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Abstract

In this thesis we focus on the relation between random matrix theory and orthogonal
polynomial theory in the complex plane. It is well known that even if the entries of a
random matrix are independent, the eigenvalues will be highly correlated. This corre-
lation, which is a pairwise logarithmic repulsion between the eigenvalues, leads one to
think that the eigenvalues of a random matrix behave like particles in a Coulomb gas,
since the logarithmic repulsion is the Coulomb interaction in two dimensions.

We consider the case when the particles are confined to an ellipse in the plane. At
inverse temperature β = 2, we introduce new families of exactly solvable two-dimensional
Coulomb gases for a fixed and finite number of particles N . We find, in the analysis of
local fluctuations in the weak non-Hermiticity limit – as N → ∞ – of the correlation
functions, old and new universality classes. This is achieved by showing that certain
subfamilies of Jacobi polynomials extend to orthogonality relations over a weighted ellipse
in the plane.
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1. Introduction

Random Matrix Theory (RMT) was originally conceived in mathematical Statistics
by J. Wishart and in Physics by E. Wigner and F. Dyson. In the 1950’s, Wigner in-
troduced ensembles of symmetric real random matrices as well as complex Hermitian
N ×N matrices with statistically independent entries (including Gaussian ensembles) as
a theoretical model of statistical behaviour of energy levels. His idea, roughly speaking,
is to replace the Hamiltonian of the quantum system – such as a heavy nucleus, this
was indeed one of the first applications of RMT – which is an operator similar to an
infinite size matrix and complicated to diagonalize numerically, by a random matrix of
size N × N ( N >> 1), whose entries are taken randomly from a known distribution,
and that has the same symmetries as the original Hamiltonian. The problem is to get
information on the behaviour of its eigenvalues (levels). Many of his works on this theme
are collected in the work of Porter [5]. Dyson, in the early 1960s [6], classified the “very
classic families” (nowadays) of random matrices, i.e. Gaussian Orthogonal Ensemble
(GOE), Gaussian Symplectic Ensemble (GSE) and Gaussian Unitary Ensemble (GUE).
Dyson has shown that these three classic ensembles mimicing the symmetries of the
Hamiltonian of a system, the first two corresponding to the cases when the Hamiltonian
commutes with the time reversal operator (known to be anti-unitary). If there are no
anti-unitary symmetries the Hamiltonian is Hermitian and this corresponds to the GUE.

Since its introduction, RMT is motivated to a large extent by practical experimental
problems. Today, successful applications of real eigenvalue statistics can be found in
many fields, such as Quantum Chromodynamics (QCD), two-dimensional (2D) Quantum
Gravity, 2D String Theory (see [7] and references therein). Not only physics has been
enriched with the applicability of RMT, the Circular Unitary Ensemble (CUE) has been
extensively studied in [8], [7, chap. 1] in connection with Number Theory. We refer to
[9] for a review on RMT where both the theoretical aspects, and the application of the
theory has been discussed.

Despite the fact that operators having real eigenvalues are the main interest in physic,
in 1965 Ginibre has started the study of Gaussian random matrices without symme-
try constraint (whose entries are real, complex or quaternion random variables) as a
mathematical extension of Hermitian random matrix theory. Due the fact that their
eigenvalues may lie anywhere on the complex plane, no physical applications, in particu-
lar in quantum physic, were evident at that time. However, Ginibre has expressed –end
of first paragraph p. 440 [10]–

Apart from the intrinsic interest of the problem, one may hope that the methods and
results will provide further insight in the cases of physical interest or suggest as yet lacking
applications.

For an overview on complex non-Hermitian Ensembles, including the three Ginibre en-
sembles and their elliptic deformations we refer to [11, chap. 18 ]. Nowadays, eigenvalue
statistics in the complex plane, have a wide range of interesting applications, perhaps the
most well known occurs in statistical mechanics and quantum mechanics, for instance,
as a two-dimensional Coulomb gas. Here, the Coulombic nature is manifested by the
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pairwise logarithmic repulsion between the particles in the gas. Futhermore, this two-
dimensional Coulomb gas turns out to be directly related to the Laughlin wave function
in the fractional quantum Hall effect – which will be discussed later.

Additional applications appear in QCD with chemical potential [12] (we refer to the
lecture notes [13] for a comprehensive review). In QCD, one is interested in eigenvalue
statistics of Dirac-type operators, an enthralling situation happens in the addition of a
chemical potential, while allows the number of the corresponding particles to fluctuate,
the global symmetry of the Dirac operator breaks down. It turns out to no longer be
an anti-Hermitian operator and becomes complex non-Hermitian, therefore the need of
complex eigenvalue statistics arises.

Another interesting application occurs in resonances in Chaotic Scattering, for in-
stance, in the presence of open channels [14]. Under suitable assumptions, this turns
out to be modeled by eigenvalues statistics of truncated unitary matrices, while the
eigenvalue of unitary matrices lie on the unit circle, once we consider the top left square
truncation of this unitary matrix, the symmetry once again breaks down and the eigen-
values may lie anywhere inside the unit disk. Further, complex eigenvalue statistics apply
to Quantum Information [15], Financial Mathematics [16] and Wireless Communications
[17], Neural Networks [18], and we refer to [11] for a guideline about current applications
of random matrix theory.

In order to make the motivation of this thesis more precise, let us start with an
example: The Complex Ginibre Ensemble.
It is defined on the space of complex N × N matrices with independent, identically
distributed complex Gaussian entries. In his celebrated paper Statistical Ensembles of
Complex, Quaternion, and Real Matrices Ginibre has found that the Joint Probability
Density Function (jpdf for short) of complex eigenvalues of such ensemble of matrices,
with Q(z) = |z|2 and β = 2, is given by

PQ
β (z1, · · · , zN) =

1

Zβ
N(Q)

exp

(
−β

2

N∑
i=1

Q(zi)

) ∏
1≤i<j≤N

|zj − zi|β. (1.1)

Here,
∏N

j>i(zj − zi) = ∆(z) is the Vandermonde determinant and the constant Zβ
N(Q)

called in physics partition function, it is the normalization constant that makes PQ
β a

probability measure (dA stands for planar Lebesgue measure):

Zβ
N(Q) =

∫
CN

exp

[
−β

(
1

2

∑
i

Q(zi)−
∑
i<j

log |zj − zi|

)]
N∏
i=1

dA(zi). (1.2)

Even though the integral in (1.2) converges for any β ≥ 0, its value is only known
for β = 2. In contrast, in the GUE, where the integral is taken on the real line, this
partition function (1.2) is known for any value of beta, thanks to a result provided by
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Selberg [19, 20] who evaluated a more general version of the integral (1.2) on the real
line.

The Slater determinant is known to be an expression that describes the wave function
of a multi-fermionic system. An example of this is the fractional quantum Hall effect
[21], where a charged particle interacts with an external magnetic field, and in the case
of a system with N non-interacting particles with Fermi statistics in the lowest Landau
level, the Slater determinant is an orthogonal basis of wave functions [22, 15.2.2]

ψl1,...,lN (z1, . . . , zN) = det
i,j

[φlj(zi)], φl(z) =
1√
π
zle−

|z|2
2 . (1.3)

Here, φl(z) – known as the spin-orbital – is an orthogonal complete set of states in
the lowest Landau level and l = 0, 1, . . . can be interpreted as the angular momentum
eigenvalues. The state with lowest total angular momentum corresponds to the choice
li = i − 1, in which case the Slater determinant reduces up to a factor to the weighted
Vandermonde determinant

exp

(
−1

2

N∑
i=1

|zi|2
)

∆(z). (1.4)

A particular interesting case is that related to the ground state of the fractional quan-
tum Hall effect, proposed by Laughlin in [23], where the quantum wave function at odd
fractional filling for the values ν = 1

2s+1
, s = 0, 1, . . . takes the form

ψs(z1, . . . , zN) =
1

πN/2
exp

(
−1

2

N∑
i=1

|zi|2
)

∆(z)2s+1 , (1.5)

and the nomalization of the Laughlin’s wave functions

ZN(2s+ 1) = 〈ψs, ψs〉 =

∫
exp

(
−

N∑
i=1

|zi|2
)(

∆(z)∆(z)
)2s+1

N∏
i=1

dA(zi). (1.6)

which, up to a constant factor, correspond to the choice β = 2(2s+ 1) in (1.2). ZN(1)
may be identified as the normalization of the “densest state” (filling fraction 1). This is
the only treatable case for arbitrary N (up two cases with 2 or 3 particles, for wich the
Selberg-type integral can be computed [21]) due to the orthogonal polynomials technique,
we will come back to this shortly.

The jpdf (1.1) coincides with the Boltzmann factor form e−βEQ for a 2D log-gas system
at special value of the inverse temperature β = 2 and suitable background charges, with
total potential energy

EQ(z) =
∑
i

Q(zi)−
∑
i 6=j

log |zj − zi|. (1.7)

The first term in (1.7), the external field or potential, represents a harmonic attrac-
tion towards the origin, and the second is a pairwise logarithmic repulsion between the
particles in the gas, which is the Coulomb interaction in 2D.



4

For β = 2, in the early 60s M. Gaudin and M. Mehta [24, 25] introduced the use of
orthogonal polynomials (OP) to the study of eigenvalue statistics, showing that the k-
point correlation function defined by Dyson 1962, which describes the probability density
to find – in principle real – k eigenvalues around each of the points z1, . . . , zk while the
positions of the remaining eigenvalues are unobserved:

ρN(z1, . . . , zk) =
N !

(N − k)!

∫
CN−k

PQ
2 (z1, · · · , zN)

N∏
i=k+1

dA(zi), (1.8)

which can be written in a determinantal formula

ρN(z1, . . . , zk) = det
1≤i,j≤k

[KN(zi, zj)] , (1.9)

with its correlation kernel

KN(z, w̄) = exp[−(Q(z) +Q(w))/2]
N−1∑
n=0

Pn(z)Pn(w). (1.10)

Here, Pn(z) are orthonormal polynomials with respect to the complex normal distri-
bution exp[−Q(z)], Q(z) = |z|2, also referred to a weight function. In particular when
k = 1, one gets the level density, also known as spectral density

ρN(z) = KN(z, z̄) = exp[−Q(z)]
N−1∑
n=0

|Pn(z)|2. (1.11)

Note that the one-point correlation function corresponds to the density of eigenvalues
d(z) =

∑
i δ(z − zi) overaged over the ensemble distribution (1.1), ρN(z) = 〈d(z)〉, so if

we set nE = { number of the eigenvalues on the region E}, then the expected number
of eigenvalues in E is given by

〈nE〉 =

∫
E

ρN(z)dA(z). (1.12)

In particular 〈nC〉 = N , which is verified from the orthogonality relations of Pn.
It is well known that for complex Ginibre-type Ensembles at β = 2 – where a more

general potentialQ is allowed – the study of eigenvalues statistics leads to a determinantal
point process (1.9), while for real or quaternion Ginibre ensembles it leads to Pfaffian
processes. In the last case a very useful tool has been introduced in the literature [26,
chap. 15], the so-called skew-orthogonal polynomials. In this thesis we will not deal
with this topic, but rather focus on orthogonal polynomials and their connection with
random matrices (β = 2).

The Coulomb gas approach [22] allows to borrow potential theory techniques and get
for the prediction of the leading asymptotic form of the spectral density
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ρN(z) =


1
π
|z| < N1/2

0 otherwise.
(N >> 1). (1.13)

This means that the so-called global density ρ(z) obeys the following limit formula
known as the circular law [27, 28]

ρb(z) := lim
N→∞

ρN(
√
N z) =

1

π
1D(z) , (1.14)

where 1D is the characteristic function on the unit disk in the complex plane, meaning
that on average most of the eigenvalues are uniformly distributed within the unit disk.
We refer to the two-dimensional eigenvalue support described by (1.14) as the the Droplet
(also called the Bulk of the spectrum) and we refer to its boundary as the Edge of the
spectrum.

The eigenvalue density (1.11) in the transitional region at p +
√
Nz, p ∈ ∂D on the

edge of the spectrum, abruptly crosses over from ρ(z) = 1/π at |z| < 1 to ρ(z) = 0 at
|z| > 1. The crossover is described by the local fluctuations of the density of eigenvalues
(1.11) which, in the N-large limit, is given in terms of the complementary error function
[29]

ρe(z) := lim
N→∞

ρN(p+
√
N z) =

1

2π
erfc(
√

2 Re(z)). (1.15)

When a more general potential NQ(z) is allowed – with suitable condition of “ad-
missibility” for Q – it is known [30, 31], that under a proper scaling limit s(N, z), the
spectral density (1.11) satisfies

ρb(z) := lim
N→∞

1

|s′(N, z)|2
ρN(s(N, z)) = σQ(z)1S(z)dA(z), (1.16)

where S is a two-dimensional compact set on the complex plane (the droplet) and
dµ(z) = σQ(z)1S(z)dA(z) minimizes the energy functional

EQ(µ) =

∫ ∫
1

log |z − w|
dµ(z)dµ(w) +

∫
Q(z)dµ(z). (1.17)

For example, when the potential Q(z) is given by

Q(z) =
1

1− τ 2
|z|2 − τ

1− τ 2
Re(z2), 0 < τ < 1. (1.18)

the droplet S coincides with a standard ellipse of parameters a = 1 + τ and b =
1 − τ , and instead of having the circular law, we have Girko’s elliptic law [32]. Here,
a fascinating phenomena occurs, called universality, as it has been observed that when
we modify the potential, the droplet has changed from a disk to an ellipse, but the
local statistics near to the edge of the ellipse, are again given by the complementary
error function (1.15) (see [33]). It was shown more recently in [34] that for a quite
general potential Q the local fluctuations on the edge of the spectrum are given by the



6

complementary error function in the N -large limit matrix size.
Not only this phenomenon occurs at the boundary of the droplet, also it have been shown
in [35] with a potential of the form (1.18) that local statistics, around any point p ∈ E◦,
and under an appropriate scaling r(p,N, z) limit, the correlation kernel (1.10) satisfies
the following limit

c(N)KN(r(p,N, z), r(p,N,w))→ G(z, w) =
1

π
exp

(
−|z|

2 + |w|2

2
+ zw

)
. (1.19)

The expression in the right hand side of (1.19) is the so-called Ginibre Kernel, it is
the same for the potential |z|2.
In order to understand this universality phenomenon, several extensions have been made
of the Ginibre Ensembles, we have mentioned before, elliptic deformations that also
apply to their chiral companions. Also more general potentials in the plane have been
considered, such as the normal matrix model [36] and it has been found that the complex
eigenvalue statistics (1.15) and (1.19) provided by the Ginibre ensembles appear to be
universal.

The correlation kernel (1.10) tells us that the statistics of complex eigenvalues are
governed by the associated planar orthogonal polynomials (and its asymptotics). For
example, eigenvalues statistics of the complex elliptic Ginibre ensemble [37] are linked to
holomorphic Hermite polynomials, orthogonal on the complex plane. Likewise, the chiral
companion of this ensemble [12] leads to a kernel of holomorphic Laguerre polynomials.
The asymptotic behavior of planar orthogonal polynomials with respect to exponentially
varing measure e−mQ(z)dA(z) have been the main ingredient, in [34], to proof universal-
ity of the complex eigenvalues statistics on the edge of the spectrum for a large class of
potentials.
In analogy with the ensembles GUE, Laguerre Unitary Ensemble (LUE), Jacobi En-
semble having associated Hermite, Laguerre and Jacobi polynomials, respectively, the
statistics of the real eigenvalues gives the well-known Sine, Airy, and Bessel kernels,
that are universal in the bulk, soft-edge, and hard-edge scaling limits. The investigation
of planar OP in a bounded region E of the complex plane would lead to a new type of
universal kernel and it could, perhaps help to understand existing results.

The theory of orthogonal polynomials and related kernel functions on the real line
has been developed by many mathematicians starting with the special OP of Legendre,
Jacobi, Gegenbauer, Chebyshev, Hermite and Laguerre. These polynomials, are con-
sidered nowadays, the very classic orthogonal polynomials. See Szegő for references
[38]. Hermite polynomials were studied extensively by Laplace in connection with prob-
ability theory. The Hermite differential equation may be identified as the stationary
one-dimensional Schrödinger equation for the quantum harmonic oscillator, the Hermite
polynomials being an appropiate basis that span the oscilation modes as ladder oper-
ators, with a Rodriguez-like rule obeying the Hermite recurrence relations. Another
classic example of the application of these orthogonal polynomials in quantum mechanic
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are the associated Legendre polynomials (which can be rewritten via the ordinary Le-
gendre polynomials) being the solution of the Schrödinger equation for a static Coulomb
potential that may be interpreted as the (attractive) potential for the nucleus of an atom,
that exerts on the charge that orbits it, forming an Hydrogen-like atom.

The study of more general orthogonal polynomials in weighted L2-spaces on the line
is associated with the names of Markov, Stieltjes, Szegő, Chebyshev, Bernstein, among
others. The theory of orthogonal polynomials on the unit circle is almost completely
the creation of one person, Gabor Szegő. He, also, studied intensively the case of (holo-
morphic) orthogonal polynomials in L2(Γ, ds), where ds is arc length measure, Γ is a
real-analytically smooth Jordan curve in the complex plane. The pioneers in the study
of the asymtotics behaviour of (holomorphic) orthogonal polynomials in L2(E, dA) on
the simply connected bounded domain E with real-analytic boundary curve Γ, were
Carlemann and Suetin [39]. Suetin extended the result by Carleman to domains whose
boundary has a lower degree of smoothness, and the case when a weight function is
present. Holomorphic orthogonal polynomials in L2(Γ, ds), are called Szegő polyno-
mials. Holomorphic orthogonal polynomials in L2(E, dA), where dA is Lebesgue area
measure on bounded domain E, are called Bergman polynomials.

This thesis concerns itself with the question whether further classical orthogonal poly-
nomials on the real line also form a set of orthogonal polynomials on a two dimensional
domain in the complex plane. The planar OP would extend the class of exactly solvable
2D Coulomb gases and bring further insight to understand universality. The Gram-
Schmidt construction of orthogonal polynomials on any subset of the real line and in
the complex plane is completely analogous. The fact that the orthogonal polynomials
on the real line always satisfy a three-step recurrence relation is special. Conversely,
Favard’s theorem reads that, if a sequence of polynomials satisfy a suitable three-term
recurrence relation, then there is a distribution function such that these polynomials
became orthogonal. Recovering the integration measure by knowing the coefficients of
expansion from the three-terms recurrence relations is known as an inverse problem see
[40, chap. 5] and in many cases it is possible to carry this out on the real line.

In the complex plane we do not have these tools. Lempert [41] (1976a) showed that
we cannot expect any finite term recurrence for orthogonal polynomials on a bounded
domain in the complex plane in general. It was shown much more recently if a sequence
of (holomorphic) orthogonal polynomials in L2(E, dA) satisfy a finite term recurrence
relation on a bounded domain E with regular enough boundary implies that the domain
E is an ellipse and the size of the recursion is three [42, 43, 44], with corresponding
Bergman polynomials: the Chevyshev polynomials of the second Kind [45]. This limits
our search to elliptic domains as our polynomials originating from the real line do have
a three-step recurrence. We note, however, that the aforementioned results mentioned
above only apply to unweighted domains. For the Chebyshev polynomials of first, third
and fourth kind, the weight function on the ellipse is no longer flat [46].
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This thesis is mainly based on two published papers [1, 2] and includes some unpub-
lished results. The content of this thesis is organized as follows: Section 2 is standard
material related to special functions and explicit representation of classical OP on the
real line, it contains an additional Lemma 2.6 on combinations of hypergeometric func-
tions and powers type integral in which we present our own proof. Section 3.1 contains
standard material on planar OP and the part 3.2 is new where we provide an extension
of the multiple Hermite polynomials to a planar orthogonality. Section 4 and 5 contain
our main results on weighted Bergman spaces of an ellipse, in particular in theorem

4.5, we show that the classical Gegenbauer or ultraspherical polynomials C
(1+α)
n (z), for

α > −1, provide a family of planar orthogonal polynomials on the interior of an ellipse
parametrised by Q(z) := A|z|2 − B Re(z2) < 1, with A > B > 0 and weight function
(1−Q(z))α. Additionally, based on a particular quadratic transformation of the ellipse

that fixes the focal points, we find a subfamily of Jacobi polynomials P
α+ 1

2
,± 1

2
n to be

orthogonal on a weighted ellipse in theorems 5.6 and 5.8. These findings establish as a
corollary an alternative proof to the all four Chebyshev polynomials from [46] that we
show in Section 5.3.

Finally in Section 6, at inverse temperature β = 2, we introduce and solve two (new)
2D, static one-component Coulomb gases. In Section 6.1 we describe the local scale
regime to be consider in Section 6.2 and 6.3. In these last two sections we present our
main results regarding to the asymptotic analysis in the weak non-Hermiticity limit of
the correlation kernel induced by the Gegenbauer polynomials, the weak non-Hermiticity
parameter s (to be specified later) allows to interpolate our findings between old and new
universality classes. In Section 6.4 we present the analysis for the non-symmetric case.
We conclude this thesis with the Section 7, containing summary and outlook.
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2. Orthogonal Polynomials

2.1. Special Functions. The gamma and beta functions has several representations,
but the two most important, found by Euler, represent these as integrals of the form

Γ(z) =

∫ ∞
0

xz−1e−xdx, Re(z) > 0. (2.1)

B(z, w) =

∫ 1

0

xz−1(1− x)w−1dx, Re(z) > 0,Re(w) > 0. (2.2)

They are related through

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (2.3)

The functional relation

Γ(z + 1) = zΓ(z), (2.4)

extends the gamma function to a meromorphic function with poles at z = 0,−1, . . .
and also extends B(z, w) to a meromorphic function of z and w. The gamma function
satisfies

Γ(2z) = 22z−1Γ(z)Γ(z + 1/2)/
√
π, Γ(z)Γ(1− z) =

π

sin(πz)
. (2.5)

known as duplication and reflection formulas.
The Pochhammer symbol, also known as shifted factorial, is

(z)n = z(z + 1) · · · (z + n− 1) n > 0, (z)0 = 1. (2.6)

The functional relation (2.4), gives

(z)n =
Γ(z + n)

Γ(z)
, (2.7)

and clearly

Γ(z + n)

Γ(z)
= (z)n ∼ zn, as z →∞. (2.8)

Some useful identities are

(z)m(z +m)n = (z)m+n, (z)n−k =
(z)n(−1)k

(−z − n+ 1)k
. (2.9)

Note that (2.7) extend the Pochhammer symbol to any complex number n, providing
that z + n is not a pole of the gamma function.

