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Predicting quantum many-body dynamics out of equilibrium

Understanding how the macroscopically observable behavior of systems with many de-
grees of freedom emerges from the laws governing their microscopic constituents is an
intriguing fundamental problem. We approach this issue by investigating how the dy-
namics of many-body quantum systems is affected by weak-to-moderate perturbations
in three different nonequilibrium setups. First, we study the relaxation towards equi-
librium under the influence of time-independent perturbations. Second, we consider
so-called echo protocols, where the system relaxes for a certain time followed by an
effective time reversal during another period of equal duration, spoiled by small inac-
curacies in the state at the point of reversal or in the dynamical laws. Third, we analyze
the response to external driving in the form of a time-dependent coupling strength for
perturbations of a similar kind as in the first setup. These settings cover a large va-
riety of different phenomena and applications such as the relaxation of system-bath
compounds, prethermalization, magnetic resonance imaging, quantum quenches, and
periodically modulated external fields. Adopting typicality arguments, we derive ana-
lytical predictions for the observable dynamics in all three scenarios. Furthermore, we
analyze these predictions and verify them by comparison with numerical and experi-
mental data for several different models and observables.

Wie sich das makroskopisch beobachtbare Verhalten von Systemen mit vielen Frei-
heitsgraden aus den Gesetzmäßigkeiten ergibt, die deren mikroskopische Bestandteile
beschreiben, ist eine faszinierende grundlegende Fragestellung. Dieser nähern wir uns
hier, indem wir in drei verschiedenen Nichtgleichgewichts-Szenarien ergründen, wie sich
die Dynamik von Quanten-Vielteilchen-Systemen unter dem Einfluss schwacher Störun-
gen ändert. Erstens untersuchen wir den Effekt von zeitunabhängigen Störungen auf
die Relaxation ins Gleichgewicht. Zweitens betrachten wir sogenannte Echo-Protokolle,
bei denen ein System für eine gewisse Zeit relaxiert, worauf eine Phase gleicher Länge
folgt, während der es sich effektiv in umgekehrter Zeitrichtung entwickelt, wobei jedoch
kleine Ungenauigkeiten im Zustand am Umkehrzeitpunkt oder in den dynamischen
Eigenschaften auftreten können. Drittens analysieren wir, wie ein gegebenes System
auf Störungen ähnlich wie im ersten Fall, jedoch mit zeitlich variabler Intensität rea-
giert. Diese Szenarien decken eine Vielzahl verschiedener Phänomene und Anwendun-
gen ab, zum Beispiel die Relaxation von zusammengesetzten Systemen mit Wärmebad,
Präthermalisierung, Magnetresonanztomografie, schnelle Parameteränderungen (engl.
„quenches“) oder periodisch modulierte externe Felder. Unter Ausnutzung von Typikali-
tätsargumenten leiten wir in allen drei Fällen analytische Vorhersagen für die beobacht-
bare Dynamik her. Darüber hinaus analysieren wir diese Vorhersagen und vergleichen
sie mit numerischen und experimentellen Daten für verschiedene Modellsysteme und
Observablen.
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as articles in scientific journals. This concerns, in particular, the results from Chapters 3 and 4,
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• P. Reimann and L. Dabelow, “Typicality of prethermalization,” Phys. Rev. Lett. 122, 080603
(2019), cf. Chapter 3, chiefly Sec. 3.5;

• L. Dabelow and P. Reimann, “Relaxation theory for perturbed many-body quantum systems
versus numerics and experiment,” Phys. Rev. Lett. 124, 120602 (2020), cf. Chapter 3, chiefly
Secs. 3.2 through 3.7;

• L. Dabelow and P. Reimann, “Predicting imperfect echo dynamics in many-body quantum
systems,” Z. Naturforsch. A 75, 403 (2020), cf. Chapter 4, chiefly Sec. 4.4;

• L. Dabelow and P. Reimann, “Persistent many-body quantum echoes,” Phys. Rev. Research
2, 023216 (2020), cf. Chapter 4, chiefly Secs. 4.3 and 4.5;
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1 Motivation

It is a fascinating and ubiquitous phenomenon that the complex interplay of many essentially
independent agents can result in astonishingly stable and regular behavior when viewed on a larger
scale. One may think of, for example, an organ made up of cells, a colony of ants, or the global
economy emerging from individual customers and enterprises. It is generally hopeless to follow
the behavior of every single constituent, and nevertheless the functioning of their assembly as a
whole can be characterized by relatively simple laws involving a manageable number of variables.
Understanding how these effective laws arise from the complicated interactions of the basic entities
is an intriguing, yet challenging endeavor.

While the above examples all involved living organisms, the same principles in fact apply to literally
everything around us: All objects of our everyday experience, including ourselves, are composed
of atoms and molecules. Their individual behavior and interactions are exceedingly complicated
and seemingly chaotic, but somehow they conspire to form macroscopic objects and, what is more,
we can often predict the behavior of these objects amazingly well without knowing what all the
atoms do precisely. Again, it is a fascinating question how this macroscopic regularity emerges
from microscopic complexity. The present thesis is supposed to contribute a very tiny piece of this
puzzle.

Fortunately, we are actually quite well off as far as the starting conditions for this undertaking
are concerned: Unlike in the previous biological and economic examples, we know the microscopic
laws that govern the behavior of the basic constituents, atoms and molecules, in remarkable detail.
That is to say, there is a full-fledged theory called quantum mechanics [1, 2] which, based on a few
fundamental principles, allows us to predict the outcome of processes involving just a few atoms
with spectacular accuracy. However, basic perceptions of our everyday experience like the elapsing
of time or the tendency for imbalances to equalize are not built into those fundamental laws. The
aim to understand the origins of the latter two macroscopic phenomena in particular forms the
broader context for the subsequently presented research.

Time goes by. Microscopic processes on the level of individual atoms and molecules are reversible:
If we were presented with a movie showing the interaction of a few atoms, we could not possibly
decide whether the film is being played forwards or backwards because processes at this level occur
equally likely or frequently in either direction. In the situation depicted in Fig. 1.1a, for example,
an atom absorbs a photon and goes into an excited state (left to right). However, the inverse
process, whereby an atom in an excited state relaxes and emits a photon (right to left), is equally
valid and observable. Given just the sequence of events, neither order is somehow “preferred” by
nature. (We remark that the setting is deliberately kept vague here.)

Consider now the process in Fig. 1.1b. A balloon “absorbs” a dart and goes into a rather unexcited
state (“pop!”). Confronted with a movie of this event, we would immediately declare this to be
the “right” direction, whereas it would be absurd to actually observe the reversed sequence in
reality. Yet the entire process could in principle be decomposed into microscopic, reversible steps

Figure 1.1: Microscopic reversibility and macroscopic irreversibility. a. According to the microscopic laws
governing the behavior of individual atoms and molecules, fundamental processes are reversible: It is
equally possible for an atom to absorb a photon and send one of its electrons to an excited state as it
is for an electron in an excited state to relax to the ground state, causing the atom to emit a photon.
b. Macroscopic processes, which are ultimately composed of many microscopic ones, appear irreversible:
A balloon hit by a dart pops and falls to the ground, but we never observe a floppy balloon inflating
spontaneously and casting off a dart.
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involving, say, only a few atoms each. Hence, again, both directions are equally valid, but one of
them is apparently much more common.

The vast majority of processes we experience in our everyday life are of this kind and thus practically
irreversible: A sequence of events or observations on a system naturally occurs in one direction
(i.e., “forward in time”), but it is extremely difficult if not impossible in practice to set things
up such that the same events happen in reverse order (“backward in time”). One may also think
of a glass being tipped over the edge of a table and shattering on the floor, the blending of two
liquids, or a bowl of melting ice cream in a warm room. Particularly the last example illustrates
that this preferential direction or “arrow of time” exists regardless of the action or intervention of
an external agent such as a human being.

As observed above, however, this arrow of time is not part of the microscopic laws governing the
behavior of atoms, molecules, and their constituents. To be more precise, as far as our current
understanding of the fundamental laws is concerned, there do exist microscopic time asymmetries in
the so-called electroweak interaction, but their effect is far too small to explain the macroscopically
observed irreversibility. More importantly, the related so-called CPT symmetry (charge, parity,
time reversal) is still bearing up with essentially the same philosophical consequences. Moreover,
as we will see, already the frameworks of nonrelativistic quantum mechanics or even classical
mechanics (Newton’s laws) entail a preferred direction macroscopically despite being perfectly
symmetric on the fundamental level. Hence irreversibility apparently emerges as a result of the
complex interactions between large numbers of microscopic degrees of freedom.

Striving for equality. A phenomenological characteristic of macroscopic irreversibility is that im-
balances in a given setting tend to disappear as time progresses if the system is left on its own.
Moreover, once such imbalances have disappeared, they will not re-emerge spontaneously, and in-
stead the dynamics comes to rest. Returning to the ice-cream example, there is a temperature
difference between the contents of the bowl and its surroundings initially, but this difference grad-
ually diminishes over time and eventually vanishes, commonly accompanied by the ice cream’s
melting. As soon as the temperatures are equalized, in turn, the (melted) ice cream will essentially
stay “as is” and will not move visibly in the bowl. This is not quite true, of course, because if
we wait longer, it will eventually evaporate, meaning that all its molecules will spread somewhat
uniformly across the surrounding room (if the door was closed). Put differently, the tendency to
equalize continues on larger scales until we have reached an even more balanced state, and the
process does not necessarily stop there either. The question of when things are at rest thus de-
pends on the perspective and the properties one is interested in, too, i.e., different properties may
balance on different time scales.

The theoretical framework to classify the long-term properties of macroscopic systems is provided
by statistical mechanics and thermodynamics [3–5]. Technically speaking, the system approaches a
state of equilibrium, characterized by an essential homogeneity and stationarity of its macroscop-
ically perceived properties. Yet the microscopic constituents of the system actually do not ever
come to rest at all. The mere fact that a system has a temperature, even though it may be the
same everywhere, already indicates that its atoms and molecules are constantly jiggling around
since temperature is just a measure of the intensity with which they do so. The puzzle is thus,
once again, how our macroscopic perception of equilibrium and constancy can be reconciled with
the perpetual and seemingly undirected, time-symmetric motion at the microscopic level.

How to relax. Characterizing the state of equilibrium and comprehending how it can appear
stationary to us even though things will never calm down microscopically is one aspect of the
problem. Indeed, recent years have witnessed remarkable progress regarding our understanding of
these equilibrium states, some of which will be reviewed in Chapter 2. Such a characterization of
equilibrium, however, is not at the focus of this thesis. Instead, we will investigate how equilibrium
is approached in the first place. In terms of the ice-cream example, we are interested in describing
the process of melting rather than the final product of ice-cream soup (even though, admittedly, the
eventually developed theory will not apply to this particular example involving a phase transition).
In more technical terms, we intend to track down how a system that is in a nonequilibrium
state at some point in time eventually relaxes to some macroscopically stationary configuration.
Specifically, we will start from some macroscopic system whose relaxation behavior in a given setup
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is known, and explore how this process is modified if we change the setting slightly, meaning that
we perturb or distort the system to some extent.

The first principle goal of this thesis is to explain how equilibrium is reached in such a modified
setting based on the known behavior of the original system. In other words, we look for a prediction
of the relaxation dynamics of perturbed systems with many degrees of freedom.

At first sight, this may seem a daunting, if not hopeless intent. The unimaginably large number of
atoms and molecules in any setting of our macroscopic everyday experience entails that it is plainly
impossible to keep track of every individual degree of freedom. Then again, it is a phenomenological
fact that the precise microscopic details are seemingly irrelevant with regard to the macroscopic
behavior: No repetition of a macroscopic experiment will start out from the exact same microscopic
configuration, and yet our ice cream keeps melting again and again. Furthermore, somewhat
different substances typically behave similarly, too—as far as the melting is concerned, we could
not care less whether our ice cream is chocolate or strawberry. On the other hand, a billiard ball
will certainly behave differently from a ball of ice cream under otherwise identical circumstances,
even though both are just lumps of atoms, if you will. Hence some of the microscopic details
actually do matter, and the crucial point is to separate the relevant from the irrelevant ones.

The general strategy by which we will arrive at predictions of the relaxation process exploits this
indifference to certain microscopic details. The idea is to consider classes of systems which share all
the relevant characteristics for the question under study, but are otherwise as general as possible.
In practice, unfortunately, we cannot follow this ideal path exactly, but we will nonetheless obtain
descriptions for the overwhelming majority of systems from suitable classes, in the sense that the
fraction of exceptions becomes ever smaller the larger the size of the system is.

Being driven. Besides the relaxation process, we will investigate how changing certain properties
over time affects the dynamics in a given setup. In this case, the system is not left on its own,
but rather is exposed to time-dependent variations of some of its parameters, for instance due to
externally applied forces.

Our second principal goal is to characterize the response of many-body quantum systems to such
time-dependent driving. Adopting a similar approach as for the relaxation process under time-
independent perturbations, we will consider large classes with similar driving characteristics simul-
taneously in order to establish a prediction for the observable dynamics.

Going back in time. In a third part, we will address the issue of macroscopic irreversibility more
directly. The general idea is to compare the usual observable relaxation of a large system with a
(perhaps hypothetical) time-reversed evolution. As mentioned before, the time-reversed process is
equally valid and follows the same microscopic laws. To understand why this “backward process”
is still not observed macroscopically, we will examine how small inaccuracies in the reversed setup
spoil the ability to rewind the original (forward) dynamics.

The third principal goal is thus to assess the stability of microscopic reversibility in many-body
quantum systems. The key results will again be characterizations of the typical modifications the
time-reversed dynamics exhibits due to different types of inaccuracies.

Fact checking. In all three settings, we thus obtain theoretical predictions for the dynamics of
systems with many degrees of freedom. Like any analytical theory, these predictions can ultimately
demonstrate their value only by standing up to thorough testing. Common strategies to do so are
experiments or numerical simulations. Experiments certainly provide the more direct connection to
the real world. Yet, given that the laws describing the individual constituents of a system are well
established experimentally, simulations of these laws become numerical experiments and can be an
equally valid and sometimes more viable way to test the theory for larger system sizes. However, for
both experiments and simulations, the large number of degrees of freedom poses serious challenges.
Experimentally, it becomes exceedingly difficult to prepare and maintain a controlled environment
that confines a well-defined number of atoms and isolates them from any external perturbations.
Numerically, calculations quickly exceed memory capacities because the fundamental laws dictate
that the number of variables needed to fully describe a system grows exponentially with the degrees
of freedom. Verifying the predictions in a controlled way for macroscopic systems consisting of
roughly 1023 individual atoms is thus practically impossible.
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Fortunately, whereas large numbers of microscopic constituents are assumed in the derivations,
it turns out that a few tens of degrees of freedom can be sufficient to put the theory to test.
Thanks to impressive experimental advances in recent years as well as ever increasing computational
capabilities and sophisticated simulation techniques, we thus can and will validate our predictions
by comparison with both concrete real-world and numerical experiments.

Coming up next. The present introduction was meant to give a rough and generally accessible
overview regarding the motivation and background of the questions studied in this thesis. We will
proceed in Chapter 2 to put these considerations on firmer theoretical grounds. Notably, we will
properly define various concepts introduced in layman’s terms above, e.g., the microscopic theory
of atoms and molecules, the notion of equilibrium, or the simultaneous description of classes of
similar systems. Moreover, since this is not the first study of the relaxation behavior in large
systems, Chapter 2 will provide a brief overview of the general context and pertinent previous
developments as well.

The principal results of this thesis will be presented in Chapters 3 through 5. As mentioned
above, these results constitute predictions for the dynamical behavior of large systems which are
somehow modified or perturbed from a certain known reference scenario. In Chapter 3, we will
target the relaxation process in such a setting and describe how systems that are left on their own
approach equilibrium if they exhibit some sort of imbalances initially. In Chapter 4, we will address
more specifically the origins of the macroscopically observed irreversibility by studying how small
imperfections in the preparation of a system or in the dynamical laws impede a reversal of time
even though it is principally allowed on the microscopic level. In Chapter 5, we will investigate
the response of large systems to external driving, i.e., a forced, time-dependent variation of some
ambient or intrinsic properties.

While each individual chapter will entail conclusions about the corresponding results, the findings
will be summarized and discussed in a broader context in the closing Chapter 6.

Finally, there are also various appendices, most of which supply technical background and details of
the calculations. Appendix A, however, may turn out useful as a general reference of abbreviations
and conventions used throughout this thesis, comprising, in particular, a list of repeatedly used
symbols.
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2 Context and concepts

Before the game can start, we need to agree on a playing field, select our players, and devise a
line-up and strategy. The present chapter is supposed to do precisely this: We will specify the
physical setting we intend to describe and introduce its mathematical modeling (Sec. 2.1). The ap-
propriate theoretical frameworks in this context are quantum mechanics as well as thermodynamics
and statistical mechanics. Thereafter, we will review important concepts and recurring assump-
tions for the analysis in the subsequent chapters (Sec. 2.2), providing context to the questions
studied in this thesis. Of particular relevance are the notions of equilibration and thermalization
since they arguably describe the standard relaxation paths in macroscopic systems. Finally, we
will sketch the principal methods employed in the ensuing derivations, notably the typicality ap-
proach (Sec. 2.3). Upon collection of these pertinent conceptual ideas, we will include a brief and
undoubtedly subjectively biased account of their history, focusing on aspects most relevant with
respect to the intended investigation. A broader and somewhat more detailed overview of these
and related concepts may be found, for instance, in the reviews [6–10].

2.1 Quantum and statistical mechanics

Microscopic degrees of freedom. As announced in the introduction, the research goal of this
thesis is to achieve a better understanding of how the macroscopically observed behavior of many-
body systems emerges from the laws governing their microscopic constituents. In principle, it may
already be disputable what these microscopic constituents are. The Standard Model of elementary
particle physics [11–13] postulates that all of matter, at least as we presently know it, is composed
of quarks and leptons, with masses provided via the Higgs boson and interactions mediated by
gauge bosons. While this Standard Model offers an utterly precise description of many funda-
mental processes, it is well-known to be incomplete, still, prominently missing, in particular, a
reconciliation with general relativity and a description of ominous dark matter and dark energy.
Moreover, describing processes of our macroscopic experience in terms of those elementary particles
is a plainly hopeless endeavor.

At the length and energy scales of our everyday experience, quarks practically exist exclusively in
bound states of protons and neutrons, and the only relevant lepton is the electron. The theoretical
framework for their description is nonrelativistic quantum mechanics [1, 2], which has been vali-
dated to successfully model the behavior of atoms and molecules in innumerable experiments since
its conception in the beginning of the last century. Hence we will take this quantum mechanical
formalism as our “fundamental” laws, i.e., as the starting point for the analysis. Of course, one
would perhaps want to derive these laws from an even more fundamental relativistic quantum field
theory, but that is a different story [14].

State, observable, and Hamiltonian. The mathematical backbone of any quantum mechanical
description is a Hilbert space H, i.e., a complex vector space with an inner product 〈 · | · 〉. Its
elements are denoted by |ψ〉 ∈ H and encode the pure states that the system under study can
assume. For this purpose, the |ψ〉 are taken to be normalized such that ‖|ψ〉‖2 := 〈ψ|ψ〉 = 1.
More generally, we will also allow so-called mixed states ρ =

∑
n pn|ψn〉〈ψn|, where the |ψn〉 are

arbitrary (normalized) state vectors, the 〈ψn| are the associated dual vectors, and pn ∈ [0, 1] such
that

∑
n pn = 1. In the following, we will almost always use such density operators ρ to denote

the state of the system, which may generally be either pure (i.e., ρ = |ψ〉〈ψ| for some |ψ〉 ∈ H) or
mixed.

The abstract Hilbert space is connected to the physical world by means of linear operators on
that space, notably self-adjoint operators which model (in principle) measurable properties of
the system such as particle positions, momenta, energy, magnetization, etc. These are called
observables. Being self-adjoint, the spectrum of any such observable A : H → H is real, i.e., all
eigenvalues are real numbers. Furthermore, the corresponding eigenvectors form a complete set
of states from which an orthonormal basis of the Hilbert space H, the so-called eigenbasis of A,
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can be chosen, meaning that all |ψ〉 ∈ H can be decomposed as a linear combination of the basis
vectors. When performing a measurement of the observable A on a system in the state ρ, the
outcome is one of the eigenvalues an of A, realized with probability tr[ρΠn], where Πn is the
projection operator onto the eigenspace of A corresponding to the eigenvalue an, i.e., Π2

n = Πn

and AΠn|ψ〉 = anΠn|ψ〉 for all |ψ〉 ∈ H. Due to this intrinsic probabilistic nature of quantum
mechanics, it is generally not possible to predict the result of a measurement on a system in a state
ρ with certainty. Of particular interest is therefore the average outcome of such a measurement,
the expectation value

〈A〉ρ := tr[ρA] =
∑
n

an tr[ρΠn] , (2.1)

where the sum on the right-hand side is over all distinct eigenspaces of A. The observable expecta-
tion value (2.1) is the first of three specific types of “averages” we will encounter in the following.
We remark that, in principle, the spectrum of A may have continuous parts, so the sum in (2.1)
may be supplemented by an integral contribution, but such technicalities will be of no importance
for our purposes.

A particularly important observable is the energy operator or Hamiltonian H : H → H. It encodes
the system’s degrees of freedom and their interactions, usually in the form of kinetic and potential
energy contributions. The systems we are interested in are in general large, but finite (finite
number of particles, finite volume, ...). In this case the spectrum of H is discrete, i.e., there exists
an at most countably infinite set {|n〉} of eigenvectors with eigenvalues En, the possible energy
values of the system. Moreover, this spectrum is bounded from below, meaning that there exists
a state |0〉 with energy E0, called the ground state, such that En ≥ E0 for all n. Lastly, we will
usually assume that the spectrum of H is nondegenerate, so the eigenvalues of all |n〉 are pairwise
distinct, which is generically the case for interacting many-body systems. As explained above
Eq. (2.1), the probability to measure the energy En on a system in the state ρ is thus given by
tr[ρΠn] = 〈n|ρ|n〉 =: ρnn, and ρnn is called the population or occupation of the energy level En.
Note that we will use the notation Amn := 〈m|A|n〉 to denote the matrix elements of an arbitrary
observable A in the eigenbasis of the Hamiltonian H in this section.

The mathematical formalities such as the precise structure of the relevant Hilbert space, normal-
ization and positive definiteness of density operators, self-adjointness of observables, etc. will be
tacitly taken for granted in the following, and the same holds for many additional formal aspects
not even touched upon here, e.g., the existence of orthonormal basis vectors, the spectral decompo-
sition of unbounded operators, and so on. In particular, a physical system is thus usually defined
via its Hamiltonian, and the underlying Hilbert space is understood implicitly.

Local and few-body observables. A basic feature of our fundamental understanding of nature is
that interactions are local and of few-body type. Locality roughly means that the strength of the
interaction between two elementary degrees of freedom (“particles”) decreases with their spatial
separation. This is often modeled by considering space as discretized by introducing a lattice of
accessible sites for the particles together with a distance measure on that lattice. Local interactions
can then typically be described by operators supported on a finite, nonextensive (independent of
the system size) number of sites. Sometimes so-called “quasilocal” operators are employed instead,
for which the interaction strength decays exponentially or faster with the distance between the
involved sites. The few-body character is expressed by the fact that interactions can usually be
broken down to contributions involving only a small number of degrees of freedom (often just two),
meaning that a corresponding few-body operator only probes or modifies a few degrees of freedom.
Typical Hamiltonians are therefore sums of local and few-body operators, and the same holds for
commonly measurable quantities. We thus refer to such operators as physical observables.

We emphasize, however, that this labeling does not imply that other types of observables are
physically meaningless. For instance, many symmetry properties entail conserved quantities that
are given by nonlocal or many-body operators, and theoretical concepts may sometimes be best
characterized by nonlocal or many-body observables. Hence we merely wish to express the fact
that such “unphysical” observables usually defy direct measurement. Furthermore, we remark
that the naming conventions are not consistent in the literature, e.g., “local” can sometimes mean
“few-body” in our sense as well.
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Time evolution. Besides characterizing the energy, the Hamiltonian also mediates the time evo-
lution of the system (in the absence of measurements): The density operator ρ(t) describing the
system’s state at time t satisfies the Liouville-von Neumann equation

d
dtρ(t) = i

~
[ρ(t), H] , (2.2)

where ~ is the reduced Planck constant, i is the imaginary unit, and H may in general depend on
t, too. Moreover, [A,B] := AB − BA denotes the commutator of the operators A and B. In the
following, we will exclusively employ units with ~ = 1 (see also Appendix A for an overview of the
abbreviations and conventions used throughout this thesis). Given the state ρ(t0) at an arbitrary
point in time t0, the state ρ(t) at any other time t can thus be obtained by integrating the Liouville-
von Neumann equation (2.2), again as long as there are no measurements performed on the system.
The relationship between ρ(t) and ρ(t0) can be formally expressed as ρ(t) = U(t, t0) ρ(t0)U(t, t0)†
by introducing the unitary time evolution operator or propagator U(t, t0) satisfying

d
dtU(t, t0) = −iH U(t, t0) , U(t0, t0) = 1 (2.3)

as well as U(t, t0) = U(t, t1)U(t1, t0) and U(t, t0)−1 = U(t, t0)† = U(t0, t). Here 1 is the identity
operator on H, U−1 and U† denote the inverse and adjoint operators of U , respectively, and t1 ∈ R
is an arbitrary third time point. We will commonly take the reference time t0 = 0 and also write
U(t) := U(t, 0).

As indicated above, the unitary time evolution mediated by U(t, t0) is interrupted by measurements
of the system. Notably, these measurements render the dynamics irreversible because the state of
the system after a measurement of the observable A that yielded the eigenvalue an is obtained
by projecting onto the corresponding eigenspace, ρ(t) 7→ Πnρ(t)Πn, meaning that it is generally
impossible to restore the information about the pre-measurement state. The subtleties of this
measurement process (let alone its interpretation and philosophical implications [15]) will be of no
concern in this thesis. Instead, we will exclusively deal with time-dependent expectation values
〈A〉ρ(t) (cf. Eq. (2.1)) of the unitarily evolved state ρ(t), thereby addressing the question what a
measurement of the observable A would yield on average if we were to perform it at time t. In other
words, we consider the system to be left on its own, completely isolated from external influences,
and ask how properties which we could observe in principle change with time.

A particularly important case with regard to the isolated many-body quantum systems we intend
to study are Hamiltonians H which are time independent, meaning that the degrees of freedom
and their interactions are constant in time. In this case, the propagator from (2.3) is obtained
straightforwardly as U(t, t0) = e−iH(t−t0), and the states ρ(t) and ρ(t0) are related by ρ(t) =
e−iH(t−t0)ρ(t0) eiH(t−t0), i.e., we immediately have a formal solution of the Liouville-von Neumann
equation (2.2). Evaluating the trace (2.1) with ρ = ρ(t) in the eigenbasis of H (see above) and
recalling the notation Amn = 〈m|A|n〉 and ρmn(t) = 〈m|ρ(t)|n〉, the time-dependent expectation
value can thus be written as

〈A〉ρ(t) =
∑
m,n

ei(En−Em)(t−t0) ρmn(t0)Anm . (2.4)

A special class of observables are self-adjoint operators Q that commute with the Hamiltonian
H, meaning that [H,Q] = 0. In this case, there exists a common eigenbasis for H and Q so
that Qmn = 〈m|Q|n〉 = δmnqn with the Kronecker delta δmn and the eigenvalues qn of Q. From
Eq. (2.4), we understand that 〈Q〉ρ(t) = 〈Q〉ρ(t0) = const, i.e., Q is a conserved quantity or,
by analogy with classical mechanics, an integral of motion. Obviously, the (time-independent)
Hamiltonian H is itself a conserved quantity, reflecting conservation of energy.

The recurrent key goal of the present thesis is to make the abstract general solution (2.4) for
the time-dependent expectation values 〈A〉ρ(t) of the (nonconserved) observable A more concrete
in specific setups by exploiting generic properties of isolated many-body systems, notably their
large number of degrees of freedom and well-defined macroscopic energy. In particular, Chapter 3
and essentially also Chapter 4 will deal with time-independent Hamiltonians and thus start from
Eq. (2.4) to devise predictions for the system dynamics. Nevertheless, we will also consider so-called
driven systems with explicitly time-dependent Hamiltonians in Chapter 5.
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Equilibrium thermodynamics and statistical mechanics. Aiming at a description of macroscopic
systems, we may ultimately have in mind degrees of freedom f on the order of 1023 or larger.
However, the results obtained in the following usually hold (in good approximation) in considerably
smaller systems, too. Notably, the specific numerical and experimental examples with which we will
compare our theoretical predictions are usually much smaller, on the order of at most a hundred
degrees of freedom. The term many-body system is thus defined rather loosely to span a wide range
of system sizes.

Basic properties of macroscopic systems are described by the theoretical framework of thermody-
namics and statistical mechanics [3–5]. It is a well-established phenomenological observation that
many-body systems commonly tend to equilibrate over time if left on their own, meaning that, even
if they exhibit a possibly complicated time dependence initially, the values of macroscopically mea-
surable parameters (e.g., energy, pressure, magnetization, ...) eventually become stationary. If all
these macroscopic properties remain constant, the system is said to be in equilibrium. Understand-
ing how this one-way dynamics towards equilibrium emerges from the microscopically reversible
unitary time evolution is the grand motivation for all the more specific questions investigated in
Chapters 3 through 5. Likewise, the concepts to be introduced in the subsequent Secs. 2.2 and 2.3
address aspects of that puzzle.

Even if the system is in equilibrium, the microscopic constituents will usually still undergo compli-
cated dynamics, i.e., the microscopic configuration or microstate will not be stationary at all, al-
though the macroscopically perceived status or macrostate does not change. Consequently, a given
macrostate can have many possible microscopic realizations. Generally speaking, a macrostate
thus formulates constraints on the set of all microstates, typically in the form of fixed values for
certain state variables, i.e., certain system properties or control parameters such as energy, temper-
ature, volume, pressure, etc. In the standard formalism of equilibrium statistical mechanics, this
leads to the notion of so-called thermodynamic ensembles, which constitute classes of microstates
supplemented with a probability distribution depending on the state variables. The important
example of an isolated system, for instance, is characterized by constant total energy E , parti-
cle number N , and volume V. (In principle, the macrostate may be characterized by additional
variables/constraints, but we tacitly restrict ourselves to the traditional ones here.) Within the
quantum mechanical description, the compatible microstates should thus be eigenstates of the
associated operators with eigenvalues E , N , and V. More generally, one might consider macroscop-
ically small windows [E , E+∆E ], [N ,N +∆N ], [V,V+∆V ] within which the admissible microstate
should lie, reflecting the finite precision of any macroscopic measurement.

