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Chapter 1

Introduction

“Signals always come with noise: it is trying to separate out the

two that makes the subject interesting.”

— D. Spiegelhalter

1.1 Introduction to hidden Markov models

Hidden Markov models (HMMs) constitute a versatile class of statistical models for time

series where the observed variables are driven by latent states (ZUCCHINI et al., 2016).

Over the last decades, they have been successfully applied across a variety of scientific

disciplines, including, inter alia, ecology, economics, medicine, meteorology, marketing,

and sports. The basic HMM, however, often lacks the flexibility to adequately model com-

plex types of data and, as a consequence, to address certain research questions of interest.

In this thesis, we discuss three such problems related to HMMs and propose correspond-

ing extensions of the basic model. Thereby, we aim at providing a small contribution to the

toolbox of statistical modeling techniques that can help to address the various challenges

arising with the increasingly complex types of data that are likely being collected over the

next decades. In this first chapter, we briefly introduce HMMs and their various applica-

tions, outline important historical developments, and provide an overview of the flexible

extensions of the basic model that are subject of this work.

A basic HMM comprises two stochastic processes that are connected with each other:

an observed state-dependent process, which is denoted by {Yt}t=1,...,T , and a hidden state

process, which is denoted by {St}t=1,...,T . Although the states are not directly observed,

they still determine the outcome of the state-dependent process, where the correlation
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between the two processes can be exploited to make inference also on the underlying state

process (ZUCCHINI et al., 2016). Typical examples for the processes that can be modeled

include:

• observed distances traveled by an animal that are driven by the animal’s hidden be-

havioral modes (which could e.g. be resting, foraging, or traveling; cf. LANGROCK

et al., 2012b; PATTERSON et al., 2017);

• observed stock prices that are driven by the market agents’ hidden expectations on a

company’s future profits (which could e.g. be high or low; cf. RYDÉN et al., 1998;

HASSAN AND NATH, 2005);

• observed epileptic seizure counts that are driven by hidden physiological states of an

epilepsy patient’s brain (which could e.g. be inter-ictal, pre-ictal, ictal, or post-ictal

periods; cf. ALBERT, 1991; WANG AND PUTERMAN, 2001)1;

• observed wind speeds or rainfall occurrences that are driven by hidden climate re-

gimes (which could e.g. be low- or high-pressure periods; cf. ZUCCHINI AND GUT-

TORP, 1991; PINSON AND MADSEN, 2012);

• observed product choices that are driven by the hidden state of a costumer’s rela-

tionship to a brand (which could e.g. be weak or strong; cf. CHING et al., 2004;

NETZER et al., 2008);

• observed performances of a professional baseball or darts player that are driven by

the player’s hidden “hot hand”, meaning the experience of a period of exceptional

success (cf. GREEN AND ZWIEBEL, 2018; ÖTTING et al., 2020).

The research questions that can be addressed using HMMs are manifold, ranging from

estimating the state-dependent distributions of the observed variables over state decoding

to making inference on the drivers of the state-switching dynamics. In ecological applica-

tions, for instance, it is of particular interest to estimate an animal’s step length’s or turning

angle’s distribution conditional on the states, which can then often be linked to certain be-

haviors exhibited by the animal. Furthermore, it could also be of interest to decode the

states, which can then be used to infer when an animal was likely to exhibit a certain be-

havior (MCCLINTOCK et al., 2020; cf. also SECTION 4.4.1 for an example of such an

1An ictal period refers to the physiological state of an epilepsy patient’s brain that is
characterized by the presence of epileptic seizures.
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application). In a clinical trial, to give another example, an interesting point to focus on

could be to investigate how different covariates affect the probability of an epilepsy patient

switching to an ictal state. In that regard, HMMs could also be used to quantify the extent

to which this probability can be decreased by certain drugs (cf. WANG AND PUTERMAN,

2001). In these examples, but also in the several real-data applications that are being pre-

sented throughout this work, HMMs can be used to separate the signal from the noise and,

ultimately, to extract information from data.

HMMs arguably constitute a rather specialized class of statistical models, as evidenced

from the fact that they are not usually being taught in undergraduate programmes in statis-

tics. However, they are very closely related to the much more widely known class of state-

space models (SSMs; KIM AND NELSON, 1999; DURBIN AND KOOPMAN, 2012). SSMs

were developed in the late 1960s and have been successfully applied e.g. in aerospace

engineering, where they were used to filter spacecraft trajectories from inaccurate, noisy

geo-positional data, which considerably contributed to the success of the NASA’s vari-

ous Apollo missions (GREWAL AND ANDREWS, 2010; AUGER-MÉTHÉ et al., 2020). A

general SSM is specified by two equations, one of which describes the relationship be-

tween the observed state-dependent variable and the hidden state variable, while the other

one describes how the state variable evolves over time (ZENG AND WU, 2013). The se-

rial dependence induced by these two equations can be modeled in various ways and ei-

ther in discrete or in continuous time. Commonly used models for the state process of

an SSM include simple autoregressive processes (cf. STATHOPOULOS AND KARLAFTIS,

2003), continuous-time correlated random walks (cf. JOHNSON et al., 2008), and Ornstein-

Uhlenbeck processes (cf. MICHELOT AND BLACKWELL, 2019), to name but a few exam-

ples.

As the state space of an SSM is generally continuous, the state process of such a model

can take on infinitely many values. On the one hand, this renders SSMs very flexible in

terms of the variety of stochastic processes that can be modeled, but on the other hand it

makes them less accessible in practice, which is mainly due to the fairly complex calcula-

tions that are required to evaluate the likelihood of the model (PATTERSON et al., 2017).

In many applications, it is in fact reasonable to assume a discrete, finite state space rather

than a state process whose states gradually change over time, which directs us to HMMs2.

Mathematically, an HMM is a special case of an SSM where the state process is modeled

2In contrast to SSMs, where the likelihood typically involves multiple, high-dimensio-
nal integrals, the likelihood of an HMM can be written as a matrix product, which sub-
stantially facilitates statistical inference (ZUCCHINI et al., 2016).
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by a discrete-time, N-state Markov chain. The state process of an HMM is assumed to sat-

isfy the Markov property, Pr(St+1 = st+1|St = st , . . . ,S1 = s1) = Pr(St+1 = st+1|St = st),

i.e. the state at time t +1, St+1, is assumed to be conditionally independent of all previous

states, S1, . . . ,St−1, given the state at time t, St . Furthermore, it is typically assumed that

the observations are conditionally independent of each other, given the states. The dis-

crete nature of the states, along with the simplifying dependence assumption made above,

renders HMMs relatively easy to deal with from a mathematical perspective and thereby

offers various opportunities for statistical inference (ZUCCHINI et al., 2016; PATTERSON

et al., 2017).

1.2 A brief history of hidden Markov models

The theoretical framework of HMMs is based on studies of serially correlated random vari-

ables conducted by the Russian mathematician A.A. Markov (1856–1922) a little more

than a century ago (SCHUSTER-BÖCKLER AND BATEMAN, 2007). However, due to the

computational complexity of the calculations that were required to render his findings fea-

sible in practice, his studies were hardly recognized by the broader scientific community

for several decades (RABINER AND JUANG, 1986). It was not before the late 1960s that

HMMs started to become popular. This increasing popularity is mainly due to the de-

velopment of the expectation-maximization (EM) algorithm (BAUM AND PETRIE, 1966;

BAUM et al., 1970; DEMPSTER et al., 1977; WELCH, 2003), which provided an efficient

technique to estimate the parameters of an HMM. About at the same time, the Viterbi

algorithm (VITERBI, 1967) was developed for state decoding, which constitutes another

important problem in many applications. These two notable developments, along with the

increasing availability of computing capacity, provided the foundation that was required

to finally render HMMs feasible in practice.

The first scientific discipline discovering the potential of HMMs for solving real-world

problems was supervised machine learning: from the late 1960s onwards, HMMs have

been successfully applied to speech recognition problems (cf. BAKER, 1975; JELINEK,

1969; BAHL AND JELINEK, 1975; JELINEK et al., 1975; JELINEK, 1976). In these ap-

plications, the observations are typically noisy voice records (or, more precisely, Fourier

transformations of the observed speech signals), where the states usually correspond to the

actually spoken syllables, words, or sentences (RABINER, 1989). In the following decades,

the applications of HMMs in supervised machine learning were expanded to various other

pattern recognition problems, ranging from image- or video-based face recognition (cf.
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TABLE 1.1: Development of the popularity of HMMs over the last six decades. The ta-
ble displays the number of results obtained for the search request “hidden”+“Markov”
+“model” on Google Scholar3 per decade.

1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 2010–2019

153 641 2,450 17,500 148,000 338,000

NEFIAN AND HAYES, 1998; LIU AND CHENG, 2003) over gesture recognition (cf. WIL-

SON AND BOBICK, 1999; CHEN et al., 2003) to handwriting recognition (cf. CHEN et al.,

1994; HU et al., 1996; PLÖTZ AND FINK, 2009).

In the late 1980s, HMMs also became increasingly popular in computational biol-

ogy, where their potential for biological sequence analyses was discovered (cf. KROGH

et al., 1994a; KROGH et al., 1994b; HUGHEY AND KROGH, 1996). The observations

in these applications are typically genomic sequences, where the states can e.g. be as-

sociated with genes, transcription factor binding sites, or members of a protein family

from a set of unknown proteins (EDDY, 1996; SCHUSTER-BÖCKLER AND BATEMAN,

2007). In the following years, the applications of HMMs in computational biology were

expanded to more complex problems such as gene prediction (cf. MUNCH AND KROGH,

2006; STANKE et al., 2006), pairwise and multiple sequence alignment (cf. DURBIN et al.,

1998; PACHTER et al., 2002), and protein secondary structure prediction (cf. ASAI et al.,

1993). For a comprehensive overview of the various applications of HMMs in computa-

tional biology, we refer to EDDY (1996) and YOON (2009).

While HMMs still play a key role in supervised machine learning and computational

biology (where they are primarily used to solve classification problems), in the early 1990s

HMMs also started to expand to a wide range of other fields. A number of seminal articles

published across different disciplines demonstrated that HMMs prove useful also as a sta-

tistical modeling technique: ZUCCHINI AND GUTTORP (1991), for instance, used HMMs

to model binary time series of precipitation occurrences, while ALBERT (1991) success-

fully applied HMMs to time series of epileptic seizure occurrences. MACDONALD AND

RAUBENHEIMER (1995) demonstrated how HMMs can be used to model binary time se-

ries of animals’ feeding behaviors, while MORALES et al. (2004) introduced HMMs for

modeling animal telemetry data, which provided the foundation for many succeeding arti-

cles where HMMs were used to reveal the nature of animal movement (LANGROCK et al.,

2012b; MCCLINTOCK et al., 2020). Influential articles in economics include HAMILTON

3https://scholar.google.de/scholar?hl=en. The numbers were downloaded on January
31, 2020, where results for patents and citations were excluded.
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non-parametric HMMs for
discrete-valued time series

Markov-switching GAMLSS

hierarchical HMMs for
multi-scale time series

HMMs

FIGURE 1.2: Overview of the main topics of the thesis.

(1989), where HMMs were used to model business cycles, and RYDÉN et al. (1998), who

applied HMMs to derive stylized facts of stock returns. Finally, VISSER et al. (2002) pro-

posed HMMs for implicit learning and concept identification problems, which provided

the foundation for the application of HMMs in psychology.

In conclusion, it can be summarized that HMMs developed from a special-purpose

classification technique primarily used in supervised machine learning towards general-

purpose time series models that are now routinely applied in many different fields. No-

tably, the increasing popularity is also reflected by the numbers of articles that appeared

over the last decades, which are listed in TABLE 1.1: while between 1960 and 1989 as few

as 3,244 articles were published, this number increased to a total of 503,500 articles that

appeared between 1990 and 2019. This development can likely be attributed to the versa-

tility of the available HMM toolbox: by modifying the model formulation, a wide range

of applications can be addressed, while the algorithms for parameter estimation, state de-

coding, and related problems essentially remain the same (SCHUSTER-BÖCKLER AND

BATEMAN, 2007). This important property of the HMM framework is also exploited in

this work, as will be outlined in the following section.

1.3 Outline of the thesis

While various special-purpose HMMs — such as mixed-effects HMMs for longitudinal

data (cf. ALTMAN, 2007; MARUOTTI, 2011), HMMs with arbitrary state dwell-time dis-

tributions (cf. BULLA AND BULLA, 2006; LANGROCK AND ZUCCHINI, 2011), or non-

parametric HMMs for continuous-valued time series (cf. LANGROCK et al., 2015; LAN-

GROCK et al., 2018) — are now available, the ever-increasing complexity of the data being

collected yields major challenges for statistical modeling in the 21st century. While the

early applications of HMMs to statistical modeling problems involved relatively short, of-
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ten binary time series, the complexity of the available data has considerably increased

since the early 1990s. To adequately address the challenges arising therewith, new mod-

eling techniques are required, which constitutes the main motivation for this work. In

this thesis, we discuss three particular modeling challenges related to HMMs and pro-

pose corresponding flexible extensions of the basic model. Specifically, we propose i)

Markov-switching generalized additive models for location, scale, and shape (GAMLSS),

ii) non-parametric HMMs for discrete-valued time series, and iii) hierarchical HMMs for

multi-scale time series (cf. FIGURE 1.2 for an overview of the main topics of the thesis).

These three flexible extensions of the basic HMM also constitute the main chapters of

this thesis, which can be read independently and are briefly outlined in the following:

• In CHAPTER 2, we propose a novel class of flexible latent-state time series regres-

sion models, which we call Markov-switching GAMLSS. In contrast to conventional

Markov-switching regression models, the presented methodology allows us to model

different state-dependent parameters of the response distribution — not only the

mean, but also variance, skewness, and kurtosis parameters — as potentially smooth

functions of a given set of explanatory variables. In addition, the set of possible

distributions that can be specified for the response is not limited to the exponential

family but additionally includes, for instance, a variety of Box-Cox-transformed,

zero-inflated, and mixture distributions. We propose an estimation approach that is

based on the EM algorithm, where we exploit the gradient boosting framework to

prevent overfitting while simultaneously performing variable selection. The feasi-

bility of the suggested approach is assessed in simulation experiments and illustrated

in a real-data application, where we model the conditional distribution of the daily

average price of energy in Spain over time.

• In CHAPTER 3, we propose an effectively non-parametric approach to fitting HMMs

to discrete-valued time series. While specifically for time series of counts, the Pois-

son distribution — or more flexible alternatives such as the negative binomial, zero-

inflated, and mixture distributions — is often chosen for the state-dependent dis-

tributions, choosing an adequate class of parametric distributions remains difficult

in practice, where an inadequate choice can have severe negative consequences. To

overcome this problem, we estimate the state-dependent distributions in a completely

data-driven way without the need to specify a parametric family of distributions,

where a penalty based on higher-order differences between adjacent count probabil-

ities is proposed to prevent overfitting. The suggested approach is assessed in sim-

ulation experiments and illustrated in a real-data application, where we model the
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distribution of the annual number of earthquakes over time. The proposed method-

ology is implemented in the R package countHMM.

• In CHAPTER 4, we propose hierarchical HMMs as a versatile class of statistical

models for multi-scale time series. While conventional HMMs are restricted to mod-

eling single-scale data, in practice variables are often observed at different temporal

resolutions. An economy’s gross domestic product, for instance, is typically ob-

served on a yearly, quarterly, or monthly basis, whereas stock prices are available

daily or at even finer resolutions. Step lengths performed by an animal, to give

another example, are often observed on a daily or hourly basis, whereas accelera-

tions obtained from accelerometers are available at much higher frequencies, with

observations typically made several times per second. To incorporate such multi-

scale data into a joint HMM, we regard the observations as stemming from multiple,

connected state processes, each of which operates at the time scale at which the cor-

responding variables were observed. The suggested approach is illustrated in two

real-data applications, where we jointly model the distribution of i) daily horizontal

movements and ten-minute vertical displacements of an Atlantic cod and ii) monthly

trade volumes and daily log-returns of the Goldman Sachs stock, respectively.

Lastly, in CHAPTER 5, we conclude with a brief outlook on potential avenues for future

research related to the different methods, including an outline of possible links between

the three main chapters of this thesis, and provide some final remarks.

1.4 Statement of contribution and related work

This thesis is based on a number of collaborative projects, which involve contributions

from many authors. The following research articles and conference proceedings papers

were fully or partially integrated in this thesis, where my personal and the other authors’

contributions are detailed in parentheses:

ADAM, T., MAYR, A., AND KNEIB, T. (2017a): Gradient boosting in Markov-switching

generalized additive models for location, scale, and shape. arXiv, 1710.02385 (submit-

ted to Econometrics and Statistics, Part B: Statistics).

(I conceived the idea, developed the research question, implemented the method, designed

the simulation experiments, analyzed the data, and drafted the manuscript, A. Mayr and T.

Kneib improved the manuscript.)
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ADAM, T., MAYR, A., KNEIB, T., AND LANGROCK, R. (2018): Statistical boosting for

Markov-switching distributional regression models. Proceedings of the 33rd Interna-

tional Workshop on Statistical Modelling, 1, 30–35.

(The authors’ contributions were as above, where R. Langrock further improved the manu-

script.)

ADAM, T., LANGROCK, R., AND WEIß, C.H. (2019c): Penalized estimation of flexible

hidden Markov models for time series of counts. METRON, 77(2), 87–104.

(R. Langrock and C.H. Weiß conceived the idea and developed the research question, I

implemented the method, designed the simulation experiments, analyzed the data, and

drafted the manuscript, R. Langrock and C.H. Weiß improved the manuscript.)

ADAM, T., LANGROCK, R., AND WEIß, C.H. (2019d): Nonparametric inference in hid-

den Markov models for time series of counts. Proceedings of the 34th International

Workshop on Statistical Modelling, 1, 135–140.

(The authors’ contributions were as above.)

ADAM, T., GRIFFITHS, C.A., LEOS-BARAJAS, V., MEESE, E.N., LOWE, C.G., BLACK-

WELL, P.G., RIGHTON, D., AND LANGROCK, R. (2019a): Joint modelling of multi-

scale animal movement data using hierarchical hidden Markov models. Methods in

Ecology and Evolution, 10(9), 1536–1550.

(V. Leos-Barajas, R. Langrock, and I conceived the idea and developed the research ques-

tion, V. Leos-Barajas and I implemented the method, E.N. Meese and D. Righton collected

the data, V. Leos-Barajas and I analyzed the data, I drafted the manuscript, C.A. Griffith,

V. Leos-Barajas, E.N. Meese, C.G. Lowe, P.G. Blackwell, and R. Langrock improved the

manuscript.)

ADAM, T. AND OELSCHLÄGER, L. (2020): Hidden Markov models for multi-scale time

series: an application to stock market data. Available on request (submitted to the

Proceedings of the 35th International Workshop on Statistical Modelling).

(I conceived the idea and developed the research question, implemented the method, ana-

lyzed the data, and drafted the manuscript, L. Oelschläger improved the manuscript.)

The following research articles and conference proceedings papers are closely related

to the work presented in this thesis but were neither fully nor partially integrated:
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Chapter 2

Gradient boosting in Markov-switching generaliz-
ed additive models for location, scale, and shape1

“An economic model conditioned on the notion that nothing ma-

jor will change is a useless one.”

— N. Silver

Summary

In this chapter, we propose a novel class of flexible latent-state time series re-

gression models, which we call Markov-switching GAMLSS. In contrast to

conventional Markov-switching regression models, the presented methodol-

ogy allows us to model different state-dependent parameters of the response

distribution — not only the mean, but also variance, skewness, and kurtosis pa-

rameters — as potentially smooth functions of a given set of explanatory vari-

ables. In addition, the set of possible distributions that can be specified for the

response is not limited to the exponential family but additionally includes, for

instance, a variety of Box-Cox-transformed, zero-inflated, and mixture distri-

butions. We propose an estimation approach that is based on the EM algorithm,

where we exploit the gradient boosting framework to prevent overfitting while

simultaneously performing variable selection. The feasibility of the suggested

approach is assessed in simulation experiments and illustrated in a real-data

application, where we model the conditional distribution of the daily average

price of energy in Spain over time.

1This chapter is based on ADAM et al. (2017a) and ADAM et al. (2018).
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2.1 Introduction

In recent years, latent-state models — particularly HMMs — have become increasingly

popular tools for time series analyses. In many applications, the data at hand follow some

patterns within some periods of time but reveal different stochastic properties during other

periods (ZUCCHINI et al., 2016). Typical examples are economic time series, e.g. share

returns, oil prices, or bond yields, where the functional relationship between response and

explanatory variables differs in periods of high and low economic growth, inflation, or

unemployment, respectively (HAMILTON, 1989). Since their introduction by GOLDFELD

AND QUANDT (1973) nearly half a century ago, Markov-switching regression models,

i.e. time series regression models where the functional relationship between response and

explanatory variables is subject to state-switching controlled by an unobservable Markov

chain, have emerged as a versatile method to account for the dynamic patterns described

above (KIM et al., 2008; DE SOUZA AND HECKMAN, 2014; DE SOUZA et al., 2017;

LANGROCK et al., 2017).

While Markov-switching regression models are typically restricted to modeling the

mean of the response (treating the remaining parameters as nuisance and constant across

observations), it often appears that other parameters — including variance, skewness, and

kurtosis parameters — depend on explanatory variables as well rather than being constant

(RIGBY AND STASINOPOULOS, 2005). A motivating example to bear in mind is the daily

average price of energy, which we present in detail in SECTION 2.5 for Spain as a spe-

cific case study. When the energy market is in a calm state, which implies relatively low

prices alongside a moderate volatility, then the oil price exhibits positive correlation with

the mean of the conditional energy price distribution, but the variance is usually constant

across observations. In contrast, when the energy market is nervous, which implies rela-

tively high and volatile prices, then also the variance of energy prices is strongly affected

by the oil price. This latter possible pattern cannot be addressed by existing Markov-

switching regression models. As a consequence, by neglecting the strong heteroskedas-

ticity in the process, price forecasts may severely under- or overestimate the associated

uncertainty. This is problematic in scenarios where the interest lies not only in the ex-

pected prices, but also in quantiles, e.g. when the costs of forecast errors are asymmetric.

