to the sensor space S that is
defined by the kind of used sensor (see again Figure 4.2). In addition to the sensor
space, a task space T ⊆ W can be defined as the space of all possible configurations
of to-be-solved tasks t ∈ T for the given learning scenario. Yet, the task space
differs in most cases from the sensor space which is used as an input for the learning
algorithm. In the worst case, the mapping from the task space to the sensor space is
also not invertible. This possible decorrelation of task and sensor space can have
a huge impact on the learning process as small deviations within the task space
can have completely different effects within the sensor space. Consequently, the
agent’s modalities of perception, encoded in the sensor space, have to be taken into
consideration during the structuring of the learning process.

Under these assumptions, each task (irrespective of being a source or target task)
can be represented by a pair c = (s, t), where s represents the task in the sensor
space of the agent, and t represents the task in some task space coordinates (which
usually differ from the sensor coordinates).

Modelling the sensor space The aim is now to minimize the number of required
source tasks Nsource while maintaining a uniform distribution over the relevant part
of the sensor space. One way to realize this is through a Voronoi tesselation of the
sensor space (as it was done in Section 4.2). The difference to the earlier approach
is that now a large number of random source tasks cr = (s, t) is generated within
the task space. The next step is to cluster these tasks cr within the sensor space
using s ∈ S. This can again be achieved with for example the K-Means algorithm
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[198–200] and leads to a desired number1 of clusters. For the prototype within each
cluster, the task configuration cr with the most similar representation s in the sensor
space is chosen to be in the task set C. These Nsource source-task configurations that
are now defined as c(t, s), are the ones that are actually used within the learning
process. The whole process of generating the set C is illustrated in Figure 7.2.

cr(t, s) ∈ Cr P prototypes in sensor-space S

Source tasks c ∈ C

K-Means clustering with respect to s

Searching for cr that is most similar to Pi with respect to to s

Fig. 7.2.: Illustration of process for generating a structured set of source-task configurations
C.

Similarity metrics A good measure of similarity is a key ingredient for scaffolding
strategies. To efficiently structure the learning process, the pending tasks have to be
conveniently compared to find the one which corresponds best with the agent’s skills
at that time. One reasonable choice is to measure the correlation between different
tasks s in the sensor space by utilizing the cosine similarity

CosSim(u, v) = (u · v)
||u||2||v||2

. (7.1)

The best way to determine the correlation of the tasks heavily depends on the
structure of their embedded space and the processing afterwards. Thus the similarity
of tasks is not only influenced by their own composition but also by the characteristics
of the used representation and learning algorithm.

For detecting the kind of measurement that is most beneficial for the given task,
the literature states numerous different approaches. They range from taking the
negative squared euclidean distance of two vectors [236] to biologically inspired
models [237]. So, it is not always a good choice to use equation (7.1) for measuring
the similarity between the different task configurations within the sensor space.

1For Nsource source-tasks, the same number of clusters has to be generated.

7.1 The combination of a structured curriculum with transfer learning
— 4 strategies of skill transfer
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A notable alternative to the cosine similarity is based on the “Pearson correlation
coefficient” [238] and defined as

Corr(u,v) = (u− ū) · (v − v̄)
||(u− ū)||2||(v − v̄)||2

. (7.2)

This coefficient lies in between -1 and 1 and measures, like (7.1), the linear correla-
tion between two data points, but is also invariant to changes in location and scale
of the two vectors.

Strategy 3 The idea to create a set C of source tasks, where the elements are not
generated randomly but in a way that tries to uniformly cover the whole space of
possible source tasks is realised in Strategy 3. It provides a much more thoughtful
distribution of source-tasks than it was used in Strategy 1 and 2 by using prototypes
that should be distributed more uniformly over the sensor-space. As a consequence,
it adds the feature of “smoothing out” the transition process from easy source-tasks
to hard source-tasks. It can be seen as a transfer of responsibility by homogeneously
selecting the to-be-learned source-task over the full range of states within the
learning world that the agent is able to perceive.

Strategy 4 Scaffolding claims that the time-course of learning is accelerated when
new learning instances are not selected at random, but instead are matched to the
learner’s proficiency at that time. This requires a new example to be neither too easy
nor too difficult for the learner. This can be achieved through a “similarity-similarity
based heuristic”: choosing each new learning example to be similar to one of the
instances that the learner has solved previously. This process of ongoing diagnosis &
assessment is implemented within the last Strategy 4 in order to help the agent to
stay in its “optimal zone of proximal development”. Formalized in Algorithm 3, it
complements Strategy 3 with an approach that also replaces the random selection of
the source tasks during the learning process with a structured selection that restricts
the choice of new source tasks to a vicinity of the set of already solved source tasks.
This vicinity is defined with the help of a suitable similarity metric (as presented in
the last subsection) in the source domain. Therefore the next to-be-solved source
task is selected by minimizing the distance to a solved source task, according to
the chosen similarity metric. Similar to Strategy 3, its main input parameter is
again a set C of to-be-solved source tasks before switching to learning the target
task. Once more it is important to mention that the similarity of two source tasks
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ci(t, s) and cj(t, s) is not measured using their configuration in tasks space, but in
sensor-space.

Algorithm 3: Skill transfer — Strategy 4
Data: Set C of Nsource clustered source tasks
for learning episode = 1, M do

if C 6= ∅ then
if Csolved = ∅ then

Sample task c from C
else

Sample random task k ∈ Csolved
Among unsolved source tasks C:
find task c ∈ C that is similar to k

end
else

Sample random task c for the target task
end
start episode for learning c
if Agent solves task c and C 6= ∅ then

add c to Csolved
remove c from C

end
end

7.2 Summary

This chapter has presented an approach for speeding up the learning process of an
artificial agent by combining transfer and curriculum learning on the one hand and
the integration of key aspects of scaffolding like “fading”, “transfer of responsibility”
and “ongoing diagnosis & assessment” into the learning process on the other hand.
The proposed method aims to improve the internal representation of non-hierarchical
learning models by shaping it through a sequence of pre-learned source tasks whose
difficulty is aligned to the capabilities of the artificial learner at that time. Two
special aspects of this method are that the learning of source tasks is performed
together with the learning of the target task within one single learning run while
the curriculum for learning the source tasks is inspired by some of the developed
features of scaffolding artificial agents (see again Figure 3.5). To study the influence
of the individual characteristics, four different learning strategies were designed.
The strategies are all using the same main concept, while gradually integrating more
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and more ideas of scaffolding. Testing all four strategies on a benchmark problem
should thus give some insight into how strong the individual aspects are influencing
and improving the learning process.

The next step In the current part of the thesis, different strategies for scaffolding
the learning process of an artificial agent for specific tasks were presented and
discussed. In the next part, these scaffolds are applied on benchmark problems in
order to analyse them and to test their efficiency.
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Part III

Facilitating the learning process of
interaction problems: testing the proposed

scaffolding approaches





A learning domain for
mediated interaction

8
The interaction of humanoid robots and humans is a challenging task which not

only requires the fast learning of new assigned duties but also the ability to learn
in ways that enable the human to easily instruct the robot. Many daily actions,
such as pushing an object with a stick, pouring the contents of a mug, or accessing
a book in a drawer, require some special class of object-object interaction, called
mediated interaction. In this class of interactions, the agent can interact with the
target object only after actively preparing access via the intermediate use of some
auxiliary mediator object. Mediated interaction requires at least two objects. One
goal-related object — the target object — and a second object — the mediator object
or tool — that enables the indirect interaction with the target object. If the robot’s
morphology is resembling a human, tool affordance [134] — for example their use
as a mediator object within a tasks context — is an important aspect that has to
be taken into account [2, 4]. Learning to exploit objects as tools for different tasks
is a capability found in humans, but also in some other species, such as primates
or birds [1, 239]. It has been linked to higher cognition and is also a desirable
capability for robots to become more adapt at many daily tasks typically arising in
human environments [2, 3]. While infants are able to learn to identify the goals of
novel tool-use events and also to master out-of-reach tasks [240], it is a challenging
task to learn for robots and artificial agents in general.

Outline The aforementioned statement motivates not only the need for learning
mediated interaction tasks but also emphasizes their difficulty. It is thus a reasonable
choice to use suitable mediated interaction scenarios in order to test if the scaffolds
that were presented in the last part of the thesis are able to positively influence
the learning process. This chapter presents a constructed simulation world for
mediated interaction, together with designed learning scenarios. At first, the overall
concept is described, together with the underlying goals. After the discussion of the
possible obstacles and how they were resolved, the final realization is discussed. The
“Simulation Framework for Mediated Interaction Tasks” is designed as a lightweight
and adaptable learning domain that can be used for testing the approaches dealing
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with perceptive acting (Chapter 4), active visual perception (Chapter 5) and also the
one that is designed in order to improve the learning through the refinement of
the internal representation of the model (Chapter 7). As the proposed method for
endowing an artificial agent with the ability to learn efficient active haptic perception
(Chapter 6) requires special demands to the learning domain and also needs a
properly designed task for testing, it is examined in a different test bed.

8.1 The general design concept of the simulation world

The design of the simulation environment was driven by two major goals. First of all,
it should offer a flexibly modifiable framework to study a wide range of interaction
scenarios that are sufficiently close to real physical situations to be useful for a
subsequent porting step to a real robot. At the same time, the environment should
be abstract enough to avoid burdening the experiments with details that may be
peripheral to obtain insights into the properties of different learning strategies. In
order to bring the interaction with objects into the scenario’s focus, the agent should
not learn how to reach the available items. Instead the agent should be able to pilot
to pre-defined points on the object’s surface, where it can manipulate their position
and orientation. These multiple pre-defined points simulate different ways to grasp
an object.

This thesis puts its focus on scaffolding learning processes that are relying on
reinforcement learning approaches for adapting the behaviour of an artificial agent.
In this class of machine learning algorithms a discretized world is required, where a
specific action can be assigned to every time step. For that reason, the kinematics in
the scenario are built out of distinct movements that either translate or rotate the
items by a fixed value. By focusing on “mediated interaction”, this work goes beyond
the usually considered learning scenarios where an agent directly has to reach a
goal or act on a goal object (e.g. pushing something to a goal position). Instead,
learning strategies are explored where desired effects cannot be created through
direct interaction, but instead only by learning to shape a suitable “hierarchical
interaction structure” between the agent, a mediator object and a goal object. The
interaction of objects also directs to the need of a suitable physics engine that has to
be capable of handling the interaction between multiple objects.

100 Chapter 8 A learning domain for mediated interaction



8.2 Realization of a 2D simulation world with simplified
physics

The resulting designed simulated environment, shown in Figure 8.1, was constructed
by taking the abovementioned conceptual ideas under consideration. In order to
keep the computation cost low, a 2-dimensional world is employed. The whole
learning domain has a size of 30× 30 units. It contains a target object and a mediator
object, also called the tool. The target object is designed as a green disc with a radius
of 0.5 units. The circular shape gives the agent the same contact surface in every
direction, which simplifies the learning of object-object interaction patterns. The
difficulty of precise pushing and pulling, however, is increased as a round object is
more likely to slip away. The default shape of the used tool (colored in orange) for
all scenarios is that of an “L”. This tool is complex enough for generating challenging
learning tasks, which are nevertheless solvable for a reinforcement learning agent.
Furthermore, it is designed for learning scenarios where a target object has to be
grasped and pulled into a specific direction, or has to be pushed away. As the form
of these mediator object allows situations where the target object can slip out of
the initialized grasp by sliding along the edges, the agent has to learn to find stable
grasping poses within the experiments. The physics within the domain is simulated
with the open source Box2D physics engine1. By default, the friction of the objects is
set to a high value. Thus, if the agent interacts with the target-object via the tool,
the resulting sliding movement is limited. For object-placement tasks2, a part of the
environment is marked as the goal-area. The goal area, visualized as a grey circle
with a radius of 3 units is in the origin of the domain.

Introducing picking locations The design-focus of the simulation world is not to
learn object manipulation but object-object interaction, i.e. to operate one object
by controlled collisions with a second one. Thus, some mechanisms are introduced
that simplify the process for the agent to control the position and orientation of
a specific object. One of them is the introduction of picking locations, which are
a specific number of fixed static points that are marked on the objects. They are
visualized as small black dots in Figure 8.1. By accessing these points, the agent is
able to move the objects about a fixed distance. In addition, the object can also be
rotated by a fixed angle. The rotation axis is given by the chosen picking-location.

1http://box2d.org
2In order to solve an object-placement tasks, a target-object has to be placed into a specified goal-area

(within a pre-defined number of time steps).
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The target-object offers a single picking location at its center, while the tool provides
three picking points.

The interaction range To limit the size of the domain, the ability of the agent to
interact with the objects is restricted to a certain area. This interaction range is
represented by the large circle around the goal area with a radius of 10 units. Within
this circle, the agent is able to interact with the objects. A possible analogon to
this limited interaction range in the real world is the limited length of a human’s
or robot’s arm that allows them to interact only with objects within a certain reach.
To realize this limited area for interaction within the simulation world, a rope-joint
is implemented. This kind of joint behaves like a rope that is attached between
objects. If the distance of the two objects is smaller than the length of the rope, they
can move freely. Yet, they are not able to increase their distance further than the
length of the rope. Consequently, if the agent is manipulating an object at a chosen
picking location within the simulation, a rope-joint is attached at the domains center
and the chosen picking location of the object and its length is set to the radius of
the interaction range. This prohibits the agent to move the currently chosen object
outside of the interaction range. It is, however, possible to move objects outside
of the interaction range via mediated interaction, for example by pushing it with a
second object.

Interaction border

Goal area

Target object
Current picking location of the agent

Tool

Fig. 8.1.: Schematic description of the learning domain
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8.3 Perceiving & acting: defining a suitable state and
action space for multi-object interaction scenarios

After the design of an appropriate simulation framework, the next challenge is to
combine it with different kinds of reinforcement learning algorithms, described in
Chapter 2. Reinforcement learning algorithms need a proper set of states S that
encodes the information the agent receives from the learning domain. Secondly, the
algorithms require a set of (usually discrete) pre-defined actions A that the agent
has at its disposal.

8.3.1 A general set of discrete actions

In the designed learning domain, the available objects can be manipulated by
the agent at specific picking-locations. In order to select a picking-location p, an
individual action ap is assigned to each of them. After selecting one of the picking
locations, the agent is able to manipulate the corresponding object in the following
time step by utilizing a set of six actions

A = {a−ϕ, a+ϕ, a↑, a↓, a←, a→},

as illustrated in Figure 8.2. For changing the orientation, the agent can choose
between two different actions a−ϕ that rotates the object about −π/4 and a+ϕ that
rotates the object about +π/4 around the current picking location. For changing the
object’s position, the agent can choose between four different actions a↑, a↓, a←, a→
that move the object about 1 unit in the corresponding direction.

Introducing an additional picking-location Using the presented way of interaction,
the agent always has to choose a picking-location that is related to an object, which
might bias the learning. To this end, an additional picking location is introduced.
It is exploited as an unbiased starting location for the agent. Furthermore, this
additional picking location is integrated to be an absorbing state that increases the
stability of applied learning algorithms. For the designed learning world, this point
is located in the center of the domain. As a result, the full action set A is built out of
the 5 actions ap for selecting the individual picking locations and the 6 additional
actions A for manipulating the object at the selected location, leading to a total
number of 11 executable actions.

8.3 Perceiving & acting: defining a suitable state and action space for
multi-object interaction scenarios
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(a) Choosing a picking location at time step t

a↓

a←

a↑

a→

a− φ, a+ φ

(b) Manipulating the object at time step t+ 1
using the actions
A = {a−ϕ, a+ϕ, a↑, a↓, a←, a→}

Fig. 8.2.: An illustration how the agent interacts with the world. The desired picking
location is selected in one step (a), while the first action for manipulating the
object at the chosen location is executed in the following time step (b).

Prevent the choice of counterproductive actions To speed up the learning, just a
subset of actions A(s) ⊆ A is presented to the agent in every state s. This subset
A(s) only includes actions that can actually be executed by the agent within the
current state s and are also altering the state of the environment. Consequently, the
selected picking-location at that time can not be chosen as the next action, objects
outside of the interaction range can not be allocated and objects that are isotropic —
like the disc-shaped target object — can not be rotated.

8.3.2 Perceiving the environment

As the agent should resemble a simplified robot, its knowledge of the environment
should emulate some kind of sensory measurement. In this work, two contrasting
types of sensory measurements are studied: a simple distance related sensory input,
imitating the measurement of sensors like laser scanners, and a visual description of
the environment given by an image of the current state.

Distance related sensory input The first sensory input is formulated as a simple
relational perception of the world state. It contains enough information to
solve tasks that involve the tool, the target and the goal-area. Simultaneously
it should prevent a biasing as the target and the goal-area are only connected
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indirectly through the tool. The sensory input is built out of the six scalar
distances between the three picking locations Mi on the mediator-object and
the center of the target-object T , defined as |

−−→
MiT |, and the three distances

of the picking locations Mi and the domain’s origin O, given by |
−−→
MiO|. The

distances are visualized in Figure 8.3a as red dotted lines. Additionally, the
sensor vector has to be extended by a part that is able to represent the current
picking location. Therefore, a binary vector

L = (l0, . . . , lP )> with

l
p = 1 if p is chosen picking location

lp = 0 else,

is defined. Combined with the distances, the state vector is thus given by

sdist =
(
|
−−−→
M1T |, |

−−−→
M2T |, |

−−−→
M3T |, |

−−−→
M1O|, |

−−−→
M2O|, |

−−−→
M3O|,L

)>
. (8.1)

The first 6 dimension are continuous, as they are describing the distances
between the salient objects (i.e. the target, the tool and the goal) in the
current state. The remaining dimensions are discrete and boolean. One of
them has to contain a 1 while the others are 0. Both parts are uncorrelated as
a change of the distances is not influencing the current picking-location and
switching to another picking-location is not changing the distances between
the objects.