A basic assertion of statistical mechanics then is that the equilibrium properties of the system can
be determined by averaging over all microstates in the ensemble according to the corresponding
probability distribution. For isolated systems, for example, this means taking the expectation
value with respect to the so-called microcanonical density operator

ρmc := ΠE,N ,V/Ω(E ,N ,V) . (2.5)

Here ΠE,N ,V is the projector onto the space of all compatible microstates, and Ω(E ,N ,V) is the
dimension of this subspace. Hence the microcanonical ensemble treats all microstates conforming
with the macroscopic constraints on equal footing, which is known as the “principle of equal a
priori probabilities” and seems reasonable in the absence of any additional knowledge about the
equilibrium state. The same idea can be formulated equivalently as a “maximum entropy principle:”
The von Neumann entropy

S(ρ) := −kB tr[ρ ln ρ] (2.6)
with Boltzmann’s constant kB can be understood as a quantifier of uncertainty in a (macroscopic)
density operator ρ about the comprised microstates: A larger value of S(ρ) corresponds to a
less detailed specification and thus greater uncertainty about the actual microstate. These notions
have been formalized and generalized in the context of information theory [16]. The microcanonical
density operator ρmc maximizes the von Neumann entropy in the sense that S(ρmc) ≥ S(ρ) for
all density operators ρ that can be constructed from the admissible microstates. Hence ρmc is
the macroscopic state that assumes the least about the compatible microstates, resonating with
Occam’s razor. Observing that

S(ρmc) = kB lnΩ(E ,N ,V) =: S(E ,N ,V) , (2.7)
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one readily recovers the Boltzmann entropy,1 for which we use the same symbol S, but a change
of perspective is entailed in considering it to be a function of the thermodynamic state variables
characterizing the macrostate. Encoding the equilibrium state as its maximum, the entropy is an
instance of a thermodynamic potential, pertaining to isolated systems with fixed E , N , V.

The state variables E , N , and V characterizing isolated systems are all extensive, meaning that
their magnitude is roughly proportional to the degrees of freedom f . It is sometimes convenient
to work with intensive state variables instead, whose values are independent of the system size.
For every extensive variable, there exists a conjugated intensive variable describing the physical
quantity that will be balanced upon equilibration if two (or more) subsystems can exchange the
corresponding extensive quantity. For example, the conjugate variable of the energy E is the
temperature T (more precisely, the inverse temperature β = 1/kBT ): The equilibrium configuration
of a composite system consisting of two subsystems which can exchange energy is given by a
state with equal temperatures in the two subsystems. Similarly, the chemical potential µ and
the pressure p are conjugated to the particle number N and the volume V, respectively. These
changes of state variables call for changes of the pertinent thermodynamic potential, which are
mediated mathematically by Legendre transformations. Instead of an isolated system we may,
for example, consider a closed system, which still has fixed particle number N and volume V,
but can exchange energy with its environment (commonly called a reservoir or heat bath). The
Legendre transform of the (dimensionless) entropy S̃ := S/kB with respect to the energy E is
the (dimensionless) free energy F̃(β,N ,V) := βE − S̃(E ,N ,V), where the inverse temperature is
obtained via β := ∂S̃(E ,N ,V)/∂E , and this relation is to be used as well to express E as a function
of β, N , and V in the definition of F̃(β,N ,V). Note that it is historically more common to work
with the free energy F := F̃/β instead, which satisfies F = E − TS, where T := kB/β is the
temperature. The equilibrium state of the closed system is then given by the state that minimizes
the free energy, leading to the canonical density operator or Gibbs ensemble

ρcan := e−βH/Z (2.8)

with the (canonical) partition function Z := tr(e−βH). Alternatively, the canonical ensemble (2.8)
arises again by maximizing the von Neumann entropy (2.6), but instead of restricting to microstates
with a given energy value (within a macroscopically small window) as in the microcanonical setup,
we require that the average energy should be fixed, 〈H〉ρ = E . The dimensionless free energy
is then simply the (negative) Lagrange function of the maximization problem for S̃(ρ) under
this constraint and β is the corresponding Lagrange multiplier, i.e., F̃(ρ) = −S̃(ρ) + β 〈H〉ρ. The
properly normalized density operator solving this optimization problem is indeed ρcan from (2.8).

Similar transformations may be employed for the other extensive state variables such as N and V,
and the associated intensive variables again arise either as conjugated variables of the Legendre
transform or Lagrange multipliers for the related constrained optimization problem. Moreover,
at least for sufficiently large systems, all the thermodynamic ensembles obtained this way are
essentially equivalent: As explained above, the extensive variables either assume similar values for
all individual microstates or they are fixed on average. But since the corresponding probability
distributions become extremely narrow if many degrees of freedom are involved [4], fixing the
average is practically the same as restricting to a small window of admissible eigenvalues. We
will re-encounter this concentration of measure property in Sec. 2.3 in the form of the “typicality
method,” which in turn will be the basis for all the main results obtained in this thesis. Although
we introduced the microcanonical formalism as a description of isolated systems, the canonical
formalism for closed systems, etc., it is thus in fact a matter of convenience which one to choose,
provided that the system is sufficiently large, which is essentially a prerequisite for the statistical
treatment to be reasonable in the first place.

Standard thermodynamics thus characterizes the equilibrium properties of large systems. In this
thesis, however, we are not so much interested in these equilibrium properties, but rather in the
relaxation process which takes a system initially out of equilibrium to a stationary state that is
potentially described by a thermodynamic ensemble. In a first step, we should therefore explore

1Note that the correspondence between von Neumann’s and Boltzmann’s entropies only holds in equilibrium.
An individual (pure) microstate ρ = |ψ〉〈ψ|, for instance, has vanishing von Neumann entropy, whereas the
Boltzmann entropy is that of the corresponding macrostate.
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under which circumstances many-body quantum systems show such a relaxation behavior at all.
This will be the focus of the ensuing Sec. 2.2. Before, however, we will briefly collect the essential
properties of the isolated many-body quantum systems we intend to study in the following and
comment on experimental platforms which allow to probe quantum many-body phenomena in a
controlled environment.

Isolated many-body quantum systems. The degrees of freedom of a quantum system and their
interactions are encoded in the Hamiltonian H. As explained above, a key property of isolated
many-body systems is that they exhibit a well-defined macroscopic energy, which implies that there
exists a macroscopically small energy window

IE := [E , E +∆E ] (2.9)

comprising all energy levels En of H that are significantly populated by the state ρ(t) at any time.
Note that for a time-independent Hamiltonian, the occupations ρnn(t) (see below Eq. (2.1)) are
independent of t, too. In view of (2.1) and observing that |ρmn(t)|2 ≤ ρmm(t) ρnn(t) due to the
Cauchy-Schwarz inequality, occupations outside of IE are therefore negligible with regard to the
dynamics of expectation values. For the questions of interest in this thesis, we can thus usually
restrict ourselves to the N -dimensional Hilbert space HE := span{|n〉 : En ∈ IE} called the energy
shell. In general, there may exist further conserved quantities besides H, i.e., physical observables
Q such that [H,Q] = 0, e.g. the number of particles, the magnetization, or other state variables of
traditional thermodynamics. In the spirit of the above introduced thermodynamic ensembles, such
a conserved quantity Q should then be accounted for in the choice of the energy shell HE ≡ HE,Q,
meaning that 〈n|Q|n〉 ∈ IQ for some macroscopically small window IQ = [Q,Q + ∆Q]; see also
Sec. 2.2.3 below for additional comments on the role of conserved quantities.

As a consequence of the system’s many-body character, the energy spectrum is extremely dense.
Therefore, as long as we are not extremely close to the ground state or a possible upper end of
the spectrum, the energy window IE is still microscopically large in the sense that the number of
levels N with En ∈ IE (i.e., the dimension of HE) is exponentially large in the system’s degrees of
freedom f [4],

N = 10O(f) � 1 . (2.10)

The distribution of the energy levels within the window IE is encoded in the density of states
(DOS)

D(E) :=
∑

n:En∈IE

δ(E − En) . (2.11)

Given an arbitrary function h(E), summations over energy levels within IE may thus be expressed
as integrals over the DOS, i.e., ∑

n:En∈IE

h(En) =
∫

dED(E)h(E) . (2.12)

Due to the extremely dense spectrum, D(E) can usually be approximated excellently by a smooth
function, notably if h(E) in (2.12) is sufficiently slowly varying in E. In this case, which we will
practically always take for granted in the subsequent investigations,

∫
dED(E)h(E) becomes a

proper integral. In fact, we will frequently (but not always) assume that the energy window is
sufficiently small so that D(E) can be well approximated by a constant, i.e.,

D(E) ≈ ε−1 (2.13)

with the mean level spacing ε. The assumption that sums over En can be approximated by an
integral as in (2.12) with D(E) = ε−1 then holds as long as h(E) is a slowly varying function of E
compared to the mean level spacing ε.

Finally, the exceedingly high level density usually implies that it is virtually impossible to popu-
late only a few energy levels significantly, i.e., even the utmost careful experimental preparation
will have a finite precision that is still much larger than the mean level spacing ε [17, 18]. Con-
sequently, the occupations ρnn(0) will generally be distributed across a large number of energy
levels, typically on the order of the dimension N of the appropriate energy window from (2.10)
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and thus exponentially large in the degrees of freedom f [17–21]. Since
∑
n ρnn(0) = 1, the largest

individual population pmax will thus be much smaller than unity,

pmax := max
n

ρnn(0) = 10−O(f) � 1 . (2.14)

A noteworthy exception occurs if there is a gap between the ground state and the first excited
state of the many-body spectrum [20, 22], but as insinuated above Eq. (2.10), states too close to
the edges of the spectrum will usually be excluded from our discussion anyway. A related concept
to quantify the extent to which the state ρ(0) spreads across the energy levels of the Hamiltonian
H is the effective dimension [23]

Neff :=
(∑

n
ρnn(0)2

)−1
, (2.15)

which estimates the number of energy levels which appreciably contribute to the state ρ(0). In
particular, the condition pmax � 1 from (2.14) is equivalent to Neff � 1 [20].

To conclude, we remark that the basic reason for focusing on isolated systems in the following
is again our intention to understand relaxation from a fundamental point of view within the
validity of nonrelativistic quantum mechanics. It is undoubted that physical systems are almost
never perfectly isolated in practical applications and may thus call for a modified theoretical
modeling, e.g., as an open system [24, 25]. However, such theoretical approaches are usually
somehow phenomenologically motivated and not “purely quantum.” From a foundational point
of view, it is thus desirable to concentrate on isolated systems, which can be described in a self-
contained way within the fundamental framework of quantum mechanics. Moreover, the important
example of a system of interest coupled to a larger environment (“bath”) can be embedded naturally
into the adopted formalism by considering the joint system-plus-bath compound as an isolated
“supersystem” and investigating the relaxation behavior of observables supported on the smaller
system of interest. Not least, impressive experimental improvements in recent years have managed
to isolate systems of reasonably many degrees of freedom reasonably well for reasonably long times
[26–33], so the predictions developed here are indeed experimentally testable.

Experimental and numerical explorations. Maintaining a controlled and truly isolated testbed
of sufficiently many microscopic degrees of freedom to probe quantum statistical properties and
especially many-body dynamics is a highly nontrivial task. A very fruitful and versatile approach
utilizes ultracold atoms confined by magnetic and/or optical traps [26–28, 30, 34]. In these setups,
magnetic field gradients or counterpropagating laser beams are employed to generate spatially
varying magnetic or electric dipole potentials for dilute gases of neutral atoms in a vacuum chamber
at millikelvin temperatures or below. Particle densities and momentum distributions can then be
assessed by probing fluorescence or absorption of photons directly in the trap or in time-of-flight
expansions, and further observables are accessible in many situations by means of sophisticated
imaging techniques [30, 34]. Being the most matured technology to control many-body quantum
systems with a good degree of flexibility, such cold-atom experiments have so far been the principal
tool to validate the theoretical concepts that will be presented below in real-world systems. In
particular, these techniques allow to set up one-, two-, or three-dimensional lattice systems of
bosons or fermions with tunable interaction strengths and can thereby serve as quantum simulators
[35, 36] for a variety of popular condensed-matter models.

Nuclear or electronic spins of certain crystals or molecules can also provide a way to study quantum
many-body dynamics, albeit with less detailed control over the individual degrees of freedom.
Notably, it is still possible to adjust the effective interaction strength in such setups by applying
elaborate pulse sequences of external magnetic fields, prominently employed in so-called magic-
or polarization-echo experiments [37–44] as well as, more recently, to monitor out-of-time-ordered
correlators [45–47]. We will come back to those echo experiments, in particular, in Chapter 4.

Another potentially versatile type of quantum simulators is offered by universal quantum computers
[35, 36, 48, 49], which consist of a set of two-state systems (“qubits”) with the possibility to
apply essentially arbitrary unitary transformations (“gates”) on their joint Hilbert space and to
initialize and measure their state at the beginning and end of the transformation, respectively.
Promising setups to realize such highly manipulable qubits include Josephson junctions [50–52] and
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trapped ions [53, 54] (see also Ref. [36] for an overview of flexible quantum-simulator approaches
in particular). While the presently available devices still suffer from relatively short coherence
times due to insufficient isolation, they have already been employed in proof-of-principle studies to
simulate many-body dynamics, in particular, albeit with low accuracy (see, for instance, Refs. [54–
57]). Thus, given the impressive progress in recent years, universal quantum computers may
become a powerful way to explore largely arbitrary and truly many-body model systems in the
future.

Finally, numerical simulations can help exploring explicit models and verifying theoretical predic-
tions. Naturally, such simulations provide less direct evidence than an actual experiment. Never-
theless, the fact that quantum mechanics as the general framework for describing the behavior of
individual atoms and molecules is extremely well secured experimentally ensures that simulations
building on that framework can commonly be taken as a reliable complement to experiments.
Not least, agreement between the two is usually pretty good in situations where both are feasible
(see, for example, Refs. [32, 58–62]). Yet modeling the behavior of many-body systems on a com-
puter comes with its own challenges, most notably the exponential growth of the Hilbert space
with the degrees of freedom. Thanks to sophisticated algorithms, it is still possible to reach into
regimes in which the many-body character becomes decisive. Suitable methods for the simula-
tion of many-body dynamics include exact diagonalization, time-evolving block decimation [63–65]
and time-dependent density-matrix renormalization-group calculations [66–68], numerical linked-
cluster expansions [69–71], dynamical mean-field theory [72], or dynamical typicality [71, 73–75]
(see also Sec. 2.3.2 below).

2.2 Equilibration and thermalization

While traditional thermodynamics describes the equilibrium properties of large generic systems, it
does not satisfactorily answer the equally important questions of why and how these systems reach
thermal equilibrium in the first place. In this section, we review key results that explain aspects
of these issues based on a quantum mechanical modeling of many-body systems. As is common
practice, we split the problem into two parts: Equilibration (Sec. 2.2.1) refers to the questions
in which sense and under which circumstances an initially out-of-equilibrium system reaches a
stationary state as time progresses. Thermalization (Sec. 2.2.2) deals with the question of whether
or not this stationary state is in agreement with the predictions about thermal equilibrium from
traditional thermodynamics. Situations where the answer to the latter question is negative lead to
interesting and “unexpected” types of nonthermalizing systems (Sec. 2.2.3). An important class
of results from this context obtained by means of so-called typicality methods will be omitted for
the most part here and deferred to the subsequent Sec. 2.3.

2.2.1 Equilibration

Definition. Generally speaking, a system is said to equilibrate if its dynamics becomes stationary
at long times. The quasiperiodic nature of time evolution in quantum mechanics (see, e.g., Eq. (2.4)
and Refs. [76, 77]) implies that such equilibration cannot occur in the strict sense that the state
ρ(t) asymptotically approaches a well-defined limit as t → ∞. In fact, this is not a peculiarity of
quantum mechanics and already arises in classical (Hamiltonian) dynamics, prominently quantified,
for example, by the Poincaré recurrence theorem [3]. Yet the time scales on which such revivals or
nonequilibrium fluctuations occur are usually unimaginably large in generic many-body systems,
and observable system properties often become essentially stationary after an initial relaxation
phase.

In the literature, a few different notions of equilibration can be found to formalize this “quasista-
tionarity,” including, among others, equilibration of subsystems [19, 21, 78], during intervals [7],
or with respect to distinguishability measures [23, 79, 80], local relaxation [81–83], or proximity
to macroscopic equilibrium subspaces [84–87]. For our purposes, a suitable definition is that a
system with Hamiltonian H, prepared in the state ρ(0) at t = 0, is said to equilibrate if there
exists a state ρ̄ such that the time-dependent expectation values 〈A〉ρ(t) of experimentally realistic
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observables A (see below) are practically indistinguishable from or at least very close to 〈A〉̄ρ for
nearly all later times t [17, 20, 23]. In particular, fluctuations are supposed to decrease as the
system size is increased. Nonequilibrium expectation values should therefore become exceedingly
small or exceedingly rare at sufficiently late times. The state ρ̄ then coincides, by construction,
with the time-averaged (or dephased) state

ρ(t) := lim
τ→∞

1
τ

∫ τ

0
dt ρ(t) , (2.16)

provided that this average is well-defined. Here we implicitly introduced time averages as the
second important type of averaging procedure occurring in this thesis, for which we generally
reserve the overbar notation.

If the Hamiltonian H is nondegenerate, we can exploit its eigenbasis {|n〉} to write ρ̄ := ρ(t) in
the form (see also Eq. (2.4) and the discussion above it)

ρ̄ =
∑
n

ρnn(0) |n〉〈n| , (2.17)

hence ρ̄ is just the time-independent component of ρ(t). Note that in case of a degenerate H, we
can still choose the basis states |n〉 such that the initial state ρ(0) (or, more precisely, its matrix
representation ρmn(0) = 〈m|ρ(0)|n〉) is diagonal within every degenerate subspace of H, so that
the time-averaged expectation value 〈A〉ρ(t) still takes the form 〈A〉̄ρ with ρ̄ from (2.17). In view
of Eq. (2.17), the time-averaged state ρ̄ is also sometimes called the diagonal ensemble.

Experimentally realistic observables. The above definition of equilibration referred to “experi-
mentally realistic” observables whose expectation values should become quasistationary. Loosely
speaking, this means that the observable A should model a (macroscopic) measurement apparatus
as it could be used to probe a certain property of the many-body system under study [17, 18, 88].
Indeed, without such a restriction, it is always possible to construct, for any given H and ρ(0),
observables which do not become stationary, e.g., as a superposition of projectors onto two energy
levels with distinct eigenvalues.

A precise characterization of such experimentally realistic observables is far from trivial. Never-
theless, there are a few properties that appear generally reasonable and will be exploited in the
following. The first of these properties concerns the range of possible measurement outcomes, i.e.,
the spectral range

∆A := sup spec(A)− inf spec(A) , (2.18)

where supS and inf S denote the supremum and infimum of the set S, respectively, and spec(A)
is the spectrum of the operator A. Any realistic measurement instrument can only yield a finite
value of the measured quantity, implying that the spectral range should be finite, ∆A <∞.

A second important property is that any realistic measurement has a finite (nonzero) resolution

δA := inf{|a− a′| : a, a′ ∈ spec(A), a 6= a′} > 0 , (2.19)

limited, for example, by the number of significant digits. Combining these two properties, the
observable A should thus have a finite number of distinct eigenvalues, on the order of ∆A/δA, and
even for the most precise instruments, this number will still be exceedingly small compared to the
dimension of the relevant Hilbert space from (2.10).

We remark that there is no direct relation between the present notion of experimentally realistic
observables and “physical observables” as defined in Sec. 2.1. One might generally expect that
an experimentally realistic observable should also be physical, but the macroscopic nature of the
measurement apparatus introduces additional subtleties since the latter can usually probe the
microscopic degrees of freedom only on a coarse-grained level. On the other hand, physical observ-
ables in the sense of Sec. 2.1, i.e., observables composed from local and few-body operators acting
on the microscopic constituents, may in principle have an unbounded or continuous spectrum. In
any case, physical observables should generally be approximable by experimentally realistic ones,
i.e., for a reasonable physical observable there should—in principle—exist an instrument with a
finite range and resolution to measure it.

13



Conditions for equilibration. Equilibration in the above-defined sense (see above Eq. (2.16)) can
be shown to occur very generically in systems with many degrees of freedom by bounding the
fraction of time spent out of equilibrium and thereby demonstrating that it becomes exceedingly
small if one waits long enough. Besides the number of distinguishable measurement outcomes
∆A/δA (see Eqs. (2.18) and (2.19)), important quantifiers involved in such bounds are the maximal
population of an individual energy level pmax from (2.14) (or, equivalently, the effective dimension
Neff from (2.15)) and the largest degeneracy gH of an energy gap (i.e., the difference between
two distinct energy levels) of H. For generic interacting systems, gH will be close to unity. The
appearance of this quantity can be understood by inspection of the general time evolution (2.4),
which reveals that the energy gaps determine the frequencies at which the individual terms in the
sum oscillate. In case of a degenerate gap, the oscillations from two (or more) different terms will
always be in phase and thus do not cancel out in the time average. Likewise, a stronger suppression
of fluctuations around the time average can be expected if more levels are involved in the dynamics,
i.e., if pmax is small or Neff is large.

For a preset time τ > 0, we now consider the accumulated duration τδA of time periods within the
interval [0, τ ] for which |〈A〉ρ(t) − 〈A〉̄ρ| ≥ δA, i.e., for which deviations of the current expectation
value from the time average are larger than the measurement resolution. Equilibration of experi-
mentally realistic observables can then be established by means of the following bound as shown
by Reimann and Kastner in Ref. [20], extending related previous works by Reimann [17, 18] and
Short and Farrelly [23, 79]: There exists τ̂ > 0 such that for all τ ≥ τ̂ ,

τδA
τ
≤ 6 gH

(
∆A

δA

)2
pmax . (2.20)

Recalling that ∆A/δA will be on the order of 10D for a measurement with D digits precision
(see below Eq. (2.19)), whereas pmax = 10−O(f) according to (2.14), the fraction of times with
exceptional, detectably nonstationary expectation values is indeed extremely small. In addition,
it should be pointed out that the bound can actually be tightened upon replacing pmax by the
second-largest occupation ρnn(0) and in fact holds even if H exhibits degenerate energy levels
[20].

A precursor of the result (2.20) and its relatives can already be found in the early work [89] by
Tasaki, whose seminal character is evident from the fact that it also touches upon other impor-
tant pillars of our present understanding of equilibration and thermalization such as eigenstate
thermalization and typicality (see Secs. 2.2.2 and 2.3.2 below). It studies the canonical setup of
a small system S of interest with Hamiltonian HS coupled to a large bath B with Hamiltonian
HB (see above Eq. (2.8)), assuming an ad hoc coupling between the two components in the form
of an operator V that is almost diagonal in the eigenbasis of the Hamiltonian H0 = HS + HB
of the noninteracting compound system. Regarding the question of equilibration, the key result
of Ref. [89] is that, starting from a certain class of initial states, the time-dependent expectation
values of observables supported on S are indistinguishable from the long-time average, quantified
in a bound similar to (2.20).

We remark that the aforementioned notions of equilibration of subsystems [19, 78] and equilibra-
tion with respect to distinguishability measures [23, 79, 80] are closely related to and in some sense
entailed in the presently discussed equilibration of expectation values [9, 79]. Notably, the intro-
duction of distinguishability measures to quantify the difference between the time-evolved state
ρ(t) and the supposed equilibrium state ρ̄ remedies the legitimate critique [79] that expectation
values alone cannot establish (quasi)stationarity of the system because they only consider average
measurement outcomes.

Finally, reinforcing the generality of equilibration from a complementary point of view, it can be
argued that it is extremely costly and demanding to prepare a quantum many-body system such
that it does not equilibrate [90].

Relaxation time scales. Whereas equilibration in the sense of quasistationary observable expec-
tation values at long times can thus be taken for granted generically, the results from Refs. [17, 19,
23, 78, 79] and particularly Eq. (2.20) provide little information about the time scales on which
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relaxation to equilibrium ordinarily takes place. That is to say, these results demonstrate equili-
bration after sufficiently late times τ , but the associated values of τ are usually much larger than
the actually observed relaxation time and thus “unrealistically late” [7]. The reason is that the
setup in those references is extremely general, assuming as little as possible about the systems
under study, so the results incidentally apply to some “pathological” cases as well, which can ex-
haust the pertinent bounds, but are also hard to exclude within a reasonably general treatment
[7, 9, 79, 86, 91]. More realistic estimates for the time scales thus call for physically motivated
additional constraints on H, A, or ρ(0), but will inevitably forfeit generality.

A first line of investigations considers certain classes of Hamiltonians [92–98], observables [91], or
nonequilibrium subspaces [99] and assesses the corresponding average relaxation times within such
a class. By establishing a suitable bound for the variations among the individual members, this
average can then be considered “generic” for a particular class. The reasoning here follows the
typicality framework, which will be introduced in more detail in Sec. 2.3 below. This approach
commonly results in extremely and often unrealistically short relaxation times close to the fastest
possible scales, i.e., the inverse energy range of the initial state. The main reason is that the
employed classes of consolidated systems do not have a common notion of locality and other inter-
action features, implying that their effect is disregarded in the obtained estimates. Nevertheless,
this method can yield impressive agreement with numerical and experimental examples [96, 97],
particularly if the setup does not exhibit macroscopic spatial inhomogeneities (“transportless equi-
libration” [100]).

There are a few studies investigating equilibration time scales for still rather broad classes of
systems by different methods, too. For quantum gases of noninteracting fermions or bosons, for
instance, it is argued in Ref. [101] that equilibration occurs at least on a time scale polynomial in
the degrees of freedom f (as opposed to the typically exponential scaling in the general bounds
similar to (2.20)). Ref. [102] considers a largely general setting at first and links the equilibration
time scale to the dispersion of energy gaps (i.e., the variance among them, weighted according to the
observable- and state-dependent relevance of the associated frequency for the dynamics), suggesting
a similar dephasing mechanism for equilibration as the (off-diagonal) eigenstate thermalization
hypothesis (see Sec. 2.2.2 below). For local lattice Hamiltonians and local initial states, the expected
equilibration time can then be related to estimates for the inverse energy ranges of the considered
observable and the initial state. A quite general and supposedly tighter upper bound on the
relaxation time incorporating properties of the initial state and the observable was presented
recently in Ref. [103], even though some of the underlying assumptions have been challenged
particularly in setups with slow exponential relaxation characteristics such as weakly coupled
system-bath compounds [104].

As insinuated above, the locality of physical interactions, essentially meaning that the interac-
tion strength of the degrees of freedom decays with their spatial separation, has presumably not
been taken into account satisfactorily in estimates of equilibration times in general. Its impor-
tance, however, is unquestioned and illustrated, for instance, by so-called Lieb-Robinson bounds
[7, 105], which quantify how information or local perturbations can propagate through a lattice
system of spins or fermions. In particular, the commutator between observables supported on dif-
ferent regions, which is exponentially suppressed in their spatial separation initially, can grow only
gradually as time evolves, at a speed determined by the local terms of the Hamiltonian and the
entailed connectivity of the lattice. Interesting approaches to incorporate such a lattice geometry
were developed recently using a classical version of Lieb-Robinson bounds [106] and random-graph
ensembles [107], demonstrating indeed a correlation between equilibration times and indicators
of locality, and leading to time scale estimates roughly on the order of the observed behavior of
concrete models.

Finally, we mention that there are plenty of numerical investigations of equilibration times in
concrete model systems, see Ref. [7] and references therein for examples.

In conclusion, equilibration time scales have been assessed for a variety of different scenarios and
specific models, but the general mechanisms are still far from being understood entirely. We will
contribute to this catalog of time-scale estimates for specific setups in Chapter 3, in particular,
where typically expected relaxation times are obtained as a by-product of our analytical predictions
for the relaxation dynamics of perturbed many-body quantum systems.
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2.2.2 Thermalization

Definition. Having established that generic isolated many-body quantum systems equilibrate,
a natural next question concerns the characterization of the equilibrium state ρ̄. According to
textbook statistical mechanics (see Sec. 2.1), we would commonly expect that ρ̄ coincides with an
appropriate thermodynamic ensemble, e.g., the microcanonical density operator ρmc from (2.5).
In the same spirit as for the concept of equilibration above, however, it is more sensible to consider
expectation values of experimentally realistic or physical observables A. Hence we stipulate to say
that an isolated many-body quantum system thermalizes if it equilibrates to a state ρ̄ and if the
equilibrium expectation values 〈A〉̄ρ are practically indistinguishable from or at least very close to
the pertinent thermal values, e.g.,

〈A〉̄ρ ' 〈A〉ρmc . (2.21)

Again, slightly different notions of thermalization can be found in the literature [7, 21, 83, 84],
usually resulting from slightly different notions of equilibration (see above Eq. (2.16)). We will
briefly inspect one particular alternative based on suitably defined macrostates below.

The phenomenological success of statistical mechanics and thermodynamics suggests that ther-
malization should be the generic behavior of macroscopic systems, but a microscopic derivation
is highly nontrivial and in fact hardly possible without further assumptions. A standard line of
reasoning in classical mechanics involves the ergodic hypothesis whereby a macroscopic system
is postulated to visit each accessible phase space volume (compatible with the macroscopic con-
straints) for a time proportional to its relative size in the long run [108]. In other words, the
system is supposed to spend an equal amount of time in each accessible microstate so that the
time-averaged state coincides with the microcanonical ensemble average as introduced in and below
Eq. (2.5). While the ergodic hypothesis can be proven in a few special cases (see, e.g., Refs. [109–
111]), it has the status of a hypothesis to date and is in fact not sufficient nor strictly necessary
for equilibration or thermalization [112, 113]. Apart from that, the requirement that the time-
averaged state and the microcanonical state coincide seems overly restrictive if we are ultimately
interested in expectation values of experimentally realistic or physical observables only.

Furthermore, a similar hypothesis requiring ρ̄ = ρmc is meaningless for quantum systems because
the unitary time evolution under a time-independent Hamiltonian implies that the occupations
ρnn(t) of the energy eigenstates are constant in time (see below Eq. (2.9)), hence an initial imbal-
ance due to nonequilibrium conditions will persist ad infinitum. Notwithstanding, concepts like
eigenstate thermalization [114–116], the quantum ergodic theorem [84, 85, 117], and canonical typ-
icality [118, 119] shed some light on the emergence of thermal behavior in quantum systems, and
one may in fact even argue that the general understanding is nowadays somewhat more profound
in the quantum than in the classical setting. We will explain the first two of the above-mentioned
concepts, eigenstate thermalization and the quantum ergodic theorem, in the remainder of this
subsection. Canonical typicality will be elucidated in Sec. 2.3.2.