Since their introduction in the seminal work of RIGBY AND STASINOPOULOS (2005)

a little more than a decade ago, GAMLSS have emerged as the standard framework for

distributional regression models, where not only the mean, but also other parameters of

the response distribution are modeled as potentially smooth functions of a given set of

explanatory variables. Over the last decade, GAMLSS have been applied in a variety of
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different fields, ranging from the analysis of insurance (HELLER et al., 2007) and long-

term rainfall data (VILLARINI et al., 2010) over phenological research (HUDSON, 2010)

and energy studies (VOUDOURIS et al., 2011) to clinical applications, including long-term

survival models (DE CASTRO et al., 2010), childhood obesity (BEYERLEIN et al., 2008),

and measurement errors (MAYR et al., 2017).

GAMLSS are applied primarily to data where it is reasonable to assume that the given

observations are independent of each other. This is rarely the case when the data have

a time series structure. In fact, when the data are collected over time, as e.g. daily en-

ergy prices, then the functional relationship between response and explanatory variables

may actually change over time. This results in serially correlated residuals due to an

under- or overestimation of the true functional relationship. To exploit the flexibility of

GAMLSS also within time series settings, we propose a novel class of flexible latent-state

time series regression models, which we call Markov-switching GAMLSS. In contrast to

conventional Markov-switching regression models, the presented methodology allows us

to model different state-dependent parameters of the response distribution as potentially

smooth functions of a given set of explanatory variables.

A practical challenge that emerges with the flexibility of Markov-switching GAMLSS

is the potentially high dimension of the set of possible model specifications. Each of the

parameters of the response distribution varies across two or more states, and each of the

associated predictors may involve several explanatory variables, the effect of which may

even need to be estimated non-parametrically. Thus, a grid-search approach for model se-

lection, e.g. based on information criteria, is usually practically infeasible. We therefore

propose the MS-gamboostLSS algorithm for model fitting, which incorporates the gra-

dient boosting framework into Markov-switching GAMLSS. Gradient boosting emerged

from the field of machine learning, but was later adapted to estimate statistical models

(cf. MAYR et al., 2014). The basic idea is to iteratively apply simple regression functions

(which are denoted as base-learners) for each potential explanatory variable one-by-one

and to select in every iteration only the best performing one. The final solution is then

an ensemble of the selected base-learner fits including only the most important variables.

The design of the algorithm thus leads to automated variable selection and is even feasible

for high-dimensional data settings, where the number of variables exceeds the number of

observations.

This chapter is structured as follows: in SECTION 2.2, we introduce the different com-

ponents of Markov-switching GAMLSS and discuss the underlying dependence assump-

tions. In SECTION 2.3, we derive the MS-gamboostLSS algorithm and give a brief over-

view of related topics, including model selection. The synergy of HMMs and GAMLSS,
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Markov-switching GAMLSSHMMs

EM

GAMLSS

gamboostLSSMS-gamboostLSS

FIGURE 2.1: Overview of the Markov-switching GAMLSS framework. In SECTION 2.2,
we introduce the components of Markov-switching GAMLSS and discuss the underlying
dependence assumptions, which involve features from both HMMs and GAMLSS. In SEC-
TION 2.3, we present the MS-gamboostLSS algorithm, which incorporates gradient boost-
ing into Markov-switching GAMLSS.

which lies at the core of this work, is illustrated in FIGURE 2.1. In SECTION 2.4, we

assess the suggested approach in simulation experiments, where we consider both linear

and non-linear base-learners. In SECTION 2.5, we illustrate the proposed methodology in

a real-data application, where we model the conditional distribution of the daily average

price of energy in Spain over time.

2.2 Model formulation and dependence structure

In this section, we introduce the model formulation and dependence structure of Markov-

switching GAMLSS, which constitute an extension of the closely related but less flexi-

ble and in fact nested class of Markov-switching generalized additive models (Markov-

switching GAMs2; LANGROCK et al., 2017).

2.2.1 The state process

Markov-switching GAMLSS comprise two stochastic processes, one of which is hidden

and the other one is observed. The hidden process, which is denoted by {St}t=1,...,T and

referred to as the state process, is modeled by a discrete-time, N-state Markov chain. As-

suming the Markov chain to be time-homogeneous, we summarize the state transition

probabilities, i.e. the probabilities of switching from state i at time t to state j at time t +1,

2Markov-switching GAMs as proposed in LANGROCK et al. (2017) extend conven-
tional Markov-switching regression models to potentially smooth covariate effects and
general response distributions from the exponential family.
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StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · ·

xt−1 xt xt+1

hidden

observed

covariates

FIGURE 2.2: Dependence structure of a Markov-switching GAMLSS. In contrast to the
basic HMM, here the state-dependent process does not only depend on the underlying
states but also on covariates.

in the N×N transition probability matrix (t.p.m.) Γ = (γi, j), with elements

γi, j = Pr(St+1 = j|St = i) , (2.1)

i, j = 1, . . . ,N. The initial state probabilities, i.e. the probabilities of the process being in

the different states at time 1, are summarized in the row vector δ = (δi), with elements

δi = Pr(S1 = i) , (2.2)

i = 1, . . . ,N. If the Markov chain is assumed to be stationary, which is adequate in many

applications, then the initial distribution is the stationary distribution, i.e. the solution to

the equation system δΓ = δ subject to ∑
N
i=1 δi = 1 (ZUCCHINI et al., 2016). However, if

the Markov chain is not assumed to be stationary, then the initial state probabilities are

additional parameters that need to be estimated. The state process is completely specified

by the initial state and the state transition probabilities as given by EQUATIONS (2.1) and

(2.2), respectively.

Throughout this chapter, we consider first-order Markov chains, i.e. we assume that the

state process satisfies the Markov property, Pr(St+1 = st+1|S1 = s1, . . . ,St = st)=Pr(St+1 =

st+1|St = st), t = 1, . . . ,T −1. This simplifying dependence assumption is exploited in the

likelihood calculations provided in SECTION 2.3.1. While certainly being a strong as-

sumption, in practice it is often a good proxy for the actual dependence structure, and

could in fact be relaxed to higher-order Markov chains if deemed necessary (ZUCCHINI

et al., 2016; cf. also SECTION 2.6 for an overview of possible model extensions).
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2.2.2 The state-dependent process

The observed process, which is denoted by {Yt}t=1,...,T and referred to as the state-depen-

dent process, can take on either discrete or continuous values. We denote the condition-

al probability density function (p.d.f.) or, in the discrete case, probability mass function

(p.m.f.), of Yt by

fY
(
yt ;θ

(st)
t
)
= fY

(
yt ;θ

(st)
1,t , . . . ,θ

(st)
K,t
)
. (2.3)

In EQUATION (2.3), θ
(st)
t = (θ

(st)
1,t , . . . ,θ

(st)
K,t ) is the parameter vector associated with the

distribution assumed for Yt . It may depend both on the current state, st , and on the ex-

planatory variables at time t, xt = (x1,t , . . . ,xP,t), with P denoting the number of variables

included in the model (cf. FIGURE 2.2 for an illustration of the dependence structure). The

first parameter of the response distribution, θ
(st)
1,t , often denotes the conditional mean of

Yt . Depending on the distribution family assumed, the other parameters may relate to the

conditional variance, the conditional skewness, and the conditional kurtosis, respectively,

though other parameters are also possible. The set of possible distributions that can be

specified for the response is not limited to the exponential family; in fact, any paramet-

ric distribution (including Box-Cox-transformed, zero-inflated, and mixture distributions;

cf. RIGBY AND STASINOPOULOS, 2006; RIGBY et al., 2019) can be considered. Notably,

not all parameters contained in EQUATION (2.3) need to depend on the states or covari-

ates. Assuming θ
(st)
1,t to be the conditional mean of Yt and treating all other parameters as

nuisance parameters (which depend on the states but not on covariates), for instance, leads

to the nested special case of Markov-switching GAMs (cf. DE SOUZA AND HECKMAN,

2014; LANGROCK et al., 2017).

As the parameters are possibly constrained (the conditional variance, for instance, typ-

ically needs to be strictly positive), we introduce a monotonic link function, which is de-

noted by gk(θ
(st)
k,t ), for each parameter θ

(st)
k,t , k = 1, . . . ,K. The link function maps the con-

strained parameter onto some real-valued predictor function, which is denoted by η
(st)
k (xt),

the choice of which is determined by the respective parameter constraints. For instance,

the log link function, gk(θ
(st)
k,t ) = log(η(st)

k (xt)), is typically chosen for the conditional vari-

ance, such that the inverse function, θ
(st)
k,t = exp(η(st)

k (xt)), is strictly positive. The form of

the predictor function is determined by the specification of the base-learners, the discus-

sion of which is subject of SECTION 2.3.2.

The variables Y1, . . . ,YT are assumed to be conditionally independent of each other,

given the states, as illustrated in the graphical model depicted in FIGURE 2.2. While



20 Gradient boosting in Markov-switching GAMLSS

certainly being an adequate assumption in many applications, serial correlation that is not

sufficiently captured by the basic model could potentially be modeled using autoregressive

terms in the state-dependent process if deemed necessary (ZUCCHINI et al., 2016; cf. also

SECTION 2.6 for an overview of possible model extensions).

2.3 Model fitting

In this section, we derive the MS-gamboostLSS algorithm to estimate the state transition

probabilities as given by EQUATION (2.1), the initial state probabilities as given by EQUA-

TION (2.2), and the state-dependent parameters of the response distribution contained in

EQUATION (2.3).

2.3.1 The MS-gamboostLSS algorithm

The MS-gamboostLSS algorithm comprises an outer and an inner cycle, which incorpo-

rate two different model fitting procedures into a joint algorithm. The outer cycle is the

EM algorithm (BAUM AND PETRIE, 1966; BAUM et al., 1970; DEMPSTER et al., 1977;

WELCH, 2003), which constitutes a popular method for iteratively maximizing the like-

lihood of a statistical model in the presence of missing data, and has become one of the

standard procedures for model fitting in HMMs. The inner cycle is a weighted version

of the gamboostLSS algorithm (MAYR et al., 2012; HOFNER et al., 2016), which is ex-

ploited to carry out one part of the maximization (M-) step of the EM algorithm, namely

the estimation of the state-dependent parameters of the response distribution contained in

EQUATION (2.3).

The missing data — or, more precisely, functions of the missing data — can be es-

timated, which is referred to as the expectation (E-) step. Based on the obtained esti-

mates, the complete-data log-likelihood (CDLL; i.e. the joint log-likelihood of the obser-

vations and the states) is then maximized with respect to the state transition probabilities

as given by EQUATION (2.1), the initial state probabilities as given by EQUATION (2.2),

and the state-dependent parameters of the response distribution contained in EQUATION

(2.3), which is referred to as the M-step.

To derive the CDLL, we represent the state sequence {St}t=1,...,T (i.e. the missing data)

by the binary random variables ui(t) = 1{St=i} and vi, j(t) = 1{St−1=i,St= j}, i, j = 1, . . .N,

t = 1, . . . ,T (i.e. functions of the missing data). Assuming the ui(t)’s and vi, j(t)’s to be



2.3 Model fitting 21

observed, the CDLL can be written as

lCDLL(θ |y1, . . . ,yT ) = log

(
δs1

T

∏
t=2

γst−1,st

T

∏
t=1

fY
(
yt ;θ

(st)
t
))

= log(δs1)+
T

∑
t=2

log(γst−1,st )+
T

∑
t=1

log
(

fY
(
yt ;θ

(st)
t
))

=
N

∑
i=1

ui(1) log(δi)︸ ︷︷ ︸
dependent on δi, i=1,...,N

+
N

∑
i=1

N

∑
j=1

T

∑
t=2

vi, j(t) log(γi, j)︸ ︷︷ ︸
dependent on γi, j, i, j=1,...,N

+
N

∑
i=1

T

∑
t=1

ui(t) log
(

fY
(
yt ;θ

(i)
t
))

︸ ︷︷ ︸
dependent on η

(i)
k (xt), k=1,...,4

.

(2.4)

Note that the CDLL as given by EQUATION (2.4) consists of three separate summands,

each of which only depends on i) δ = (δi), ii) Γ = (γi, j), and iii) θ
(i)
t = (g−1

k (η
(i)
k (xt))), i =

1, . . . ,N, which considerably simplifies the maximization in the M-step.

The E-step consists of the computation of the conditional expectations of the ui(t)’s and

vi, j(t)’s, namely the ûi(t)’s and v̂i, j(t)’s, respectively. To compute these conditional expec-

tations, we require the forward and backward probabilities. The forward probabilities,

which are denoted as αt(i) = f (y1, . . . ,yt , St = i|x1, . . . ,xt), are summarized in the row

vectors α t = (αt(1), . . . , αt(N)), which can be evaluated via the forward algorithm by

applying the recursion

α1 = δP(y1);

α t = α t−1ΓP(yt),
(2.5)

t = 2, . . . ,T , with N×N diagonal matrix

P(yt) =


fY
(
yt ;θ

(1)
t
)

0
. . .

0 fY
(
yt ;θ

(N)
t
)
 . (2.6)

The backward probabilities, which are denoted as βt( j) = f (yt+1, . . . ,yT |St = j,xt+1, . . . ,

xT ), are summarized in the row vectors β t = (βt(1), . . . ,βt(N)), which can be evaluated

via the backward algorithm by applying the recursion

β T = 1;

β
>
t = ΓP(yt+1)β

>
t+1,
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t = T − 1, . . . ,1, with P(yt+1) as defined in EQUATION (2.6) above. We let α
[m]
t (i) and

β
[m]
t ( j) denote the forward and backward probabilities obtained in the m-th iteration, which

are computed using the predictors obtained in the (m−1)-th iteration (or offset values in

case of the first iteration).

The m-th E-step involves the computation of the conditional expectations of the ui(t)’s

and vi, j(t)’s given the current parameter estimates, which leads to the following results:

• Since ûi(t) = Pr(St = i|y1, . . . ,yT ,x1, . . . ,xT ) = f (y1, . . . ,yt ,St = i|x1, . . . ,xT )

f (yt+1, . . . ,yT |St = i,x1, . . . ,xT )/ f (y1, . . . ,yT |x1, . . . ,xT ) and f (y1, . . . ,yT |x1, . . . ,

xT ) = ∑
N
i=1 f (y1, . . . ,yT ,St = i|x1, . . . ,xT ), it follows immediately from the defini-

tion of the forward and backward probabilities that

û[m]
i (t) =

α
[m]
t (i)β [m]

t (i)

∑
N
k=1 α

[m]
T (k)

, (2.7)

i = 1, . . . ,N, t = 1, . . . ,T .

• Since v̂i, j(t) = Pr(St−1 = i,St = j|y1, . . . ,yT ,x1, . . . ,xT ) = f (y1, . . . ,yt−1,St−1 = i|x1,

. . . ,xT )Pr(St = j|St−1 = i) f (yt , . . . ,yT |St = j,x1, . . . ,xT )/ f (y1, . . . ,yT |x1, . . . , xT ),

it follows immediately from the definition of the forward, backward, and state tran-

sition probabilities that

v̂[m]
i, j (t) =

α
[m]
t−1(i)γ̂

[m−1]
i, j fY

(
yt ; θ̂

( j)[m−1]
t

)
β
[m]
t ( j)

∑
N
j=1 α

[m]
T ( j)

,

i, j = 1, . . . ,N, t = 1, . . . ,T .

The m-th M-step involves the maximization of the CDLL with the ui(t)’s and vi, j(t)’s

replaced by their current conditional expectations with respect to the model parameters:

• As only the first term in the CDLL depends on δi, using a Lagrange multiplier to

ensure ∑
N
i=1 δ̂

[m]
i = 1 results in

δ̂
[m]
i =

û[m]
i (1)

∑
N
i=1 û[m]

i (1)
= û[m]

i (1),

i = 1, . . . ,N.

• As only the second term in the CDLL depends on γi, j, using a Lagrange multiplier
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to ensure ∑
N
j=1 γ̂

[m]
i, j = 1, i = 1, . . . ,N, results in

γ̂
[m]
i, j =

∑
T
t=2 v̂[m]

i, j (t)

∑
N
k=1 ∑

T
t=2 v̂[m]

i,k (t)
,

i, j = 1, . . . ,N.

• As only the third term in the CDLL depends on the state-dependent parameters of the

response distribution contained in EQUATION (2.3), the optimization problem effec-

tively reduces to maximizing the weighted log-likelihood of a separate, conventional

GAMLSS for each state, where the t-th observation is weighted by the û[m]
i (t)’s as

given by EQUATION (2.7). We can therefore exploit the gamboostLSS algorithm

(MAYR et al., 2012; HOFNER et al., 2016) to iteratively maximize this weighted

log-likelihood. More specifically, we consider the computationally more efficient

non-cyclical variant of the gamboostLSS algorithm (THOMAS et al., 2018)3:

– Initialize the additive predictors η̂
(i)[0]
k (xt), i= 1, . . . ,N,k = 1, . . . ,4, t = 1, . . .T ,

with offset values. For each of the additive predictors, specify a set of base-

learners h(i)k,1(x1,t), . . . ,h
(i)

k,J(i)k

(x
J(i)k ,t

) (e.g. simple linear models or penalized B-

splines, i.e. P-splines; EILERS AND MARX, 1996), where J(i)k denotes the car-

dinality of the set of base-learners specified for η
(i)
k (xt).

– For i = 1 to N:

* For n = 1 to n(i)stop:

· For k = 1 to 4:

· Compute the gradients of the CDLL with respect to η
(i)
k (xt) (using the

current estimates û[m]
i (t) as given by EQUATION (2.7) and θ̂

(i)[n−1]
t =

g−1
k (η̂

(i)[n−1]
k (xt)),k = 1, . . . ,4),

∇
(i)
k,t =

∂ lCDLL(θ |y1, . . . ,yT )

∂η
(i)
k (xt)

=
∂ ∑

T
t=1 û[m]

i (t) log
(

fY
(
yt ; θ̂

(i)[n−1]
t

))
∂η

(i)
k (xt)

,

3While the cyclical gamboostLSS algorithm estimates the different distribution param-
eters separately, the non-cyclical variant proposed in THOMAS et al. (2018) incorporates
an additional selection step of the best-fitting distribution parameter in each boosting iter-
ation.
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t = 1, . . . ,T , and fit each of the base-learners contained in the set of

base-learners specified for η
(i)
k (xt) to these gradients.

· Select the best-fitting base-learner h(i)k, j∗(x j∗,t) by the residual sum of

squares of the base-learner fit with respect to the gradients,

j∗ = argmin
j∈(1,...,J(i)k )

T

∑
t=1

(
∇
(i)
k,t− ĥ(i)k, j(x j,t)

)2
.

· Select, among the base-learners selected the previous loop, the best-

fitting base-learner ĥ(i)k∗, j∗(x j∗,t) by the weighted log-likelihood,

k∗ = argmax
k∈(1,...,4)

T

∑
t=1

û[m]
i (t) log

(
fY
(
yt ; θ̂

(i)[n−1]
t

))
,

where θ̂
(i)[n−1]
k,t is replaced by its potential update, g−1

k (η̂
(i)[n−1]
k (xt)+

sl · ĥ(i)k, j∗(x j∗,t)), to update the corresponding predictor,

η̂
(i)[n]
k∗ (xt) = η̂

(i)[n−1]
k∗ (xt)+ sl · ĥ(i)k∗, j∗(x j∗,t),

where 0 < sl < 1 is some small step length (typically, sl = 0.1).

* Set η̂
(i)[n]
k (xt) = η̂

(i)[n−1]
k (xt) for all k 6= k∗.

– Use the predictors obtained in the final iteration as estimates obtained in the

m-th M-step, η̂
(i)[m]
k (xt) = η̂

(i)[n(i)stop]

k (xt) for all i,k.

The MS-gamboostLSS algorithm alternates between the E- and the M-step, each of

which involves n(i)stop boosting iterations for each state, i, until some convergence threshold,

e.g. based on the difference between the CDLLs (or, alternatively, based on the difference

between the estimates) obtained in two consecutive iterations, is satisfied.

2.3.2 Specification of base-learners

The specification of the base-learners, h(i)k, j(x j,t), which are used to fit the gradient vectors,

is crucial, as they define the type of predictor effect. If the base-learners have a linear

form, then the resulting fit is also linear, whereas if non-linear base-learners are chosen,

then this fit may also be non-linear. Generally, base-learners can be any kind of prediction

functions — in the classical machine learning context, gradient boosting is most often

applied with trees or stumps as base-learners (RIDGEWAY, 1999). In the specific case of
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FIGURE 2.3: Construction of B-spline bases of different degrees. Displayed are unscaled
(left panel) and scaled (middle and right panel) B-spline bases of degrees d = 1 (upper
panel), d = 2 (middle panel), and d = 3 (lower panel), respectively. Colors were used
to indicate individual basis functions. Basis function coefficients were estimated via least
squares (i.e. without penalization).

boosting algorithms for statistical modeling, it is, however, reasonable to select regression-

type functions that can be combined to additive models (MAYR et al., 2014).

Due to their high flexibility, popular base-learners are P-splines (EILERS AND MARX,

1996) based on B-spline basis functions (DE BOOR, 1978). Following FAHRMEIR et al.

(2013), B-spline basis functions of degree d = 0 can be constructed as follows:

B0
q(x j,t) = 1{κq≤x j,t<κq+1} =

1 κq ≤ x j,t < κq+1

0 otherwise,
(2.8)

q = 1, . . . ,Q− 1, where κq, denotes the location and Q is the number of the (typically

equidistantly spaced) knots. Starting from basis functions of degree d = 0 as given by

EQUATION (2.8), basis functions of general (higher) degree d > 0 can be constructed
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recursively based on basis functions of degree d−1 via

Bd
q(x j,t) =

x j,t−κq−1

κq−κq−1
Bd−1

q−1(x j,t)+
κq+1− x j,t

κq+1−κq
Bd−1

q (x j,t).