The Gauß’ hypergeometric function (Ghf) is

F (α, β, γ, z) =
∞∑
k=0

(α)k(β)k
(γ)k

zk

k!
, (2.10)
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in which α, β and γ are the function parameters and z is the variable of the Ghf. By
the ratio test the Ghf is analytic in the unit disc, provided that γ is neither a negative
integer nor zero.

The following theorem is an important integral representation of the Ghf due to Euler.

Theorem 2.1 (Euler). Let α, β, γ ∈ C, such that Re γ > Re β > 0, then

F (α, β, γ, z) =
1

B(β, γ − β)

∫ 1

0

xβ−1(1− x)γ−β−1(1− zx)−αdx. (2.11)

in the x plane cut along the real axis from 1 to ∞. Here it is understood that arg(x) =
arg(1− x) = 0 and (1− zx)−α has its principal value.

If one of the parameters in the numerator of the Ghf is a negative integer, say −n,
then the series (2.10) becomes a finite sum, 0 ≤ k ≤ n. This follows directly from (2.9)
setting n = k and z = −n we get (−n)k = (−1)k(n− k + 1)k and we obtain

F (−n, β, γ, z) =
n∑
k=0

(−1)k
(
n

k

)
(β)k
(γ)k

zk. (2.12)

Proposition 2.2. The hypergeometric polynomial defined in (2.12) satisfies the following
reflection formula

F (−n, b, c, z) =
(c− b)n

(c)n
F (−n, b, b− c− n+ 1, 1− z). (2.13)

Proof.

F (−n, b, c, z) =
n∑
`=0

(−1)`
(
n

`

)
(b)`
(c)`

z`

=
n∑
`=0

(−1)`
(
n

`

)
(b)`
(c)`

∑̀
k=0

(
`

k

)
(−1)k(1− z)k

=
n∑
k=0

n∑
`=k

(
n

`

)(
`

k

)
(−1)`+k

(b)`
(c)`

(1− z)k

=
n∑
k=0

n−k∑
`=0

(
n

k

)(
n− k
`

)
(−1)`

(b)`+k
(c)`+k

(1− z)k, (2.14)

we note that

(b)`+k
(c)`+k

=
B(b+ k + `, c− b)

B(b, c− b)
. (2.15)
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using the integral representation of the beta function (2.3) allows us to rewrite the
sum over ` as
n−k∑
`=0

(
n− k
`

)
(−1)`

(b)`+k
(c)`+k

=
1

B(b, c− b)

n−k∑
`=0

(
n− k
`

)
(−1)`

∫ 1

0

xb+k+`−1(1− x)c−b−1dx

=
B(b+ k, c− b+ n− k)

B(b, c− b)
. (2.16)

Inserting this last result in (2.14) and using (2.9) to change the −k sign, the expected
result is obtained. �

Corollary 2.3 (Chu-Vandermonde).

F (−n, b, c, 1) =
(c− b)n

(c)n
. (2.17)

The following proposition and corollary can be found in standard books on integration
formulas [47]. We have decided to provide the poof for these integrals for completeness
of this text and also because we have observed a result, lemma 2.6, presented at the end
of this section that will be extremely useful in our calculations.

We will use the following two integrals; the first (2.18) is the so called Mellin-Barnes
transform and the second (2.19) is known as the first Barnes’ lemma [48]. Barnes’
contour integrals appear naturally in the context of loop calculations in quantum field
theory [3, 4, 49].

1

(1 + x)α
=

1

Γ(α)

∫ c+i∞

c−i∞
dz xzΓ(−z)Γ(z + α). (2.18)

The right poles of gamma functions of the type Γ(p−z) at z = p, p+1, . . . must lie to the
right of the path of integration , whereas the left poles of gamma functions Γ(q + z) at
z = −q,−q−1, . . . lie to the left of it. If Reα > 0, the path of integration can be chosen
as a straight line in the strip −Reα < Re z < 0, otherwise we deform the contour with
the above specifications. For x < 1 the Mellin-Barnes integration contour can be closed
to the right, and the series of residues at z = 0, 1, . . . reproduces the Taylor expansion
of the left-hand side of (2.18), for x < 1. When x > 1, the contour may be closed to the
left and the series of residues at z = −α,−α− 1, ... give us the expansion for x > 1.

∫ c+i∞

c−i∞
dz Γ(α + z) Γ(β + z) Γ(γ − z) Γ(δ − z) =

Γ(α + γ) Γ(α + δ) Γ(β + γ) Γ(β + δ)

Γ(α + β + γ + δ)
.

(2.19)

Proposition 2.4. Let α, β, γ, ρ ∈ C such that Re ρ > 0,Re γ > 0,Re(γ+ρ−α−β) > 0,
then ∫ 1

0

dt tγ−1(1− t)ρ−1 F (α, β, γ, t) =
Γ(γ) Γ(ρ) Γ(γ + ρ− α− β)

Γ(γ + ρ− α) Γ(γ + ρ− β)
. (2.20)
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Proof. We use the Euler integral representation (2.11) of the Gauß’ hypergeometric func-
tion followed by a change of variable x → 1 − x and then we use the Mellin-Barnes
transform (2.18) to obtain

∫ 1

0

dt tγ−1(1− t)ρ−1 F (α, β, γ, t)

=
1

Γ(α)B(β, γ − β)

∫ 1

0

dt tγ−1(1− t)ρ−α−1

∫ 1

0

dxxγ−β−1(1− x)β−1

×
∫ c+i∞

c−i∞
dz

(
tx

1− t

)z
Γ(−z)Γ(z + α), (2.21)

noting that

∫ c+i∞

c−i∞
dz

(
tx

1− t

)z
Γ(−z)Γ(z + α) = i

∫ ∞
−∞

dy

(
tx

1− t

)c+iy
Γ(−c− iy)Γ(c+ iy + α).

(2.22)
Due to the asymptotic behavior of the gamma function,

|Γ(σ + iτ)| ∼|τ |→∞
√
πe−|τ |π/2|τ |σ−1/2, σ, τ ∈ R . (2.23)

it follows that the integral in the right hand side of (2.21) is absolutely convergent, so
we have∫ 1

0

dt tγ−1(1− t)ρ−1 F (α, β, γ, t)

=
1

Γ(α)B(β, γ − β)

∫ c+i∞

c−i∞
dz Γ(−z)Γ(z + α)B(z + γ, ρ− α− z)B(β, γ − β + z)

=
Γ(β)

Γ(α)B(β, γ − β)Γ(γ + ρ− α)

∫ c+i∞

c−i∞
dz Γ(α + z)Γ(γ − β + z)Γ(−z)Γ(ρ− α− z) .

(2.24)

and the proposition follow by the first Barnes’ lemma. �

Corollary 2.5. Let n be a non negative integer, β, γ, ρ ∈ C such that Re ρ > 0 and
Re(β − γ) > n− 1, then

∫ 1

0

tρ−1(1− t)β−γ−n F (−n, β; γ; t) dt =
Γ(γ) Γ(ρ) Γ(β − γ + 1)Γ(γ − ρ+ n)

Γ(γ + n) Γ(β − γ + ρ+ 1)Γ(γ − ρ)
. (2.25)
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Proof. First we apply the result obtained in proposition 2.2 and then we can apply the
change of variable t→ 1− t to obtain∫ 1

0

tρ−1(1− t)β−γ−n F (−n, β; γ; t) dt

=
(γ − β)n

(γ)n

∫ 1

0

tβ−γ−n(1− t)ρ−1 F (−n, β; β − γ − n+ 1; t) dt

=
(γ − β)n(1 + β − γ)−nΓ(1 + β − γ)Γ(ρ)

(γ)n(1 + ρ− γ)−nΓ(β − γ + ρ+ 1)
. (2.26)

In the second step we have used (2.20). Using (2.9) to change the −n sign, we arrive in
the right hand side of (2.25). �

The following lemma is a consequence of the previous corollary. This lemma will be
useful in Section 4.1, also this lemma provides an elementary poof for the orthogonality
relations of the Jacobi polynomials on the real line and gives the exact value of its norms
in a simple way.

Lemma 2.6. Let n be a non negative integer, β, γ, ρ ∈ C such that Re ρ > 0 and
Re(β − γ) > n− 1. Assume γ − ρ = −k ∈ Z≤0, then

∫ 1

0

tρ−1(1− t)β−γ−n F (−n, β; γ; t) dt =

{ (−1)nΓ(γ) Γ(ρ) Γ(β−γ+1)Γ(1+n)
Γ(γ+n) Γ(β+n+1)

k = n

0 k < n.
(2.27)

Proof. Let us introduce a regularising parameter ε > 0. We have then∣∣xρ+ε−1(1− x)β−γ−nF (−n, β, γ, x)
∣∣ ≤ CFx

ρ−1(1− x)β−γ−n , x ∈ [0, 1] ,

for some constant CF . Since xρ−1(1 − x)β−γ−n ∈ L1([0, 1]), by Lebesgue’s dominated
convergence theorem, we have∫ 1

0

tρ−1(1− t)β−γ−n F (−n, β; γ; t) dt

= lim
ε→0

∫ 1

0

tρ+ε−1(1− t)β−γ−n F (−n, β; γ; t) dt

= lim
ε→0

Γ(γ) Γ(ρ+ ε) Γ(β − γ + 1)Γ(γ − ρ− ε+ n)

Γ(γ + n) Γ(β − γ + ρ+ ε+ 1)Γ(γ − ρ− ε)

= lim
ε→0

Γ(γ) Γ(ρ+ ε) Γ(β − γ + 1)Γ(n− k − ε)
Γ(γ + n) Γ(β + k + ε+ 1)Γ(−k − ε)

= lim
ε→0

(−1)k+1Γ(γ) Γ(ρ+ ε) Γ(β − γ + 1)Γ(1 + k + ε)

πΓ(γ + n) Γ(β + k + ε+ 1)

× Γ(n− k − ε) sin(πε) .

(2.28)
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In the second step we have used the integral (2.25) and in the next step Euler’s
reflection formula (2.5). Finally, the limit

lim
ε→0

Γ(n− k − ε) sin(πε) =

{
−π k = n
0 k < n.

(2.29)

establishes the lemma.
�

2.2. Orthogonal polynomials on the real line. In this section we introduce basic
properties of the general orthogonal polynomials (OP) over the real line R, for a short
and very instructive note we cite [50] and [38, 51, 52, 53] for a complete treatise. We
will consider (R, µ) as measurable space equipped with a positive (finite)-Borel measure
µ with infinite support, for which

mn :=

∫
xndµ(x) <∞, for alln ≥ 0 . (2.30)

A unique sequence of polynomials

pn(x) = γnx
n + . . . , γn > 0, (2.31)

can be constructed using the Gram-Schmidt process, that form an orthonormal system
in L2(dµ), that is

(pn, pm) =

∫
pn(x)pm(x)dµ(x) = hnδn,m. (2.32)

Remark 2.7. The pn’s are called the orthogonal polynomials, γn is the leading coeffi-
cient, hn is the norm, and

pn(x)

γn
,
pn(x)√
hn

. (2.33)

are called the monic orthogonal polynomial and the orthonormal polynomial, respec-
tively.

The moments mn determine the polynomials pn. In terms of them one can write up
explicit determinant formulae:

Let n ≥ 0, the Hankel matrix (also known as Gram matrix) is given by

Hn =


m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn mn+1 · · · m2n

 . (2.34)

For any vector vT = (α0, . . . , αn) ∈ Rn+1 \ {0} we have the relation,

vTHnv =

∫
(αnx

n + · · ·+ α0)2 dµ(x) > 0. (2.35)
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This implies that the Henkel Matrix is positive definite, consequently, the correspond-
ing Hankel determinants,

∆n = detHn > 0, n ≥ 0, (2.36)

are all strictly positive.

Theorem 2.8. The Orthonormal polynomials {pn} are given by

pn(x) =
1√

∆n∆n−1

∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn−1 mn+1 · · · m2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
. (2.37)

Proof. By expanding the determinant along the last row, we have

(pn, x
k) =

1√
∆n∆n−1

∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn−1 mn+1 · · · m2n−1

mk mk+1 · · · mn+k

∣∣∣∣∣∣∣∣∣∣
= 0 for k = 0, 1, . . . , n− 1 (2.38)

and

(pn, x
n) =

√
∆n

∆n−1

. (2.39)

Since

pn(x) =

√
∆n−1

∆n

xn + · · · , (2.40)

and due to the linearity of the inner product, the theorem is complete. �

The representation of the OP in terms of the Hankel matrices is very useful for the
theoretical point of view (as we will see in the section 3.2), but not very useful for the
actual computation of the OP since it involves the evaluations of determinants. However,
for OP on the real line there are a much more efficient way to compute them, the so-called
three term recurrence relation.

Theorem 2.9. The orthonormal polynomials {pn} on the real line satisfy a three term
recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x) , (2.41)

with initial condition p0 = 1 and p−1 = 0.

Proof. Since xpn(x) is a polynomial of degree n + 1, so we can expand this polynomial
in terms of the first n+ 2 orthonormal polynomials

xpn(x) =
n+1∑
`=0

c`,np`(x), (2.42)
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where the Fourier coefficients c`,n are given by

c`,n =

∫
[xpn(x)] p`(x)dµ(x)

=

∫
pn(x) [xp`(x)] dµ(x) (2.43)

= 0, for `+ 1 < n.

Because xp` is a polynomial of degree `+ 1, by orthogonality the Fourier coefficient c`,n
vanishes for `+1 < n. Therefore, the Fourier serie (2.42) only contains three terms, that
is when ` = n− 1, ` = n and ` = n+ 1. And the three term recurrence relation follows
by taking an+1 = cn+1,n and bn = cn,n. Note that cn−1,n = cn,n−1 = an. �

An immediate consequence of the theorem 2.9 is the Christoffel-Darboux identity:

Corollary 2.10 (Christoffel-Darboux kernel).

n−1∑
k=0

pk(x)pk(y) = an
pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
. (2.44)

2.3. Jacobi polynomials. The most important OP on the real line are the very classical
orthogonal polynomials. They are charaterized by a second order differential equation.
The Jacobi polynomials, usually denoted by Pα,β

n (x), are orthogonal with respect to the
weight function w(x) = (1− x)α(1 + x)β, on [−1, 1]. They are the solution of the second
order differential equation,

(1− x2)y′′ + (β − α− (α + β + 1)x)y′ = −n(n+ α + β + 1)y . (2.45)

Using Frobenius’ method (or performing the change of variable x→ 1−2x, to transform
the differential equation in the Gauß’ hypergeometric equation) one can obtain an explicit
representation of these polynomials,

Pα,β
n (x) =

(1 + α)n
n!

F

(
−n, n+ α + β + 1, 1 + α,

1− x
2

)
. (2.46)

An immediate consequence of this representation is

Pα,β
n (1) =

(1 + α)n
n!

. (2.47)

Note, if we apply the reflection formula (2.13), we obtain

Pα,β
n (x) =

(1 + β)n(−1)n

n!
F

(
−n, n+ α + β + 1, 1 + β,

1 + x

2

)
, (2.48)

from which follows
Pα,β
n (−x) = (−1)nP β,α

n (x) . (2.49)

Jacobi polynomials will play an important role throughout this text, the norm of these
polynomials is given in the following theorem



17

Theorem 2.11. Let α, β > −1. The Jacobi polynomials satisfy the following orthogo-
nality condition∫ 1

−1

Pα,β
n (x)Pα,β

m (x)(1− x)α(1 + x)βdx =
2α+β+1Γ(1 + α + n)Γ(1 + β + n)

n!(1 + α + β + 2n)Γ(1 + α + β + n)
δn,m.

(2.50)

Proof. Without restriction we can assume m ≥ n∫ 1

−1

Pα,β
n (x)Pα,β

m (x)(1− x)α(1 + x)βdx

= 2α+β+1

∫ 1

0

Pα,β
n (1− 2x)Pα,β

m (1− 2x)xα(1− x)βdx

= 2α+β+1 (1 + α)n
n!

(1 + α)m
m!

n∑
k=0

(−1)n
(
n

k

)
(1 + α + β + n)k

(1 + α)k

×
∫ 1

0

xα+k(1− x)βF (−m,m+ α + β + 1, 1 + α, x)dx.

(2.51)

in the first step we have changed variable x → 1 − 2x, in the second step we have
used the explicit representation (2.46) of Pα,β

n (x) together with (2.12). Note that −k =
1 + α− (1 + α+ k), by Lemma 2.6 the last integral vanish when k < m and contributes
to the sum only when k = m, that is when m = n.

�

Some special cases are

Tn(x) =
1

P
(−1/2,−1/2)
n (1)

P (1/2,1/2)
n (x), (2.52)

Un(x) =
1 + n

P
(1/2,1/2)
n (1)

P (1/2,1/2)
n (x), (2.53)

Vn(x) =
1 + 2n

P
(1/2,−1/2)
n (1)

P (1/2,−1/2)
n (x), (2.54)

Wn(x) =
1

P
(−1/2,1/2)
n (1)

P (−1/2,1/2)
n (x) , (2.55)

known as Chebyshev polynomials of the first kind, second kind, third kind and fourth
kind, respectively. When α = β → α + 1

2
, the polynomials

C(α+1)
n (x) =

(2(α + 1))n
(α + 3/2)n

P (α+1/2,α+1/2)
n (x) , (2.56)

are known as symmetric Jacobi, Ultraspherical polynomials and also as Gegenbauer
polynomials. Gegenbauer polynomials may be expressed by Jacobi polynomials with α
or β = ±1/2, [38, Thm. 4.1]
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C
(1+α)
2n (x) =

(1 + α)n
(1/2)n

Pα+1/2,−1/2
n (2x2 − 1), (2.57)

C
(1+α)
2n+1 (x) =

(1 + α)n+1

(1/2)n+1

xPα+1/2,1/2
n (2x2 − 1), (2.58)

As a consequence of these important relations, known as quadratic transformations,
together with (2.46), Gegenbauer polynomials may be expressed in terms of the Gauß’
hypergeometric function

Cα
2n(x) =

(−1)n(α)n
n!

F (−n, n+ α, 1/2, x2), (2.59)

Cα
2n+1(x) =

(−1)n(α)n+1

n!
2xF (−n, n+ α + 1, 3/2, x2), (2.60)

The corresponding three-term recurrence relation for Gegenbauer polynomials is

zC(1+α)
n (z) =

n+ 1

2(n+ α + 1)
C

(1+α)
n+1 (z) +

n+ 2α + 1

2(n+ α + 1)
C

(1+α)
n−1 (z), n = 1, 2, 3, . . . . (2.61)

2.4. Hermite and Laguerre polynomials. The Hermite polynomials, denoted by
Hn(x), are orthogonal with respect to the normal distribution exp[−x2] over the real
line. The orthogonality relations are∫

R

Hn(x)Hm(x)e−x
2

dx =
√
π2n n!δn,m. (2.62)

The Hermite polynomials also can be defined in terms of its generating function [51,
chap. 6]

∞∑
n=0

Hn(x)

n!
tn = e2xt−x2 , (2.63)

which follows using the fact that the normal distribution it is essentially its own Fourier
transform.

Laguerre polynomials Lαn(x), are orthogonal with respect to the Gamma distribution
xαe−x, α > −1. Their orthogonality relations are∫

R+

Lαn(x)Lαm(x) dx =
Γ(n+ α + 1)

n!
δn,m. (2.64)

The Hermite and Laguerre polynomials are limits of Jacobi polynomials. There are
several ways to obtain these limits, one can use for example:
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√
α

∫ 1

−1

(1− x2)αdx →
∫
R

e−x
2

dx, as α→∞. (2.65)

βα+1

2α+β+1

∫ 1

−1

(1− x)α(1 + x)βdx →
∫
R+

xαe−xdx, as β →∞. (2.66)

The limit (2.65) tells us, up to a suitable scaling, Hermite polynomials are followed as
a limit of Gegenbauer polynomials, this limit reads

lim
α→∞

α−n/2Cα
n (x/
√
α) =

Hn(x)

n!
. (2.67)

Using (2.8), the term α−n/2 can be obtained by the asymptotic form 2n(α)n/n! ∼
2nαn/n!, α→∞ of the Gegenbauer norm.

Similarly, the limit (2.66) tells us, Laguerre polynomials can be obtained as a limit of
Jacobi polynomials,

lim
β→∞

Pα,β
n (1− 2x/β) = Lαn(x) . (2.68)

This can be seen using for example the hypergeometric representation (2.46) of Jacobi
polynomials together with (2.12) and (2.8).

One can derive the properties of Laguerre and Hermite polynomials from those of
Jacobi polynomials. However, it is usually easier to deal with these polynomials directly.

2.5. Multiple orthogonal polynomials type II.

Definition 2.12 (see [54]). A polynomial Pn(x) is called a multiple orthogonal polyno-
mial (MOP) of a vector index

n = (n1, . . . , np) ∈ Np,

with respect to a vector of positive Borel measures, supported on the real line

µ = (µ1, . . . , µp), suppµi ∈ R, i = 1, . . . , p ,

if it satisfies the following conditions:

• degPn ≤ |n| :=
∑
ni.

•
∫
Pn(x)xk dµi(x) = 0, k = 0, . . . , ni − 1 and i = 1, . . . , p.

Remark 2.13. When p = 1 the MOP becomes the standard OP, i.e

• degPn = n.

•
∫
Pn(x)xk dµ(x) = 0, k = 0, . . . , n− 1.

Remark 2.14. The notion of MOP can be generalized if we consider the non-Hermitian
complex orthogonality with respect to a complex value vector function

f(z) = (f1(z), . . . , fp(z)),

on some contours Γi on the complex plane C.
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Definition 2.15. A polynomial Pn(z) is called MOP if

• degPn ≤ |n|.
•
∫

Γi

Pn(x)xk fi(z)dz = 0, k = 0, . . . , ni − 1 and i = 1, . . . , p.