Macroscopic thermal equilibrium. A slightly different take on thermalization in isolated many-
body quantum systems, which emphasizes the macroscopic character of our perception, was put
forward by von Neumann [117] and intensely studied recently by Goldstein and co-workers [84,
85, 99, 120, 121]. Following Ref. [121], we refer to this notion as macroscopic thermal equilib-
rium. The starting point is an energy shell HE (see below Eq. (2.9)) of dimension N , a pure state
|ψ(t)〉 = e−iHt|ψ(0)〉 ∈ HE describing the state of the isolated system at time t, and a set of mutu-
ally commuting observables M1, . . . ,MK . These observables represent macroscopic measurements
that characterize a macrostate of the system, meaning that they are coarse-grained variants of mi-
croscopic physical observables. The issue of whether such a set of commutingM1, . . . ,MK exists is
mathematically highly nontrivial [122], but physically reasonable since the order of measurements
should not play a role macroscopically. We also note that similar notions of equilibrium can be
defined without the need for commuting macro-observables [87, 123], but for simplicity we will
stick with the set of commuting operators M1, . . . ,MK . A macrostate is then characterized by a
tuple m = (m1, . . . ,mK) of eigenvalues of the M1, . . . ,MK , and there is an associated subspace
H(m)
E of HE spanned by the corresponding eigenvectors. The projector onto H(m)

E is denoted by
Πm, the dimension by Nm, and collecting all macrospaces we recover the full energy-shell Hilbert
space HE =

⊕
mH

(m)
E as their direct sum. It is furthermore asserted that one of the macrospaces
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will vastly dominate this decomposition in the sense that Nm/N ≈ 1, which is called the equilib-
rium subspace H(eq)

E with projector Πeq and dimension Neq [85, 120]. Indeed, if an equilibrium
macrospace exists, which can usually be taken for granted from phenomenological evidence, then
its entropy should be close to the microcanonical entropy and thus its dimension must be close
to the dimension of the energy shell [120]. Within this setting, the system is then said to be in
(macroscopic) thermal equilibrium at time t if

〈ψ(t)|Πeq|ψ(t)〉 ≈ 1 . (2.22)

For any macroscopic observable of the form A =
∑

m amΠm, the condition (2.22) together with
Neq/N ≈ 1 immediately implies 〈ψ(t)|A|ψ(t)〉 ≈ 〈A〉ρmc , where ρmc = 1/N on HE as usual. The
conclusions drawn from the definition (2.22) of thermal equilibrium are thus similar to those of
our previous definition in and above (2.21) (called “microscopic thermal equilibrium” in [121]),
i.e., macroscopically feasible measurements should yield values indistinguishable from the thermal
predictions. However, the two notions are not equivalent, especially because different models for
the macroscopically observable quantities are employed; for a comparison, see also Refs. [9, 85].

In terms of the definition (2.22) of thermal equilibrium, the question of whether a system thermal-
izes then boils down to whether Eq. (2.22) holds for most times t. This question is addressed by
the quantum ergodic theorem, originally due to von Neumann [84, 117] and recently revived and
extended by Goldstein et al. [85, 120]; see Refs. [84, 85] for an account of the tragic misconception
that would almost have caused von Neumann’s original work [117] to fall into oblivion. The differ-
ent variants of the theorem entail that, given a Hamiltonian H with nondegenerate energy gaps,
most decompositions of HE into macrospaces H(m)

E imply that all initial states |ψ(0)〉 ∈ HE satisfy
〈ψ(t)|Πm|ψ(t)〉 ≈ Nm/N for most times t. Choosing Πm = Πeq and exploiting Neq/N ≈ 1, this
readily leads to thermalization in the sense of (2.22). The notion of “most decompositions” in the
above statement refers to a typicality argument (see also Sec. 2.3), meaning that the fraction of
decompositions for which the statement is violated is exceedingly small in the degrees of freedom.
Without further knowledge about the macroscopic observablesM1, . . . ,MK , one would thus expect
that the actually appropriate choice for them (which is not unique either) satisfies the statement,
too. The general idea of such reasoning will be outlined in more detail in Sec. 2.3.1.

This already concludes our discussion of macroscopic thermal equilibrium. For the remainder of
this thesis, thermalization will be understood in the sense formulated around Eq. (2.21), without
reference to macrostates or decompositions of the energy shell. Note that an adaptation of von
Neumann’s methodology and results to this context can be found in Ref. [124].

Eigenstate thermalization hypothesis. Returning to our initial definition of thermalization in
terms of matching expectation values in the time-averaged and thermal states, the quantity of
interest given an observable A is the stationary value 〈A〉̄ρ, which, by adopting (2.17), reads

〈A〉̄ρ =
∑
n

ρnn(0)Ann (2.23)

when expressed in the eigenbasis of the Hamiltonian H. To characterize thermalization, we thus
need criteria for when Eq. (2.23) coincides with the thermal expectation value 〈A〉ρmc , which may
incorporate properties of the initial state ρ(0) and/or the observable A in general.

The eigenstate thermalization hypothesis (ETH) addresses the observable in particular. The main
idea can be expressed as the conjecture that, for physical or at least few-body observables (cf.
Sec. 2.1), every single energy eigenstate |n〉 represents thermal equilibrium in the sense that
〈n|A|n〉 ' 〈A〉ρmc , where ρmc is the microcanonical density operator corresponding to the en-
ergy En. In an isolated system, where ρnn(0) is nonnegligible only if En ≈ E (see the discussion
around Eq. (2.9)), Eq. (2.23) then immediately reduces to the microcanonical prediction 〈A〉ρmc at
energy E .

This general mechanism was put forward and argued for in seminal works by Deutsch [114] using
a random-matrix/typicality approach (see also Sec. 2.3.2) and by Srednicki [115] studying a gas of
hard spheres. It also emerges in Tasaki’s study [89] of certain classes of system-bath compounds (see
also below Eq. (2.20)). A similar idea had actually already been formulated somewhat earlier by
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Jensen and Shankar [125] based on numerical observations in an Ising-type spin- 1
2 chain. Another

precursor and presumable source of inspiration of those later studies is Berry’s conjecture [126],
which states that quantum-mechanical energy eigenfunctions of classically chaotic systems attain
thermal character in the semiclassical limit.

The arguably most widely employed formulation of the ETH today is again due to Srednicki [127]
and also includes a characterization of the off-diagonal matrix elements. It postulates that the
Amn = 〈m|A|n〉 of a physical observable A in the eigenbasis of a generic physical Hamiltonian H
can be described by the ansatz

Amn = A(Ê) δmn + e−S(Ê)/2kB fA(Ê, ω)Rmn , (2.24)

where Ê := (Em + En)/2, ω := Em − En, A(E) and fA(E,ω) are smooth functions of their
arguments, S(E) is Boltzmann’s entropy (2.7), and the Rmn exhibit statistical properties similar
to the entries of a random symmetric or Hermitian matrix whose independent entries have vanishing
mean and unit variance. Since S(E)/kB = lnN = O(f) according to (2.7) and (2.10), Eq. (2.24)
thus asserts that the diagonal matrix elements Ann exhibit a basically smooth dependence on
energy with fluctuations exponentially suppressed in the degrees of freedom. This is also known
as the diagonal ETH. To leading order, both the long-time average 〈A〉̄ρ from (2.23) and the
thermal average 〈A〉ρmc using (2.5) thus coincide with A(E) when evaluated for states living in the
macroscopically small energy window IE from (2.9). Furthermore, Eq. (2.24) stipulates that the
off-diagonal elements behave essentially random and that their fluctuations are again exponentially
suppressed in f . This is also called the off-diagonal ETH. The off-diagonal terms determine, in
particular, the temporal fluctuations (〈A〉ρ(t) − 〈A〉̄ρ)2: Substituting the ansatz (2.24), one finds
that these fluctuations are proportional to e−S(E)/kB = N−1 [8]. In view of (2.10), temporal
fluctuations thus become unobservable in the long run for sufficiently large systems. In summary,
the off-diagonal ETH thus ensures equilibration, while the diagonal ETH entails thermalization. If
equilibration has been ascertained by other means already (see Sec. 2.2.1), one might well content
oneself with the diagonal ETH, and the latter has indeed received considerably more attention in
the literature, hence speaking of “the ETH” may commonly mean either just the diagonal part or
the full form (2.24).

As matters stand, the ETH is a hypothesis, and while there are heuristic arguments for its generality
[8, 89, 114, 127], there is to date no proof that it holds under generic, physically reasonable
circumstances. Yet the much enhanced computational capabilities since its inception have made
it possible to check the hypothesis numerically in specific models. The first numerical verification
of the ETH was delivered by Rigol et al. in the pioneering study [116], and many additional
demonstrations of the ETH (diagonal and off-diagonal) in a variety of different models have followed
since; see, e.g., Refs. [128–135]. The diversity of these models suggests that the ETH is a pretty
general feature of physical Hamiltonians and observables, meaning that it can indeed be considered
a fundamental mechanism of thermalization.

Then again, Ref. [116] also presents a specific example where the ETH is violated, and similar
conclusions have been reached in other studies as well (see, e.g., Refs. [128, 129, 132]). Prime
examples are so-called integrable systems (see Sec. 2.2.3 below), which are characterized by an
extensive number of local conserved quantities. A violation of the ETH is then often accompanied
by nonthermalizing behavior, meaning that the considered systems may still equilibrate, but the
time-averaged expectation values of physical observables can differ from the thermal prediction.
The absence of thermalization in certain scenarios will be discussed in more detail in the subsequent
Sec. 2.2.3, with a special emphasis on integrable systems.

At this point, however, a word of caution regarding the precise applicability of the ETH ansatz
and statements about its violation in systems with conserved quantities is in order. If Q is such a
conserved quantity, the Hamiltonian decomposes into different symmetry sectors characterized by
the eigenvalues of Q. As a consequence, these sectors can possibly evolve somewhat independently,
even though the commutator [H,Q] = 0 obviously implies a functional dependence between H and
Q. It is thus generally agreed that the ETH cannot be expected to hold unconditionally across
different symmetry sectors and some conserved quantities might have to be accounted for when
testing the ETH [9, 136]. Notably, one would want to consider conserved quantities that are used
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to construct the pertinent thermal density operator (e.g., the total particle number, see below
Eq. (2.9)). On the other hand, projection operators onto energy eigenstates or powers of H also
commute withH and are thus conserved, but since there are as many of these operators as there are
eigenstates, the ETH would be meaningless if all conserved quantities had to be regarded. Prime
candidates for relevant conserved quantities are again physical observables modeled by local and
few-body operators [9], and there is evidence that for other types of conserved quantities, such as
nonlocal many-body operators [9, 137–139], the observable properties are often the same across the
corresponding sectors, obviating the need to pay special attention to them. Yet this seemingly does
not hold invariably either, and we contend that these issues are still not satisfactorily understood
[139–141]. In any case, given that the relevant conserved quantities in integrable systems are local
and few-body, it is arguably debatable to classify such systems as ETH-violating if symmetry
sectors are disregarded. Indeed, the notion of generalized eigenstate thermalization [142] presumes
that integrable systems obey a kind of ETH, too, if all the local conserved quantities are taken
into account, and this idea has been formalized further by means of the quench-action approach
[143, 144]. We will elaborate in more detail on the role of conserved quantities with regard to
thermalization in Sec. 2.2.3 below.

An in some sense related issue is the distinction between the strong ETH and the weak ETH, which
refers to the scaling of the (diagonal) matrix elements Ann with the system size. The strong ETH
requires that all energy eigenstates |n〉 become thermal in the thermodynamic limit (apart from
tacitly ignored but possible exceptions at the edges of the spectrum). Symbolically, this means
that

max
n
|Ann − 〈A〉ρmc | → 0 as f →∞ , (2.25)

where ρmc is understood to be taken in a running window of the form (2.9) around En. This
assumption was implicit in our discussion so far. However, as long as the statistical properties of
the fluctuations are not specified in detail, the ansatz (2.24) also admits a weaker interpretation.
This weak ETH only demands that the fraction of exceptional |n〉 whose expectation value deviates
from the thermal prediction should vanish in the thermodynamic limit [129, 145, 146]. Formally,
this notion can be expressed in terms of vanishing eigenstate-to-eigenstate fluctuations within every
microcanonical window IE ,

1
N

∑
n:En∈IE

(
Ann −

1
N

∑
m:Em∈IE

Amm

)2

→ 0 as f →∞ , (2.26)

where N is the number of levels within IE (see above Eq. (2.10)). Evidently, the strong ETH
implies the weak ETH, but since the latter still admits the existence of states with nonthermal
Ann, systems satisfying the weak ETH can still fail to thermalize if those atypical states are
significantly populated by the initial state ρ(0).

The weak notion of the ETH has been proven to hold rather generically for local observables
in systems with translational invariance [129, 147, 148] or a clustering property of the canonical
density operator [149]. Importantly, it therefore commonly applies to integrable systems, too, as
exemplified in Refs. [129, 145, 146].

2.2.3 Absence of thermalization and integrability

Absence of thermalization. While thermalization is certainly the standard behavior of isolated
many-body systems, there are important classes of systems for which time-averaged expectation
values of physical observables may not agree with the pertinent thermal values. The large over-
lap between these classes and the types of systems considered to be violating the (strong) ETH
reinforces the pivotal role played by the ETH in the thermalization process.

As an aside, we remark that a system may fail to thermalize for trivial reasons if some of the
prerequisites discussed in the previous subsections are violated. For instance, thermalization cannot
be expected if the initial state has an overly broad energy distribution or the observable is artificially
tailored with respect to the initial state (and thus, in particular, “unphysical” in the sense of
Sec. 2.1). We do not have in mind such cases in this subsection.
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A first class of examples with nonthermalizing behavior are systems exhibiting many-body local-
ization (MBL) [7, 150, 151], a rough analog of Anderson localization [152] in interacting many-
body systems. It describes a many-body phase commonly characterized by suppressed transport
properties and unusually slow growth of entanglement between subsystems. As a consequence,
information about the initial state is not spread diffusively and can be retained to some extent
by means of local observables even at late times, which entails that the time-averaged state can
give rise to nonthermal expectation values. This is in accordance with the observation that MBL
systems usually violate the ETH. Notably, even the weak ETH cannot be expected to hold in
general because the systems are typically not translationally invariant, e.g., due to the presence of
strong disorder. Moreover, as opposed to integrability (see below), the MBL phase is found to be
somewhat stable against perturbations.

Another potential source of inhibited thermalization are recently discovered quantum many-body
scars due to kinematic constraints [153–156], related to experimentally observed nonthermalizing
behavior in certain arrays of Rydberg atoms [62]. As an example, such kinematic constraints could
forbid the simultaneous occupation of two neighboring sites in a lattice system, giving rise to a
small number of exceptional, nonthermal energy eigenstates (the scars) which are, furthermore,
found to have large overlap with certain types of structurally simple product states. Hence the
exceptional states introduce a mild violation of the strong ETH, whereas the weak ETH is usually
still fulfilled. A frequent dynamical characteristic are pronounced revivals on short time scales.
It is yet unclear whether these kinematically constrained models feature truly nonthermalizing
dynamics or if the relaxation merely happens extremely slowly (so-called glassy dynamics).

Since systems exhibiting MBL or many-body scars will be of no further concern in this thesis, we
content ourselves with this brief and superficial description of their phenomenology. A third class
of systems commonly considered to be nonthermalizing are so-called integrable systems, whose
relaxation behavior we will inspect a little closer in the following.

Integrability. Whereas integrability is a commonly adopted term to indicate that a system has
some regularity, symmetry, or increased analytical tractability, there is no generally agreed defini-
tion of integrability for quantum systems [7, 157]. In classical Hamiltonian mechanics, integrability
usually means that there exist as many independent integrals of motion as there are degrees of
freedom f [158, 159], where an integral of motion is a phase-space function whose Poisson bracket
with the Hamiltonian function vanishes. After a canonical transformation to so-called action-angle
variables, the equations of motion merely reflect the associated conservation laws and are thus
essentially solved or “integrated” upon substitution of the initial conditions.

Unfortunately, this picture cannot be carried over to quantum mechanics without further ado for
several reasons. On the one hand, for instance, even if the values of f conserved quantities or
integrals of motion (self-adjoint operators commuting with the Hamiltonian H) are known, this
does not fix the dynamics because the Hilbert space dimension N is exponentially large in f .
On the other hand, as mentioned in Sec. 2.2.2 already, there always exist N linearly independent
conserved quantities, e.g., the projection operators onto the eigenstates of H. In that sense,
all quantum systems are “integrable,” but—misquoting Orwell [160]—some systems are “more
integrable” than others.

The common notions of quantum integrability [7, 157] thus adopt only some aspect of the classical
definition, such as an extensive number of local integrals of motion, existence of an integrable
classical limit, solvability by the Bethe ansatz [161] and fulfillment of the Yang-Baxter equation
[162] or, more generally, exact diagonalizability by analytical means. Other common definitions
consider the statistics of the energy levels or their consecutive gaps, respectively, again based on
example systems with a classical limit. Systems with Poissonian gap statistics are then classified as
integrable, whereas those with Wigner-Dyson statistics are declared nonintegrable [163]. Extending
this approach, integrability may also be associated with the absence of level repulsion (like in
Poissonian and as opposed to Wigner-Dyson statistics). While there is some overlap between these
definitions, meaning that systems which classify as integrable by one criterion often also satisfy
some of the others, the different notions are by no means equivalent.

In this thesis, we will adopt the first of the aforementioned approaches, which is arguably the most
widely employed definition when it comes to questions of thermalization in integrable systems,
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as reviewed, for instance, in Refs. [83, 164]. Hence we call a many-body quantum system with
Hamiltonian H integrable if there exists an extensive number of independent physical observables
Q(n) which commute with H, [H,Q(n)] = 0, as well as with each other, [Q(m), Q(n)] = 0. In fact,
the Hamiltonian itself should be considered as just one of the Q(n), e.g., Q(0) := H. The Q(n) are
also called local integrals of motion (LIOM). By an “extensive number” of such LIOM, we mean
that their amount is roughly proportional to the degrees of freedom f and grows with the system
size in particular. “Independent” is to be understood somewhat vaguely in an operational sense:
If Q(1) and Q(2) are conserved quantities, then also the linear combination Q′ := α1Q

(1) + α2Q
(2)

with α1, α2 ∈ R is conserved. Similarly, powers of some Q(n) lead in principle to new conserved
quantities. Both of these constructions are not considered to be independent LIOM. Yet there will
always be some functional dependence between any two Q(m) and Q(n) implied by the commutator
[Q(m), Q(n)] = 0. Finally, “physical observable” is essentially taken as a synonym for a self-adjoint
operator composed from (quasi)local and few-body terms (see Sec. 2.1). In summary, this definition
is certainly not airtight, but suffices for all practical aspects to be discussed in the following.
Notably, as mentioned before, the main focus of this thesis is on the dynamics of the relaxation
process. In this context, integrable systems arise as interesting reference cases due to the possibility
of nonthermalizing behavior, but we will not intend to classify specifically the dynamical behavior
of integrable models.

Generalized Gibbs ensembles. In the beginning of this subsection, integrable models were iden-
tified as one class of systems for which physical observables may fail to thermalize. Observing
that all the different conserved quantities Q(n) are such physical observables, this is immediately
comprehensible since the expectation value 〈Q(n)〉ρ(t) = 〈Q(n)〉ρ(0) cannot possibly approach the
thermal prediction 〈Q(n)〉ρmc if it is nonthermal initially. Furthermore, it seems plausible that also
other physical observables A, which could, for example, be combined in parts from some of the
Q(n), may not thermalize either, even though they need not commute with the Hamiltonian them-
selves, [H,A] 6= 0, and can thus show a nontrivial (time-dependent) relaxation behavior. Since
equilibration can still be expected quite generally (see Sec. 2.2.1), an interesting question is whether
the equilibrium state ρ̄ can be characterized in some “generic” way also in integrable systems.

The answer is positive and usually given in terms of the generalized Gibbs ensemble (GGE) asso-
ciated with the set of LIOM {Q(n)} as introduced by Rigol et al. [165],

ρGGE :=
exp
(
−
∑
n βnQ

(n))
ZGGE

(2.27)

with ZGGE := tr[exp(−
∑
n βnQ

(n))], where the βn are fixed such that 〈Q(n)〉ρGGE = 〈Q(n)〉ρ(0) for
all n. The GGE thus generalizes the usual (canonical) Gibbs ensemble (2.8) by incorporating,
besides the Hamiltonian H = Q(0), also the other local conserved quantities into the equilibrium
density operator in a way similar to the grand canonical ensemble in traditional thermodynamics.
It is then asserted that observable expectation values in integrable systems relax to the GGE
prediction, similarly to their approach to thermal values in nonintegrable systems, i.e., 〈A〉̄ρ '
〈A〉ρGGE (see also Sec. 2.2.2).

We emphasize that this assertion is far from trivial despite the extensive number of constraints
entailed via (2.27). Even if there are, in principle, on the order of f parameters βn to be fixed to
set up ρGGE, the associated Hilbert space is exponentially large in f (see Eq. (2.10)), meaning that
there is still plenty of room for the occupation probabilities ρnn(0) and thus the diagonal ensemble
ρ̄ to vary. That is to say, 1023 is still unimaginably smaller than 101023 . Moreover, in practice it
is expected that a few of the most local Q(n) are sufficient for a satisfactory approximation of the
GGE [166].

The validity of the GGE to describe the equilibrium properties of integrable systems has been
confirmed numerically in a variety of models, including bosonic [165, 167], fermionic [168, 169],
and spin [170, 171] degrees of freedom (see also the reviews [33, 164] for more complete lists of
examples). Furthermore, it has also been demonstrated experimentally in a one-dimensional Bose
gas [172].
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Role of conserved quantities. The GGE is obtained from the canonical ensemble of textbook
statistical mechanics by including constraints for an additional set of conserved quantities. Impor-
tantly, the perception that conserved quantities have to be respected is already a building block
of ordinary, “traditional” thermodynamics as sketched in Sec. 2.1. For example, both the micro-
canonical and the canonical ensembles for a system with a fixed number of particles N should
be restricted to states exhibiting N particles, possibly within a macroscopically small uncertainty
[N ,N + ∆N ], and the same applies to other macroscopically conserved quantities such as the
magnetization. Alternatively, one may adopt a grand canonical ensemble, which includes states of
variable particle number (magnetization), but fixes the average by means of a suitable Lagrange
multiplier, in this case the chemical potential (external magnetic field). Due to ensemble equiv-
alence (see below Eq. (2.8)), all those approaches lead to the same characterization of thermal
equilibrium.

The traditional framework thus offers two ways to incorporate conserved quantities: either by
restricting the set of considered microstates to the ones compatible with the conserved quantity’s
initial value or by introducing Lagrange multipliers to constrain the average value over all mi-
crostates accordingly. In this sense, the GGE merely extends the traditional ensembles by including
the additional local conserved quantities Q(n) of integrable systems in the pertinent equilibrium
ensemble. In particular, one could equivalently adopt a “generalized microcanonical ensemble”
[142, 143] and choose the density operator proportional to the projector onto the subspace of joint
eigenstates of all Q(n) whose eigenvalues match with the initial expectation values 〈Q(n)〉ρ(0) within
some macroscopically small margin of error.

Taking this reasoning one step further, one might even argue that the common declaration that
“integrable systems do not thermalize” could be somewhat misleading because they seemingly do
thermalize if the equilibrium density operator respects all relevant conservation laws. For the
concept of thermalization and its absence to be meaningful, we thus have to determine which of
the conservation laws should be included in the thermal ensemble and which should not. In other
words, what distinguishes the LIOM in integrable systems from “traditional” conserved quantities
like energy, particle number, magnetization, etc.?

There are indeed crucial differences. On the one hand, the traditional conserved quantities are
reasonably generic in the sense that similar concepts can be defined for a large class of different
system types. Furthermore, their composition from the physical microscopic degrees of freedom in
a specific setup can be explained verbally in relatively simple terms and such that it generalizes in
an obvious way to other systems. The LIOM of integrable systems, in contrast, are highly specific
to a particular system at hand (apart from the traditional conserved quantities that may, of course,
be part of the Q(n)) and cannot be carried over to other types of integrable models. In addition,
their construction is usually far from trivial, and their emergence from the physical degrees of
freedom often hardly evident, let alone explicable in simple words. Incidentally, the same applies
to the aforementioned example of projection operators onto energy eigenstates.

On the other hand, the number of traditional conservation laws pertaining to a certain system is
finite and independent of the system size. Put differently, in the thermodynamic limit, noninte-
grable systems usually only exhibit a finite number of physical observables commuting with the
Hamiltonian. On the contrary, the number of LIOM of an integrable system grows with the system
size by definition and is thus infinite in the thermodynamic limit.

In essence, the difference between traditional conserved quantities (which are to be considered
when characterizing thermal equilibrium) and others such as LIOM (which should be disregarded)
is therefore a conceptual one. Albeit somewhat difficult to formalize, it should usually be clear in
practice whether or not a given conservation law has “traditional character.” Already the question
whether we have a name other than “Q(n)” for a given operator is presumably a good indicator.

A related issue concerns conserved quantities which are arguably simple and generic, but are rep-
resented by nonlocal or many-body operators. A prominent example is the (quasi)momentum
arising from translational invariance. Since such operators are not accounted for in the traditional
thermodynamic examples, one would tend to disregard them, meaning that the associated decom-
position of the energy spectrum into invariant subsectors should not matter with respect to thermal
expectation values. As briefly mentioned in the context of ETH violations above (see Sec. 2.2.2)
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it is often observed that such nonlocal many-body conserved quantities do not lead to different
eigenstate expectation values of local observables in different sectors [9, 137–139], so for questions
of thermalization, too, it is indeed irrelevant whether or not the conservation law is taken into
account.

Role of initial states. Finally, one cannot ignore the role of initial states entirely either: In order
for a conserved quantity to induce nonthermalizing behavior, the initial state must populate its
nonthermal eigenstates significantly. It is thus important to understand for which combinations of
observables and realistic preparation procedures this can occur at all. For instance, the fact that
integrable systems normally still satisfy the weak ETH (see Sec. 2.2.2) implies that nonthermal
states are exceedingly rare among all states. For an uninformed “random” choice of the initial
state, one will thus typically observe thermalization also in integrable systems [173]. A popular
method to prepare systems (integrable or nonintegrable) out of equilibrium are quantum quenches
[7, 83, 174]. Here the initial state is a thermal state (often the ground state, i.e., a zero-temperature
thermal state) of some Hamiltonian H ′, which is then suddenly changed to the actual Hamiltonian
of interest H at time t = 0. Provided that effects of a finite switching time are negligible, this
method is indeed experimentally feasible and frequently used (see, e.g., Refs. [30, 33]). In partic-
ular, quenches are the standard procedure to obtain nonequilibrium initial states which lead to
manifestly nonthermalizing behavior in integrable systems while still remaining reasonably narrow
in energy for suitable choices of H ′. The precise mechanism of how such a quench entails significant
occupations for the rare nonthermal states, however, is still not fully understood.

Another class of popular and viable initial states for lattice systems (both numerical and experi-
mental) invokes the product basis associated with the individual lattice sites such that the number
of particles, the magnetization, etc. are fixed for every individual site. The resulting pure states,
however, may exhibit a relatively broad energy distribution, at least for accessible system sizes,
which in turn precludes the use of standard thermodynamics for trivial reasons since the energy is
not well-defined even from a “macroscopic” perspective.

A third class to generate nonequilibrium states with some control over their macroscopic properties
arises within the framework of dynamical typicality, which will be introduced in Sec. 2.3.2 below.

Prethermalization. An interesting two-stage relaxation process can occur if a nonthermalizing
system is subject to a reasonably weak perturbation. As explained above, such nonthermalizing
systems usually still equilibrate, but the stationary expectation values of most observables do not
correspond to the thermal prediction. When adding a perturbation which lifts the constraints pre-
venting thermalization in the original system, however, the perturbed system is generally expected
to thermalize. Nevertheless, if the perturbation is sufficiently weak, the system will still follow the
unperturbed dynamics for some time and expectation values may even settle down to the nonther-
mal stationary value of the unperturbed system before eventually departing again and relaxing to
the thermal state. This behavior, which has also been observed experimentally, for example, in
cold-atom setups [31, 33], is known as prethermalization [9, 33, 175–178]. The prime example are
integrable reference systems subject to weak integrability-breaking perturbations. In Sec. 3.5 we
will establish that prethermalization can indeed be expected generically in the perturbed relaxation
setting outlined above. The results of Sec. 3.6 will then even give a more quantitative account of
the expectable dynamics.

2.3 Typicality and concentration of measure

The buzz word “typicality” has already been dropped several times in the previous section since it
describes one fruitful approach to address questions of equilibration and thermalization in many-
body systems. As it represents the main theoretical framework for the key results of this thesis,
we devote an entire section to it, motivating and explaining the general methodology in Sec. 2.3.1
and collecting important applications from the statistical-mechanics context in Sec. 2.3.2. In fact,
von Neumann’s quantum ergodic theorem, briefly presented in the previous Sec. 2.2.2, constituted
one such application already.
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2.3.1 General considerations

Background. The basic reasoning of the typicality method [6, 179, 180] is founded on the same
phenomenological observation that is also at the heart of statistical mechanics: Despite the vastly
complicated dynamics of its microscopic degrees of freedom, the macroscopically observable be-
havior of a many-body system can generally be described by only a few characteristic parameters.
An obvious manifestation is the fact that macroscopic experiments are reproducible at all, even
though it is practically impossible to replicate a certain setup microscopically [181, 182]. Based on
the relevant macroscopic characteristics, one can thus compile classes of microscopically distinct
systems or setups which will nonetheless display the same macroscopic phenomenology. Note that
these classes in general still depend on the observed quantity, hence different classifications arise
for different phenomena or macroscopic properties of interest.

The origin of this insensitivity of many-body systems to microscopic details is a sort of “self-
averaging” mechanism, whereby the complex interplay of many largely independent constituents
appears practically random at larger scales. A macroscopic observable can thus be understood as
a random variable whose value depends on a large number of (quasi)random and essentially inde-
pendent microscopic degrees of freedom. The distribution of such a composite random variable is
often extremely sharply peaked, meaning that fluctuations around the average become exceedingly
rare as the number of microscopic contributions increases. This effect is known as concentration
of measure [183–185]: Quoting Talagrand [183], “[a] random variable that depends (in a ‘smooth’
way) on the influence of many independent variables (but not too much on any of them) is es-
sentially constant.” Note that this rationale is akin to concepts like the law of large numbers, the
central limit theorem, or large deviation theory [186].