The base-learner is then a linear combination of the B-spline basis functions scaled by

some basis function coefficients, which are denoted by φ
(i)
j,k,q, such that

h(i)k, j(x j,t) =
Q

∑
q=1

φ
(i)
j,k,qBd

q(x j,t). (2.9)

The construction of B-spline bases is illustrated in FIGURE 2.3 for basis functions of dif-

ferent degrees.

To avoid overfitting, which naturally occurs when minimizing the sum of squared resid-

uals between B-splines as given by EQUATION (2.9) and the gradient vectors, we add a

roughness penalty based on higher-order differences between adjacent basis function co-

efficients to the sum of squared residuals. Differences of order m can be evaluated recur-

sively via

∆
1
φ
(i)
j,k,q = φ

(i)
j,k,q−φ

(i)
j,k,q−1;

∆
m

φ
(i)
j,k,q = ∆

1(
∆

m−1
φ
(i)
j,k,q

)
,

q = m+1, . . . ,Q, which leads to the penalized least squares criterion

ĥ(i)k, j(x j,t) = argmin
φ
(i)
j,k,1,...,φ

(i)
j,k,Q

(
∇
(i)
k,t−h(i)k, j(x j,t)

)2

︸ ︷︷ ︸
goodness of fit

+λ
(i)
j,k

Q

∑
q=m+1

(
∆

m
φ
(i)
j,k,q

)2

︸ ︷︷ ︸
smoothness

,

where λ(i)j,k denotes a smoothing parameter that governs the weight of the penalty term and

thus determines the smoothness of the resulting base-learner fit.

P-spline base-learners are typically applied with fixed, low effective degrees of free-

dom (i.e. strong penalization), which are not tuned for the different boosting iterations (the

R package mboost, on which the implementation of the MS-gamboostLSS algorithm is

based, uses four effective degrees of freedom as the default option; cf. HOFNER, 2011, for

details). However, as the same P-spline base-learner can be selected as the best-performing

base-learner and updated in several boosting iterations, the resulting solution can have ar-

bitrarily large complexity (i.e. wiggliness). The complexity increases as the number of

boosting iterations increases. More advanced base-learners that can be used are interac-

tion terms (e.g. based on tensor product P-splines) as well as random or spatial effects (e.g.
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based on Markov random fields). For an overview of available base-learners, cf. MAYR

et al. (2012).

2.3.3 Choice of the number of boosting iterations

The stopping iterations, n(i)stop, are the main tuning parameters for boosting algorithms.

They control the variable selection properties of the algorithm and the smoothness of the

estimated effects. They represent the classical trade-off between bias and variance in sta-

tistical modeling: using more boosting iterations leads to larger and more complex models

with smaller bias but larger variance, while stopping the algorithm earlier leads to sparser,

less complex models with less variance but larger bias. Without early stopping, i.e. run-

ning the (gamboostLSS) algorithm (within the M-step) until convergence, the resulting fit

converges to the maximum likelihood estimate (MAYR et al., 2012; if this estimate exists

for the given model).

Choosing an optimal number of boosting iterations is typically achieved via K-fold

cross-validation. For some set Λ = n(1)
stop×·· ·×n(N)

stop ⊂ NN we follow CELEUX AND DU-

RAND (2008) and proceed in the following way: first, we split the data into K distinct

partitions (typically, K ≥ 10), estimate the model based on K− 1 partitions and compute

the out-of-sample log-likelihood for the remaining partition (which is straightforward us-

ing the forward algorithm from SECTION 2.3.1, cf. EQUATION (2.5)). This procedure is

repeated K times, i.e. until each partition has been out-of-sample once. The score of inter-

est is then the average out-of-sample log-likelihood over all partitions, where the number

of boosting iterations corresponding to the highest score is chosen.

2.3.4 Selecting the number of states

The choice of the number of states, N, is a rather difficult task — even though the vast

majority of Markov-switching regression models appearing in the literature assume two

states without any critical reasoning, there actually exists a variety of different methods

for order selection in HMMs, which basically fall in two categories: on the one hand,

a cross-validated likelihood approach can be used, as described in SECTION 2.3.3. On

the other hand, information criteria such as Akaike’s Information Criterion (AIC), the

Bayesian Information Criterion (BIC), or the Integrated Completed Likelihood Criterion

(BIERNACKI et al., 2000; CELEUX AND DURAND, 2008) can be considered, all of which



28 Gradient boosting in Markov-switching GAMLSS

result in a compromise between goodness of fit and model complexity.

One problem in practice, however, is that information criteria often tend to favor overly

complex models. Real data typically exhibit more structure than can actually be captured

by the model, which e.g. is the case if the true state-dependent distributions are too com-

plex to be fully modeled by some (rather simple) parametric distribution or if certain tem-

poral patterns are neglected in the model formulation. In the case of Markov-switching

GAMLSS, additional states may be able to capture this further structure. As a conse-

quence, the goodness of fit increases, which may outweigh the higher model complexity.

However, as models with too many states are usually difficult to interpret and are there-

fore often not desired, information criteria should be considered as a rough guidance rather

than as a deterministic decision rule, which should be treated with some caution. For an in-

depth discussion of pitfalls, practical challenges, and pragmatic solutions regarding order

selection in HMMs, we refer to POHLE et al. (2017).

2.4 Simulation experiments

To assess the performance of the suggested approach, we present two different simulation

experiments, where we consider linear (cf. SECTION 2.4.1) and non-linear (cf. SECTION

2.4.2) relationships between the explanatory variables and the parameters of the response

distribution.

2.4.1 Linear setting

For the linear setting, we use simple linear models as base-learners. In each of 100 simula-

tion runs, we simulated 500 realizations from a 2-state Markov chain, {St}t=1,...,500, with

t.p.m.

Γ =

(
0.95 0.05

0.05 0.95

)
,

and initial (stationary) state probabilities δi = 0.5, i = 1,2. Based on the simulated state

sequence, we then draw 500 observations from a negative binomial distribution with state-
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FIGURE 2.4: Boxplots of the estimated state-dependent coefficients (linear setting). Dis-
played are the estimated state-dependent coefficients for the mean (left panel) and the
dispersion (right panel) for states 1 (blue) and 2 (red) obtained in 100 simulation runs.
True parameters (i.e. without shrinkage) are indicated by black dots. The estimated co-
efficients for all 99 non-informative covariates are visualized in a single boxplot for each
state.

dependent p.m.f.

fY
(
yt ;θ

(st)
1,t ,θ

(st)
2,t
)
=

Γ
(
yt +θ

(st)
2,t
)

Γ(yt +1)Γ
(
θ
(st)
2,t
)

(
θ
(st )
1,t

θ
(st )
2,t

)yt

(
θ
(st )
1,t

θ
(st )
2,t +1

)(yt+θ
(st )
2,t

) ,

where

log
(
θ
(1)
1,t
)
= η

(1)
1 (xt) = 2+2x1,t +

100

∑
j=2

0x j,t ;

log
(
θ
(2)
1,t
)
= η

(2)
1 (xt) = 2−2x1,t +

100

∑
j=2

0x j,t ;

log
(
θ
(1)
2,t
)
= η

(1)
2 (xt) = 2x1,t +

100

∑
j=2

0x j,t ;

log
(
θ
(2)
2,t
)
= η

(2)
2 (xt) =−2x1,t +

100

∑
j=2

0x j,t ,

and x j,t ∼ uniform(−1,1), j = 1, . . . ,100, t = 1, . . . ,500. To assess the variable selection

performance, we included 99 non-informative explanatory variables in each predictor. The

stopping iterations were chosen via 20-fold cross-validation over the grid Λ = n(1)
stop ×

n(2)
stop, n(1)

stop = n(2)
stop = (100,200,400,800), where the average chosen number of boosting

iterations was 435 (state 1) and 468 (state 2).
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The sample means of the estimated off-diagonal t.p.m. entries, γ̂1,2 and γ̂2,1, were ob-

tained as 0.047 (standard deviation: 0.020) and 0.047 (0.019), respectively, which appar-

ently is very close to the true values. The estimated state-dependent coefficients obtained

in 100 simulation runs are displayed in FIGURE 2.4: for the mean, θ
(st)
1,t , the estimated

coefficients are slightly shrunken towards zero, while for the dispersion, θ
(st)
2,t , the shrink-

age effect is quite large. The informative covariates were — on average — selected in

98.5 % of the cases (100.0 % for the mean and 97.0 % for the dispersion), while the non-

informative ones were — on average — selected in 10.6 % of the cases (13.4 % for the

mean and 7.7 % for the dispersion), which indicates on the one hand that the variable se-

lection works quite well but on the other hand that there is a tendency towards too many

covariates being included in the model (this apparently is a problem related to boosting

in general rather than a specific one related to the MS-gamboostLSS algorithm; c.f. the

simulation experiments presented in MAYR et al., 2012).

Using a 3.6 GHz Intel® Core™ i7 CPU, the average computation time was 1.4 minutes

for a (single) model (i.e. for a given number of boosting iterations), which is remarkably

fast considering the fact that it involves variable selection among 100 potential explanatory

variables.

2.4.2 Non-linear setting

Encouraged by the performance in the linear setting, we next present a non-linear setting

using P-splines as base-learners, again simulating 500 realizations from a 2-state Markov

chain with t.p.m.

Γ =

(
0.95 0.05

0.05 0.95

)
,

and initial (stationary) state probabilities δi = 0.5, i = 1,2. We then draw 500 observations

from a normal distribution with state-dependent p.d.f.

fY
(
yt ;θ

(st)
1,t ,θ

(st)
2,t
)
=

1√
2πθ

(st)
2,t

2
exp

−(yt−θ
(st)
1,t
)2

2θ
(st)
2,t

2

 ,
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FIGURE 2.5: Estimated state-dependent effects (non-linear setting). Displayed are the
estimated state-dependent effects on the predictor for the mean (left panel) and the dis-
persion (right panel) for states 1 (blue) and 2 (red) obtained in 100 simulation runs. True
effects (i.e. without shrinkage) are indicated by dashed lines. All effects have been centered
around zero.

where

θ
(1)
1,t = η

(1)
1 (xt) = 2+2sin

(
π(x1,t−0.5)

)
+

100

∑
j=2

0x j,t ;

θ
(2)
1,t = η

(2)
1 (xt) =−2− sin

(
π(x1,t−0.5)

)
+

100

∑
j=2

0x j,t ;

log
(
θ
(1)
2,t
)
= η

(1)
2 (xt) = sin

(
π(x1,t−0.5)

)
+

100

∑
j=2

0x j,t ;

log
(
θ
(2)
2,t
)
= η

(2)
2 (xt) =−2sin

(
π(x1,t−0.5)

)
+

100

∑
j=2

0x j,t ,

and x j,t ∼ uniform(−1,1), j = 1, . . . ,100, t = 1, . . . ,500. The stopping iterations were

again chosen via 20-fold cross-validation over the grid Λ = n(1)
stop×n(2)

stop, n(1)
stop = n(2)

stop =

(25,50,100,200), where the average chosen number of boosting iterations was 141.5 (state

1) and 177 (state 2).

The sample means of the estimated off-diagonal t.p.m. entries, γ̂1,2 and γ̂2,1, were ob-

tained as 0.050 (0.014) and 0.051 (0.016), respectively. The estimated state-dependent

effects obtained in 100 simulation runs are displayed in FIGURE 2.5: as in SECTION 2.4.1,

we observe a shrinkage effect (especially for the larger effects, i.e. the effects of x1,t on

η
(1)
1 (xt) and η

(2)
2 (xt)). In addition, a smoothing effect can be observed (particularly for

very small and large values of x1,t). The informative covariates were selected in all cases,

while the non-informative ones were — on average — selected in 11.2 % of the cases (7.4
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% for the mean and 15.0 % for the dispersion), which again indicates that the variable se-

lection works quite well but apparently is not very conservative (particularly in the case

of the dispersion, where the shrinkage effect is considerably smaller than the one for the

mean, the average number of non-informative explanatory variables included in the model

is fairly large).

For a given number of boosting iterations, model fitting took — on average — 7.8

minutes per (single) model, which again is quite remarkable considering the fact that it

does not only involve variable selection among 100 potential covariates (as in the linear

setting presented in SECTION 2.4.1) but also results in smooth fits (without relying on a

computer-intensive smoothing parameter selection).

2.5 Application to energy prices in Spain

To illustrate the suggested approach in a real-data setting, we model the conditional dis-

tribution of the daily average price of energy in Spain (in c per kWh), EnergyPricet , over

time. Our aim here is to present a simple case-study that provides some intuition and

demonstrates the potential of Markov-switching GAMLSS, which is why we focus on

a relatively simple model involving only one explanatory variable, the daily oil price (in

EUR per barrel), OilPricet . The data, which are available in the R package MSwM

(SANCHEZ-ESPIGARES AND LOPEZ-MORENO, 2014), cover 1,760 working days between

February 4, 2002, and October 31, 2008 (cf. FONTDECABA et al., 2009, for an overview of

the data). As in SECTION 2.4.2, we assume a normal distribution for the EnergyPricet and

fitted two different 2-state Markov-switching GAMLSS with state-dependent predictors

for the conditional mean, θ
(st)
1,t , and the conditional variance, θ

(st)
2,t , considering i) simple

linear models (linear model), and ii) P-splines (as detailed in SECTION 2.3.2; non-linear

model) as base-learners. The stopping iterations were chosen via 20-fold cross-validation

over the grid Λ = n(1)
stop× n(2)

stop, n(1)
stop = n(2)

stop = (25,50,100, . . . ,3,200), which led to the

optimal values n(1)stop = 100, n(2)stop = 200 (linear model) and n(1)stop = 1,600, n(2)stop = 200 (non-

linear model). For the chosen stopping iterations, the computation times were 0.4 minutes

(linear model) and 7.9 minutes (non-linear model).

The estimated state-dependent effects, as well as the locally decoded time series of

daily energy prices, are visualized in Figures 2.6 and 2.7: according to both models, the

oil price exhibits a (mostly) positive effect on the conditional mean of the energy price

distribution, which essentially holds for both states. However, the linear model lacks the

flexibility to capture the decreasing effect for OilPricet ≥ 60 that is revealed by the non-
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FIGURE 2.6: Estimated state-dependent effects and decoded time series of daily energy
prices (linear model). The plot displayed in the left panel shows the estimated state-
dependent effects on the conditional mean (black solid lines) for states 1 (blue) and 2 (red)
and the fitted state-dependent distributions for different oil prices (vertical p.d.f.s), which
were computed based on the estimated state-dependent predictors for the conditional vari-
ance. Dashed lines indicate the 0.05 and 0.95 quantiles of the fitted state-dependent dis-
tributions. The plot displayed in the right panel shows the locally decoded time series of
daily energy prices.

linear model, which leads to a severe overestimation in that area. The effect on the condi-

tional variance considerably differs across the two states: in state 1, the oil price has only

a minor effect, whereas in state 2, the conditional variance is strongly affected by the oil

price. As in the case of the conditional mean, the effect on the conditional variance clearly

has a non-linear form (the volatility is relatively high for 40 ≤ OilPricet < 60 and rela-

tively low for 40 > OilPricet ≥ 60), which is well-captured by the non-linear model but

not captured by the linear model. The consequence is a severe under- (over-) estimation

for 40≤ OilPricet < 60 (40 > OilPricet ≥ 60), as indicated by the quantile curves for the

linear model depicted in FIGURE 2.6. From an economic point of view, state 1 may be

linked to a calm market regime (which implies relatively low prices alongside a moderate

volatility). State 2, in contrast, may correspond to a nervous market regime (which implies

relatively high prices alongside a high volatility).

The t.p.m. for the linear model was estimated as

Γ̂LM =

(
0.983 0.017

0.016 0.984

)
,

which implies the stationary distribution (0.480,0.520), indicating that about 48.0 % and

52.0 % of the observations were generated in states 1 and 2, respectively. The t.p.m. for
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FIGURE 2.7: Estimated state-dependent effects and decoded time series of daily energy
prices (non-linear model). The plot displayed in the left panel shows the estimated state-
dependent effects on the conditional mean (black solid lines) for states 1 (blue) and 2 (red)
and the fitted state-dependent distributions for different oil prices (vertical p.d.f.s), which
were computed based on the estimated state-dependent predictors for the conditional vari-
ance. Dashed lines indicate the 0.05 and 0.95 quantiles of the fitted state-dependent dis-
tributions. The plot displayed in the right panel shows the locally decoded time series of
daily energy prices.

the non-linear model was estimated as

Γ̂NLM =

(
0.983 0.017

0.016 0.984

)
,

which implies the stationary distribution (0.483,0.517), indicating that about 48.3 % and

51.7 % of the observations were generated in states 1 and 2, respectively4. In both cases,

the estimated state transition probabilities indicate high persistence within the states (ac-

cording to the fitted models, the average dwell-times within a state were — depending on

the model and the state — between 58.8 and 62.5 days).

Quantile-quantile plots (qq-plots) and sample autocorrelation functions (ACFs) of one-

step-ahead forecast pseudo-residuals are displayed in FIGURE 2.8. The qq-plots of the

pseudo-residuals indicate some minor lack of fit regarding the marginal distribution under

the linear model, which clearly improves when using non-linear base-learners. Although,

for both models, the sample ACFs indicate some residual correlation, we consider the

goodness of fit of the two models as satisfactory. The residual correlation can potentially

be reduced using autoregressive terms in the state-dependent process (cf. SECTION 2.6),

4The stationary distributions slightly differ across the two models as the estimated state
transition probabilities, which are rounded above, are not exactly equal.
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FIGURE 2.8: Qq-plots and sample ACFs of one-step-ahead forecast pseudo-residuals (lin-
ear and non-linear model). Colors indicate the locally decoded states underlying the
observed energy prices, where blue refers to state 1 and red refers to state 2.

which, however, we refrain from investigating further as our aim here is to present an

illustrative case study.

The results presented in this real-data application clearly demonstrate the potential of

Markov-switching GAMLSS: by accounting for the state-switching dynamics in the model

formulation, they allow to draw a precise picture of the response distribution at any point

in time, which may be particularly useful in applications where the focus lies on short-

term forecasting. Furthermore, a precise picture of the entire response distribution (which

certainly includes not only the mean, but also variance and potentially skewness and kur-

tosis parameters) is crucial when the focus is shifted from the expected value towards the

quantiles, which e.g. is the case in risk measurement and portfolio optimization applica-

tions (ACERBI AND TASCHE, 2002): estimating the value-at-risk of a given investment,

for instance, requires the prediction of certain quantiles of the corresponding loss distribu-

tion (ROCKAFELLAR AND URYASEV, 2002), which could potentially be addressed using

Markov-switching GAMLSS.
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2.6 Discussion

In this chapter, we introduced Markov-switching GAMLSS as a novel class of flexible

latent-state time series regression models, which can be used to model different state-

dependent parameters of the response distribution as potentially smooth functions of a

given set of explanatory variables. In addition, we demonstrated how gradient boosting

can be exploited to avoid overfitting while simultaneously performing variable selection.

Limitations of gradient boosting, particularly the fact that the design of the algorithm does

not allow to compute standard errors for the effect estimates, also apply to the proposed

MS-gamboostLSS algorithm. If the possible number of explanatory variables is small and

the interest does not lie on prediction but on unbiased estimates, then the gamboostLSS

algorithm in the M-step could be replaced by weighted versions of other algorithms that are

commonly used to fit GAMLSS, e.g. those implemented in the R package gamlss (RIGBY

AND STASINOPOULOS, 2005; STASINOPOULOS et al., 2017; cf. also LANGROCK et al.,

2018, for an application to Markov-switching GAMLSS).

While we have assumed a relatively simple state architecture, the underlying depen-

dence structure could potentially be extended in various ways: i) higher-order Markov

chains could be used to allow the states to depend not only on the previous state but on a se-

quence of multiple previously visited states (ZUCCHINI et al., 2016), ii) semi-Markov state

processes could be used to specify arbitrary dwell-time distributions for the states (LAN-

GROCK AND ZUCCHINI, 2011), and iii) hierarchical state processes could be used to infer

states at multiple time scales (LEOS-BARAJAS et al., 2017b; ADAM et al., 2019a). An-

other potential feature of the latter approach is that multiple data streams collected at differ-

ent temporal resolutions could be incorporated into a joint Markov-switching GAMLSS,

which may be particularly useful in economic applications, where data often tend to be

collected on a daily, monthly, or quarterly basis (cf. SECTION 4.4.2 for an example of such

an application).

A distribution-free alternative to Markov-switching GAMLSS is provided by non-pa-

rametric Markov-switching quantile regression models (ADAM et al., 2019e), where max-

imum likelihood estimation is commonly carried out by assuming an asymmetric Laplace

distribution for the response. This approach, in a Bayesian setup, yields posterior consis-

tent estimators even if the observations are not asymmetrically Laplace distributed (SRI-

RAM et al., 2016). While certainly a useful alternative when the interest lies on only one

or two specific quantiles, Markov-switching GAMLSS may be more feasible when the

interest lies on the entire response distribution. In comparison with Markov-switching

GAMLSS, one of the main disadvantages of non-parametric Markov-switching quantile
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regression models is that they require one set of basis function coefficients not only for

each state and explanatory variable but also for each quantile of interest, which leads to

a large number of parameters to be estimated (and additional challenges that need to be

addressed, e.g. quantile crossing). For a detailed comparison of GAMLSS with quantile

regression models, we refer to RIGBY et al. (2013).