Sensory input based on raw visual image data The second, much more general
sensory input for the agent is an image of the domain, like the illustration in
Figure 8.3b. As an additional processing step, the generated images — having
an original solution of 300 × 300 — are downscaled to a solution of 84 × 84
pixels. Additionally, they are processed through a grayscale filter and after
that color-inverted and normalized. Thus, the resulting image vector contains
zeroes where the image is black and thus empty. If pixels belong to a salient
part of the domain, like an object or the border of the goal- or interaction-area,
the image vector contains values grater than zero.

8.3 Perceiving & acting: defining a suitable state and action space for
multi-object interaction scenarios
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(a) The distances between the mediator-
object and the target, and the
mediator-object and the goal are visu-
alized as red dotted lines.

(b) An example image of the visual input,
the agent is able to receive as its sen-
sory input.

Fig. 8.3.: Illustrations of the two implemented kinds of sensory inputs that are implemented
within the designed simulation framework.

8.4 Designing suitable learning scenarios

The learning domain was designed with a special focus on problems where object-
object interaction plays an essential part. This section is now describing three
invented episodic learning scenarios that are studied in this work. The chosen
scenarios are ranging from simple single-object interaction tasks up to more complex
extension-of-reach tasks [2]. The learning scenario describes the learning goal, gen-
eral composition of the environment and the set of possible starting configurations
S0. The specific conditions for a single learning task are then sampled from S0 for
each learning trial. In the designed domain, the starting configurations s0 ∈ S0 are
given through suitable starting positions and orientations of the objects within the
domain at the beginning of each trial.

Single-Object Interaction Scenario At the beginning of a learning episode, the
tool and the target are uniformly distributed over the simulation world inside
the agent’s interaction range. The agent is able to control both, the tool and the
target and has to learn how to move the disc into the goal area, as shown in
Figure 8.4a. After successfully solving the task instance or exceeding the limit
of possible interaction-steps per episode, the task starts anew with different
initial object positions that are again within the agents interaction range.

106 Chapter 8 A learning domain for mediated interaction



Extension-of-Reach Scenario The scenario is structured like the Single-Object
Interaction Scenario with the additional rule that the target object is distributed
only outside the border of the agent’s interaction range. Now it is only possible
for the agent to solve this task by learning to exploit the hook as a tool to pull
the disc inside the agent’s interaction range as shown in Figure 8.4b. However,
the agent can only select picking locations that are within reach (i.e. within
the marked circular area). When the target object is placed outside the circle,
the agent first has to “discover” that the mediator object can be used to extend
the agent’s reach beyond the circle boundary.

Tool-Centered Interaction Scenario The third scenario is structured like the Single-
Object Interaction Scenario with the additional rule that the agent is able to
interact only with the tool and not with the target. In the scenarios before,
the agent was capable of manipulating the target freely within its interaction
range and had to rely on the tool only in cases where the target’s position was
outside of the agent’s interaction range. As, in the present case, the agent is
not able to control the target object at all, it is forced to always utilize the
tool in order to solve the given task (see Figure 8.4c). It is also important to
mention that the action set A is reduced to 10 actions, because the picking
location on the target object is omitted.

(a) Single-Object
Interaction Scenario

(b) Extension-of-Reach
Scenario

(c) Mediated Interaction
Scenario

Fig. 8.4.: Illustrations of the different learning scenarios.

The Single-Object Interaction Scenario is the easiest one and is also not necessar-
ily involving mediated interaction. It is however connected to the more difficult
Extension-of-Reach Scenario. After the agent has pulled the target-object into its inter-
action range, the mediated interaction task can be transformed into a single-object
interaction task as the agent is now able to pick the target-object and move it into
the goal area without relying on the tool. The next scenario in the severity-hierarchy
is the Tool-Centered Interaction Scenario. While this scenario narrows down the
interaction space of the learner as only the tool can be controlled, it simultaneously
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raises the difficulty. In the tasks before, the agent was capable of manipulating
the target freely within its interaction range and had to rely only on the tool at
the beginning of the task, when the target’s position was outside of the agent’s
interaction rage. Now, the agent is not able to control the target-object at all and
thus has to master the handling of the given tool on a higher skill level in order to
solve the given task.

Start configurations All three learning scenarios are episodic. At the beginning
of each episode, the positions of the objects are sampled using suitable probability
distributions. Figure 8.5 illustrates the valid sampling regions for the tool and the
target. In each scenario, the tool is spawned anywhere within the agent’s interaction
range with a uniform probability (see Figure 8.5a). The sampled coordinates are
then used to set the location of the tool’s centroid and its rotation. In a next step
it is checked if at least one of the tool’s picking-locations is within the interaction
range of the agent. If not, new coordinates are sampled. For the Extension-of-Reach
Scenario, the target has to be placed slightly outside the agent’s interaction range
(see Figure 8.5b). For the Single-Object Scenario and the Mediated Interaction
Scenario, the target has to be spawned within the interaction range, but not within
the goal-area (see Figure 8.5c). After the starting coordinates are sampled and the
objects are placed in the simulation world, it is checked if the objects are overlapping
and colliding with each other. If this is the case, new positions are sampled and the
collision check is executed again.

Learning setup As the learning scenarios are episodic, the agent has to solve the
assigned task within a predefined number of time steps. In this work, the maximal
number of steps per episode is set to 100 for all three scenarios. The agent is able to
execute one action a per step. If it is able to solve the problem by reaching a terminal
state or exceeding the limited number of steps, the episode ends and a new one is
initialized. A terminal state is reached when the agent has placed the target within
the defined goal area. In this case, it receives a reward rgoal. In order to slightly
facilitate the learning process of the interaction between the objects, an additional
contact reward can be toggled on, rewarding the agent with rcontact = rgoal · 0.1 for
the “first” successful collision between tool and target within each episode. To make
the learned algorithm more stable, artificial noise is integrated into the system. It
forces the agent to execute a random action with a probability of 0.1 and thus adds a
stochastic component to the deterministic learning domain which disturbs the agent
occasionally with a possible suboptimal action.
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(a) Sampling region for the tool (b) Sampling region for the tar-
get within the interaction
range

(c) Sampling region for the tar-
get outside the interaction
range

Fig. 8.5.: The different sampling regions for the tool and the target. The allowed regions
are highlighted in blue. (a) Sampling region for the tool. (b) Sampling region for
the target, when a single-object interaction task or a tool-centered has to be solved.
(c) Sampling region for the target object, when an extension-of-reach task has to
be solved.

8.5 Learning with a distance-related sensory input

In order to test the two scaffolds that were presented in Chapter 4 and 7 within the
designed simulation world3, they have to be combined with eligible reinforcement
learning models. For this purpose, this section presents one linear reinforcement
learner with two different kinds of function approximators, as well as a deep
reinforcement learner. All presented algorithms are relying on the distance-related
sensory input that was presented in Section 8.3, i.e. the agent is only capable
of perceiving the environment through the distances between the existing objects
and the goal-area. Although it is possible to achieve good learning results while
utilizing linear function approximators for representing the state vector, it is worth
to additionally design and study reinforcement learning with a non-linear function
approximator. Despite the fact that it needs longer training time, it is much more
stable under changes of its hyperparameters than reinforcement learners using linear
state representations, where a small change in the parameter space — especially in
the configuration of the applied function approximator — is able to visibly influence
the learning performance. Additionally, showing the efficiency of the proposed
scaffolding strategies when combined with non-linear reinforcement learners can
be seen as a good indicator that the approaches are also improving the learning in
more complex learning domains, where the employment of non-linear functions for
representing the state vector is inevitable.

3The two proposed scaffolds in Chapter 5 and 6 are directly integrated into a suitable learning
architecture that was discussed in the respective chapters, leading to the RAA3C model and the
HAM.
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Outline At first, a linear Q-learner is constructed. For representing the sensory
input, two different kind of function approximators (the Fixed Sparse Representation
and Gaussian Radial Basis Functions) are presented. Afterwards, it is explained how
to approximate the state-action space for a set of discrete actions. In the last part, a
deep Q-learner is designed.

8.5.1 The construction of a linear Q-learner

For learning an ε-greedy Q-learner with eligibility traces and linear function approx-
imation (see again Section 2.4) is utilized. In order to gain more insight into the
impact of different function approximations on the learning process, two kinds of
linear function approximators are introduced for representing the state vector s that
was defined in (8.1).

Fixed-Sparse-Representation An easy way to represent the sensor vector is to use
a binary representation like the Fixed Sparse Representation (FSR) [241]. It is one of
the most simple kinds of representations as each state is presented by a plain binary
encoding. The FSR tries to balance the coverage and generalization of the state
space. In contrast to tabular representations, where each state is represented by
exactly one feature, multiple features can be active at the same time. This reduces
the overall number of features in the representation to a necessary minimum. It is,
however, very sensitive to the information encoded in the state vector.

To create a FSR from a continuous state vector s of length d = dim(s), each
dimension si is discretized into ni buckets4, leading to a total number of f =

∑d
i=1 ni

features. The number of buckets used for the discretization of each dimension of the
state vector s determines the coarseness of the tiled state space.

The complete feature vector

Φ(s) = [φ(s)11 . . . φ(s)1n1 , φ(s)21 . . . φ(s)2n2 , . . . , φ(s)d1 . . . φ(s)dnd ]
ᵀ ,

is then given by a vector of distinct binary features

φij(s) =
{

1 si = vji
0 otherwise

, i = 1, . . . , d j = 1, . . . , ni

4Dimensions that are already containing binary information are split into two buckets, indicating if
the value is either 0 or 1.
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with vji , the jth possible value for the ith state space dimension si. For each dimension
si of an arbitrary state s, the feature φij(s) is flipped to 1 where the bucket vj
corresponds to the value si.

Radial Basis Functions A more complex but also more efficient approach is to
represent the state input by a weighted sum of Gaussian Radial Basis Functions
(RBFs) [241–243]. Therefore, an arbitrary number of RBFs (see Figure 8.6)

φj(s) = exp
[
−‖s− s̄j‖

2

2σ2
j

]

are placed in each dimension of the state vector s. Depending on the structure of
s, the center s̄j of each RBF can either be placed uniformly or randomly in each
dimension. In some cases, it also might be beneficial to normalize the RBFs, which
leads to

φ̄i(s) = φi(s)∑N
j φj(s)

.

In contrast to the FSR, where only one bin could be active in each dimension si

at the same time, multiple RBFs can contribute to one si. This is caused by the
continuous decay of each RBF which has its maximum value at the center s̄j and
then decreases according to their standard deviation (or bandwidth) σj . A large
standard deviation leads to a more flattened RBF that contributes to a larger range
of values for si, while a small standard deviation creates a more peaked function.
The contributing areas of different RBFs are overlapping in most cases, which leads
to a smoother and (in most cases) more stable approximation than for example
the FSR. The drawback of using RBFs is that the number of functions is strongly
increasing with the number of centers placed in each dimension.

How to handle binary dimensions when using RBFs? The RBFs work directly in
the continuous space of each dimension si of the state vector. This raises the question
how to handle cases, like the state vector (8.1), where some dimensions contain
continuous and others binary variables. Instead of trying to represent the boolean
variables through RBFs, a “hybrid approach” is proposed in this thesis. Therefore,
the continuous dimensions of s are represented using RBFs while the binary part of
the state vector s is represented using a binary representation, as it can already be
seen as a very condensed and efficient feature vector.
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Fig. 8.6.: Illustration of two Gaussian RBFs with different mean and variance. Multiple
RBFs are able to contribute to the same value x.

Tuning the parameters The learning parameters for the two linear Q-Learning
approaches are individually optimized for each scenario and each representation
using random search [244]. A detailed list of the chosen values can be found
in Appendix B.1. The optimized parameters for the learning algorithm are the
greediness ε, the eligibility factor λ, the discount factor γ and the learning rate α.
The learning rate is decreasing with each training step t according to the function

α(t) = α0 ·
αB + 1
αB + t

,

that was proposed by Boyan in [245] and is thus called Boyan decay. The parameter
α0 is indicating the initial value of the learning rate, while αB regulates the speed
of the decay as illustrated in Figure 8.7. For the Fixed Sparse Representation, the
number of bins per dimension was tuned in a distinct parameter search and stays
the same in all experiments. The FSR represents the state vector by 310 features.
The state representation based on RBFs is normalized and the number of of centers
per dimension is tuned together with their standard deviations, leading to 13829
quantized features.
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Fig. 8.7.: Illustration of the Boyan decay which is put to use for adjusting the learning rate
α during training.

8.5.2 Creating a deep Q-Learner

For the case involving the non-linear function approximator, a deep Q-learner as
described in Section 2.6 is designed. The invented deep neural network is illustrated
in Figure 8.8. It is built out of 3 fully connected layers with 256 neurons each
and rectified linear units (ReLUs) as activation functions. Similar to the linear
representation based on RBFs, the state vector (8.1) is split into a continuous and a
binary part. The continuous part is propagated through the whole network so that
suitable features for the representation of the distances between the objects and the
goal are learned. The binary part encodes only the current picking location of the
agent and is thus uncorrelated to the objects distances. As the binary representation
can again be seen as a very condensed and efficient feature vector, it is directly
concatenated with the generated features of the last layer.

Tuning the parameters The parameters where optimized using random search and
additional manual tuning. They are listed in the Appendix B.2. For the deep Q-
Learner, a constant learning rate α is chosen. The greediness is decaying linearly
from 1 to 0.1. As proposed in [7], a target network is integrated to compute the
gradient that receives a copy of the original networks parameters every τ steps.
During training, the weights are updated using the Adam algorithm [67].
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Sensory input:

s = (sdist,L)>
Continuous part of s, describing the cur-

rent distances between the salient objects:

sdist =
(
|
−−−→
M1T |, |

−−−→
M2T |, |

−−−→
M3T |, |

−−−→
M1O|, |

−−−→
M2O|, |

−−−→
M3O|

)>

Dense layer -
256 neurons

Dense layer -
256 neurons

Dense layer -
256 neurons

Binary part of st,
describing the current

picking-location:

L = (0, . . . , 1, . . . , 0)>

Concatenation

Q-values

ReLU

ReLU

ReLU

ReLU

Fig. 8.8.: Illustration of the designed deep Q-learner The state vector (8.1) is split into
a continuous and a discrete binary part. While the continuous part is propa-
gated through the whole network, the binary part is only concatenated with the
generated features of the last linear layer.

8.6 Summary

In this chapter, the designed simulation world for studying the scaffolding of mediated
interaction learning was presented. In order keep the balance between realism
and simplicity, the simulation provides a computationally lightweight framework
that enables quick optimization and testing for different learning algorithms and
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scaffolds. Furthermore, three learning scenarios with different levels of difficulty
were described.

Designing sensory inputs For characterizing the different states within the envi-
ronment, two different kinds of sensory signals were designed. The distance-related
sensor vector leads to a low-dimensional sensory input that permits the employment
of fast and efficient reinforcement learning models with linear function approxi-
mators. It can also be used to train deep reinforcement learning models, while
keeping the number of trainable weights low. The other sensory measurement that
is made available allows the agent to perceive the environment in form of a raw
visual image. This high-dimensional sensory input can be combined with modern
deep reinforcement learning algorithms that have the ability to learn the extraction
of the salient features from this more complex sensory signal.

Set up (non-)linear Q-learners In order to learn to solve the problem scenarios
that are presented in Section 8.4, a Q-learner with linear function approximation
was set up. In order to gain more insight into the impact of different function
approximations on the learning process, two kinds of linear function approximators
are taken under consideration for representing the sensor vector s. As the last step,
also a Q-learner using a non-linear function approximator is created in the form of a
deep Q-network.

The next step After designing a learning domain, as well as suitable learning
models, the setup can now be combined with the scaffolds that were presented
in the last part of the thesis. At first, the scaffold that is related to “perceptive
acting” (see Chapter 4), is tested in order to choose a suitable interaction strategy
for learning in the given environment.
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A first scaffold for learning the
“Extension-of-Reach
Scenario”: determining the
best action set

9

Finding good principles to choose the actions of artificial agents like robots in the
most beneficial way to optimize their control over the environment is very much
in the focus of current research in the field of intelligent systems. Especially in
reinforcement learning, where the agent learns through the direct interaction with
the environment, a good choice of actions is essential. In many learning scenarios,
the agent is perceiving the environment in a more or less time-discrete way. Every
time step, it receives sensory data of the environment that is then processed and
used to determine the next action.

Studying the scaffold founded on “perceptive acting” It is possible to enhance the
sampling of meaningful sensory data through a suitable reformulation of the agent’s
interaction strategy by refining its options or degrees of freedom. As a result,
this chapter investigates the learning under the influence of different action sets
by employing the designed 2D simulation world that was presented in the last
Chapter. Therefore, six different interaction strategies are designed in the form of
sensorimotor coordinate systems which can all be exploited by the learner as eligible
action sets Ai for learning the given problem. Although some coordinate systems
can directly be classified as bad choices via educated guesses, it is not always that
easy to estimate their quality and the efficiency of the action set that is connected to
it. Additionally, without testing it is hard to determine which choice of coordinate
system might be the best. Motivated by the question:

Are there general features that distinguish action sets that facilitate
exploration, learning and control (“good” action sets) from action sets
for which exploration, learning and control is more difficult?

a scaffold founded on perceptive acting was proposed in Chapter 4. In order to
identify the coordinate system that intensifies the coupling between the agent and
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the learning domain, it utilizes the concept of mutual information [195–197] for the
purpose of measuring the amount of control the agent has over the environment.
This allows a predictive ranking of different action sets with regard to their influence
on the learning performance of an artificial agent. The created ranking is then used
as a permanent scaffold for the learning process by selecting the most suitable
action set that has a high potential to lead to the best learning performance (see
also [21]). In order to test the efficiency of the proposed approach, the resulting
ranking is compared with the actual learning performance of the agent for solving
the “Extension-of-Reach Scenario” using a linear Q-learner while utilizing the given
action set Ai.