To arrive at a prediction for the behavior of an actual physical system, we can exploit such
concentration-of-measure properties as follows: Instead of the single system or setup of inter-
est, we temporarily consider an entire class or ensemble of similar setups. Perhaps surprisingly,
it is then often possible to calculate the average of the examined macroscopic quantity over all
members of such an ensemble, even though the actual system of interest alone is not tractable. If
the examined quantity exhibits concentration of measure with respect to the considered ensemble,
nearly all individual members of the ensemble will be excellently described by the average behavior,
i.e., their behavior is “typical.” Provided that the ensemble models the relevant characteristics of
the actual system of interest reasonably well, we can thus expect that also this true physical system
is one of the typical members, meaning that the ensemble average becomes the desired prediction
for the behavior of the true system of interest.

General procedure. To explain the general procedure, assume that we are given a certain setup
s0 (e.g., a Hamiltonian, observable, and initial state) as well as a macroscopic property q(s0) we
wish to predict or understand theoretically (e.g., the time-dependent expectation values of the
observable). The initial step towards establishing a typicality argument is to identify the decisive
physical mechanisms or characteristics χ(s0) determining the observed property q(s0). Obviously,
there is no standard recipe to do so and one would want to be guided by physical intuition as
well as practicality of the mathematical modeling. Once a candidate for the macroscopically
relevant properties is available, we can construct classes of microscopic setups that share those
characteristics. Formally, this amounts to specifying an ensemble S of setups (usually an ensemble
of Hamiltonians, observables, or initial states) equipped with a probability distribution P such that
the individual members of the ensemble emulate the relevant characteristics of the true setup of
interest with high fidelity, P(χ(S) = χ(s0)) ≈ 1.

The actual algorithm to establish typicality then consists of three steps:

1. Calculate the ensemble average q̂ := E[q(S)] of the quantity of interest, i.e., the expectation
value of q(S) with respect to the distribution P.

Here we introduced the third type of important averaging procedure employed in this thesis,
namely the average over a given typicality ensemble, denoted by the symbol E[ · · · ]. Note that
these ensemble averages should not be confused with thermal averages such as 〈 · · · 〉ρmc , 〈 · · · 〉ρcan ,
etc., which are also sometimes called ensemble averages in the literature. The latter are a special
form of the “quantum averages” from (2.1).

24



2. Demonstrate concentration of measure of q(S). This may be achieved in various ways. A
standard approach is to calculate the variance E[(q(S) − q̂)2] and then adopt Chebyshev’s
inequality (see Eq. (2.29) below) to bound the probability for q(S) to deviate from the average
q̂ by more than a (macroscopically unresolvable) threshold κ, symbolically P(|q(S) − q̂| ≥
κ)� 1.

3. Argue that the true setup of interest is one of the typical members, i.e., q(s0) = q̂.

This last step of the derivation is naturally the least rigorous and therefore also the most debated
one. A careful and informed choice of the typicality ensemble is vital to convincingly argue in this
direction: If the previously identified characteristic χ(s0) is indeed the driving mechanism for the
property of interest q(s0), and if the ensemble reproduces this characteristic with high probability,
then it is extremely likely that the true behavior q(s0) agrees with the typical q̂.

However, the probabilistic nature of the typicality method inevitably implicates the existence of
“exceptions to the rule.” Moreover, it is usually impossible to determine with certainty whether a
given system will behave like a typical member of the chosen ensemble a priori. Put differently,
there is no systematic way to check whether the considered ensemble, which unavoidably and in
fact deliberately ignores many microscopic details, captures all essential characteristics relevant
for the observed behavior. This unfortunate indefiniteness of the typicality method is the price to
pay for reaching far into regimes inaccessible to rigorously systematic approaches, a property it
shares with many other “uncontrolled” approximation schemes like density functional theory, WKB
approximations, truncations of functional renormalization group equations, etc. Ultimately, the
success of the method can only be judged by comparison with explicit examples. Such comparisons
therefore form an integral part of this thesis (see, in particular, Secs. 3.7, 4.3, 4.4, and 5.4).

Markov’s and Chebyshev’s inequalities. As mentioned above, concentration of measure of a
certain property can often be demonstrated conveniently by exploiting standard inequalities from
probability theory that relate probabilities to low-order moments of random variables. Markov’s
inequality states that, for any nonnegative random variable X and any real number κ > 0,

P(X ≥ κ) ≤ E[X]
κ

. (2.28)

Given instead an arbitrary real-valued random variable X with expected value µ and variance
σ2, we can apply Markov’s inequality to the (nonnegative) random variable (X − µ)2 to conclude
that

P(|X − µ| ≥ κ) ≤ σ2

κ2 (2.29)

for all κ > 0, which is known as Chebyshev’s inequality. Because of their generality, the bounds
obtained from these two inequalities are often rather weak, but the favorable scaling of fluctua-
tions with the degrees of freedom in many-body systems more than compensates this drawback in
practice.

2.3.2 Applications

As motivated above, from a conceptual point of view, a prime example of typicality arguments
at work is textbook statistical mechanics itself, which is based on the notion that fluctuations of
macroscopic quantities are unobservable due to extremely sharply peaked distributions, which also
underlies the equivalence of thermodynamic ensembles (see below Eq. (2.8)). Moreover, especially
as a numerical tool, arguments of the type described in Sec. 2.3.1 have been utilized and redis-
covered in a variety of contexts to obtain explicit quantitative estimates of otherwise extremely
costly or impractical computations. Examples include stochastic trace estimators [187] (with the
connection to typicality highlighted in Refs. [188, 189]), finite-temperature Lanczos methods [190],
density-of-state estimations [191, 192], or thermal pure quantum states [193]. In the following,
we will concentrate on those applications from research on equilibration and thermalization of
many-body quantum systems and the foundations of statistical mechanics which have immediate
relevance for the subsequent parts of this thesis.
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Canonical typicality. As expounded in Sec. 2.1, textbook statistical mechanics characterizes ther-
mal equilibrium of large isolated systems by means of the microcanonical ensemble ρmc from (2.5),
whereas it ascribes the canonical ensemble ρcan from (2.8) to systems in contact with a large bath.
In the case of weak (more precisely, negligible) interactions between the system and the bath in
the latter setting, the two formalisms can be connected by considering the system-bath compound
as an isolated supersystem. It can then be shown that, if the supersystem is in the microcanonical
state ρmc, the state of the smaller system of interest, which is obtained by tracing out the bath
degrees of freedom from ρmc, is indeed given by ρcan with the temperature determined by the bath
as defined above Eq. (2.8) [4] (see also Ref. [18] for considerations about when a similar reduction
occurs for the time-averaged state ρ̄ of the system-bath compound). While such a relationship is
generally reassuring, it is still somewhat dissatisfactory from a foundational point of view because
in a purely quantum mechanical treatment, a perfectly isolated system should generally be in a
pure state rather than in the maximally mixed state ρmc.

The by now classic results on canonical typicality by Goldstein et al. [118] and Popescu et al. [119],
which were in fact first derived in the PhD thesis of Lloyd [194] almost two decades earlier, address
precisely this issue: They prove that nearly all pure states of the isolated compound system with
a fixed total energy lead to a reduced density matrix of the subsystem which is indistinguishable
in practice from the canonical density operator ρcan with the inverse temperature β of the bath.
To be precise, Ref. [119] actually considers a much more general setting by showing indistinguisha-
bility between the reduced density matrix of pure compound states and the generalized canonical
ensemble obtained from the maximally mixed compound state under arbitrary constraints (with
a fixed total energy as in the standard setting as a special case). Again, ideas of this kind had
already been sketched in Ref. [194], too.

In a related study [195], Gemmer and Mahler use a similar line of reasoning to show that the
accessible Hilbert space of a system-bath compound in a pure state features a “dominant region”
(essentially the typical states) for which the energy distribution upon tracing out the bath assumes
the canonical form. Another related result can also be found in the previously introduced study
[89] by Tasaki (see below Eq. (2.20)), which investigates compounds with a specific model for the
system-bath coupling. The canonical ensemble then emerges again as the proper state to describe
equilibrium expectation values of system observables. The somewhat heuristic methodology there
bears resemblance to typicality arguments, albeit it is never explicitly stated this way. Not least,
the general idea of canonical typicality is already discernible in Schrödinger’s early work [196].

Example for the typicality method. The canonical typicality results [118, 119, 194] are all based
on the fundamental observation that, for any observable A, the vast majority of pure states |ψ〉 from
a Hilbert space H (e.g., the energy shell of the system-bath compound; see also below Eq. (2.9))
of sufficiently large (finite) dimension N yield expectation values 〈ψ|A|ψ〉 very close to the mi-
crocanonical value tr(ρmcA) = trA/N . As an illustrational example for the typicality method
outlined in Sec. 2.3.1, we briefly demonstrate this property.

To this end, we choose an arbitrary orthonormal basis {|φα〉} of H. To connect to the language
of Sec. 2.3.1, let us assume that we are given an observable A and a system in a pure state
|ψ〉 =

∑
α cα|φα〉 ∈ H with c := (c1, . . . , cN ) ∈ CN , normalized such that 〈ψ|ψ〉 = ‖c‖2 =∑

α|cα|2 = 1. The setup s0 thus consists of the Hilbert space H, the observable A, and the state
|ψ〉. As our quantity of interest, we would like to evaluate the expectation value q(c) := 〈ψ|A|ψ〉 =∑
α,β c

∗
αcβAαβ by means of the typicality method, where Aαβ := 〈φα|A|φβ〉 denotes the matrix

elements of A in the chosen basis {|φα〉}. As indicated by the notation, the class of similar but
different setups to be considered will consist of the same Hilbert space H and observable A, but
different coefficients c and thus states |ψ〉. Of course, this may seem like a needlessly complicated
approach because it is usually a simple task to calculate expectation values of pure states, but it
nevertheless illustrates the general idea. Not least, as explained above, the final result still entails
nontrivial physical insights.

The pertinent typicality ensemble contains all normalized pure states |ψ′〉 :=
∑
α c
′
α|φα〉 ∈ H with

‖c′‖ = 1, and we intend to assign an equal weight (or probability) to each of them. In other
words, the vector c′ is to be distributed uniformly on the N -dimensional complex unit sphere.
In practice, this ensemble of states can be generated, for example, by sampling random numbers
cRα and cIα (α = 1, . . . , N) independently from a standard normal distribution (vanishing mean,
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unit variance). Defining c′α := (cRα + i cIα)/N1/2
c with Nc :=

∑
α[(cRα )2 + (cIα)2] leads to the desired

uniform distribution on the complex unit sphere for c′. For the ensuing analysis, however, it is more
convenient to start from the “true” c and generate c′ := Uc by drawing a unitary transformation
matrix U = (Uµα) ∈ U(N) uniformly at random, meaning that P is the Haar measure of the unitary
group U(N). If the Hilbert space H is chosen to be an energy shell HE (see below Eq. (2.9)), the
common characteristic χ(c′) of all setups (i.e., all different states |ψ′〉) is that they have the same
macroscopic energy, i.e., P(|〈ψ′|H|ψ′〉 − E| ≤ ∆E) = 1, and this is essentially the only characteristic
fixed in the classical textbook scenario via ρmc, too.

Following the algorithm described in Sec. 2.3.1, we first compute the ensemble average

E[q(c′)] =
∑
µ,ν

E
[
c′∗µ c
′
ν

]
Aµν =

∑
µ,ν

∑
α,β

c∗α E
[
U∗µαUνβ

]
cβ Aµν . (2.30)

Averages over factors of Haar-distributed unitary matrix elements of the type occurring on the
right-hand side have been calculated in Ref. [197], yielding E[U∗µαUνβ ] = δµνδαβ/N , which in this
case is also apparent due to symmetry and normalization. Substituting into (2.30), we obtain

E[q(c′)] = 1
N

∑
µ

Aµµ = tr(ρmcA) . (2.31)

To establish concentration of measure for q(c′), the second step of the procedure from Sec. 2.3.1,
we evaluate the variance var q(c′) = E[q(c′)2]− E[q(c′)]2. Exploiting that [197]

E
[
Uν1β1Uν2β2U

∗
µ1α1

U∗µ2α2

]
= 1
N2 − 1 [δµ1ν1δµ2ν2δα1β1δα2β2 + δµ1ν2δµ2ν1δα1β2δα2β1 ]

− 1
N(N2 − 1) [δµ1ν1δµ2ν2δα1β2δα2β1 + δµ1ν2δµ2ν1δα1β1δα2β2 ] ,

(2.32)

we obtain

E[q(c′)2] =
∑
µ1,µ2,
ν1,ν2

∑
α1,α2,
β1,β2

c∗α1
c∗α2

cβ1cβ2 E
[
Uν1β1Uν2β2U

∗
µ1α1

U∗µ2α2

]
Aµ1ν1Aµ2ν2

= 1
N2 − 1

(
1− 1

N

)[
(trA)2 − tr(A2)

]
. (2.33)

Combined with the square of (2.31), we thus find that the variance is given by

var q(c′) = 1
N + 1

[
tr(A2)
N

− (trA)2

N2

]
≤ (∆A)2

4(N + 1) , (2.34)

where ∆A is the spectral range of A from (2.18). Note that we exploited in the last step that
var q(c′) is invariant upon adding a constant to A so that we can take the operator norm ‖A‖ of A
(largest eigenvalue in modulus) as ∆A/2 without loss of generality. Substituting q(c′) = 〈ψ′|A|ψ′〉
and adopting Chebyshev’s inequality (2.29) with κ = δA (cf. Eq. (2.19)), we observe that

P(|〈ψ′|A|ψ′〉 − tr(ρmcA)| ≥ δA) ≤ 1
4(N + 1)

(
∆A

δA

)2
, (2.35)

i.e., the probability that the expectation value of A for a randomly chosen pure state |ψ′〉 shows
resolvable deviations from the microcanonical value decreases with the Hilbert space dimension N .
In view of (2.10) and the limited number of realistic measurement outcomes (see below Eq. (2.19)),
we thus conclude that for a many-body system with f degrees of freedom, such noticeable deviations
are exponentially unlikely in f , and 〈ψ′|A|ψ′〉 = tr(ρmcA) is an excellent approximation for the
vast majority of individual states |ψ′〉 ∈ H.

In the third step of the general typicality procedure from Sec. 2.3.1, we come back to the actual
“true” state |ψ〉 of the considered system. In general, this state may be the result of a sophisticated
preparation process. However, in the absence of any additional information about its origin, we
cannot but conclude that |ψ〉 will most likely (“typically”) be an equilibrium state in the sense
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that expectation values coincide with the microcanonical prediction (see Sec. 2.1). The primary
physical implication of this result is thus that there are exponentially more equilibrium states than
nonequilibrium ones in reasonably large systems.

As an aside, we remark that the same calculation implies that for an arbitrary, fixed pure state
|ψ〉, nearly all observables yield expectation values indistinguishable from the microcanonical value.
This can be understood by observing that we can write q(c′) = 〈ψ|U†AU |ψ〉 (in a slight abuse of
notation, using the same symbol U to denote the unitary operator associated with the transfor-
mation matrix between c and c′). Hence, instead of considering |ψ′〉 = U |ψ〉 as random and A as
fixed, we may regard |ψ〉 as fixed and use an ensemble of observables A′ = U†AU , comprising all
Hermitian operators with the same spectrum as the true A, but randomly chosen eigenvectors.

Approximation of arbitrary density operators by pure states. The above calculation demon-
strates that a single pure state can serve to approximate the microcanonical density operator ρmc
with extremely high fidelity in a sufficiently large Hilbert space. Interestingly, the same idea can
be employed to emulate largely arbitrary density operators ρ by means of randomly sampled pure
states [181, 182, 193, 198–200], provided that ρ is of low purity, tr(ρ2) � 1. Similar conclusions
can actually be drawn for ρ of very high purity, but then the result is evidently less surprising and
insightful.

The method utilizes that any density operator ρ is by definition nonnegative, implying that all
eigenvalues are nonnegative and there exists a unique Hermitian, nonnegative operator R such
that RR† = ρ (the “square root” of ρ). Following Ref. [182], the typicality ensembles of pure
states to imitate ρ are then constructed in three steps: First, we generate a random pure state |ψ1〉
by sampling its coefficients in an arbitrarily chosen orthonormal basis from a standard complex
normal distribution (see above Eq. (2.30)). Second, we apply the operator R to get |ψ2〉 := R |ψ1〉.
Like |ψ1〉, this state |ψ2〉 is generally not normalized, but has a norm very close to unity with very
high probability, to wit, the variance of the norm is given by the purity tr(ρ2). More generally, the
so-obtained ensemble of pure states |ψ2〉 satisfies E[〈ψ2|A|ψ2〉] = tr(ρA) and

E[(〈ψ2|A|ψ2〉)2]− E[〈ψ2|A|ψ2〉]2 ≤ ∆A tr(ρ2)/2 (2.36)

for arbitrary observables A, similarly to the results (2.31) and (2.34) for the ensemble of |ψ′〉, which
are closely related to the |ψ1〉. Thus the expectation values of experimentally realistic observables
(see Sec. 2.2.1) in the states |ψ2〉 display concentration of measure for sufficiently low purity. Third,
we can normalize by defining |ψ3〉 := |ψ2〉/

√
〈ψ2|ψ2〉 without changing the statistical properties

significantly, so the vast majority of randomly generated, normalized pure state |ψ3〉 approximates
the expectation value of the observable A in the mixed state ρ extremely well,

〈ψ3|A|ψ3〉 ' tr(ρA) = 〈A〉ρ . (2.37)

Moreover, the approximation can be improved systematically by generating multiple states |ψ3〉
and averaging over the obtained proxies for 〈A〉ρ, even though it may sometimes be advantageous
to split off parts of 〈A〉ρ (e.g., the partition function for the canonical ensemble ρ = ρcan, see below)
and estimate them separately [188, 189].

The previous results for ρ = ρmc are recovered for R = 1/
√
N by choosing |ψ1〉 from the relevant

energy shell HE of dimension N . For practical numerical calculations of thermal expectation
values, however, this is still a bit inconvenient because one needs to know the energy eigenstates
of the full Hilbert space H to select a basis for the energy shell HE . More efficiently, we can
exploit the equivalence of ensembles and simulate the canonical density operator ρcan from (2.8)
by using R = e−βH/2 such that 〈ψ3|ψ3〉 ' tr(e−βH) = Z approximates the partition function and
〈A〉ρcan ' 〈ψ3|A|ψ3〉/Z. In practice, the unnormalized |ψ2〉 can thereby be calculated by imaginary-
time propagation of |ψ1〉 up to the inverse temperature β, which in turn is either known from the
considered setup or—for an isolated system—determined as usual from the constraint 〈H〉ρcan = E .
In the latter case, the functional dependence of 〈H〉ρcan on β has to be determined approximately,
but this can be achieved in the same way from an imaginary-time series of H for a randomly
generated pure state |ψ1〉. In the same vein, one can implement other density operators that are
functions of the Hamiltonian, using, for example, a Taylor expansion of the associated function
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R(H) to obtain |ψ2〉 from |ψ1〉. A particular example are Gaussian filters that pick out random
states from a narrow interval of energies (or some other observable) [133, 193, 201, 202].

Likewise, it is possible to generate ensembles of pure states with approximately prescribed expec-
tation values or measurement statistics of a few observables A1, . . . , AM and otherwise unbiased
statistical properties [181, 182, 200] (see also Refs. [203, 204] for related ideas), modeling the
preparation of an experiment with a few tunable macroscopic parameters. Denoting the target
expectation values of the A1, . . . , AM by a1, . . . , aM , respectively, the pertinent density operator
takes the form [182]

ρ = 1
N

[
1−

M∑
k=1

yk(Ak − ak)
]−1

(2.38)

with the M parameters yk determined by the M + 1 constraints tr ρ = 1 and tr(ρAk) = ak, one of
which is redundant. This construction comes with the proviso that Eq. (2.38) yields a well-defined
density operator, i.e., the yk are additionally constrained to render ρ nonnegative.

The actually required operator R = ρ1/2 is obtained by taking the square root of Eq. (2.38). In
practice, determining the yk and evaluating the square root can become computationally expensive
if not impossible. Hence one might resort to discerning the yk approximately, for instance by
means of a Taylor expansion [173, 200]. This relates to the construction of nonequilibrium initial
states for a single observable A from Ref. [73], which implicitly adopts a similar idea. Namely, a
nonequilibrium pure state |ψ〉 is generated from a randomly Haar-distributed pure state |φ〉 as

|ψ〉 ∝ Π(1 + κA)Π|φ〉 (2.39)

up to normalization, where κ is a real parameter used to tune the desired expectation value
〈A〉ρ ' 〈ψ|A|ψ〉 and Π is a projector onto a suitable subspace of the considered Hilbert space (e.g.,
the energy shell HE) or an approximation thereof, e.g., by means of the aforementioned Gaussian
filters. Note that we introduced new notation in Eq. (2.39) for later convenience; the connection
to the previous labeling is established via |ψ1〉 = Π|φ〉, R = Π(1 + κA)Π, and thus |ψ3〉 = |ψ〉.

Dynamical typicality. So far, we considered only static combinations of density operators ρ and
observables A. Further insights can be gained by considering the family of time-evolved observ-
ables A(t) := U(t)†AU(t) with U(t) = U(t, 0) being the propagator from (2.3), i.e., we assume
a Heisenberg-picture perspective on the system dynamics and explicitly allow time-dependent
Hamiltonians. This way, the time-dependent expectation value 〈A〉ρ(t) = tr[ρ(t)A], where ρ(t) is
the time-evolved state as introduced above Eq. (2.3) with t0 = 0, can equivalently be written as
〈A(t)〉ρ(0). We now choose the initial state ρ(0) = ρ to be one of the generic density operators
considered in the previous paragraph and examine the expectation values 〈ψ2|A(t)|ψ2〉 of the time-
evolved observable in the pure state |ψ2〉 constructed as above. We recall that the result (2.36)
entails that nearly all |ψ2〉 generated this way exhibit very similar expectation values for A = A(0).
The crucial observation is that the bound (2.36) is independent of the time t when substituting
A = A(t) because the eigenvalues of A and thus its spectral range ∆A are unaffected by the uni-
tary transformation U(t). Consequently, concentration of measure is also retained at any later time
t > 0, implying that the overwhelming majority of pure states |ψ2〉 or |ψ3〉 sampled according to
the above described procedure exhibit very similar expectation values not only at the initial time
t, but also at any later time t > 0. Put differently, the time series 〈ψ2|A(t)|ψ2〉 closely follows the
average E[〈ψ2|A(t)|ψ2〉] = 〈A〉ρ(t) for nearly all pure states |ψ2〉, and similarly for |ψ3〉.

This remarkable dynamical typicality of observable expectation values was first demonstrated by
Bartsch and Gemmer in Ref. [73] for ensembles of states generated according to (2.39) and sub-
sequently extended in various works [181, 200] with the present formulation due to Reimann and
Gemmer [182]. As a particular application, one can employ ensembles of states as in Eqs. (2.38)
or (2.39) with prescribed and possibly nonequilibrium expectation values a1, . . . , aM for observables
A1, . . . , AM . Dynamical typicality then assures that nearly all initial pure states |ψ3〉 with these
approximately fixed expectation values will lead to similar relaxation behavior of the observables
Ak (or any other A) apart from very rare exceptional combinations of |ψ3〉, Ak, and t. In the
absence of further knowledge about the state, the behavior observed under a randomly generated
|ψ3〉 can thus be expected generically. If the a1, . . . , aM correspond to the initial values of a few
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macroscopic, experimentally controllable observables A1, . . . , AM , this offers an explanation for
why the precisely prepared microstate is largely irrelevant as far as the observable dynamics is
concerned. Consequently, Eqs. (2.38) and (2.39) can be utilized to construct states emulating a
macroscopic preparation procedure. As another application, dynamical typicality can be exploited
to compute excellent approximations of time-correlation functions [74, 75].

Predictions for typical relaxation dynamics. While dynamical typicality expresses that the re-
laxation of experimentally realistic observables is very similar for nearly all pure states constructed
as explained above, it does not make any concrete predictions about the actually observed expec-
tation values. Generically, these values will coincide with the ensemble average E[〈ψ2|A(t)|ψ2〉],
but there is no obvious way to calculate this average other than using numerical simulations for
a specific setup. Yet typicality methods can be used to devise general analytical predictions for
relaxation processes of isolated quantum many-body systems, and the subsequent chapters of the
present thesis will in fact be mostly concerned with doing precisely this.

Particularly relevant predecessor works are Refs. [96, 97], where such predictions of the relaxation
dynamics were established in a setting that is in some sense complementary to the one employed
in this thesis. Focusing on an energy shell HE , the adopted typicality approach of those references
considers the dynamics generated by ensembles of Hamiltonians H ′ for a fixed initial state ρ(0)
and observable A (however, see also Ref. [96] for an alternative interpretation of the underlying
randomization). More precisely, starting from the true Hamiltonian H of the actual system of
interest, the considered ensembles consist of all H ′ obtained from H by taking the same eigen-
values, but randomly rotating [96] or shuffling [97] the eigenvectors. Incidentally, the ensemble
of Hamiltonians from Ref. [96] is also the one employed for establishing von Neumann’s quantum
ergodic theorem (see Sec. 2.2.2) and its successors [85, 117, 120, 124].

The derivations in Refs. [96, 97] then essentially proceed as outlined in Sec. 2.3.1, resulting in a
prediction for the time-dependent expectation values of the form

〈A〉ρ(t) = 〈A〉̄ρ + |d̂(t)|2
[
〈A〉ρ(0) − 〈A〉̄ρ

]
. (2.40)

Here ρ̄ denotes the time-averaged state from (2.17) as usual, with the approach from Ref. [96]
actually predicting ρ̄ ' ρmc in addition. Furthermore, d̂(t) := 1

N

∑
n eiEnt is the Fourier transform

of the relative density of statesD(E)/N (see Eqs. (2.10) and (2.11)). Crucially, the prediction (2.40)
has been verified for a variety of experimental and numerical examples [96, 97]. We also remark
that these works assumed an approximately uniform spreading of the initial state ρ(0) across the
relevant energy shell. However, pertinent extensions that include the energy distributions of ρ(0)
[100] or allow for macroscopic populations of a single energy level [22] have been devised, too. A
characteristic feature of (2.40) is that the predicted time scale of equilibration is extremely fast since
features like locality of interactions are not shared among the Hamiltonians of any given ensemble
(see also the discussion towards the end of Sec. 2.2.1). Hence Eq. (2.37) cannot be expected to
describe the relaxation in situations where macroscopic transport is the driving mechanism for
equilibration [100].

Our investigations in Chapters 3 through 5 will apply the same idea of investigating the dynamics
of an ensemble of Hamiltonians for fixed initial state and observable. The considered ensembles
of Hamiltonians, however, will be markedly different (except for Sec. 4.3, where a class similar to
the one from [96] is employed). Namely, we will mostly start from a given reference Hamiltonian
H0 with known dynamics and examine how the relaxation behavior changes under the influence
of generic time-independent (Chapter 3) or time-dependent (Chapter 5) perturbations V . The
total Hamiltonian thus takes the form Hλ = H0 + λV with H0 fixed and V chosen from a suitable
ensemble of perturbation operators. In essence, we will thus adopt a similar setting as in Deutsch’s
groundbreaking work [114] which, besides foreshadowing the ETH (see Sec. 2.2.2), used such an
approach to argue that generic perturbations will thermalize an isolated many-body system in the
long run (see also Sec. 3.8). For the special case that H0 describes a small system and a large
bath, independent of each other, and V mediates an interaction between them, such an approach
was also utilized to discern features of the system’s reduced density operator, namely a dynamical-
typicality property [205], a characterization of its time dependence [206], and its approximate form
and fluctuations at late times [207, 208].
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Random matrix theory. Given that operators are represented by matrices once a basis has been
fixed, the mathematical foundations of our intention to investigate statistical ensembles of Hamil-
tonians are provided by random matrix theory [163, 209–211]. The idea to study properties of
random matrices as a proxy for complicated many-body Hamiltonians goes back to Wigner [212–
215], who suggested and successfully employed such an approach to explain features of atomic
nuclei (see also Ref. [216], which highlights the typicality spirit of this approach). Since then, a
flurry of different random matrix ensembles have been studied in the mathematical physics com-
munity (see, for example, the books and reviews [163, 209–211]), sometimes more, sometimes less
closely related to concrete physical models. Special attention is usually devoted to the statistical
properties of eigenvalues and eigenvectors, and the latter in particular will play a key role in all
our investigations as well.

The most basic and most intensely studied of these ensembles are the family of Gaussian ma-
trices comprising the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble
(GUE), and the Gaussian Symplectic Ensemble (GSE). The GOE and GUE as well as gener-
alizations thereof will be of particular interest to us. In the case of the GOE (GUE), the ensem-
ble consists of real symmetric (complex Hermitian) matrices with independent—apart from the
symmetry (Hermiticity) constraint—and identically distributed entries drawn from an unbiased
real-valued (complex-valued) normal distribution. (For the GUE, diagonal entries are naturally
also real-valued.) In fact, the adopted ensembles of perturbations V in our class of Hamiltonians
Hλ = H0+λV will consist of similar matrices, but will include more general, possibly non-Gaussian
distributions with an optional banded and sparse structure (see Sec. 3.3 for a proper definition).
Early variants of such random matrices were again introduced and examined by Wigner [213, 216].
Of particular relevance from a methodological point of view are studies by Fyodorov, Mirlin and
co-workers [217–219], who investigated structurally similar ensembles of banded and/or sparse ma-
trices using supersymmetry methods [163, 220–225] (see also Appendices B and C). These methods
will form an essential part of our derivations, too.

* * *

This concludes our survey of relevant concepts and results related to the intended investigations
of this thesis. Provided with a solid understanding of the rules and history of the game as well as
an ambitious strategy at hand, we are all set to take to the field and see how things play out.
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3 Perturbed relaxation

The by now well-established results presented in the previous chapter provide a quite profound
understanding of why isolated many-body quantum systems equilibrate in the long run, and they
furthermore assert that the eventually reached equilibrium state can generically be described in
terms of the traditional thermodynamic ensembles. As mentioned before, much less is known about
the time scales on which this relaxation of a system initially out of equilibrium takes place, and even
scarcer are general principles or predictions describing the dynamics (e.g., the time dependence of
expectation values) of the relaxation process.