On a final note, we would like to raise awareness of the fact that the flexibility of

Markov-switching GAMLSS can be both a blessing and a curse: in some applications,

these models could be overparameterized, and models as complex as Markov-switching

GAMLSS may not be appropriate even if they fit the data well (particularly in the case

of short time series, overfitting may become a severe problem). In that regard, it is there-

fore worth mentioning that Markov-switching GAMLSS contain other, nested (i.e. less

complex) HMM-type models, e.g. simple HMMs (ZUCCHINI et al., 2016) or Markov-

switching (generalized) linear and additive models (LANGROCK et al., 2017; LANGROCK

et al., 2018). By specifying appropriate base-learners, the proposed MS-gamboostLSS al-

gorithm can be used to fit all these nested special cases: using intercept-only terms (hence

neglecting any covariate dependence), for instance, results in simple HMMs, while using

simple linear models or P-splines for the conditional mean and intercept-only terms for

the other parameters leads to Markov-switching (generalized) linear and additive models,

respectively. Since none of the latter classes of models has been incorporated into the gra-

dient boosting framework yet, the proposed MS-gamboostLSS algorithm, which lies at the

core of this work, may provide a promising method for model fitting and variable selection

not only in Markov-switching GAMLSS but also in a variety of other HMM-type models.
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Chapter 3

Non-parametric inference in hidden Markov
models for discrete-valued time series1

“If the assumed model is not the correct one, inferences can be

worse than useless, leading to grossly misleading interpretations

of the data.”

— J.S. Simonoff

Summary

In this chapter, we propose an effectively non-parametric approach to fitting

HMMs to discrete-valued time series. While specifically for time series of

counts, the Poisson distribution — or more flexible alternatives such as the

negative binomial, zero-inflated, and mixture distributions — is often chosen

for the state-dependent distributions, choosing an adequate class of paramet-

ric distributions remains difficult in practice, where an inadequate choice can

have severe negative consequences. To overcome this problem, we estimate

the state-dependent distributions in a completely data-driven way without the

need to specify a parametric family of distributions, where a penalty based on

higher-order differences between adjacent count probabilities is proposed to

prevent overfitting. The suggested approach is assessed in simulation experi-

ments and illustrated in a real-data application, where we model the distribu-

tion of the annual number of earthquakes over time. The proposed methodol-

ogy is implemented in the R package countHMM.

1This chapter is based on ADAM et al. (2019c) and ADAM et al. (2019d).
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3.1 Introduction

Over the last decades, HMMs have become increasingly popular for modeling time series

where, at each point in time, a hidden state process selects among a finite set of possi-

ble distributions for the observations (ZUCCHINI et al., 2016). In economic applications,

for instance, the states of the Markov chain underlying the observations, which typically

determines the state process, are often good proxies for economic regimes such as reces-

sions or periods of economic growth (cf. GOLDFELD AND QUANDT, 1973; HAMILTON,

1989), while in ecology, they can regularly be linked to an animal’s behavioral modes

such as resting, foraging, or traveling (LANGROCK et al., 2012b; MCCLINTOCK et al.,

2020). Other fields where HMMs are commonly applied include medicine (cf. WANG

AND PUTERMAN, 2001; JACKSON AND SHARPLES, 2002), meteorology (cf. ZUCCHINI

AND GUTTORP, 1991; PINSON AND MADSEN, 2012), marketing (cf. CHING et al., 2004;

NETZER et al., 2008), and sports (cf. GREEN AND ZWIEBEL, 2018; ÖTTING et al., 2020),

to name but a few examples.

In various applications, it has been demonstrated that HMMs can be tailored to, inter

alia, binary data (cf. SCHLIEHE-DIECKS et al., 2012), positive real-valued data (cf. LAN-

GROCK, 2012a), circular data (cf. BULLA et al., 2012), categorical data (cf. MARUOTTI

AND ROCCI, 2012), compositional data (cf. LANGROCK et al., 2013b), and count data

(cf. LAGONA et al., 2015). In this chapter, we specifically focus on the latter type of

time series, i.e. sequences of non-negative integers. For a general introduction to HMMs

for discrete-valued time series, including the specific case of time series of counts, we

refer to MACDONALD AND ZUCCHINI (1997), while WEIß (2018) provides a compre-

hensive overview of the various other classes of statistical models for discrete-valued time

series. A motivating example for a time series of counts is the number of corporate de-

faults observed on a monthly, quarterly, or yearly basis: in periods of economic growth,

these could be thought of as being generated by some distribution with relatively small

mean, whereas during recessions, another distribution with relatively larger mean could

be active. Although the economic regime is not directly observed, it still determines the

observed corporate default counts (cf. LI AND CHENG, 2015; BERENTSEN et al., 2018).

For an application that is similar in spirit, cf. HAMBUCKERS et al. (2018), where both the

number and the amount of a bank’s operational losses are modeled using an HMM-type

approach. Beyond economics, HMMs have been applied to time series of counts across a

variety of scientific disciplines, including medicine (e.g. multiple sclerosis leisure counts;

ALTMAN AND PETKAU, 2005), geology (e.g. volcanic eruption counts; BEBBINGTON,

2007), epidemiology (e.g. poliomyelitis counts; LE STRAT AND CARRAT, 1999), ecol-
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ogy (e.g. pilot whale vocalization counts; POPOV et al., 2017), and bioinformatics (e.g.

T-lymphocyte counts; MARINO et al., 2018), to name but a few examples.

Specifically for time series of counts, the Poisson distribution is often chosen for the

state-dependent distributions, in which case one rate parameter is estimated for each state.

While more flexible alternatives such as the negative binomial, zero-inflated, and mixture

distributions can also be used — or distributions for bounded counts such as the binomial

distribution — choosing an adequate class of parametric distributions remains difficult in

practice, with potentially severe negative consequences in case an inadequate choice is

made. For the specific case of continuous-valued time series, LANGROCK et al. (2015)

propose a non-parametric approach to estimating the state-dependent distributions within

an HMM based on linear combinations of B-spline basis functions (DE BOOR, 1978),

where a penalty based on higher-order differences between adjacent basis function coef-

ficients (cf. EILERS AND MARX, 1996) results in flexible yet smooth p.d.f.s without the

need to make any distributional assumptions. For time series of counts that are either nat-

urally bounded or considered to be effectively bounded (defining an upper threshold for

the support on which the state-dependent distributions are to be modeled), one can, in

principle, avoid such distributional assumptions by directly estimating the values of the

state-dependent p.m.f.s on the support considered (this approach is in fact implemented

in the R package hmm.discnp; cf. TURNER, 2018). However, without an adequate penal-

ization, such an approach will often lead to overfitting, which severely limits the practical

usefulness of corresponding models in particular in scenarios where the interest lies on

classification and prediction.

Following SCOTT et al. (1980) and SIMONOFF (1983), and similar in spirit to LAN-

GROCK et al. (2015), we here suggest to address this problem by considering a penalized

likelihood function, where a penalty based on higher-order differences between adjacent

count probabilities is proposed. Furthermore, we demonstrate how the suggested penalty

can be adjusted in presence of (e.g. zero-) inflated observations, where small differences

between corresponding count probabilities and their respective neighbors are not neces-

sarily desirable. This conceptually simple approach is demonstrated to produce reliable

estimates of both simple and complex state-dependent distributions, where smoothing pa-

rameters are considered to adjust the required flexibility in a completely data-driven way.

In slightly different settings, penalized estimation of HMMs has previously been discussed

in STÄDLER AND MUKHERJEE (2013), where a penalization approach is proposed to ob-

tain sparse variance-covariance matrices in high-dimensional state-dependent processes,

in FARCOMENI (2017), where a penalty based on Jeffrey’s prior is considered to ensure

that the estimation does not break down in scenarios where the time series to be mod-
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eled are relatively short, and in ANDERSON et al. (2019), where a penalty is placed on the

number of states.

This chapter is structured as follows: in SECTION 3.2, we recall the model formula-

tion and dependence structure of basic HMMs and introduce some notation specifically

for the case of discrete-valued time series. Furthermore, we provide an efficient algorithm

for evaluating the likelihood and discuss how the model parameters can be estimated in

a penalized maximum likelihood framework. In SECTION 3.3, we assess the feasibility

of the suggested approach in simulation experiments, where we also compare the perfor-

mance of the proposed penalized non-parametric approach to its parametric counterpart.

In SECTION 3.4, we illustrate the suggested approach in a real-data application, where

we model the distribution of the annual number of earthquakes over time. The proposed

methodology is implemented in the R package countHMM (ADAM, 2019b).

3.2 Model formulation and model fitting

In this section, we introduce the model formulation of non-parametric HMMs for discrete-

valued time series, which incorporates the smoothing approach developed in SIMONOFF

(1983)2 into the HMM framework.

3.2.1 Model formulation and dependence structure

A basic HMM comprises two stochastic processes, only one of which is observed, namely

the time series to be modeled, which is denoted by {Yt}t=1,...,T . The observed state-depen-

dent process is driven by a hidden state process, which is denoted by {St}t=1,...,T and

typically modeled by a discrete-time, N-state Markov chain. Specifically, we consider a

first-order Markov chain, i.e. we assume the state process to satisfy the Markov property,

Pr(St+1 = st+1|S1 = s1, . . . ,St = st) = Pr(St+1 = st+1|St = st), t = 1, . . . ,T − 1, which is

exploited in the likelihood calculations provided in SECTION 3.2.2 and could in fact be

relaxed to higher-order Markov chains if deemed necessary (ZUCCHINI et al., 2016). As-

suming the Markov chain to be time-homogeneous, the state transition probabilities are

2SIMONOFF (1983) proposes a penalty function approach to smoothing large, sparse
contingency tables, the idea of which we here adopt to smoothing the non-parametric state-
dependent distributions within an HMM.



44 Non-parametric inference in HMMs for discrete-valued time series

StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · · hidden

observed

FIGURE 3.1: Dependence structure of an HMM for discrete-valued time series. Through-
out this chapter, the observed process is assumed to be a sequence of non-negative integers,
e.g. a time series of counts.

summarized in the N×N t.p.m. Γ = (γi, j), with elements

γi, j = Pr(St+1 = j|St = i), (3.1)

i, j = 1, . . . ,N. The initial state probabilities, i.e. the probabilities of the state process being

in the different states at time 1, are summarized in the row vector δ = (δi), with elements

δi = Pr(S1 = i), (3.2)

i = 1, . . . ,N. If the Markov chain is assumed to be stationary, which is reasonable in many

applications, then the initial distribution is the stationary distribution, i.e. the solution to

the equation system δΓ= δ subject to ∑
N
i=1 δi = 1 (ZUCCHINI et al., 2016). Otherwise, the

initial state probabilities need to be estimated. The state process is completely specified by

the initial state probabilities and the state transition probabilities as given by EQUATIONS

(3.1) and (3.2), respectively.

The basic dependence structure of an HMM for discrete-valued time series is such

that the observations are assumed to be conditionally independent of each other, given the

states, where the state process selects which of N possible distributions generates the ob-

servation at any time point. This dependence structure is illustrated in FIGURE 3.1. In

practice, it is common to assume some parametric class of distributions, such as the Pois-

son distributions, for the state-dependent distributions (cf. ALTMAN AND PETKAU, 2005;

BEBBINGTON, 2007). Here, we do not make any such assumption, and instead assign

one state-dependent probability mass to each possible count on the bounded support {0,
1,2, . . . ,K}, thus considering the distribution parameters

π
(i)
k = Pr(Yt = k|St = i), (3.3)

i = 1, . . . ,N, k = 0, . . . ,K. While count data can, in principle, be unbounded, we con-

sider an upper threshold, which is denoted by K, as to obtain a fixed, finite number of
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parameters. The support of the state-dependent distributions should be bounded in a rea-

sonable way (specifically, it should at least cover all observed counts; cf. SECTION 3.2.5

for a discussion hereof). The state-dependent process is completely specified by the state-

dependent count probabilities as given by EQUATION (3.3). With this model formulation,

we thus consider a possibly large number of parameters rather than only e.g. one (as in

the case of the Poisson or the binomial distribution) or two (as in the case of the negative

binomial distribution).

Although the parameter space in this model formulation is still finite-dimensional, it

will usually have a fairly high dimension, with the individual parameters not being of direct

interest themselves. As a consequence, we follow TURNER (2018) and call our approach

non-parametric. In particular, this label emphasizes that the state-dependent distributions

are not determined by a small number of parameters, as would be the case when a distribu-

tional family such as the class of Poisson distributions would be considered. In addition,

with the given model formulation, we are not restricted to any particular functional shape

of the state-dependent distributions, and instead have full flexibility to let the data “speak”

for themselves, like with other methods for which the label non-parametric is commonly

used in the literature.

3.2.2 Likelihood evaluation

For some given parameter vector, which is denoted by θ and comprises — assuming the

initial distribution to be the stationary distribution of the Markov chain — the state transi-

tion probabilities as given by EQUATION (3.1) and the state-dependent count probabilities

as given by EQUATION (3.3), the likelihood of the non-parametric HMM as formulated in

SECTION 3.2.1 can be written as a matrix product,

L(θ |y1, . . . ,yT ) = δP(y1)
T

∏
t=2

ΓP(yt)1, (3.4)

with N×N diagonal matrix

P(yt) =


π
(1)
yt 0

. . .

0 π
(N)
yt

 , (3.5)

and 1 ∈ RN denoting a column vector of ones. The evaluation of the likelihood as given

by EQUATION (3.4) corresponds to the application of the forward algorithm. Defining
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the forward probabilities αt(i) = Pr(y1, . . . ,yt ,St = i), which are summarized in the row

vectors α t = (αt(1), . . . ,αt(N)), the recursive scheme

α1 = δP(y1);

α t = α t−1ΓP(yt),
(3.6)

t = 2, . . . ,T , can be applied to arrive at αT , from which the likelihood can be obtained by

the law of total probability as

L(θ |y1, . . . ,yT ) =
N

∑
i=1

αT (i)

= αT 1

(ZUCCHINI et al., 2016). Using the recursive scheme as given by EQUATIONS (3.6), evalu-

ating the likelihood requires O(T N2) operations, which renders an estimation of the model

parameters by numerically maximizing the likelihood (or, in case of numerical underflow,

the log-likelihood, which is denoted by l(θ |y1, . . . ,yT )), practically feasible even for rel-

atively long time series and a moderately large number of states. Alternatively, the EM

algorithm, which also arrives at a (local) maximum of the likelihood, can be used (ZUC-

CHINI et al., 2016; cf. also SECTION 2.3.1).

For the model formulation considered, an implementation of numerical maximum like-

lihood estimation using the forward algorithm is provided in the R package countHMM

(ADAM, 2019b), while the EM algorithm constitutes the default choice in the R package

hmm.discnp (TURNER, 2018).

3.2.3 Roughness penalization

The downside of the above non-parametric and hence very flexible approach is its propen-

sity to overfit any given data. Especially in cases where the length of the time series is short

relative to the number of model parameters, which, if the initial distribution is assumed to

be the stationary distribution of the Markov chain, is given by N(N− 1)+NK, the fitted

state-dependent distributions will often be anything but smooth, and may even involve iso-

lated spikes with implausible gaps in between (corresponding to a lack of data in regions

where observations would in fact be expected to occur in the long run). For short time se-

ries, it can in fact easily happen that for specific values well within the plausible range of

observations to occur in future, each state-dependent probability is estimated to be zero,

namely if no such observations are present in the training data (cf. SECTION 3.4 for an ex-
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ample of this problem). The consequence of this would be that the fitted model deems the

corresponding values to be impossible to occur in future, which could be problematic in

particular in applications where the focus lies on forecasting.

To avoid such kind of overfitting, we add a penalty to the logarithm of the likelihood

as given by EQUATION (3.4), which leads to the penalized log-likelihood

lpen.(θ |y1, . . . ,yT ) = l(θ |y1, . . . ,yT )︸ ︷︷ ︸
goodness of fit

−
N

∑
i=1
λ
(i)

K

∑
k=m

(
∆

m
π
(i)
k

)2

︸ ︷︷ ︸
smoothness

,
(3.7)

where λ(i), i = 1, . . . ,N, denotes a smoothing parameter associated with the i-th state-de-

pendent distribution, and where

∆
1
π
(i)
k = π

(i)
k −π

(i)
k−1;

∆
m

π
(i)
k = ∆

1(
∆

m−1
π
(i)
k

)
,

(3.8)

k = m, . . . ,K, denotes the m-th order differences between adjacent count probabilities (cf.

SECTION 3.2.5 for a discussion of the choice of the difference order). The inclusion of the

penalty term, together with the associated smoothing parameters, allows us to control the

variance of the otherwise unrestricted and hence highly variable estimation of the state-

dependent distributions. Maximizing the penalized log-likelihood as given by EQUATION

(3.7) then amounts to finding a good compromise between the goodness of fit, as measured

by the likelihood given by EQUATION (3.4), and the smoothness of the state-dependent dis-

tributions, as measured by the m-th order differences between adjacent count probabilities

given by EQUATION (3.8).

In presence of zero-inflation, which in practice often occurs when dealing with count

data, it can make sense not to penalize differences between probability masses on zero

and the adjacent count probabilities (i.e. those on 1,2,3, . . . ,m), as otherwise the penal-

ization will shrink the estimate of π
(i)
0 and increase its neighboring state-dependent count

probabilities as to ensure smoothness of the resulting state-dependent distributions, which

in case of a genuine excess of zeros can be undesirable. The penalty in the penalized

log-likelihood as given by EQUATION (3.7) can then be replaced by an inflation-adjusted

penalty, which leads to the inflation-adjusted penalized log-likelihood

linfl.-adj. pen.(θ |y1, . . . ,yT ) = l(θ |y1, . . . ,yT )︸ ︷︷ ︸
goodness of fit

−
N

∑
i=1
λ
(i)

K

∑
k=m+1

(
∆

m
π
(i)
k

)2

︸ ︷︷ ︸
smoothness

,
(3.9)
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such that the state-dependent probability masses on zero can be estimated without any

constraints related to the smoothness of the resulting state-dependent distributions. Prob-

ability masses on other counts, e.g. the upper bound in case of bounded counts, can be

excluded from penalization analogously; cf. ADAM et al. (2019c) for an example where

this is demonstrated.

3.2.4 Model fitting and parameter constraints

Maximum penalized likelihood estimates of the model parameters can be obtained by nu-

merically maximizing the penalized log-likelihood as given by EQUATION (3.7) using

some Newton-Raphson-type optimization routine, such as implemented in the R function

nlm (R CORE TEAM, 2019). A notorious difficulty with basic HMMs that is likely ex-

acerbated in non-parametric HMMs, where the number of parameters tends to be much

larger, is the often complex shape of the surface of the penalized log-likelihood. To in-

crease the chance of having found the global rather than a local maximum, a multiple start

point strategy can be applied, where the penalized log-likelihood is maximized from dif-

ferent, possibly randomly selected initial values, where the estimate corresponding to the

highest penalized log-likelihood is chosen (ZUCCHINI et al., 2016).

As the model parameters are all probabilities, a number of parameter constraints need

to be satisfied, which can be achieved by transforming the constrained parameters into

unconstrained ones using multinomial logit link functions, and then maximizing the pe-

nalized log-likelihood with respect to the unconstrained parameters. Specifically, to ensure

γi, j ∈ [0,1], i, j = 1, . . . ,N, and ∑
N
j=1 γi, j = 1, i = 1, . . . ,N, the constrained state transition

probabilities as given by EQUATION (3.1) can be written as

γi, j =
exp(γ ′i, j)

∑
N
k=1 exp(γ ′i,k)

,

i, j = 1, . . . ,N. Furthermore, to ensure δi ∈ [0,1], i = 1, . . . ,N, and ∑
N
i=1 δi = 1, we can

write the constrained initial state probabilities given by EQUATION (3.2) as

δi =
exp(δ ′i )

∑
N
k=1 exp(δ ′k)

,

i = 1, . . . ,N. To ensure π
(i)
k ∈ [0,1], i = 1, . . . ,N, k = 0, . . . ,K, and ∑

K
k=0 π

(i)
k = 1, i =

1, . . . ,N, the constrained state-dependent count probabilities as given by EQUATION (3.3)
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can be written as

π
(i)
k =

exp
(
π
′(i)
k

)
∑

K
l=0 exp

(
π
′(i)
l

) ,
i = 1, . . . ,N, k = 0, . . . ,K. After having maximized the penalized log-likelihood with re-

spect to the unconstrained parameters, which are denoted by γ ′i, j, δ ′i , and π
′(i)
k (fixing one

state transition probability for each row of the t.p.m., one initial state probability, and one

state-dependent count probability for each of the state-dependent distributions at zero to

ensure the model to be identifiable), the constrained parameters can be obtained by apply-

ing the above transformations.

Regarding identifiability in general, and in particular with regard to the very flexi-

ble model formulation considered here, ALEXANDROVICH et al. (2016) show that for an

HMM to be identifiable it is sufficient if the t.p.m. has full rank and the state-dependent

distributions are distinct, conditions that can be expected to be satisfied in most practical

scenarios where HMMs seem to be natural candidate models.

3.2.5 Choice of the tuning parameters

The difference order, m, is a tuning parameter that we recommend to be chosen prag-

matically depending on the data at hand, and validated based on a close inspection of

the goodness of fit resulting from different choices, e.g. based on pseudo-residual analy-

ses. With m = 1-st order differences, a uniform distribution is obtained as λ(i)→ ∞ (the

penalty term vanishes if all count probabilities are equal), whereas for m = 2-nd order dif-

ferences, a triangular distribution is obtained in the limit (the penalty term vanishes if all

count probabilities lie on a straight line with arbitrary slope). Based on our experience,

m = 3-rd or even higher order differences produce the most reliable estimates in a num-

ber of settings with varying complexity, especially in scenarios where the state-dependent

distributions have complex functional shapes (cf. the simulation experiments presented in

SECTION 3.3).

The size of the support on which the state-dependent distributions are to be estimated,

K, is a tuning parameter that must be chosen greater than or at least equal to the highest

count observed. However, with unbounded counts, it does in fact make sense to choose

a somewhat larger size, as the absence of values greater than the highest count observed

in the training data does not guarantee that such values will not occur in future. While

without penalization, a non-parametric approach would estimate the probability of such
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future events to be zero, the penalized approach will place positive probability on counts

slightly larger than the maximal value observed due to the enforced smoothing. Again, we

recommend to validate the choice of the size of the support based on a close inspection of

the goodness of fit resulting from different choices, e.g. based on pseudo-residual analyses.