9.1 Experiments

Six different coordinate systems, illustrated in Figure 9.1, are designed for the given
learning domain. They can be used by the agent as action sets Ai that define in
which way the objects can be moved through the environment. Each coordinate
system1 is designed in order to exploit different salient points within the learning
domain:

World System — Figure 9.1a The most general movement frame. The objects are
moved along a simple cartesian coordinate system with its origin at the center
of the domain.

Tool-Fixpoint System — Figure 9.1b An orthogonal tool-focused coordinate sys-
tem. A cartesian coordinate system is attached to the tool. The origin is fixed
at the middle picking location.

Target-Tool-Goal System — Figure 9.1c The non-orthogonal coordinate system
connects task relevant points of the domain, which are the target, the tool and
the goal. The origin of the coordinate system is attached to the centroid of the
tool.

Tool-Centroid System — Figure 9.1d One axis of this orthogonal coordinate sys-
tem is attached to the centroid and the middle picking-location of the tool.

1A short video Coordinate_Systems.mp4 that visualizes policies that are learned by the agent while
employing the different coordinate systems, can be found within the supplementary material of
this thesis (see also Appendix D).
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Target-Tool System — Figure 9.1e One axis of the coordinate system is created
through connecting the centroid of the target with the centroid of the tool.
The other one is attached to two picking-locations of the tool.

Goal-Tool System — Figure 9.1f The coordinate system has the same structure as
(e), but uses the center of the goal instead of the target to define the coordinate
axis.

It is also important to notice that all coordinate systems, except the World System,
illustrated in Figure 9.1a, are not fixed in the world but alter according to the objects
positions.

(a) World System (b) Tool-Fixpoint System (c) Target-Tool-Goal
System

(d) Tool-Centroid
System

(e) Target-Tool
System

(f) Goal-Tool
System

Fig. 9.1.: Illustration of the different coordinate systems within the designed learning
domain, representing the different action sets Ai

Learning setup The chosen problem that is used for testing the influence of the
designed movement frames and whose learning performance is compared with the
information-related ranking 〈M(S,Ai)〉 is the episodic Extension-of-Reach Scenario2,

2Extension-of-Reach Scenario: The task for the agent is to learn to place the target object into the
goal area. However, the target object is always placed outside of the agent’s interaction range at
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described in Section 8.4. The agent has to learn the given task while relying on the
relative distances of the salient parts of the domain (i.e. the target, the tool and
the center of the goal area) as its sensory information. They are provided by the
distance-related sensor vector (8.1).

For learning, the ε-greedy Q-learner with eligibility traces, presented in Section 8.5.1,
is chosen. Additionally, both presented linear function approximators are utilized
for learning. The Fixed-Sparse-Representation (FSR) generates a rather coarse tiling
of the state-space with about 310 features, while the representation using Gaussian
Radial Basis Functions (RBF) leads to a much finer tiling (about 13829 features). By
exploiting these two learners as a benchmark, a good departure point is provided
for making general assumptions about the validity to use the mutual information as
a measure for ranking the efficiency of the different movement frames with respect
to the learning performance.

For this experiment, an exhaustive parameter search is conducted, in which the
hyperparameters for the presented Q-learner were individually optimized for each
movement frame and used state representation. A list of the chosen parameters is
given in Appendix B.1.

Evaluation of the learning performance For evaluating the efficiency of the learning
processes of the Extension-of-Reach Scenario for the different movement frames,
the average reward per episode 〈R〉 received by the agent is depicted as a function
over the number of learning steps. To compute 〈R〉, the learning performance under
the current policy was evaluated over 100 episodes for each of the 25 evaluated
data points. The results is then averaged over 20 distinct learning runs, where the
standard deviation of the mean was used as the error. For the purpose of measuring
the overall quality of the whole learning process the global reward

Rglobal =
T∑
i

〈Ri〉 , (9.1)

is defined as the sum over the achieved average reward 〈Ri〉 evaluated at all learning
steps i. The learning process with the highest Rglobal is the one where the agent has
gained the most reward and has therefore solved the tasks most efficiently.

Approximating the mutual information In the following experiment, the influence
of each coordinate system Ai on the agent’s learning performance is compared

the beginning of each episode. Thus, the agent has to learn to use the available tool for fetching
the target object and pulling it in its reach before placing it into the goal area.
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with its approximated average mutual information 〈M(S,Ai)〉. For this reason, the
agent’s state space is tessellated into Voronoi cells as described in Section 4.2. To
perform the clustering process, 50 ·103 object-placement configurations for the target
and the tool are sampled uniformly over the whole accessible domain. For studying
the effect of the coarseness of the tessellated state space, one was created with 100
and a second one with 1000 Voronoi cells.

In these two spaces, 100 · 103 tuples (s, a, s′) were counted while the agent interacts
with the objects using the action set Ai and a random policy. Here, s refers to the
starting state, while a is the executed action in order to trigger a state transition to
state s′. Using this information, the probability densities Pass′ and Pas can be estimated
using (4.1), (4.2) and (4.3). Finally, 〈M(S,Ai)〉 can be approximated using (4.8).
For each coordinate system, the resulting 〈M(S,Ai)〉 is averaged over 10 distinct
computations where the standard deviation of the mean is used as the error.

Comparing the ranking of the coordinate systems In order to see if the average
mutual information is a good choice for determining the most suitable coordinate
systems Ai — more precisely, its associated action set — for the given learning
domain, the ranking according to 〈M(S,Ai)〉 is compared with the corresponding
learning performance of the agent. Therefore, the global reward Rglobal, defined in
(9.1), is employed as a global measure that indicates the overall efficiency of the
learning process.

9.2 Results

The agent’s time course of learning using a Fixed Sparse Representation of the
sensory input is shown in Figure 9.2, while the results for the state representation
using Gaussian Radial Basis Functions is illustrated in Figure 9.3. In both plots, the
learning performance is highly varying for each used coordinate system. While some
of them achieve completely different results within the learning process for the two
used state representations, there are 4 coordinate systems that behave similarly.
These coordinate systems are the

• World System – Figure 9.1a

• Tool-Fixpoint System – Figure 9.1b

• Target-Tool-Goal System – Figure 9.1c
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Fig. 9.2.: Course of learning for the “Extension-of-Reach Scenario”, using binary features
(FSR)

• Goal-Tool System – Figure 9.1f)

and include the best one (“Target-Tool-Goal System”) and the one with the second
worst performance (“World System”) for both state representations.

Comparing learning performance and mutual information The Tables 9.1 and 9.2
are now ranking the coordinate systems according to the global reward Rglobal for
both representations and additionally list the respective expected average mutual
information over all available states 〈M(S,Ai)〉. In order to get a better general view
of the correlation of the rankings between Rglobal and 〈M(S,Ai)〉, the computed
average mutual information is color-coded.

If 〈M(S,Ai)〉 is

• bold/blue, the ranking of the average mutual information is deviating about
not more than one position from the related Rglobal.

• red, the ranking is differing about two or more positions from the related
Rglobal.
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Fig. 9.3.: Course of learning for the “Extension-of-Reach Scenario”, using real-valued fea-
tures (RBF)

The first notable thing, visualized by the color coding, is that a coarser approximation
of the state-space leads to results that are aligning better to the ranking of the
learning performance. The “Target-Tool-Goal System” that is leading to the best
learning performance for both tested reinforcement learners is also the one with the
highest average mutual information for both state-space tessellations. Additionally,
the “Tool-Centroid System” and the “World System” that are both performing poorly,
as seen in Figure 9.2 and 9.3, have also a low ranking when sorted according
to their average mutual information. While the discussed coordinate systems are
encouraging the hypothesis that the mutual information can be used to make
assumptions about the efficiency of specific movement frames, there are also some
outliers that break the conformity of the two rankings Rglobal and 〈M(S,Ai)〉. The
most peculiar outlier is the “Tool-Fixpoint System”, which leads to a good learning
performance for both different learners, but corresponds to a low average mutual
information.

Another point to discuss are coordinate systems that are leading to completely
different results during learning for both the FSR and RBF representation. An
example is the “Target-Tool System”. Using this movement frame, the learner that
relies on the FSR is reaching its lowest performance while the learner that puts
RBFs to use in order to represent the state is reaching a fair performance that ranks
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the “Target-Tool System” in the medium range, when Rglobal is used as the ranking
criteria.

〈M(S,Ai)〉
Coord. systems Ai - Figure Rglobal 100 cells 1000 cells

Taget-Tool-Goal System - 9.1c 181.37± 11.29 1.736± 0.013 2.562± 0.123
Tool-Fixpoint System - 9.1b 67.97± 9.84 1.641± 0.012 2.507± 0.129

Goal-Tool System -9.1f 32.34± 6.58 1.684± 0.011 2.514± 0.125
Tool-Centroid System - 9.1d 29.63± 5.62 1.648± 0.011 2.504± 0.128

World System - 9.1a 5.02± 1.26 1.623± 0.014 2.505± 0.130
Target-Tool System - 9.1e 3.46± 1.27 1.691± 0.013 2.519± 0.123

Tab. 9.1.: The ranking of the different movement frames according to Rglobal for the rein-
forcement learner using the Fixed-Sparse-Representation.

〈M(S,Ai)〉
Coord. systems Ai - Figure Rglobal 100 cells 1000 cells

Target-Tool-Goal System - 9.1c 160.14± 12.31 1.736± 0.013 2.562± 0.123
Tool-Fixpoint System - 9.1b 115.14± 15.09 1.641± 0.012 2.507± 0.129
Target-Tool System - 9.1e 63.09± 13.42 1.691± 0.013 2.519± 0.123

Goal-Tool System -9.1f 15.25± 5.11 1.684± 0.011 2.514± 0.125
World System - 9.1a 1.48± 0.54 1.623± 0.014 2.505± 0.130

Tool-Centroid System - 9.1d 1.185± 0.55 1.648± 0.011 2.504± 0.128

Tab. 9.2.: The ranking of the different movement frames according to Rglobal for the rein-
forcement learner using the RBF representation.

9.3 Discussion

In this chapter, the scaffolding approach for active perception was utilized in order to
investigate the impact of action sets arising from different sensorimotor coordinate
frames on the efficiency of learning a mediated-interaction task. By defining actions
relative to a coordinate system, the choice of an action set was connected with
the choice of a coordinate system. In a next step, the learning performance of
different action sets are then evaluated on solving the designed “Extension-of-Reach
Scenario” while using reinforcement learning methods. It has been demonstrated
that the choice of the movement frame has a visible impact on the quality of learning.
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Additionally, the average mutual information 〈M(S,Ai)〉 is computed for each action
set. It measures the reduction of uncertainty of the agent’s next state due to the
control of the used action set. After the empirical demonstration that different action
sets have led to different learning results, their performance ranking was compared
with the ranking of their average mutual information within the environment.

Are there general features that are able to rate action sets in the context of learning
performance? The results indicate that the mutual information-based measure can
yield useful predictions on the aptitude of action sets for the learning process. The
findings are also consistent with the expectation that “good” coordinate systems
should be those that make uncertainty-reducing actions easy to express. For the task
at hand, this turns out to be better achieved with “relational” instead of “absolute”
coordinate choices. In this way, the designed approach can be used to rank different
options for choosing a coordinate system that is “favorable” for the learning task at
hand.

Conclusion Although the rankings of mutual information and global reward are
not exactly aligning to each other, there are lots of similarities. It was possible to
clearly identify the best action set for the employed learning scenario. There are
also indicators leading to the assumption that the action sets with a low ranking
with respect to 〈M(S,Ai)〉 are also performing poorly during learning. In view
of this, the concept of mutual information, conditioned on the chosen action set,
can be exploited a scaffold that supports the process of sensing and acting within
the environment. Through predictive hints on the ranking of the general learning
performance while utilizing a specific sensorimotor coordinate system, it is possible
to make a pre-selection of potentially good candidates even before starting the
learning process.

Future work Based on these findings, further investigations in this matter may lead
to a better understanding of the relationship between the mutual information and
the agent-environment interaction which then can be used to guide the choice of
actions within difficult learning scenarios. In any case, it has additionally to be
kept in mind that the computed 〈M(S,Ai)〉 is only connected to the employed
sensory information, the action set and the learning environment, but is completely
independent of the learning algorithm, the used state representation and the learning
task. As a consequence, one can not expect a full alignment of both rankings but
only clues that specific action sets might be more suited for learning than others.

9.3 Discussion 125



The next step In this chapter a first scaffold was applied to determine a suitable
action set for the learning of the “Extension-of-Reach Scenario”. The Figures 9.2 and
9.3 are however indicating that also for the best coordinate system (“Target-Tool-
Goal System”) the current learning process has left room for improvement. Hence,
the next chapter now investigates if it is possible to further enhance and speed up
the learning process by scaffolding the internal representation of the learning model
as discussed in Chapter 7.
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A second scaffold for learning
the “Extension-of-Reach
Scenario”: structuring the
learning process

10

In addition to facilitating the sampling of good sensory data, it is also possible to
support the learning process by directly shaping the internal representation of the
given learning model. Especially when dealing with complex tasks, for example
those requiring to learn a hierarchy of sub-tasks, most standard learning algorithms
are not able to solve the problem to a satisfying level. In this context, transfer
learning has been introduced as an effective tool for improving the learning of
complex tasks, especially when designing a curriculum for the pre-trained sequence
of source tasks. Guided by the questions:

Can a scaffold based on the combined approach of transfer and cur-
riculum learning augment the learning process of established learning
models? How is the integration of key characteristics of the refined
concept of scaffolding influencing the learning process?

a scheme for refining the model’s internal representation through the pre-
training of sub-skills using a combined transfer and curriculum learning ap-
proach that is enriched by the developed key aspects of scaffolding was pro-
posed in Chapter 7 (see also [22]). For this scaffold, it is assumed that the agent is
able to learn relevant sub-skills within the same domain as the main task, so that
both can be handled by the same learning process.

All in all, four different strategies were designed. Starting with Strategy 1 which
simplifies the learning process through transfer learning, the four strategies are
bottom-up approaches that are integrating up to four key aspects of the concept of
scaffolding into the supportive method: simplification, fading, transfer of responsibility
and ongoing diagnosis & assessment. By applying all strategies on the same learning
problem under the same conditions, it is possible to investigate the impact of the
different key characteristics of scaffolding on the learning process.

127



Scaffolding through experience generalization by pre-learning a curriculum based
sub-task hierarchy In this study, the “Extension-of-Reach Scenario” within the
simulated 2D interaction world that was presented in Chapter 8 was again chosen
as the test bed. In the last Chapter 9, learning was improved through the choice of a
suitable movement frame. Based on these results, the present goal is to improve the
learning process further by employing the ideas from Chapter 7.

Again, the “Extension-of-Reach Scenario” is an appropriate candidate for testing the
effectiveness of the proposed transfer learning approach as it can be divided into two
distinct stages as shown in Figure 10.1. While the task instances of the first stage
(Figure 10.1a) can be solved only through mediated interaction, the task instances of
the second stage (Figure 10.1b) are solvable through direct, unmediated interaction
as the agent is able to directly interact with the target object. Stage two, resembling
the defined “Single-Object Interaction Scenario” (see Section 8.4), assigns the same
problem to the agent, i.e. navigate the target object to the goal, but under easier
conditions. It is therefore a good choice to be used as the source task. Thus, the
designed scaffold can be applied to generalize experiences from source tasks that
are solvable through direct, unmediated interaction, to target tasks that require
mediated interaction for their solution.

(a) First stage - The tool has to be utilized in
order to pull the target into the agent’s in-
teraction range.

(b) Second stage - The target has to be placed
into the goal area.

Fig. 10.1.: Sketches of the two stages of the “Extension-of-Reach Scenario”. The second
stage (b) is resembling the easier “Single-Object Interaction Scenario”.

128 Chapter 10 A second scaffold for learning the “Extension-of-Reach Scenario”:
structuring the learning process



10.1 Experiments

The goal of the experiment is to compare the influence of the different strategies on
the learning process and to identify their individual impact. Ultimately it is discussed
which strategy — and thus which combination of the four key aspects of scaffolding
— is the most beneficial technique for speeding up the learning learning process.

Scaffolding the learning process The general idea of all four strategies is to first
learn to solve the source tasks to a specific extend. Afterwards the agent directly
starts to learn the target task without any delay. This implies that learning the source
tasks is not rolled out within a separate learning process but treated as a pre-learning
routine that is carried out right before learning the target task. Consequently, the
learning steps that are needed to solve the source tasks are included within the
learning steps of the whole learning run.

10.1.1 Learning and evaluation

The experiments are directly following up to the results of the last chapter. There,
it has been shown that the two tested linear Q-learners are both learning best
using the “Target-Tool-Goal System”. The two learning models1 that utilize this
movement frame are now again employed for the following experiments with the
same configuration of hyperparameters2. Thus, as in the experiments of the last
chapter, the Fixed-Spare-Representation and Gaussian Radial Basis functions are
employed as linear function approximators representing the distance-related sensory
input (8.1). Additionally, the experiments are conducted for the deep Q-learner that
was introduced in Section 8.5.2, in order to investigate if the developed method is
also able to facilitate the learning process when a non-linear function approximator
like a neural network is used. The used configuration of hyperparameters for the
deep Q-learner can be found in Table B.9 in Appendix B.2.