In this first main part of the thesis, we will develop such a prediction for the relaxation of isolated
many-body quantum systems under the influence of time-independent perturbations. The starting
point is a reference system whose dynamics is considered to be known, for example, because the
system is noninteracting, integrable, or its dynamics has been measured. The theoretical prediction
will describe the modifications of the dynamics arising from a perturbation of this reference system
by establishing concentration of measure for suitable ensembles of perturbations and by calculating
their concomitant average (“typical”) effect.

The results presented in this chapter have been published in parts in Refs. [177, 226, 227]. In
Sec. 3.1, we will specify the setup, formalize the goals, and sketch the steps of the derivation. In
Sec. 3.2, we will then collect properties of the considered systems that are exploited during the
derivation and thus required for the theory to be applicable. The perturbation ensembles inherent
to the intended typicality approach will be introduced in Sec. 3.3. The key properties of these
ensembles determining the relaxation behavior will be derived in Sec. 3.4. The main physical
results are contained in the ensuing two sections: a bound for the deviations of the dynamics
induced by the perturbations in Sec. 3.5 and an analytical prediction for the time evolution in
the perturbed systems in Sec. 3.6. This latter result, in particular, will be illustrated by means
of various examples in Sec. 3.7. Finally, in Sec. 3.8, we relate the result to similar findings in the
literature and suggest possible ways to overcome some shortcomings of the approach and to extend
it to setups that will be excluded in the present derivations.

3.1 Aims and setup

Stating the goal. The general setting to be investigated in the following involves many-body
quantum systems whose Hamiltonian can be split into two parts: an unperturbed reference system
described by the Hamiltonian H0 and a perturbation V , whose strength is controlled by some
(time-independent) parameter λ. Hence the perturbed Hamiltonian takes the form

H ≡ Hλ := H0 + λV . (3.1)

The principal question we aim to attack is then: Provided that we know the dynamics of the
reference system H0 in a given setup, can we predict the behavior of the perturbed system under
similar circumstances? This problem of characterizing the response of a given system to a pertur-
bation is ubiquitous in physics, but the many-body nature of the systems under study poses some
additional challenges that rule out standard approaches such as elementary (Rayleigh-Schrödinger)
perturbation theory. The reason is that the density of states of the many-body Hamiltonian H
grows exponentially with the system’s degrees of freedom, cf. Sec. 2.1. The standard perturbation
series is thus plagued by exceedingly small denominators, restricting its applicability to time scales
far below the typically observed relaxation times of macroscopic systems. In the following, we will
therefore tackle this problem by means of a nonperturbative typicality approach as sketched in
Sec. 2.3.

To be more specific, we assume that the system is prepared in some initial state at time t = 0, which
may be pure or mixed and is generally given by a density operator ρ(0). Since the Hamiltonians
considered in this section are time independent, the state at any later time t > 0 immediately
follows as ρλ(t) := e−iHλt ρ(0) eiHλt (see above Eq. (2.4)).
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Table 3.1: Three example scenarios that can be modeled in terms of Hamiltonians of the form (3.1) and
where the reference dynamics may be known explicitly: weakly coupled subsystems, integrability-breaking
perturbations, and quantum quenches. In the right column, the dash-dotted blue and solid red lines sketch
possible observable dynamics of the unperturbed and perturbed systems, respectively.

H0 H = H0 + λV example dynamics

isolated subsystems interacting

integrable nonintegrable
t0 tth

ln(t)Ath

Aeq

Ain

〈A〉

“prethermalization”

isolated system quench
t

Ain

〈A〉

A physical quantity whose dynamics we can record is described by an experimentally relevant
observable A, i.e., a self-adjoint operator with a finite measurement range ∆A and resolution δA
(cf. Sec. 2.2). Our focus will be on the time-dependent expectation values of this operator A,

〈A〉ρλ(t) = tr[ρλ(t)A] (3.2)

as defined in (2.1). In more technical terms, the overall goal can then be stated as follows: Assuming
that the reference dynamics 〈A〉ρ0(t) of the unperturbed system H0 and some essential properties
of the perturbation V are known, we wish to characterize the perturbed dynamics 〈A〉ρλ(t).

Applications. Generally speaking, there are a variety of physical situations that can potentially
be modeled by such an approach. Three scenarios are sketched in Tab. 3.1. For example, the
reference system may consist of two isolated subsystems, which includes the canonical system-
plus-bath setting, but the subsystems may also be of similar size. For the sake of the argument,
assume that each of them is in a thermal equilibrium state (in the sense of Sec. 2.2) such that the
expectation value of, say, their energy difference is a constant. After bringing them into contact
by means of a sufficiently weak coupling interaction λV , the joint system will usually relax to a
new (thermal) equilibrium state, generally implying a relaxation of the energy difference between
the two compartments to the new equilibrium value.

Another interesting case arises if the reference system is integrable. The dynamical behavior can
then often be computed analytically, and as discussed briefly at the end of Sec. 2.2.3, adding a weak
integrability-breaking perturbation commonly leads to prethermalization, where the perturbed
dynamics initially resembles the unperturbed behavior before eventually departing towards thermal
equilibrium.

Finally, the reference Hamiltonian may describe some system for which one happens to know the
dynamics. We can then ask how this behavior is modified when changing some parameter of
that Hamiltonian, called a quantum quench [7, 83, 174] in the literature. Note that this term is
sometimes used in a more restrictive sense to refer to situations in which the initial state ρ(0) is
the ground state or at least a thermal state of H0 (see also Sec. 2.2.3). For our purposes, however,
the initial state need not be of this kind.
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It should be emphasized that the results obtained in the following will not describe all situations
that fall into these three classes of example scenarios. The prerequisites for the Hamiltonian, the
initial state, and the observables will be specified more precisely in Sec. 3.2. Before collecting
those, we briefly sketch the steps of our calculation to predict 〈A〉ρλ(t) from 〈A〉ρ0(t).

Outline of the derivation. Our method of choice for finding a prediction for the perturbed dy-
namics is based on the notion of typicality as explained in Sec. 2.3. In the present setting, where
we consider the reference dynamics generated by H0 in (3.1) as given, the idea is to study the effect
of an entire class or ensemble of similar perturbations simultaneously instead of the true pertur-
bation of interest alone. As usual, this is motivated by common phenomenological evidence that
the observable behavior of macroscopic systems is somewhat insensitive to the microscopic details
of its constituents. In other words, only a few macroscopic characteristics of the true perturbation
V are expected to actually matter with respect to the time-dependent expectation values 〈A〉ρλ(t)
of experimentally relevant observables. If all members of the chosen ensemble share those key
characteristics, then they will all lead to the same macroscopically observable relaxation behavior.
The typicality argument is slightly weaker in that it shows that the overwhelming majority of per-
turbations result in practically indistinguishable dynamics. Perturbations belonging to this vast
majority are then called “typical,” and it remains to be argued why the true perturbation is one
of these typical members. Naturally, the key here is a proper choice of the ensemble so that the
typical perturbations exhibit the aforementioned essential characteristics regarding the perturbed
dynamics.

The ensembles we consider will be motivated and defined in the subsequent Secs. 3.2 and 3.3. For
now, we simply assume that an appropriate ensemble has been chosen, and we denote ensemble av-
erages over V -dependent quantities by the symbol E[ · · · ]. Following the recipe from Sec. 2.3.1, the
derivation then consists of three crucial steps: First, we compute the ensemble-averaged perturbed
expectation values E[〈A〉ρλ(t)]. Second, we consider the deviations

ξV (t) := 〈A〉ρλ(t) − E[〈A〉ρλ(t)] (3.3)

of one particular realization from the average behavior and calculate the variance E[ξV (t)2]. By
showing that this variance is exceedingly small for reasonably large system sizes, we establish
the above-mentioned typicality property. Third, we demonstrate agreement with concrete model
systems to suggest that the obtained prediction is indeed of somewhat generic nature.

Denoting the eigenvalues and eigenvectors of the Hamiltonian Hλ from (3.1) by Eλn and |n〉λ,
respectively, the perturbed time-dependent expectation values (3.2) can be written as

〈A〉ρλ(t) =
∑
m,n

ei(Eλn−E
λ
m)t ρλmn(0)Aλnm (3.4)

with ρλmn(0) := λ〈m|ρ(0)|n〉λ and Aλnm := λ〈n|A|m〉λ. We recall that the operators ρ(0) and A are
independent of the perturbation V , whereas their matrix elements ρλmn(0) and Aλnm are not. For
computational reasons, it is advantageous to split off the V dependence by introducing the unitary
transformation

Unµ := λ〈n|µ〉0 (3.5)

between the eigenbases of the unperturbed Hamiltonian H0 and the perturbed Hλ. Note that the
dependence of the Unµ on λ is notationally suppressed. Furthermore, we remark that we will use
Latin indices to refer to the perturbed eigenbasis {|n〉λ} and Greek indices for the unperturbed
eigenbasis {|µ〉0} throughout the rest of this thesis. When dealing with the unperturbed Hamil-
tonian H0, we will also drop the superscript λ = 0 for the energy levels Eµ := E0

µ and matrix
elements such as Aµν := A0

µν = 0〈µ|A|ν〉0.

Employing the eigenvector overlaps (3.5) in (3.4), we then obtain

〈A〉ρλ(t) =
∑
m,n

ei(Eλn−E
λ
m)t

∑
µ1,µ2,
ν1,ν2

Umµ1Unµ2U
∗
mν1

U∗nν2
ρµ1ν2(0)Aµ2ν1 . (3.6)
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Thus the random quantities in this relation are the energies Eλn and eigenvector overlaps Unµ,
which inherit their distributions from the perturbation V , whereas the matrix elements ρµ1ν2(0)
and Aµ2ν1 in the H0 eigenbasis are fixed. The ensemble average can therefore be written as

E[〈A〉ρλ(t)] =
∑
µ1,µ2,
ν1,ν2

ρµ1ν2(0)Aµ2ν1 E

[∑
m,n

ei(Eλn−E
λ
m)t Umµ1Unµ2U

∗
mν1

U∗nν2

]
. (3.7)

Hence the key task in the first step of the typicality recipe is to calculate the average on the right-
hand side of this equation involving four factors of eigenvector overlaps Unµ. As for the second
step, which is the computation of the variance

E
[
ξV (t)2] = E

[(
〈A〉ρλ(t)

)2]− (E[〈A〉ρλ(t)
])2

, (3.8)

we consequently need to evaluate a similar ensemble average comprising eight factors of Unµ and
two additional energy summands in the exponent.

3.2 Prerequisites

Having formulated the goals and laid out our method to tackle the question of perturbed relax-
ation in many-body quantum systems, we will now specify more concretely the classes of physical
systems that may be amenable to our theoretical approach. In the subsequent derivations, it is
assumed implicitly or explicitly that the systems under study satisfy the following prerequisites.
Nevertheless, it should also be said that the fulfillment of all those requirements does not guarantee
the successful theoretical prediction of a system’s behavior. As explained in Sec. 2.3, the difficulty
to determine a priori whether a chosen ensemble emulates all relevant properties of a given system
is inherent to the typicality approach. Hence the following list of requirements should rather be
understood as a guideline of conditions under which a successful modeling becomes more likely
(and whose violation diminishes these chances). The eventual justification can and will only be
given a posteriori in Sec. 3.7, where the theoretical prediction is compared to concrete numerical
and experimental results.

The first prerequisite addresses the reference Hamiltonian H0 and the initial state ρ(0):

Prerequisite (i): Homogeneous density of states. Recalling the properties of isolated systems
collected at the end of Sec. 2.1, the reference system H0 prepared in the state ρ(0) should have a
well-defined macroscopic energy. Hence there exists an energy window IE (Eq. (2.9)) such that the
level populations ρµµ(0) are negligible if Eµ /∈ IE . For this window IE , we require that the density
of states D(E) from (2.11) should be uniform to a good approximation, D(E) ≈ ε−1 = const (cf.
Eq. (2.13)). Observing that IE is a macroscopically small interval by definition, this assumption is
usually fulfilled rather generically.

Since the state ρ(0) (and thus ρ(t) for all t > 0) is essentially contained in IE , we can technically
replace the “true” Hamiltonian H0 by an auxiliary one that is identical to H0 on IE , but exhibits
similar properties ad infinitum outside of IE , too, notably a constant D(E). The reason is that
|ρµν(0)|2 ≤ ρµµ(0) ρνν(0) due to the Cauchy-Schwarz inequality, hence any contributions to time-
dependent expectation values such as (3.6) from outside of IE are also negligible. Such a natural
continuation of the energy window will sometimes be mathematically convenient.

We emphasize that the initial state ρ(0) does not define the window IE . The only condition is that
ρ(0) should be contained in that window up to negligibly small populations. Apart from that, the
initial state is essentially arbitrary and may thus, in particular, populate only a small subset of
states in IE or may even be a single energy eigenstate. As will be discussed in detail in Sec. 3.6.3,
the nature of the considered perturbation ensembles will entail that the initial state should not
exhibit any macroscopic spatial inhomogeneities in order for the eventually obtained theoretical
prediction of the dynamics to be applicable. However, this is not a formal requirement for the
derivation and thus not demanded here.
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As far as the admissible perturbations in (3.1) are concerned, we assume that they exhibit the
following five key properties:

Prerequisite (ii): Sufficiently weak perturbations. For our intention to relate the behavior of the
perturbed system (3.1) to the dynamics of the reference system H0 to be meaningful, it should
be clear that admissible perturbations cannot become arbitrarily strong. Specifically, we therefore
require that the perturbation should not change the system’s thermodynamic properties. Phase
transitions induced by V are thus explicitly ruled out. The principal consequence of interest is
that also for the perturbed system and its levels En, there exists an energy window similar to IE
from (2.9) which contains the initial state ρ(0). Notably, it is taken for granted that this energy win-
dow exhibits the same uniform density of statesD(E) ≈ ε−1 sinceD(E) = eS(E)/kBS ′(E) is directly
related to the system’s thermodynamic properties via Boltzmann’s entropy S(E) from (2.6).

Given this intimate relation between thermodynamic properties and the distribution of energy lev-
els, the present weak-perturbation prerequisite then essentially means that Prerequisite (i) should
apply similarly to Hλ and H0. Away from the edges, a substantial degree of “rigidity” or “stiffness”
of the spectrum can actually be expected quite generically if Hλ is nonintegrable due to a so-called
level-repulsion mechanism [163]: The “evolution” of the energy levels with λ can be described as
a one-dimensional system of particles at positions Eλn interacting via a repulsive logarithmic two-
body potential, the so-called Pechukas-Yukawa gas [228, 229]. As a consequence, the levels will
fluctuate with λ, but tend to avoid forming clusters or crossing each other. Away from the borders,
the levels thus feel an effective pressure, which stabilizes their distribution and in fact furthermore
promotes an approximately homogeneous spreading (cf. Prerequisite (i)).

Prerequisite (iii): Sufficiently strong perturbations. Our intention to model the influence of per-
turbations within a typicality framework necessitates that many degrees of freedom are involved in
mediating the effect of V in order for self-averaging to take place (cf. Sec. 2.3.1). The perturbation
should therefore significantly mix a large number of unperturbed levels. More precisely, this means
that the overlaps (3.5) between the unperturbed and perturbed eigenvectors should extend across
an energy scale Γv with Γv � ε. In a coarse-grained sense that will become clear below, Unµ should
thus be nonnegligible for |Eλn − Eµ| . Γv. Together with Prerequisite (ii), which implies Γv � ∆E
with ∆E being the width of the energy window IE from (2.9), we thus need ε� Γv � ∆E . Because
of the extreme level density of typical many-body systems (see also Sec. 2.1), there still exists a
wide range of parameters λ satisfying these bounds. In particular, we can and will take for granted
that the number of levels Nv that get mixed by the perturbation is exponentially large in the
system’s degrees of freedom f [226], i.e.,

Nv := Γv/ε = 10O(f) . (3.9)

Note that perturbations violating ε� Γv (or Nv � 1) are actually so weak that they do not lead
to notable deviations from the unperturbed behavior on any reasonable time scale [226]: If Γv were
on the order of ε, meaning that the perturbation mixes only levels within a few multiples of the
mean level spacing, it could only induce modifications on time scales ε−1, too, because it only
affects the corresponding frequencies Eλn −Eλm ∼ ε in (3.6). Considering the extremely small level
spacing in many-body systems, however, the time scale associated with ε−1 is unimaginably large
and typically exceeds the age of the universe by many orders of magnitude. For all times of interest,
the perturbed dynamics would thus not be distinguishable from the unperturbed behavior. As our
final result will turn out to entail this limit correctly, the requirement ε� Γv and thus the present
Prerequisite (iii) may be dropped again a posteriori.

As usual in statistical physics, we can expect that the observable behavior of the considered many-
body system is characterized well by a few macroscopic parameters. Prerequisites (ii) and (iii) did
not incorporate any more specific properties of the perturbation other than its overall strength.
As we will see in Sec. 3.6, this can indeed be sufficient to predict the behavior under weak per-
turbations. However, the theoretical prediction and its applicability can be improved significantly
if additional information about the perturbation is included. The following assumption therefore
asks for a more detailed, energy-resolved account of the perturbation strength.

Prerequisite (iv): Perturbation profile. On a coarse-grained level, the magnitude of the pertur-
bation matrix elements Vµν := 0〈µ|V |ν〉0 within the energy window IE should only depend on the
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energy difference Eµ − Eν of the coupled levels. We express this symbolically as

|Vµν |2 ' σ2
v(Eµ − Eν) , (3.10)

where ‘'’ here is supposed to mean an asymptotic equality in sufficiently large systems when the
matrix elements on the left-hand side are locally averaged over eigenstates |µ〉0 and |ν〉0 that are
close-by in energy. The quantity σ2

v(E) will be called the perturbation profile henceforth. Apart
from a potential discontinuity at E = 0, which will be addressed in the subsequent Prerequisite (v),
it will be—basically by definition—a smooth and, compared to the mean level spacing ε, slowly
varying function of E. In addition, it is an even function by definition, σ2

v(−E) = σ2
v(E), because

V is Hermitian.

Supported by semiclassical arguments [219, 230], analytical studies of lattice systems [102, 231],
and many numerical examples [130, 134, 232–234] (see also Fig. 3.2 below), realistic perturbations
indeed commonly exhibit a well-defined perturbation profile σ2

v(E). Moreover, the function σ2
v(E)

is often found to decay to zero as E → ∞, leading to a so-called banded matrix structure. As
a simple example, consider a reference Hamiltonian H0 that is noninteracting, meaning that its
eigenstates |µ〉0 are momentum modes. For a perturbation consisting of local interactions, meaning
that the interaction strength decays on a length scale ξ with the spatial separation of the degrees
of freedom, standard Fourier analysis then suggests that interactions fall off on a scale proportional
to ξ−1 in momentum space (recalling ~ = 1). Hence locality of interactions, which is a generic
physical assumption, is expected to translate into a banded matrix structure of Vµν in this scenario.
However, we point out that σ2

v(E) is not required to vanish for large E. For example, in the above
mentioned weak-perturbation limit, it often suffices to consider σ2

v(E) = const.

Besides being possibly banded, the matrix Vµν is also often found to be sparse [209, 219, 233, 235],
which is to say that the majority of the matrix elements Vµν vanish. For instance, in our example
of a noninteracting reference system H0, the eigenbasis {|µ〉0} is composed of single-particle states.
If the perturbation adds few-body interactions, meaning that only a limited number of particles
interact simultaneously, the resulting matrix Vµν will indeed exhibit a sparse structure.

Associated with the perturbation profile σ2
v(E) there are two important quantifiers which encode

characteristics of V on an even more coarse-grained level. The first one, defined by

σv := lim
E→0+

√
σ2
v(E) , (3.11)

sets an overall energy scale of the operator V and will be called the intrinsic strength of the
perturbation in the following. Note that we only distinguish the squared intrinsic strength σ2

v

from the perturbation profile σ2
v(E) by omission of the argument. The total perturbation strength

in (3.1) can thus be estimated as λσv. In fact, it will turn out later that the more prominent
characteristic is

αv := σ2
v

ε
, (3.12)

which relates the intrinsic perturbation strength to the mean level spacing of the unperturbed
H0 and thereby connects the energy scales of H0 and V . Being slightly sloppy in the naming
conventions, we will also refer to αv as the intrinsic perturbation strength.

The second quantifier, defined by

∆v := 1
σ2
v

∫ ∞
0

dE σ2
v(E) , (3.13)

measures the energy range across which unperturbed eigenstates are coupled by the perturbation
and will be called its band width. This band width ∆v should not be confused with the eigenvector
mixing scale Γv from above (3.9). The former quantifies the absolute energy range of directly
coupled unperturbed levels via the perturbation, whereas the latter measures the effective mixing of
the perturbed and unperturbed eigenvectors, i.e., the relative energy range from which unperturbed
states contribute significantly (compared to all others) to a given perturbed one (and vice versa). In
a perturbation-theoretic picture, Γv can thus receive “higher-order corrections” and will generally
deviate substantially from ∆v. Furthermore, we emphasize that the perturbation profile σ2

v(E) is
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not required to decay as E → ∞; hence ∆v may be infinite if the matrix Vµν is not or only very
weakly banded.

Up until now, the demanded properties can be regarded as a specification of our model of isolated
many-body quantum systems and admissible perturbations, guided by physical principles and
insights about the setting to be investigated. In contrast, the following final two prerequisites are
included mostly for technical reasons.

Prerequisite (v): Sufficiently small level fluctuations. The fluctuations of the energy levels in-
duced by the perturbation should be sufficiently small so that their effect on the relaxation dynam-
ics is negligible. We observe that this assumption is related to Prerequisite (ii), which demanded,
in particular, that the energy window IE and the mean level spacing ε should not change under
the influence of the perturbation. As mentioned before, the generic level repulsion mechanism is
a first reason why this prerequisite is usually a sensible assumption. More specifically, its most
prominent exploitation occurs in connection with ensemble averages of the form (3.7): We will
assume that in such averages, we can replace the difference Eλn − Eλm between perturbed energy
levels in the exponential by its mean value E[Eλn −Eλm] = En −Em, where En denotes the energy
levels of the unperturbed H0 as before. Indeed, we will verify a posteriori that even considerable
fluctuations extending over large multiples of the level spacing ε have no noticeable effect on the
observable dynamics within the typical relaxation time scales. Technically speaking, this means
that eigenvector mixing as encoded in the factors of Unµ in Eq. (3.7) vastly dominates over level
fluctuations as far as the relaxation process is concerned.

To estimate the time scale associated with the level fluctuations, we can employ a typicality
approach similar to the one outlined in Sec. 3.1. We define the difference ελn := Eλn − En between
the perturbed and unperturbed energy levels and consider how the reference dynamics 〈A〉ρ0(t) is
changed when replacing all energies Eµ by Eµ + ελµ. In fact, since this amounts to choosing a
diagonal perturbation matrix Vµν , it is just a special (and particularly simple) case of the more
general setting to be considered below,

λVµν := δµν ε
λ
µ . (3.14)

For the sake of the argument, we assume that the ελµ are independent and follow a normal distribu-
tion of mean zero and variance λ2σ2

0 ; the precise distribution is irrelevant for our present purposes
because we are only interested in a rough estimate of the time scales. Note that a vanishing
mean, in particular, can be assumed without loss of generality because we can always add a trivial
constant to the perturbation that shifts all energies, but does not alter the dynamics, which only
depends on energy differences. Substituting into (3.7) and exploiting Unµ = δnµ yields

E[〈A〉ρλ(t)] =
∑
µ6=ν

ei(Eν−Eµ)t E
[
ei(ελν−ε

λ
µ)t
]
ρµν(0)Aνµ +

∑
µ

ρµµ(0)Aµµ

= 〈A〉ρ0 + e−λ
2σ2

0t
2 [
〈A〉ρ0(t) − 〈A〉ρ0

]
,

(3.15)

where ρ0 denotes the time-averaged state of the unperturbed dynamics (cf. Eqs. (2.16) and (2.17)).
Averaged over the ensemble, the level fluctuations thus start to noticeably affect the relaxation only
for times t & (λσ0)−1. Moreover, the variance (3.8) can be bounded from above as detailed in
Appendix E.1 by

E
[
ξV (t)2] ≤ 3∆A√pmax (3.16)

with the measurement range ∆A of A as defined in (2.18) and pmax := maxµ ρµµ(0) as in (2.14).
As long as the initial state is spread out sufficiently broadly across the pertinent energy window IE
such that Eq. (2.14) holds, the average effect (3.15) is then also observed typically, i.e., for the vast
majority of combined level fluctuations ελµ (cf. Eq. (2.29) for quantitative details). Consequently,
the deviations induced by fluctuating energy levels scale like∣∣〈A〉ρλ(t) − 〈A〉ρ0(t)

∣∣
∆A

≤
∣∣〈A〉ρλ(t) − 〈A〉ρ0(t)

∣∣
|〈A〉ρ0(t) − 〈A〉ρ0 |

' (1− e−λ
2σ2

0t
2
) = (1− e−E[(ελµ)2]t2) ≤ t2 E[(ελµ)2] ,

(3.17)
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and if tR is the observed relaxation time scale of the system, the effect of level fluctuations is
expected to be negligible provided that

tR � (λσ0)−1 =
(
E[(ελµ)2]

)−1/2
. (3.18)

Of course, a more quantitative assessment of the admissible fluctuations will only be possible
once we know the actual relaxation time scale associated with the perturbed Hamiltonian (3.1)
and is therefore postponed to Sec. 3.6.3. Furthermore, we remark that the deviations between
the reference dynamics 〈A〉ρ0(t) and the dynamics 〈A〉ρλ(t) observed upon applying the diagonal
perturbation (3.14) can also be bounded rigorously [177] by∣∣〈A〉ρλ(t) − 〈A〉ρ0(t)

∣∣
∆A

≤ |t| max
µ
|ελµ| . (3.19)

Finally, the fact that the time scale associated with the level fluctuations is usually much larger
than the observed relaxation time is also the reason why we can allow the diagonal elements Vµµ of
admissible perturbations to fluctuate significantly stronger than the off-diagonal Vµν as indicated
in Prerequisite (iv) below Eq. (3.10), where the perturbation profile σ2

v(E) was permitted to be
discontinuous at E = 0. In combination with the results from Secs. 3.4 and 3.6, the present
Prerequisite (v) and particularly Eqs. (3.18) and (3.19) specify how strong this discontinuity may
become in practice. Generically, at least if H0 satisfies the ETH and V is a physical observable,
the fluctuations of diagonal and off-diagonal matrix elements should still be of similar order (cf.
the ETH ansatz (2.24)). Somewhat larger fluctuations of the Vµµ compared to the Vµν for µ 6= ν
are, however, not uncommon (see also the example in Fig. 3.2 below), and we do not require H0
to satisfy the ETH either.

The prerequisites collected so far are quite specific and could—at least in principle—be readily
tested for a given model using, for example, exact diagonalization. In fact, we will discuss one such
example shortly. Before that, however, we shall complete our list of requirements by including one
additional technical (and unfortunately rather vague) prerequisite about the perturbation (see also
Secs. 3.3 and 3.4).

Prerequisite (vi): Sufficiently uncorrelated perturbations. Besides the trivial correlations due to
the constraint Vµν = V ∗νµ, the true perturbation will inevitably exhibit correlations due to func-
tional interdependencies between the matrix elements Vµν for different µ and ν. These correlations
should be sufficiently weak so that their influence on the dynamics is of subleading importance.
Put differently, the individual terms in H0 and V should be “orthogonal” to each other in some
operational sense, such that V adds a new aspect or characteristic to the system. An immediate
consequence is that in a given setup, the splitting into H0 and V according to (3.1) cannot simply
be reversed by defining H ′0 := Hλ = H0 + λV and λV ′ := Hλ − H ′λ = −λV because H ′0 and V ′
will now typically be strongly correlated.

Example. While the above catalog of requirements may appear to impose utterly restrictive
constraints on the admissible systems, we contend that these properties are in fact widely observed
in realistic physical systems with sufficiently many degrees of freedom. As already mentioned above,
Prerequisites (i) through (iv) in particular merely formalize physical properties of the considered
systems. Incidentally, if not stated explicitly, similar assumptions are taken for granted implicitly
in many works on related questions.

To illustrate these properties in an explicit example, we examine the corresponding characteristics
of a two-dimensional spin- 1

2 system by means of exact diagonalization, for which we employ the
Eigen3 library [236] here and in any other later examples. The reference Hamiltonian H0 couples
nearest neighbors on an L×L square lattice with open boundary conditions via isotropic Heisenberg
terms,

H0 =
L−1∑
i=1

L∑
j=1

σi,j · σi+1,j +
L∑
i=1

L−1∑
j=1

σi,j · σi,j+1 , (3.20a)
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Figure 3.1: Level distribution of the spin system (3.20a) and (3.20b) on a 4 × 4 lattice in the zero-
magnetization subsector of dimension

(16
8

)
= 12 870. a. Integrated density of states Ω(E) :=

∑
m
Θ(E −

Eλm), counting the number of levels with energy below E, for various values of the perturbation strength
λ. The dotted black line corresponds to a constant density of states D(E) = ε−1. The horizontal dashed
lines indicate the window IE comprising the central 60 % of levels. Inset: mean level spacing ε in IE as a
function of λ. b. Distribution of consecutive energy gaps of H0 in IE , measured in units of the mean level
spacing. The range of the y-axis comprises all spacings in the considered regime, i.e., no gap in IE exceeds
11ε.

where σi,j := (σxi,j , σ
y
i,j , σ

z
i,j) with σαi,j denoting the Pauli matrices acting on site (i, j). The

perturbation adds additional spin-flip terms between next-nearest neighbors, i.e.,

V =
L−1∑
i,j=1

(
σxi,jσ

x
i+1,j+1 + σyi,jσ

y
i+1,j+1 + σxi+1,jσ

x
i,j+1 + σyi+1,jσ

y
i,j+1

)
. (3.20b)

Note that the total magnetization Mz := 1
L

∑
i,j σ

z
i,j is conserved for all Hλ. For the following

analysis, we choose L = 4, restrict to the Mz = 0 subsector, and select the central 60 % of its
energy levels to define the energy window IE from (2.9). In the unperturbed system, this window
consists of 7722 states with energies between E = −8.8 and E = 5.8 and a mean level spacing
ε = 1.90× 10−3.