An adequate choice of the smoothing parameters, λ(i), is crucial for finding a good

balance between goodness of fit and estimator variance. We here adopt the K-fold cross-

validation approach proposed in LANGROCK et al. (2015), where the optimal vector of

smoothing parameters, λ= (λ(1), . . . ,λ(N)), from some pre-specified grid, Λ = λ(1)×·· ·×
λ
(N) ⊂RN , can be found using a greedy search algorithm: first, we choose an initial vector

λ
[0] = (λ(1)[0], . . . ,λ(N)[0]) ⊂ Λ from the grid and set z to zero. Then, we compute the

average out-of-sample log-likelihood for the current smoothing parameter vector λ[z] =

(λ(1)[z], . . . ,λ(N)[z]) and each direct neighbor on the grid, from wich we then choose the

updated smoothing parameter vector λ[z+1] = (λ(1)[z+1], . . . ,λ(N)[z+1]) as the one that yields

the highest out-of-sample log-likelihood averaged across folds. We then increase z by

one and repeat the previous step until the obtained smoothing parameters do not change

anymore, i.e. until λ[z+1] = λ[z].

Following ZUCCHINI et al. (2016), the out-of-sample log-likelihood can be evaluated

by treating the out-of-sample observations as missing data for model training using max-

imum penalized likelihood estimation, hence replacing the corresponding diagonal matri-

ces in the likelihood as given by EQUATION (3.5) by identity matrices. The out-of-sample

log-likelihood can then be calculated analogously, now treating the in-sample observations

as missing data and using the estimated model parameters for evaluating the out-of-sam-

ple unpenalized log-likelihood.

3.3 Simulation experiments

To assess the performance of the suggested approach, we present the following two simu-

lation experiments: in each of 200 simulation runs, we simulated i) 200 (short time series

setting) and ii) 500 (long time series setting) realizations from a 2-state Markov chain,

{St}t=1,...,200 and {St}t=1,...,500, with t.p.m.

Γ =

(
0.95 0.05

0.05 0.95

)
,

and initial (stationary) state probabilities δi = 0.5, i = 1,2. Conditional on the simulated

state sequences, the observations were then drawn from either of the following two dis-
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tributions: a Conway-Maxwell-Poisson distribution (when the state process was in state

1), or a two-component mixture of a Poisson and a Conway-Maxwell-Poisson distribu-

tion (when in state 2; cf. FIGURES 3.2 and 3.4 for an illustration of the state-dependent

distributions).

In comparison with the Poisson distribution, the Conway-Maxwell-Poisson distribu-

tion comprises an additional parameter that allows to model under- and overdispersion

relative to the Poisson distribution. As the marginal distribution of the data simulated from

this distribution could be fairly well captured by a two-component mixture of Poisson dis-

tributions, a 2-state Poisson HMM would seem to provide a natural choice. However,

the underlying state-dependent distributions do in fact substantially deviate from a Pois-

son distribution, exhibiting some underdispersion in state 1 and strong overdispersion as

well as bimodality in state 2. This complex model formulation was chosen to demonstrate

the full potential of the suggested approach, but also to highlight potential pitfalls that

can occur when choosing too simplistic parametric models based in particular on a visual

inspection of the marginal distribution of the data.

Initially, the performance of the suggested approach was assessed by visually com-

paring the empirical distributions of the estimated distribution parameters. In addition,

to formally compare the performance of the proposed methodology with alternative ap-

proaches, we considered the following measures: first, we computed the Kullback-Leibler

divergences (KLDs) between the true and the estimated state-dependent distributions, av-

eraged across 200 simulation runs,

KLD
(
π̂
(i))= 1

200

200

∑
r=1

40

∑
k=0

π
(i)
k log

(
π
(i)
k

π̂
(i)[r]
k

)
,

i = 1,2, with π̂
(i)[r]
k denoting the estimate of π

(i)
k obtained in the r-th simulation run. Fur-

thermore, the mean absolute errors (MAEs) of the estimated off-diagonal t.p.m. entries

obtained in 200 simulation runs were computed as

MAE(γ̂i, j) =
1

200

200

∑
r=1

√(
γ̂
[r]
i, j − γi, j

)2
,

i, j = 1,2, i 6= j, and γ̂
[r]
i, j denoting the estimate of γi, j obtained in the r-th simulation run.

Lastly, we computed the state misclassification rates (SMRs), averaged across 200 simu-

lation runs,

SMR(ŝ) =
1

200

200

∑
r=1

1
T

T

∑
t=1

1{ŝ[r]t 6=s[r]t }
,
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FIGURE 3.2: Boxplots of the estimated state-dependent distribution parameters (short time
series setting) for states 1 (blue) and 2 (red) obtained in 200 simulation runs under the
true parametric model, the 2-state Poisson HMM, the non-parametric model fitted without
penalization, and the non-parametric model fitted with penalization. Estimates that lie
outside 1.5 times the interquartile range are visualized by dots, while true state-dependent
distributions are indicated by dashed lines.

where T = 200 (short time series setting) and 500 (long time series setting), with ŝ[r]t denot-

ing the globally decoded state at time t, where the Viterbi algorithm (VITERBI, 1967) was

used for state decoding, and s[r]t being the true realization of the simulated state sequence

at time t obtained in the r-th simulation run.
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TABLE 3.3: Results of the simulation experiments (short time series setting). Displayed
are the KLDs and the MAEs for states 1 and 2 as well as the SMRs obtained in 200 simula-
tion runs under the true parametric model, the 2-state Poisson HMM, the non-parametric
model fitted without penalization, and the non-parametric models fitted with penalization,
respectively.

Model specification KLD(π̂(1)) KLD(π̂(2)) MAE(γ̂1,2) MAE(γ̂2,1) SMR(ŝ)
True parametric model 0.016 0.026 0.023 0.022 0.033

2-state Poisson HMM 0.138 2.121 0.130 0.401 0.244

Non-p. mod. w/o pen. 1.107 3.276 0.020 0.019 0.062

Non-p. mod. w/ pen., m= 2 0.114 0.111 0.021 0.028 0.066

Non-p. mod. w/ pen., m= 3 0.090 0.059 0.016 0.019 0.049

Non-p. mod. w/ pen., m= 4 0.076 0.048 0.014 0.017 0.045

In each simulation run, we fitted the following models: i) the true parametric model,

as a benchmark only, noting that in practice, a model as complex as the given one effec-

tively can usually not be guessed based on a visual inspection of the marginal distribution

of the data, ii) a 2-state Poisson HMM, which, as discussed above, would seem to provide

a reasonable choice based on a visual inspection the marginal distribution of the data, iii)

the unpenalized non-parametric model, to demonstrate the need for roughness penaliza-

tion, as well as the suggested non-parametric model fitted with iv) m = 2-nd, v) m = 3-rd,

and vi) m = 4-th order difference penalties, respectively. The size of the support on which

the state-dependent distributions were estimated was chosen as K = 40 (or, alternatively,

the highest count observed in case this was greater than 40). The smoothing parame-

ters were selected via 20-fold cross-validation over the grid Λ = λ(1)× λ(2),λ(1) = λ(2) =
(10,100,1,000, . . . ,108).

The empirical distributions of the estimated state-dependent distribution parameters,

as obtained under the models considered in 200 simulation runs, are visualized in FIG-

URES 3.2 (short time series setting) and 3.4 (long time series setting), respectively. It can

be seen that the non-parametric models fitted with penalization produced estimates very

close to those obtained when using the true parametric model (especially for high differ-

ence orders and long time series; cf. the bottom-right and the top-left panel in FIGURE

3.4). For small difference orders and short time series, however, there is some underesti-

mation of the peaks and some overestimation of the troughs (cf. the middle-right and the

bottom-left panel in FIGURE 3.2). Given that the true parametric model is unknown in

practice, these first impressions regarding the performance of the non-parametric models

fitted with penalization are encouraging. Regarding the other two competitors, the 2-state

Poisson HMM clearly lacks the flexibility to capture the functional shapes of the true state-
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FIGURE 3.4: Boxplots of the estimated state-dependent distribution parameters (long time
series setting) for states 1 (blue) and 2 (red) obtained in 200 simulation runs under the
true parametric model, the 2-state Poisson HMM, the non-parametric model fitted without
penalization, and the non-parametric model fitted with penalization. Estimates that lie
outside 1.5 times the interquartile range are visualized by dots, while true state-dependent
distributions are indicated by dashed lines.

dependent distributions and thus exhibits a strong bias (cf. the top-right panel in FIGURES

3.2 and 3.4, respectively), while the non-parametric model fitted without penalization leads

to a much higher estimator variance, which can be attributed to overfitting.
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TABLE 3.5: Results of the simulation experiments (long time series setting). Displayed are
the KLDs and the MAEs for states 1 and 2 as well as the SMRs obtained in 200 simula-
tion runs under the true parametric model, the 2-state Poisson HMM, the non-parametric
model fitted without penalization, and the non-parametric models fitted with penalization,
respectively.

Model specification KLD(π̂(1)) KLD(π̂(2)) MAE(γ̂1,2) MAE(γ̂2,1) SMR(ŝ)
True parametric model 0.005 0.009 0.012 0.013 0.033

2-state Poisson HMM 0.112 2.085 0.122 0.395 0.240

Non-p. mod. w/o pen. 0.403 0.652 0.012 0.012 0.040

Non-p. mod. w/ pen., m= 2 0.032 0.039 0.013 0.015 0.040

Non-p. mod. w/ pen., m= 3 0.020 0.023 0.013 0.014 0.036

Non-p. mod. w/ pen., m= 4 0.014 0.019 0.012 0.014 0.035

As expected based on the considerations made above, the 2-state Poisson HMM shows

— regardless of the length of the time series — the (overall) worst performance, with

large KLDs (KLD(π̂(1)) = 0.138 and KLD(π̂(2)) = 2.121 in the short time series setting;

cf. TABLE 3.3, and KLD(π̂(1)) = 0.112 and KLD(π̂(2)) = 2.085 in the long time series set-

ting; cf. TABLE 3.5), which is due to the lack of flexibility to capture the functional shapes

of the true state-dependent distributions. This obviously also results in high SMRs, as most

of the observations in the interval [5,15] were assigned to state 1, although a consider-

able number of them were actually generated in state 2. The 2-state Poisson HMM also

yields large MAEs of the estimated off-diagonal t.p.m. entries, with nearly every fourth

globally decoded state differing from the true state, which again is an obvious consequence

of the large proportion of observations in the interval [5,15] being incorrectly allocated to

state 1.

The non-parametric model fitted without penalization, on the one hand, shows a much

better performance than the 2-state Poisson HMM, which is due to its flexibility to capture

the shapes of the true state-dependent distributions, in particular the bimodality in state 2,

but, on the other hand, suffers from a high variance of the estimators, which manifests itself

in large KLDs (KLD(π̂(1))= 1.107 and KLD(π̂(2))= 3.276 in the short time series setting;

cf. TABLE 3.3, and KLD(π̂(1)) = 0.403 and KLD(π̂(2)) = 0.652 in the long time series

setting; cf. TABLE 3.5). Due to the substantial reduction of the estimators’ variances, the

roughness penalization further considerably improves the performance, in particular the

average deviation from the true state-dependent distributions, as measured by the KLDs,

where the importance of the penalization is expected to increase as the length of the time

series considered decreases. Although, in the simulation experiments presented here, the

performance of the non-parametric model fitted with penalization continually improves as



56 Non-parametric inference in HMMs for discrete-valued time series

the difference order increases, we would like to note that it will not generally be the case

that a higher difference order will result in a better fit. In fact, when chosen too large, only

deviations from very complex distributional shapes of the state-dependent distributions are

penalized, which, as a consequence, can lead to overfitting, regardless of the weight of the

penalty term.

Using a 3.6 GHz Intel® Core™ i7 CPU and the R function nlm (R CORE TEAM, 2019)

to numerically maximize the penalized log-likelihood, the average computation time was

— depending on the difference order — between 5.6 and 6.1 seconds (short time series

setting) and 10.6 and 10.9 seconds (long time series setting) for a (single) model (i.e. for a

given set of smoothing parameters).

3.4 Application to earthquake counts

To illustrate the suggested approach in a real-data setting, we model the distribution of

the annual number of earthquakes with magnitude ≥ 7, EarthquakeCountt , over time. The

data, which are available in the R package countHMM (ADAM, 2019b), cover the period

from 1900 to 2006, thus comprising 107 years in total. Our aim here is to present a simple

case-study that provides some intuition and demonstrates the potential of non-parametric

HMMs for modeling discrete-valued time series, which is why we refrain from comparing

the goodness of fit resulting from different choices of the tuning parameters and instead

choose m = 3-rd-order difference penalties and the highest count observed, K = 41, as

an upper bound for the support on which the state-dependent distributions are to be esti-

mated3. The smoothing parameters were selected via 20-fold cross-validation over the grid

Λ = λ(1)× λ(2),λ(1) = λ(2) = (1,000,10,000,100,000, . . . ,1010), which led to the optimal

values λ(1) = 108 and λ(2) = 109. For the chosen smoothing parameters, the computation

time was 1.6 seconds.

As a benchmark for the non-parametric model fitted with penalization, we consider the

2-state Poisson HMM presented in ZUCCHINI et al. (2016), which, as discussed above,

provides a natural choice for the state-dependent distributions when modeling time series

of counts (cf. MACDONALD AND ZUCCHINI, 1997). In addition, to demonstrate the need

3For a comparison of the goodness of fit resulting from different choices of the differ-
ence orders and the upper bounds of the support on which the state-dependent distributions
are to be estimated, we refer to the online supplementary material provided in ADAM et al.
(2019c).
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FIGURE 3.6: Estimated state-dependent distributions of annual earthquake counts for
states 1 (blue) and 2 (red) obtained under the 2-state Poisson HMM, the non-parametric
model fitted without penalization, and the non-parametric model fitted with penalization.
White bars indicate the empirical distribution of the observations, while dashed lines indi-
cate the marginal distributions under the fitted models. The plot displayed in the bottom-
right panel shows the globally decoded time series of annual earthquake counts under the
non-parametric model fitted with penalization.

for roughness penalization, we also compare the approach developed in this work with

the non-parametric model fitted without penalization, as implemented in the R package

hmm.discnp (TURNER, 2018).

The t.p.m. for the non-parametric model fitted with penalization was estimated as

Γ̂NPM =

(
0.934 0.066

0.128 0.872

)
,

which implies the stationary distribution (0.660,0.340), indicating that about 66.0 % (71

years) and 34.0 % (36 years) of the observations were generated in states 1 and 2, respec-

tively. The estimated state transition probabilities under the non-parametric model fitted
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with penalization are very close to those obtained under the 2-state Poisson HMM (cf.

ZUCCHINI et al., 2016) and the non-parametric model fitted without penalization, indicat-

ing that, unlike in the simulation experiments presented in SECTION 3.3, here the 2-state

Poisson HMM is able to capture the state-switching dynamics.

However, as indicated by FIGURE 3.6, the estimated state-dependent distributions do

clearly differ. In particular, the 2-state Poisson HMM lacks the flexibility to account for

the overdispersion that is present in the data, particularly in state 2, as captured by the

two non-parametric models considered. However, due to the short length of the time se-

ries, the non-parametric model fitted without penalization heavily overfits the data (cf. the

top-right panel in FIGURE 3.6), which clearly demonstrates the need for roughness penal-

ization in such a setting. In particular, the values 9 and 33, for instance, are both assigned

a conditional probability of exactly zero in either of the two states — simply because these

two values did not occur between 1900 and 2006 — such that, according to the fitted

model, these values also cannot occur in future years, which obviously seems to be im-

plausible and is problematic especially for prediction. The non-parametric model fitted

with penalization (cf. the bottom-left panel in FIGURE 3.6), in contrast, avoids this severe

overfitting and produces smooth functional shapes of the estimated state-dependent distri-

butions. Despite these differences in the estimated state-dependent distributions, the three

models considered identify essentially the same patterns, where state 1 can be linked to a

calm geo-physical regime that is characterized by relatively low seismic activity, whereas

state 2 corresponds to periods exhibiting relatively high seismic activity. This is further

illustrated by means of the decoded state sequence underlying the observed earthquake

counts under the non-parametric model fitted with penalization, which is displayed in the

bottom-right panel of FIGURE 3.6.

For the non-parametric model fitted with penalization, a qq-plot and the sample ACF

of normal ordinary pseudo-residuals are displayed in FIGURE 3.7. The qq-plot of the nor-

mal ordinary pseudo-residuals does not reveal any problematic lack of fit, and the sample

ACF indicates only little residual correlation in the earthquake counts’ series. Overall, the

non-parametric model fitted with penalization shows a satisfactory goodness of fit. In par-

ticular, there is no indication that a third state needs to be included in the model, as it is

the case when choosing Poisson state-dependent distributions (cf. ZUCCHINI et al., 2016):

while the empirical variance of the observations is 50.573, the variance of the marginal

distribution under the 2-state Poisson HMM is only 44.523. This can likely be attributed

to the inflexibility of the Poisson distribution, the rate parameter of which determines both

the mean and the variance. The marginal distributions under the 3- and 4-state HMMs, in

contrast, have variances 50.709 and 49.837, respectively, indicating that, when choosing
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FIGURE 3.7: Qq-plot and sample ACF of normal ordinary pseudo-residuals (non-parame-
tric model fitted with penalization). Colors indicate the globally decoded states underlying
the observed earthquake counts, where blue refers to state 1 and red refers to state 2.

Poisson state-dependent distributions, then at least three states are needed to adequately

capture the marginal distribution of the observations (cf. ZUCCHINI et al., 2016), a prob-

lem that can be avoided using the suggested non-parametric approach.

3.5 Discussion

In this chapter, we introduced an effectively non-parametric approach to fitting HMMs

to discrete-valued time series, where we focused on the specific case of time series of

counts. The proposed estimation framework was demonstrated to provide a promising

alternative to parametric HMMs, and may be superior in cases where simple, parametric

state-dependent distributions are not able to capture some of the features that are present

in the data. Specifically, the increased flexibility to capture complex distributional shapes

can improve the accuracy of time series forecasts, reduce state misclassification rates, and

help to avoid making biased inference related e.g. to the dynamics of the state process.

In any case, the suggested approach can also be regarded as an exploratory tool, which

can be applied in cases where it is unclear which parametric family is to be chosen for

the state-dependent distributions. However, a simple parametric family is to be preferred

whenever appropriate, as it will usually be much easier to implement and to interpret, and

also the computational effort will be much lower than when using the suggested penalized

non-parametric approach.

A notorious difficulty with HMMs, which can partly be addressed using the suggested

approach, is the selection of the number of states. When using model selection criteria to
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choose an adequate number of states, then these often tend to point to models with more

states than can plausibly be interpreted (cf. POHLE et al., 2017, for an in-depth discus-

sion of pitfalls, practical challenges, and pragmatic solutions regarding order selection in

HMMs). Inflexibility of simple, parametric state-dependent distributions to capture certain

features is a common cause of this problem, as such inflexibility can always be compen-

sated for by including additional states that will then usually have no meaningful inter-

pretation (LANGROCK et al., 2015). In that respect, the effectively unlimited flexibility

of the non-parametric approach can help to reduce the required number of states, which

will often substantially improve interpretability. In fact, with the proposed methodology, a

single state is required to capture the marginal distribution of the data, and potential addi-

tional states only need to be included if they help to capture the dependence structure. On

the other hand, model selection using information criteria is in fact more difficult within a

non-parametric estimation framework, as it is necessary to derive the effective number of

parameters that were used to fit the model (LANGROCK et al., 2018), a challenge we did

not address in this work.

In the simulation experiments and real-data applications presented in SECTIONS 3.3

and 3.4, respectively, the size of the support on which the state-dependent distributions

were to be modeled was moderate, where the largest size considered was 41 (cf. SEC-

TION 3.4). If state-dependent distributions on much larger supports, e.g. with size 5,000,

are to be modeled, then the high dimensionality of the parameter space can become prob-

lematic, especially with regard to the computing time. In those instances, the parameter

space can potentially be decreased by treating the data as stemming from a continuous dis-

tribution, constructing the state-dependent distributions based on linear combinations of

B-spline basis functions, where higher-order differences between adjacent basis function

coefficients are penalized (EILERS AND MARX, 1996; LANGROCK et al., 2015; LAN-

GROCK et al., 2018; cf. also SECTION 2.3.2). Alternatively, the data could be binned, e.g.

in intervals I1 = {1,2,3, . . . ,10}, I2 = {11,12,13, . . . ,20}, I3 = {21,22,23, . . . ,30}, . . . ,
I500 = {4,991,4,992,4,993, . . . ,5,000}, then estimating the state-dependent distributions

defined on the intervals instead of directly on the counts (in the example given above thus

reducing the size of the support by a factor ten).

On a final note, we would like to highlight that the considerations made above imply

that the approach developed in this thesis is by no means restricted to modeling time se-

ries of counts. Instead, essentially any type of time series data where the observations are

at least of ordinal scale can, in principle, be modeled using the proposed methodology (in

the same spirit as presented for large sparse contingency tables in SIMONOFF, 1983). This

we believe could be relevant in particular for modeling longitudinal time series on Likert-
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type scales, which are particularly common in social sciences (cf. SCOTT et al., 2005).

Lastly, our penalization approach could potentially also be adapted to different types of

conventional models for discrete-valued time series: in that regard, one may e.g. think of

combining it with the non-parametric estimation approach for integer-valued autoregres-

sive models proposed in DROST et al. (2009). The approach developed in this work is thus

not only readily applicable to basic time series of counts, but also provides a promising

starting point for future research into modeling various types of discrete-valued time series

using non-parametric modeling techniques.
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Chapter 4

Joint modeling of multi-scale time series using
hierarchical hidden Markov models1

“We are drowning in information and starving for knowledge.”