1Needless to say, the two learning models are initialized with random weights and trained from the
scratch in the experiments that are presented in this chapter.

2The parameters configuration of the two learning models can be found in Table B.4 in the Ap-
pendix B.1.
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In summary, three different models are employed for learning the “Extension-of-
Reach Scenario”:

• Linear ε-greedy Q-learner with eligibility traces, representing the state vector
s via

– Fixed Sparse Representation

– Gaussian Radial Basis Functions

• Deep Q-learner

For evaluating the efficiency of the learning processes, the average reward per
episode 〈R〉 is used. The learning performance under the current policy is therefore
evaluated over 100 episodes for each of the 25 evaluated data points. The results are
then averaged over 20 distinct learning runs, where the standard deviation of the
mean is used as the error. In addition to the global reward (9.1) that was presented
in Section 9.1, a second evaluation metric is now introduced for providing a way to
compare the learning process of the “Extension-of-Reach Scenario” without transfer
learning and the learning processes using the transfer learning schemes.

Time to Threshold If an artificial agent has to learn the interaction with objects in
the real world, there are often many undesired events that may happen because
of suboptimal behaviour. The objects might break or the agent itself might be
damaged. So it is crucial to reach a “good performance as soon as possible” in order
to minimize the chance of these events to happen. This metric, which is introduced
in [161] and illustrated in Figure 10.2, measures the number of learning steps that
are necessary to reach a certain performance threshold. The choice of a reasonable
threshold performance is depending on the studied learning scenario. When learning
real-world scenarios using robots, it is a preferable goal that the robot learns to solve
them with a good performance as fast as possible to minimize errors and therefore
the probability of damaging the environment. Under the assumption that such kind
of performance is given by an average success rate of 80% and above, the threshold
performance which is measured using the “Time to Threshold” metric is chosen to
be at this level. Although this threshold is significantly below optimal success, it is
on the one hand high enough to tag the corresponding policies as successful and
on the other hand low enough that the performance level can be achieved in all
experiments within a reasonable amount of learning steps.
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Fig. 10.2.: Illustration of the Time to Threshold performance metric that is used to determine
the difference in learning speed of different approaches

10.1.2 Applying the four transfer learning strategies

While the simplest solution is to randomly generate new source tasks a predefined
number of times, given by Strategy 1, Strategy 2 refines this process by generating
a fixed set of source tasks. At the beginning of the learning episode, one task is
selected randomly and is then removed from the set if it was solved successfully.
Further structure is established by Strategy 3 through the creation of source task
prototypes that should be distributed more uniformly over the task space. This is
achieved by clustering a large amount of randomly generated source tasks and then
selecting the ones that are closest to the prototypes by utilizing a correlation metric.
In a last step, Strategy 4 is extending the process by also using the correlation metric
to select the next to-be-solved source task.

As a first experiment, the results of the regular transfer learning scheme (Strategy
1), presented in Algorithm 1, is evaluated. Therefore, the agent has to solve Nsource

tasks from the “Single-Object Interaction Scenario” (source tasks) that are generated
randomly at the beginning of every episode, before starting to learn the main
problem. In the following experiments, the source tasks are generated beforehand,
as described in the procedures for Strategy 2 – 4 in Chapter 7. The set C of the
to-be-learned source task configurations c = (t, s) ∈ C can be decomposed in the task
space description t and the sensor space description s. Each task can be completely
described via the position (x, y) and orientation ϕ of the target and the tool within
the environment, .i.e.

t = (xtarget, ytarget, ϕtarget, xtool, ytool, ϕtool)>.
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This setup is then used for scaffolding the learning according to Strategy 2. In
order to generate the structured set of source tasks, used in Strategy 3 and 4, 104

source-task configurations cr(t, s) are sampled. The prototypes Pi that are generated
by utilizing the “K-Means clustering algorithm” are then employed to find the most
similar sampled source task ci by either using the cosine similarity (7.1) or the
Pearson correlation coefficient (7.2). During learning, these source task configurations
are randomly presented to the agent at the beginning of each episode as described
in Algorithm 2 until the agent has solved the problem Nsource times. At last, the
transfer learning scheme is extended by Strategy 4, i.e. by further structuring the
learning of the source task as described in Algorithm 3.

10.2 Results

In order to get an impression of the difference between the regular learning and
the different kinds of transfer strategies, the learning curves for selected learning
processes are plotted. In every plot, the regular learning is illustrated, together with
the fastest configuration using the simple Strategy 1 and the configuration that is
leading to the fastest learning for the given learner by taking all four strategies under
consideration. Here, the fastest learner is given by the configuration that reaches
the performance threshold of 80% within the smallest number of learning steps. If
more than one configuration is learning with nearly the same speed, the one with
the higher global reward Rglobal is chosen3.

Results for linear Q-learning relying on the FSR Figure 10.3 shows the results for
the linear Q-learner using the Fixed Sparse Representation. All learning curves, with
and without transfer learning, are able to achieve an average reward of 〈R〉 ≈ 9.
This corresponds to a probability of about 90% to successfully solve the assigned
extension-of-reach task. Using a transfer strategy, however, is significantly speeding
up the learning time that is needed in order to reach the performance threshold.
While there is only a slight visible difference between the best achieved results (Strat-
egy 2) and the results of Strategy 1, their learning curves can be clearly separated
from the one illustrating the slower learning process of the regular learning.

3An illustrative video SkillTransfer.mp4 with examples of learned policies can be found in the
supplementary material of this thesis (see also Appendix D).
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Fig. 10.3.: Evaluation of the learning process for the “extension-of-reach task”, using the
binary representation (FSR). The threshold performance is placed at an average
success rate of 80%.

Results for linear Q-learning relying on RBFs The next Figure 10.4 shows the
learning curves for the learner using the real-valued representation (RBF). Again all
three learning curves are able to achieve an average reward of 〈R〉 ≈ 9. In contrast
to the leaner using the binary representation (FSR), there is a visible difference in
the learning performance for Strategy 1 and 4. It is a good illustration that further
structuring the selection process of the source task can lead to an additional speed
up of the learning.

Results for the deep Q-learner Similar observations can be made when looking at
Figure 10.5 that illustrates the results for the deep learner. As the deep Q-learner has
much more weights to train than the linear Q-learners, the learning is slower than
for the other two cases. Nevertheless, applying Strategy 3 of the developed scaffold
enables the agent to reach the threshold performance after ≈ 280 · 103 learning
steps and a final performance of 〈R〉 > 9 within the limit of 500 · 103 steps. The
regular learning reaches only a final performance of 〈R〉 ≈ 6 which corresponds to a
probability of just 60% to successfully solve the task.

For a more detailed evaluation, the results of all 4 Strategies for different numbers
of source task configurations Nsource are listed in Table 10.1 for the binary represen-
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Fig. 10.4.: Evaluation of the learning process for the “extension-of-reach task” for the RBF
representation. The threshold performance is placed at an average success rate
of 80%.

tation (FSR), in Table 10.2 for the real-valued representation (RBF) and in Table
10.3 for the deep Q-network (DQN).

Strategy 1 At first, the results of Strategy 1 are listed. The first notable point that
can be seen in both tables of the linear function approximators is that the agent has
just to solve the source task one single time (Nsource = 1) to get a favorable seeding
of theQ-values that is good enough to increase the overall performance, measured by
Rglobal. Increasing the number of source task problems further optimizes the learning
by increasing Rglobal for all three tested learners. While the deep learner is not able
to reach the performance threshold of an 80% success rate using regular learning,
this first simple but nevertheless effective strategy is able to already support the
learning process to a level that allows the agent to reach the performance threshold
after about 300 · 103 steps. The highest global reward Rglobalcan then be achieved
for Nsource = 15 (FSR), Nsource = 25 (RBF) and Nsource = 50 (DQN). If Nsource

gets large, the learning process becomes too specialized on the source task. This
phenomenon leads to a decrease of Rglobal and the learning time to reach the
performance threshold up to a point where the transfer learning process undermines
the learning of the target task. The extreme case of Nsource = 5000 suppresses the

134 Chapter 10 A second scaffold for learning the “Extension-of-Reach Scenario”:
structuring the learning process



0

2

4

6

8

10

0 100 200 300 400 500

A
ve

ra
ge

re
w

ar
d
〈R
〉

Learning steps
[
103]

Regular learning
Strategy 1 - Nsource = 50

Strategy 3 - cosine, Nsource = 100
Threshold performance

Fig. 10.5.: Evaluation of the learning process for the “extension-of-reach task” for the deep
Q-learner. The threshold performance is placed at an average success rate of
80%.

learning of the target task for the learning process with the binary representation
and the deep neural network.

Strategy 2 The listed results for Strategy 2 show that this more structured strategy
is able to further speed up the learning for both linear Q-learners. For the learner
that utilizes the binary representation (FSR), this Strategy 2 also leads to the best
global result by speeding up the learning process about more than 3 times. In this
way, the required learning time that is needed to reach the performance threshold is
reduced from ≈ 200 · 103 learning steps to about ≈ 60 · 103 for Nsource = 15.

Strategy 3 The next strategy further refines Strategy 2 by integrating a methodized
process for generating the set of source tasks. Within this process the cosine (7.1) and
the Pearson correlation coefficient (7.2) are used in order to measure the similarity of
the different source task instances (see Section 7.1.2). The listed results demonstrate
that the choice of the similarity metric influences the overall performance of the
learning process. While this strategy is not able to further improve the learning
results of the linear Q-learner with the binary representation, it again leads to better
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results for both the Q-learner with the real-valued representation and the deep Q-
learner. Strategy 3 is able to achieve the fastest learning speed for the deep Q-learner.
It is possible to reach the performance threshold after ≈ 220 · 103 learning steps
for Nsource = 100 source tasks, while employing the cosine as the similarity metric.
Using the Pearson correlation coefficient instead leads to a slightly slower learning
(≈ 250 · 103 learning steps) but to the highest value of Rglobal = 153.75± 8.39.

Strategy 4 Up until now, the currently to-be-solved source tasks were picked ran-
domly from the created set. This can be changed by an ordered selection process,
described by Strategy 4. Using the Pearson correlation coefficient, this strategy leads
to the best results for the Q-learner that relies on the RBF representation. The
learning process is now more than four times faster, accelerating the learner to reach
the learning threshold after 60 · 103 learning steps instead of 260 · 103. While for the
fastest learner for the FSR is provided by Strategy 2, a slightly higher global reward
Rglobal = 210.95 can be achieved using this strategy with Nsource = 25. The learning,
however, is about 17% slower when applying this configuration by reaching the
performance threshold after 70 · 103 steps. When studying the deep Q-learner, the
learning — compared to the results when applying Strategy 3 — is about 40 · 103

steps slower when employing the cosine and about 30 · 103 steps when utilizing the
Pearson correlation.

Evaluating the strategies with respect to the global reward Rglobal Strategy 4 gener-
ates the highest Rglobal for the learning with linear function approximators, while
for the deep Q-learner Strategy 3 leads to a slightly better result. Applying Strategy
4, however, results in the most learning runs that are able to reach the learning
threshold of 80%. In order to get better global view on the ranking with respect to
the performance gain that is achieved by the different strategies, Figure 10.6 sorts
the conducted learning runs according to Rglobal.

The influence of the correlation metric on the learning process One thing that has
been ignored so far is that the efficiency of Strategy 3 & 4 is also depending on the
used correlation metric. In addition to the analysis of the results in Table 10.1, 10.2
and 10.3, the three plots in Figure 10.6 aim to illustrate that the choice of the
metric is visibly influencing the learning process. While it is hard to make a general
statement which of the two tested metrics seems to be the better choice in general,
the plots imply that, in terms of Rglobal, the cosine is a better selection for Strategy 3
and the Pearson correlation coefficient for Strategy 4.
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Used scheme Metric Nsource Rglobal Steps to 80% threshold
[
103]

Regular learning 0 181.37± 11.29 ≈ 200
1 197.99± 8.83 ≈ 140

Strategy 1 15 210.03± 4.69 ≈ 80
25 209.97± 5.07 ≈ 80

Regular transfer 50 203.51± 4.93 ≈ 100
No Set 100 196.62± 6.94 ≈ 160

5000 5.85± 2.47 –
1 188.72± 10.31 ≈ 160

Strategy 2 15 210.47± 4.84 ≈ 60
25 210.44± 5.37 ≈ 60

Regular transfer 50 202.795± 5.46 ≈ 100
Random Set 100 195.15± 6.43 ≈ 120

5000 5.87± 2.26 –
1 197.14± 8.95 ≈ 140

Strategy 3 15 206.03± 7.75 ≈ 100
25 203.49± 9.04 ≈ 130

Regular transfer cos 50 201.49± 7.54 ≈ 70
Clustered Set 100 194.89± 7.34 ≈ 100

5000 5.645± 2.45 –
1 192.47± 10.69 ≈ 200

Strategy 3 15 198.50± 9.28 ≈ 140
25 206.83± 5.78 ≈ 100

Regular transfer pearson 50 205.61± 6.94 ≈ 110
Clustered Set 100 198.80± 6.46 ≈ 120

5000 8.74± 4.14 –
1 197.14± 8.95 ≈ 140

Strategy 4 15 192.55± 10.86 ≈ 220
25 206.64± 5.77 ≈ 80

Scaffolded transfer cos 50 201.55± 7.79 ≈ 160
Clustered Set 100 195.54± 6.92 ≈ 180

5000 8.905± 3.60 –
1 192.47± 10.69 ≈ 200

Strategy 4 15 209.85± 5.98 ≈ 100
25 210.95± 4.46 ≈ 70

Scaffolded transfer pearson 50 205.40± 5.44 ≈ 80
Clustered Set 100 192.46± 8.63 ≈ 160

5000 6.075± 2.31 –

Tab. 10.1.: Evaluation of the learning process over 500 · 103 learning steps, using the
Q-Learner with the binary representation (FSR). The best results for every ap-
proach are marked with bold letters, while the best global result is additionally
highlighted.
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Used scheme Metric Nsource Rglobal Steps to 80% threshold
[
103]

Regular learning 0 160.14± 12.31 ≈ 260
1 173.33± 17.64 ≈ 280

Strategy 1 15 204.67± 9.88 ≈ 160
25 205.73± 9.20 ≈ 140

Regular transfer 50 199.5± 12.00 ≈ 170
No Set 100 200.81± 12.12 ≈ 140

5000 141.74± 11.08 ≈ 420
1 188.79± 12.97 ≈ 260

Strategy 2 15 212.24± 8.34 ≈ 100
25 205.63± 11.16 ≈ 100

Regular transfer 50 213.44± 7.65 ≈ 120
Random Set 100 210.94± 7.79 ≈ 100

5000 140.595± 11.85 –
1 185.58± 16.11 ≈ 260

Strategy 3 15 209.03± 9.67 ≈ 140
25 212.61± 7.35 ≈ 100

Regular transfer cos 50 188.75± 16.86 ≈ 180
Clustered Set 100 214.99± 8.14 ≈ 80

5000 126.22± 11.81 –
1 156.87± 17.63 ≈ 320

Strategy 3 15 190.78± 14.94 ≈ 180
25 187.38± 13.71 ≈ 200

Regular transfer pearson 50 216.57± 7.06 ≈ 90
Clustered Set 100 209.29± 9.64 ≈ 110

5000 150.37± 11.75 ≈ 260
1 185.58± 16.11 ≈ 260

Strategy 4 15 195.94± 15.40 ≈ 180
25 185.00± 17.64 ≈ 280

Scaffolded transfer cos 50 208.70± 11.06 ≈ 100
Clustered Set 100 218.17± 6.94 ≈ 90

5000 118.425± 15.14 –
1 156.87± 17.63 ≈ 320

Strategy 4 15 206.60± 9.44 ≈ 120
25 216.62± 7.57 ≈ 60

Scaffolded transfer pearson 50 218.14± 7.67 ≈ 60
Clustered Set 100 213.65± 7.86 ≈ 100

5000 151.15± 9.71 ≈ 240

Tab. 10.2.: Evaluation of the learning process over 500 · 103 learning steps, using the Q-
Learner with the representation using radial basis functions (RBF). The best
results for every approach are marked with bold letters, while the best global
result is additionally highlighted.
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Used scheme Metric Nsource Rglobal Steps to 80% threshold
[
103]

Regular learning 0 73.61± 17.47 –
1 43.54± 15.44 –

Strategy 1 15 100.73± 17.88 –
25 122.87± 15.62 ≈ 400

Regular transfer 50 139.33± 12.23 ≈ 330
No Set 100 125.165± 12.2 ≈ 300

5000 14.375± 7.38 –
1 56.43± 17.07 –

Strategy 2 15 117.81± 17.11 –
25 114.97± 15.35 ≈ 420

Regular transfer 50 120.82± 13.09 ≈ 350
Random Set 100 130.15± 14.08 ≈ 370

5000 18.07± 8.06 –
1 91.77± 19.26 –

Strategy 3 15 122.62± 18.09 –
25 139.685± 13.36 ≈ 280

Regular transfer cos 50 142.07± 13.90 –
Clustered Set 100 151.75± 8.90 ≈ 220

5000 33.81± 10.26 –
1 84.665± 20.27 –

Strategy 3 15 124.02± 16.98 ≈ 360
25 133.76± 16.99 ≈ 400

Regular transfer pearson 50 116.42± 15.95 ≈ 360
Clustered Set 100 153.75± 8.39 ≈ 250

5000 38.46± 12.34 –
1 58.28± 18.18 –

Strategy 4 15 115.34± 17.78 –
25 129.93± 16.25 ≈ 280

Scaffolded transfer cos 50 144.1± 14.19 ≈ 300
Clustered Set 100 152.59± 10.40 ≈ 260

5000 47.31± 16.77 –
1 75.75± 19.36 –

Strategy 4 15 137.05± 16.50 ≈ 340
25 147.745± 14.92 ≈ 280

Scaffolded transfer pearson 50 127.36± 16.43 ≈ 360
Clustered Set 100 133.19± 15.22 ≈ 340

5000 47.84± 14.746 –

Tab. 10.3.: Evaluation of the learning process over 500 · 103 learning steps, using the Deep
Q-Learner (DQN). The best results for every approach are marked with bold
letters, while the best global result is additionally highlighted.
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10.3 Discussion

In this chapter, the designed strategies from Chapter 7 are employed in order to
facilitate the learning process of a “mediated-interaction task”. By combining transfer
and curriculum learning with up to four different key aspects of scaffolding, the
internal representation of the learning model is refined during the learning process
in order to cope with the hierarchical aspect of the given scenario.