Let α = (α1, . . . , αp), the Multiple Hermite polynomials (on the real line) {Hα
n (x)} of

index n = (n1, · · · , np), satisfy∫
R

Hα
n (x)xk wi(x)dx = 0, k = 0, . . . , ni − 1, i = 1, . . . , p, (2.69)

where

wi(x) = exp

(
δ

2
x2 + αix

)
; (2.70)

wi are the Hermite weights with δ < 0 and αi 6= αj for i 6= j.

Theorem 2.16 (See [55], theorem 2.1). Let {Hα
n (x)} be the multiple Hermite polynomials

defined by the equation (2.69). Then the generating functon is given by

∞∑
n1,...,np=0

Hα
n (x)

tn1
1 · · · t

np
p

n1! · · ·np!
= exp

δx p∑
i=1

ti +
δ

2

(
p∑
i=1

ti

)2

+

p∑
i=1

αiti

 . (2.71)

3. Orthogonal polynomials on the Complex plane

Let µ be a positive Borel measure on the complex plane, with an infinite number of
points in its support, for which

mnm =

∫
znz̄mdµ(z) <∞, n,m ∈ N . (3.1)

By Gram-Schmidt process one can construct a unique sequence of polynomials

pn(z) = γnz
n + . . . , γn > 0, (3.2)

that form an orthonormal system in L2(dµ),

〈pn, pm〉µ =

∫
pn(z)pm(z)dµ(z) = δnm. (3.3)

Like in the Section 2.2 one can show that the Gram Matrix

Gn =


m00 m10 · · · mn0

m01 m11 · · · mn1
...

...
. . .

...
m0n m1n · · · mnn

 . (3.4)

is positive definite, and the corresponding Gram determinants,
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∆n = detGn > 0, n ≥ 0, (3.5)

are all strictly positive.

Remark 3.1. If µ is supported on the real line then

mij =

∫
xi+jdµ(x) =: αi+j (3.6)

thus, ∆n = |αi+j|ni,j=0 is a Hankel determinant.

Remark 3.2. If µ is supported on the unit circle then

mij =

∫
zizjdµ(z) =

∫
zi−jdµ(z) =: βi−j (3.7)

so, ∆n = |βi−j|ni,j=0 is a Toeplitz determinant.

In these two very important cases the orthogonal polynomials have many special prop-
erties that are missing in the general theory.

An alternative representation to Gram-Schmidt that allows to construct orthogonal
polynomials, is the Heine formula, see [38]. For a given domain D ⊆ C in the complex
plane, a non-negative weight function w(z), and normalised area measure dA on D such
that all moments exist, we define the following expectation value:

〈O 〉N,w = ZN−1

∫
DN
O |∆N(z)|2

N∏
i=1

w(zi)dA(zi) , (3.8)

where O depends on zi=1,...,N ∈ C. Here, ∆N(z) =
∏N

j>i(zj − zi) is the Vandermonde

determinant, and ZN is a normalisation constant that ensures 〈 1 〉N,w = 1. The expecta-
tion value can be thought of resulting from the joint density of complex eigenvalues of a
complex non-Hermitian random matrix ensemble, such as the elliptic Ginibre ensemble.
The Heine formula then states that the orthogonal polynomials of degree N in monic
normalisation, p̃N(z) = zN + . . ., are given by

p̃N(z) =

〈
N∏
i=1

(z − zi)

〉
N,w

. (3.9)

That is, they are given by the expectation value of a single characteristic polynomial.
Denoting the squared norms of the monic polynomials by h̃N , we have from (3.3)∫

D

p̃n(z)p̃m(z)w(z) dA(z) = δn,mh̃n . (3.10)

It is well known (see e.g. [26]) that the normalisation constant in (3.8) can be expressed
in terms of these norms as

ZN =

∫
DN
|∆N(z)|2

N∏
i=1

w(zi)dA(zi) = N !
N−1∏
j=0

h̃j . (3.11)
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The following theorem proved in [56], generalises Christoffel’s Theorem for polynomials
on R:

Theorem 3.3. Let {vi; i = 1, . . . , K} and {ui; i = 1, . . . , L} be two sets of complex
numbers which are pairwise distinct among each set. Without loss of generality we assume
K ≥ L ≥ 0, where the empty set is permitted. Then, the following statement holds1:〈

N∏
k=1

[
K∏
i=1

(vi − zk)
L∏
j=1

(ūj − z̄k)

]〉
N,w

=

∏N+K−1
i=N h̃

1
2
i

∏N+L−1
j=N h̃

1
2
j

∆K(v) ∆L(ū)
det

1≤l,m≤K
[ B(vl, ūm) ] ,

(3.12)
with matrix

B(vl, ūm) ≡

 κN+L(vl, um) :=
∑N+L−1

i=0 pi(vl)pi(um) for m = 1, . . . , L

pN+m−1(vl) for m = L+ 1, . . . , K
.

(3.13)

The monic polynomials p̃n(z) are orthogonal w.r.t w(z), with squared norms h̃n and

pn(z) = p̃n(z)/
√
h̃n.

One may wonder if there are measures supported on the complex plane such that the
very classical polynomials satisfy an orthogonality relation with respect to a hermitian
inner product of the form (3.3). For Hermite and Laguerre polynomials, the measures
supported on the entire complex plane are know. The results are fairly recent see [57] for
Hermite polynomials and they give rise to orthonormal bases in Bagmann-like Hilbert
space. The orthogonality relations for Holomorphic Laguerre polynomials was shown in
[58] and they appear in the study of analytic continuation for functions defined on the
positive half-line. The case of Gegenbauer polynomials and some subfamilies of Jacobi
polynomials are new and will be presented in Section 4 and 5.

3.1. Holomorphic Hermite polynomials.

Lemma 3.4 (Hermite addition formula). Let v, w ∈ C, we define (v, w) :=
∑d

i=1 viwi.
Then, the Hermite polynomials satisfy the following addition formula

Hn

(
(v, w)√
(w,w)

)
=

n!

(w,w)n/2

∑
m1+···+md=n

wm1
1 · · ·w

md
d

m1! · · ·md!
Hm1(v1) · · ·Hmd(vd), (3.14)

in particular, when d = 2, a > b > 0, v = (x/a, y/b) ∈ R2 and w = (a, ib) we have

Hn

(z
c

)
=
n!

cn

n∑
k=0

an−k(ib)k

(n− k)!k!
Hn−k

(x
a

)
Hk

(y
b

)
, (3.15)

where z = x+ iy and c =
√
a2 − b2.

1The empty products are understood in the following sense: ∆0(x) = ∆1(x) = 1 and
∏M≤N−1

i=N hi = 1.
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We will provide a proof for the Lemma 3.4 in Section 3.7 together with an extension
of this formula to the so-called multiple Hermite polynomials.

The following theorem extends the orthogonality relation for the Hermite polynomials
to the complex plane, it was first proven in [57] by van Eindhoven and Meyers. The proof
that we will present here is not the proof offered in [57]. However, as it was pointed out
by the referee of this article, [57, eq. (1.4)] the proof for the Theorem 3.5 also follows
from the relation (3.15), so, we will use this approach.

Theorem 3.5 (van Eindhoven-Meyers). Let A > B > 0 and Q(z) = A|z|2 − B Re z2,
then the Hermite polynomials satisfy the following orthogonality relations∫

C

Hn

(z
c

)
Hm

(z
c

)
e−Q(z)dA(z) = n!

(
2
A

B

)n
δn,m, (3.16)

wehere c =
√

2B
A2−B2 and dA(z) in the normalized planar Lebesgue measure.

Proof. Let a = 1√
A−B , b = 1√

A+B
and apply the relation (3.15) to obtain∫

C

Hn

(z
c

)
Hm

(z
c

)
e−Q(z)dA(z)

=
n!m!

πcn+m

n∑
k=0

m∑
k′=0

an−k(ib)k

(n− k)!k!

am−k
′
(−ib)k′

(m− k′)!k′!

∫
R

Hn−k

(x
a

)
Hm−k′

(x
a

)
e−(x/a)2dx/a

×
∫
R

Hk

(y
b

)
Hk′

(y
b

)
e−(x/b)2dy/b

=
n!m!2n

cn+m

n∑
k=0

m∑
k′=0

an+m−k−k′(ib)k(−ib)k′

(m− k′)!k′!
δn−k,m−k′δk,k′

=
n!m!2n

cn+m

∧(n,m)∑
k=0

an+m−2k(b2)k

(m− k)!k!
δn−k,m−k

=
n!2nδn,m
c2n

n∑
k=0

(
n

k

)
a2(n−k)(b2)k

= n!

(
2
a2 + b2

a2 − b2

)n
δn,m.

In the second step we have used the orthogonality relation (2.4) and in the third step we
have performed the sum over k′ and the theorem follows using the definition of a, b. �

During this proof, Theorem 3.5, we have noticed that the Hermite polynomials satisfy
a non-Hermitian orthogonality relation on the complex plane, that is, without the need
to conjugate the second factor, see [59, eq. (2.4)] for a different proof,
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∫
C

Hn

(z
c

)
Hm

(z
c

)
e−Q(z)dA(z) = n!2nδn,m, (3.17)

and by the change of variable y → −y on the imaginary part the same result, with both
factors conjugated, is obtained.

Furthermore, we also have noticed that the previous theorem can be extended to an
orthogonality relation for Hermite polynomials in several variables on the complex plane.
For instance:

Let a1 > b1 > 0, a2 > b2 > 0, such that a2
1 − b2

1 > a2
2 − b2

2 and let
Qi(z) = Ai|z|2 −Bi Re z2, i = 1, 2, with

Ai =
a2
i + b2

i

2a2
i b

2
i

, Bi =
a2
i − b2

i

2a2
i b

2
i

, i = 1, 2. (3.18)

Theorem 3.6. With the above notation, the Hermite polynomials satisfy the following
orthogonality condition.

∫
C2

Hn

(
z1 + iz2

c

)
Hm

(
z1 + iz2

c

)
e−Q1(z1)−Q2(z2)dA(z1)dA(z2)

= n!2n
(
a2

1 + b2
1 + a2

2 + b2
2

a2
1 − b2

1 − a2
2 + b2

2

)n
δn,m, (3.19)

where c2 = a2
1 − b2

1 − a2
2 + b2

2.

We have not been able to find this result in the literature.

3.2. Planar multiple Hermite polynomials.

Definition 3.7. A polynomial Pn(z) is called a planar MOP (PMOP) of a vector index

n = (n1, . . . , np) ∈ Np,

with respect to complex value vector (weight) function,

w(z) = (w1(z), . . . , wp(z)),

on some domains Gi in the complex plane C, if it satisfies the following conditions

• degPn ≤ |n| :=
∑
ni.

•
∫
Gi

Pn(z)z̄k wi(z)dA(z) = 0, k = 0, . . . , ni − 1 and i = 1, . . . , p.

Remark 3.8. When p = 1 and w(z) is a positive weight function, the PMOP becomes
the standard planar OP, i.e

• degPn = n

•
∫
Pn(z)z̄k w(z)dA(z) = 0, k = 0, . . . , n− 1 .
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Following Bleher and Kuijlaars [60] we define the induced PMOP by the Elliptic Gini-
bre Ensembre with a “kind” of external field as follows,

Let A > B > 0 , Q(z) = A|z|2 −B Re(z2), wi ∈ C with wi 6= wj if i 6= j

Pn(z) =
1

Cn

∫ n∏
i=1

(z − z1)∆(z)
n∏
i=1

e−(Q(zi)−Im(wizi))dA(zi), (3.20)

where ∆n(z) is the n× n Vandermonde determinant and

dA(z) :=

√
A2 −B2

π
dxdy.

Since
n∏
i=1

(z − z1)∆n(z) = ∆n+1(z, zn+1 = z), (3.21)

we can bring Pn in a determinantal form

Pn(z) =
1

Cn

∣∣∣∣∣∣∣∣
m10 m11 · · · m1n

...
...

. . .
...

mn0 mn1 · · · mnn

1 z · · · zn

∣∣∣∣∣∣∣∣ . (3.22)

with

mjk :=

∫
zke−(Q(z)−Im(wjz))dA(z).

In order to make Pn(z) a monic polynomial we choose Cn as

Cn =

∣∣∣∣∣∣
m10 m11 · · · m1,n−1

...
...

. . .
...

mn0 mn1 · · · mn,n−1

∣∣∣∣∣∣ . (3.23)

Proposition 3.9. Consider Cn defined above, then

Cn = (2i)
n(n−1)

2

n∏
i=1

eh(wi)∆(αw̄ − βw), (3.24)

where h(w) = α|w|2 − β Re(w2) and

α =
1

4

A

A2 −B2
, β =

1

4

B

A2 −B2
.

Proof. Let w ∈ C, by performing the Gaussian integrals, is easy to see∫
e−(Q(z)−Im(wz))dA(z) = eh(w), (3.25)
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we have then

mjk = (2i)k∂kwjmj0

= (2i)k∂kwje
h(wj)

= (2i)kqk(αw̄j − βwj)eh(wj), (3.26)

with qk(x) some monic polynomial of degree k.
By taking out side eh(wj) in each row of the determinant (3.23) and the factor 2i in

each column of (3.23) and using the fact that the remaining determinant is invariant
under column transformation, we arrive in (3.24).

�

Using (3.22) we see that Pn(z) satisfy∫
Pn(z)e−(Q(z)−Im(wjz))dA(z) = 0, for j = 1, . . . , n, (3.27)

and by letting Pn(z) = zn + pn−1z
n−1 + . . .+ p0, (3.27) can be written as

mjn +
n−1∑
`=0

p`mj` = 0, for j = 1, . . . , n. (3.28)

and, clearly, this can be brought to a matrix form

Mp = −m. (3.29)

With p = (p0, . . . , pn−1)T , M = (mjk)j=1,...,n;k=0,...,n−1 and m = (mjn)j=1,...,n

By Proposition 3.9, detM 6= 0. Thus equations (3.27) uniquely determine the monic
polynomial Pn.

From now on we will refer to the complex numbers wi, appearing in the Definition
(3.20) of Pn, as the complex eigenvalues of W ∈ Cn×n and we would like to study the
case where multiple wi’s are allowed. First we observe that

Pn(z) =
1

n!Cn

∫ n∏
i=1

(z − z1)∆(z) det
1≤i,j≤n

[
eIm(wizj)

] n∏
i=1

e−Q(zi)dA(zi). (3.30)

Now, we proceed as in proposition 2.2 in [60].

Proposition 3.10. Suppose W has distinct eigenvalues wi, i = 1, . . . , p with respective
multiplicities ni so that n1 + · · ·+ np = n. Let n(i) = n1 + · · ·+ ni and n(0) = 0. Define

gj(z) = z̄dj−1e−(Q(z)−Im(wiz)), j = 1, . . . , n,

where i = ij is such that n(i−1) < j ≤ n(i) and dj = j − n(i−1). Then the following holds:
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(a) Pn is given by

Pn(z) =
1

Kn

∫ n∏
j=1

(z − zj)∆(z)
n∏
j=1

gj(zj)dA(zj). (3.31)

where

Kn =
(2iα)

n(n−1)
2

∏p
j=1 e

njh(wj)∆0(αw̄ − βw)
∏p

i=1

∏ni−1
k=1 k!∏

j<k≤p α
njnk

∏n
j=1

(
i
2

)dj−1
(3.32)

with

∆0(x) :=
∏

1≤i<j≤p

(xj − xi)ninj

(b) Let

mjk =

∫
C

zkgj(z)dA(z).

Then we have the determinantal formula

Pn(z) =
1

Kn

∣∣∣∣∣∣∣∣
m10 m11 · · · m1n

...
...

. . .
...

mn0 mn1 · · · mnn

1 z · · · zn

∣∣∣∣∣∣∣∣ . (3.33)

(c) For i = 1, . . . , p,∫
C

Pn(x)z̄je−(Q(z)−Im(wiz))dA(z) = 0, j = 0, . . . , ni − 1, (3.34)

and these equations uniquely determine the monic polynomial Pn.

Remark 3.11. Let

A =
a2 + b2

2a2b2
, B =

a2 − b2

2a2b2
; a > b > 0 (3.35)

then

dA(z) =
1

πab
dRe(z)d Im(z), Q(z)−Im(wiz) =

(
Re z

a

)2

+

(
Im z

b

)2

−Im(wiz). (3.36)

The change of variables for the imaginary part Im(z) → b Im(z), together with (3.36),
allows us to take the limit b → 0 on (3.20) and we recover the GUE with an external
source, see [61] and references therein.

Let us see one explicit representation for Pn. Let p = 2 in the Definition 3.7 and

β =
(w
c
α1,

w

c
α2

)
, w = a+ ib. (3.37)
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Proposition 3.12. The multiple Hermite polynomials Hβ
(n,m)(z/c) satisfy the following

conditions ∫
C

Hβ
(n,m)

(z
c

)
z̄k e−Q1(z)dA(z) = 0, k = 0, . . . , n− 1 , (3.38)∫

C

Hβ
(n,m)

(z
c

)
z̄k e−Q2(z)dA(z) = 0, k = 0, . . . ,m− 1 , (3.39)

where the Hermite weight function is given by

exp (−Qi(z)) ; Qi(z) := Q(z)− αi
√
A2 −B2 Im(zw), (3.40)

and

A =
a2 + b2

2a2b2
, B =

a2 − b2

2a2b2
; c2 = a2 − b2 a > b > 0. (3.41)

Proof. Let p = 2 in the Theorem 2.16

∞∑
n,m=0

Hα
n (x)

tn1 t
m
2

n!m!
= exp

(
δ

2
(t21 + t22) + α1t1 + α2t2 + δx(t1 + t2) + δt1t2

)
. (3.42)

Now let x, a ∈ Cd, we define (a, b) :=
∑

i aibi, and (a, 1) :=
∑

i ai and let

β =

(
(a, 1)√
(a, a)

α1,
(a, 1)√
(a, a)

α2

)
. (3.43)

By letting

x 7→ (x, a)√
(a, a)

, ti 7→
√

(a, a)ti, (3.44)

in (3.42) we obtain

∞∑
n,m=0

Hβ
(n,m)

(
(a, x)√
(a, a)

)
(a, a)

n+m
2
tn1 t

m
2

n!m!

= exp

(
δ

2
(a, a)(t21 + t22) + α1(a, 1)t1 + α2(a, 1)t2 + δ(a, x)(t1 + t2) + δ(a, a)t1t2

)
=

d∏
i=1

∞∑
ni,mi=0

Hα
(ni,mi)

(xi)a
ni+mi
i

tni1 tmi2

ni!mi!

=
∞∑

n,m=0

 ∑
n1+···+nd=n
m1+···+md=m

an1+m1
1 · · · and+md

d

n1!m1! · · ·nd!md!
Hα

(n1,m1)(x1) · · ·Hα
(nd,md)(xd)

 tn1 t
m
2 .
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Therefore

Hβ
(n,m)

(
(a, x)√
(a, a)

)
=

n!m!

(a, a)
n+m

2

∑
n1+···+nd=n
m1+···+md=m

an1+m1
1 · · · and+md

d

n1!m1! · · ·nd!md!
Hα

(n1,m1)(x1) · · ·Hα
(nd,md)(xd).

(3.45)
In particular, for d = 2, a = (a, ib), x = (x/a, y/b), we have (a, x) = x + iy =: z,

(a, a)
1
2 =
√
a2 − b2 =: c and (a, 1) = a+ ib =: w then

Hβ
(n,m)

(z
c

)
=
n!m!

cn+m

∑
0≤k≤n
0≤`≤m

an+m−k−`(ib)k+`

(n− k)!k!(m− `)`!
Hα

(n−k,m−`)

(x
a

)
Hα

(k,`)

(y
b

)
(3.46)

For δ = −2, the identity (3.46) tells us (3.38) and (3.39) holds true with the weight
function

exp (−Qi(z)) ; Qi(z) := Q(z)− αi
√
A2 −B2 Im(zw). (3.47)

�
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4. The weighted Bergman space Ap
α of the ellipse

The theory of Hilbert spaces of analytic functions in planar domains (and in higher-
dimensional complex space), was developed by Stefan Bergman [62], His work focused on
spaces of analytic functions A2(E, dA) that are square-integrable over the given domain
E with respect to Lebesgue area measure dA (or volume measure), it relying to a large
extent on a reproducing kernel that became known as the Bergman kernel function.
When attention was later directed to the spaces of analytic functions Ap that are p-
integrables over a given domain with respect to the Lebesgue area measure, it was natural
to call them Bergman spaces.

Historically Bergman’s space theory on the unit disk has attracted the attention of
many mathematicians, H. Hedenmalm, P. Duren, H.S. Shapiro, A. L. Shields, among
others. One of the main reasons is that the Bergman spaces Ap of the unit disc contain
the Hardy spaces Hp. A function f analytic in the unit disk D is said to belong to the
Hardy space Hp, if the integrals

∫ 2π

0
|f(reiθ)|pdθ remain bounded as r → 1. However, the

Bergman spaces are in many respects much more complicated than their Hardy space
cousins. For instance, the invariant subspaces need not be singly generated as they are
for the Hardy space [63]. It has been pointed out in the literature (see [64, 65] and
references therein) that one particular reason for studying the invariant subspaces of
A2(D) is that the general invariant subspace conjecture in Hilbert space reduces to a
special question about invariant subspaces of A2(D).

In [64] Hedenmalm et al. have studied intensively the weighted Bergman space of the
unit disk D, where the weight function has the form (1 − |z|2)α. Because the measure
is rotationally invariant, the associated Bergman polynomials are monomials zn. These
polynomials play an important role in theory, since in general the Bergman Kernel func-
tion is given by the infinite sum over the orthonormalized Bergman polynomials, in this
case

Kα(z, w) =
∞∑
n=0

Γ(n+ 2 + α)

n!Γ(2 + α)
(zw)n =

1

(1− zw)α+2
. (4.1)

For more general domains (up to annulus and lemniscates) the explicit form of this
kernel is not known, and the Bergman polynomials are not known either. This can be
seen as a second motivation to study Bergman polynomials, also called planar polyno-
mials.