— R.D. Rogers

Summary

In this chapter, we propose hierarchical HMMs as a versatile class of statistical

models for multi-scale time series. While conventional HMMs are restricted

to modeling single-scale data, in practice variables are often observed at dif-

ferent temporal resolutions. An economy’s gross domestic product, for in-

stance, is typically observed on a yearly, quarterly, or monthly basis, whereas

stock prices are available daily or at even finer resolutions. Step lengths per-

formed by an animal, to give another example, are often observed on a daily or

hourly basis, whereas accelerations obtained from accelerometers are available

at much higher frequencies, with observations typically made several times per

second. To incorporate such multi-scale data into a joint HMM, we regard the

observations as stemming from multiple, connected state processes, each of

which operates at the time scale at which the corresponding variables were

observed. The suggested approach is illustrated in two real-data applications,

where we jointly model the distribution of i) daily horizontal movements and

ten-minute vertical displacements of an Atlantic cod and ii) monthly trade vol-

umes and daily log-returns of the Goldman Sachs stock, respectively.

1This chapter is based on ADAM et al. (2019a) and ADAM AND OELSCHLÄGER

(2020).
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4.1 Introduction

Over the last decades, HMMs have emerged as a versatile class of statistical models for

time series (ZUCCHINI et al., 2016). In ecological applications, for instance, HMMs are

commonly used to infer behavioral modes and their drivers from various types of telemetry

data (MICHELOT et al., 2016; WHORISKEY et al., 2017; GRECIAN et al., 2018), where a

typical aim is to identify and understand the key patterns in an animal’s movement through

space, the factors, both intrinsic and extrinsic, that affect movements, and ultimately how

individual behavior scales to population-level processes. In such applications, it is often of

particular interest to make inference related to the influence of environmental covariates,

e.g. regarding the behavioral response of blue whales to sonar exposure (DERUITER et al.,

2017), the effect of wind speed on Verreaux’s eagles’ flying dynamics (LEOS-BARAJAS

et al., 2017a), or diel variation in Florida panther movements (LI AND BOLKER, 2017).

Beyond ecology, HMMs have proven useful e.g. in economics, where they are routinely

used to model economic time series such as share returns, oil prices, or bond yields, which

are driven by hidden economic regimes such as periods of high and low economic growth,

inflation, or unemployment, respectively (HAMILTON, 1989).

In the recent past, the ability to remotely track individual animals has revolutionized the

field of movement ecology, especially via Global Positioning System (GPS) technology

(RUTZ AND HAYS, 2009; HUSSEY et al., 2015). To make sense of the corresponding

new types of data, various statistical models have been developed and are now routinely

applied by ecologists (MORALES et al., 2004; JONSEN et al., 2005; JOHNSON et al.,

2008; PATTERSON et al., 2009). Over the last few years, however, we have witnessed

a second wave of advancements in bio-logging technology, most notably accelerometry,

which, on the one hand, provide great opportunities for statistical inference but, on the

other hand, also pose new methodological challenges (LEOS-BARAJAS et al., 2017a). In

general, we are now able to remotely track and monitor individual animals at increasingly

long time scales but at the same time also at increasingly fine temporal resolutions. A

similar revolution with regard to the temporal resolution at which time series are now

available could be observed in economics, where e.g. stock prices are now available once

per second or at even finer temporal resolutions (cf. O’HARA, 2015; KIRILENKO et al.,

2017). In any such application, the temporal resolution of the data strongly affects what

kind of inference can be made.

While the observations can be multivariate, conventional HMMs have the limitation

that all variables need to be equally spaced in time (or, alternatively, to follow some other

regular sampling protocol). This, however, is not always given in practice. In ecology, for
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instance, recent advances in bio-logging technology have led to a variety of novel teleme-

try sensors that often collect data from the same individual simultaneously at different

time scales. Typical examples are hourly step lengths obtained from GPS tags, dive depths

collected by time-depth recorders once per dive, and accelerations recorded by accelerom-

eters several times per second. Since different types of behaviors can manifest themselves

at different time scales (LEOS-BARAJAS et al., 2017b; MICHELOT et al., 2017), being

able to collect such multiple data streams, with differing temporal resolutions, offers var-

ious opportunities for ecological inference. Similarly, economic variables are also often

observed at different time scales, ranging from yearly data such as economic indices to

high-frequency stock market data. Incorporating multiple such variables into a joint mod-

eling framework can help us to draw a more comprehensive picture of the stock market’s

dynamics, in particular with regard to short-term vs. long-term patterns. Furthermore, by

considering multiple time series observed at different time scales, joint models of such

multi-scale data can contribute to reducing the effect of the often arbitrarily chosen time

intervals between observations.

However, as the state process of a conventional HMM operates on the same time scale

as the state-dependent process, HMMs do not readily accommodate such multi-scale data.

What usually would be done to model such data within an HMM framework is either to

down-sample the observations from the different data streams to the coarsest of the dif-

ferent time scales (e.g. by processing hourly observations into daily means of these ob-

servations, which, however, can lead to a substantial loss of information that is actually

contained in the raw data; cf. GRIFFITHS et al., 2018), or by fitting separate models for

the different variables, which conceptually is clearly inferior to formulating and fitting a

joint model for the different variables, in particular with regard to identifying states that

affect multiple observed variables simultaneously. In this work, we demonstrate that these

problems can to some extent be overcome using hierarchical HMMs, where the observa-

tions are regarded as stemming from multiple, connected state processes, each of which

operates at the time scale at which the corresponding variables were observed.

Hierarchical HMMs originate from supervised machine learning, where they were in-

troduced as a versatile tool for pattern recognition applications. In handwriting or voice

recognition, for instance, different scales may be single letters or syllables, words, and

sentences (FINE et al., 1998). The hierarchy in those instances results from the fact that

multiple letters or syllables taken together constitute a word, multiple words taken together

constitute a sentence, and so forth. Within hierarchical HMMs, these different levels are

modeled using distinct state processes that are correlated with each other. Hierarchical

HMMs have been previously proposed for modeling animal movement data in LEOS-
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BARAJAS et al. (2017b), considering, however, only a single observed process. Here we

extend the proposed model formulation such that it allows for multiple state-dependent

processes observed at different time scales. By incorporating multiple such data streams,

collected at different temporal resolutions, corresponding models allow us to draw a more

comprehensive picture e.g. of animal behavior, with clear implications for ecological in-

ference and conservation actions. Similarly, by providing a more comprehensive picture

e.g. of the stock market’s dynamics, hierarchical HMMs can help to more accurately assess

short- vs. long-term risks and, ultimately, to make better informed investment decisions.

This chapter is structured as follows: in SECTION 4.2, we introduce the different com-

ponents of hierarchical HMMs, discuss the underlying dependence assumptions, and pro-

vide some details on the evaluation of the likelihood. In SECTION 4.3, we discuss how the

model’s parameters can be estimated in a maximum likelihood framework and give a brief

overview of related topics, including model selection, model checking, and state decoding.

In SECTION 4.4, we illustrate the feasibility of the proposed methodology in two real-data

applications, where we jointly model the distribution of i) daily horizontal movements and

ten-minute vertical displacements of an Atlantic cod as well as ii) monthly trade volumes

and daily log-returns of the Goldman Sachs stock, respectively.

4.2 Model formulation and dependence structure

In this section, we introduce the different components of hierarchical HMMs, discuss the

underlying dependence assumptions, and provide some details on the evaluation of the

likelihood. The proposed model formulation constitutes an extension of the closely related

hierarchical HMM proposed in LEOS-BARAJAS et al. (2017b)2.

4.2.1 Multivariate hidden Markov models

Multivariate HMMs comprise two stochastic processes: an observed state-dependent pro-

cess, which is denoted by {Yt}t=1,...,T , Yt = (Y1,t , . . . ,YP,t), with P denoting the number of

variables included in the model (these could e.g. be daily step lengths and turning angles or

2Hierarchical HMMs as proposed in LEOS-BARAJAS et al. (2017b) extend conven-
tional HMMs to multiple state processes operating at different time scales. However, they
do not accommodate multi-scale time series.
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StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · · hidden

observed

FIGURE 4.1: Dependence structure of a multivariate HMM in its basic form. The state-
dependent process is driven by a single state process. While the observations can be
multivariate, conventional HMMs have the limitation that all variables need to be observed
at the same temporal resolution.

monthly trade volumes and log-returns, in which case P = 2), and a hidden state process,

which is denoted by {St}t=1,...,T . The state process is typically modeled by a discrete-time,

N-state Markov chain with N×N t.p.m. Γ = (γi, j), with elements

γi, j = Pr(St+1 = j|St = i),

i, j = 1, . . . ,N, denoting the probability of switching from state i at time t to state j at time

t +1, and initial distribution vector δ = (δi), with elements

δi = Pr(S1 = i),

i = 1, . . . ,N, denoting the probability of state i being active at time t = 1 (the initial state

probabilities can either be estimated or assumed to be the stationary state probabilities of

the Markov chain; cf. ZUCCHINI et al., 2016, for details).

Conditional on St = i, i.e. on state i being active at time t, the observation vector,

Yt , is drawn from a state-dependent distribution associated with state i, defined by the P-

dimensional p.d.f. (or, in the discrete case, p.m.f.) fY(yt ;θ
(i)). Conditional on the entire

state sequence, the observations are assumed to be independent of each other. In addition,

it is convenient to also assume the P variables at time t to be conditionally independent of

each other, given the state at time t, St , such that the joint p.d.f. (or, in the discrete case,

p.m.f.) can be written as a product of univariate densities or probabilities, i.e.

fY
(
yt ;θ

(i))= P

∏
k=1

fY
(
yk,t ;θ

(i)).
The Markov property and the assumption of conditional independence across time and

variables substantially facilitate statistical inference, but can in certain scenarios be unre-

alistic and may then need to be relaxed (ZUCCHINI et al., 2016; cf. SECTION 4.5 for an

overview of possible model extensions). The dependence structure of a multivariate HMM
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in its basic form is illustrated in FIGURE 4.1.

Under the dependence assumptions stated above, the likelihood of a multivariate HMM

can be written as a matrix product,

L(θ |y1, . . . ,yT ) = δP(y1)
T

∏
t=2

ΓP(yt)1, (4.1)

with N×N diagonal matrix

P(yt) =


fY
(
yt ;θ

(1)) 0
. . .

0 fY
(
yt ;θ

(N)
)
 ,

and 1∈RN denoting a column vector of ones. The evaluation of the likelihood as given by

EQUATION (4.1) corresponds to applying the forward algorithm, which constitutes a pow-

erful tool that renders likelihood-based inference in HMMs fast and convenient and allows

to estimate the model’s parameter using numerical optimization techniques (ZUCCHINI

et al., 2016; cf. SECTION 4.3.1 for details on numerical likelihood maximization).

4.2.2 Hierarchical hidden Markov models

To extend the multivariate HMM introduced in SECTION 4.2.1 such that it allows for joint

inference at multiple time scales, we first distinguish between state- and state-dependent

processes operating on a coarse and a fine scale, respectively. The observed coarse-scale

P-dimensional state-dependent process, which is denoted by {Yt}t=1,...,T (these could e.g.

be daily step lengths and turning angles, in which case P = 2, or monthly trade volumes,

in which case P = 1), is driven by a hidden coarse-scale state process, which is denoted

by {St}t=1,...,T . The observed fine-scale P′-dimensional state-dependent process, which is

denoted by {Y′t,t ′}t ′=1,...,T ′ (these could e.g. be ten-minute vertical displacements or daily

log-returns, in which cases P′ = 1), is driven by a hidden fine-scale state process, which is

denoted by {S′t,t ′}t ′=1,...,T ′ .

We then segment the fine-scale observations into T distinct chunks, each of length T ′,

such that each chunk contains all fine-scale observations that were observed during the

t-th sampling of the coarse-scale state-dependent process (e.g. all T ′ = 144 ten-minute

vertical movements that were observed during the t-th sampling of daily step lengths and

turning angles or all T ′ = 21 daily log-returns that were observed during the t-th sampling

of monthly trade volumes). Each chunk of fine-scale observations is then connected to one
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· · · St−1 St St+1 · · ·

Yt−1 Yt Yt+1

S′t,t ′S′t,t ′−1 S′t,t ′+1

Y′t,t ′−1 Y′t,t ′ Y′t,t ′+1

· · · · · ·· · · · · ·

· · · · · · observed

hid-
den

observed

FIGURE 4.2: Dependence structure of an hierarchical HMM. In contrast to the multi-
variate HMM introduced in SECTION 4.2.1, here the observations are driven by multiple,
connected state processes, each of which operates at the time scale at which the corre-
sponding variables were observed.

of N possible HMMs, each of which is determined by its own parameter vector, which is

denoted by θ ′(i), i = 1, . . . ,N. Specifically, each fine-scale HMM has its own N′×N′ t.p.m.

Γ
′(i) = (γ ′k,l

(i)), with elements

γ
′
k,l

(i) = Pr(S′t,t ′+1 = l|S′t,t ′ = k,St = i),

k, l = 1, . . . ,N′, and initial distribution vector δ
′(i) = (δ

′(i)
k ), with elements

δ
′(i)
k = Pr(S′t,1 = k|St = i),

k = 1, . . . ,N′. The state of the coarse-scale state process that is active at time t, St = i, thus

selects one of N possible state-dependent distributions for the observations at the coarse

scale as well as one of N possible HMMs that generates the fine-scale observations during

the t-th sampling of the coarse-scale state process.

Assuming conditional independence across variables, the state-dependent p.d.f. (or, in

the discrete case, p.m.f.) of the fine-scale observations can be written as

fY′
(
y′t,t ′;θ

′(i,l))= P′

∏
k=1

fY′
(
y′k,t,t ′;θ

′(i,l)), (4.2)

i = 1, . . . ,N, l = 1, . . . ,N′, with fY′(y′k,t,t ′;θ
′(i,l)) denoting the density (or, in the discrete

case, probability) of the k-th fine-scale variable being observed at time t ′ during the t-

th sampling of the coarse-scale state-dependent process. The dependence structure of an
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hierarchical HMM is illustrated in FIGURE 4.2.

We assume both state processes to be of first order (Markov property), and both state-

dependent processes to satisfy the two conditional dependence assumptions (across time

and variables) as detailed in SECTION 4.2.1. In ecological applications, the two state pro-

cesses can often be thought of as proxies for behavioral modes, or movement strategies,

relevant at shorter term (fine-scale state process) and longer term (coarse-scale state pro-

cess), respectively. Similarly, in economic applications, the two state processes can typi-

cally be related to different economic regimes, relevant at shorter term (fine-scale state pro-

cess) and longer term (coarse-scale state process), respectively. By incorporating several

such state- and state-dependent processes into a joint modeling framework, hierarchical

HMMs thus allow for joint inference at multiple time scales.

Analogously to the likelihood of a multivariate HMM as given by EQUATION (4.1),

the likelihood of an hierarchical HMM can be written as a matrix product,

L(θ |y1, . . . ,yT ,y′1, . . . ,y
′
T ) = δP(y1,y′1)

T

∏
t=2

ΓP(yt ,y′t)1, (4.3)

with N×N diagonal matrix

P(yt ,y′t) =


L(θ ′(1)|y′t) fY

(
yt ;θ

(1)) 0
. . .

0 L(θ ′(N)|y′t) fY
(
yt ;θ

(N)
)
 ,

and L(θ ′(i)|y′t) denoting the likelihood of the t-th chunk of fine-scale observations being

generated by the i-th fine-scale HMM. A recursive algorithm to efficiently evaluate the

logarithm of the likelihood as given by EQUATION (4.3), which renders a numerical maxi-

mization of the likelihood fast and convenient while simultaneously preventing numerical

underflow, is provided in APPENDIX A.

4.2.3 Incorporating covariates into the model

Covariates can be incorporated into hierarchical HMMs by expressing (some of) the mo-

del’s parameters as functions of covariates. In principle, covariates can be incorporated

both into the different state-dependent processes, where they determine the parameters of

the state-dependent distributions, and into the different state processes, where they deter-

mine the state transition probabilities. While the former was done in the case of Markov-
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· · · St−1 St St+1 · · ·
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Y′t,t ′−1 Y′t,t ′ Y′t,t ′+1
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FIGURE 4.3: Dependence structure of an hierarchical HMM with covariate-dependent
coarse-scale state process. In contrast to the hierarchical HMM introduced in SECTION

4.2.2, here the coarse-scale state process depends on covariates.

switching GAMLSS (cf. SECTION 2.2.2), here we focus on the latter, i.e. incorporating

covariates into the different state processes.

Therefore, we express the state transition probabilities as a function of a predictor,

which is denoted by η(i, j)(xt), with xt = (x1,t , . . . ,xP,t) denoting a P-dimensional covariate

vector. Using multinomial logit links to ensure the parameter constraints γi, j(xt) ∈ [0,1],

i, j = 1, . . . ,N, and ∑
N
j=1 γi, j(xt) = 1, i = 1, . . . ,N, to be satisfied, we obtain the t.p.m.

Γ(xt) = (γi, j(xt)), with elements

γi, j(xt) =
exp(η(i, j)(xt)

)
∑

N
k=1 exp

(
η(i,k)(xt)

) , (4.4)

where the predictor can be written as

η
(i, j)(xt) =

β
(i, j)
0 +∑

P
k=1 β

(i, j)
k xk,t if i 6= j;

0 otherwise,
(4.5)

i, j = 1, . . . ,N. Instead of estimating the state transition probabilities directly, we then max-

imize the likelihood of the hierarchical HMM as given by EQUATION (4.3) with respect to

the coefficients contained in EQUATION (4.5), which are denoted by β
(i, j)
k , i, j = 1 . . . ,N,

i 6= j, k = 0, . . . ,P.

In some applications, it is of particular interest to model seasonal or within-day varia-
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tion, i.e. the time is considered as a deterministic rather than as a stochastic covariate. To

account for the corresponding periodic effects, trigonometric functions can be used, where

the predictor in EQUATION (4.4) can be written as

η
(i, j)(xt) =

β
(i, j)
0 +β

(i, j)
1 sin

(2πt
r

)
+β

(i, j)
2 cos

(2πt
r

)
if i 6= j;

0 otherwise,
(4.6)

with r denoting the length of the period of interest (e.g. t = 365 in case of seasonal vari-

ation and daily observations or r = 24 when modeling within-day variation and hourly

observations). For more flexibility, additional sine and cosine terms with shorter cycles

can be added to the predictor.

Incorporation of covariates into the fine-scale state process is analogous, but note that

in this case we have one t.p.m., which is denoted by Γ
′(i)(x′t) = (γ

′(i)
k,l (x

′
t)), for each state of

the coarse-scale state process, i.e. N such matrices to be expressed as functions of covari-

ates. The dependence structure of an hierarchical HMM where the coarse-scale state pro-

cess depends on covariates is illustrated in FIGURE 4.3, while an example of a covariate-

dependent fine-scale state process is given in SECTION 4.4.1.

4.3 Some remarks on model fitting and related topics

In this section, we provide some details on maximum likelihood estimation of the model’s

parameters and briefly outline further topics related to hierarchical HMMs, including model

selection, model checking, and state decoding.

4.3.1 A note on likelihood maximization

Using the forward algorithm proposed in SECTION 4.2.2, the evaluation of the likelihood

as given by EQUATION (4.3) requires O(NT ′N′2 +T N2) operations, which renders a nu-

merical maximization of the likelihood using some Newton Raphson-type optimization

routine, such as implemented in the R function nlm (R CORE TEAM, 2019), practically

feasible even for relatively long time series and a moderately large number of states. To

increase the speed of the likelihood evaluation and, consequently, the maximization, the

dependence structure of hierarchical HMMs can be exploited to apply parallel comput-

ing techniques, where the evaluation of the likelihoods of the fine-scale HMMs associated

with the different coarse-scale states can be distributed across multiple cores, which can
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reduce the computation time up to a factor N.

Typical challenges that are inherent to numerical likelihood maximization in conven-

tional HMMs, particularly parameter constraints, numerical underflow, and local maxima

of the likelihood, also apply to hierarchical HMMs. Specifically, to account for parame-

ter constraints, we can transform the constrained parameters into unconstrained ones using

some one-to-one transformation and then maximize the likelihood with respect to the un-

constrained parameters (cf. SECTION 3.2.4). To avoid numerical underflow, which can

occur when multiplying a large number of small probabilities in the likelihood calcula-

tions, we can maximize the log-likelihood and evaluate all quantities on the log-scale; cf.

the implementation of the forward algorithm provided in APPENDIX A. As the numerical

maximization can yield a local rather than the global maximum of the likelihood, using

appropriate initial values for the search is crucial. To increase the chance of finding the

global maximum, we advise to run the search from a range of different, possibly randomly

selected initial values and then select the model corresponding to the highest likelihood.

4.3.2 Model selection and model checking

Model selection in HMM-type models primarily involves the specification of the state-

dependent distributions, selecting the number of states, and variable selection (in case of

covariates being included in the model), but could also extend to investigations of pos-

sible assumption violations, particularly with regard to the dependence structure. The

state-dependent distributions are typically determined by the data type of the variables

considered: for positive continuous-valued variables (e.g. step lengths performed by an

animal or trade volumes of a stock), for instance, gamma distributions provide a natural

choice, whereas for circular variables (e.g. turning angles performed by an animal or wind

directions), von Mises or wrapped Cauchy distributions are commonly used (LANGROCK

et al., 2012b). More flexible, non-parametric state-dependent distributions could be con-

structed based on linear-combinations of B-spline basis functions (EILERS AND MARX,

1996; LANGROCK et al., 2015; LANGROCK et al., 2018; cf. also SECTION 2.3.3), though

parametric state-dependent distributions are generally to be preferred if they fit the data

sufficiently well.

Information criteria, such as AIC or the BIC, provide a natural approach to order se-

lection in hierarchical HMMs when fitted via maximum likelihood estimation. However,

it has been demonstrated that these criteria often tend to favor overly complex HMMs,

with more states than seem plausible, when fitted to noisy data with complex features (cf.
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LI AND BOLKER, 2017; POHLE et al., 2017). As these practical problems are inevitably

exacerbated by the more complex structure of hierarchical HMMs, we advise against over-

reliance on such criteria. Instead, we recommend a more pragmatic approach to finding

a suitable model, where expert knowledge, a thorough exploratory data analysis, and a

close inspection of how well different candidate models, with differing numbers of states,

capture the key patterns of interest and relevance, together guide (and justify) the model

selection process.