The distribution of the energy levels for various values of λ is shown in Fig. 3.1. The figure illustrates
that Prerequisites (i) and (ii) are satisfied well, at least for values of λ ≤ 0.8: As apparent from
Fig. 3.1a, the density of states within the selected window IE is indeed homogeneous and does
not vary much between different values of λ apart from the strongest perturbation with λ = 1.6.
Furthermore, Fig. 3.1b shows that the fluctuations of the level spacings are rather mild with a
standard deviation of 1.3ε and the largest gap of order 10ε.

To investigate the further assumptions about the perturbation, Fig. 3.2a shows the coarse-grained
matrix Vµν for Eµ, Eν ∈ IE averaged over blocks of 100 × 100 levels. The color gradient clearly
illustrates the banded structure. A more detailed view of Vµν for the central 60 × 60 levels is
shown in Fig. 3.2b, where every pixel corresponds to one matrix element. Here the sparsity of Vµν
becomes apparent. Quantified by the fraction s of vanishing matrix elements, we estimate it to
be s = 0.855 using a threshold of |Vµν |2 < 10−16 to count as zero. In other words, 14.5 % of the
matrix elements are nonvanishing.

The resulting perturbation profile (3.10) is plotted in Fig. 3.2c using a bin width of 0.01 (approxi-
mately 5ε) for the local averages. The plot also includes a fit to the exponential form

σ2
v(E) = σ2

v e−|E|/∆v (3.21)

with σ2
v = 5.02 × 10−3 (such that αv = σ2

v/ε ≈ 2.64) and ∆v = 7.32, which offers a good
approximation of the empirical profile and demonstrates that the functional relation can indeed
be considered as smooth and slowly varying with respect to ε despite the rather small system size,
confirming Prerequisite (iv). Fluctuations of the diagonal elements are considerably larger, with
the empirical variance yielding an estimate of σ2

0 ≈ 6.3 for σ2
0 := E[(Vµµ −EVµµ)2] (cf. Eqs. (3.14)

and (3.18)). The ratio of diagonal to off-diagonal fluctuations is thus σ0/σv ≈ 35.
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Figure 3.2: Structure of the perturbation matrix Vµν for the spin system (3.20a) and (3.20b) on a 4 × 4
lattice in the zero-magnetization subsector. a. Squared matrix elements |Vµν |2 of the perturbation (3.20b)
in the eigenbasis of the reference Hamiltonian (3.20) in a central energy window IE of 7722 states (60 % of
the total Hilbert space dimension), averaged over blocks of 100×100 levels, illustrating the overall banded
structure of the matrix. b. Squared matrix elements |Vµν |2 in a central segment of 60 × 60 states with
each pixel representing one matrix element, showing the sparse character of the matrix with a fraction
s = 0.855 of vanishing entries. c. Coarse-grained perturbation profile (3.10) (black, bin width 0.01) and
fit to the exponential form (3.21) with σ2

v = 5.02× 10−3 and ∆v = 7.32 (red). The inset shows the same
data with a logarithmically scaled y axis.

3.3 Perturbation ensembles

Within our typicality approach, for any given system of the form (3.1), we intend to embed the
“true” perturbation of interest into an ensemble of self-adjoint operators sharing with the true V
those properties which are essential for the observable dynamics. Obviously, a proper choice of the
ensemble is crucial for the success of the method and the chosen class of operators should neither
be too general nor too specific: In case our description is too generic, we risk to oversimplify the
problem and may not be able to make any useful predictions about the perturbed behavior at all
because the decisive characteristics of the perturbation are lost. On the other hand, an overly
restrictive choice limits the predictive power, too, because it requires very detailed knowledge
about the structure of the true perturbation, and it also obscures the physical principles taking
microscopic complexity to macroscopic regularity. (The extreme example is the specification of all
the exact matrix elements Vµν , which would obviously allow an excellent prediction in principle,
but does not teach us anything about the mechanism behind the observed behavior.) Moreover,
the necessity for a large enough ensemble of perturbations is also inherent to the intended typ-
icality method as the underlying concentration-of-measure principle only becomes meaningful in
sufficiently high-dimensional spaces.

Distribution of matrix elements. Our working hypothesis is that the five Prerequisites (ii)–(vi)
required for the operator V (see Sec. 3.2) restrict the class of admissible perturbation just enough
to successfully model a large variety of physical systems and settings. Hence a proper V ensemble
should conform with these five assumptions, but should otherwise be unbiased and general. Using
E[ · · · ] to indicate ensemble averages as before, the most important properties of any given ensemble
thus are the first two moments of the matrix elements Vµν ,

E[Vµν ] = 0 and E[|Vµν |2] = σ2
v(Eµ − Eν) , (3.22)

along with the constraint V ∗µν = Vνµ to ensure Hermiticity. Here σ2
v(E) is the perturbation pro-

file (3.10) of the true V .

Asking for a vanishing mean is a consequence of taking the ensemble to be unbiased with respect
to the choice of phase factors of the basis vectors, i.e., the eigenstates |µ〉0 of H0. Instead of the
{|µ〉0}, we could equally well adopt a basis {eiφµ |µ〉0} with arbitrary φµ ∈ R because |µ〉0 and
eiφµ |µ〉0 describe the same state and are thus physically equivalent. Hence it is natural to require
that the distribution of the matrix elements Vµν should be invariant upon changing from the |µ〉0
to the eiφµ |µ〉0, i.e., Vµν and ei(φν−φµ)Vµν should have identical statistical properties. For µ 6= ν,
this implies E[Vµν ] = 0, in particular. As far as the diagonal matrix elements Vµµ are concerned,
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we recall that adding a constant to the perturbation does not change the dynamics (see below
Eq. (3.14)). Moreover, the expected value of |Vµµ| cannot depend on the corresponding eigenvalue
Eµ due to Prerequisite (iv). Hence requiring E[Vµµ] = 0 does not entail any loss of generality.

Choosing the variance according to (3.22) incorporates the perturbation profile (3.10) into the
ensemble and thus implements Prerequisite (iv) in an ergodic sense, i.e., if the local average in (3.10)
is replaced by the ensemble average. We thereby ensure that nearly all members of the perturbation
ensemble share this characteristic with the true perturbation.

By analogy with the central limit theorem, it will turn out below (see Sec. 3.4, especially the dis-
cussion below Eq. (3.48)) that the distribution of the Vµν is otherwise rather arbitrary. Therefore,
we stipulate that the probability density functions of the Vµν follow the general form

pµν(v) := E[δ(Vµν − v)] = f|Eµ−Eν |(v) , (3.23)

where {fE(v)}E>0 is a family of probability densities on R or C with mean zero and variance σ2
v(E),

and f0(v) is a probability density on R having vanishing mean and variance σ2
v(0). Respecting

the invariance property of the perturbation ensemble under phase rotations of the unperturbed
eigenvectors discussed below (3.22), we can furthermore take it for granted that fE(v) only depends
on the absolute value |v|. Notably, the form (3.23) of the distribution admits the paradigms
of banded and sparse Vµν matrices discussed in the previous section: The bandedness can be
controlled in terms of the energy-dependent variance σ2

v(E), whereas sparsity may be accounted
for by including in fE(v) a term proportional to δ(v).

The question of whether ensembles of complex Hermitian or real symmetric matrices should be
preferred is known to relate to the time-reversal symmetry of the Hamiltonian of interest [163].
We will mostly focus on the case of complex Hermitian matrices (Vµν) and comment on pertinent
modifications for real symmetric ones when appropriate. Eventually, the choice turns out to be
basically irrelevant for the questions we are interested in here since both options lead to the
same conclusions. In particular, the final prediction for the perturbed relaxation behavior will be
symmetric in time also for complex Hermitian perturbation matrices.

So far, we only considered the marginal distributions pµν(v) of the individual matrix elements
Vµν . In the following, we will exclusively deal with ensembles of random matrices with statistically
independent elements (apart from V ∗µν = Vνµ). In essence, this is a technical requirement enabling
the evaluation of ensemble averages such as E[〈A〉ρλ(t)] in (3.7) at all. However, it is generally
hard to identify (let alone quantify) potential correlations in any given system, so independence
may also be understood as unbiasedness in the absence of more detailed information. Moreover,
mild correlations will not noticeably impact the properties relevant for the observable dynamics
[177]. Nevertheless, the fact that correlations do exist in physical systems is undeniable and may
in principle restrict the applicability considerably [237, 238]; Prerequisite (vi) is meant to formalize
to some extent under which circumstances the approach can be expected to work nonetheless. For
the rest, we will come back to the question of how to improve the modeling to incorporate common
types of correlations and how these may affect our results in Sec. 3.8.

Combining the assumption of statistical independence with the marginal distributions (3.23), the
probability density

p(V ) :=
∏

µ≤ν
pµν(Vµν) (3.24)

thus characterizes the distribution of the entire perturbation matrix. The ensemble average E[ · · · ]
can then be written explicitly as

E[ · · · ] ≡
∫

[dV ] · · · p(V ) , (3.25)

where [dV ] denotes the Lebesgue measure of all independent entries of V , i.e.,

[dV ] :=
∏

µ≤ν
dVµν or [dV ] :=

[∏
µ

dVµµ
] [∏

µ<ν
dVµν dV ∗µν

]
(3.26)

for real symmetric or complex Hermitian matrices, respectively. Moreover, for integrals over
complex-valued variables v, we generally employ the definition dv dv∗ := 2 d(Re v) d(Im v) to map
them onto integrals over R2 (see also Appendix A.2).
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Figure 3.3: Structure of the perturbation matrix for an imitation of the spin model (3.20) from Fig. 3.2.
The values of ε = 1.90× 10−3, s = 0.855, σ2

v = 5.02× 10−3, and ∆v = 7.32 are chosen identical to those of
the spin system, but the unperturbed system has equally spaced energy levels, Eq. (3.27), and the matrix
V is generated according to the distribution (3.28). All details regarding the visualization are as in Fig. 3.2.

Example. To showcase the embedding of a particular “true” perturbation into a random matrix
ensemble with a distribution of the form (3.24), we return to the example (3.20) of a lattice spin
system from the previous section. The relevant parameters extracted from the true perturbation
were the level spacing ε = 1.90× 10−3, the sparsity s = 0.855, and an approximately exponential
perturbation profile (3.21) with strength parameter σ2

v = 5.02× 10−3 and band width ∆v = 7.32.
Based on these empirical values, we design a random matrix ensemble whose typical members
exhibit the same properties. In accordance with Prerequisite (ii) of an approximately constant
density of states, we take the energy levels of the unperturbed Hamiltonian to be equally spaced,
meaning that

H0 = ε
∑
µ

µ |µ〉00〈µ| . (3.27)

The perturbation matrix elements Vµν for µ < ν are distributed according to (3.23) with v ∈ C
and

fE(v) = s δ(v) + (1− s)2 e−(1−s)|v|2/σ2
v(E)

πσ2
v(E) (E > 0) , (3.28)

meaning that the nonvanishing off-diagonal entries follow an unbiased complex normal distribution
whose variance decays as prescribed by the perturbation profile. The diagonal elements are sampled
from a real normal distribution of mean zero and variance σ2

0 = 6.3 (no sparsity).

For a single realization drawn from this ensemble, we display in Fig. 3.3 the same quantities
that were previously presented for the spin model (3.20) in Fig. 3.2. Qualitatively, the resulting
characteristics look quite similar. Perhaps the most striking difference is found when comparing
the middle panels of both figures. Since the excerpt from the true matrix in Fig. 3.2b has more
white spots below the resolution of the color scale than the emulation in Fig. 3.3b, the tails of the
true distribution seemingly differ from the imitation’s normal distribution. As will become clear in
Sec. 3.4, such details of the distribution beyond the first two moments are expected to be basically
irrelevant provided that the system is sufficiently large.

3.4 Eigenvector overlap moments

As outlined at the end of Sec. 3.1, the crucial steps in deriving our prediction for the perturbed
dynamics—after exploiting Prerequisite (v) from Sec. 3.2—are calculations of ensemble averages
over products of eigenvector overlaps Unµ = λ〈n|µ〉0 of the perturbed and unperturbed Hamiltonians
(see Eq. (3.5)), i.e., objects of the form

E[Un1µ1U
∗
n1ν1

Un2µ2U
∗
n2ν2
· · · ] . (3.29)

The present section is devoted exclusively to this task. It is therefore of a rather technical nature
and does not contain any new physical insights.
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We begin in Sec. 3.4.1 with a brief introduction to the computational approach, which is based
on the resolvent of the Hamiltonian Hλ and exploits so-called supersymmetry methods to extract
overlap moments like (3.29) from it. In Secs. 3.4.2 and 3.4.3, we apply these techniques to evaluate
moments of the form (3.29) involving two and four factors of Unµ, respectively. In Sec. 3.4.4, we
sketch a scheme to approximate moments of fourth and higher order in terms of the results for the
second moment from Sec. 3.4.2. These approximation can then be used to extend the results from
Sec. 3.4.3 for the fourth moment to more general cases and to assess the eighth moment needed
for the variance (3.8) of the time-dependent expectation values.

To spare the impatient reader the hassle of going through the derivations in all their glorious
details, we briefly summarize those main findings of the four subsections which are most important
for the subsequent analysis regarding the typical time evolution of expectation values.

Some conclusions about the general structure of expressions like (3.29) can already be drawn by
exploiting the statistical invariance of the V ensemble under phase rotations of the unperturbed
eigenvectors (see below Eq. (3.22)). Considering instead of {|µ〉0} the basis vectors {eiφµ |µ〉0} with
arbitrary phase factors φµ ∈ [0, 2π), the matrix elements Vµν transform into ei(φν−φµ)Vµν and
the overlap products Unµ from (3.5) turn into eiφµUnµ. But as the statistical properties of the
ei(φν−φµ)Vµν agree with those of the Vµν by definition, the same must hold for eiφµUnµ and Unµ.
Since the phases φµ may be chosen arbitrarily and independently for all µ, the average in (3.29)
thus vanishes unless all factors Unkµk have a “partner” U∗nlνl such that µk = νl, much like in the
Isserlis or Wick theorem [239, 240] for complex Gaussian random variables. In fact, this structure
will emerge in the explicit calculations below (see, e.g., the step from Eq. (3.105) to (3.106))
as a consequence of the Isserlis-Wick theorem for (supersymmetric) Gaussian integrals (see also
Appendix C). In particular, this implies that averages over products of an unbalanced number of
U and U∗ factors always vanish.

The first crucial insight of Sec. 3.4.2 is that the second moment E[Unµ1U
∗
nν1

] takes the form

E[UnµU∗nν ] = δµν u(En − Eµ) , (3.30)

see Eq. (3.61), where the overlap distribution u(E) essentially arises as the imaginary part of the
ensemble-averaged resolvent E[(E−iη−Hλ)−1] in the limit η → 0. More precisely, the latter average
can be obtained from the complex-valued function G(z) as E[(z −Hλ)−1] =

∑
µG(z −Eµ)|µ〉00〈µ|

(see Eqs. (3.36) and (3.58)), where G(z) in turn satisfies the nonlinear integral equation

G(z)
[
z − λ2

∫ dE
ε
G(z − E)σ2

v(E)
]

= 1 , (3.31)

see Eq. (3.59). From the solution of this equation, the overlap distribution u(E) in (3.30) can then
be extracted as

u(E) = ε

π
lim
η→0+

ImG(E − iη) , (3.32)

see Eq. (3.60). Crucially, the integral equation (3.31) thus connects the perturbation profile σ2
v(E)

from (3.10), which we announced as the decisive characteristic of the perturbation in Prerequi-
site (iv) from Sec. 3.2, to the second moment (3.30) of the eigenvector overlaps. As an aside, we
remark that the overlap distribution u(E) is closely related to the so-called strength function or
local density of states Dµ(E) :=

∑
n|Unµ|2δ(E−En), a commonly studied characteristic in nuclear

physics and random matrix theory [210, 233]. Indeed, E[Dµ(E)] ' u(E − Eµ)/ε if the sum is
approximated by an integral (cf. the discussion below Eq. (2.12)).

An important step of the calculation thus consists in solving (3.31). Analytical solutions are
obtained in three special cases. The first one basically covers weak perturbations in the sense that
Γ := 2πλ2αv � ∆v, where αv and ∆v were defined in (3.12) and (3.13), respectively. In this
regime, the overlap distribution assumes the Breit-Wigner form

u(E) = ε

2π
Γ

E2 + Γ 2/4 , (3.33)
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see Eq. (3.67). The second special case essentially corresponds to reasonably strong perturbations
satisfying γ :=

√
8∆vαv λ� ∆v. Here u(E) becomes a semicircle distribution,

u(E) = 2ε
πγ2

√
γ2 − E2Θ(γ2 − E2) , (3.34)

see Eq. (3.72). Third, an exact solution G(z) in the form of a continued-fraction expansion
(see Eq. (3.77)) can be given for a perturbation profile of Breit-Wigner form, σ2

v(E) = σ2
v/[1 +

(πE/2∆v)2]. From this exact solution, approximations for u(E) of arbitrary accuracy can be
computed.

Not least, we also describe a method to solve the integral equation (3.31) numerically for arbitrary
perturbation profiles σ2

v(E). Comparing such numerically exact solutions to the special cases (see
Figs. 3.4 and 3.5), we observe that the function G(z) (and hence also u(E)) is largely unaffected by
the precise details of σ2

v(E) and well characterized by the two parameters αvλ2 (overall perturbation
strength, cf. Eq. (3.12)) and ∆v (perturbation band width, cf. Eq. (3.13)) alone. Thus the analytic
solutions derived for those three special cases in fact serve as excellent approximations in much
more general settings, too.

As far as the fourth-order moment of eigenvector overlaps is concerned, the main result of Sec. 3.4.3
is the following leading-order approximation for Nv � 1, where Nv quantifies the number of
levels mixed by the perturbation and is—according to Prerequisite (iii)—exponentially large in the
system’s degrees of freedom (cf. Eq. (3.9)). Namely, for weak perturbations such that u(E) is given
by (3.33), we find that

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = δµ1ν1δµ2ν2 d

n1n2
µ1µ2

+ δµ1ν2δµ2ν1

(
δn1n2d

n1n2
µ1µ2

+ fn1n2
µ1µ2

)
, (3.35a)

where

dn1n2
µ1µ2

= u(En1 − Eµ1)u(En2 − Eµ2) , (3.35b)

fn1n2
µ1µ2

=
(
Γε

2π

)
u(En1 − Eµ2)u(En2 − Eµ1)− u(En1 − Eµ1)u(En2 − Eµ2)

(En1 − En2)(Eµ1 − Eµ2) , (3.35c)

see Eqs. (3.120), (3.113b), and (3.121), respectively. Moreover, we verify this result numerically
(see Fig. 3.6), establishing, in particular, that the leading-order approximation already applies to
rather small values of Nv & 10.

Finally, we sketch a method to approximately determine fourth and higher-order moments of
eigenvector overlaps by reducing them to second-order expressions in Sec. 3.4.4, exploiting that
the Unµ are almost Gaussian distributed (see also the Supplemental Material of Ref. [226]).

3.4.1 Resolvent approach and supersymmetry methods

We first lay the foundation of the concrete calculations in the subsequent Secs. 3.4.2 and 3.4.3 by
introducing the general framework. All calculations are formally carried out in a large, but finite
Hilbert space of dimension N � 1, e.g., the number of levels in the energy window IE from (2.9).
Eventually, we will let N →∞ by naturally extending the system properties within IE ad infinitum
as sketched in Prerequisite (i), keeping, in particular, the perturbation strength and the density of
states fixed.

Eigenvector overlaps from resolvents. The spectral properties of the Hamiltonian Hλ = H0+λV
from (3.1) are encoded in its resolvent or Green’s function, defined as the operator

G(z) := (z −Hλ)−1 ≡
∑
n

1
z − Eλn

|n〉λλ〈n| . (3.36)

For example, the eigenvalues Eλn ∈ R of the Hermitian operator Hλ are the poles of this G(z),
and except for these poles G(z) is analytic for all z ∈ C. Products of eigenvector overlaps such
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as UnµU∗nµ can be expressed in terms of the matrix elements Gνµ(z) := 0〈ν|G(z)|µ〉0 by observing
that

Gνµ(Eλn ± iη) =
∑
m

Eλn − Eλm ∓ iη
(Eλn − Eλm)2 + η2 UmµU

∗
mν (3.37)

for arbitrary η > 0. Taking the difference between the expressions for the lower and upper signs
in front of iη, we obtain

Gνµ(Eλn − iη)− Gνµ(Eλn + iη) = 2i
∑
m

η

(Eλn − Eλm)2 + η2 UmµU
∗
mν . (3.38)

Up to a factor of π, the fraction on the right-hand side is a Breit-Wigner or Cauchy distribution
of width η for the energy difference Eλn −Eλm. For small η, this fraction thus approaches a Dirac-δ
distribution πδ(Eλn−Eλm). Rewriting the sum

∑
m · · · as an integral

∫
dED(E) · · · (cf. Eq. (2.11))

and exploiting Prerequisite (i) of a homogeneous density of states D(E) = ε−1, we can thus
conclude that

E[UnµU∗nν ] = ε

2πi lim
η→0+

E
[
Gνµ(Eλn − iη)− Gνµ(Eλn + iη)

]
(3.39)

upon averaging over the ensemble of perturbations. There are three remarks in order. First,
we note that it is implicitly assumed here that the average E[UnµU∗nν ] is slowly varying with n
compared to the mean level spacing ε so that the approximation of a uniform density of states is
indeed justified. This smoothness condition on E[UnµU∗nν ], which is working standard in random
matrix theory [163, 223], will turn out to hold self-consistently in the final result obtained below
and can also be confirmed numerically. Second, we mention that the step from (3.38) to (3.39)
can be generalized straightforwardly to higher moments (3.29) as will be detailed when needed in
Sec. 3.4.3. Third, we point out that the limit entailed in (3.39) to target the singularities of G(z)
on the real line is akin to pole prescriptions for Green’s functions in other contexts such as classical
electrodynamics [241]. By analogy, G(E + iη) and G(E − iη) with E ∈ R, η > 0 are therefore also
called the retarded and advanced resolvents, respectively.

The usefulness of the resolvent formalism is founded in the observation that the matrix elements
Gνµ(z) can be computed as Gaussian integrals with kernel G−1(z) = z − Hλ as we elaborate in
more detail in Appendix C. Namely, introducing the abbreviation z± := Eλn± iη for the arguments
of the retarded and advanced resolvents in (3.39), those matrix elements can be written as

Gνµ(z±) = ∓i det(z±−Hλ)
(±2πi)N

∫ [∏
α

dxαdx∗α
]
xνx

∗
µ exp

{
±i
∑

α,β
x∗α
[
(z± − Eα)δαβ − Vαβ

]
xβ

}
,

(3.40)
where the choice of sign in the exponent ensures convergence due to η > 0. The issue with this
expression is the normalization factor det(z±−Hλ) because it is generally impractical to compute
this high-dimensional matrix determinant, let alone its ensemble average. A remedy is found by
extending the Gaussian integral in Eq. (3.40) to anticommuting numbers.

Supersymmetry method. The supersymmetry techniques employed in the following are based on
the concept of graded algebras and vector spaces. These are generated by a set of anticommuting
or Grassmann numbers χ1, χ2, . . ., whose defining property is that χiχj = −χjχi for any two such
elements. By analogy with ordinary (commuting) numbers, it is then possible to extend notions
from linear algebra and calculus to these superspaces of commuting and anticommuting degrees of
freedom. A collection of concepts relevant for our present purposes is provided in Appendix B. For
a more in-depth introduction to the method and its applications, we refer to Refs. [163, 220–225].

In our present context, these Grassmann numbers turn out to be useful because they allow us to
express the determinant in the prefactor of (3.40) as a Gaussian integral, too. To wit, we introduce
anticommuting numbers χα and χ∗α associated with the unperturbed eigenstates |α〉0 and obtain
(cf. Appendix C.2)

det(z± −Hλ) = i−N
∫ [∏

α
dχαdχ∗α

]
exp

{
i
∑

α,β
χ∗α
[
(z± − Eα)δαβ − Vαβ

]
χβ

}
. (3.41)

To combine Eqs. (3.40) and (3.41) in compact notation, we define a supervectorX := (X1 · · · XN )T

with
Xα :=

(
xα
χα

)
(3.42)
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consisting of commuting or bosonic components XαB := xα and anticommuting or fermionic
components XαF := χα. Note that we will employ the same language to address the different
sectors of a supermatrix

M =
(
MBB MBF
MFB MFF

)
, (3.43)

too, see also Appendix B.2. Finally, we also introduce the diagonal (2× 2) matrices L± :=
diag(±1, 1) and the shorthand [dXdX∗] :=

∏
α dxαdx∗αdχαdχ∗α. Using (3.41) and (3.42), the

resolvent matrix elements from (3.40) can then be written as

Gνµ(z±) = ∓i
∫ [dXdX∗]

(∓2π)N xνx
∗
µ exp

{
iX†[(z± −H0 − λV )⊗ L±]X

}
. (3.44)

We observe that the factor (z± −H0 − λV ) in the Kronecker product on the right-hand side acts
on the “Hilbert space part” of the vector X (i.e., the indices α) whereas the factor L± acts on
the “superspace part” (the indices B and F). In the following, we will identify, in a slight abuse
of notation, (z± − H0 − λV ) with (z± − H0 − λV ) ⊗ 1 and L± with 1 ⊗ L± whenever this is
unambiguous. The same convention will also be adopted for other operators acting trivially on
either Hilbert or superspace.

The ensemble average of the resolvent matrix elements (3.44) entering (3.39) is obtained via (3.25)
by integrating over the distribution p(V ) of the perturbations from (3.24),

E[Gνµ(z±)] = ∓i
∫ [dXdX∗]

(∓2π)N xνx
∗
µ

∫
[dV ] p(V ) exp

[
iX†L±(z± −H0 − λV )X

]
. (3.45)

This expression provides the starting point for computing the second moment (3.39) within the
intended supersymmetry approach. Representations of higher-order moments can be set up in a
similar way as will be detailed directly in Sec. 3.4.3.

Modifications for real-valued perturbation ensembles. So far, we have implicitly assumed that
the matrix (Vµν) is complex Hermitian. The case of real symmetric perturbation matrices can be
treated similarly in principle, but the enhanced symmetry (see also the comment in the second
paragraph after Eq. (3.23)) necessitates a doubling of the number of supersymmetric parameters
compared to the number of random variables [221–223, 242]. The pertinent equivalent of Eq. (3.44)
for real-valued V ensembles is thus

Gνµ(z±) = ∓i
∫ [∏

α

dx(1)
α dx(2)

α dχαdχ∗α
∓2π

]
x(1)
ν x(1)

µ exp
{

i
2
∑

α,β

[
±x(1)

α J±αβx
(1)
β ± x

(2)
α J±αβx

(2)
β

+χ∗αJ±αβχβ − χαJ
±
αβχ

∗
β

]}
(3.46)

with real-valued x(1)
α and x(2)

α , anticommuting χα and χ∗α, and where J±αβ := (z±−Eα)δαβ−λVαβ .
In total, there are thus N(N + 1) commuting and N(N + 1) anticommuting integration variables
as opposed to N(N+1)

2 independent random variables Vαβ (α ≤ β).

For convenience, we will solely discuss the case of complex Hermitian perturbations in Secs. 3.4.2
and 3.4.3. In case of the second moment, the actual calculation for real symmetric V matrices
proceeds in essentially the same way and yields the same result (see also Ref. [219]). For the
fourth- and higher-order moments, additional terms arise due to the enhanced symmetry, and we
will briefly comment on the expected modifications compared to the complex Hermitian case at
the end of Sec. 3.4.3.

Outline of the calculation. The general scheme to evaluate expressions like (3.45) for the second
and fourth moments is the same and proceeds in four steps:

1. Average over the perturbation ensemble. As a result, the integral over the supervector X
will no longer be of Gaussian type.

2. Perform a supersymmetric Hubbard-Stratonovich transformation (see Appendix C.4 and
Refs. [220, 243, 244]), which introduces an auxiliary supermatrix to render the X integral
Gaussian again.
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3. Integrate over the supervector X.

4. Employ a saddle-point approximation (cf. Appendix D) to evaluate the remaining integral
over the auxiliary Hubbard-Stratonovich matrix.

The first step is straightforward because the corresponding integrals are Gaussian after invoking
a generalized central limit theorem. The second step serves, as indicated, to remove terms quar-
tic in X introduced during the first step, and thereby enables the third step. The saddle-point
approximation in the fourth step exploits the large Hilbert space dimension N and becomes asymp-
totically exact as N → ∞. Finally, the ensemble-averaged resolvents can be combined according
to Eq. (3.39) and similar relations to find the overlap moments of interest.

3.4.2 Second moment and overlap distribution

As far as the mathematical foundations of our subsequent physical predictions are concerned, this
present subsection is presumably the most important one because we will encounter several key
quantities and relations which will play prominent roles in the final results. The overall goal is
to evaluate the second-order eigenvector overlap moment E[UnµU∗nν ]. Due to (3.39), the principal
object of study is thus the ensemble-averaged resolvent E[Gνµ(z±)] with z± = En± iη, η > 0. Note
that we redefined z± compared to how it was introduced above Eq. (3.40) by replacing Eλn by its
ensemble average E[Eλn ] = En since we intend to calculate the ensemble average of G(z) for fixed
z, in the spirit of the definition (3.36).

Asymptotic distribution and ensemble average. Starting from Eq. (3.45) and following the
recipe outlined at the end of Sec. 3.4.1, the first step consists in evaluating the integral over the V
ensemble for a given distribution p(V ), i.e., the ensemble average

E
[
exp

{
−iλX†L±V X

}]
= E

[
exp

{
−iλ

(∑
α
X†αL

±XαVαα +
∑

α<β
(X†αL±Xβ +X†βL

±Xα)(ReVαβ)

+
∑

α<β
(X†αL±Xβ −X†βL

±Xα)(i ImVαβ)
)}]

.