Can a combined approach of transfer and curriculum learning improving the learn-
ing performance? Within this simplified, yet physically realistic toy world, the
integration of transfer learning is able to speed up the learning process of the
Extension-of-Reach Scenario by about an order of magnitude. Significant improve-
ments can already be found by combining the most simple Strategy 1, i.e. temporary
simplifying the learning process, with a reinforcement learner using Q-learning with
linear and non-linear function approximation.

Does adjoining more key aspects of scaffolding into the supporting approach en-
hance the improvement of the learning process? For all three learners, a different
combination of key aspects is leading to the fastest learning result. Thus, increasing
the number of key aspects is not necessarily improving the learning process. While
for the FSR, Strategy 2 (simplification and fading) is already providing the best
results, the deep Q-learner needs more scaffolded support to reach its best perfor-
mance, leading to Strategy 3 (simplification, fading and transfer of responsibility). The
learner using the real-valued linear state representation (RBF) receives the highest
amount of improvement through the most structured learning process, guided by
Strategy 4 (simplification, fading, transfer of responsibility and ongoing diagnosis &
assessment).

Nevertheless, the results are indicating that, out of all four strategies, Strategy 4 —
embedding all four key characteristics of scaffolding — is the most stable technique.
It leads to the learning processes with the highest global reward for both linear
Q-learners and also provides the fastest learner for the real-valued and the second
fastest learner for the binary representation. Although the deep learner is neither
achieving the fastest learning nor the learning process with the highest global reward
when utilizing this strategy, the results are nonetheless outperforming Strategy 1
and Strategy 2. When employing Strategy 3 together with the cosine metric, the
deep learner is only reaching the performance threshold for two out of five source
task configurations (i. e. Nsource = 25 and Nsource = 100). Using the cosine metric
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in Strategy 4, three out of five configurations are reaching the threshold. Moreover,
Strategy 4 seems also to be the most stable approach that leads to good learning
performances when a high number of source tasks Nsource is used.

Conclusion While the proposed approach was evaluated only within a simplified
but physically realistic toy world, the obtained results can be viewed as encouraging
for bringing the general idea to speed up the learning of object interaction scenarios
by efficiently pre-learning relevant sub-skills to more complex 3D domains and
also to real-world robot learning tasks. A straightforward simplification approach
(Strategy 1) was already able to lead to a visible speed up of the learning process
and an improvement of the learning performance. Further structuring the source
task selection with more techniques that are related to scaffolding (Strategy 2-4) led
to an additional performance gain, totalling to a speed-up of almost one order of
magnitude for attaining nearly optimal performance. The impact strength of the
advanced strategies is however depending on the used kind of function approximator.
Additionally, the results direct to the conclusion that the impact of the correlation
metric is also depending on the applied state representation. The fastest approach for
the FSR was given by relying on a fixed set of source tasks (Strategy 2). As all source-
tasks within the set (regardless of their difficulty) have to be solved by the agent, a
fading like process is created. Strategy 3 is then advancing the generation process
of source-tasks by distributing the tasks and thus including a smoother transfer of
responsibility to the artificial learner. Combined with the cosine correlation metric,
this strategy leads to the fastest learner when training with the deep learning model.
When learning with an RBF representation, Strategy 4 combined with the Pearson
correlation metric is the best choice for achieving a fast learning of the task. It
replaces the uniform distribution of choosing the next source task by a deterministic
one that selects the source task which is most similar to the last solved, adding a
form of ongoing diagnosis & assessment.

As a last remark it should be mentioned that the performed studies are indicating a
dependency of the scaffolds effectiveness not only on the used kind of representation
but also on the quality of the utilized baseline. If the learning performance of the
agent is excellent from the start, the learning speed-up of the proposed learning
strategies is much smaller as for the case when, for example good hyperparameters
are not well known.

Future work There are many open questions that could be investigated in future
work, like the impact of the presented or similar transfer learning strategies on
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learning algorithms different from Q-learning. In this work, the number of key
aspects of scaffolding is increased from Strategy 1 to Strategy 4. It was, however,
not tested how the learning is influenced when combining two or three key aspects
in different combinations. In addition the presented approach has at least two
more issues that have yet to be solved. The first problem is that one does not know
beforehand which correlation function is the best. The second problem is that the
learning performance is also depending on the number of source-tasks Nsource. While
the results are encouraging the assumption that a choice Nsource ∈ [1, 100] should
lead to a visible improvement of the learning process, the best Nsource has to be
found by testing.

The next step This chapter concludes the application of a scaffold based on transfer
learning and curriculum learning on the process of learning an “Extension-of-Reach
Scenario” with distance-related sensory input. This kind of input is leading to a low
dimensional sensor-vector that is nevertheless able to characterize the state of the
world well enough for solving the given problem. It is, however, not a very general
way to describe the world and might also be complicated to be realized in reality as
a set of sensors has to be set up in order to measure the related distances between
the objects. A much better way, which is often used nowadays, would be to exploit
the raw visual information of the environment. As this kind of high dimensional
sensory information contains much more information than the distance related
sensory-vector, larger models and longer training times are required to process the
information. The next chapter is discussing one way to learn the “Tool-Centered
Interaction Scenario” with this kind of sensory input while employing the recurrent
attention asynchronous advantage actor-critic (RAA3C) model (see again Chapter 5) in
order to reduce the necessary amount of visual information that has to be processed
for achieving a satisfying learning performance.
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Scaffolding the learning
process through “active visual
perception”: an attention
based approach

11

In the last years, a rising trend of resorting to raw camera images as a more general
way for artificial agents to perceive their environment could be observed in the
machine learning community. Examples can not only be found in robotics [42, 43,
246, 247], but also when learning in computer- and board-game environments
[7, 31, 32, 38, 39, 168, 248]. However, one common problem that appears when
learning tasks using visual data is that most approaches are processing the raw
image of the whole scene instead of concentrating only on the salient features that
are important for solving the current task, as for example shown in Figure 11.1.
This leads to learning architectures with huge amounts of weights and thus to long
training times as larger features have to be processed.

(a) The Simulation world (b) Highlighting the important
parts of the environment

Fig. 11.1.: The figures illustrate the difference between processing the whole scene and
processing only the salient parts of the environment for a mediated-interaction
task within the designed simulation world. While (a) illustrates the whole
simulation world, (b) highlights the salient parts, necessary for solving the task.
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Scaffolding the learning process by efficiently reducing the information load A pos-
sible solution for this problem was proposed in Chapter 5. The designed RAA3C
model is an asynchronous advantage actor-critic architecture that resorts to a recur-
rent model of visual attention as a permanent scaffold for efficiently reducing the
amount of information the agent needs to process for solving the given task
by adapting its visual attention. Therefore, the RAA3C has the ability to learn
to actively search the visual scene for salient parts while relying only on a small
glimpse-like pixel window. During this search, the information contained within the
glimpses are stored in a memory network, built out of multiple LSTM networks. The
combined features are then used for learning the given task.

This chapter is now testing the RAA3C model by learning a mediated-interaction
scenario within the designed simulation world in order to answer the question:

Is it possible to scaffold the learning process of complex learning prob-
lems by using visual attention in order to implement active perception
into the learning process of artificial agents that rely on visual input as
its sensory information?

Learning scenario To test the efficiency of the RAA3C architecture, the learner
has to solve the “Tool-Centered Interaction Scenario” that was explained in detail
in Section 8.4. In this scenario, the tool and the target are both sampled from
uniform distributions within the interaction range of the agent at the beginning of
the episode. The agent, however, is only able to control the tool in order to move
the target into the defined goal area. Thus, the agent has to learn where to look in
order to find and identify both the tool and the target using a limited number of
glimpses.

Again, the “Target-Tool-Goal System” (see Figure 9.1) is used as the underlying
movement frame. The distance-related sensory input (8.1) that was used in the
last chapters is now replaced by a raw visual image of the scenery as explained
in Section 8.3. The simulation world (Figure 11.2a) is thus represented via a
downscaled 84× 84 pixel image that is processed through a grayscale filter, followed
by a color inversion. In the resulting image, as for example given by Figure 11.2b,
the salient features of the domain are presented by grey and white pixels, while
the empty space is black. When exploiting the whole image of the environment,
the agent would have to process 7056 pixels, which contain a lot more information
when compared to the previously utilized distance-related input.
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At each learning step, the agent is able to collect a fixed number of glimpses by
moving its virtual eye over the image of the current scene as illustrated in Figure 11.2.
After successfully solving the exercise or exceeding a fixed limit of 100 interaction-
steps, the task starts anew with different object positions. When the agent is able to
solve the task by navigating the target object into the goal area via pushing or pulling
it with the tool, it receives a reward of r = 1 and r = 0 else1. Additionally, the agent
gets a contact reward of rcontact = 0.1 once every episode for the first contact of the
target and the tool.

(a) Simulation world (b) Inverted grey scale image
of the environment

(c) The correspond-
ing glimpse

Fig. 11.2.: Image (a) illustrates the simulation world. The blue dot (currently placed on the
tool) indicates the current active picking location that the agent is using. Image
(b) shows a preprocessed version of the domain, in which the agent selects the
glimpses. The green line visualizes the movement history of the agents artificial
eye for collecting previous glimpses. Image (c) shows the current glimpse.

11.1 Experiments

By learning to solve the described “Tool-Centered Interaction Scenario”, the quality
of the designed RAA3C model is tested. In particular, the following questions were
addressed:

• Is the RAA3C architecture able to learn the given task, although it receives
only limited information about the environment through the glimpses?

• Is the developed policy for creating the next glimpses better than a simple
random policy?

1Although the reinforcement learning approaches in Chapter 9 and 10 were successfully trained with
a reward of r = 10, it seems better to use a smaller reward for more complex models like the
RAA3C in order to prevent large gradients during training.
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• How is the amount of information that is provided by the implemented context
network influencing the learning process?

In a first experiment, the agent has to learn to solve the assigned tasks using 3, 6,
8 and 10 glimpses of 10× 10 pixels. An image of the full state of the environment,
scaled down to 40× 40 pixels, is taken as the input image for the context network2.
In order to test the efficiency of the developed policy for creating the glimpses, the
model is trained again while using a random policy for generating locations for the
next glimpse. For these training runs, the weighting parameter η that controls how
much capacity should be allocated for learning, the classification and how much
for learning the location policy is set to 0. Thus, the term that is rating the current
location policy is omitted within the update rule (5.1). Next, the model is trained
again with 6 glimpses, while additionally using images with 10×10 pixels and 20×20
pixels as the input for the context network3 and also omitting the context network
by simply initializing the corresponding LSTM network with zeros in order to test
its impact on the learning performance. As a last step, the learning performance
is tested when the context network is not used to initialize LSTM 3, but LSTM 2 or
LSTM 1.

Training The model is always trained for 8000 episodes4. It handles 8 workers
that are independently exploring their own copy of the environment and computing
their own gradient using an experience buffer with a maximal size of NEB = 8. The
master network then updates its weights using the Adam optimizer [67]. Every 10
episodes, each worker receives a new copy of weights from the master network.
More information about the hyperparameters used for learning can be found in
Appendix B.3.

Evaluation For evaluating the efficiency of the learning processes, the average
reward per episode 〈R〉 that is achieved by the agent is measured. In contrast to
the last experiments, 〈R〉 is now taken as a function of episodes instead of learning
steps. In order to compute 〈R〉, the learning performance under the current policy is
evaluated over 100 episodes for each of the 11 evaluated data points. At the end,
four learning runs are averaged, where the standard deviation of the mean is used
as the error.

2A short video RAA3C.mp4 of the learned policy for the model using 6 glimpses and a 40× 40 context
image can be found in the supplementary material of this thesis (see also Appendix D).

3A short reminder: The features of the context network are used to initialize the hidden states of the
last LSTM within the memory network. The generated features are employed only by the location
network and not by the action network.

4As the episodes are limited to 100 steps, the agent is trained for ≤ 8 · 105 steps per worker.
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11.2 Results

The results for solving the designed learning problem while using 3, 6, 8 and 10
glimpses are presented in Figure 11.3. While the four configurations are starting
with a very poor policy, they all seem to reach a stable success rate after about
2000 episodes. The average reward of each configuration is depending on the
used number of glances. While the model is receiving an average reward of about
〈R〉 = 0.2 when 3 glances are used, the one with 6 glances is able to achieve a
maximal average reward of 〈R〉 ≈ 0.8, corresponding to an average success rate of
roughly 70%. When trained on 8 glimpses, the average reward drops down again
to about 〈R〉 ≈ 0.45. The performance of the model is further dropping down for
10 glimpses, leading to the learning runs with the lowest learning performance of
〈R〉 ≈ 0.15.
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Fig. 11.3.: The average reward 〈R〉 of the proposed model for 3, 6, 8 and 10 glimpses per
state st is plotted over the number of training episodes.

Table 11.1 is comparing the learning performance for the models that are using the
location network for learning to generate the position of the next glance and the
models using a random policy for generating the location of all glances. Therefore,
the highest average reward 〈R〉 that was measured during the performance runs
is listed. Additionally, Figure 11.4 visualizes the whole learning runs for 6 and 8
glimpses.
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While for 3 glances, the model with the random policy leads just to a slightly worse
learning performance, a huge gap can be observed for 6 glances. In this case, the
learning performance for this configuration is halved when a random policy is used.
For 8 and 10 glances, the learning performances for both location policies — the
learned and the random — are nearly on the same level.

Highest 〈R〉

# Glimpses πloc πrloc

3 0.24± 0.078 0.194± 0.028

6 0.788± 0.063 0.383± 0.116

8 0.465± 0.154 0.480± 0.156

10 0.168± 0.011 0.243± 0.069

Tab. 11.1.: The table lists the highest average reward 〈R〉 for the training runs with the
learned location policy πloc and the random location policy πrloc.
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Fig. 11.4.: The graph compares the learning performance of the models with the case when
a random location policy is used.

In order to test the influence of the context network on the learning process of the
model, Figure 11.5 shows the learning performance for the agent, using a fixed
number of 6 glimpses, while varying the size of the context image and also omitting
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the context network. Without the context network and initializing the corresponding
LSTM network also with zeros, the learning seems to stop at an average reward
of 〈R〉 ≈ 0.18. While a context image of 10 × 10 pixels leads only to an average
reward of 〈R〉 ≈ 0.3, it can be raised to 〈R〉 ≈ 0.5 by doubling the image size.
By again doubling the size of the image, the learning performance of the model
further increases and now achieves an average reward of 〈R〉 ≈ 0.8, known from
the previous results.
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Fig. 11.5.: The graph shows the learning performance using 6 glimpses for different sizes
of context images and also when the context network is omitted.

In addition to the previous results, Figure 11.6 illustrates the performance of the
learning runs in which the LSTM that is initialized by the context network is varied.
Although one might expect an improvement of the learning performance when the
context network is used to initialize LSTM 1 or LSTM 2, both configurations are
leading to a performance drop of about 25% and more.
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Fig. 11.6.: The graph shows the learning performance using 6 glimpses when the context
network is used to initialize the internal states of LSTM 1-3.

11.3 Discussion

This chapter evaluates the proposed approach for scaffolding vision-based reinforce-
ment learning problems by reducing the amount of information the agent needs
to process for solving the given task. The designed recurrent attention advantage
actor-critic model takes a sequence of fovea-like glimpses as an input instead of the
high-dimensional image of the whole state of the environment.

Is the RAA3C architecture able to learn the givenmediated interaction task, although
it receives only limited information about the environment through the glimpses?
The artificial agent had to learn to solve the “Tool-Centered Interaction Scenario”,
presented in Section 8.4, while relying on raw visual data as the sensory input.
Although the policies that are learned within the 8000 episodes are all not optimal,
the result for 6 glances can be seen as a learning success. The first results within
this chapter are demonstrating that it is able to solve the given task with an average
success rate of about 70%. Other observations indicate that less glimpses seems not
to be able to provide enough information to generate a good picture of the current
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state while too many glimpses exceed the memory networks capacity and are again
undermining the learning.

As each glimpse is built out of two pixel patches with a size of 10× 10 pixels, the
RAA3C needs only to process a sequence of sensory inputs of size 200 plus the
glimpse location. The number of input features is thus about 35 times smaller than
the number of features when using the original 84× 84 grayscale image. The price
that has to be paid is given by the recurrent memory network of the RAA3C that
is required to store and filter the information of the executed glimpses that are
collected during each training step.