In what follows, we will introduce the weighted Bergman space of the ellipse. To begin,
let a > b > 0, the equation of the ellipse centered at the origin is

R2 3 (x, y) :
x2

a2
+
y2

b2
= 1. (4.2)

Due to the standard identification C ∼= R2, we have an equivalent representation

C 3 z = x+ iy : A|z|2 −B Re(z2) = 1, (4.3)



31

with

A =
a2 + b2

2a2b2
, B =

a2 − b2

2a2b2
. (4.4)

Therefore, the function

Q(z) = A|z|2 −B Re(z2), z ∈ C, (4.5)

provides an explicit parametrisation of the interior of an ellipse E:

E = {z ∈ C : Q(z) < 1} . (4.6)

For 0 < p < ∞ and −1 < α < ∞, we will denote by Apα := Apα(E) ⊆ Lp(E, dAα) the
(weighted) Bergman space of the ellipse E, i.e. the subspace of analytic functions in
Lp(E, dAα) with finite p-norm. Here,

dAα(z) =
(1 + α)

πab
(1−Q(z))αdA(z), (4.7)

and dA is the planar Lebesque measure, H(E) stand for the space of analytic function
in E:

Apα =

{
f ∈ H(E) :

∫
E

|f(z)|pdAα(z) <∞
}
. (4.8)

For 1 ≤ p <∞ the associated Lp-norm is definded by

||f ||p,α =

(∫
E

|f(z)|p dAα(z)

)1/p

, (4.9)

and for 0 < p < 1 the corresponding metric is given by

d(f, g) =

∫
E

|f(z)− g(z)|p dAα(z) . (4.10)

Note, when a = b then the ellipse become a disk of radius a and the measure (4.7)
reduces back to [64].

In this section we show that the Bergman space Apα is a Banach space when 1 ≤ p <∞,
and a complete metric space when 0 < p < 1. The proof is quite standard and follows
the lines of Corollary 1.12 and Proposition 1.13 in [66].

Proposition 4.1. Let 0 < p < ∞ and −1 < α < ∞, and K be a compact subset of E,
with positive minimum distance to ∂E. Then, there is a positive constant C such that

sup
K
|f(z)|p ≤ C‖f‖pp,α ,

for all f ∈ Apα.

Proof. Let t ∈ E and 0 < r < dist(t, ∂E) =: d be arbitrary. We define the smaller ellipse

Er = {z ∈ C : Qr(z) := (Re z)2/(a− r/2)2 + (Im z)2/(b− r/2)2 ≤ 1} , (4.11)
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and suppose that there is a point z0 ∈ B(t, r/2) \ Er:
{|z0 − w| : w ∈ ∂E} ⊆ {|z − w| : z ∈ B(t, r/2);w ∈ ∂E} . (4.12)

Taking the infimum on both sides of (4.12), we obtain

dist(B(t, r/2), ∂E) ≤ dist(z0, ∂E) . (4.13)

But (4.13) implies that d − r/2 ≤ r/2, therefore B(t, r/2) ⊆ Er. In consequence we
obtain

sup
z∈B(t,r/2)

h(z) ≤ sup
z∈Er

h(z) ≤ h(z∗) =: c(r) , z∗ ∈ ∂Er . (4.14)

It is easy to see that 0 < c(r) < 1, and it can be computed explicitly by introducing a
Lagrange multiplier, for example.

Thus, given f ∈ Apα, B(t, ε) ⊆ E with positive minimum distance to the boundary
∂E, i.e. 0 < r < dist(B(t, ε), ∂E), we can find another positive constant C > 0 such
that

|f(z)|p ≤ 4

πr2

∫
B(z,r/2)

|f(w)|p dA(w)

≤ C

∫
B(z,r/2)

|f(w)|p dAα(w)

≤ C

∫
E

|f(w)|p dAα(w)

= C‖f‖pp,α for z ∈ B(t, ε) . (4.15)

In the first step we have used the subharmonicity of |f |p. In the second step the upper
bound is trivial for negative −1 < α < 0, due to 0 ≤ h(z), whereas for positive α > 0
we have used the estimate from (4.14). �

One immediate consequence of Proposition 4.1 is that any Cauchy sequence {fn} ∈ Apα
is locally bounded, and so by Montel’s Theorem it constitutes a normal family. Thus,
some subsequence converges locally uniformly in E, to a function in Apα, and we have

Corollary 4.2. For every 0 < p <∞, −1 < α <∞, the weighted Bergman space Apα is
closed in Lp(E, dAα).

Before to proceed with the proof of corollary (4.2) we will recall some definitions and
standard theorems in measure theory [67] and complex analysis [68].

Let (X,µ) be a measure space, we say that a property holds (mod µ) (or µ-almost
everywhere) if it holds on a set X \N , where µ(N) = 0. Convergence fn → f (mod µ)
means that there is a set N ⊂ X such that µ(N) = 0 and

(∀x ∈ X \N) : fn → f.

(4.16)

Clearly uniform convergence implies convergence modulo measure, (N = Ø).
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A sequence of finite measurable function {fn} is called convergent in measure to a
measurable function f if

lim
n→∞

µ({|fn − f | ≥ σ}) = 0,

(4.17)

for any σ > 0.

To denote convergence in measure, we write fn
µ−→ f .

Remark convergence fn → f in the norm of Lp implies convergence in measure

fn
µ−→ f . This follows from the fact that, for any σ > 0, we have∫

X

|fn − f |pdµ ≥
∫
{|fn−f |≥σ}

|fn − f |pdµ

≥ σpµ{|fn − f | ≥ σ}
(4.18)

Theorem 4.3 (Riesz). Assume that a sequence {fn} of finite measurable functions con-
verge in measure to a function f . Then, one can indicate a subsequence {fnk} of this
sequence such that limk→∞ fnk = f (mod µ).

Theorem 4.4 (Montel). A family F in H(E) is normal if and only if F is locally
bounded.

F ⊂ C(E,C) is normal means that each sequence in F has a subsequence which
converges to a function f in C(E,C). H(E) is closed in C(E,C).

Based on the above Theorems, let us continue with the proof of Corollary 4.2.

Proof. Let {fn} be a Cauchy sequence in Apα and f ∈ Lp(E, dAα) such that
∫
|fn −

f |pdAα → 0 as n→∞.
And suppose that B(t, r) ⊆ E and let 0 < ρ < dist(B(t, r), ∂E). By the preceding

proposition 4.1 there is a positive constant c such that

|fn(z)− fm(z)|p ≤ c‖fn − fm‖pp,α, (4.19)

for all m,n and |z − t| ≤ r. Thus {fn} is a uniformly Cauchy sequence on any closed
disk K in E. Now since {fn} is a Cauchy sequence, given ε > 0 there is a N ∈ N such
that

|fn(z)− fm(z)| < ε1/p for n,m ≥ N,∀z ∈ K,
(4.20)

taking m = N , we have

|fn(z)| < |fN(z)|+ ε1/p for n ≥ N.

(4.21)
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Then, the inequality (a + b)p ≤ k(ap + bp) where a and b are arbitrary nonnegative
numbers, and k is a constant depending on p, yields.

|fn(z)|p < k(|fN(z)|p + ε) for n ≥ N,

(4.22)

and choosing M = max{c‖f1‖pp,α, ..., c‖fN−1‖pp,α, ck‖fN‖pp,α + kε} we have

|fn(z)|p ≤ M for all n,∀z ∈ K,
(4.23)

i.e {fn} is locally bounded.
And so, by Montel’s theorem there is an analytic function g on E such that fn(z)→

g(z) uniformly on compact subsets of E.

Since
∫
|fn − f |pdAα → 0, this implies fn

µ−→ f . And by Riesz’ theorem there is a
subsequence {fnk} such that fnk → f (mod µ), but {fn} is Cauchy sequence, that

means fn → f (mod µ). Using uniqueness of the limit in measure, i.e if fn
µ−→ f and

fn
µ−→ g, then f = g (mod µ) implies that f ∈ Ap. �

4.1. Holomorphic Gegenbauer polynomials. For p ≥ 1 it follows from Corollary
4.2 that the Bergman space is a Banach space, and in particular for p = 2 a Hilbert
space with the inner product defined as

〈f, g〉α :=

∫
E

f(z)g(z) dAα(z) , f, g ∈ A2
α. (4.24)

One might immediately ask, whether it is possible to provide an orthogonal basis for
this space. The result is quite simple and surprising and presented in the following
Theorem 4.5. It constitutes one of our main results.

For any non-negative integer n and real parameter α > −1 let us define the polynomials

p(α)
n (z) :=

1√
hn
C(1+α)
n

(z
c

)
, n = 0, 1, . . . (4.25)

where C
(1+α)
n (x) are the standard Gegenbauer polynomials on the real line having real

coefficients, now taken with a complex argument. We recall that the ellipse E in (4.6)
defining the inner product (4.24) is parametrised by the real numbers a > b > 0. The
constant

c =
√
a2 − b2 > 0 (4.26)

provides the location of the right focus of the ellipse E, and we define by

hn := hn(a, b) =
1 + α

1 + α + n
C(1+α)
n

(
a2 + b2

a2 − b2

)
> 0 . (4.27)

Theorem 4.5. The set of polynomials {p(α)
n }n∈N defined in (4.25) forms a orthonormal

basis for A2
α for any α > −1.
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We will prove the orthogonality of the sequence of Gegenbauer polynomials in the
following lemma, whereas the completeness of this sequence is deferred to the very end
of this section.

Lemma 4.6. Let E be the elliptic domain (4.6), dAα(z) the density (4.7) over E and

α > −1. Then, the sequence of Gegenbauer polynomials {C(1+α)
n (z)}n∈N satisfies the

following orthogonality relation

∫
E

C(1+α)
m

(z
c

)
C(1+α)
n

(
z

c

)
dAα(z) =

1 + α

1 + α + n
C(1+α)
n

(
a2 + b2

a2 − b2

)
δnm , (4.28)

where a > b > 0 and c =
√
a2 − b2.

Proof. It is sufficient to show that for all m ∈ N∫
E

C(1+α)
m

(z
c

)(z
c

)j
dAα(z) = 0 , for j = 0, 1, ...,m− 1 . (4.29)

Due to the fact that the ellipse is a central symmetric domain and the integration
measure (4.7) is invariant under the reflection z → −z, as well as the reflection properties

(2.49) of Gegenbauer polynomials C
(1+α)
n (−z) = (−1)nC

(1+α)
n (z), without restriction we

assume that either m = 2n and j = 2l are both even, or m = 2n + 1 and j = 2l + 1
are both odd, and l < n. In the following we will only present the even-even case. The
odd-odd case follows from the same line of arguments and it can be found in [2, App. A]

We rewrite the integral (4.29) in terms of elliptic coordinates

Re(z) = ar cos(θ) , Im(z) = br sin(θ) , with r ∈ [0, 1), θ ∈ [0, 2π] . (4.30)

The pullback of the measure dAα(z) in E to [0, 1)× [0, 2π] reads

dAα(z) =
1 + α

π
(1− r2)α rdrdθ , (4.31)

and we obtain for the complex arguments

z(r, θ)

c
=

r

2
(Reiθ +R−1e−iθ) , with R :=

a+ b

c
=

√
a+ b

a− b
. (4.32)

This leads to the following expression∫
E

C
(1+α)
2n

(z
c

)(z
c

)2l

dAα(z) =

=
1 + α

π

∫ 1

0

drr

∫ 2π

0

dθ C
(1+α)
2n

(
z(r, θ)

c

)(
z(r, θ)

c

)2l

(1− r2)α. (4.33)
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The even Gegenbauer polynomials can be written in terms of Gauß’ hypergeometric
function (2.59) in the following way

C
(1+α)
2n

(
z(r, θ)

c

)
=

(−1)n(1 + α)n
n!

F

(
−n, n+ α + 1;

1

2
;
z(r, θ)2

c2

)
=

(−1)n

2Γ(1 + α)n!

n∑
p=0

2p∑
k=0

(−1)p
(
n

p

)(
2p

k

)
Γ(1 + α + n+ p)Γ(p)

Γ(2p)
r2pR2(k−p)e2iθ(k−p)

=
(−1)n

2Γ(1 + α)n!

n∑
p=0

2p∑
k=0

(−1)p
(
n

p

)(
2p

k

)
Γ(1 + α + n+ p)Γ(p)

Γ(2p)
r2pR2(p−k)e2iθ(p−k).

(4.34)

Here, we introduced two representations to be both used below, using the binomial
theorem for (4.32) in two equivalent ways. In order to prepare the integration in (4.33),
we spell out the complex conjugated variable to the power 2l:

(
z(r, θ)

c

)2l

=
(r

2

)2l (
Re−iθ +R−1eiθ

)2l

=
(r

2

)2l
[

l∑
k=1

(
2l

k + l

)
R−2ke2iθk +

(
2l

l

)
+

l∑
k=1

(
2l

k + l

)
R2ke−2iθk

]
.

(4.35)

From the radial integral in (4.33) we obtain, including all prefactors,

1 + α

π

∫ 1

0

dr r2p+1 r
2l

22l
(1− r2)α =

1 + α

22l+1π
B(1 + α, 1 + p+ l). (4.36)
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For the remaining angular integration we thus have∫
E

C
(1+α)
2n

(z
c

)(z
c

)2l

dAα(z) =

=
(1 + α)(−1)n

22l+1π

l∑
k′=1

n∑
p=0

2p∑
k=0

(
2l

k′ + l

)
(−1)pΓ(1 + α + n+ p)Γ(1 + l + p)

(n− p)!k!(2p− k)!Γ(2 + α + l + p)

×R2(p−k−k′)
∫ 2π

0

dθ e2iθ(p−k+k′)

+
(1 + α)(−1)n

22l+1π

n∑
p=0

2p∑
k=0

(
2l

l

)
(−1)pΓ(1 + α + n+ p)Γ(1 + l + p)

(n− p)!k!(2p− k)!Γ(2 + α + l + p)

×R2(p−k)

∫ 2π

0

dθ e2iθ(p−k)

+
(1 + α)(−1)n

22l+1π

l∑
k′=1

n∑
p=0

2p∑
k=0

(
2l

k′ + l

)
(−1)pΓ(1 + α + n+ p)Γ(1 + l + p)

(n− p)!k!(2p− k)!Γ(2 + α + l + p)

×R2(k−p+k′)
∫ 2π

0

dθ e2iθ(k−p−k′).

(4.37)

In the first step we have already simplified the binomial factors and Gamma-functions
from (4.34). Notice that in the first two terms, obtained from integrating over the first
two contributions on the right-hand side of (4.35), we have used the second identity in
(4.34), whereas for the last sum from (4.35) we have used the first form of identity in
(4.34). We now evaluate each of the multiple sums in (4.37) individually. In the last
triple sum we have k = p + k′ due to the angular integration, because of k ≤ 2p, this
force k′ ≤ p we obtain for it

(1 + α)(−1)n

22l

l∑
k′=1

(
2l

k′ + l

) n∑
p=k′

(−1)pΓ(1 + α + n+ p)Γ(1 + l + p)

(n− p)!(k′ + p)!(p− k′)!Γ(2 + α + l + p)
R4k′ .

(4.38)

Clearly, this is a polynomials in R of degree 4l. Let

ak(n, l) =
n∑
p=k

(−1)pΓ(1 + α + n+ p)Γ(1 + l + p)

(n− p)!(k + p)!(p− k)!Γ(2 + α + l + p)

=
(−1)k

(n− k)!

n−k∑
p=0

(−1)p
(
n− k
p

)
Γ(1 + α + n+ k + p)Γ(1 + l + k + p)

(2k + p)!Γ(2 + α + l + k + p)
.

(4.39)
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From the second term in (4.37), the double sum, the angular integration contribute
only when p = k, i.e. we obtain the term a0 with R rise to the power 0. For the first
triple sum, we have again k = p+k′ thus k′ ≤ p, so after collecting all the terms we have

∫
E

C
(1+α)
2n

(z
c

)(z
c

)2l

dAα(z)

=
(1 + α)

(−1)n22l

(
l∑

k=1

(
2l

k + l

)
akR

4k +

(
2l

l

)
a0 +

l∑
k=1

(
2l

k + l

)
akR

−4k

)

=
(1 + α)

(−1)n22l

(
l−1∑
k=0

(
2l

k

)
al−kR

4(l−k) +

(
2l

l

)
a0 +

2l∑
k=l+1

(
2l

k

)
ak−lR

−4(k−l)

)
. (4.40)

So, if we can show that all coefficients ak(n, l) vanish for k = 0, 1, . . . , l when l < n,
we are done. This can be seen as follows. From the definition (4.39) we have,

ak =
(−1)k

(n− k)!

n−k∑
p=0

(−1)p
(
n− k
p

)
Γ(1 + α + n+ k + p)Γ(1 + l + k + p)

(2k + p)!Γ(2 + α + l + k + p)

=
(−1)k

(n− k)!Γ(1 + α)

∫ 1

0

dx xl+k(1− x)α
n−k∑
p=0

(−1)p
(
n− k
p

)
Γ(1 + α + n+ k + p)

Γ(1 + 2k + p)
xp

=
(−1)k(1 + α)n+k

(n− k)!(2k)!

∫ 1

0

dx xl+k(1− x)αF (−n+ k, 1 + α + n+ k; 1 + 2k;x).

(4.41)

By Lemma 2.6, with γ = 2k+ 1 and ρ = l+ k+ 1, the last integral vanishes for l < n,
and for l = n, we have

ak(n, n) =
(−1)nΓ(1 + α + n+ k)Γ(1 + α + n− k)

Γ(1 + α)Γ(2n+ α + 2)
. (4.42)

Note that an−k(n, n) = ak−n(n, n) and a0(n, n) = an−n(n, n), taking into consideration
this symmetry, from (4.40) we get the result for the integral at n = l as∫

E

C
(1+α)
2n

(z
c

)(z
c

)2l

dAα(z) = δn,l
(2n)!2−2n

(2 + α)2n

2n∑
k=0

(1 + α)k(1 + α)2n−k

k!(2n− k)!
R4(n−k).

The leading coefficient of Cα
2l(z) can be obtained from (2.59)

C
(1+α)
2l (z/c) =

(1 + α)2l2
2l

(2l)!
(z/c)2l +O((z/c)2l−2) . (4.43)

Because the lower powers give zero, combined with (4.43) we have
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∫
E

C
(1+α)
2n

(z
c

)
C

(1+α)
2l

(
z

c

)
dAα(z) =

(1 + α)δ2n,2l

1 + α + 2n

2n∑
k=0

(1 + α)k(1 + α)2n−k

k!(2n− k)!
R4(n−k).

The remaining sum can be related to a single Gegenbauer polynomial as follows.
Because this sum is invariant under k → 2n− k, we can write it as

=
1

2

2n∑
k=0

(1 + α)k(1 + α)2n−k

k!(2n− k)!
(R4(n−k) +R−4(n−k))

=
2n∑
k=0

(1 + α)k(1 + α)2n−k

k!(2n− k)!
cosh[(2n− 2k) ln(R2)]

= C
(1+α)
2n

(
a2 + b2

a2 − b2

)
. (4.44)

In the last step we have used the (analytically continued) relation [69, 18.5.11]

C(1+α)
m (cos θ) =

m∑
l=0

(1 + α)l(1 + α)m−l
l!(m− l)!

cos((m− 2l)θ) , (4.45)

together with

cosh[ln(R2)] =
1

2
(R2 +R−2) =

a2 + b2

a2 − b2
. (4.46)

This completes the proof for even indices. The proof for the odd polynomials follows
exactly in the same way and as was mentioned above it can be found in [2]. �

Remark 4.7. We can establish contact with the usual orthogonality relation for the
Gegenbauer polynomials on the real interval [−1, 1]. The change of variables for the
imaginary part y = b

a
ŷ maps the ellipse to a disc of radius a. Together with dAα(z) =

(1 +α)(1− (x/a)2− (y/b)2)αdxdy/(abπ), this allows us to take the limit b→ 0 on (4.28)

lim
b→0

∫
E

C(1+α)
m

(z
c

)
C(1+α)
n

(
z

c

)
dAα(z) =

=

∫ a

−a
C(1+α)
m

(x
a

)
C(1+α)
n

(x
a

)(
1− x2

a2

)α ∫ √a2−x2
−
√
a2−x2

(
1− ŷ2

a2 − x2

)α
(1 + α)dŷdx

a2π

=

∫ 1

−1

C(1+α)
m (x)C(1+α)

n (x)
(
1− x2

)α+ 1
2 F

(
1

2
,−α;

3

2
; 1

)
2(1 + α)

π
dx

=
1 + α

1 + α + n
C(1+α)
n (1)δn,m .

(4.47)

The value of Gegenbauer polynomials at x = 1 follows from (2.47)
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C(1+α)
n (1) =

Γ(2 + 2α + n)

Γ(2 + 2α)Γ(n+ 1)
, (4.48)

and for Gauß’ hypergeometric function [47, 9.122] at unity

F

(
1

2
,−α;

3

2
; 1

)
=

√
πΓ(1 + α)

2Γ(α + 3/2)
, (4.49)

this yield to the standard orthogonality relation∫ 1

−1

C(α+1)
n (x)C(α+1)

m (x)(1− x2)α+ 1
2 dx =

21−2(1+α)πΓ(2 + 2α + n)

(1 + α + n)Γ2(1 + α)n!
δn,m . (4.50)

We can now finish the proof of Theorem 4.5 by showing the completeness of the system
of orthogonal polynomials.

Proof. Let f ∈ A2
α with 〈f, pn〉α = 0 for all n = 0, 1, 2, .... Then

0 = lim
b→0
〈f, pn〉α =

∫ 1

−1

dx f(ax)C(1+α)
n (x)(1− x2)α+ 1

2 . (4.51)

Hence f(ax) = 0 for all x ∈ (−1, 1), see [38] for the completeness of the Jacobi polyno-
mials on the real line. Since f is regular in E, it follows that f ≡ 0, i.e. {pαn} defined
above form an orthonormal basis for A2

α. �

As remarks, we will establish a series of immediate consequences of Theorem 4.5.

Remark 4.8. In the case α = 0 we recover the orthogonality relation for Chebyshev

polynomials of the second kind, due to Un(x) = C
(1)
n (x), which goes back to [45]. We

will come back to this statement in Section 5.