(3.47)

Introducing the symbol σ2
αβ := E[|Vαβ |2] = σ2

v(Eα − Eβ) for the variance of the matrix element
Vαβ (see Eqs. (3.22)–(3.24)) and the definitions Yα := σααX

†
αL
±Xα/2 and Yαβ := σαβX

†
αL
±Xβ

(with the same fixed choice of L+ or L− for all α), we can abbreviate X†L±V X = Z +Z∗ with

Z :=
∑

α
Yα
Vαα
σαα

+
∑
α<β

Yαβ
Vαβ
σαβ

. (3.48)

Taking into account the general form (3.24) of the considered perturbation ensembles, this quan-
tity Z is a weighted sum of N2 independent random variables of zero mean and unit vari-
ance, namely Vαα/σαα, ReVαβ/σαβ , and ImVαβ/σαβ (α < β). Recalling the central limit the-
orem, we expect that Z approaches a Gaussian distribution with mean zero and variance Y 2 :=∑
α Y

2
α +

∑
α<β |Yαβ |2 for large N , and similarly for X†L±V X = Z + Z∗. For any given X, the

asymptotic distribution of the exponent on the right-hand side of (3.47) for large N is therefore
determined by the first two moments (3.22) of the matrix elements Vαβ . Since we will eventually
let N → ∞, we can thus approximate any given p(V ) by any other distribution whose first two
moments (3.22) coincide with those of p(V ). A particularly convenient choice is the Gaussian
distribution

pαα(v) = e−v2/2σ2
αα

√
2πσαα

and pαβ(v) = e−|v|
2/σ2

αβ

π(σαβ)2 (α < β) . (3.49)

Assuming this distribution in (3.47), the right-hand side factors into a product ofN2 one-dimensional
Gaussian integrals in the variables Vαα, ReVαβ , and ImVαβ (α < β). Performing these integrals
and substituting into (3.45), the ensemble-averaged resolvent takes the form

E[Gνµ(z±)] = ∓i
∫ [dXdX∗]

(∓2π)N xνx
∗
µ exp

{
−λ

2

2

∑
α,β

(σαβ)2 str
[
XαX

†
αL
±XβX

†
βL
±
]

+ i
∑

α
(z± − Eα)X†αL±Xα

}
,

(3.50)
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where strM := trMBB − trMFF denotes the supertrace of the supermatrix M (cf. Eq. (3.43)
and Appendix B.2). For later reference, we note that the integrand possesses a (pseudo)unitary
symmetry, i.e., it is invariant under transformations X 7→ TX, X† 7→ X†T † satisfying T †L±T =
L±.

Hubbard-Stratonovich transformation. Proceeding with the second step, we employ a super-
symmetric generalization (see Appendix C.4 and Refs. [163, 220]) of the Hubbard-Stratonovich
transformation [243, 244] to rewrite the exponential of the fourth-order term in X as a superinte-
gral involving only quadratic terms in X, namely

exp
[
−λ

2

2

∑
α,β

(σαβ)2 str(XαX
†
αL
±XβX

†
βL
±)
]

=
∫ [dR]

(2π)N exp
[
− 1

2λ2

∑
α,β

(σ−2)αβ str(RαRβ) + i
∑

α
str(RαXαX

†
αL
±)
]
.

(3.51)

Here σ−2 denotes the inverse of the Hilbert-space matrix σ2 with (σ2)αβ = (σαβ)2 (see below
Eq. (3.47)). The auxiliary (2× 2) supermatrices Rα are parametrized as

Rα :=
(
r1α ρα
ρ∗α ir2α

)
(3.52)

with real numbers r1α, r2α and anticommuting ρα, ρ∗α, and [dR] :=
∏
α dRα with dRα :=

dr1αdr2αdραdρ∗α for short. Upon substitution of (3.51) into (3.50), the remaining integral over
the supervector X is Gaussian and can be evaluated straightforwardly (see also Appendix C).
Thus, after the third step of the algorithm from the end of Sec. 3.4.1, we are left with

E[Gνµ(z±)] = δµν

∫ [dR]
(2π)N

[
(Rµ + z± − Eµ)−1]

BB

× exp
{
− str

[
1

2λ2

∑
α,β

(σ−2)αβRαRβ +
∑

α
ln(Rα + z± − Eα)

]}
.

(3.53)

Saddle-point approximation. For the final step in the calculation we exploit that the exponent of
the integrand in (3.53) is extensive in the Hilbert space dimension N , which in turn is exponentially
large in the system’s degrees of freedom. As a result, the integral is dominated by the highest saddle
points of the exponent in the complex, multidimensional R plane, where the integrand becomes
sharply peaked along suitably chosen integration contours. This justifies to evaluate the integral
by means of a saddle-point approximation (see Appendix D and Refs. [163, 221, 223, 245, 246]).
To find the stationary points of the exponent, we look for supermatrices Rµ such that the first
variation of the exponent in (3.53) with respect to R vanishes, i.e.,

Rµ + λ2
∑

α
(σµα)2 (Rα + z± − Eα)−1 = 0 . (3.54)

From the solutions of this saddle-point equation, we have to select the dominant one that can be
reached by a deformation of the original integration contour without crossing any singularities.
The saddle-point approximation of (3.53) is then obtained as the product of the integrand and the
inverse square root of the superdeterminant corresponding to the second variation of the exponent
in (3.53), where both are evaluated at the dominating saddle point (cf. Appendix D.3). If there
are several such dominating saddles, we have to sum their contributions.

To solve (3.54), it suffices to search for diagonal solutions R̂µ because all further solutions can be
generated from diagonal ones by exploiting the (pseudo)unitary symmetry of the integral observed
below (3.50) [163]. In view of the Hubbard-Stratonovich transformation (3.51), which effectively
identifies Rµ ∼ XµX

†
µL
±, the auxiliary matrix R = (Rµ) transforms as R 7→ TRT−1 under

that symmetry. Once the dominant diagonal solution R̂ has been identified, we thus need to
substitute R = TR̂T−1 into the integrand in (3.53) and average over the (pseudo)unitary group of
transformation matrices T satisfying T †L±T = L±.

Assuming the matrix Rµ to be diagonal, the matrix equation (3.54) decouples into two identical
equations for its entries. Consequently, any diagonal solution will be of the form R̂µ = r̂(Eµ, z±)1,
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where we explicitly indicated the dependence of the solution on both the unperturbed and the
(infinitesimally shifted) perturbed energies Eµ and z±, respectively. Since R̂µ is proportional
to the unit matrix, all equivalent solutions obtained via the transformation T are identical, so
the group average is trivial. Moreover, since the superdeterminant of any matrix proportional
to 1 is unity (see Appendix B.2), the contribution involving the second variation of the exponent
in (3.53) amounts to a trivial factor of one. Eventually, we therefore find that the ensemble-averaged
resolvent from (3.53) takes the form

E[Gνµ(z±)] = δµν
z± − Eµ + r̂(Eµ, z±) (3.55)

after the saddle-point approximation, where r̂(Eµ, z±) solves

r̂(Eµ, z±) + λ2
∑

α

(σµα)2

z± − Eα + r̂(Eα, z±) = 0 . (3.56)

Ensemble-averaged resolvent and overlap distribution. The aim of this paragraph is to re-
cast (3.56) into a computationally more accessible form. To this end, we exploit Prerequisite (i) of
a homogeneous density of states and assume that the summands are slowly varying with α (which
they will be as a consequence of Prerequisite (iii), see below), such that the sum can be approxi-
mated by an integral, i.e.,

∑
α · · · ≈

∫
dE/ε · · · . We also revert to the perturbation profile σ2

v(E)
from (3.10) by substituting (σµα)2 = σ2

v(Eµ −Eα) (see below (3.47)) and utilize that the solution
r̂(Eµ, z±) will only depend on the difference z±−Eµ due to Prerequisites (i) and (ii) as well as the
property (3.22) of the perturbation matrix elements. In view of Eq. (3.55), it is therefore natural
to introduce the ensemble-averaged (scalar) resolvent

G(z± − Eµ) := 1
z± − Eµ + r̂(Eµ, z±) , (3.57)

implying
E[Gνµ(z±)] = δµν G(z± − Eµ) (3.58)

or, in operator form, E[G(z)] = G(z −H0). Adopting the above-mentioned transformation steps,
Eq. (3.56) for r̂(Eµ, z±) then turns into the nonlinear integral equation

G(z±)
[
z± − λ2

∫ dE
ε
G(z± − E)σ2

v(E)
]

= 1 (3.59)

for the ensemble-averaged resolvent G(z).

Recalling Eq. (3.39) and observing that G(z∗) = G(z)† according to (3.36), we understand that the
second moment of eigenvector overlaps is encoded in the imaginary part of G(z). Namely, defining
the overlap distribution

u(E) := ε

2πi lim
η→0+

[G(E − iη)−G(E + iη)] = ε

π
lim
η→0+

ImG(E − iη) , (3.60)

and exploiting (3.39) and (3.58), we immediately find

E[UnµU∗nν ] = δµν u(En − Eµ) . (3.61)

Since the distribution of the perturbation V is even in the sense that V and −V exhibit identical
statistical properties (see below Eq. (3.22)), we readily conclude that the overlap distribution is an
even function, too,

u(E) = u(−E) . (3.62)

Indeed, since G(E− iη) = E[(E− iη−λV )−1] (see below Eq. (3.58)), this follows directly from the
definition (3.60).

The problem of computing the second moment of eigenvector overlaps has thus been reformulated
as the problem to solve the integral equation (3.59) for the ensemble-averaged resolvent G(z).
An equivalent equation for a related (but real-valued) random matrix ensemble had already been
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reported in Ref. [219], even though the authors never published its derivation [247]. Incidentally,
already Wigner’s seminal studies [213, 214] of banded random matrices comprised a special case
of (3.59) for perturbation matrix elements distributed according to fE(v) = [1 − σ2

v(E)]δ(v) +
σ2
v(E)[δ(v−v0) + δ(v+v0)]/2 with v0 > 0 and a step profile σ2

v(E) = Θ(∆2
v−E2). In other words,

the matrix elements have magnitude v0 but random signs within a band of width ∆v, whereas they
vanish outside of this band.

For the remainder of this subsection, we will discuss solutions of (3.59) for three special cases
of the perturbation profile that are analytically tractable, before sketching a method to calculate
such solutions numerically for arbitrary profile functions. Finally, we will compare all those special
solutions to numerically exact ones in a concluding paragraph.

Special case 1: constant profile or weak perturbations. Let us consider eigenstates |n〉λ and
|µ〉0 of the perturbed and unperturbed Hamiltonians, respectively. From Eq. (3.58) we understand
that E[Gµµ(Eλn ± iη)] depends only on the distance of the two levels, Eλn − Eµ, and similarly for
the average overlap E[|Unµ|2] = E[|λ〈n|µ〉0|2] of the state vectors from (3.61). Together with (3.37)
and continuity in λ, we therefore generally expect that the function G(z) from (3.57) is dominated
in magnitude by the region around z = 0, corresponding to states |n〉λ and |µ〉0 that are close-by
in energy, and decays to zero as |z| → ∞.

For our first approximate approach to solve the integral equation (3.59), we assume that this decay
of G(z) happens on a scale much smaller than the typical scale of variations of the perturbation
profile σ2

v(E) from (3.10). Consequently, the integral in (3.59) is dominated by the dominating
region of G(z −E) at E ≈ |z|, and σ2

v(E) can be approximated by its central value σ2
v(|z|) in this

region. With the definition C(z) :=
∫

dEG(z − E), we then find

G(z) = 1
z − λ2 σ2

v(|z|)C(z)/ε . (3.63)

Exploiting once again that the decay scale of G(z) is assumed to be much smaller than the scale of
variations of σ2

v(E), we can approximate σ2
v(|z|) in this expression by its value σ2

v around zero (cf.
Eq. (3.11)) for all relevant values of |z| for which G(z) significantly deviates from zero. Recalling
that z = E′± iη with E′ ∈ R and η → 0+ in the cases of interest (cf. Eq. (3.39)), the quantity C(z)
defined above (3.63) becomes a constant C± := limη→0+ C(±iη) depending only on the sign of the
imaginary part of z. Substituting (3.63) with these simplifications into the definition of C(z) and
evaluating the integral in the principal-value sense, we obtain C± = ∓iπ as the only consistent
solution. As a result, we find the approximate solution

G(z) := 1
z + i sgn(Im z)Γ/2 , (3.64)

where sgn(x) denotes the sign function and

Γ := 2πλ2σ2
v

ε
= 2παvλ2 , (3.65)

where the definition (3.12) of αv was substituted in the last equality. The Hubbard-Stratonovich
auxiliary supermatrix R̂µ = r̂(Eµ, z±)1 (see above Eq. (3.55)) solving the saddle-point equa-
tion (3.54) thus takes the form R̂µ = [G(z± − Eµ)−1 − (z± − Eµ)]1 = ±iΓ1/2 according to
Eqs. (3.57) and (3.64). In view of the parametrization (3.52), we notice that this solution does not
lie on the original contour of integration. Nevertheless, we can (and should) adjust that contour
appropriately by shifting r1α 7→ r1α ± iΓ/2, which is allowed because the poles of the integrand
in (3.53) at r1α = Eα − z± lie on the opposite side of the real line (below it for ‘+’ and above it
for ‘−’). Similar adjustments are always possible as long as the sign of ImG(z) is opposite to the
sign of Im z and will thus be tacitly understood for all further solutions discussed below. Note that
this relation of signs is also entailed in the combination of Eqs. (3.36) and (3.58), which implies
G(z) = E[(z − λV )−1] and thus sgn[ImG(z)] = − sgn(Im z) since V is Hermitian.

Returning to the scalar solution (3.64), the condition of a sufficiently fast decaying function G(z)
(see above Eq. (3.63)) is thus satisfied self-consistently if the perturbation profile σ2

v(E) varies on a
scale much larger than Γ . In particular, this is obviously the case for a constant profile σ2

v(E) = σ2
v .
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More generally, if the perturbation profile is sufficiently regular such that the scale of variations is
also the decay scale, i.e., the band width ∆v from (3.13), then we expect (3.64) to hold for

Γ � ∆v . (3.66)

Since Γ scales quadratically with the coupling strength λ according to (3.65), Eq. (3.64) is thus
essentially a weak-perturbation approximation for G(z). The overlap distribution (3.60) associated
with (3.64) is the Breit-Wigner, Cauchy, or Lorentz distribution

u(E) = ε

2π
Γ

E2 + Γ 2/4 . (3.67)

In view of (3.61), we thus conclude that the mixing of eigenvectors extends across the energy scale Γ
for weak perturbations, i.e., we can identify Γ here with the scale Γv introduced in Prerequisite (iii)
from Sec. 3.2 to assess how strong the mixing should be in order for the typicality approach to be
applicable.

Special case 2: narrow profile or strong perturbations. For our second approximate solution of
Eq. (3.59), we adopt a similar idea, but exchange the roles of G(z) and σ2

v(E). More precisely, we
now assume that the mixing of perturbed and unperturbed eigenvectors is so strong that the scale
of G(z) is much larger than that of σ2

v(E) or, equivalently, that the perturbation profile is sharply
peaked around E = 0. If this is the case, we can approximate G(z − E) by G(z) in the integrand
in (3.59) and exploit (3.13), resulting in the algebraic equation

γ2G(z)2/4− z G(z) + 1 = 0 (3.68)

with

γ :=
√

8∆v

ε
λ σv =

√
8∆vαv λ . (3.69)

Next we recall that the sign of ImG(z) must be opposite to that of Im z for the contour to be
adjustable such that it passes through the resulting saddle point (see below Eq. (3.65)). Of the
two solutions of (3.68), we thus find

G(z) = 2
γ2

[
z − i sgn(Im z)

√
γ2 − z2

]
(3.70)

as the only mathematically consistent one. The typical scale of variations of G(z) is thus γ
from (3.69), hence the initial assumption of slowly varying G(z) on the decay scale ∆v of σ2

v(E) is
verified self-consistently if

γ � ∆v . (3.71)
With (3.69), we conclude that the adopted approximation is expected to hold for larger values of
the coupling strength λ, i.e., for stronger perturbations. The overlap distribution (3.60) obtained
from (3.70) takes the semicircular form

u(E) = 2ε
πγ2

√
γ2 − E2Θ(γ2 − E2) . (3.72)

In this case, the eigenvector mixing scale Γv from Prerequisite (iii) corresponds to the radius γ of
the semicircle distribution.

Remarkably, the two solutions (3.64) and (3.70) along with their respective regimes of valid-
ity (3.66) and (3.71) (under reasonable regularity conditions on σ2

v(E)) only depend on the two
perturbation characteristics αv from (3.12) and ∆v from (3.13), but not on any further details
of the profile σ2

v(E). In particular, we therefore expect the overlap distribution u(E) to follow a
smooth crossover from the Breit-Wigner distribution (3.67) to the semicircle distribution (3.72)
as the coupling strength λ is increased for fixed αv and ∆v, regardless of any further details of
σ2
v(E). The value λc at which this crossover occurs can be estimated by equating the rates Γ and
γ from (3.65) and (3.69), yielding

λc :=

√
2ε∆v

π2σ2
v

=
√

2∆v

π2αv
. (3.73)
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Special case 3: Breit-Wigner profile. The third case for which we discuss an analytic solution
here deals with perturbation profiles of the Breit-Wigner form, i.e.,

σ2
v(E) = σ2

v

1 + (πE/2∆v)2 . (3.74)

The strategy to solve (3.59) for this choice of σ2
v(E) is to exploit results from complex analysis to

express the occurring integral in terms of residues of the integrand. We restrict ourselves to the
main steps of the derivation here; details can be found in Ref. [248].

The idea is to focus on the lower half C− := {z ∈ C : Im z < 0} of the complex plane, which
suffices to extract the physically relevant overlap distribution u(E) according to (3.60). (Note that
analogous calculations could also be carried out for the upper half-plane.) Under the proviso that,
for all z ∈ C−, G(z) is analytic and vanishes as |z| → ∞, the integral (3.59) with σ2

v(E) from (3.74)
becomes ∫

dEG(z−− E)σ2
v(E) = 2σ2

v ∆v G(z− − 2i∆v/π) , (3.75)

picking up the residue of the sole simple pole of the integrand in the upper half-plane at E =
2i∆v/π. Exploiting this result in Eq. (3.59) leads to

G(z−) = 1
z− − 2λ2σ2

v∆v G(z− − 2i∆v/π)/ε = 1
z− − bv G(z− − iav)

(3.76)

with av := 2∆v/π and bv := 2λ2σ2
v∆v/ε. By iterated substitution of G(z) in the denominator on

the right-hand side, we find that G(z−) can be expressed as an infinite continued fraction,

G(z−) = 1
z− − bv

z−−ia− bv
z−−2ia−bv ···

. (3.77)

Moreover, this infinite continued fraction can be shown to converge for all z ∈ C− and bv > 0
[248], hence Eq. (3.77) provides a (formally) exact solution of the integral equation (3.59) for the
Breit-Wigner profile σ2

v(E) from (3.74). By truncating the continued fraction at a finite order
Mcf , we find approximate solutions of improving quality as Mcf is increased, all of which verify the
initial prerequisites of being analytic in C− and vanishing for large |z| [248]. For later reference,
we record that, in particular, the second-order approximation reads

G(z−) = 1
z− − bv

z−−ia− bv
z−−2ia

= (z− − iγ0)(z− − 2iγ0)−∆vΓ/π

(z− − iγ+)(z− − iγ0)(z− − iγ−) , (3.78)

where we substituted Γ from (3.65) and additionally introduced

γn := 2∆v

π

[
1 + n

√
1− πΓ

2∆v

]
(3.79)

with the abbreviations γ+ ≡ γ+1 and γ− ≡ γ−1. In light of (3.77), the lower-order truncations of
the infinite continued fraction are expected to work better the smaller the numerical value of bv is
because every higher-order correction is effectively suppressed by an additional factor of bv. For
fixed αv and ∆v, the second-order expression (3.78) may thus be regarded as a weak-perturbation
approximation again. Its applicability, however, extends far beyond the simpler result (3.64) for
an essentially constant profile found above, as will become clear below, especially in Sec. 3.6.

Numerical solutions for general perturbation profiles. The hitherto derived solutions of the
integral equation (3.59) applied to special choices of the perturbation profile and/or certain limits
of the coupling strength λ. For a more general treatment, we need to resort to numerical methods.
While other approaches are of course possible, we here propose to expand the function G(z) in
terms of Chebyshev rational functions Bn(x), obtained from the Chebyshev polynomials of the
first kind Tn(x) according to

Bn(x) := Tn

(
x√

x2 + `2

)
(n = 0, 1, . . .) . (3.80)
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The parameter ` > 0, which mediates the compactification of the real line to the interval [−1, 1],
is arbitrary a priori, but ideally reflects the typical scale of the function to be expanded in order
to optimize convergence [249].

As before, we are particularly interested in solutions of (3.59) in the vicinity of the real line, i.e., for
arguments z = x− iη with x ∈ R and very small η > 0 (cf. Eq. (3.60)). As observed below (3.65),
the sign of the imaginary part of G(z) jumps when crossing the real line, implying that the solutions
of (3.59) can become ambiguous for purely real z. Formally, we therefore introduce the symbol

G+(x) := lim
η→0+

G(x− iη) (3.81)

to denote the continuation from the lower complex half-plane. The numerical problem thus consists
of solving

G+(x)
[
x− λ2

∫ dE
ε
G+(x− E)σ2

v(E)
]

= 1 (3.82a)

for real-valued x with the additional constraint that

ImG+(x) ≥ 0 , (3.82b)

which is implied by the observation below (3.65). Following the above-announced route to express
the solution as a series in the Bn(x) from (3.80), we write

G+(x) = GR(x) + iGI(x) (3.83a)

and expand the real-valued functions GR(x) and GI(x) as

GR(x) :=
MCheb∑
n=0

GR
n Bn(x) and GI(x) :=

MCheb∑
n=0

GI
nBn(x) (3.83b)

with GR
n , G

I
n ∈ R and MCheb denoting the order of the truncation. The remaining task thus

consists in determining the 2(MCheb +1) coefficients G := (GR
0 , GI

0, . . . , G
R
MCheb

, GI
MCheb

) such that
the violation of (3.82a) is minimal. To this end, we employ the pseudospectral method [249, 250]
and require the residual

R(G, x) := G+(x)
[
x− λ2

∫ dE
ε
G+(x− E)σ2

v(E)
]
− 1 (3.84)

to vanish on a discrete set of collocation points xm ∈ R (m = 0, 1, . . . ,MCheb). Specifically, the xm
are chosen as the roots of the (MCheb + 1)th Chebyshev rational function BMCheb+1(x), implying
that the pseudospectral method agrees with a spectral expansion when the inner products are
computed numerically using an optimal Gaussian quadrature rule [249, 250].

The conditions ReR(G, xm) = ImR(G, xm) = 0 form = 0, . . . ,MCheb thus yield a set of 2(MCheb+
1) nonlinear algebraic equations for the 2(MCheb + 1) expansion coefficients GR

n , GI
n. For the

solution of this system of equations, we adopt a Newton-Raphson iteration [251] with the residual
vector Rm = R(G, xm) and the Jacobian JR,I

mn = ∂R(G, xm)/∂GR,I
n calculated from (3.84). For the

first initial guess, we use either of the limiting distributions (3.64) or (3.70) for small or large λ,
respectively, and gradually vary λ across the transition thereafter. If this initial guess is sufficiently
close to the actual solutions and obeys the constraint (3.82b), then so will the resulting iteratively
improved approximations of the Newton-Raphson scheme.

Comparison of special cases and numerics. With a method to compute the ensemble-averaged
resolvent G(z) defined via (3.59) numerically for arbitrary perturbation profiles σ2

v(E), we can now
compare these numerically exact results to the different solutions or approximations previously
obtained for special choices of the perturbation profile. We focus here on four different shapes for
σ2
v(E): the step profile

σ2
v(E) = σ2

v Θ(∆2
v − E2) , (3.85)

the exponential profile (3.21), the Breit-Wigner profile (3.74), and a double Breit-Wigner profile

σ2
v(E) = σ2

v b
2
1(b22 + d2)

(b21 + E2)[(b22 + (E − d)2] (3.86)
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Figure 3.4: Real part ReG+(E) of the scalar average resolvent (3.81) for various perturbation profiles
σ2
v(E) (see insets of the left-most column) and coupling strengths λ (see top-left corner of each panel). For

all configurations, ε−1 = 512, σ2
v = 0.2, and ∆v = 750ε ≈ 1.46, yielding a crossover coupling of λc ≈ 0.05

according to (3.73). Solid: Numerically obtained Chebyshev expansions (3.83) withMCheb = 80 . . . 160 and
` = 0.5 . . . 8 (increasing with λ) for a. the step profile (3.85); b. the exponential profile (3.21); c. the Breit-
Wigner profile (3.74); d. the double Breit-Wigner profile (3.86) with b1 = 0.45, b2 = 0.9, d = 3.5. Values are
scaled as indicated in the top-left corner of each panel. Dashed: Universal asymptotic solutions for weak
(red, Eq. (3.64)) and strong (blue, Eq. (3.70)) coupling. Dotted: Truncated continued-fraction solutions
for the Breit-Wigner profile (3.74) of orders Mcf = 2 (yellow) and Mcf = 5 (green). The corresponding
imaginary parts ImG+(E) are displayed in Fig. 3.5.

with b2 > b1 > 0 and d > 0. These different shapes are also sketched in the insets of Figs. 3.4
and 3.5.

We fix the mean level spacing at ε = 1/512. For each perturbation profile, we then choose
parameters such that σ2

v = 0.2 and ∆v = 750ε ≈ 1.46; in particular, b1 = 0.45, b2 = 0.9, and
d = 3.5 for the double Breit-Wigner profile (3.86). The numerical solutions are obtained as detailed
in the previous paragraph, generally using truncated Chebyshev series of order MCheb = 80, but
increasing the order up to MCheb = 160 for the smallest λ values as the corresponding solutions
G(z) exhibit the fattest tails. We show the real and imaginary parts of G+(E) from (3.81) as solid
black lines in Figs. 3.4 and 3.5, respectively.

In each panel, we then also plot the asymptotic result (3.64) for weak perturbations or a constant
profile (dashed, red) as well as the asymptotic result (3.70) for stronger perturbations or very
narrow profiles (dashed, blue). The transition from (3.64) to (3.70) is clearly visible as λ is increased
from left to right in each row of both figures. Note that the estimated crossover coupling (3.73) is
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Figure 3.5: Imaginary part ImG+(E) of the scalar average resolvent (3.81) for various perturbation profiles
σ2
v(E) (see insets of the left-most column) and coupling strengths λ (see top-right corner of each panel). For

all configurations, ε−1 = 512, σ2
v = 0.2, and ∆v = 750ε ≈ 1.46, yielding a crossover coupling of λc ≈ 0.05

according to (3.73). Solid: Numerically obtained Chebyshev expansions (3.83) with MCheb = 80 . . . 160
and ` = 0.5 . . . 8 (increasing with λ) for a. the step profile (3.85); b. the exponential profile (3.21); c. the
Breit-Wigner profile (3.74); d. the double Breit-Wigner profile (3.86) with b1 = 0.45, b2 = 0.9, d = 3.5.
Values are scaled as indicated in the top-left corner of each panel. Dashed: Universal asymptotic solutions
for weak (red, Eq. (3.64)) and strong (blue, Eq. (3.70)) coupling. Dotted: Truncated continued-fraction
solutions (3.77) for the Breit-Wigner profile (3.74) of orders Mcf = 2 (yellow) and Mcf = 5 (green). The
corresponding real parts ReG+(E) are displayed in Fig. 3.4.

λc ≈ 0.05 for the chosen parameters.

In addition to these universally expected limiting forms, we also display in each panel the second-
(dotted, yellow) and fifth-order (dotted, green) continued-fraction approximations (3.77) for the
Breit-Wigner perturbation profile (3.74). Naturally, these approximations should and do recover
the numerical solutions in Figs. 3.4c and 3.5c, which were also obtained for the Breit-Wigner profile.
To faithfully describe the function G(z), we observe that higher-order approximations are needed
for larger values of λ, whereas the lower-order approximations work equally well for small λ.

Moreover, and perhaps somewhat surprisingly, the solutions for the Breit-Wigner perturbation
profile also provide quite decent approximations of the solutions for the other perturbation profiles
displayed in rows a, b, and d of Figs. 3.4 and 3.5. We emphasize that the dotted and dashed curves
are the same in each column of these figures because the values of ε, σ2

v , and ∆v are fixed, meaning
that those approximations only depend on the coupling strength λ. Hence we notice a remarkable
universality of the transition from weak to stronger perturbations. Minor differences are visible in
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the region around E = 0, but the overall shape of the perturbation profile appears to be largely
irrelevant once the intrinsic strength αv and the band width ∆v have been fixed. A first hint at
the origins of this stability is the universality of the distributions for small and large λ because
the smooth crossover with the coupling λ must interpolate between these two limits. Furthermore,
the fact that σ2

v(E) only enters Eq. (3.59) under the integral sign may also explain that its details
are washed out with regard to G(z). In any case, the observed universality of G(z) and hence also
of the overlap distribution u(E) from (3.60) will turn out convenient when it comes to devising
predictions as general as possible for the time evolution of expectation values in Sec. 3.6.

3.4.3 Fourth moment

With solutions for the second moment of eigenvector overlaps available from the previous Sec. 3.4.2,
we turn to the next nontrivial order consisting of four factors of overlap matrices Unµ, i.e., the
average

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] . (3.87)

Notably, this is the quantity required in (3.7) to specify the ensemble-averaged time evolution of
perturbed expectation values after adopting Prerequisite (v).

The individual steps to evaluate (3.87) parallel those for the second-order moments. In particular,
we follow again the recipe provided at the end of Sec. 3.4.1. By similar arguments as those invoked
below Eq. (3.48), we can and will restrict to the normal distribution (3.49) for the perturbation
matrix elements Vµν because more general distributions are asymptotically equivalent for Hilbert
space dimensions N � 1. Moreover, we will focus in this subsection on the physically most relevant
case of sufficiently weak perturbations and consider a constant perturbation profile σ2

v(E) = σ2
v = 1,

whose overall strength is thus controlled by λ from (3.1). Extensions to more general profile
functions are possible in principle, but require considerably more computational effort and will
here instead be covered by the alternative approximation method sketched in Sec. 3.4.4 below.

Preliminary considerations. The fourth-order moment (3.87) comprises overlaps of two perturbed
and four unperturbed eigenvectors (|n1〉λ, |n2〉λ and |µ1〉0, |µ2〉0, |ν1〉0, |ν2〉0, respectively). The
labels 1 and 2 here are obviously interchangeable, implying that also the final result for the fourth
moment should be invariant when simultaneously exchanging n1 ↔ n2, µ1 ↔ µ2, and ν1 ↔ ν2.
Moreover, when swapping µ1 ↔ ν1 and µ2 ↔ ν2 but keeping n1 and n2 fixed, the fourth-order
moment (3.87) should be complex conjugated.