Is the learned location policy for creating the next glimpses better than a simple
random policy? An interesting observation that can be made when visualizing the
agent’s learned behaviour is that it often takes glimpses at locations where only
black pixels are present. While this looks like an inefficient or random behaviour
at the first glance, the conducted experiments are demonstrating that the learned
policy πloc for generating the glimpses is outperforming a random policy. Hence,
πloc is a necessary part for learning to solve the given task. It is also a signal that
the agent needs the confirmation that both objects are absent at the specific location
in order to generate a sufficient model of the present state of the environment.

How is the amount of information that is provided by the implemented context net-
work influencing the learning process? One important ingredient of the architec-
ture is the context network. The results are indicating that a bigger context image
leads to a better location policy, although it initializes just the hidden states of one
LSTM network that is also connected only to the location network and not to the
action network. Additionally, its information content seems to strongly influence
the quality of the location policy. As the input to the context network is a rescaled
version of the whole domain and the resolution of this image seems to influence the
resulting location policy, one might argue that the RAA3C also has to rely on a high
high-dimensional sensory input for achieving satisfying learning results. The context
image is, however, processed only through one linear layer that is downscaling
the resulting feature vector to 64 dimensions. The features for learning the action
policy are solely generated by using the information from the glimpses. It is also
an interesting observation that the learning process gets worse when the context
network is used to initialize the internal states of an LSTM network other than
LSTM 3.
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Conclusion While the model still needs to be improved further, this work is a
promising starting point for further investigation of reinforcement learning using
an attention guided visual input. As the average success rate of about 80% is not
optimal, it might be possible to improve it either by training the model for more
than 8000 episodes or by searching for a better set of hyperparameters. While in
the given approach only linear layers and LSTMs are used, it is an interesting next
step to integrate convolutional layers as in [218] in order to improve the models
performance. Another idea is to test different kinds of recurrent modules like the
gating recurrent unit [77, 78]. A further direction could also be to think about a way
to combine the recurrent model of visual attention with other kinds of reinforcement
learning algorithms like a deep Q-learner [7].

The next step The presented findings show a way to shape the learning process by
reducing the amount of information the agent needs to handle through the replace-
ment of the environment’s full visual input by a sequence of small glimpses. The
idea is not restricted to the field of computer vision. As discussed in Chapter 6, it can
also be ported to the field of “haptic robotics” in order to enable a robot to perceive
its surroundings by relying only on sequential tactile sensor measurements. In the
next chapter, this approach is tested within a simulated robotics environment.
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A scaffold for enabling “active
haptic perception”: learning
efficient haptic exploration

12

In addition to the ability to process visual information, a second key skill for both
robots and humans to discriminate and handle unknown or recognize familiar
objects is given by haptic exploration. From early on, humans reliably acquire
sophisticated sensorimotor capabilities for active exploratory touch and directed
manual exploration that associate surfaces and object properties with their spatial
locations. The lack of good real-world interaction models, along with very restricted
sensors and a scarcity of suitable training data to leverage machine learning methods
has so far rendered haptic exploration a largely underdeveloped skill for robots. This
is in marked contrast to vision, where deep learning approaches and an abundance
of available training data have triggered huge advances.

Based on the observation that visual perception is a touch-like process [136], Chap-
ter 6 has introduced an approach that enables a robot to learn efficient haptic
exploration. It is not only inspired by human perception, but also exploits again a
recurrent attention model as its basis in order to effectively extract and accumulate
the information from a sequence of tactile data. The current chapter employs this
approach in order to create a scaffold for efficient haptic exploration via facil-
itating active haptic perception by putting the designed haptic attention model
(HAM) to use. In order to test the efficiency of the model, a simulated robot learns
to explore and to classify different kinds of geometric objects.

Outline The focus of this chapter lies on answering the question:

Is it possible to scaffold the learning process of haptic problems by using
recurrent attention in order to learn synthetic exploratory procedures for
robots by optimizing motor control?

Therefore, the developed simulation setup is described at first. The following section
then addresses the coupling of the proposed HAM. After giving a detailed explanation
of the conducted experiments, the results are presented and then discussed.

155



12.1 Designing the simulation world

The experimental setup is designed to acquire tactile signals with a tactile sensor
array mounted on a robot arm, while exploring a stimulus. It inspired by the con-
cept of modelling the functionality of a finger performing haptic interaction with
fingertip-sized objects, similar to the approach presented in [229]. The simulation
environment is created using Gazebo1 as illustrated in Figure 12.1. The Communica-
tion of the different parts within the simulation, including the HAM, is performed
via a ROS-interface2.

Fig. 12.1.: Simulation of the KUKA robot arm (7 degrees of freedom) with the Myrmex
sensor array attached to the end-effector. On the left side of the image, the
robot performs a haptic glance by establishing contact with one of the objects.
The right side shows the corresponding visualization of the resulting tactile
measurement.

12.1.1 The three building blocks of the simulation world

The simulation environment is constructed out of three parts: the tactile sensor, the
stimulus material and the robot.

Tactile sensor For exploring the different stimuli the simulated tactile sensor is
built out of a square-shaped 16× 16 array of pressure-sensitive elements. The
design matches the tactile sensor, called Myrmex, that was presented in [249].
The Myrmex provides a high-speed data acquisition and exhibits a very low
first-contact threshold. Contacts at collision are estimated by Gazebo’s physics
engine ODE according to inter-penetration of objects (intrinsic compliance)
and to default local surface parameters. Each contact defined by its position

1http://gazebosim.org/
2http://www.ros.org/
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and force vector generates a Gaussian distribution around the contact center
with amplitude depending only on the normal force. The standard deviation
is arbitrarily fixed to mimic the deformation of the sensitive foam on the
real sensor. As a result, the simulated version of the sensor emulates the
contact distribution over the array through the use of a mixture of Gaussian
distributions around the contact points obtained through Gazebo, weighted
according to the local contact force. Mixing the distributions creates a 16× 16
tactile pressure image, that is represented as an array of floating point values
contrary to the real sensor with only 4096 levels of pressure.

In Figure 12.2 the tactile image for a contact with an edge are shown for the
real Myrmex sensor and the simulated sensor. Due to the limitations of the
collision library libccd used by the ODE simulation engine of Gazebo, only
two contact points are generated at a time3. Consequently, it is not possible
to produce an edge in the resulting tactile image. On the contrary, the real
sensor produces a tactile image in which the expected line of contact is visible.
When therefore the collision with an edge is measured, as it is illustrated in
Figure 12.2a, the expected pressure profile would have the shape of a line.
However, due to the limitations of the collision library, it will appear only as
two contact points in simulation as shown in Figure 12.2b.

Stimulus material The second building block is a static set of the 3D objects that
should be explored and then classified. Therefore, each of the objects is
assigned to a different class label that has to be identified correctly by the
robot. As this stimulus material should, like the tactile sensor, exist both in
simulation and as a real-world object, building blocks from the “Modular Haptic
Stimulus Board”4, introduced by Moringen et al. [250, 251], are employed.
Figure 12.3 shows an example of four object classes that were also ported in
the simulated experiment as shown in Figure 12.1.

3A short explanatory video HAM_1.mp4 can be found within the supplementary material of this thesis
(see also Appendix D).

4An explanatory video of the “Modular Haptic Stimulus Board” can be found at
https://www.youtube.com/watch?v=CftpCCrIAuw.
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(a) Collision detection — real Myrmex sensor

(b) Collision detection — simulated Myrmex sensor

Fig. 12.2.: A comparison of the measurements between simulated and real Myrmex sensor
when contacting an edge. (a) shows the tactile image of the simulated Myrmex.
(b) shows the real sensor and the measured tactile image.

Fig. 12.3.: Exemplary objects employed in an identification task.

Robot arm The robotic setup consist of a KUKA LRW4 robot arm with 7 degrees of
freedom ensuring a range of motion similar to a human arm. Its end-effector
is equipped with the tactile sensor Myrmex mounted on an ATI force-torque
sensor as shown in Fig. 12.1. The whole robotic system was recreated in simu-
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lation, using Gazebo and a simulated light-weight robot controller providing
impedance control in joint space. The real-time control loop consisting of
a Cartesian controller and of a Cartesian trajectory controller (interpolating
motions and monitoring deviation), is exactly the same for the real world
robot, and permits to validate the safety mechanism and the algorithms in the
virtual environment first.

The purpose of the setup is to explore the stimuli with the sensing surface in a safe
manner. Robotic interactions with the environment always require great care to
avoid damage due to unintended high contact forces. Therefore, unplanned contacts
are usually not desired. Since the exploration procedure is guided by the learning
system, the various sensor poses executed on the robot are not known in advance.
Moreover, for more realism, the shapes to explore are also unknown, which forbids
any planning for obstacle avoidance. Hence, the robot arm should move and rely on
events to react accordingly when touching the environment. The motion of the robot
is stopped by a tactile event, which is a successful data acquisition. It is also stopped
by a too high force on contact between the end-effector and the environment, or
by a too large deviation between the desired joint target and the actual in case of a
contact with other robot body parts, both latter events being considered as a failed
data acquisition.

12.1.2 Implementing essential control primitives

Corresponding to the definition of the haptic glance in Section 6.1, it is implemented
as a movement downwards towards the object, while sustaining a given pose, until
a contact is established. The target pose of the tactile sensor can be described by a
vector l = (xg, yg, zg, e1, e2, e3) that is constructed out of the three variables xg, yg
and zg that are defining its position in the global coordinate frame and the three
Euler angles (e1, e2, e3) defining its orientation. As a further simplification of the
designed simulation framework only two of the six parameters can be modified by
the learner: the position along the x-axis (xg) and the angle around the y-axis (e2).
For the sake of readability, the alterable position xg is called x and the angle e2

is called ϕ in the following text. Thus, each haptic glance that is executed within
the Gazebo simulation is represented by a pose (x, ϕ) of the tactile sensor. The
remaining variables yg, e1 and e3 are staying constant, while zg is controlled by an
external haptic glance controller.
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Haptic glance controller The haptic glance controller is the interface between the
learning framework and the robot simulation. It is designed as a state machine that
receives a target pose for each individual haptic glance from the learner and is in
charge of actually moving the sensor within the simulation world, stopping it when
colliding with objects and resetting its position.

The new exploration pose is then executed by following a sequence of three states.

1. The sensor is moved to the pose (x, ϕ) above the objects, while z remains at
the constant pre-defined level.

2. A slow downwards motion is queried, while monitoring the high-force, devia-
tion and tactile pressure events.

3. On any of the events, the state-machine switches to the last state, moving
the sensor away from the object. In the case of a tactile event, the data is
transmitted back to the HAM, completing one haptic glance.

12.1.3 The classification task

The full experimental setup is visualized in Figure 12.4. During training and clas-
sification, one out of the four objects is always presented to the agent within its
associated exploration zone.

Exploration zones Exploration zones are pre-defined regions in front of the robot
with their own local coordinate systems, in which the objects are placed for explo-
ration. After specification of the exploration zone, two out of six pose parameters
of the tactile sensor can be modified by the HAM: the position x along the x-axis
within the coordinate frame of the associated exploration zone, and the orientation
angle ϕ around the y-axis. Before the execution of a haptic glance, the sensor is
placed at the specified pose. The height of the sensor is set to a predefined value that
guarantees a free floating of the sensor above the given exploration zone without
any collisions. In order to establish the contact, the sensor is moved down along the
z-axis. A pressure vector p is recorded once any sensitive cell of the sensor reaches a
pre-defined threshold.

160 Chapter 12 A scaffold for enabling “active haptic perception”: learning efficient
haptic exploration



Executing haptic glances The agent explores the restricted object space with the
sensor by performing a predefined number of haptic glances. While the first glance
is always random, all following ones are generated using the HAM. Therefore a
new position x ∈ [−1, 1] and a new orientation ϕ ∈ [−0.3π,+0.3π] are provided
to the agent. The coordinate pair (x, ϕ) is then transformed into the coordinate
system of the active exploration zone and then passed to the haptic glance controller
for generating the associated pressure vector p. The tuple (x, ϕ,p) is then used by
the HAM, together with the already stored information of the previously executed
glances, for either generating the location-orientation pair of the next haptic glace
or for classifying the active object.

Exploration Zones

0 1 2 3
z

x

y

Fig. 12.4.: The experimental setup contains four objects whose positions are static. The
Myrmex sensor gathers information about the objects by performing haptic
glances at position x and orientation ϕ around around the y-axis.

12.1.4 Creation of the dataset

Learning within the simulation can be done only with a speed of 2× real-time. It is
however possible to speed up the learning by exploiting the fact that the sensor is
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interacting within the same regions of the location-orientation space multiple times,
leading to almost the same pressure readings. In order to enable a fast and efficient
evaluation of the model for different configurations of parameters like the number
of used haptic glances, the whole location-orientation space that can be accessed by
the sensor is tesselated. As a next step, a cache of haptic glances is generated that
are then stored in a dataset Do for learning.

For each object o, the dataset is produced by recording tuples do = (p, x, ϕ) of the
normalized pressure data p, together with the associated location x and orientation
ϕ of the sensor. In order to generate data of each object that is independent of its
positioning, the location data x ∈ [−1, 1] is given within the location space of the
exploration zone. After reaching the associated exploration zone with the robot, the
recording of the data points starts at x = −1 with the orientation ϕ = −0.3π. The
whole orientation space is now covered by recording ϕ while incrementing it with a
step size of ∆ϕ = π · 0.05. The location is then incremented by ∆x = 0.05 and the
recording of the orientations starts anew at ϕ = −0.3π. The described procedure
leads to 41× 41 pre-recordings per object (41 orientation recordings per position)
and full a dataset with a size of about 6724 data points.

During training, the model generates location-orientation pairs (x, ϕ) for which the
associated pressure vector p is directly extracted from the dataset. This is performed
by taking the data point do that best matches (x, ϕ), instead of re-measuring the
pressure vector in simulation.

A larger dataset for better model evaluation In order to train the model within an
admissible amount of time, the creation of the dataset using the full robot simulation
is a necessary intermediate step. However, the production of the training data
comes in line with some drawbacks. At first, it takes a lot of time to record it. A
second problem is that the existence of noise within the pressure measurements is
an inevitable phenomenon. The sensor either might get stuck at some edge or is
not able to properly record the pressure data because of a disadvantageous pose.
This and some other simulation-related issues are the reason for the recording of
a relatively coarse dataset. It is a good choice for validating the functionality and
generalizability of the designed haptic attention model. Furthermore, it is also
necessary for creating a pre-trained model that can then be used for solving the
classification task within the simulation environment. In spite of everything, it might
not be a good choice for a more theoretical study of the model’s features as analysing
the characteristics of the different network modules. For the latter case, a larger and
much finer dataset with 161 · 103 data points was created in [24] by omitting the
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robot arm within the simulation and also shrinking the (now floating) simulated
Myrmex for a better exploration process. The most important results when training
on the large dataset can be found in the Appendix C, while a detailed evaluation is
given in [24].

12.2 Implementation of the haptic attention model

The implemented version of the haptic attention model (HAM) is proposed in Section
6.2 and illustrated in Figure 6.1. A vector s = (p, x, ϕ)> consisting of the sensor
pose (x, ϕ) and the associated pressure profile acquired by the Myrmex sensor
while performing a haptic glance in Gazebo is used as the sensory input for the
network. The 16× 16 pressure matrix is flattened to a normalized pressure vector
p with dim(p) = 256. First, the input is processed through the tactile network,
which combines the recorded pressure profile p with its associated location x and
orientation ϕ into one single feature vector. The features s are then propagated
through the memory network. It then provides features to the location network that
in turn generates a new pose. After a certain number of glances, the features that are
generated by the LSTM are used by the classification network for predicting a class
label for the current object. Although the classification of the object can be done
within each haptic glance, the one after the final glance is usually the classification
result of one’s interest.

Training The HAM is trained using stochastic gradient descent with Nesterov
momentum [61–63] and the update rules (6.1), (6.2) from Section 6.2.1. A detailed
list of the used parameters can be found in the Appendix B.4, leading to a model with
a total number of 741248 trainable weights. For each training step, a new batch of
size 64 is generated, where the to-be-classified objects o are uniformly chosen from
the set of available objects. It is important to notice that a used batch of training data
is given only as a uniformly sampled list of objects. All data is then generated on the
fly during training by performing the haptic glances within the object’s “exploration
zone”. At first, all haptic glances are executed for one object, together with the
classification and the computation of the gradients. The data is then saved, before
interacting with the next object. If all objects of one batch are explored, the saved
gradients are accumulated and used to update the model. This technique can be
used for training on a robotic platform without further modifications.
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The learning rate αt decays exponentially every T training steps to αmin with a
decay-factor of δα according to

αt = min
(
αmin, α0 · e−δαt

)
with t = t+ 1 every T training steps.

Table B.12 in Appendix B.4 lists the hyperparameters that are used for all experi-
ments. The parameters are chosen according to random search [244] with a fixed
number of 3 glances, followed by additional manual tuning. The weights of all
layers are initialized using He normal initialization [252] with a bias of 0.

12.3 Experiments

The conducted experiments are split in two parts. In the first part, the HAM is
trained by using the created dataset. It is evaluated how well the model is able to
learn the classification task for different numbers of glances, while training only on
the limited pre-recorded data. The model is always trained for 104 steps. In order to
measure the performance after a certain number of training steps, the training is
paused. Next, the accuracy for correctly classifying the given object in 100 newly
generated batches using the currently available policy is estimated. To obtain a
statistically correct measure of the accuracy, each experiment is repeated 10 times.
For the final evaluation, the mean accuracy is averaged over all experiments with
the standard deviation of the mean as the error.

In the second part, the trained model has to generalize beyond the recorded data
by classifying the four objects within the fully-fledged simulation. Therefore, the
best performing models are utilized, where each was trained on a specific number
of glances. The agent has then to classify all of the four objects 20 times within the
simulation. The resulting classification accuracy is then averaged over four distinct
trials with the standard deviation of the mean as the error.