Remark 4.9. In the limit c → 0, when the ellipse E becomes a disc, we obtain for
integer values of α the weight function that results from the complex eigenvalues of
the ensemble of truncated unitary random matrices studied in [14], with monomials as
orthogonal polynomials. This can be seen as follows: We have from eq. (4.34) that the
monic Gegenbauer polynomials occurring in (4.28) read:

p̃(α)
n (z) :=

n!cn

2n(1 + α)n
C(1+α)
n (z/c) . (4.52)

Multiplying (4.28) with the corresponding factors, we can take the limit b→ a, implying
c→ 0 in this orthogonality relation, to obtain∫

x2+y2<a2
zmz̄n(1 + α)

(
1− |z|

2

a2

)α
d2z

πa2
=

n!(1 + α)

(1 + α)n(1 + α + n)
a2nδn,m , (4.53)

where z = x+ iy. After rescaling z → az, and dividing (4.53) by (1+α), we arrive at the
weight function and monic polynomials for the complex eigenvalues in the ensemble of
truncated unitary random matrices [14] on the unit disc. It is defined starting from the
circular unitary ensemble of Haar distributed unitary random matrices of size N × N ,
and truncating these to the upper left block of size M ×M with N > M , by removing
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N − M rows and columns. The weight function reads w(z) = (1 − |z|2)N−M−1, that
is we have to identify α = N −M − 1 ≥ 0. In this case there is no singularity on the
boundary of the circle, and we may extend our integration from inside the disc to include
the boundary, cf. (4.24). In this ensemble this is important as for large M and small
truncation N −M a substantial fraction of eigenvalues of the truncated unitary matrix
may remain on the unit circle. We refer to [14] for a further discussion of the limiting
behaviour.

In analogy to the relation between the Ginibre ensemble and its elliptic version, our
Gegenbauer polynomials can thus be viewed as the orthogonal polynomials of an elliptic
deformation of the truncated unitary ensemble [14], with an appropriate random matrix
realisation yet to be constructed.

Remark 4.10. We can make contact with the holomorphic Hermite polynomials (Thm.
3.5 ) in the plane. Setting z → z/

√
1 + α and taking α to infinity in (4.28), we have

from (2.67)

lim
α→∞

(1 + α)−
n
2C(1+α)

n

(
(1 + α)−

1
2x
)

= Hn(x)/n! , (4.54)

leading to ∫
C

Hm(z/c)Hn(z/c) e−Q(z)dA(z) = πn! ab

(
2
a2 + b2

a2 − b2

)n
δn,m , (4.55)

with Q(z) defined in (4.5). This reproduces the known orthogonality relation for Hermite
polynomials in the complex plane, obtained by van Eijndhoven and Meyers [57, Eq.(0.5)]

for a =
√

1
1−A and b =

√
A

1−A , with 0 < A < 1, see also [21].

Remark 4.11. Gegenbauer polynomials may be written in terms of symmetric Jacobi
polynomials (2.56), the orthogonality relations given by lemma 4.6 imply

∫
E

P
(α+1

2 ,α+
1
2 )

n (z/c)P
(α+1

2 ,α+
1
2 )

m (w/c)dAα(w) =
δn,m(1 + α)

1 + α + n

(α + 3
2
)n

(2(1 + α))n
P

(α+1
2 ,α+

1
2 )

n

(
a2 + b2

a2 − b2

)
(4.56)

where a > b > 0 and c =
√
a2 − b2.

Remark 4.12. Gegenbauer polynomials satisfy a non-Hermitian orthogonality condi-
tion. With the above notation, let us define the bilinear form Bα(f, g) by

Bα(f, g) :=

∫
E

f(z)g(z)dAα(z), f, g ∈ L2(E, dAα). (4.57)

Lemma 4.13. The sequence of Gegenbauer polynomials {C(1+α)
n (z/c)}n∈N satisfy the

following non-Hermitian orthogonality relations

Bα

[
C(1+α)
n , C(1+α)

m

]
=

1 + α

1 + α + n
C(1+α)
n (1) δnm. (4.58)
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Proof. Unsing the same notations as in lemma 4.6, we recall that even Gegenbauer
polynomials can be written in the following two equivalent forms

C
(1+α)
2n

(
z(r, θ)

c

)
=

(−1)nΓ(n+ 1 + α)

Γ(n+ 1)Γ(1 + α)
F

(
−n, n+ α + 1;

1

2
;
z(r, θ)2

c2

)
=

(−1)n

2Γ(1 + α)n!

n∑
p=0

2p∑
k=0

(−1)p
(
n

p

)(
2p

k

)
Γ(1 + α + n+ p)Γ(p)

Γ(2p)
r2pR2(k−p)e2iθ(k−p)

(4.59)

=
(−1)n

2Γ(1 + α)n!

n∑
p=0

2p∑
k=0

(−1)p
(
n

p

)(
2p

k

)
Γ(1 + α + n+ p)Γ(p)

Γ(2p)
r2pR2(p−k)e2iθ(p−k),

(4.60)

and that under the change of variable (4.30) z(r, θ) it can be expanded using Newton’s
binomial, but this time without taking complex conjugation

(
z(r, θ)

c

)2l

=
(r

2

)2l (
Reiθ +R−1e−iθ

)2l

=
(r

2

)2l
[

l∑
k=1

(
2l

k + l

)
R−2ke−2iθk +

(
2l

l

)
+

l∑
k=1

(
2l

k + l

)
R2ke2iθk

]
.

(4.61)

If we combine (4.59) with the first term in the right hand side of (4.61) and (4.60)
with the last term in (4.61) we will obtain the same angular contribution as in (4.40),
but now with R rised to the power 0. Replacing R = 1 in (4.46) we complete the proof.

�

4.2. Legendre polynomials. From Lemma 4.6 at α = −1/2 we obtain as a special

case the orthogonality of the Legendre polynomials Pn(x) = C
(1/2)
n (x):

Corollary 4.14. The Legendre polynomials Pn are orthogonal with respect to the weight
function dAα defined in (4.7) at α = −1/2:∫

E

Pm

(z
c

)
Pn

(
z

c

)
dA− 1

2
(z) =

1

1 + 2n
Pn

(
a2 + b2

a2 − b2

)
δn,m . (4.62)

We have not been able to find this result in the literature either.
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5. The weighted Bergman space Ap

α,±1
2

The quadratic transformations (2.57) and (2.58), which relates the Gegenbauer poly-
nomials with a subfamily of non-symmetric Jacobi polynomials, suggest that the under-
lying map together with Theorem 4.5 will lead to new orthogonality relations for the
non-symmetric Jacobi polynomials at (α+ 1/2,±1/2). Let us start, first, with the effect
of such quadratic transformation on the ellipse E (4.6).

Proposition 5.1. Let a > b > 0, and for

ã =
a2 + b2

c
, b̃ =

2ab

c
, c =

√
a2 − b2

consider the ellipse Eã,b̃, with parameters ã, b̃. Then, the pullback of the measure dAα(z)
in E to Eã,b̃ is

dAα(z) =
(1 + α)

2πb̃

(1− J(w))α

|c̃+ w|
dA(w) (5.1)

where,

J(w) =
ã

b̃2
|c̃+ w| − c̃

b̃2
Re (c̃+ w). (5.2)

Proof. We introduce first an auxiliary ellipse Ecut
ã,b̃

= Eã,b̃ \ {Re(w) + c < 0} and the

domain E+
a,b = {z ∈ E : Re(z) > 0}. We procede in showing that the function

ϕ : Ecut
ã,b̃
−→ E+

a,b

w 7−→ c

√
w + c

2c
(5.3)

maps conformally the domain Ecut
ã,b̃

onto E+
a,b. We recall the function Q(z) = A|z|2 −

B Re(z2) parametrizes the ellipse E with the parameters A,B given in (4.4), these two
quantities satisfy

A2 −B2 =
2B

c2
and

Bc2

2
+ 1 =

(a2 + b2)2

4a2b2
. (5.4)

Thus, we can write for z = ϕ(w), w = u+ iv

1 > A|z|2 −B Re(z2) =
cA

2
|w + c| − cB

2
Re(w + c)

=
cA

2

√
(u+ c)2 + v2 − cB

2
(u+ c), (5.5)
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which is the defining equation for the new domain. The claim that it is again given
by an ellipse, with new parameters ã and b̃, can be seen as follows. From (5.5) we have

0 <
cA

2

√
(u+ c)2 + v2 < 1 +

cB

2
(u+ c)

⇔ c2

4
(A2 −B2)u2 + uc

(
c2(A2 −B2)

2
−B

)
+
c2A2

4
v2 < 1− c4(A2 −B2)

4
+Bc2

⇔ c2

(a2 + b2)2
u2 +

c2

4a2b2
v2 < 1 ,

(5.6)

which is obtained after squaring the inequality, using (5.4) and multiplying with
4a2b2/(a2 + b2)2. Clearly ϕ is analytic in Eã,b̃, therefore the mapping function ϕ has
the required properties. It remains to show (5.1), to this end, we use the fact that the
measure dAα and the domain E are invariant under reflection, so without restriction,
it is enough to consider twice the measure dAα with support in E+

a,b. We note that

c̃2 = ã2 − b̃2 = a2 − b2 = c2 follows, and

1−Q(ϕ(w)) = 1− cA

2
|w + c|+ cB

2
Re(w + c).

= 1− J(w) , (5.7)

In the last equation we have used cA/2 = ã/b̃2 and cB/2 = c̃/b̃2. The contribution of
the Jacobian |ϕ′(w)|2 gives the extra factor in the denominator of (5.1).

The restriction on the square root cut, which would lead to a slit domain, can be
removed. To showcase this, we multiply the equation defining Ea,b

u2

a2
+
v2

b2
< 1

⇔ a2
(
(u+ c)2 + v2

)
< (b2 + c(u+ c))2 , (5.8)

by a2b2, to arrive at the second line. While it is clear that the left hand side is always non
negative, we can take the square root here without crossing zero, due to the following
fact. It holds that b2 + c(u + c) = cu + a2 inside the square on the right hand side is
always positive for u ∈ (−a,+a). �

As an important consequence of Proposition 5.1, the function

J(z) =
a

b2
|c+ z| − c

b2
Re (c+ z), a > b > 0 (5.9)

provides an explicit parametrisation of the interior of an ellipse E:

E = {z ∈ C : J(z) < 1} . (5.10)
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For 0 < p <∞ and−1 < α <∞, we defineAp
α,− 1

2

:= Ap
α,− 1

2

(E, dBα,− 1
2
) ⊆ Lp(E, dBα,− 1

2
),

the two parameters (α,−1/2) weighted Bergman space of the ellipse E, where

dBα,− 1
2
(z) :=

(1 + α)

2πb

(1− J(z))α

|c+ z|
dA(z). (5.11)

For 1 ≤ p <∞ the standard Lp-norm is definded by

||f ||p,α,− 1
2

=

(∫
E

|f(z)|p dBα,− 1
2
(z)

)1/p

, (5.12)

and for 0 < p < 1 the corresponding metric is given by

d(f, g) =

∫
E

|f(z)− g(z)|p dBα,− 1
2
(z) . (5.13)

Moreover, for 0 < p < ∞ and −1 < α < ∞, we define Ap
α, 1

2

:= Ap
α, 1

2

(E, dBα, 1
2
) ⊆

Lp(E, dBα, 1
2
), the two parameters (α, 1/2) weighted Bergman space of the ellipse E,

where

dBα, 1
2
(z) :=

(1 + α)(2 + α)

2πab
(1− J(z))αdA(z). (5.14)

For 1 ≤ p <∞ the standard Lp-norm is definded by

||f ||p,α, 1
2

=

(∫
E

|f(z)|p dBα, 1
2
(z)

)1/p

, (5.15)

and for 0 < p < 1 the corresponding metric is given by

d(f, g) =

∫
E

|f(z)− g(z)|p dBα, 1
2
(z) . (5.16)

First, for p ≥ 1 we will show (but now with a short argument) that the Bergman space
Ap
α,− 1

2

shares the same properties as A2
α, i.e the Proposition 4.1 and Corollary 4.2 hold

true for Ap
α,− 1

2

. This means that Bergman space Ap
α,− 1

2

is a Banach space. Later, the

same proof can by carried out for Ap
α, 1

2

, with 0 < p <∞ and α > −1.

Proposition 5.2. Let 1 ≤ p < ∞ and −1 < α < ∞, and K be a compact subset of E,
with positive minimum distance to ∂E. Then, there is a positive constant C such that

sup
K
|f(z)|p ≤ C‖f‖p

p,α,− 1
2

,

for all f ∈ Ap
α,− 1

2

.

Proof. We procede as in Proposition 4.1, from (5.8) it follows that J(z) = 1 if and only
if z ∈ ∂E. It is easy to see that there are no local extrema for J(z) inside the smaller
ellipse Eρ (4.11) , therefore 0 < maxz∈Eρ j(z) = j(z∗) < 1 for some z∗ ∈ Eρ.
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Thus, given f ∈ Ap
α.− 1

2

, B(t, ε) ⊆ E with positive minimum distance to the boundary

∂E, with 0 < r < dist(B(t, ε), ∂E), we can find a positive constant C > 0 such that

|f(z)| ≤ 4

πr2

∫
B(z,r/2)

|f(w)| dA(w)

≤ C1

∫
B(z,r/2)

|f(w)| (1− J(w))αdA(w)

≤ C2

[∫
E

|f(w)|p dBα,− 1
2
(w)

] 1
p
[∫

E

|w + c|
q
p (1− J)αdA

] 1
q

= C‖f‖p,α,− 1
2

for z ∈ B(t, ε) . (5.17)

In the second step we use the fact that B(z, r/2) ⊆ Er which allows to introduce
the weight (1 − J)α as in proposition 4.1, following by Hölder’s inequality with p, q ≥
1, 1/p+ 1/q = 1, the second integral in the right hand side of (5.17) is constant and can
be absorbed in C. �

Corollary 5.3. For every 1 ≤ p <∞, −1 < α <∞, the weighted Bergman space Ap
α,− 1

2

is closed in Lp(E, dBα,− 1
2
).

Proposition 5.4. Let 0 < p < ∞ and −1 < α < ∞, and K be a compact subset of E,
with positive minimum distance to ∂E. Then, there is a positive constant C such that

sup
K
|f(z)|p ≤ C‖f‖p

p,α, 1
2

,

for all f ∈ Ap
α, 1

2

.

Corollary 5.5. For every 0 < p <∞, −1 < α <∞, the weighted Bergman space Ap
α, 1

2

is closed in Lp(E, dBα, 1
2
).

5.1. Holomorphic Jacobi polynomials P
(α+ 1

2
,− 1

2
)

n . For p ≥ 1 it follows from Corollary
5.3 that the Bergman space is a Banach space, in particular for p = 2 a Hilbert space
with the inner product defined as

〈f, g〉α,− 1
2

:=

∫
E

f(z)g(z) dBα,− 1
2
(z) , f, g ∈ A2

α,− 1
2
. (5.18)

For any non-negative integer n and real parameter α > −1 let us define the polynomials

J
(α+ 1

2
,− 1

2
)

n (z) :=
1√
hn
P

(α+ 1
2
,− 1

2
)

n

(z
c

)
, (5.19)

where P
(α+ 1

2
,− 1

2
)

n (x) are the standard Jacobi polynomials (2.46), now taken with a com-
plex argument. We recall that the ellipse E in (5.10) defining the inner product (5.18)
is parametrised by the real numbers a > b > 0. The constant

c :=
√
a2 − b2 > 0 (5.20)
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provides the location of the right focus of the ellipse E, and we define by

hn := hn(a, b) =
1 + α

1 + α + 2n

(1/2)n
(1 + α)n

P
(α+ 1

2
,− 1

2
)

n

(
a2 + b2

a2 − b2

)
, (5.21)

Theorem 5.6. The sequence of polynomials {J (α+ 1
2
,− 1

2
)

n (z)}n∈N defined in (5.29) forms
a orthonormal basis for A2

α,− 1
2

for any α > −1.

We show that Jacobi polynomials P
(α+ 1

2
,− 1

2
)

n (z) satisfy the orthogonality condition with
norm (5.21), the completeness of the sequence of Jacobi polynomials follows by the same
line of argument in Theorem 4.5.

Lemma 5.7. Let E be the elliptic domain (5.10), dBα,− 1
2
(z) the density (5.11) over

E and α > −1. Then sequence of Jacobi polynomials {P (α+ 1
2
,− 1

2
)

n (z)}n∈N satisfy the
following orthogonality relations∫
E

P
(α+ 1

2
,− 1

2
)

n (w/c)P
(α+ 1

2
,− 1

2
)

m (w/c)dBα,− 1
2
(w) =

δn,m(1 + α)

1 + α + 2n

(1/2)n
(1 + α)n

P
(α+ 1

2
,− 1

2
)

n

(
a2 + b2

a2 − b2

)
.

(5.22)
where a > b > 0 and c =

√
a2 − b2.

Proof. Using the quadratic transformation (2.57), we have for all even Gegenbauer poly-
nomials

C
(α+1)
2n (z/c) =

(α + 1)n(
1
2

)
n

P
(α+ 1

2
,− 1

2
)

n

(
2
(z
c

)2

− 1

)
, (5.23)

By Proposition 5.1, with z = ϕ(w), we have

〈Cα+1
2n , Cα+1

2m 〉α =

∫
E

C
(α+1)
2n (z/c)C

(α+1)
2l (z̄/c)dAα(z)

= 2

∫
E+
a,b

C
(α+1)
2n (z/c)C

(α+1)
2l (z̄/c)dAα(z)

=
(α + 1)2

n(
1
2

)2

n

∫
Eã,b̃

P
(α+ 1

2
,− 1

2
)

n (w/c̃)P
(α+ 1

2
,− 1

2
)

m (w/c̃) dBα,− 1
2
(w),

(5.24)

with

J(w) =
ã

b̃2
|c̃+ w| − c̃

b̃2
Re (c̃+ w). (5.25)

Now, we use the norm of even Gegenbauer polynomials, Lemma 4.6, is given by

〈Cα+1
2n , Cα+1

2m 〉α =
1 + α

1 + α + 2n
C

(1+α)
2n

(
a2 + b2

a2 − b2

)
δnm (5.26)
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the quantity (a2 + b2)/(a2 − b2) = ã/c̃, and using again the quadratic transformation
(5.23), we have

C
(α+1)
2n (ã/c̃) =

(α + 1)n(
1
2

)
n

P
(α+ 1

2
,− 1

2
)

n

(
ã2 + b̃2

ã2 − b̃2

)
, (5.27)

Multiplying (5.24) with (1/2)2
n/(α + 1)2

n and dropping the tilde on all quantities we
arrive at the statement in (5.22). �

5.2. Holomorphic Jacobi polynomials P
(α+ 1

2
, 1
2

)
n . For p ≥ 1 it follows from Corollary

5.5 the Bergman space is a Banach space, in particular for p = 2 a Hilbert space with
the inner product defined as

〈f, g〉α, 1
2

:=

∫
E

f(z)g(z) dBα, 1
2
(z) , f, g ∈ A2

α, 1
2
. (5.28)

For any non-negative integer n and real parameter α > −1 let us define the polynomials

J
(α+ 1

2
, 1
2

)
n (z) :=

1√
hn
P

(α+ 1
2
, 1
2

)
n

(z
c

)
, (5.29)

where P
(α+ 1

2
, 1
2

)
n (z) are the standard Jacobi polynomials (2.46), now taken with a complex

argument. We recall that the ellipse E in (5.10) defining the inner product (5.28) is
parametrised by the real numbers a > b > 0. The constant

c :=
√
a2 − b2 > 0, (5.30)

provides the location of the right focus of the ellipse E, and we define by

hn := hn(a, b) =
2 + α

2 + α + 2n

(3/2)n
(2 + α)n

P
(α+ 1

2
, 1
2

)
n

(
a2 + b2

a2 − b2

)
. (5.31)

Theorem 5.8. The sequence of polynomials {J (α+ 1
2
, 1
2

)
n (z)}n∈N defined in (5.29) forms a

orthonormal basis for A2
α, 1

2

for any α > −1.

The proof of this Theorem is analogous to the theorem 5.6, we will only establish the
result of orthogonality with a short comment after this

Lemma 5.9. Let E be the elliptic domain (5.10), dBα, 1
2
(z) the density (5.14) over E

and α > −1. Then sequence of Jacobi polynomials {P (α+ 1
2
, 1
2

)
n (z)}n∈N satisfy the following

orthogonality relations

∫
E

P
(α+ 1

2
, 1
2

)
n (w/c)P

(α+ 1
2
, 1
2

)
m (w/c)dBα, 1

2
(w) =

δn,m(2 + α)

2 + α + 2n

(3/2)n
(2 + α)n

P
(α+ 1

2
, 1
2

)
n

(
a2 + b2

a2 − b2

)
,

(5.32)
where a > b > 0 and c =

√
a2 − b2.



49

Proof. We use the quadratic transformation (2.58)

C
(α+1)
2n+1 (z/c) =

(α + 1)n+1(
1
2

)
n+1

z

c
P

(α+ 1
2
, 1
2

)
n (2(z/c)2 − 1) . (5.33)

together with Proposition 5.1. Apart from the additional constant factors, we obtain
from (5.33) an additional factor ∣∣∣z

c

∣∣∣2 =
|w + c|

2c
(5.34)

which cancels the pole from the Jacobian |ϕ′(z)|2. �

5.3. Orthogonality of the Chebyshev polynomials. In this section we will prove the
orthogonality of the Chebyshev polynomials of first to fourth kind as a direct consequence
of Theorems 5.6 and 5.8. The following statement is due to [46], where the notation for
the polynomials of third and fourth kind is interchanged compared to ours, Vn ↔ Wn.

Corollary 5.10. The Chebyshev polynomials satisfy the following orthogonality relations
on the ellipse defined in (4.6), with r = a+ b and c2 = a2 − b2:

∫
E

Tn(z/c)Tm(z/c)
d2z

|z2 − c2|
=


π

4n
((r/c)2n − (c/r)2n)δn,m for n > 0,m ≥ 0,

2π ln(r/c) for n = m = 0 ,

(5.35)

∫
E

Un(z/c)Um(z/c) d2z =
πc2

4(1 + n)
((r/c)2n+2 − (c/r)2n+2)δn,m , (5.36)∫

E

Vn(z/c)Vm(z/c)
d2z

|c+ z|
=

πc

1 + 2n
((r/c)2n+1 − (c/r)2n+1)δn,m , (5.37)∫

E

Wn(z/c)Wm(z/c)
d2z

|c− z|
=

πc

1 + 2n
((r/c)2n+1 − (c/r)2n+1)δn,m . (5.38)

Note that for better comparison with [46]2 our statements are with respect to the flat
measure d2z = dRe(z)d Im(z). Because the proof for Chebyshev polynomials Un, Vn and
Wn is similar, we show only one case and leave the others for the reader.