Model checking in HMM-type models is typically done based on pseudo-residuals,

which use the probability integral transformation to assess whether any given observation

is well explained by the fitted model. For the coarse-scale observations, the evaluation of

the pseudo-residuals proceeds as in basic HMMs (cf. ZUCCHINI et al., 2016). For the fine-

scale observations, it is convenient to first decode the coarse-scale Markov chain using the

Viterbi algorithm (VITERBI, 1967; cf. also SECTION 4.3.3 for details) and then to compute

the pseudo-residuals separately for each chunk of fine-scale observations conditional on

the fine-scale HMM that is active according to the decoded coarse-scale states. However,

we would like to raise awareness of the fact that it will not usually be feasible to make a

simple, binary decision on whether or not a model is suitable: for data as complex as those

that will typically be modeled using hierarchical HMMs, any simple model will likely be

deemed inadequate, and unlike in basic HMMs, model checking in hierarchical HMMs

applies to different layers, which further complicates a decision on the model’s suitability.

Alternative strategies for model checking include comparisons of the empirical distribution

of the observed variables and the corresponding marginal distribution as implied under the

fitted model, or simulating observations from the fitted model to check whether it can

reproduce the key patterns found in the data (cf. LANGROCK et al., 2013a).

4.3.3 A note on state decoding

In many applications, it is of particular interest to decode the hidden states, i.e. to compute

the most likely sequence of states that may have given rise to the observations under the

fitted model. The simplest and most convenient approach to state decoding in hierarchi-

cal HMMs is to first decode the coarse-scale states, s1, . . . ,sT (taking into account both the

coarse-scale and the fine-scale observations), and then, for any time t of the coarse-scale

state process, to decode the fine-scale states, s′t,1, . . . ,s
′
t,T ′ , conditional on the most likely

coarse-scale state to be active at time t (taking into account only the fine-scale observa-

tions). The decoding can be done either locally, considering each time point in isolation,
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or globally, considering the time series as a whole. In practice, global decoding, which can

conveniently be carried out using the Viterbi algorithm (VITERBI, 1967), is usually the de-

fault choice and therefore used throughout this chapter. Details on both local and global

decoding transfer directly from conventional HMMs to hierarchical HMMs (cf. ZUCCHINI

et al., 2016, for details).

4.4 Real-data applications

In this section, we illustrate the suggested approach in two real-data applications, where

we jointly model the distribution of i) daily horizontal movements and ten-minute vertical

displacements of an Atlantic cod (cf. SECTION 4.4.1) as well as ii) monthly trade volumes

and daily log-returns of the Goldman Sachs stock (cf. SECTION 4.4.2), respectively.

4.4.1 Application to Atlantic cod movement

Atlantic cod is a commercially valuable demersal fish species found throughout the shelf

seas surrounding the British Isles (RIGHTON et al., 2001; NEAT et al., 2014). To facili-

tate informed conservation actions, information about when, where, and how individuals

move and undertake key life-history events are essential (HUSSEY et al., 2015; HAYS

et al., 2019). In this real-data application, we are particularly interested in understand-

ing diel and circatidal patterns in the cod’s fine-scale vertical movements and how these

are driven by its coarse-scale horizontal movements. As demersal fish rarely swim in

surface waters (which is a pre-requisite for satellite tags; RUTZ AND HAYS, 2009), tag-

ging was achieved using an archival data storage tag. Data storage tags are typically pre-

programmed to record the depth at regular time intervals for the duration of deployment

(here every ten minutes). From these depth records, we calculated log-vertical displace-

ments, LogVerticalDisplacementt,t ′ , t = 1, . . . ,291, t ′ = 1, . . . ,144, and estimated daily

geo-positions using a single-state version of the tidal geo-location model proposed in PED-

ERSEN et al. (2008)3, which were then processed to give daily step lengths, StepLengtht ,

and turning angles, TurningAnglet , t = 1, . . . ,291. The data, which are available on the

CEFAS Data Hub (RIGHTON et al., 2019), cover 291 days (about ten months) between

3The method was adapted to ensure that the underlying diffusion model operates under
a fixed diffusivity parameter (30 km per day2) and does not switch between two based on
the presence or absence of a tidal signal.
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March 25, 2005, and January 9, 2006. As some (more precisely, one or two per day)

of each day’s 144 depth observations were used to produce the cod’s daily geo-positions,

some minor conditional dependence between the two movement rates is expected, which

for simplicity is neglected in the model formulation. Thus, we ended up with two separate

time series, which were sampled at different temporal resolutions: vertical displacements

at ten-minute intervals and horizontal movements at daily intervals, i.e. for each of the

T = 291 daily horizontal step lengths and turning angles, we have T ′ = 144 ten-minute

vertical displacements. Previous work has overcome this difference in sampling by either

gaining meaningful inference from a single dimension (cf. HOBSON et al., 2007) or, in the

case of GRIFFITHS et al. (2018), who analyze movement in both dimensions, by simplify-

ing the vertical dimension at the daily scale. In this work, we demonstrate how hierarchical

HMMs can be used to jointly analyze movement in both dimensions while retaining the

vertical dimension at the ten-minute scale.

Based on an exploratory data analysis and a comparison of fitted models with different

numbers of states, we chose N = 3 states for the coarse-scale state process, as a visual

inspection of the data revealed two different types of horizontal movements, one of which

corresponds to again two different vertical movement patterns, which can only be captured

if a third state is considered at the coarse scale. Each of the coarse-scale states was then

associated with an HMM with N′ = 3 fine-scale states (thus resulting in nine fine-scale

states in total), which allows us to draw a relatively nuanced yet not overly complex picture

of the cod’s vertical movements. To model diel variation in the vertical displacements, the

transition probabilities of the Markov chains determining the fine-scale state processes

were estimated as functions of the time of day, TimeOfDayt , with the predictors specified

as given by EQUATION (4.6). The coarse-scale state transition probabilities were assumed

to be constant over time. For the step lengths and vertical displacements, we assumed

gamma state-dependent distributions (with an additional point mass on zero in case of the

vertical displacements to account for the zeros observed), while for the turning angles, von

Mises state-dependent distributions were considered. The computation time required to

fit the model was 6.1 hours, where the likelihood was evaluated in C++ and numerically

maximized using the R function nlm (R CORE TEAM, 2019) on a 3.6 GHz Intel® Core™

i7 CPU.

The estimated state-dependent distributions of coarse-scale step lengths and turning

angles are displayed in FIGURE 4.4. Coarse-scale states 1 and 2 capture short, slightly

less directed horizontal movements, where we interpret coarse-scale state 1 as a resident

or foraging behavior and coarse-scale state 2 as a more mobile foraging behavior. Al-

though these two states are very similar in terms of horizontal movements, they differ
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FIGURE 4.4: Estimated state-dependent distributions of daily step lengths (left panel) and
turning angles (right panel) of an Atlantic cod. Coarse-scale states 1 and 2 can be inter-
preted as resting or foraging and more mobile foraging behavior, respectively, which are
very similar in terms of horizontal movements but differ substantially in the corresponding
vertical movement patterns, while coarse-scale state 3 can be linked to a more traveling-
or migratory-like behavior.

substantially in the corresponding vertical movement patterns (cf. the considerations be-

low). Coarse-scale state 3 relates to relatively longer, slightly more directed horizontal

movements, which can be linked to a traveling or migrating behavior.

The t.p.m. of the coarse-scale state process was estimated as

Γ̂AC =


0.945 0.000 0.055

0.064 0.777 0.160

0.098 0.075 0.827

 ,

which implies the stationary distribution (0.618,0.096,0.286), indicating that about 61.8

% (180 days), 9.6 % (28 days), and 28.6 % (83 days) of the observations were generated

in coarse-scale state 1, 2, and 3, respectively.

The estimated state-dependent distributions of fine-scale vertical displacements and

the associated stationary distributions of the corresponding fine-scale state processes as

functions of the time of day, along with 95 % confidence intervals (CIs)4, are displayed in

FIGURE 4.5. When the cod was in coarse-scale state 1 (resting or foraging), then the ver-

tical displacements were generated by the three state-dependent distributions displayed in

the top-left panel. The level of vertical activity was fairly low (according to the stationary

4The uncertainty was quantified based on the inverse of the Hessian matrix of the like-
lihood at its maximum; cf. ZUCCHINI et al. (2016) for details.
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FIGURE 4.5: Estimated state-dependent distributions of ten-minute vertical displacements
of an Atlantic cod (left panel) and stationary distributions of the corresponding fine-scale
state processes as functions of the time of day (right panel). Dashed lines indicate 95 %
CIs associated with the stationary distributions. Fine-scale states 1, 2, and 3 represent
relatively low, moderate, and high levels of vertical movement, respectively, where the
corresponding levels differ substantially across the different coarse-scale states (the means
of the state-dependent distributions for fine-scale state 3, for instance, vary from 0.355 in
coarse-scale state 2 over 0.689 in coarse-scale state 1 to 1.983 in coarse-scale state 3).

distribution, the cod was in fine-scale state 3, which corresponds to a relatively high level

of vertical activity, less than 20 % of the time) and slightly increased during the day (where
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FIGURE 4.6: Decoded time series of daily geo-positions (left panel) and ten-minute ver-
tical displacements (right panel). The decoded time series of vertical displacements dis-
played in the right panel correspond to three example sequences of length 48 hours, one
for coarse-scale state 1 (resting or foraging), 2 (more mobile foraging), and 3 (travel-
ing or migrating), respectively. Circles indicate the days that correspond to the example
sequences displayed in the right panel.

it spent up to 75 % of the time in fine-scale state 2, which corresponds to a moderate level

of vertical activity, and less than 25 % of the time in fine-scale state 1, which corresponds

to a relatively low level of vertical activity). When the cod was in coarse-scale state 2

(more mobile foraging), then the vertical displacements were generated by the three state-
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dependent distributions displayed in the middle-left panel, which correspond to a very low

level of vertical activity (all three state-dependent distributions have considerably smaller

means than those corresponding to coarse-scale states 1 and 3), where state occupancy (as

indicated by the associated stationary distributions displayed in the middle-right panel) is

not much affected by the time of day. When the cod was in coarse-scale state 3 (traveling

or migrating), then the vertical displacements were generated by the three state-dependent

distributions displayed in the bottom-left panel. Here, the opposite could be observed: the

level of vertical activity was much higher relative to coarse-scale states 1 and 2 (fine-scale

state 3, whose state-dependent distribution has mean 1.983 and therefore captures much

higher vertical activity than those corresponding to fine-scale state 3 within the HMMs cor-

responding to coarse-scale states 1 (0.689) and 2 (0.355), was — depending on the time of

day — active between 15 % and 45 % of the time) and slightly decreased during the day

(but note that due to the fairly high uncertainty associated with the stationary distributions

these results should be treated with some caution). For details on the estimated coefficients

that determine the corresponding predictors, which were used to compute the stationary

distributions as functions of the time of day displayed in the right panel of FIGURE 4.6,

we refer to APPENDIX B.

The decoded horizontal movement track as well as three example sequences of fine-

scale vertical displacements for the different coarse-scale states are displayed in FIGURE

4.6, where the decoding was performed using the Viterbi algorithm (VITERBI, 1967) as

described in SECTION 4.2.3. The cod spent most of its time (178 days) in coarse-scale

state 1, where reduced rates of horizontal movement indicate prolonged periods of resting

or localized foraging. This was then interspersed by two traveling or migrating periods

associated with coarse-scale state 3 (81 days) as the cod traversed the English Channel,

and some periods of time spent in coarse-scale state 2 (32 days).

Throughout the time spent in coarse-scale state 1 (resting or foraging), the associated

fine-scale state process exhibited clear diurnal patterns (similar trends can be found in

LØKKEBORG, 1998). During the day, the level of vertical movement increased, as the

cod was more likely to switch from fine-scale state 1 to fine-scale state 2. This may be

interpreted as more localized foraging, as cod frequently move off the seafloor to pur-

sue benthic-dwelling prey via visual predation (ADLERSTEIN AND WELLEMAN, 2000;

HOBSON et al., 2009). The increased probability of switching back to fine-scale state 1

during the night points towards a much more resting-like behavior as the cod returns to

the seafloor (as e.g. observed in HOBSON et al., 2007). Coarse-scale state 2 (more mo-

bile foraging), in comparison, involves a much lower level of vertical movement, which

is not much affected by the time of day. This could indicate an intermediate behavioral
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mode, where the cod was foraging and remained close to the seabed while being slightly

more mobile in the horizontal dimension relative to coarse-scale state 1 (i.e. it was not in

a resident mode). Throughout the time spent in coarse-scale state 3, the cod was clearly

migrating, exhibiting increased rates of horizontal movement, slightly more uniform di-

rectionality, and elevated rates of vertical movement as it transits the English Channel.

Greater vertical displacements during migration periods could indicate the use of circati-

dal selective tidal stream transport, as the cod moves up off the seabed into the water col-

umn during favorable tides and uses the tide’s velocity to efficiently cruise in the desired

direction. Selective tidal stream transport is more commonly seen in flatfish such as Euro-

pean plaice (HUNTER et al., 2004), however, cod have also been shown to use this highly

efficient means of transport during migration periods in the North Sea (cf. RIGHTON et al.,

2007).

Two findings are noteworthy: first, the diel variation in the fine-scale state process

associated with coarse-scale state 3 (traveling or migrating), which illustrates that vertical

activity is relatively higher during the night (as illustrated in the bottom-right panel of

FIGURE 4.6), and second, that coarse-scale state 2 (more mobile foraging) mostly occurs

during post-spawning migration, as the cod transits from spawning grounds in the southern

North Sea to feeding grounds in the eastern English Channel. The fine-scale patterns of

vertical movement identified during coarse-scale state 1 (resting or foraging) are indicative

of cods’ ability to vary their feeding and foraging patterns in relation to prey availability,

whether prey are available by day, by night, or only during crepuscular periods. The

variable patterns of vertical movement across coarse-scale states 2 and 3 suggest that cod

are capable of migrating quickly to reach spawning grounds after a summer spent foraging

on rich feeding grounds or moving more slowly and taking advantage of food resources to

recover energy after the spawning period. Such adaptive migratory behavior could likely

be overlooked by studies that limit their inquiries to movement in only one dimension (cf.

HOBSON et al., 2007) or when considering movement only at a daily scale (cf. GRIFFITHS

et al., 2018), which highlights the potential of the suggested approach in particular for

ecological applications.

Qq-plots and sample ACFs of normal ordinary pseudo-residuals for coarse-scale step

lengths and turning angles, as well as three example sequences of fine-scale vertical dis-

placements, each computed as described in SECTION 4.3.2, are displayed in FIGURE 4.7.

The plots indicate some minor lack of fit regarding the marginal distributions of the dif-

ferent variables, and some residual correlation in the step lengths’ series. Overall, the

magnitude of the lack of fit found here is anything but unusual for movement modeling

exercises, which is due to the fairly complex patterns typically found in such data. Thus,
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FIGURE 4.7: Qq-plots (top panels) and sample ACFs (bottom panels) of normal ordinary
pseudo-residuals for daily step lengths and turning angles as well as three example se-
quences of length 48 hours for ten-minute vertical displacements, one for coarse-scale
state 1 (resting or foraging), 2 (more mobile foraging), and 3 (traveling or migrating),
respectively.

we consider the goodness of fit of our model to be satisfactory. In principle, more flexible

state-dependent distributions such as mixture distributions or non-parametric distributions

based on linear combinations of B-spline basis functions can be used to improve the fit

(EILERS AND MARX, 1996; LANGROCK et al., 2015; LANGROCK et al., 2018; cf. also

SECTION 2.3.2), which, however, we refrain from investigating further as our aim here is
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to present an illustrative case study, thus trading some relatively minor lack of fit against a

more complex model formulation, which would complicate the interpretation of the fitted

model.

4.4.2 Application to stock market data

In a second case study, we demonstrate how hierarchical HMMs can be applied to stock

market data, where we aim at investigating stock market dynamics at different time scales.

Specifically, we jointly model 16 years of monthly trade volumes (in USD), Volumet ,

t = 1, . . . ,192, and daily log-returns, LogReturnt,t ′ , t = 1, . . . ,192, t ′ = 1, . . . ,T ′, where T ′

varies between 19 and 23 (depending on the number of working days for the given month),

of the Goldman Sachs stock. The data, which were downloaded from Yahoo Finance5,

cover 4,026 working days (i.e. 192 months) between January 1, 2004, and December 31,

2019. Thus, for each of the T = 192 monthly trade volumes, we have — on average —

T ′ = 21 daily log-returns. While such data could potentially be modeled within an HMM

framework either by down-sampling the log-returns to the monthly scale (thus focusing on

the long-term dynamics), which can lead to a substantial loss of information that is actually

contained in the raw data, or by fitting separate models for the two variables, which does

not account for state processes operating at the coarse-scale (such as the economic regime),

which also affect the fine-scale observations, we here demonstrate how hierarchical HMMs

can be used to jointly model the two variables while retaining their respective time scales.

Based on an exploratory analysis of the data and a comparison of fitted models with

different numbers of states, we chose N = 3 states for the coarse-scale state process, each

of which was then connected to an HMM with N′ = 2 states for the fine-scale observations

(thus resulting in a total of six fine-scale states). For the trade volumes, which can take on

positive continuous values, we assumed gamma state-dependent distributions, while for

the log-returns, state-dependent scaled t-distributions (as preferred over normal distribu-

tions by AIC) with means fixed at zero were considered. These choices were validated

using pseudo-residual analyses (cf. FIGURE 4.9 and the discussion below). The computa-

tion time required to fit the model was 2.8 minutes.

The estimated state-dependent distributions of monthly trade volumes, as displayed

in the top-left panel of FIGURE 4.8, reveal three different market regimes. Coarse-scale

5https://finance.yahoo.com/quote/GS/history?p=GS. The data were downloaded on
January 31, 2020.
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FIGURE 4.8: Estimated state-dependent distributions and decoded time series of monthly
trade volumes (top panel) as well as daily log-returns and closing prices (middle and bot-
tom panel) of the Goldman Sachs stock. Dashed lines on August 9, 2007, and September
15, 2008, indicate important events associated with the global financial crisis, namely a
sudden increase in interest rates for inter-bank credits and the collapse of Lehman Broth-
ers, respectively.

states 1 and 2 (which are colored in yellow and orange, respectively) capture low and

moderately high trade volumes, respectively, thus indicating inactive and moderately ac-

tive market phases. Coarse-scale state 3 (which is colored in red), in contrast, relates to

high trade volumes (which can thus be interpreted as an active market regime). Notably,

some switches between the different coarse-scale states can be linked to important events

associated with the global financial crisis. In 2007, for instance, when a sudden increase

in interest rates for inter-bank credits marked the beginning of the global financial crisis

(cf. GUILLÉN, 2009), the decoded time series of monthly trade volumes displayed in the

top-right panel of FIGURE 4.8 reveals a switch from coarse-scale state 1 (inactive market)

to 2 (moderately active market; cf. the first dashed line). Furthermore, in September 2008,
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when the Lehman Brothers collapse marked the peak of the global financial crisis (cf.

SWEDBERG, 2010), we observe another switch from coarse-scale state 2 (moderately ac-

tive market) to 3 (active market; cf. the second dashed line), indicating that trading activity

on stock markets substantially increases during financial crises.

The t.p.m. associated with the coarse-scale state process was estimated as

Γ̂GS =


0.984 0.016 0.000

0.043 0.900 0.057

0.000 0.282 0.718

 ,

which implies the stationary distribution (0.687,0.261,0.053), indicating that about 68.7

% (132 months), 26.1 % (50 months), and 5.3 % (10 months) of the observations were

generated in coarse-scale states 1, 2, and 3, respectively.

The estimated state-dependent distributions of daily log-returns are displayed in the

middle panel of FIGURE 4.8. Depending on the coarse-scale state that is active in month

t, the log-returns’ volatility is determined by the fine-scale HMM associated with the two

state-dependent distributions displayed either in the left, the middle, or the right panel,

respectively. According to the fitted model, when coarse-scale state 1 (inactive market) is

active (which is the case in about 68.7 % of the time), then the marginal distribution of

the log-returns under the fitted model has standard deviation 0.013. When coarse-scale

state 3 (active market) is active (which is the case in about 5.3 % of the time), then the

log-returns’ volatility is about five times higher: the corresponding marginal distribution

has standard deviation 0.065.

The t.p.m.s associated with the fine-scale state processes that determine the switches

between the state-dependent distributions of the fine-scale HMMs were estimated as

Γ̂
′(1)
GS =

(
0.993 0.007

0.034 0.966

)
, Γ̂
′(2)
GS =

(
0.993 0.007

0.024 0.976

)
, Γ̂
′(3)
GS =

(
0.915 0.085

0.029 0.971

)
,

which imply the stationary distributions (0.823,0.177), (0.779,0.221), and (0.255,0.745),

respectively.

These results indicate that coarse-scale market dynamics, as characterized by different

levels of trade volumes, strongly affect the stochastic properties of other processes operat-

ing at finer scales. By explicitly modeling such multi-scale processes, hierarchical HMMs

can help us to draw a more comprehensive picture of the stock market’s dynamics, to more

accurately quantify risks conditional on the coarse-scale market regime, and ultimately to

improve our understanding of the market agents’ behavior. As the volatility of a stock
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FIGURE 4.9: Qq-plots (left panel) and sample ACFs (right panel) of normal ordinary
pseudo-residuals for monthly trade volumes (top panel) and daily log-returns (bottom
panel). Overall, the plots indicate some lack of fit with regard to the marginal distribution
of the trade volumes and the serial correlation in the trade volumes’ series.

is often subject to state-switching over time (RYDÉN et al., 1998; BULLA AND BULLA,

2006), potentially driven by complex short- and long-term patterns, hierarchical HMMs

provide a useful tool especially for short-term forecasting, and is clearly superior e.g. to

fitting a single scaled t-distribution to a time series of log-returns, i.e. neglecting any state-

switching dynamics, or fitting a conventional HMM, i.e. without taking the coarse-scale

economic regime into account.