12.4 Results

The evaluated results for training and testing the haptic attention model on the
pre-recorded dataset can be found in the second column of Table 12.1. Additionally,
Figure 12.5 visualizes the learning performance for the training on 1, 2, 3 and 6
haptic glances. The model reaches an accuracy of about 84% after just one random
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glance. It then continuously improves when more glances can be executed. Granting
the model just one more glance leads to an accuracy of more than 96%.

Performance

# Glances Dataset Simulation

1 0.849± 0.001 0.803± 0.0709

2 0.969± 0.001 0.906± 0.0225

3 0.988± 0.001 0.941± 0.014

6 0.994± 0.001 0.978± 0.018

8 0.997± 0.000 0.997± 0.005

10 0.998± 0.000 0.978± 0.018

Tab. 12.1.: List of measured classification performances, recorded in simulation using the
best model, pre-trained on the recorded dataset. The results are averaged over
4 trials.
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Fig. 12.5.: Classification accuracy of the designed approach. The classification accuracy
during the training is visualized for the model while it is trained to classify using
different numbers of glances.

Testing the model on a simulated robot arm with an attached tactile sensor After
successfully training a model that is able to classify the four objects with high
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accuracy while using only the limited data of the pre-recorded dataset, the learned
model is tested within simulation5. The results are listed in the last column of Table
12.1. It is now possible to compare the results evaluated within the simulation with
the ones that are computed while relying only on the dataset. One can directly see
that the performance measured within the simulation is smaller for less glances. It
then gradually increases when more haptic glances can be applied and then reaches
nearly the same performance for 8 glances as measured on the dataset. Also the
classification accuracy in the simulation is smaller for 1 to 6 glances, even the use of
one single haptic glance per object leads to an accuracy of about 80%. While adding
a second glance increases the success rate about 10%, the third one adds only a gain
of ≈ 4% that further decreases with every additional glance added. Nevertheless, an
accuracy of more than 99% can be reached for this simple task when 8 glances are
used. For 10 glances, the accuracy is slightly dropping to about 98%.

12.5 Discussion

In this chapter, the theoretical ideas from Chapter 6 were tested to verify the
hypothesis that existing attention mechanisms which are able to scaffold “active
visual perception” can also be utilized for scaffolding the process of “active haptic
perception” in tactile-based learning scenarios. Therefore, a variant of the “recurrent
model of visual attention” was utilized in order to learn the control of sequences of
haptic glances for efficiently classifying four different objects. A simulation of an
actuated robot that is equipped with tactile sensing was exploited in order to verify
the success of the approach with a setup mimicking haptic interaction performed
with one human finger.

Main results Using the integrated attention mechanism of the HAM as a scaffold
for sensor-control, the developed architecture is able to learn suitable exploratory
procedures with respect to its own constraints and the spatio-temporal resolution
of the acquired data. These results may be limited by the simplicity of the 3D
shapes that are employed in the experiments. As the considered objects should be
characterizable through a one-dimensional curvature, there are, however, not many
other objects that could be chosen.

Despite a relatively small training set and training time with respect to the weights,
the network shows good generalization performance as demonstrated by the results

5A short video HAM_2.mp4 can be found within the supplementary material (also see Appendix D).
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achieved in simulation. This is in line with findings in literature, where large
numbers of weights are not necessary leading to overfitting [253]. Additionally,
much time was spent on optimizing the hyperparameters of the model and the
process of data acquisition.

Future work: towards more complex applications As the application of the pre-
sented method is not restricted to the chosen morphology, it can be applied to
control more complex setups within future works. In this work, the implemented
model has been tested with a classification front-end, i.e. the task of the HAM was
to efficiently identify objects. Due to the modularity of its architecture, the object
classifier can be substituted with a different front-end to perform other objectives,
such as haptic search or fault diagnosis. Furthermore, it could be a possibility that
an improved variant of the model can also be applied to perform not only contour
exploration, but also other types of haptic exploration, such as squeezing for rigidity
identification, or texture identification.

Future work: towards real-world learning Another stream of possible improvement
would be to induce the transition from the simulated robot to a real-world setup.
While it is possible to recreate the experimental setup while using a real KUKA robot6

as shown in Figure 12.6, technical and safety issues have to be resolved. Additionally,
a new dataset has to be created using the illustrated setup with predictable safe
poses. Training with this real-world dataset should show how well the model can
deal with the noise within the data that is inevitably present when working with a
real robotic setup.

To enable a rigorous exploratory behavior, the original HAM model yields a stochastic
location policy resulting in a behavior that could be described casually as jumpy. A
first attempt to regulate this stochasticity for more smooth and efficient trajectories
in Cartesian space as well as a more focused exploration of the local shape features
can be found in [254].

Training solely on a pre-recorded data set might not be sufficient for more compli-
cated tasks, while a full training within the online simulation is likely to be time
consuming. One option could be to use a transfer learning approach [162] by first
training the model on a pre-recorded dataset and then adding refinement to the
learned policy by training the same model for a smaller number of training steps

6A short video KUKA.mp4 that shows the early testing off the control scheme in a real world setup can
be found within the supplementary material of this thesis (also see Appendix D).
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directly on the simulated robot setup. Potentially, it might even be possible to employ
a variant of the transfer learning approach that was presented in Chapter 7.

Fig. 12.6.: Photo of the real-world setup, where the robot arm is performing a haptic glance
using the Myrmex sensor. The resulting pressure measurement is shown on the
monitor in the background.
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Part IV

Conclusion





Summary, conclusion &
outlook

13
At present, the accustomed assistance of robots in daily life tasks is a challenging
matter. Especially when the task forces the robot to physically interact with its
surroundings and to adapt on changes, many demands have to be faced. Not only
fast learning of new assigned duties is required, but also the ability to learn in ways
that enable a human to easily instruct the robot when facing new problems. This
thesis has addressed the described issues by analysing and exploiting the potential of
a concept taken from educational psychology, called scaffolding. In that context, the
main theme of this thesis was to propose scaffolding as a general guiding princi-
ple that exploits available meta-knowledge from the field of machine learning
for developing approaches that are able to improve and accelerate the learn-
ing process of artificial agents. The emerging key-aspects were then exploited
as a computational skeleton for a possible research agenda. As a result, four new
scaffolding approaches were proposed, analysed and discussed throughout the
remaining part of this thesis.

Outline The present chapter now summarizes the conclusions that were drawn
out of the conducted studies (Section 13.1), followed by an overarching discussion
in Section 13.2. In the end, the gathered information is used for proposing some
continuative ideas for future research in Section 13.3.

13.1 Four scaffolding approaches — a summary

In Chapter 2, reinforcement learning was presented as a class of very efficient and
frequently employed machine learning algorithms that were inspired by biological
agents. Regardless of their effectiveness, they are also bound by common problems
like long training times and the need of huge amounts of training data. As a possible
remedy, scaffolding was first introduced as a theory from educational psychology in
the beginning of Chapter 3. It was then related to different approaches in machine
learning in order to show that many of the key concepts were already used and
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also led to promising results. Based on the gathered insights, a refined principle of
scaffolding for artificial agents was formulated. Therefore, the original key aspects
were either reinterpreted or — if needed — refined. Condensed in a mindmap
(see Figure 3.5), the key aspects were identified as refining the learner’s attention,
simplification, ongoing diagnosis and assessment, modelling & demonstration and
fading & transfer of responsibility and were thus not much differing from the five key
aspects of the original theory. The proposed concept was then utilized for identifying
parts of the learning process of artificial agents that were likely to provide a good
starting point for scaffolds. These parts turned out to be the agent’s perception of
the learning domain on the one hand and the initial part of the learning process on
the other hand. With this information in mind, four different kinds of scaffolds for
reinforcement learners were designed, together with suitable testbeds:

Perceptive acting — Chapters 4 & 9 Finding good principles to choose the ac-
tions of artificial agents in the most beneficial way to optimize their control
of the environment is an important aspect for facilitating a fruitful learning
process. Especially in reinforcement learning, where the agent learns through
the direct interaction with the environment, a good choice of actions is es-
sential. A new approach was proposed that is scaffolding existing learning
frameworks by choosing a favorable set of actions according to their mutual
information. This permanent scaffold for the learning process by selecting
the most suitable action set allows a predictive ranking of different action
sets with regard to their influence on the learning performance of an artificial
agent. In the conducted experiments, it was shown that a favorable choice
of the action set is able to significantly improve the learning process without
explicitly modifying the learning algorithm itself. It was then demonstrated
that the mutual information-based measure can yield useful predictions on the
aptitude of action sets for the time course of learning.

Active visual perception — Chapter 5 & 11 Humans are sensing the world in an
active way. Instead of perceiving the environment as a whole image, only parts
of the scenery in the form of image sections, called “glimpses”, are combined
in order to get an accumulated understanding of the visible scene. This can
be seen as a first indicator that active visual perception might be a promising
approach for creating a permanent scaffold that enables the integration of
efficient active visual perception when solving complex learning scenarios
with reinforcement learning. As a result, a new approach was presented that
embeds the perception of the environment through active visual perception
into an asynchronous advantage actor-critic architecture. Instead of using the
full visual information of the scene, the resulting model accumulates the foveal
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information of controlled glimpses and is thus able to reduce the complexity
of the network. Using the designed model, an artificial agent was able to solve
a challenging “mediated interaction scenario”. To learn the given problem,
the agent “actively” searches for salient points within the environment by
taking a limited number of fovea-like glimpses. It then uses the accumulated
information to decide which action to take next.

Active haptic perception — Chapter 6 & 12 In addition to the ability to process
visual information, a second key skill for both robots and humans to discrim-
inate and handle unknown or recognize familiar objects is given by haptic
exploration. This part focuses on designing a scaffold for learning one
central and important haptic skill: the discrimination of unknown object
shapes through a sequence of actively controlled haptic contacts between
a sensor and the object surface. The proposed haptic attention architecture
simultaneously optimizes main perception-action loop components: feature
extraction, integration of features over time, and the control strategy, while
continuously acquiring new tactile data online. For testing, the designed haptic
meta-controller was combined with an rigid tactile sensor array attached to a
robot arm that moves in a physics-driven simulation environment. Performing
object contour exploration that has been optimized for its own sensor morphol-
ogy and classifying four differently shaped objects, it achieves results close to
100%.

Scaffolding the structure of the learning process — Chapter 7 & 10 Basic lin-
ear and deep reinforcement learning architectures are lacking the ability to
simplify a given learning problem by splitting it into a hierarchy of simpler
sub-tasks and then learn their essential sub-skills. Therefore, a scheme for
temporary scaffold the learning by refining the model’s internal repre-
sentation through the pre-training of sub-skills using a combined trans-
fer and curriculum learning approach that is enriched by the developed
key aspects of scaffolding was proposed. The focus was set on the case
where transfer learning is applied to generalize experiences from source tasks
that are solvable through direct, unmediated interaction, to target tasks that
require mediated interaction for their solution. The findings indicate that the
designed scaffold, employed in this context, leads to a significant acceleration
of learning. The invented approach can be used to easily extend and improve
many existing learning architectures without the need to modify them.
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13.2 Conclusion

This work has demonstrated that a refined concept of scaffolding can be employed
as a guiding principle for developing new approaches in machine learning that
support the training process of artificial agents on different problems. For this
purpose, scaffolding in machine learning was formulated in a broader sense than it
has been done in educational psychology.

In a following step, the new principle was then used to design four scaffolds that
could either enable learning or improve the learning process of the assigned task
within the constructed testbeds. These approaches are not only good candidates for
new insights into the learning process of reinforcement learning agents. They might
also be able to set the direction to new and interesting perspectives within the field
of artificial learning.

Scaffolding the structure of the learning process by implementing refined key aspects
taken from the original theory has successfully demonstrated its positive effect on
the learning process. Additionally, it was highlighted that it is also a good approach
to design not only temporary — as it was stated in the original psychological theory
— but also permanent scaffolds that are centered on supporting specific parts of the
learning process.

A second mentionable observation is the importance of perception for the learning
process. While the way of perceiving the world is often seen as a distinct feature
of the agent that is defined by the programmer, the conducted studies encourage
the formulation of two statements: The first one is that a deeper study of available
interaction strategies might lead to a choice of action primitives that are able to
significantly improve the learning process as they augment the agent’s perception
(perceptive acting). Secondly, it seems also beneficial to design a deeper connection
between the learning model and the collection of sensory input by integrating the
ability to learn an efficient “active” perception of the environment into the learning
model. This can not only be used as a way for reducing the information load of
the often very high dimensional sensory input. It can also endow the agent with
new abilities like learning to generate exploratory procedures for an efficient haptic
exploration of the environment.

174 Chapter 13 Summary, conclusion & outlook



13.3 Recommendations for future research

While for the presented scaffolds some recommendations for further investigations
were given within the individual discussions, it is also important to make suggestions
for continuing the study of the hidden potential within the invented principle:
scaffolding the learning process of machines. In this regard, an interesting idea would
be to start a deeper study on how the different aspects of the theory are influencing
the learning process of artificial learners: Which of them are the most promising
ones in general for supporting the learning process of machines? What are the
limitations? What can we learn from results achieved in similar experiments that
are conducted not with artificial learners but with human participants? By designing
experiments that can be compared to ones with human participants it might also be
possible to study scaffolding in the opposite direction: Is it possible to speed up the
learning process of humans by transferring scaffolds for machine learning into the
human realm?

Within this work, only the scaffolding of perception and the internal representation
of the model were discussed. Thus, as a last idea for further research, it could be a
promising attempt to identify additional parts of the learning process as potential
candidates for a supporting scaffold. They might again lead to valuable insights into
the learning process and to new approaches that narrow the gap to a procedure
enabling fast and save real-time learning for robots.

13.3 Recommendations for future research 175





Bibliography

[1]Elisabetta Visalberghi and Loredana Trinca. “Tool use in capuchin monkeys: Distin-
guishing between performing and understanding”. In: Primates 30.4 (Oct. 1989),
pp. 511–521 (cit. on pp. 1, 99).

[2]Alexander Stoytchev. “Behavior-Grounded Representation of Tool Affordances”. In:
IEEE International Conference on Robotics and Automation. IEEE, 2005, pp. 3060–3065
(cit. on pp. 1, 99, 106).

[3]Bogdan Moldovan, Plinio Moreno, Martijn van Otterlo, José Santos-Victor, and Luc De
Raedt. “Learning relational affordance models for robots in multi-object manipulation
tasks.” In: ICRA (2012), pp. 4373–4378 (cit. on pp. 1, 99).

[4]Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, et al. “Affordances in Psychology,
Neuroscience, and Robotics: A Survey”. In: IEEE Transactions on Cognitive and Devel-
opmental Systems 10.1 (Mar. 2018), pp. 4–25 (cit. on pp. 1, 99).

[5]Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
“Neuroscience-Inspired Artificial Intelligence”. In: Neuron 95.2 (July 2017), pp. 245–
258 (cit. on pp. 2, 30, 69).

[6]Andrew N. Meltzoff, Patricia K. Kuhl, Javier Movellan, and Terrence J. Sejnowski.
“Foundations for a New Science of Learning”. In: Science 325.5938 (July 2009),
pp. 284–288 (cit. on p. 2).

[7]Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533 (cit. on
pp. 2, 9, 25, 29, 69, 113, 145, 154, 206).

[8]Nuttapong Chentanez, Andrew G. Barto, and Satinder P Singh. “Intrinsically Motivated
Reinforcement Learning”. In: Advances in Neural Information Processing Systems 17.
Ed. by L K Saul, Y Weiss, and L Bottou. MIT Press, 2005, pp. 1281–1288 (cit. on p. 2).

[9]Satinder Singh, Richard L. Lewis, Andrew G. Barto, and Jonathan Sorg. “Intrinsically
Motivated Reinforcement Learning: An Evolutionary Perspective”. In: IEEE Transactions
on Autonomous Mental Development 2.2 (June 2010), pp. 70–82 (cit. on p. 2).

[10]Alec Solway, Carlos Diuk, Natalia Córdova, et al. “Optimal Behavioral Hierarchy”. In:
PLoS Comput Biol 10.8 (Aug. 2014), e1003779–10 (cit. on p. 2).

[11]Emanuel Todorov. “Efficient computation of optimal actions”. In: Proceedings of the
National Academy of Sciences 106.28 (July 2009), pp. 11478–11483 (cit. on p. 2).

177



[12]Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, et al. “Unifying Count-Based
Exploration and Intrinsic Motivation”. In: Advances in Neural Information Processing
Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett.
Curran Associates, Inc., 2016, pp. 1471–1479 (cit. on pp. 2, 42, 53).

[13]Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, et al. “Reinforcement
Learning with Unsupervised Auxiliary Tasks”. In: CoRR abs/1611.05397 (2016). arXiv:
1611.05397 (cit. on pp. 2, 42, 53).

[14]Martin A. Riedmiller, Roland Hafner, Thomas Lampe, et al. “Learning by Playing -
Solving Sparse Reward Tasks from Scratch”. In: CoRR abs/1802.10567 (2018). arXiv:
1802.10567 (cit. on p. 2).

[15]Jacob Andreas, Dan Klein, and Sergey Levine. “Modular Multitask Reinforcement
Learning with Policy Sketches”. In: Proceedings of the 34th International Conference
on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017,
pp. 166–175 (cit. on pp. 2, 45).

[16]Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, et al. “FeUdal Networks
for Hierarchical Reinforcement Learning”. In: CoRR abs/1703.0 (2017) (cit. on pp. 2,
45).

[17]Jennifer Hammond. Scaffolding: Teaching and learning in language and literacy educa-
tion. ERIC, 2001 (cit. on pp. 2, 31, 32).