Proof. The Chebyshev Polynomials of the third kind Vn are related to Jacobi polynomials
as in (2.54):

Vn(z/c) =
1 + 2n

P
(1/2,−1/2)
n (1)

P (1/2,−1/2)
n (z/c) . (5.39)

2In contrast to the orthogonality of the Chebyshev polynomials on the contour given by the boundary
of the ellipse ∂E stated in [46] too, the weight function we find here differs from the classical weight on
the real line, continued to the ellipse.
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Setting α = 0 in (5.22) we obtain∫
E

Vn(w/c)Vm(w/c)
d2w

|c+ w|
=

2πb(1)n
(1 + 2n)(1/2)n

P
( 1
2
, 1
2

)
n

(
2
(a
c

)2

− 1

)
δn,m

=
2πb

1 + 2n
C

(1)
2n

(a
c

)
δn,m (5.40)

Here, we have included the pre-factors in (5.39). Using (4.45) for an even index, we have

C
(1)
2n (cos(i ln(r/c))) =

2n∑
k=0

cos((2n− 2k)i ln(r/c))

=
2n∑
k=0

(r
c

)2n−k (c
r

)k
=

c

2b
((r/c)2n+1 − (c/r)2n+1) . (5.41)

Recalling r = a+ b and c2 = a2 − b2, we have

1

2

(r
c

+
c

r

)
=
a

c
and

1

2

(r
c
− c

r

)
=
b

c
, (5.42)

which upon replacing C
(1)
2n (a/c) in (5.40) leads to the statement (5.37).

We turn to the orthogonality for the Chebyshev polynomials of the first kind Tn. The
relation [69, 18.7.18]

T2n+1(x) = xWn(2x2 − 1) (5.43)

allows us to find the corresponding weight function and orthogonality of the odd poly-
nomials, starting from (5.38):∫
Eã,b̃

Wn(z′/c)Wm(z′/c)
d2z′

|z′ − c|
= 8c

∫
E+
a,b

z

c
Wn(2(z/c)2 − 1)

z

c
Wm(2(z/c)2 − 1)

d2z

|z2 − c2|

= 4c

∫
E

T2n+1(z/c)T2m+1(z/c)
d2z

|z2 − c2|
. (5.44)

Here, we use the inverse transformation in Proposition 5.1. Thus the polynomials {Tn}
are orthogonal w.r.t. 1

|z2−c2|d
2z. The following well known relation [46] holds for the

Joukowsky map z/c = 1
2
(w/c+ c/w):

Tn(z/c) =
1

2
((w/c)n + (c/w)n) for n ≥ 0, (5.45)



51

which maps the ellipse E to the annulus A := {w ∈ C : c < |w| < r}. Thus we obtain
for n > 0,m ≥ 0∫

E

Tn(z/c)Tm(z/c)
d2z

|z2 − c2|

=

∫
A

Tn(z(w)/c)Tm(z(w)/c)
d2w

|w|2

=
1

4

∫ r

c

ds

s

∫ 2π

0

dθ
(
(s/c)neinθ − (c/s)ne−inθ

) (
(s/c)me−imθ − (c/s)meimθ

)
=

π

4n
((r/c)2n − (c/r)2n)δn,m

=
πb

2nc
C

(1)
2n−1

(a
c

)
δn,m , (5.46)

by changing to polar coordinates w = s eiθ. Performing the elementary integrations we
need to assume that n > 0 and m ≥ 0. Then, the first part of (5.35) follows while in
the last step we have used (4.45) in order to compare it to the previous orthogonality
relations. Following the same computation for n = m = 0, we have with T0(x) = 1,∫

E

1

|z2 − c2|
d2z = 2π ln(r/c) , (5.47)

which ends the proof of Corollary 5.10.
�

5.4. Bergman polynomials and finite-term recurrence. All the orthogonal polyno-
mials on an ellipse we encountered in the previous section satisfy a three-step recursion
relation, as they result from classical polynomials on the real line. It was shown by
Khavinson and Stylianopoulos in [44], if the planar orthogonal polynomials on a domain
E with regular enough boundary satisfy a finite recurrence relation, then the size of
the recursion is three and the domain is an ellipse. This result was demonstrated for
the unweighted case, also known as Carleman’s polynomials, as summarised in Theorem
5.12 below. Using the Gegenbauer polynomials from Lemma 4.6 that are orthogonal on
a weighted ellipse, we will construct an example of a family of orthogonal polynomials
with respect to a non-flat weight function, that has no finite-term recursion on such
ellipse. Therefore the elliptic domain is not special and weight functions which leads to
finite-term recursion are exceptional. In this sense, it remains an open question to char-
acterise the positive Borel measures supported on an ellipse, such that the associated
planar orthogonal polynomials do satisfy a three-terms recurrence relation.

Let E be a bounded domain in the complex plane, let dµ(z) = w(z)dA(z) be a
measure on E, where dA is the planar Lebesgue measure, and w a non-negative weight
function on E. By pn(z) = γnz

n + . . ., γn > 0, we denoted the associated orthonormal
Bergman polynomials. The multiplication operator acting on polynomials can always be
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represented by expanding z pn(z) as a series of the Bergman polynomials being a basis:

z pn(z) =
n+1∑
l=0

cl,n pl(z) , n = 0, 1, 2, . . . (5.48)

The Fourier coefficients cl,n are then given by

cl,n =

∫
E

z pn(z)pl(z)w(z) dA(z) . (5.49)

These coefficients cl,n constitute the entries of an infinite upper Hessenberg matrix

M =


c0,0 c0,1 c0,2 c0,3 . . .
c1,0 c1,1 c1,2 c1,3 . . .
0 c2,1 c2,2 c2,3 . . .
0 0 c3,2 c3,3 . . .
...

...
...

. . . . . .

 .

This matrix provides a representation of the Bergman Shift operator, which is linear and
defined by (Tz f)(z) = zf(z) with respect to the basis {pn}n∈N.

Definition 5.11 (see [44]). We say that the upper Hessenberg matrix is banded or,
equivalently, that the orthogonal polynomials pn satisfy a finite (d+ 1)-term recurrence
if there exists a positive integer d such that

cl,n = 0, for 0 ≤ l < n+ 1− d . (5.50)

In [44] Khavinson and Stylianopoulos proved the following

Theorem 5.12. If the Bergman polynomials orthogonal with respect to the flat measure,
on a bounded simply-connected domain D with regular enough boundary, satisfy a (d+1)-
term recurrence relation with 2 ≤ d, then D is an ellipse and d = 2.

All polynomials in the previous sections satisfy three term recurrence relations, as they
come form the real line, then a natural question is if the above Theorem 5.12 extends to
the weighted case, or at least if the weighted ellipse is special. The answer is negative
and is given in the following proposition

Proposition 5.13. Let v ∈ C, a > b > 0, E be the ellipse with parameters a, b, dAα the
density over E defined in (4.7) and

dµα(z) =: |v − z|2dAα(z). (5.51)

Define the polynomial P
(1)
n (z) by

P
(1)
N (z) =

κN+1(z, v̄)pN+1(v)− κN+1(v, v̄)pN+1(z)

(v − z)
√
κN+1(v, v̄)κN+2(v, v̄)

, (5.52)

where κN(z, w) is the polynomial kernel constituted by the orthonormal Gegenbauer
polynomials pn(z) = Cα+1

n (z/c)/
√
hn.

Then, the sequence of polynomials
{
P

(1)
n (z)

}
n∈N
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(1) form a orthonormal system in L2(E, dµα).

(2) the sequence of polynomials {P (1)
n } do not satisfy any finite term recurrence rela-

tions in the sense of (5.50).

Proof. We use Theorem 3.3 for K = 2 and L = 1. Following the Heine formula (3.9),

the polynomials {P (1)
n }n∈N orthogonal w.r.t. |v− z|2dAα(z) can be expressed in terms of

the polynomials pn orthogonal with respect to dAα(z) (the Gegenbauer polynomials in
this case). They are reading in monic normalisation

P̃
(1)
N (z) =

〈
N∏
i=1

(z − zi)

〉
N,dµα

=

〈∏N
i=1(z − zi)|v − zi|2

〉
N,dAα〈∏N

i=1 |v − zi|2
〉
N,dAα

= h
1
2
N+1

κN+1(z, v̄)pN+1(v)− κN+1(v, v̄)pN+1(z)

(v − z)κN+1(v, v̄)
. (5.53)

Their respective squared norms h̃
(1)
N are not difficult to compute, using the orthonormality

of the underlying polynomials p̃n (3.10):

h̃
(1)
N =

∫
P̃

(1)
N (z)P̃

(1)
N (z) |v − z|2dAα(z)

=
hN+1

κN+1(v, v̄)

(
κN+1(v, v̄)|P̃ (1)

N (v)|2 + κN+1(v, v̄)2
)

=
hN+1κN+2(v, v̄)

κN+1(v, v̄)
. (5.54)

This leads to the orthonormal polynomials (5.52) and complete the first part of the
proposition.

For the second part, we will to show that the Fourier coefficients cl,n of

zP (1)
n (z) =

n+1∑
l=0

cl,n P
(1)
l (z) (5.55)

are (in general) non-zero for l ≤ n− 2.
Here, we may use that the orthonormalised Gegenbauer polynomials (4.18) in the

complex plane also satisfy a three-term recurrence relation (2.61), reading

z p(α)
n (z) = an+1p

(α)
n+1(z) + bnp

(α)
n−1(z) , (5.56)

with

an+1 =
c(n+ 1)

2(n+ α + 1)

√
hn+1

hn
, bn =

c(n+ 2α + 1)

2(n+ α + 1)

√
hn−1

hn
. (5.57)

Here, we use the definition from (4.27) for the squared norms hn of the Gegenbauer
polynomials. Notice that in contrast to the recursion for orthonormal Gegenbauer poly-
nomials on the real line, the recurrence (5.56) is not symmetric, an 6= bn. This is due to
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the difference in norm for [−1, 1] and E. From now on we will use the following notation
for κi+1(v, v̄) := κi+1. A simple calculation implies that the coefficients

cl,n =

∫
E

z P (1)
n (z)P

(1)
l (z) |v − z|2dAα(z) (5.58)

are given by

cl,n =
1

√
κn+1κn+2κl+1κl+2

 l∑
k=1

akp
(α)
k (v)p

(α)
k−1(v̄)−

min{l,n−1}∑
k=0

bk+1p
(α)
k (v)p

(α)
k+1(v̄)


× p(α)

l+1(v̄)p
(α)
n+1(v)−

(
al+1p

(α)
l (v̄)Θ(n− l)− bl+2p

(α)
l+2(v̄)Θ(n− l − 2)

)
κl+1p

(α)
n+1(v)

+ κn+1κn+2an+2δn+1,l − κn+1bn+1p
(α)
n (v)p

(α)
l+1(v̄)Θ(l − n) + κn+1κnan+1δn−1,l

]
,

(5.59)

where we have used the recursion (5.56) and introduced the step function

Θ(x) :=

 1 for x ≥ 0 ,

0 for x < 0 .
(5.60)

If we only restrict ourselves to those indices l ≤ n− 2 which spoil the three-step recur-
rence, the remaining terms are simplified considerably and we obtain

cl,n =
p

(α)
n+1(v)

√
κn+1κn+2κl+1κl+2

[(
vκl + blp

(α)
l−1(v)p

(α)
l (v̄) + bl+1p

(α)
l (v)p

(α)
l+1(v̄)

)
p

(α)
l+1(v̄)

−
(
al+1p

(α)
l (v̄) + bl+2p

(α)
l+2(v̄)

)
κl+1

]
. (5.61)

Let us first check that we recover the three-term recurrence in the real limit b → 0,
where we have to show that indeed cl,n = 0 in this limit for l ≤ n − 2. When b = 0
and the corresponding normalisation constants are understood as hn = hn(a, 0), the
recursion coefficients (5.57) become symmetric, an = bn, as it is known for Gegenbauer
polynomials on [−1, 1] [69], cf. Remark 4.7. We thus obtain for the bracket in (5.61) at
b = 0

p
(α)
l+1(v̄)

(
vκl(v, v̄) + blp

(α)
l−1(v)p

(α)
l (v̄) + bl+1p

(α)
l (v)p

(α)
l+1(v̄)− v̄κl+1(v, v̄)

)
= p

(α)
l+1(v̄)

(
l−1∑
i=0

bi+1p
(α)
i+1(v)p

(α)
i (v̄) +

l+1∑
i=0

bip
(α)
i−1(v)p

(α)
i (v̄)

−
l∑

i=0

p
(α)
i (v)

(
bi+1p

(α)
i+1(v̄) + bip

(α)
i−1(v̄)

))
= 0 . (5.62)
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Here, we have used the notation p
(α)
−1 = 0, and after relabelling the sums they cancel.

To see that the expression (5.61) is non vanishing in general for b > 0, we consider
the leading coefficient of (5.61) as a polynomial in v̄, which is of degree 2l + 2. We thus
have to focus on (

bl+1p
(α)
l+1(v̄)2 − bl+2p

(α)
l (v̄)p

(α)
l+2(v̄)

)
p

(α)
l (v) . (5.63)

Because the polynomials of degree l and l+ 1 do not have common zeros, it is sufficient
to consider the leading coefficients inside the bracket, which read

c(l + 3 + 2α)

2(l + 2 + α)

√
hl
hl+1

1

hl+1

(
2l+1Γ(2 + l + α)

Γ(1 + α)(l + 1)!cl+1

)2

−c(l + 3 + 2α)

2(l + 3 + α)

√
hl+1

hl+2

1√
hl

22l+2Γ(1 + α + l)Γ(3 + α + l)

Γ(1 + α)2l!(l + 2)!c2l+2
, (5.64)

upon using (5.57). Inserting (4.27) and recalling (4.48)

C
(1+α)
l (1) =

Γ(2 + 2α + l)

Γ(2 + 2α)l!
, (5.65)

it can be shown that (5.64) vanishes only if the following equality holds:(
C

(1+α)
l+1 (x)

)2

(
C

(1+α)
l+1 (1)

)2 −
C

(1+α)
l (x)C

(1+α)
l+2 (x)

C
(1+α)
l (1)C

(1+α)
l+2 (1)

= 0 , (5.66)

where

x =
a2 + b2

a2 − b2
. (5.67)

The expression on the left hand side of (5.66), usually denoted by ∆n(x), is know as
Turán determinant. By [70, Theorem 1] ∆n(x) = 0 if and only if x = ±1. Thus cl,n ≡ 0
for 0 ≤ l ≤ n − 2 in the limit b → 0, that is when x → 1, which brings us back to the
real line with a three-step recursion. For x > 1 all Fourier coefficients are non-vanishing,
cl,n 6= 0 for 0 ≤ l ≤ n− 2, in our example of polynomials (5.52) and thus there exists no
finite-term recurrence relation.

�

5.5. Conjecture on general Jacobi polynomials Pα,β
n . Let a > b > 0, r = a + b,

c2 = a2−b2, by E we will denote the ellipse with parameters a, b. Jacobi polynomials are
given by the generating function (5.68), see [69, 18.12.3], valid for |t| < 1, in particular
for |t| < c/r

∞∑
n=0

(1 + α + β)n
(1 + β)n

1 + α + β + 2n

1 + α + β
P (α,β)
n (x)tn (5.68)

=
1− t

(1 + t)α+β+2
F

(
α + β + 2

2
,
α + β + 3

2
, β + 1,

2t(x+ 1)

(1 + t)2

)
, |t| < c

r
< 1.
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Then, after substitution α→ α + 1/2, t→ c/w and x→ z/c, we have

∞∑
n=0

(3/2 + α + β)n
(1 + β)n

3/2 + α + β + 2n

3/2 + α + β
P

(α+ 1
2
,β)

n

(z
c

) cn

wn
(5.69)

=
1− c/w

(1 + c/w)α+β+5/2
F

(
α + β + 5/2

2
,
α + β + 7/2

2
, β + 1,

2(z + c)

w(1 + c/w)2

)
, |w| > r.

So, we can choose R > 0 big enough such that the Laurent series (5.69) converges
uniformly for |w| > R ≥ r and for all z ∈ E. According to the previous introduced
notation, we defined

dBα,β(z) =


dAα(z) for β = α + 1

2
,

dBα,± 1
2
(z) for β = ±1

2
.

(5.70)

Let

fα,β(z, w) :=
∞∑
n=0

(3/2 + α + β)n
(1 + β)n

3/2 + α + β + 2n

3/2 + α + β
P

(α+ 1
2
,β)

n

(z
c

) cn

wn
. (5.71)

Our orthogonality relations (4.56), (5.22) and (5.32) give∫
E

fα,β(z, w)fα,β(z, s)dBα,β(z)

=
∞∑
n=0

(3/2 + α + β)n
(1 + β)n

3/2 + α + β + 2n

3/2 + α + β
P

(α+ 1
2
,β)

n

(
a2 + b2

a2 − b2

)
c2n

(ws)n
(5.72)

=
1− c2/ws

(1 + c2/ws)α+β+5/2
F

(
α + β + 5/2

2
,
α + β + 7/2

2
, β + 1,

2(a2 + b2 + c2)

ws(1 + c2/ws)2

)
.

Taking into account the second line in (5.72)
We conjecture: for a certain probability density dBα,β over the ellipse E, being (5.70)

its particular cases, the Jabobi polynomials with α, β > −1 satisfy the orthogonality
relations

〈Pα+ 1
2

n , P
β+ 1

2
m 〉α,β =

(3/2 + β)n
(2 + α + β)n

2 + α + β

2 + α + β + 2n
P

(α+ 1
2
,β+ 1

2
)

n

(
a2 + b2

a2 − b2

)
δn,m. (5.73)



57

6. Static 2D Coulomb gases on an ellipse

This chapter introduces two particular two-dimensional, static one-component Coulomb
gases that we will solve. We will first deal with the case induced by the weight function
for Gegenbauer polynomials in the complex plane and at the very end of this section we
will treat the case induced by the weight function for non-symmetric Jacobi polynomials.

We recall, with a > b > 0 the ellipse E ⊂ C is parametrized by

Q(z) = A|z|2 −B Re(z2), A =
a2 + b2

2a2b2
, B =

a2 − b2

2a2b2
. (6.1)

From now on, we specialize the ellipse to one parameter 0 < τ < 1 by choosing

a =

√
1 + τ

2τ
, b =

√
1− τ

2τ
, Q(z) =

2τ

1− τ 2
|z|2 − 2τ 2

1− τ 2
Re(z2) (6.2)

E =

{
z

∣∣∣∣ 2τ

1− τ 2
|z|2 − 2τ 2

1− τ 2
Re(z2) < 1

}
, 0 < τ < 1. (6.3)

We consider a two-dimensional, static one-component Coulomb gas with a Hamiltonian

H =
N∑
j=1

V (zj)−
N∑
j<l

log |zj − zl| . (6.4)

For the particles interacting logarithmically in the plane we impose a hard wall con-
strain, where we completely confine the system {zi}Ni=1 to the ellipse by setting V = ∞
outside of E. The one-particle potential in the Hamiltonian (6.4) is given by

V (z) = −α
2

log (1−Q(z)) · 1E(z) +∞ · 1C\E(z) , α > −1 . (6.5)

Note that, this potential mimics a charged mirror at the boundary of the ellipse which
is either attractive (α < 0) or repulsive (α > 0). In this section, and unless we state the
contrary, α > −1 will be arbitrary but fixed, α = O(1).

The resulting Boltzman density function for the particles to be at equilibrium at an
inverse temperature 1/(kBT ) = β = 2 is known to be

P (z1, z2, · · · , zN) =
1

ZN
e−βH =

1

ZN

N∏
j=1

w(zj)
N∏
j<l

|zj − zl|2 . (6.6)

Here, the one-particle weight function is

w(z) = (1−Q(z))α · 1E(z) = e−βV (z), (6.7)

The partition function that normalises the distribution (6.6) is defined as

ZN =
N∏
j=1

∫
E

d2zj w(zj)
N∏
i<l

|zi − zl|2, d2zj = dRe(zj)d Im(zj) . (6.8)

The point process in (6.6) is determinantal,
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ρ(z1, z2, · · · , zk) = det [KN(zj, zl)]j,l=1,2,··· ,k , (6.9)

with correlation kernel given by the sum over the orthonormalised Gegenbauer poly-
nomials Cα+1

n (z) over the ellipse E,

KN(zj, zl) =
2τ

π
√

1− τ 2

√
w(zj)w(z̄l)

N−1∑
n=0

n+ α + 1

C
(α+1)
n (1/τ)

C(α+1)
n (zj)C

(α+1)
n (z̄l). (6.10)

Note that under the choice of the ellipse given by one parameter τ , the position of the
foci is now at z = ±1, which simplifies the argument of the polynomials that constitute
the kernel and that we have incorporated the area of the wighted ellipse πab/(1 + α) in
the norm of these polynomials. Futhermore, note that the point process (6.9) may be
written as

ρ(z1, z2, · · · , zk) = det
1≤j,l≤k

[κN(zj, zl)]
k∏
i=1

2τ(1 + α)

π
√

1− τ 2
(1−Q(zi))

α , (6.11)

here κN is the polynomial kernel

κN(zj, zl) =
1

α + 1

N−1∑
n=0

n+ α + 1

C
(α+1)
n (1/τ)

C(α+1)
n (zj)C

(α+1)
n (z̄l) . (6.12)

Sometimes this equivalent representation is more convenient for understanding scale
processes and not counting it twice.