Qq-plots and sample ACFs of ordinary normal pseudo-residuals for monthly trade vol-

umes and daily log-returns, each computed as described in SECTION 4.3.2, are displayed

in FIGURE 4.9. While indicating some lack of fit regarding the marginal distribution of

the trade volumes and some residual correlation in the trade volumes’ series, the lack of fit

found here is anything but unusual when modeling economic time series. While, in princi-

ple, more flexible state-dependent distributions, especially for the trade volumes, could be

used to improve the fit, or autoregressive terms in the coarse-scale state-dependent process
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to reduce the trade volumes’ autocorrelation that is not captured by the model, we consider

the goodness of fit of the fitted model to be satisfactory and again trade some relatively mi-

nor lack of fit against a more complex model formulation to facilitate the interpretation of

the fitted model.

4.5 Discussion

In this chapter, we introduced hierarchical HMMs as a versatile class of statistical models

for multi-scale time series. The suggested approach was illustrated in two real-data appli-

cations, where we jointly modeled the distribution of i) daily horizontal movements and

ten-minute vertical displacements of an Atlantic cod as well as ii) monthly trade volumes

and daily log-returns of the Goldman Sachs stock, respectively. A key aspect in any such

analysis is the temporal resolution at which the observations are made. A coarse resolu-

tion, as often obtained by GPS tags, can be suitable when the focus lies on traveling or

migration patterns, whereas fine-scale data, as often collected by time-depth recorders or

accelerometers, can reveal detailed information up to individual foraging attempts (PAT-

TERSON et al., 2017). While high-resolution data seem, in principle, to be more informa-

tive, we here argue that some of the corresponding short-term decisions made by an animal

have to be seen relative to the current context. For example, as demonstrated in SECTION

4.4.1, complex fine-scale movement patterns, such as the effect of the time of day on ver-

tical movements, could not have been revealed without taking the coarse-scale behavioral

context into consideration. Vice versa, to obtain a more detailed understanding of move-

ment patterns that appear to manifest themselves at coarser scales, it will often be helpful

to be able to additionally “zoom in” at a much finer scale.

Fortunately, new types of remote sensing data, in particular such that result from outfit-

ting animals with multiple telemetry sensors, give us the great opportunity to draw a more

comprehensive picture of an animal’s behavior. However, these new types of data are very

challenging from a statistical perspective (LEOS-BARAJAS et al., 2017b). Due to their in-

tuitive appeal, their versatility in accommodating various dependence structures and essen-

tially any type of time series, and the relative ease with which they can be implemented,

hierarchical HMMs seem well-suited to handle such data and allow for comprehensive

ecological inference from multi-stream and multi-scale data. Unlike previous approaches

based on SSMs (JONSEN et al., 2005; AUGER-MÉTHÉ et al., 2016; AUGER-MÉTHÉ et al.,

2020), in the model formulations considered in this work we do not explicitly account for

measurement error, which can in fact be large in particular for the geo-positional data used
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in SECTION 4.4.1, which is itself the output of a geo-location model. Depending on the

magnitude of the error, failing to propagate this uncertainty through to the model can af-

fect state predictions, and hence ultimately also biological inferences. Despite this caveat,

we see strong potential for hierarchical HMMs to become increasingly important in the

future, especially due to the ongoing progress in bio-logging technology.

Furthermore, we demonstrated the potential of hierarchical HMMs for economic appli-

cations, where coarse-scale market dynamics can strongly affect the stochastic properties

of other processes operating at finer scales. While hierarchical HMMs as proposed in this

work are limited to modeling state processes with discrete state-spaces, they could poten-

tially be extended in that a coarse-scale state process, modeled by a discrete-time, N-state

Markov chain, selects among N possible SSMs with continuous state space for the fine-

scale observations. This possible extension could be particularly useful in economic ap-

plications, where the coarse-scale states can often be linked to discrete economic regimes

(such as recessions or periods of economic growth), whereas the fine-scale states (such

as the level of the market agents’ nervousness) sometimes gradually change over time,

which can be naturally accounted for using SSMs (cf. FRIDMAN AND HARRIS, 1998;

LANGROCK et al., 2012c). In such scenarios, the synergy of an HMM operating at the

coarse scale and multiple SSMs operating at the fine scale thus offers great opportunities

for statistical inference.

On a final note, we would like to point out that, in analogy to speech recognition, the

model formulation could be extended to more than two temporal resolutions: there could,

for instance, be three connected state processes, which could be thought of as correspond-

ing to the presence or absence of migratory behavior or the economic regime (coarsest

scale), resting, foraging, and traveling behavior or monthly trade volumes (medium scale),

and movements of individual body parts or daily or even intra-daily stock returns (finest

scale). Being able to fit such complete models of animal movement or stock market dy-

namics seems to be intriguing. However, they would certainly not be as straightforward to

implement and to handle, and the interpretation of such models would be more involved:

while in basic HMMs, it is often straightforward to link the model’s states to biologically

or economically meaningful states, this is more difficult within hierarchical HMMs, where

interpretations ought to be made at different time scales. In such extensions, but also for

the models presented in this work, an important question is that of the optimal statisti-

cal design. Specifically, it would be of great interest to provide general recommendations

as to which temporal resolution is needed at either time scale in order to answer the re-

search questions at hand, which, however, is beyond the scope of this work and provides a

promising avenue for future research.
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“The numbers have no way to speak for themselves. We speak

for them. We imbue them with meaning.”

— N. Silver

5.1 Summary and outlook

In this thesis, we discussed three particular problems related to HMMs and proposed cor-

responding extensions of the basic model, namely i) Markov-switching GAMLSS (cf.

CHAPTER 2), ii) non-parametric HMMs for discrete-valued time series (cf. CHAPTER 3),

and iii) hierarchical HMMs for multi-scale time series (cf. CHAPTER 4). In simulation

experiments and real-data examples, primarily focusing on applications from economics

and ecology, we demonstrated how the methods developed can be used in particular i)

to model different state-dependent parameters of the response distribution as potentially

smooth functions of a given set of covariates, ii) to estimate the state-dependent distribu-

tions of an HMM for discrete-valued time series in a completely data-driven way without

the need to specify a parametric family of distributions, and iii) to jointly model multiple

variables that were observed at different temporal resolutions. In this last chapter, we con-

clude with a brief outlook on potential avenues for future research related to the different

methods and provide some final remarks.

From a methodological perspective, it would be conceptually straightforward to com-

bine the proposed extensions with each other: hierarchical state architectures as discussed

in CHAPTER 4, for instance, could be incorporated into Markov-switching GAMLSS (cf.

CHAPTER 2). In such a model, an N-state Markov chain operating on the coarse scale
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could be thought of as selecting one of N possible Markov-switching GAMLSS that gen-

erates the observations at the fine-scale. While the energy prices modeled in SECTION 2.5

were collected on a daily scale, such an extension could, for instance, be used to incor-

porate intra-day prices, or, similar to the stock market application presented in SECTION

4.4.2, to incorporate monthly economic indicators, which could help us to draw a more

comprehensive picture of the energy market’s dynamics. Furthermore, the penalization

approach that was proposed for non-parametric HMMs for discrete-valued time series in

CHAPTER 3 could, for instance, be used to estimate the state-dependent distributions of hi-

erarchical HMMs in a completely data-driven way without needing to specify a parametric

family of distributions1.

Another possible direction for future research could be to incorporate some of the tools

developed in this work into other HMM-type models: the design of the EM algorithm pre-

sented in SECTION 2.3.1, for instance, could be adapted to exploit the gradient boosting

framework for parameter estimation and variable selection not only in the state-dependent

process (as it was done in this work for the case of Markov-switching GAMLSS), but also

in the state process, where, for each row of the t.p.m., one multinomial logistic regression

model could be used to model the state transitions obtained in the E-step as potentially

smooth functions of a given set of covariates. This could be particularly useful in compu-

tational biology, where the set of potential covariates is typically large relative to the num-

ber of informative ones (e.g. when modeling gene expressions; cf. GUPTA et al., 2007).

Furthermore, the penalization approach proposed for non-parametric HMMs for discrete-

valued time series in CHAPTER 3 could also be incorporated into HMMs with arbitrary

state dwell-time distributions (which are also referred to as hidden semi-Markov models;

cf. LANGROCK AND ZUCCHINI, 2011), where the state dwell-time distributions could be

modeled in a completely data-driven way without the need to specify a parametric family

of distributions. As an implicit assumption of basic HMMs is that the state dwell-times

follow a geometric distribution with mode one, such an extension could also prove useful

as an exploratory tool that can be used to investigate possible assumption violations. Fi-

nally, the likelihood-based inferential framework of hierarchical HMMs, as presented in

CHAPTER 4, could also be extended towards combinations of an N-state HMM operating

on the coarse scale whose Markov chain selects one of N possible models for the obser-

vations at the fine scale. These could, for instance, be SSMs (as discussed in SECTION

1While being conceptually straightforward, it requires further research to assess the
extent to which such extensions would be feasible in practice, particularly as fitting these
complex models may become difficult from a numerical perspective, cf. the discussion in
SECTION 5.2.
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4.5), but also other classes of statistical models for time series where the parameters can

be estimated in a likelihood-based framework.

Taking the above ideas one step further, it would be conceptually appealing to unify

the flexible extensions proposed in this work with the various other tools that are avail-

able in a modular “Lego toolbox” that can be used to build custom HMMs2. The building

blocks of such a modeling framework could be thought of as “Lego bricks”, encompassing

i) various state architectures (e.g. simple Markov chains, semi-Markov chains, and hier-

archical state processes), ii) various types of state-dependent distributions (e.g. discrete,

continuous, parametric and non-parametric distributions as well as distributions whose pa-

rameters can be modeled as linear or smooth functions of a given set of covariates), and

iii) different estimation techniques (e.g. numerical likelihood maximization, the EM algo-

rithm, and gradient boosting). Depending on the data at hand, these “Lego bricks” could

be recombined in various ways and thereby help to adequately address specific modeling

challenges. While the MS-gamboostLSS algorithm proposed in SECTION 2.3.1, which

can be used for variable selection and parameter estimation not only in Markov-switching

GAMLSS but also in a variety of other HMM-type models (cf. the discussion in SECTION

2.6), provides a first step towards such a “Lego toolbox” for HMMs, an implementation

that encompasses a larger set of “Lego bricks” is not yet available and therefore provides

a promising avenue for future research.

5.2 Discussion and final remarks

In conclusion, we would like to summarize the considerations made above by noting that

the statistical tools developed in this thesis are not to be regarded as closed, self-contained

modeling frameworks that are limited to the different applications presented in this work.

Instead, they — or, more precisely, the ideas contained therein — should be regarded as an

extension to the previously available HMM toolbox that can also be combined with other

HMM-type models, which will hopefully inspire the statistical community to develop new

flexible extensions of the basic HMM that will help us to address research questions from a

new statistical perspective, to separate the signal from the noise, and, ultimately, to extract

information from data.

2Similar such “Lego toolboxes” were e.g. proposed for flexible Bayesian regression
modeling (cf. UMLAUF et al., 2019) and structured additive distributional regression mod-
els (cf. KNEIB et al., 2019).
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On a final note, we would like to raise awareness of the fact that the flexibility that

comes along with the methods proposed in this work can — beside the opportunities men-

tioned above — also be a curse: especially in HMM-type models, there is often a trade-off

between model complexity and numerical stability, with challenges such as local maxima

of the likelihood likely being exacerbated as the number of parameters and the complexity

of the model formulation increases. Further investigating the statistical properties of the

methods proposed in this work, including providing general guidelines that can be used to

increase the numerical stability of the estimation, is therefore an important direction for fu-

ture research that we believe should always complement the development of new statistical

techniques.

Looking to the future, the ever-increasing complexity of the data that is likely being

collected over the next decades yields major challenges but at the same time offers great

opportunities for statistical modeling in the 21st century. Challenges, on the one hand,

primarily arise from the fact that conventional statistical methods sometimes have their

difficulties in keeping pace with the available new types of data and, as a consequence,

can fail to fully exploit the information contained therein. Great opportunities, on the

other hand, lie in that novel statistical techniques can help to make sense of these complex

types of data and, thereby, — referring to the words of N. Silver — “to imbue them with

meaning”, which can guide us towards new conclusions that could not have been drawn

using previously available statistical methods. In that regard, this work provides a small

contribution to the toolbox of statistical modeling techniques.
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A forward algorithm for likelihood evaluation in
hierarchical hidden Markov models

In this appendix to SECTION 4.2.2, we provide some details on likelihood evaluation in

hierarchical HMMs. Specifically, we present a forward algorithm that can be used to

efficiently evaluate the likelihood while simultaneously preventing numerical underflow.

To evaluate the logarithm of the likelihood as given by EQUATION (4.3), we proceed

as follows: first, we evaluate the log-likelihoods of the fine-scale observations, i.e. the log-

likelihood of each of the T chunks of fine-scale observations being generated by each of

the N fine-scale HMMs (as selected by the coarse-scale state process), which is denoted

by L(θ ′(i)|y′t), i = 1, . . . ,N, t = 1, . . . ,T . Therefore, we define the fine-scale log-forward

probabilities under the i-th fine-scale HMM as

φ
′(i,l)
t,t ′ = log

(
f (y′t,1, . . . ,y

′
t,t ′,s

′
t,t ′ = l|st = i)

)
,

l = 1, . . . ,N′. The fine-scale log-forward probabilities can be evaluated recursively via the

forward algorithm, which amounts to applying the recursion

φ
′(i,l)
t,1 = log

(
δ
′(i)
l fY′(y′t,1;θ

′(i,l))
)

= log
(
δ
′(i)
l

)
+ log

(
fY′(y′t,1;θ

′(i,l))
)
;

φ
′(i,l)
t,t ′ = log

(
N′

∑
k=1

exp
(
φ
′(i,k)
t,t ′−1

)
γ
′(i)
k,l fY′

(
y′t,t ′;θ

′(i,l)))

= log

(
N′

∑
k=1

exp
(

φ
′(i,k)
t,t ′−1 + log

(
γ
′(i)
k,l

)
− c′t,t ′−1

))
+ c′t,t ′−1 + log

(
fY′(y′t,t ′;θ

′(i,l))
)
,

(A.1)

t ′ = 2, . . . ,T ′, where c′t,t ′ = max(φ ′(i,1)t,t ′ , . . . ,φ
′(i,N′)
t,t ′ ) is a constant that is used within the



A forward algorithm for likelihood evaluation in hierarchical HMMs 99

log-sum-of-exponentials function to prevent numerical underflow, which can occur when

exponentiating large negative numbers.

Since, by the law of total probability, L(θ ′(i)|y′t) = fY′(y′t,1, . . . ,y
′
t,T ′;θ

′(i)) = ∑
N′
l=1 f (

y′t,1, . . . ,y
′
t,T ′,s

′
t,T ′ = l|st = i), the log-likelihood of the t-th chunk of fine-scale observations

being generated by the i-th fine-scale HMM follows as

l(θ ′(i)|y′t) = log

(
N′

∑
l=1

exp
(
φ
′(i,l)
t,T ′ − c′t,T ′

))
+ c′t,T ′. (A.2)

After having evaluated the log-likelihood for each of the T chunks of fine-scale obser-

vations and N fine-scale HMMs as given by EQUATION (A.2), we proceed with evaluating

the coarse-scale log-forward probabilities,

φ
( j)
t = log

(
f (y1, . . . ,yt ,y′1, . . . ,y

′
t ,st = j)

)
,

j = 1, . . . ,N, which can be obtained in a similar way as given by EQUATIONS (A.1) by

applying the recursion

φ
( j)
1 = log

(
δ jL(θ

( j)|y′1) fY(y1;θ
( j))
)

= log(δ j)+ log
(
L(θ ( j)|y′1)

)
+ log

(
fY(y1;θ

( j))
)
;

φ
( j)
t = log

(
N

∑
i=1

exp(φ (i)
t−1)γi, jL(θ

( j)|y′t) fY
(
yt ;θ

( j)))+ log
(
L(θ ( j)|y′t)

)
= log

(
N

∑
i=1

exp
(
φ
(i)
t−1 + log(γi, j)− ct−1

))
+ ct−1 + log

(
L(θ ( j)|y′t)

)
+ log

(
fY(yt ;θ

( j))
)
,

t = 2, . . . ,T , where ct = max(φ (1)
t , . . . ,φ

(N)
t ).

Since, by the law of total probability, L(θ |y1, . . . ,yT ,y′1, . . . ,y
′
T ) = fY,Y′(y1, . . . ,yT ,

y′1, . . . ,y
′
T ) = ∑

N
j=1 f (y1, . . . ,yT ,y′1, . . . ,y

′
T ,sT = j), the log-likelihood of the hierarchical

HMM follows as

l(θ |y1, . . . ,yT ,y′1, . . . ,y
′
T ) = log

(
N

∑
j=1

exp
(
φ
( j)
T − cT

))
+ cT .
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Estimated coefficients for the fine-scale state
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In this appendix to SECTION 4.4.1, we provide some details on the estimated coefficients

that determine the corresponding predictors for the fine-scale state transition probabilities.

These were used to compute the stationary distributions as functions of the time of day,

which are displayed in the right panel of FIGURE 4.5.

Using the multinomial logit link as detailed for the coarse-scale state transition prob-

abilities in SECTION 4.2.3, the fine-scale state transition probabilities for the model pre-

sented in SECTION 4.4.1 can be written as

γ
′(i)
k,l (TimeOfDayt,t ′) =

exp(η ′(i,k,l)
(
TimeOfDayt,t ′)

)
∑

N′
m=1 exp

(
η ′(i,k,m)(TimeOfDayt,t ′)

) ,
where the predictor can be written as

η
′(i,k,l)(TimeOfDayt,t ′) =


β ′0

(i,k,l)+β ′1
(i,k,l) sin

(
2πTimeOfDayt,t′

24

)
+β ′2

(i,k,l) cos
(

2πTimeOfDayt,t′
24

)
0 otherwise,

(B.1)
if k 6= l;

i = 1, . . . ,N, k, l = 1, . . . ,N′. Note that predictors were estimated only for the off-diagonal

t.p.m. entries; predictors for the diagonal t.p.m. entries were set to zero to ensure identifi-

ability (cf. SECTION 4.2.3 for details).

The coefficients contained in EQUATION (B.1) associated with coarse-scale state 1

(resting or foraging), which determine the fine-scale state transition probabilities that were

used to compute the stationary distributions displayed in the top-right panel of FIGURE
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4.5, were estimated as

η̂
′(1,1,2)(TimeOfDayt,t ′) =−2.569−0.030sin

(
2πTimeOfDayt,t ′

24

)
−0.663cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(1,1,3)(TimeOfDayt,t ′) =−3.397+0.266sin

(
2πTimeOfDayt,t ′

24

)
−0.266cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(1,2,1)(TimeOfDayt,t ′) =−2.767−0.192sin

(
2πTimeOfDayt,t ′

24

)
+0.679cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(1,2,3)(TimeOfDayt,t ′) =−4.369+0.477sin

(
2πTimeOfDayt,t ′

24

)
+0.534cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(1,3,1)(TimeOfDayt,t ′) =−4.850+0.271sin

(
2πTimeOfDayt,t ′

24

)
+2.812cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(1,3,2)(TimeOfDayt,t ′) =−2.567+0.385sin

(
2πTimeOfDayt,t ′

24

)
+0.071cos

(
2πTimeOfDayt,t ′

24

)
.

The coefficients that determine the fine-scale state transition probabilities associated

with coarse-scale state 2 (more mobile foraging), which were used to compute the sta-

tionary distributions displayed in the middle-right panel of FIGURE 4.5, were estimated

as

η̂
′(2,1,2)(TimeOfDayt,t ′) =−2.945+0.274sin

(
2πTimeOfDayt,t ′

24

)
+0.776cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(2,1,3)(TimeOfDayt,t ′) =−2.409+0.069sin

(
2πTimeOfDayt,t ′

24

)
+0.038cos

(
2πTimeOfDayt,t ′

24

)
;
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η̂
′(2,2,1)(TimeOfDayt,t ′) =−2.152−0.096sin

(
2πTimeOfDayt,t ′

24

)
+0.138cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(2,2,3)(TimeOfDayt,t ′) =−3.552−0.182sin

(
2πTimeOfDayt,t ′

24

)
−1.106cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(2,3,1)(TimeOfDayt,t ′) =−3.140+0.816sin

(
2πTimeOfDayt,t ′

24

)
−0.226cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(2,3,2)(TimeOfDayt,t ′) =−2.858−0.702sin

(
2πTimeOfDayt,t ′

24

)
−0.383cos

(
2πTimeOfDayt,t ′

24

)
.

The coefficients that determine the fine-scale state transition probabilities associated

with coarse-scale state 3 (traveling or migrating), which were used to compute the sta-

tionary distributions displayed in the bottom-right panel of FIGURE 4.5, were estimated

as

η̂
′(3,1,2)(TimeOfDayt,t ′) =−2.547+0.621sin

(
2πTimeOfDayt,t ′

24

)
−0.042cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(3,1,3)(TimeOfDayt,t ′) =−4.219−0.157sin

(
2πTimeOfDayt,t ′

24

)
+1.187cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(3,2,1)(TimeOfDayt,t ′) =−2.520+0.222sin

(
2πTimeOfDayt,t ′

24

)
+0.309cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(3,2,3)(TimeOfDayt,t ′) =−2.793−0.071sin

(
2πTimeOfDayt,t ′

24

)
+0.596cos

(
2πTimeOfDayt,t ′

24

)
;
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η̂
′(3,3,1)(TimeOfDayt,t ′) =−12.988+6.847sin

(
2πTimeOfDayt,t ′

24

)
+5.024cos

(
2πTimeOfDayt,t ′

24

)
;

η̂
′(3,3,2)(TimeOfDayt,t ′) =−2.125−0.034sin

(
2πTimeOfDayt,t ′

24

)
−0.045cos

(
2πTimeOfDayt,t ′

24

)
.
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