[18]Jennifer Hammond and Pauline Gibbons. “What is scaffolding”. In: Teachers’ Voices.
Ed. by Anne Bruns and Helen de Silva Joyce. National Centre for English Language
Teaching and Research, Macquarie University, 2005, pp. 8–16 (cit. on pp. 2, 31, 32).

[19]Janneke van de Pol, Monique Volman, and Jos Beishuizen. “Scaffolding in Teacher–Student
Interaction: A Decade of Research”. In: Educational Psychology Review 22.3 (2010),
pp. 271–296 (cit. on pp. 2, 31–33).

[20]Janet Mannheimer Zydney. “Scaffolding”. In: Encyclopedia of the Sciences of Learning.
Ed. by Norbert M Seel. Boston, MA: Springer US, 2012, pp. 2913–2916 (cit. on pp. 2,
31–33, 38).

[21]Sascha Fleer and Helge Ritter. “Comparing Action Sets: Mutual Information as a
Measure of Control”. In: Artificial Neural Networks and Machine Learning – ICANN
2017. Cham: Springer International Publishing, Oct. 2017, pp. 68–75 (cit. on pp. 3, 4,
59, 118).

[22]Sascha Fleer and Helge Ritter. “Skill Transfer for Mediated Interaction Learning”. In:
2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). Nov.
2018, pp. 1–8. DOI: 10.1109/HUMANOIDS.2018.8624951 (cit. on pp. 3, 4, 127).

[23]Sascha Fleer and Helge Ritter. “Solving a Tool-Based Interaction Task Using Deep
Reinforcement Learning with Visual Attention”. In: Advances in Self-Organizing Maps,
Learning Vector Quantization, Clustering and Data Visualization. Ed. by Alfredo Vellido,
Karina Gibert, Cecilio Angulo, and José David Martín Guerrero. Cham: Springer
International Publishing, 2019, pp. 231–240 (cit. on pp. 3, 4, 71).

178 Bibliography

https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1802.10567
https://doi.org/10.1109/HUMANOIDS.2018.8624951


[24]Sascha Fleer, Alexandra Moringen, Roberta L. Klatzky, and Helge Ritter. “Learning
efficient haptic shape exploration with a rigid tactile sensor array”. In: PLOS ONE 15.1
(Jan. 2020), pp. 1–22. DOI: 10.1371/journal.pone.0226880 (cit. on pp. 3, 4, 80,
162, 163, 211).

[25]Richard S. Sutton and Andrew G Barto. Reinforcement learning: An introduction. second
edtion. MIT Press, 2018 (cit. on pp. 9–11, 19, 46).

[26]A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM Journal of Research and Development 3.3 (July 1959), pp. 210–229. DOI:
10.1147/rd.33.0210 (cit. on p. 9).

[27]A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers.
II—Recent Progress”. In: IBM Journal of Research and Development 11.6 (Nov. 1967),
pp. 601–617. DOI: 10.1147/rd.116.0601 (cit. on p. 9).

[28]Gerald Tesauro. “TD-Gammon, a Self-Teaching Backgammon Program, Achieves
Master-Level Play”. In: Neural Computation 6.2 (1994), pp. 215–219. DOI: 10.1162/
neco.1994.6.2.215. eprint: https://doi.org/10.1162/neco.1994.6.2.215
(cit. on p. 9).

[29]Gerald Tesauro. “Temporal Difference Learning and TD-Gammon”. In: Commun. ACM
38.3 (Mar. 1995), pp. 58–68. DOI: 10.1145/203330.203343 (cit. on p. 9).

[30]Gerald Tesauro. “Programming backgammon using self-teaching neural nets”. In:
Artificial Intelligence 134.1 (2002), pp. 181–199. DOI: https://doi.org/10.1016/
S0004-3702(01)00110-2 (cit. on p. 9).

[31]David Silver, Aja Huang, Chris J Maddison, et al. “Mastering the game of Go with
deep neural networks and tree search”. In: Nature 529.7587 (2016), pp. 484–489
(cit. on pp. 9, 29, 145).

[32]David Silver, Julian Schrittwieser, Karen Simonyan, et al. “Mastering the game of
Go without human knowledge”. In: Nature 550.7676 (2017), pp. 354–359. DOI:
10.1038/nature24270 (cit. on pp. 9, 145).

[33]Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. “Playing Atari with Deep
Reinforcement Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602 (cit. on
pp. 9, 25).

[34]Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. “Beating the World’s Best
at Super Smash Bros. with Deep Reinforcement Learning”. In: CoRR abs/1702.06230
(2017). arXiv: 1702.06230 (cit. on p. 9).

[35]M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. “ViZDoom: A
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Karpov, and Fabian Theis. Cham: Springer International Publishing, 2019, pp. 669–
684 (cit. on p. 167).

196 Bibliography

https://doi.org/10.1023/A:1017936530646
https://doi.org/10.1109/ICRA.2018.8461039
https://arxiv.org/abs/1902.03701
https://arxiv.org/abs/1801.00173


Appendices

197





A
Pseudocode

Algorithm 4: Linear greedy Q-learning with eligibility traces
Data: greediness ε, Maximal number of Training steps T
t = 0
Set learning rate αt
Initialize weights wt

while t < T do
Initialize episode
Initialize eligibility trace et = 0
terminal = False
repeat

Receive state st
if random uniform ≤ ε then

Choose and perform random action at ∈ A(st)
et = 0

else
Choose and perform action at = argmaxa′∈A(∫t)Q(st, a′;wt)
et ← γλet

end
et ← et +∇wtQ(st, at;wt)
Receive state st+1 and reward rt
if goal achieved or end of episode then

terminal = True
end

δ =
{
rt if terminal == True
rt + γ ·maxaQ(st+1, a;wt) if terminal == False

wt ← wt + αt [δ −Q(st, at;wt)] · et
t← t+ 1
Adjust learning rate αt

until terminal == True
end
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Algorithm 5: Deep Q-learning
Data: Maximal number of training steps T , Capacity N of replay buffer B, steps

until updating target-weights F
t = 0
Exploration parameter ε = 1
Initialize weights wt

Initialize target-weights w−t = wt

Initialize replay Buffer B
while t < T do

Initialize episode
terminal = False
repeat

Receive state st
if random uniform ≤ ε then

Choose and perform random action at ∈ A(st)
et = 0

else
Choose and perform action at = argmaxa′∈A(∫t)Q(st, a′;wt)

end
Receive state st+1 and reward rt
if goal achieved or end of episode then

terminal = True
end
Store tuple in replay buffer (st, at, rt, st+1, terminal)→ B
Create mini-batch b through sampling from replay buffer B
Optimize network parameters wt by performing a gradient descent step
on [δ −Q(st, at;wt)]2 using learning rate αt and all tuples
(st, at, rt, st+1, terminal) ∈ b with

δ =
{
rt if terminal == True
rt + γ ·maxaQ(st+1, a;w−t ) if terminal == False

t← t+ 1
Adjust learning rate αt
Adjust exploration parameter εt
if t mod F then

w−t = wt

end
until terminal == True

end
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Algorithm 6: Asynchronous advantage actor-critic algorithm
Data: Maximal number of episodes E, replay buffer B, update rate u, episodes

until updating target-weights τ
Episodes e = 0
Initialize global weights wg and wgv , worker weights w and wv and replay
Buffer B

while e < E do
Initialize episode, clear replay buffer B and training steps t = 0
terminal = False
repeat

Receive state st
Sample and perform action at from π(at|st;w)
Receive state st+1 and reward rt
Store tuple in replay buffer (st, at, rt, st+1, V̂ (st))→ B
if goal achieved or end of episode then

terminal = True
end
if t mod u or terminal == True then

R =
{

0 if terminal == True
V̂ (st;wv) if terminal == False→ bootstrap

for b ∈ {t− 1 . . . t− length(B)} do
Rt = rb + γ ·R
Accumulate gradients for w and wv:

∆w ← ∆w +
[
Rt − V̂ (st;wv)

]
∇w log (π(at|st;w))

∆wv ← ∆wv +∇wv
[
Rt − V̂ (st;wv)

]2
end
Asynchronously update global weights wg and wgv using learning
rate αe

end
t← t+ 1

until terminal == True
e← e+ 1
Adjust learning rate αe
if e mod τ then

w = wg

end
end
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B
Used learning parameters

This chapter lists the hyperparameters for the various algorithms that were put to
use in this thesis.

B.1 Linear Q-learning

B.1.1 State representations

The hyperparameters for the state representation were learned using 20 different
parameter configurations while the learning parameters of the Q-learner stayed
constant. For every configuration, the experiment was repeated 10 times.

Fixed Sparse Representation (FSR) The Fixed Sparse Representation is represent-
ing the state vector

sdist =
(
|
−−−→
M1T |, |

−−−→
M2T |, |

−−−→
M3T |, |

−−−→
M1O|, |

−−−→
M2O|, |

−−−→
M3O|,L

)>
,

that was first defined in (8.1), using 50 bins in the first six continuous dimensions.
The binary dimensions L are all represented using two bins per dimension.

Radial Basis Functions (RBF) The state representation based on radial basis func-
tions represents the first three real-valued dimensions of the state vector (8.1), i.e.
the distances between the target object and the tool’s picking locations, via five
uniformly placed radial basis functions per dimension. The other three real-valued
dimensions of (8.1), incorporating the distances between the picking locations
of the tool and the domain’s origin, are expressed via three uniformly placed ra-
dial basis functions per dimension. The standard deviation of each RBF is set to
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σ = 1. Additionally the RBFs are normalized according to (8.5.1). This kind of
state representation segments the real valued state vector into 13829 quantized
features.

B.1.2 Learning the “Extension-of-Reach Scenario” using different
coordinate systems

This section lists the chosen hyperparameters for learning the “Extension-of-Reach
Scenario” when either the FSR or RBFs were used for representing the state vector.
For every coordinate system (see Chapter 9 and Figure 9.1), the whole task was
learned using 40 different parameter configurations while varying the parameters
listed in Table B.1. For every configuration, the experiment was repeated 20 times.
In the end, the parameter configuration was chosen that maximizes the accumulated
average reward that was achieved during learning. The search range for every
optimized parameter is listed in Table B.1.

Parameter Search range

Greediness ε uniform [0, 1]
Initial learning rate α0 10uniform[0.05,1]

Boyan decay-factor αB 10uniform[1,5]

Discount factor γ uniform [0, 1]
Eligibility decay-factor λ uniform [0, 1]

Tab. B.1.: The table lists the search-ranges for the hyperparameters of the linear Q-learner

Coordinate system Parameter FSR RBF

ε 0.014 0.001
α0 0.622 0.069
αB 24.289 10.183
γ 0.931 0.297
λ 0.072 0.748

Tab. B.2.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“World System”
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Coordinate system Parameter FSR RBF

ε 0.100 0.057
α0 0.607 0.399
αB 73.287 8942.364
γ 0.967 0.976
λ 0.606 0.811

Tab. B.3.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“Tool-Fixpoint System”

Coordinate system Parameter FSR RBF

ε 0.76 0.0572
α0 0.913 0.206
αB 59.52 6927.641
γ 0.988 0.930
λ 0.191 0.630

Tab. B.4.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“Target-Tool-Goal System”

Coordinate system Parameter FSR RBF

ε 0.176 0.227
α0 0.323 0.118
αB 40.27 7548.765
γ 0.982 0.551
λ 0.315 0.697

Tab. B.5.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“Tool-Centroid System”
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Coordinate system Parameter FSR RBF

ε 0.997 0.035
α0 0.063 0.991
αB 10.346 15289.540
γ 0.238 0.940
λ 0.534 0.250

Tab. B.6.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“Target-Tool System”

Coordinate system Parameter FSR RBF

ε 0.089 0.019
α0 0.313 0.089
αB 40.183 4518.031
γ 0.955 0.927
λ 0.329 0.297

Tab. B.7.: List of the learning parameters for the “Extension-of-Reach Scenario” using the
“Goal-Tool System”

B.2 Deep Q-learning

The hyperparameters for the deep Q-learner are tuned only for the “Target-Tool-Goal
System” while learning to solve the “Extension-of-Reach Scenario”. The whole task
was learned using 40 different parameter configurations. The search-range of the
hyperparameters is listed in Table B.8. In the end, the parameter configuration was
chosen that maximizes the accumulated average reward that was achieved during
learning. The best configuration of parameters for the deep Q-learner is listed in
Table B.9.

For the deep Q-learner, a constant learning rate α is used. The greediness is decaying
linearly from 1 to 0.1. As proposed in [7], a target network is used to compute the
gradient which receives a copy of the original networks parameters every τ steps.
The number of transition tuples stored in the replay buffer for experience replay is
given by E , while Estart defines the minimal number of tuples that are required to
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start the learning process. During training, the weights are updated using the Adam
algorithm [67].

Parameter Search range

E 10uniform[3,6]

Estart 10uniform[3,5]

ε-decay stop 10uniform[2,6]

τ 10uniform[1,3]

α 10uniform[−5,−1]

γ uniform [0, 1]
Number of layers uniform {3, 4, 5, 6}
Number neurons 10uniform[log10(32), log10(128)]

Tab. B.8.: The table lists the search-ranges of the hyperparameters for the deep Q-learner

Coordinate system Parameter Value

E 105

Estart 5 · 103

ε-decay stop 5 · 105

Batch size 32
τ 200
α 25 · 10−5

γ 0.95

Tab. B.9.: List of the learning parameters for the deep Q-learner
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B.3 Recurrent attention advantage actor-critic model

The parameters for the RAA3C model are chosen by educated guess and manual
tuning while learning the “Tool-Centered Interaction Scenario” and utilizing the
“Target-Tool-Goal System”. They are summarized in Table B.10.

The weights of all layers are initialized using He normal initialization [252] with a
bias of 0.01. The model is trained with 8 workers using the Adam optimizer [67] and
an experience buffer with a maximal size of NEB = 8. The weights of each worker
are updated every τ = 10 episodes. The discount factor is chosen to be γ = 0.99.
The learning rate is starting at α0 = 10−5. It decays exponentially every T = 5
episodes to αmin = 10−8 with a decay-factor of δα = 0.99 according to

Coordinate system Parameter Value

β 1
NEB 8
α0 10−5

αmin 10−8

δα 0.99
γ 0.99
τ 10
T 5 episodes

Tab. B.10.: List of the learning parameters for the RAA3C model
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B.4 Haptic attention model

For finding good parameters, the HAM was trained using 40 different parameter
configurations. The search-range of the hyperparameters is listed in Table B.11.
The parameters are chosen according to random search [244] with a fixed number
of 3 glances, followed by additional manual tuning. In the end, the parameter
configuration was chosen that led to the highest accumulated average reward
achieved during learning. The best configuration of parameters is listed in Table
B.12. The weights of all layers are initialized using He normal initialization [252]
with a bias of 0.

Parameter Search range

Initial learning rate α0 10uniform[−5,−1]

Learning rate decay δα 10uniform[log10(0.1),log10(1)]

Learning rate decay steps T 10uniform[2,4]

Weighting factor β 10uniform[log10(0.1),log10(1)]

Number neurons — LSTM 10uniform[log10(128),log10(512)]

Number neurons — Linear layer 10uniform[log10(32),log10(128)]

Tab. B.11.: The table lists the search-ranges of the hyperparameters for the HAM

Parameter Value
Batch size 64
α0 8 · 10−4

δα 0.97
T 800 training steps
αmin 10−6

Used optimizer SGD with Nesterov momentum
Momentum 0.9
β 0.4

Tab. B.12.: List of learning parameters for the HAM
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C
Floating Myrmex sensor: experimental
results

The main results for training the HAM on the large data set, presented in [24], are
summarized in Table C.1. The classification performance for the full haptic attention
model using an LSTM unit and a location network to generate new sensor poses
can be found in the column πLSTM. Replacing the location network with a random
policy leads to the results that are marked with πrloc.

# Glances 1. πLSTM 2. πrloc

1 0.547± 0.002 0.547± 0.002
2 0.831± 0.002 0.753± 0.002
3 0.910± 0.001 0.858± 0.001
4 0.942± 0.001 0.917± 0.001
6 0.977± 0.001 0.971± 0.001
8 0.988± 0.001 0.990± 0.000

10 0.994± 0.001 0.995± 0.000

Tab. C.1.: The table lists the best measured classification performances after 10·103 training
steps. The full meta-controller model πLSTM contains all trained components
including the LSTM module and the location network. The random location
policy approach πrloc substitutes the location network with a random location
generator.
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D
Supplementary material

CoordinateSystems.mp4 A short video that visualizes policies that are learned by
the agent while employing the different coordinate systems (see Chapter 4
& 9). In the video, the agent tries to solve the “extension-of-reach task”.

RAA3C.mp4 A short video of a learned policy when utilizing the RAA3C model
presented in the Chapters 5 & 11. In the video, the agent tries to solve a
“tool-centered interaction task” using 6 glimpses and a 40× 40 context image.

SkillTransfer.mp4 An illustrative video, explaining the skill transfer approach
that is presented in the Chapters 7 & 10.

HAM_1.mp4 A short video that further illustrates the mode of operation of the used
collision library and the resulting way the tactile data is measured by the
simulated Myrmex sensor (see Chapter 12).

HAM_2.mp4 A short video that shows the learned policy of the HAM (see Chapter 6
& 12) on a simulated robot arm with an attached tactile sensor.

KUKA.mp4 A short video that shows the early testing off the control scheme in a real
world setup (See the paragraph about future work in Section 12.5). The KUKA
robot arm performs one haptic glance per object. Only the pressure threshold
and the stiffness parameters are re-adjusted in comparison to the simulation.
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