Let us point out several limits of the point process (6.9) (or equivalently of the dis-
tribution (6.6)) that relates our point process to known ones in RMT. For that aim is
enough to consider correlation kernel (6.10)

First, we consider the rotationally invariant limit. Here, we have to rescale the posi-
tions as

zj 7→ zj/
√

2τ , (6.13)

and then take the limit τ → 0. The Jacobian cancels the term 2τ in (6.10). In this limit
only the leading coefficients of the polynomials contribute to the sum, it can be seen by
introducing the term (2τ)n/(2τ)n. The ellipse E in (6.3) becomes the unit disc and the
weight function becomes

wtruncated(z) =
(
1− |z|2

)α
, α > −1 , (6.14)

which is radially symmetric. For an integer α the limiting point process from (6.9) then
agrees with the point process of the complex eigenvalues of the ensemble of truncated
unitary random matrices introduced in [14]. It is obtained from a unitary matrix U ∈
U(N) distributed according to the Haar measure, truncated to the upper left block of U
of size M ×M , with N > M and the resulting parameter

α = N −M − 1 . (6.15)
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The complex eigenvalue correlation functions of such a truncated unitary matrix were
computed in [14], using monomials zn as orthogonal polynomials with respect to the
weight (6.14).

In the second limit, we want to make contact with the eigenvalues of Hermitian RMT
and the corresponding Dyson gas of particles confined to (a subset of) the real line, while
still interacting logarithmically, that is with Coulomb interaction in two dimensions. This
is easy to see by writing the ellipse in terms of real coordinates z = x+ iy, we have

E =

{
z = x+ iy

∣∣∣∣ 2τ

1 + τ
x2 +

2τ

1− τ
y2 ≤ 1

}
, 0 < τ < 1. (6.16)

Here, we have to rescale the imaginary part Im(zj) = yj of the positions as

yj 7→
√

1− τ
1 + τ

yj , (6.17)

Taking the limit τ → 1, the Jacobian cancels the pole 1/
√

1− τ in (6.10). The ellipse
E become the unit disc. In this limit the argument of the correlation kernel (6.10) is
projected to the real parts Re(zj) = xj ∈ [−1, 1] (j = 1, 2, · · · , N).

Because the initial measure is in two dimensions, in (6.6) we still have to integrate
out the imaginary parts Im(zj) = yj, leading to an additional contribution to the weight
function, see Remark 4.7 for details. We arrive at the following limiting weight function

wJacobi(x) =
(
1− x2

)α+ 1
2 , (6.18)

It agrees with a special case of the weight where the eigenvalues result from the Jacobi
ensemble of Hermitian random matrices [71, 72]. The eigenvalue correlation functions are
computed with the help of the Jacobi polynomials, in our case with symmetric indices,
when the Jacobi polynomials reduce to the Gegenbauer polynomials.

Finally a map to the elliptic Ginibre ensemble exists, this is achieved by making the
scaling transformation

zj 7→ zj/
√

2τα , (6.19)

under this transformations the new parameters of the ellipse E are a =
√
α(1 + τ) and

b =
√
α(1− τ). Then taking the limit α → ∞, E becoming the entire complex, thus

removing the hard wall constraint in (6.5) for the potential V and we find the limiting
weight function (6.7) which is a Gaussian,

wGinibre(z) = exp (−G(z)) , with G(z) =
1

1− τ 2
|z|2 − τ

1− τ 2
Re(z2). (6.20)

The limit of Gegenbauer polynomials with rescaled argument, as required by (6.19),

lim
α→∞

α−n/2C(α)
n (z/

√
α) =

1

n!
Hn(z) , (6.21)

for the denominator of the correlation kernel (6.10) we also need the corresponding limit
without rescaling the arguments. It follows from the generating function for Gegenbauer
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polynomials [69, 18.12.4]

∞∑
n=0

C(α)
n (x)rn = (1− 2rx+ r2)−α . (6.22)

After rescaling r → r/α and taking α→∞,

lim
α→∞

∞∑
n=0

1

αn
C(α)
n (x)rn = e2rx =

∞∑
n=0

(2x)n

n!
rn , (6.23)

we obtain the relation

lim
α→∞

a−nC(α)
n (x) =

1

n!
(2x)n . (6.24)

Putting these together and rescaling as in (6.19), we obtain

KGinibre
N (z1, z2) = lim

α→∞

1

2τα
KN

(
z1√
2τα

,
z2√
2τα

)
= exp [−G(z1)/2−G(z2)/2]

× 1

π
√

1− τ 2

N−1∑
n=0

(τ
2

)n 1

n!
Hn

(
z1√
2τ

)
Hn

(
z̄2√
2τ

)
. (6.25)

So, in the limit α→∞, the resulting point process with kernel (6.10) agrees with that
of the complex eigenvalues of the elliptic Ginibre ensemble of complex random matrices
[73], including the rotationally invariant Ginibre ensemble at τ = 0. The elliptic Ginibre
ensemble was analysed as a Coulomb gas in [21], deriving and using the orthogonality
property of the Hermite polynomials with respect to the weight (6.20). All complex
eigenvalue correlation functions of the elliptic Ginibre ensemble were derived later in
[74].

6.1. Local correlations at week non-Hermiticity. In this section we introduce
the local scale limit that allows us to present our new results (next section) and will
mainly be concerned with local correlation functions in the limit regime in non-Hermitian
RMT introduced by Fyodorov, Khoruzhenko and Sommers in [75] known as weak non-
Hermiticity limit. Although our methods in this section will not be rigorous, as we have
already pointed out in the previous part, our ensemble at finite N is mapped to already
known in RMT, this serves as a test floor to compare our results for large N .

The analysis of the correlation function (6.10) in the weakly non-Hermitian situation
will lead to a new two-parameter family of limiting point processes. The weak non-
Hermiticity parameter s, which we will specify below, projects our statistics on the real
line and we obtain the well-known Sine and Bessel kernel. Furthermore, this will help
us to indirectly find the leading asymptotic term for the correlation kernel (6.10) at the
origin, the so-called limiting kernel at strong non-Hermiticity, that we conjecture to be
universal after a suitable scaling limit.
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The weak non-Hermiticity limit, both in the bulk and at the edge of the spectrum, is
defined by taking the limit τ → 1 such that

1

τ
= 1 +

s2

2N2
, 0 < s <∞, (6.26)

with N → ∞, and the weak non-Hermiticity parameter s is kept fixed3. For later use
we collect the following expressions

τ =
1

1 +
s2

2N2

,
τ

1− τ
=

2N2

s2
,

τ

1 + τ
=

2N2

4N2 + s2
. (6.27)

Weak non-Hermiticity means a double scaling limit N →∞ and τ → 1, the Hermitian
limit, taken such that the global density collapses to the real line, the interval [−1, 1] in
our case, whereas local correlation functions still extend into the complex plane.

In our ensemble, with edge we mean the vicinity of the endpoints ±1, and with bulk
we mean the vicinity of interior points of the open interval (−1, 1), away from the edges.

Given that the Gegenbauer polynomials can be expressed in terms of the Jacobi poly-
nomials, (2.56), (2.57) and (2.58) , it turns out that in both the bulk and edge limits
the following asymptotic form of the general Jacobi polynomials P (α,γ)(z) will be useful,
[69, 18.11.5]:

P (α,γ)
n

(
1− Z

2n2

)
∼ nα

(√
Z

2

)−α
Jα

(√
Z
)
, n→∞, (6.28)

with fixed real α and γ, and Z = X + iY (X and Y are real) kept fixed. Note that the
asymptotic form (6.28) zooming into the vicinity of +1 is independent of γ.

We consider the bulk scaling limit in the vicinity of the origin, by rescaling the complex
variables inside the kernel (6.10) as

zj = xj + iyj =
ẑj
N
, j = 1, 2, (6.29)

where ẑj = x̂j + iŷj (x̂j and ŷj are real) are kept fixed when N →∞.

Because the Gegenbauer polynomials have parity C
(α+1)
n (−x) = (−1)nC

(α+1)
n (x) , with-

out loss of generality, we consider the weak non-Hermiticity limit at the edge of the
spectrum around the focus at +1, choosing the scaling

zj = 1− Zj
2N2

, j = 1, 2, (6.30)

together with the weak non-Hermiticity limit (6.26). Here, the complex numbers Zj =
Xj + iYj are fixed (Xj and Yj are real).

In the kernel (6.10) the sum will turn into an integral. Because we split the sum into
its even and odd parts, let us present the details of this step. For fn some continuous

3Note that in [74] this parameter is typically found to be proportional to ∼ (1− τ)N .
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and integrable function depending on n we have

N−1∑
n=0

(n+ a+ 1)fn =

bN−1
2 c∑
`=0

(2`+ a+ 1)f2` +

bN−2
2 c∑
`=0

(2`+ a+ 2)f2`+1

∼ N2

2

∫ 1

0

dc c

(
f

(
2`

N
= c

)
+ f

(
2`+ 1

N
= c

))
, (6.31)

in the limit N →∞, where ` = bn/2c. We also introduced the integration variable

c =
n

N
=

2`

N
or

2`+ 1

N
∈ [0, 1] , (6.32)

and use that

2

N

L∑
`=0

→
∫ 1

0

dc, for L =

⌊
N − 1

2

⌋
or

⌊
N − 2

2

⌋
. (6.33)

6.2. Weak non-Hermiticity in the bulk. With a short calculation for the scaling
limit (given by (6.26) and (6.29)) of the pre-factors of the kernel in the first line of
(6.10), that originates from the weight function, we obtain

lim
N→∞

(
1− 2τ

1 + τ
x2
j −

2τ

1− τ
y2
j

)α/2
=

(
1− 4

ŷ2
j

s2

)α/2
, (6.34)

for j = 1, 2. Here, only the imaginary part of the scaling variable ẑj = x̂j + iŷj appears.
From this limit we can read off the domain of the scaling variables ẑj (j = 1, 2) in the
bulk limit:

DBulk =

{
ẑ

∣∣∣∣s2

4
≥ ŷ2 and −∞ < x̂ <∞

}
, (6.35)

with ẑ = x̂+ iŷ (x̂ and ŷ are real).
For the asymptotic form of the Gegenbauer polynomials inside the sum of (6.10), we

can apply the asymptotic form of the Jacobi polynomials (6.28). We begin with the even
Gegenbauer polynomials. Using (2.49) and (2.57), we have

C
(α+1)
2` (x) =

(α + 1)`
(1/2)`

P
(α+ 1

2
, − 1

2
)

` (2x2 − 1)

=
Γ(`+ α + 1) Γ(1/2)

Γ(α + 1) Γ

(
`+

1

2

)(−1)`P
(− 1

2
, α+ 1

2
)

` (1− 2x2), (6.36)
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From (6.28) we thus obtain

lim
N→∞

1

Nα
(−1)`C

(α+1)
2`

(
ẑ

N

)
=

√
πcα

2αΓ(α + 1)
lim
N→∞

`
1
2P

(− 1
2
, α+ 1

2
)

`

(
1− 2

ẑ2

N2

)
=

√
πcα

2αΓ(α + 1)

(
cẑ

2

) 1
2

J− 1
2
(cẑ)

=
cα

2αΓ(α + 1)
cos(cẑ). (6.37)

Here, c = 2`/N is fixed in the limit N → ∞, and in the last step we have used [47,
8.464.2]

J− 1
2
(z) =

√
2

πz
cos(z). (6.38)

The very same steps can be taken for the asymptotic form of the odd Gegenbauer poly-
nomials. Using (2.49) and (2.58), we start from the map

C
(α+1)
2`+1 (x) =

(α + 1)`+1

(1/2)`+1

xP
(α+ 1

2
, 1

2
)

` (2x2 − 1)

=
Γ(`+ α + 2) Γ(1/2)

Γ(α + 1) Γ

(
`+

3

2

)(−1)`xP
( 1
2
, α+ 1

2
)

` (1− 2x2). (6.39)

Once again (6.28) leads to

lim
N→∞

1

Nα
(−1)`C

(α+1)
2`+1

(
ẑ

N

)
=

√
πcα

2αΓ(α + 1)
lim
N→∞

ẑ

N
`

1
2P

( 1
2
, α+ 1

2
)

`

(
1− 2

ẑ2

N2

)
=

√
πcα

2aΓ(α + 1)

(
cẑ

2

) 1
2

J 1
2
(cẑ)

=
cα

2αΓ(α + 1)
sin(cẑ). (6.40)

Here, c = (2`+ 1)/N is fixed in the limit N →∞, and in the last step we have used [47,
8.464.1]

J 1
2
(z) =

√
2

πz
sin(z). (6.41)

For the Gegenbauer polynomials from the normalisation in the denominator inside the
sum of (6.10), the argument is 1/τ . Using (6.26), we see that we can directly use (6.28)
together with the standard map (2.56), valid for both even and odd polynomials alike.
By analytic continuation of the asymptotic (6.28) to imaginary argument, Z → iZ, we
obtain for the normalising Gegenbauer polynomial of the scaling variable (6.26)

lim
n→∞

1

N2α+1
C(α+1)
n

(
1 +

s2

2N2

)
=

Γ
(
α + 3

2

)
Γ(2α + 2)

(
2

cs

)α+ 1
2

Iα+ 1
2
(cs), (6.42)
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with c = n/N fixed. Here, Iα(z) is the modified Bessel function of the first kind.
Putting all the above together we obtain the following result for the bulk scaling limit

of the kernel (6.10) around the origin:

KBulk(ẑ1, ẑ2) = lim
N→∞

1

N2
KN

(
ẑ1

N
,
ẑ2

N

)
=

(
1− 4ŷ2

1

s2

)α
2
(

1− 4ŷ2
2

s2

)α
2 1

πs

sα+ 1
2 Γ(2α + 2)

23α+ 1
2 Γ

(
α +

3

2

)
Γ(α + 1)2

×
∫ 1

0

dc
cα+ 1

2

(
cos(cẑ1) cos(c¯̂z2) + sin(cẑ1) sin(c¯̂z2)

)
Iα+ 1

2
(cs)

=
2

sπ
3
2 Γ(α + 1)

(
1− 4ŷ2

1

s2

)α
2
(

1− 4ŷ2
2

s2

)α
2
∫ 1

0

dc
(cs/2)α+ 1

2

Iα+ 1
2
(cs)

cos(c(ẑ1 − ¯̂z2)).

(6.43)

In the second step we have used an addition theorem for the trigonometric functions and
the duplication formula for the Gamma function (2.5).

The corresponding microscopic level density only depends on the imaginary part, see
(6.43), and reads

%(ŷ) = KBulk(x̂+ iŷ, x̂+ iŷ). (6.44)

In what follows we will take three limits of the bulk kernel (6.43), in order to compare
to other known results in RMT. We begin with the Hermitian limit as a consistency
check.

(1) The Hermitian limit s→ 0:

In this limit the local bulk kernel is mapped back to the real axis. This can be seen
from the support (6.35) of length s in the ŷ-direction. After rescaling by s/2 (in the
ŷ-direction), the support of the imaginary part of zi is restricted to | Im(zi)| < 1, while
the argument of the correlation kernel is projected on the real line in the limit s→ 0.

For the denominator of the integrand we have the small argument asymptotic relation
of the modified Bessel-function, see e.g. in [47, 8.445]

Iα+ 1
2
(cs) ∼ (cs/2)α+ 1

2

Γ
(
α + 3

2

) , s→ 0. (6.45)

Before taking the limit s→ 0 we have to recall that the point process with kernel (6.43)
is equivalent to one of the form (6.11) and that the underlying measure is the planar
Lebesgue measure, that is, in the scaling limit the extra factor Γ(α + 3

2
)/
√
πΓ(α + 1)

does not contribute to the statistics and is trivially canceled with the integral∫ 1

−1

(1− y2)α dy (6.46)
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So, in the limit s→ 0, we obtain

lim
s→0

s

2
KBulk(x̂1 + i

s

2
ŷ2, x̂2 + i

s

2
ŷ2) =

1

π

∫ 1

0

dc cos(c(x̂1 − x̂2))

=
1

π

sin(x̂1 − x̂2)

x̂1 − x̂2

. (6.47)

It results into the well-known universal sine-kernel. It is known to hold for the Jacobi
ensemble in the bulk of the spectrum [71], as well as for other ensembles within the same
symmetry class.

(2) The strong non-Hermiticity limit s→∞:

This limit is expected to reproduce the limiting kernel at strong non-Hermiticity, when
rescaling z̃j = x̃j + iỹj = ẑj/s for j = 1, 2 (x̃j and ỹj are real). The same mechanism was
applied in the elliptic Ginibre ensemble in [74]. The corresponding domain (6.35) gets
mapped to

DBulk, strong =

{
z̃

∣∣∣∣14 ≥ ỹ2 and −∞ < x̃ <∞
}
, (6.48)

with z̃ = x̃ + iỹ (x̃ and ỹ are real). It is an infinite strip of unit width parallel to the
x̃-axis. We obtain the following expression for the limit of the integral in (6.43):

Jα = lim
s→∞

s

∫ 1

0

dc
(cs/2)α+ 1

2

Ia+ 1
2
(cs)

cos(c(ẑ1 − ¯̂z2))

= lim
s→∞

∫ s

0

dt
(t/2)α+ 1

2

Iα+ 1
2
(t)

cos(t(z̃1 − ¯̃z2))

=

∫ ∞
0

dt
(t/2)a+ 1

2

Iα+ 1
2
(t)

cos(t(z̃1 − ¯̃z2)). (6.49)

Here, we have changed the integration variable to t = cs. The final answer for the
limiting kernel at strong non-Hermiticity on the domain (6.48) thus reads

KStrong,bulk(z̃1, z̃2) = lim
s→∞

s2KBulk(sz̃1, sz̃2)

=
2

π
3
2 Γ(α + 1)

(
1− 4ỹ2

1

)a
2
(
1− 4ỹ2

2

)α
2

∫ ∞
0

dt
(t/2)α+ 1

2

Iα+ 1
2
(t)

cos(t(z̃1 − ¯̃z2)).

(6.50)

Although we have derived the kernel (6.50) indirectly via the weak non-Hermiticity limit
at the origin, we conjecture it to be universal, after an appropriate shift of the weight
away from the origin plus rescalings. Because the appropriate Mehler or Poisson formula
for the kernel (6.10) is lacking, when extending the sum to infinity, we have been unable
to directly take the strong non-Hermiticity limit. Notice that a different Poisson kernel
exists for the general Jacobi polynomials, cf. [76], but is relies on the fact that the sum
is a geometric-type sum.
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(3) From the strong non-Hermiticity to the Ginibre Kernel in the limit α→∞:

Let us explain how to recover the Ginibre kernel in the limit α → ∞. A series
expansion [69, 10.25.2]

Iα+ 1
2
(t) =

(
t

2

)α+ 1
2
∞∑
`=0

(t2/4)`

`! Γ
(
`+ α + 3

2

) (6.51)

is known for the modified Bessel function. Introducing a new variable t̂ = t/
√
α and

using the asymptotic relation

Γ
(
α + 3

2

)
Γ
(
`+ α + 3

2

) ∼ α−`, α→∞, (6.52)

for a fixed non-negative integer `, we obtain

Iα+ 1
2
(
√
αt̂) ∼

(√
αt̂

2

)α+ 1
2 et̂

2/4

Γ
(
α + 3

2

) , α→∞, (6.53)

from (6.51). Here t̂ is fixed. We put this asymptotic form into (6.49) and find

Jα =
√
α

∫ ∞
0

dt̂

(√
αt̂/2

)α+ 1
2

Iα+ 1
2
(
√
αt̂)

cos(
√
αt̂(z̃1 − ¯̃z2))

∼
√
α Γ

(
α +

3

2

)∫ ∞
0

dt̂ e−t̂
2/4 cos

(
t̂(u1 − ū2)

)
=
√
πα Γ

(
α +

3

2

)
e−(u1−ū2)2 , (6.54)

where uj =
√
az̃j (j = 1, 2). Then it follows that

K̃Ginibre(u1, u2) = lim
a→∞

KStrong, bulk

(
u1/
√
a, u2/

√
a
)
/a

=
2

π
exp

[
−|u1|2 − |u2|2 + 2u1ū2 − i Im(u2

1 − u2
2)
]
. (6.55)

This kernel is equivalent to the Ginibre kernel KGinibre(u1, u2), presented in the intro-
duction (1.19). Note that two kernels are equivalent if they agree up to multiplication by

f(u1)/f(u2) as they yield the same correlation functions in (6.9), with f(u1) = e−i Imu21

here.

6.3. Weak non-Hermiticity at the edge. In this subsection we consider the weak
non-Hermiticity limit at the edge of the spectrum. We magnify the region around the
focus at +1, choosing the following scaling limit

zj = 1− Zj
2N2

, j = 1, 2, (6.56)
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together with the weak non-Hermiticity limit (6.26). Here the complex numbers Zj =
Xj + iYj are fixed (Xj and Yj are real). In this limit the pre-factors of the kernel (6.10)
from the weight turn into(

1− 2τ

1 + τ
x2
j −

2τ

1− τ
y2
j

)α/2
∼ N−α

(
s2

4
+Xj −

(
Yj
s

)2
)α/2

, (6.57)

in the limit N →∞ as (6.26) and (6.56). Once again we keep the parameter α fixed in
this limit. Eq. (6.57) implies that the limiting domain of the scaled particle positions
(Xj, Yj) becomes the parabolic domain

DEdge =

{
(X, Y )

∣∣∣∣∣X ≥
(
Y

s

)2

− s2

4

}
, (6.58)

which is a magnified part around the right focus of the ellipse, that is the right endpoint
of [−1, 1].

The pre-factor of the sum in the second line of (6.10) is easily evaluated by using
(6.27), to give

2τ

π
√

1− τ 2
=

2

π

√
τ

1− τ
τ

1 + τ
∼ 2N

sπ
. (6.59)

Due to the relation (2.56) of the Gegenbauer polynomials to the symmetric Jacobi poly-
nomials, and their asymptotic form (6.28) in the vicinity of unity, we find the following
asymptotic relation,

C(α+1)
n (zj) = C(α+1)

n

(
1− Zj

2N2

)

∼ N2α+1

Γ

(
α +

3

2

)
Γ(2α + 2)

(√
Zj

2c

)−α− 1
2

Jα+ 1
2

(
c
√
Zj

)
. (6.60)

Because the limit of the squared norms does not depend on the point we magnify, we
may use again the asymptotic (6.42) from the previous subsection.

Inserting (6.57), (6.59), (6.60) and (6.42) together in (6.10), and replacing the sum by
an integral, yields the following asymptotic formula for the limiting kernel at the edge

KEdge(Z1, Z2) = lim
N→∞

1

4N4
KN(z1, z2)

=
1

4
√
πΓ(α + 1)

(s
2

)a− 1
2

(
s2

4
+X1 −

(
Y1

s

)2
)α

2
(
s2

4
+X2 −

(
Y2

s

)2
)α

2

×
(√

Z1Z̄2

)−α− 1
2

∫ 1

0

dc
cα+ 3

2

Iα+ 1
2
(cs)

Jα+ 1
2

(
c
√
Z1

)
Jα+ 1

2

(
c
√
Z̄2

)
, (6.61)

with a fixed α > −1. This limiting kernel is a deformation of the Bessel-kernel into
the complex plane, holding inside the domain (6.58) where the two pre-factors from
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the weight have non-negative arguments. From symmetry the same limiting kernel is
obtained at the left edge of the ellipse. Not only the pre-factors from the weight but also
the pre-factor in the integrand inversely proportional to the modified I-Bessel function
differs from the pre-factor of the deformed Bessel-kernel of the chiral ensemble [12], given
by an exponential. There, α+ 1

2
= ν, and for integer values it corresponds to the number

of zero-modes therein. This difference remains valid for any fixed values α > −1, and
shows the influence of the boundary. It pertains also for large arguments, as we will see
below. We expect that the limiting edge-kernel (6.61) is also universal.

Again we define a microscopic density which depends this time on both the real and
imaginary parts, due to the loss of translation invariance, i.e.,

%̂(X, Y ) = KEdge(X + iY,X + iY ). (6.62)

Its dependence on an increasing non-Hermiticity s and an increasing charge α. The
spectrum lies in a constant competition between s, which tries to spread and squeeze it
into the boundary, and α, which creates a repulsion from exactly the same boundary.

Below we will take two limits of the kernel (6.61) to compare with known asymptotic
kernels in RMT, the Hermitian and strong non-Hermiticity limit. In addition we take
a third limit of large argument, that brings us back to the result in the bulk from the
previous subsection.

(4) The Hermitian limit s→ 0:

In this limit, after rescaling by s in the Y -direction (6.58) , the support of the imaginary

part of Zi is restricted to | Im(Zi)| ≤
√

Re(Zi) with Re(Zi) ≥ 0, while the argument of
the correlation kernel (6.61) is projected on the real line in the limit s→ 0.

For the s dependent factor inside the integral in (6.61) we may use again the asymptotic
(6.45). We recall that the point process with kernel (6.61) is equivalent to one of the
form (6.11) and that the underline measure is the planar Lebesgue measure. In the limit
s → 0, for the (non) constant pre-factor in (6.61), including the contribution of (6.45),
we have

Γ(α + 3
2
)

2
√
πΓ(α + 1)

1

xα+ 1
2

∫ √x
−
√
x

(x− y2)α dy =
1

2
, (6.63)

this leads to the following result:

lim
s→0

sKEdge(X1 + isY1, X2 + isY2)

=
1

2

∫ 1

0

dc c Jα+ 1
2

(
c
√
X1

)
Jα+ 1

2

(
c
√
X2

)
=

1

4

∫ 1

0

dc Jα+ 1
2

(√
cX1

)
Jα+ 1

2

(√
cX2

)
=

Jα+ 1
2

(√
X1

)√
X2J

′
α+ 1

2

(√
X2

)
−
√
X1J

′
α+ 1

2

(√
X1

)
Jα+ 1

2

(√
X2

)
2(X1 −X2)

. (6.64)
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with a fixed α > −1. This reproduces a well-known universal result in RMT, the so-
called Bessel-kernel. Note the last equality may be obtained from a Christoffel-Darboux
type of argument, see [77].

(5) The strong non-Hermiticity limit s→∞:

Let us next consider the opposite limit s→∞, to obtain the limiting kernel at strong
non-Hermiticity. For that purpose, we introduce new scaling variables

X̃j =
2

s
Xj +

s

2
, Ỹj =

2

s
Yj, (6.65)

where we keep X̃j and Ỹj fixed when taking the limit s → ∞. In terms of these new

variables the determining equation for the domain (6.58) becomes
s

2
X̃j ≥

Ỹ 2
j

4
. Thus

in the limit the scaled particle positions (X̃j, Ỹj) are confined to the half plane, that is

0 ≤ X̃j <∞ and −∞ < Ỹj <∞. Now we use the asymptotic formula [38] for u→∞,

Jb (uz) ∼
(

2

πuz

)1/2

cos
(
uz − π

2
b− π

4

)
, (6.66)

for a fixed real index b and a fixed complex z, to obtain(√
Zj

)−α− 1
2
Jα+ 1

2

(
c
√
Zj

)
∼
(s

2

)−a− 1
2

(πcs)−1/2 exp

[
cs

2

(
1− 1

s

(
X̃j + iỸj

))]
,(6.67)

for s → ∞. Together with the large-s asymptotic for the modified Bessel functions, cf.
[47, 8.451.5],

Iα+ 1
2

(cs) ∼ (2πcs)−1/2 ecs, s→∞ , (6.68)

valid for any fixed α, it then follows for the scaling (6.65) that

KStrong,edge(Z̃1, Z̃2) = lim
s→∞

s2

4
KEdge(Z1, Z2)

=

(
X̃1X̃2

)α/2
4πΓ(α + 1)

∫ 1

0

dc cα+1 exp
[
− c

2
(X̃1 + X̃2)− i c

2
(Ỹ1 − Ỹ2)

]
,

(6.69)

with a fixed α > −1. This limiting kernel is not new and agrees with the kernel found
for truncated unitary matrices [14, eq. (21)] in what the authors call weakly non-unitary
limit. But their terminology is different from ours, in [14] the large matrix size is M ,
while from α = N −M − 1, with L = N −M it is fixed.

In what follows and as a consistency check with our results we will use the fact that in
the large limit argument the correlations at the edge get mapped back to the correlations
in the bulk, see e.g. [78].
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(6) From the edge to the bulk limit:

Let us introduce scaled complex variables ẑj = x̂j + iŷj for the arguments of the edge
kernel (6.61) as

Zj = κh− 2
√
hẑj, (6.70)

where κ > 0 and ẑj remain fixed, and we will take the limit of h positive to become
large, h → ∞. In these variables the defining equation for the domain (6.58) with

Z = X + iY = κh− 2
√
hẑ becomes

κh− 2
√
hx̂ ≥ 4hŷ2

s2
− s2

4
, (6.71)

leading to the domain

DBulk =

{
ẑ

∣∣∣∣s2

4
κ ≥ ŷ2 and −∞ < x̂ <∞

}
, (6.72)

where ẑ = x̂+ iŷ.
For the scaling (6.70) we can see that√

Zj ∼
√
κh− ẑj√

κ
, h→∞. (6.73)

Then, we can use (6.66) to find that

Jα+ 1
2

(
c
√
Zj

)
∼
(

2

cπ
√
κh

)1/2

cos

(
c
√
κh− cẑj√

κ
− π

2
α− π

2

)
, h→∞. (6.74)

Putting the above asymptotic results for the scaling (6.70) together in (6.61), we obtain

KBulk(ẑ1, ẑ2) = lim
h→∞

4hKEdge(Z1, Z2)

=
2

sπ
3
2 Γ(α + 1)κa+1

×
(
κ− 4ŷ2

1

s2

)α
2
(
κ− 4ŷ2

2

s2

)α
2
∫ 1

0

dc
(cs/2)α+ 1

2

Iα+ 1
2
(cs)

cos

(
c√
κ

(ẑ1 − ¯̂z2)

)
,

(6.75)

which is similar to the asymptotic kernel (6.43) computed at the origin, in agreement
with our conjecture.That is, a similar asymptotic form to the kernel (6.43) is valid in the
entire bulk.

6.4. 2D Coulomb gas induced by non-symmetric Jacobi polynomials. First we
consider the case induced by Jacobi polynomials with parameters (α + 1/2, 1/2) and as
a remark will treat the case (α+ 1/2,−1/2). With the above notations, the one-particle
weight function w(z) like in (6.6) defining a 2D Coulomb gas now takes the form

w+(z) = (1− µ(z))α, (6.76)
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and

µ(z) =
2τ

1− τ

(√
1 + τ

2τ

√
(1 + x)2 + y2 − 1− x

)
, (6.77)

with z = x + iy. This weight function is different from (6.7), except in the case α = 0,
when the indices of the Jacobi polynomials again become symmetric.

Under the one parameter 0 < τ < 1 ellipse assumption, the kernel again is given by
the sum over the orthonormalised polynomials Lemma 5.9 and take the form

KN(z1, z2) =
1

4
(1− µ(z1))α/2(1− µ(z̄2))α/2

√
2τ

1− τ
1

Γ(α + 1)2

×
N−1∑
n=0

(2n+ α + 2)Γ(n+ α + 2)2

Γ(n+ 3
2
)2C

(α+1)
2n+1

(√
(1 + τ)/(2τ)

)P (α+ 1
2
, 1
2)

n (z1)P
(α+ 1

2
, 1
2)

n (z̄2).

(6.78)

In the following, we will evaluate the asymptotic forms of this kernel in the weak non-
Hermiticity limit at the edges, that is around the foci of the ellipse z = +1 and z = −1.
Like in limit (6) we have seen that the bulk limit can be recovered from the edge limit,
we will first derive the latter. However, due to the indices of the Jacobi polynomials now
being non-symmetric, we expect the limits at the endpoints ±1 to be different, because
of the lack of parity symmetry, cf. (2.49).

(7) Edge limit at the focus z = +1, non-symmetric case (α + 1/2, 1/2):

In order to magnify this region, we recall the weak non-Hermiticity limit (6.26)

1

τ
= 1 +

s2

2N2
, (6.79)

and the rescaling (6.56) around the right focus +1:

zj = 1− Zj
2N2

, j = 1, 2. (6.80)

We will take the double scaling limit N →∞ and τ → 1 such that the positive number
s and complex numbers Zj = Xj + iYj are kept fixed. In this scaling limit the function
inside the weight (6.76) gets mapped to

1− µ
(

1− Z

2N2

)
∼ 1

4N2

(
s2

4
+X − Y 2

s2

)
, (6.81)

from which we can read off the domain of our scaling variables, being in the parabolic
domain (6.58). Here Z = X + iY is kept fixed. In analogy to (6.42) we have

C
(α+1)
2n+1

(√
1 + τ

2τ

)
∼ N2α+1 Γ(α + 3

2
)

Γ(2α + 2)

( s
8c

)−α− 1
2
Iα+ 1

2
(cs), (6.82)
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with the ratio c = n/N being kept fixed. Using (6.28), we can find the asymptotic for
the polynomials

P
(α+ 1

2
, 1
2)

n

(
1− Z

2N2

)
∼ Nα+ 1

2

(√
Z

2

)−α− 1
2

Jα+ 1
2

(
c
√
Z
)
. (6.83)

Putting these asymptotic formulas together with the identities (6.27) into (6.78), and
replacing the sum by an integral, we obtain exactly the same asymptotic formula (6.61)
for KEdge(Z1, Z2) = limN→∞KN(z1, z2)/(4N4). This fact indicates the universality of
this kernel.

The Hermitian and strongly non-Hermitian limit as well as the bulk limit then follow
as in Subsection 6.3.

(8) Edge limit at the focus z = −1, non-symmetric case (α + 1/2, 1/2) :

Next, we use the scaling in the weak non-Hermiticity limit (6.79) and magnify the
region around the left focus z = −1 in the same way as in (6.80):

zj = −1 +
Zj

2N2
, j = 1, 2, (6.84)

with s > 0 and Zj = Xj + iYj fixed in the limit N →∞. It is straightforward to derive
the asymptotic form of the weight function

1− µ
(
−1 +

Z

2N2

)
∼ 1− 2

s2

(√
X2 + Y 2 −X

)
. (6.85)

Here Z = X+ iY is kept fixed. For this factor to be non-negative it can be seen that the
points (Xj, Yj) have to lie inside the parabolic domain (6.58). For the asymptotic form
of the Jacobi polynomials with non-symmetric indices we have

P
(α+ 1

2
, 1
2)

n

(
−1 +

Z

2N2

)
= (−1)nP

( 1
2
,α+ 1

2)
n

(
1− Z

2N2

)
∼ (−1)nN

1
2

(√
Z

2

)− 1
2

J 1
2

(
c
√
Z
)
,

(6.86)
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in the limit N →∞, after using (2.49) and (6.28). These asymptotic formulas together
with (6.82) are put into the kernel (6.78) and yield

KEdge(Z1, Z2) = lim
N→∞

1

4N4
KN(z1, z2)

=
(s/2)α−

1
2

4
√
πΓ(α + 1)

(
1− 2

s2
(|Z1| −X1)

)α/2(
1− 2

s2
(|Z2| −X2)

)α/2
×
(√

Z1Z̄2

)− 1
2

∫ 1

0

dc
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2
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2
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J 1
2

(
c
√
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)
J 1

2

(
c
√
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)
.

=
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1
2

2π3/2Γ(a+ 1)

(
1− 2

s2
(|Z1| −X1)

)α/2(
1− 2

s2
(|Z2| −X2)

)α/2
× 1√

Z1Z̄2

∫ 1

0

dc
cα+ 1

2

Iα+ 1
2
(cs)

sin
(
c
√
Z1

)
sin
(
c
√
Z̄2

)
. (6.87)

In the last step the J-Bessel functions are expressed in terms of sine, using (6.41). For
α 6= 0 this edge kernel is clearly different from the one obtained for the Gegenbauer
polynomials in (6.61) in Subsection 6.3. While the local asymptotic form of the Jacobi
polynomials around this focal point yields J 1

2
(represented by means of the sine function),

the influence of the edge is obviously still present through the dependence of the other
factors on α.

In the Hermitian limit s → 0, the coordinates (Xj, Yj) are confined to the domain
satisfying Xj ≥ 0 and |Yj| ≤

√
Xj, as we saw already in the Point (4) in Subsection 6.3.

Using (6.45) and (6.63), we find the asymptotic formula

lim
s→0

sKEdge(Z1, Z2) =
1

2

∫ 1

0

dc c J 1
2

(
c
√
X1

)
J 1

2

(
c
√
X2

)
. (6.88)

It agrees with the Bessel-kernel of the Jacobi ensemble (6.64) at α = 0.
In the strong non-Hermiticity limit s → ∞ we use the scaling variables X̃j and Ỹj

defined in (6.65), together with the asymptotic relation

1− 2

s2
(|Zj| −Xj) ∼

2

s
X̃j, s→∞, (6.89)

and (6.66). The resulting limit lims→∞(s2/4)KEdge(Z1, Z2) exactly reproduces the for-
mula (6.69).

The bulk limit h→∞, with the scaling variables ẑj = x̂j + iŷj defined as in (6.70) by

Zj = κh− 2
√
hẑj (κ > 0), can be evaluated by means of the relation

1− 2

s2
(|Zj| −Xj) ∼ 1− 4

κs2
ŷ2
j , h→∞ , (6.90)

and (6.66). As a result we obtain exactly the same formula (6.75) for the asymptotic
kernel KBulk(ẑ1, ẑ2) = limh→∞ 4hKEdge(Z1, Z2). From this, we again conjecture that the
bulk scaling limit has a similar form, when we zoom into any point x0 ∈ (−1, 1). Thus
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all three limits of the kernel (6.87) lead back to the classes we have already found in
Section 6.2 and 6.3.

Remark 6.1. The case induced by non-symmetric Jacobi polynomials (α + 1/2,−1/2)
and orthogonality given in Lemma 5.9, can be treated along the same line as the previous
part, here we will only indicate some important steps

For this case of 2D Coulomb gas, the wight w(z) in (6.6) takes the form

w−(z) =
(1− µ(z))α

|1 + z|
, (6.91)

with µ(z) defined in (6.77). Notice that also for α = 0 the polynomials and weight are
different from those in Section 6.2 and 6.3.

The kernel function KN(z1, z2) in (6.9) take the form

KN(z1, z2) =
(1− µ(z1))α/2(1− µ(z̄2))α/2

2|1 + z1|1/2|1 + z2|1/2

√
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1
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×
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2
)2 C
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(1 + τ)/(2τ)

)P (α+ 1
2
,− 1

2)
n (z1)P

(α+ 1
2
,− 1

2)
n (z̄2).

(6.92)

As in the previous part we can first determine the weak non-Hermiticity limit at the
edges.

(9) Edge limit at the focus z = +1, non-symmetric case (α + 1/2,−1/2) :

In the vicinity of the focus +1, we can again utilize the scalings (6.79) and (6.80),
finding the same domain (6.58) as before. From (6.28), we find

P
(α+ 1

2
,− 1

2)
n

(
1− Z

2N2

)
∼ Nα+ 1

2

(√
Z

2

)−α− 1
2

Jα+ 1
2

(
c
√
Z
)
, (6.93)

in the limit N → ∞. It agrees with (6.86) because of its independence of the second
index of the Jacobi polynomials.

We put this together with (6.82) - which does not change to leading order under the
shift 2n + 1 7→ 2n - and (6.81) into (6.92), and again find exactly the same asymptotic
formula (6.61) for KEdge(Z1, Z2) = limN→∞KN(z1, z2)/(4N4). After the analysis of the
previous subsection this universality is not unexpected. The corresponding limits to
Hermiticity, strong non-Hermiticity and the bulk thus follow alike.

(10) Edge limit at the focus z = −1, non-symmetric case (α + 1/2,−1/2) :

Finally we use the scalings (6.79) and (6.84) to study the asymptotic behaviour of the
kernel in the vicinity of z = −1. As in the previous subsection the coordinates (Xj, Yj)
are in the domain (6.58). For the asymptotic behaviour we now find

P
(α+ 1

2
,− 1

2)
n

(
−1 +

Z

2N2

)
∼ (−1)nN−1/2

(√
Z

2

)1/2

J−1/2

(
c
√
Z
)
, (6.94)
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in the limit N → ∞, due to (2.49) and (6.28). This formula (6.82) being also true for
shifted index 2n+ 1 7→ 2n, and (6.85) are put into the kernel (6.92). The result is

KEdge(Z1, Z2) = lim
N→∞

1

4N4
KN(z1, z2)

=
(s/2)α−
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2

4
√
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2
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cos
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c
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)
cos
(
c
√
Z̄2

)
. (6.95)

In the last step we used (6.38), expressing the J-Bessel functions through cosine. Once
again this edge kernel is different from that in (6.61) in Subsection 6.3, with the influence
of the edge clearly visible through the dependence on α.

In the Hermitian limit s → 0. As before, in the Point (4) in Subsection 6.3 (6.45)
leads to

lim
s→0

sKEdge(Z1, Z2) =
1

2

∫ 1

0

dc c J− 1
2

(
c
√
X1

)
J− 1

2

(
c
√
X2

)
, (6.96)

which agrees with (6.64) continued to α = −1,
In the strong non-Hermiticity limit s→∞ we use the scalings (6.65) and the asymp-

totic relations (6.89) and (6.66). It follows that lims→∞(s2/4)KEdge(Z1, Z2) is identical
to the result in (6.69).

The bulk limit h→∞ with the scaling (6.70) can be treated along the same line as in
the previous subsection, by using (6.90) and (6.66). We find exactly the same formula
(6.75) for KBulk(ẑ1, ẑ2) = limh→∞ 4hKEdge(Z1, Z2). We again conjecture that a similar
bulk asymptotic form holds for this model. Also for these polynomials all three limits
lead back to known results.
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7. Summary and Outlook

In this thesis, our journey has begun by searching for orthogonality relations for the
classical Jacobi polynomials on an elliptic domain in the complex plane. This has been
motivated to a large extent by the fact, that complex eigenvalues in RMT behave like
particles in a 2D Coulomb Gas, and that if the underlying orthogonal polynomials are
known, these polynomials ensure the integrability of the model and provide an exactly
soluble 2D Coulomb gas, like in the elliptic Ginibre ensemble and the chiral Ginibre
ensemble. These ensembles have, as associated planar polynomials, the classical Hermite
and Laguerre polynomials, respectively. In this matter, our main findings are that the
Gegenbauer polynomials provide an orthonormal basis for a weighted Bergman space of
the ellipse. The same holds true for a subfamily of non-symetric Jacoby polynomials,
being orthonormal bases for its corresponding weighted Bergman space. Also, inspired by
the random matrix model GUE with an external source, we have provided an extension
for Hermite polynomials as planar multiple orthogonal polynomials, we believe that this
orthogonality relations can illuminate the path to find a random matrix model in the
plane, under the influence of an external field. A matrix model with an external source
in the plane has not been found yet due to the lack of the corresponding group integral.

Once the polynomials were found, this has allowed us to introduce new families of
exactly soluble 2D Coulomb gases. In the analysis of local fluctuations of the correlation
kernel, we have found that in the large argument limit they share the same correlation
functions. This phenomenon is known as universality. In this regard, we have found two
important correlation kernels, which we have called Strong-edge and Strong-bulk kernels.
The former is not new, however it had only appeared in the context where the confine-
ment domain is the unit disk. This leads us to conjecture that as long as the boundary
of the confinement domain is a smooth, simple and closed curve, the correlation kernel
Strong-edge will always appear in the eigenvalues statistics at the edge. That is, Strong-
edge plays the role as the complementary error function does in free boundary ensembles
in RMT. We would like to comment that we have not been able to find such statement
in the literature. We showed that the Strong-bulk correlation kernel was directly linked
–in some limit– to the Ginibre kernel, in this matter, we also believe that the Strong-bulk
kernel is universal. Here it is important to mention that our methods in the asymptotic
analysis of the correlation functions were not rigorous, this is a pending matter, the
rigorous mathematical analysis would support our conjectures.

Maybe at the end of this thesis we are left with more questions than answers, for
instance, is it possible to find the underlying matrix space and its density function in
such way that the families of 2D Coulomb gases that we have defined in this thesis are
the corresponding joint probability distributions for their eigenvalues.

Based on our conjecture for the norms of the Jacobi polynomials with general param-
eters α and β, it is possible to generate a rigorous method to recover the integration
measure in such way that these polynomials became a family of orthogonal polynomials
on the ellipse. Perhaps the reader is familiar with the proof of the Selberg Integral on
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the line. There, the weight function is the Beta distribution, this function is symmetric
in its parameters and this symmetry plays an important role in the proof. Moreover, the
Beta distribution is the shift of the Jacobi weight, so we believe that the problem about
general Jacobi polynomials on the ellipse deserves to be considered, its solution could
lead to a general Selberg-type integral in the plane.
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