Another important property is the unitarity of the matrix (Unµ), which implies that (3.87) should
reduce to the second moment when tracing out |n1〉λ or |n2〉λ, e.g.,∑

n2

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = δµ2ν2 E[Un1µ1U

∗
n1ν1

] . (3.88a)

Likewise, the second moment should be recovered when summing over µ1 = ν2 or µ2 = ν1, e.g.,∑
µ1,ν2

δµ1ν2E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = δn1n2 E[Un1µ2U

∗
n1ν1

] , (3.88b)

and similarly when summing over µ1 = ν1 or µ2 = ν2, e.g.,∑
µ1,ν1

δµ1ν1E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = E[Un2µ2U

∗
n2ν2

] . (3.88c)

These reduction properties reveal that the random variables Unµ are not independent for distinct
values of n and/or µ. From a mathematical point of view, naturally, this is clear because the
orthogonality (or unitarity) constraint induces a functional dependence between all the Unµ.

The first step in our calculation of (3.87) is again to express the four factors of Unµ in terms of
matrix elements of the resolvent (3.36), and to set up the latter as a Gaussian superintegral. To
do so, the cases of one perturbed eigenvector (i.e., n1 = n2 in (3.87)) and two distinct perturbed
eigenvectors (n1 6= n2) need to be treated differently.
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Resolvent approach: single perturbed eigenvector. For a single perturbed eigenvector, i.e.,
n1 = n2 = n, the product Unµ1Unµ2U

∗
nν1

U∗nν2
can be expressed as a linear combination of products

of two resolvent matrix elements Gν1µ1(z±) and Gν2µ2(z±) by exploiting (3.37), where we denoted
z± := Eλn ± iη as before. Averaging over the perturbation ensemble and taking the limit η → 0+
similarly as in (3.39), we can thus write

E[Unµ1Unµ2U
∗
nν1

U∗nν2
] = − ε2

4π2 lim
η→0+

E
[
Gν1µ1(z+)Gν2µ2(z+) + Gν1µ1(z−)Gν2µ2(z−)

−Gν1µ1(z+)Gν2µ2(z−)− Gν1µ1(z−)Gν2µ2(z+)
]
.

(3.89)

Since we intend to express the matrix elements of G(z) in terms of Gaussian integrals, however, we
need to symmetrize this expression in the Greek indices. For example, similarly as in (3.44), one
finds that∫ [dXdX∗]

(2π)N xν1xν2x
∗
µ1
x∗µ2

eiX†L+(z+−Hλ)X = Gν1µ1(z+)Gν2µ2(z+) + Gν1µ2(z+)Gν2µ1(z+) , (3.90)

a manifestation of the Isserlis-Wick theorem [239, 240], see also Appendix C. In other words,
the Gaussian integral “automatically” produces a symmetrized product since the left-hand side is
invariant under exchanging ν1 ↔ ν2 or µ1 ↔ µ2. The appropriate relation between the four factors
of eigenvector overlaps and the resolvent matrix elements to work with is therefore

− 8π2

ε
E[Unµ1Unµ2U

∗
nν1

U∗nν2
]

= lim
η→0+

E
[
Gν1µ1(z+)Gν2µ2(z+) + Gν1µ2(z+)Gν2µ1(z+) + Gν1µ1(z−)Gν2µ2(z−) + Gν1µ2(z−)Gν2µ1(z−)

−Gν1µ1(z+)Gν2µ2(z−)− Gν1µ2(z+)Gν2µ1(z−)− Gν1µ1(z−)Gν2µ2(z+)− Gν1µ2(z−)Gν2µ1(z+)
]
.

(3.91)
The ensemble average of the terms in the second line, i.e., over expressions of the form (3.90), is
evaluated completely analogously to the second-order case in Eq. (3.50) because the dependence on
V is identical. Likewise, the subsequent Hubbard-Stratonovich transformation works the same way,
except that a single auxiliary supermatrix R now suffices due to the constant variance (σµν)2 = 1
assumed in this subsection. Hence we find that

E
[
Gν1µ1(z±)Gν2µ2(z±) + Gν1µ2(z±)Gν2µ1(z±)

]
= (δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1)

∫ dR
2π (R+z±−Eµ1)−1

BB (R+z±−Eµ2)−1
BB

× exp
{
− str

[
R2

2λ2 +
∑

α
ln(R+z±−Eα)

]}
.

(3.92)

For the remaining integral over the supermatrix R, we employ a saddle-point approximation, which
again works analogously to the second-order case. In particular, the solution of the saddle-point
equation is of the previously found form (3.64) for the special case of a constant profile, so we are
left with

E
[
Gν1µ1(z±)Gν2µ2(z±) + Gν1µ2(z±)Gν2µ1(z±)

]
= δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1

(z± − Eµ1 ± iΓ/2) (z± − Eµ2 ± iΓ/2) . (3.93)

For the terms in the third line of (3.91), the two factors of resolvent matrix elements in each
product involve distinct arguments z+ and z−. Therefore, they have to be dealt with similarly to
the case of two distinct perturbed eigenvectors, to which we will turn next.

Resolvent approach: two distinct perturbed eigenvectors. Barring degeneracies, the product of
eigenvector overlaps in (3.87) for the case of two distinct (n1 6= n2) perturbed eigenvectors |n1〉λ
and |n2〉λ can be written as

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = − ε2

4π2 lim
η→0+

E
[
Gν1µ1(z+

1 )Gν2µ2(z+
2 ) + Gν1µ1(z−1 )Gν2µ2(z−2 )

−Gν1µ1(z+
1 )Gν2µ2(z−2 )− Gν1µ1(z−1 )Gν2µ2(z+

2 )
] (3.94)
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based on (3.37) as before and introducing the abbreviation z±k := Eλnk ± iη. Regarding the right-
hand side of this relation, there is a crucial difference between the terms in the first and second
lines. In the first line, the resolvents in each product are evaluated at points shifted to the same
side of the real line, above it for z+

k or below it for z−k . Hence we have a product of two retarded or
two advanced resolvents, respectively. In the second line, by contrast, each product involves one
retarded and one advanced resolvent.

In the first case, we essentially fall back on the second-order calculation again. Observing that
z±1 6= z±2 , we introduce two supervectors X(1) and X(2) of the form (3.42) and write

Gν1µ1(z±1 )Gν2µ2(z±2 ) =
∫ [dX(1)dX(1)∗]

(∓2π)N
[dX(2)dX(2)∗]

(∓2π)N x(1)
ν1
x(1)∗
µ1

x(2)
ν2
x(2)∗
µ2

× exp
[
iX(1)†L±(z±1 −Hλ)X(1) + iX(2)†L±(z±2 −Hλ)X(2)

]
.

(3.95)
After performing the average over the perturbation ensemble, the resulting expression factorizes
into two copies of the integral (3.50). Consequently, all considerations from Sec. 3.4.2 carry over im-
mediately, eventually yielding that the two ensemble-averaged resolvent matrix elements factorize,
too, i.e.

E[Gν1µ1(z±1 )Gν2µ2(z±2 )] = E[Gν1µ1(z±1 )]E[Gν2µ2(z±2 )] (3.96)

with the single averages given in (3.58).

The situation is manifestly different—and considerably more involved—for products of one retarded
and one advanced resolvent, which is the form of the remaining terms both in the second line of
Eq. (3.94) and in the third line of Eq. (3.91). The reason for this is that there the solution of the
corresponding saddle-point equation is no longer proportional to the unit matrix, resulting in an
entire manifold of degenerate saddles that needs to be integrated over (see also the remarks below
Eq. (3.54)).

Writing the product of one retarded and one advanced resolvent as a Gaussian integral, we obtain

Gν1µ1(z+
1 )Gν2µ2(z−2 ) =

∫ [dX(1)dX(1)∗]
(−2π)N

[dX(2)dX(2)∗]
(2π)N x(1)

ν1
x(1)∗
µ1

x(2)
ν2
x(2)∗
µ2

× exp
[
iX(1)†L+(z+

1 −Hλ)X(1) + iX(2)†L−(z−2 −Hλ)X(2)
]
.

(3.97)
For notational convenience, we define a new collective supervector X := (X1 · · · XN )T with

Xα :=
(
x

(1)
α χ

(1)
α x

(2)
α χ

(2)
α

)T
. (3.98)

Note that the components with superscript ‘(1)’ correspond to the retarded resolvent and those
with superscript ‘(2)’ to the advanced resolvent. We will therefore refer to them as the retarded
and advanced sectors, respectively, in the following. By means of the abbreviations

z̄ := z+
1 + z−2

2 and ∆z := z+
1 − z

−
2 (3.99)

with Im z̄ = 0 and Im∆z = 2η as well as the diagonal matrices

L := diag(1, 1,−1, 1) and Λ := diag(1, 1,−1,−1) , (3.100)

Eq. (3.97) can then be written in the more compact form

Gν1µ1(z+
1 )Gν2µ2(z−2 ) =

∫ [dXdX∗]
(2πi)2N x(1)

ν1
x(1)∗
µ1

x(2)
ν2
x(2)∗
µ2

exp
[
iX†L

(
z̄ + ∆z

2 Λ−Hλ

)
X
]
. (3.101)

From here on, we proceed with steps 1 through 4 of the algorithm laid out at the end of Sec. 3.4.1
to calculate the ensemble average of (3.101).
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Ensemble average and symmetries. The first step of calculating the average over the pertur-
bation ensemble in (3.101) is still structurally similar to the corresponding averaging procedure
from (3.45) to (3.50) for the second moment. We obtain

E[Gν1µ1(z+
1 )Gν2µ2(z−2 )] =

∫ [dXdX∗]
(2πi)2N x(1)

ν1
x(1)∗
µ1

x(2)
ν2
x(2)∗
µ2

×exp

−λ2

2

∑
α,β

str
(
XαX

†
αLXβX

†
βL
)

+ i
∑
α

X†αL
(
z̄ + Λ

2∆z − Eα
)
Xα

.
(3.102)

Similarly as for the second-order expression (3.50), it is worthwhile to examine the symmetries
of the integrand in (3.102) as they will turn out to be crucial when performing the saddle-point
approximation later. We observe that the character of the integrand changes depending on the
relative location of the perturbed eigenvectors |n1〉λ and |n2〉λ as quantified by the parameter ∆z

from (3.99). On the one hand, we may intuitively expect that significant correlations due to the
orthonormality constraint exist between those eigenvectors if they correspond to close-by levels,
meaning that the difference ∆z is small, ∆z ∼ ε � Γ with Γ from (3.65) (see also the discussion
below Eq. (3.88c)). Since Γ is the typical scale of eigenvector correlations, we can neglect the
term proportional to ∆z in (3.102) to leading order in this case. The integrand then exhibits a
pseudounitary symmetry mediated by transformations X 7→ TX, X† 7→ X†T † with the matrix T
satisfying T †LT = L. On the other hand, if the perturbed eigenvectors |n1〉λ and |n2〉λ are well
separated such that ∆z � Γ , the ∆z term is no longer negligible and the pseudounitary symmetry
breaks down. As will become clear below, the average (3.102) then maps back onto the case of
independent eigenvectors (see also Sec. 3.4.4), consistent with the intuition that the eigenvectors
should not “feel” each other if they correspond to eigenvalues that lie far apart in the spectrum.
In the intermediate regime, the situation is much more subtle; we will come back to this issue once
we derived the explicit result for small ∆z, i.e., below Eq. (3.116).

Hubbard-Stratonovich transformation. The Hubbard-Stratonovich transformation in the second
step also takes a similar, yet simpler form compared to Eq. (3.51), because a single (4× 4) super-
matrix R is sufficient thanks to the constant variance (σµν)2 = 1. Hence we can write (cf. also
Appendix C.4)

exp
[
−λ

2

2
∑

α,β
str
(
XαX

†
αLXβX

†
βL
)]

=
∫ dR

(2π)2 exp
[
− str

(
R2

2λ2 + iR
∑

α
XαX

†
αL

)]
,

(3.103)
where R is conveniently parameterized as [163, 222, 223]

R = T

(
P1 − iδ0 0

0 P2 + iδ0

)
T−1 (3.104)

with Hermitian (2×2) supermatrices P1 and P2 and δ0 > 0 to be adapted such that the integration
contour passes through the saddle points [223]. Furthermore, the block-diagonalizing transforma-
tion matrix T satisfies T †LT = L and thus belongs to the (approximate) pseudounitary symmetry
group of the integrand in (3.102). Adopting (3.103), Eq. (3.102) transforms into

E[Gν1µ1(z+
1 )Gν2µ2(z−2 )] =

∫ dR
(2π)2

∫ [dXdX∗]
(2πi)2N x(1)

ν1
x(1)∗
µ1

x(2)
ν2
x(2)∗
µ2

×exp
[
− str

(
R2

2λ2

)
+ i
∑

α
X†αL

(
R+ z̄ + Λ

2∆z − Eα
)
Xα

]
.

(3.105)
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The Gaussian integral over X, i.e., the third step of the recipe from the end of Sec. 3.4.1, is
calculated by exploiting the Isserlis-Wick theorem (see Appendix C), yielding

E[Gν1µ1(z+
1 )Gν2µ2(z−2 )]

=
∫ dR

(2π)2 exp
{
− str

[
R2

2λ2 +
∑

α
ln (R+ z̄ +∆zΛ/2− Eα)

]}
×
{
−δµ1ν1δµ2ν2

[
(R+ z̄ +∆zΛ/2− Eν1)−1

]
1B,1B

[
(R+ z̄ +∆zΛ/2− Eν2)−1

]
2B,2B

−δµ1ν2δµ2ν1

[
(R+ z̄ +∆zΛ/2− Eν1)−1

]
1B,2B

[
(R+ z̄ +∆zΛ/2− Eν2)−1

]
2B,1B

}
.

(3.106)
Note that the supermatrix indices in the last two lines refer to the retarded (1) or advanced (2)
components (corresponding to z+

1 and z−2 , respectively) of the bosonic sector (B).

Saddle-point approximation. In the fourth and final step, we evaluate the integral over the
supermatrix R by means of a saddle-point approximation. The associated saddle-point equation
is obtained by requiring the first variation of the exponent in (3.106) to vanish, resulting in

R+ λ2
∑
α

(R+ z̄ +∆zΛ/2− Eα)−1 = 0 . (3.107)

By analogy with the solution strategy for the second moment (see below Eq. (3.54)), we first look for
a diagonal solution R̂. Expressing the sum over α as a principal-value integral, we straightforwardly
find

R̂ = iΓΛ/2 (3.108)

with Γ = 2πλ2/ε as defined in (3.65), observing that we set σ2
v = 1. Recalling the definition of Λ

in (3.100), we notice that this diagonal solution is not proportional to the identity matrix, a crucial
difference to the second-order case. In the regime where ∆z ∼ ε and the pseudounitary symmetry
T †LT = L is present, we therefore obtain additional nontrivial solutions TR̂T−1, all of which need
to be accounted for in the saddle-point approximation, meaning that we need to integrate over the
symmetry group of transformation matrices T .

The reduction of the R integral in Eq. (3.106) works analogously to the calculation for the second
moment (see below Eq. (3.53)), hence we essentially substitute R = TR̂T−1 in the integrand
in (3.106). To calculate the remaining integral over the manifold of degenerate saddles, it is
convenient to introduce a new integration variable Q := TΛT−1 satisfying Q2 = 1 and thus
str(Q2) = 0. Altogether, we then obtain

E[Gν1µ1(z+
1 )Gν2µ2(z−2 )]

= −
∫

dµ(Q) exp
[
− str

∑
α

ln (iΓQ/2 + z̄ +∆zΛ/2− Eα)
]

×
[
δµ1ν1δµ2ν2 (iΓQ/2 + z̄ +∆zΛ/2− Eν1)−1

1B,1B (iΓQ/2 + z̄ +∆zΛ/2− Eν2)−1
2B,2B

+δµ1ν2δµ2ν1 (iΓQ/2 + z̄ +∆zΛ/2− Eν1)−1
1B,2B (iΓQ/2 + z̄ +∆zΛ/2− Eν2)−1

2B,1B

]
,

(3.109)
where the integration measure dµ(Q) will be given once a suitable parameterization for Q has been
fixed (see Eqs. (E.4)–(E.9)). As the remaining integration in (3.109) is a rather tedious endeavor,
we relegate the details to Appendix E.2.

To state the eventually obtained result, we define, by analogy with (3.81), the functions

G±w(E) := 1
E ∓ iΓ/2 , (3.110)

corresponding to the weak-perturbation asymptotics (3.64) of the scalar ensemble-averaged resol-
vent G(z) with positive (+) or negative (−) imaginary part, respectively. Note that |G±w(E)| ≡
|Gw(E)| is the same for both choices of the sign. In addition, we introduce the abbreviations
G±nν := G±w(En − Eν) and sinc(x) := (sin x)/x.
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For Nv � 1, where Nv from (3.9) quantifies the number of unperturbed levels mixed by the
perturbation and is given by Nv = Γ/ε here (see below Eq. (3.67)), the missing ensemble averages
in Eqs. (3.91) and (3.94) are then found to read

lim
η→0+

E[Gν1µ1(z+
1 )Gν2µ2(z−2 ) + Gν1µ1(z−1 )Gν2µ2(z+

2 )]

= δµ1ν1δµ2ν2

{
G+
n1ν1

G−n2ν2
+G−n1ν1

G+
n2ν2

+ Γ 2 |Gn1ν1Gn2ν2 |2 sinc
(
π(En1−En2 )

ε

)
−Γ

4ε2

4π2 |Gn1ν1Gn2ν2 |4 |Gn1ν2Gn2ν1 |2
[
E2
ν1

+E2
ν2

+2En1En2−(Eν1 +Eν2)(En1 +En2)+ Γ 2

2

]2}
+ δµ1ν2δµ2ν1

Γ 3ε
2π |Gn1ν2Gn2ν1 |2

[
|Gn1ν1 |2 + |Gn2ν2 |2 −

(En1−En2)
(
|Gn1ν1 |2 − |Gn2ν2 |2

)
Eν1 +Eν2−En1−En2

]
.

(3.111)

Collecting terms. With this, we have all terms needed to express the fourth moment of eigenvector
overlaps (3.87) explicitly at our disposal: For n1 = n2, the ensemble average is given by (3.91),
where the terms in the second line were found in (3.93) and those in the third follow from (3.111)
by setting n1 = n2. This leads to

E[Unµ1Unµ2U
∗
nν1

U∗nν2
] = (δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1)u(En − Eµ1)u(En − Eµ2) +O(N−3

v ) (3.112)

with u(E) as given in (3.67), i.e., the overlap distribution (3.60) in the weak-perturbation limit, and
where we omitted terms of order N−3

v or higher in the large parameter Nv = Γ/ε (cf. Eq. (3.9)).

For n1 6= n2, the ensemble average is expressed as (3.94), where the terms in the first line were
given in (3.96) and the just-derived Eq. (3.111) provides the missing terms in the second line. We
obtain

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
]
∣∣
n1 6=n2

= δµ1ν1δµ2ν2 d
n1n2
µ1µ2

+ δµ1ν2δµ2ν1 f̃
n1n2
µ1µ2

+O(N−4
v ) (3.113a)

to next-to-leading order in Nv, where

dn1n2
µ1µ2

:= u(En1 − Eµ1)u(En2 − Eµ2) (3.113b)
f̃n1n2
µ1µ2

:= −
(
Γε
4π
)
u(En1 − Eµ1)u(En2 − Eµ2) ,

×
Γ 2+E2

µ1
/2+E2

µ2
/2+En1En2−(Eµ1 +Eµ2)(En1 +En2)/2

[(En1−Eµ2)2 + (Γ/2)2][(En2−Eµ1)2 + (Γ/2)2] . (3.113c)

Combining (3.112) and (3.113a), we are left with

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] ' δµ1ν1δµ2ν2 d

n1n2
µ1µ2

+ δµ1ν2δµ2ν1

(
δn1n2d

n1n2
µ1µ2

+ f̃n1n2
µ1µ2

)
. (3.114)

We point out that we truncated the expression for a single perturbed eigenvector (3.112) at one
order lower than that for two distinct eigenvectors. The reason for this is the additional prefactor
δn1n2 they receive in the combined expression (3.114), which effectively reduces their order by a
factor of N−1

v when summing over n1 and n2 as we will eventually do to evaluate, for instance,
Eq. (3.7).

Symmetry restoration. To conclude, we return to the remarks about general symmetry and re-
duction properties of the fourth moment from the beginning of this subsection. The preliminary
result (3.114) is obviously symmetric in the labels 1 and 2, and, being real-valued, it also vali-
dates the condition of complex conjugation when swapping µ1 ↔ ν1 and µ2 ↔ ν2. Moreover,
it verifies the reduction property (3.88a) for perturbed eigenvectors as can be tested straightfor-
wardly by approximating the sum

∑
n1
· · · by an integral

∫
dE/ε · · · as usual. The reduction

property (3.88c) for unperturbed eigenvectors is not satisfied exactly, but the violations are of
subleading order as will become clear below (see the discussion below Eq. (3.124)). However, the
reduction property (3.88b) is violated relevantly because∑
µ1ν2

δµ1ν2E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
]

= δµ2ν1

[
u(En1 − Eµ2) + ũ(En1 − En2)u(En1 − Eµ2)

(
(En1−En2)(En1−3En2 +2Eµ2)

2(En2−Eµ2)2 + Γ 2/2 − 1
)]

(3.115)
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with the convolution
ũ(E) :=

∫ dE′

ε
u(E − E′)u(E′) . (3.116)

While the first term on the right-hand side of (3.115) is precisely the expected result according
to (3.88b), the nonnegligible second term spoils the symmetry. We emphasize that this viola-
tion is not an artifact of truncating the ensemble-averaged resolvents at leading order in Nv (cf.
Eqs. (3.112) and (3.113a)). Instead, the prime suspect is the approximate character of the saddle-
point degeneracy observed below Eq. (3.102). Taking the symmetry for granted, we integrated
in (3.109) (see also Appendix E.2) over all saddle points TR̂T−1 with R̂ from (3.108) and T ver-
ifying T †LT = L. This presumes a perfect pseudounitary symmetry, reflecting the situation for
∆z ' ε. Then again, we observe that also the case of |∆z| � Γ , where the pseudounitary symme-
try breaks down, is retrieved correctly in (3.114) because f̃n1n2

µ1µ2
becomes negligible compared to

dn1n2
µ1µ2

then. Unfortunately, the intermediate regime with ε � |∆z| � Γ , where the symmetry is
neither perfect nor completely broken, is hardly accessible by analytical means. Yet we can restore
the reduction property (3.88b) a posteriori, leading to a fully consistent expression for the fourth
moment (3.87).

This is achieved by devising a correction term cn1n2
µ1µ2

for f̃n1n2
µ1µ2

that is of the same order in Nv,
fixes (3.88b), and simultaneously preserves (3.88a) as well as the aforementioned symmetry prop-
erties upon exchanging indices. Due to these symmetries, the only admissible dependencies of the
correction term are the five invariants

Γ, (Eµ1 + Eµ2), (En1 + En2), (Eµ1 − Eµ2)2, and (En1 − En2)2 . (3.117)

Anticipating a structural similarity to (3.113c), we therefore make an ansatz of the form

cn1n2
µ1µ2

=
(
Γε
4π
)
u(En1 −Eµ1)u(En2 −Eµ2) A(c0, c1, c2, c3, c4, c5)

[(En1−Eµ2)2 + (Γ/2)2][(En2−Eµ1)2 + (Γ/2)2] (3.118a)

with
A(c0, c1, c2, c3, c4, c5) = c0Γ

2 + c1(Eµ1 + Eµ2)(En1 + En2) + c2(Eµ1 − Eµ2)2 + c3(En1 − En2)2

+ c4(Eµ1 + Eµ2)2 + c5(En1 + En2)2 .
(3.118b)

Requiring (3.88a) and restricting to constant solutions for the ci yields c5 = −c4 = c3 = c1/2 and
c2 = c0 = 0, hence there is only one free parameter remaining, for example, the coefficient c1.
Substituting into (3.88b), we find that c1 = −1. The correction term then becomes

cn1n2
µ1µ2

=
(
Γε
2π
)
u(En1 −Eµ1)u(En2 −Eµ2) (Eµ1 + Eµ2 − 2En1)(Eµ1 + Eµ2 − 2En2)

[(En1−Eµ2)2 + (Γ/2)2][(En2−Eµ1)2 + (Γ/2)2] . (3.119)

Altogether, our leading-order approximation for the fourth moment of eigenvector overlaps in the
weak-perturbation limit thus reads

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = δµ1ν1δµ2ν2 d

n1n2
µ1µ2

+ δµ1ν2δµ2ν1

(
δn1n2d

n1n2
µ1µ2

+ fn1n2
µ1µ2

)
(3.120)

with dn1n2
µ1µ2

from (3.113b) and fn1n2
µ1µ2

:= f̃n1n2
µ1µ2

+ cn1n2
µ1µ2

, i.e.,

fn1n2
µ1µ2

=−
(
Γε
4π
)
u(En1−Eµ1)u(En2−Eµ2)Γ

2+(Eµ1−Eµ2)2+(En1−En2)2−(Eµ1+Eµ2−En1−En2)2

[(En1−Eµ2)2 + (Γ/2)2][(En2−Eµ1)2 + (Γ/2)2]

=
(
Γε
2π
) u(En1 − Eµ2)u(En2 − Eµ1)− u(En1 − Eµ1)u(En2 − Eµ2)

(En1 − En2)(Eµ1 − Eµ2) .

(3.121)
For consistency, we check the influence of the correction term depending on the relative locations
of the perturbed and unperturbed eigenvectors to each other. Introducing ∆ := Eµ1 − Eµ2 for
the difference of the unperturbed energies, ∆′ := En1 − En2 for the difference of the perturbed
ones, and ∆̂ := En1 +En2

2 − Eµ1 +Eµ2
2 for the difference between the mean perturbed and the mean

unperturbed energies, respectively, the ratio of the correction (3.119) to the corrected term (3.121)
reads

cn1n2
µ1µ2

fn1n2
µ1µ2

= 2 (4∆̂2 −∆′2)/Γ 2

1− (4∆̂2 −∆2 −∆′2)/Γ 2
. (3.122)
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From this expression, we understand that the correction is small when |∆′| � Γ and |∆̂| � Γ
such that all eigenvectors involved correspond to levels that are close in energy. This is precisely
the regime where the pseudounitary symmetry of the integrand in (3.102) is intact. Furthermore,
the correction is of minor relevance if all of |∆|, |∆′| and |∆̂| are large compared to Γ , i.e., if the
associated levels lie far apart. Again, this is consistent with our observations below Eqs. (3.102)
and (3.116) that the overlap factors Unµ then essentially become independent of each other. In
short, we indeed observe that the correction term (3.119) principally targets the intermediate
regime of an approximate pseudounitary symmetry with ε� |∆′| � Γ or ε� |∆̂| � Γ .

Finally, we come back to the second reduction property (3.88c) for unperturbed eigenvectors.
Substituting the final result (3.120), we find that∑

µ1ν2

δµ1ν1E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
]

= δµ2ν2

[
u(En2−Eµ2) + u(En1−Eµ2)u(En2−Eµ2)

×
(
δn1n2 −

Γ 2−4(En1−Eµ2)(En2−Eµ2)
Γε/π

u(En1−Eµ2)u(En2−Eµ2)
)]

.

(3.123)
The first term corresponds to the expected result, whereas the second term is adverse. Assessing
orders of Nv, however, we observe that∑

µ1ν2

δµ1ν1E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] = δµ2ν2u(En2 − Eµ2)

[
1 +O(N−2

v )
]
, (3.124)

i.e., the infraction is doubly suppressed in the number of mixed levels Nv from (3.9) and thus
insignificant. Note that the violation of (3.88b) observed in (3.115) before symmetry restoration
was of order N−1

v instead and therefore potentially relevant in sums of a large number of terms,
e.g., Eq. (3.7). Altogether, our final leading-order approximation (3.120) for the fourth moment
of eigenvector overlaps is thus consistent with the symmetry considerations from the beginning of
this subsection.

Numerical verification. To test our analytical result (3.120) for the fourth-order eigenvector
overlap moment and to verify that the leading-order approximation should be sufficient for all
practical purposes, we compute these fourth moments numerically in an explicit example system
with a Hilbert space dimension of N = 512. The Hamiltonian has the structure (3.1), where the
unperturbed part is chosen like in (3.27) with level spacing ε = 1, such that Eµ = µ. The diagonal
matrix elements Vµµ of the perturbation are drawn from a standard (real-valued) normal distribu-
tion, whereas the off-diagonal Vµν with µ < ν are sampled from a complex normal distribution and
those with µ > ν follow as Vµν = V ∗νµ due to Hermiticity. In both cases, the mean is zero and the
variance is unity, hence the perturbation ensemble coincides with the Gaussian Unitary Ensemble
(GUE). Finally, the coupling strength is λ = 1.33, implying Γ ≈ 11 according to (3.65) and thus
Nv = Γ/ε ≈ 11, too.

The resulting empirical moments (3.87) for various index combinations are given by the black
dots in Fig. 3.6. The comparison with the theoretical result (3.120), shown as solid red lines,
reveals very good agreement despite the rather small dimension N and number of mixed levels Nv.
Recalling that we are eventually interested in values of N and Nv that are exponentially large in
the system’s degrees of freedom, the leading-order approximation (3.120) will most certainly be
sufficiently accurate.

For later reference, we also include in Fig. 3.6 the approximation (3.128), which will result from
the alternative approach to be laid out in the subsequent Sec. 3.4.4. While this method yields
identical results for the δµ1ν1δµ2ν2 branch, the δµ1ν2δµ2ν1 branch is reproduced only to a somewhat
lesser extent with apparent quantitative deviations.

We remark that estimates and approximations of the fourth moment (3.87) in similar settings have
been studied in the literature, too. In particular, Ithier and Ascroft [254] used an approach via
Lippmann-Schwinger-type equations combined with a self-averaging conjecture for products of the
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Figure 3.6: Fourth moment of eigenvector overlaps E[Un1µ1Un2µ2U
∗
n1ν1U

∗
n2ν2 ] for various combinations

of fixed and variable indices as indicated in the respective panels. Dots: Numerical averages over 105

randomly sampled perturbation matrices Vµν from the Gaussian Unitary Ensemble with mean zero and
variance σ2

v = 1. The unperturbed Hamiltonian is (3.27) with a level spacing of ε = 1, and the coupling
strength is λ = 1.33, so Γ = Nv ≈ 11 (cf. Eqs. (3.9) and (3.65)). The Hilbert space dimension is
N = 512. Solid: Analytical approximation (3.120) from supersymmetry methods. Dashed: Analytical
approximation (3.128) obtained by the alternative approach from Sec. 3.4.4. a. Probe of the δµ1ν1δµ2ν2

branch in (3.120) as a function of n2 or µ1 = ν1. b. Probe of the δµ1ν2δµ2ν1 branch as a function of n2.
c. Probe of the δµ1ν2δµ2ν1 branch as a function of µ1 = ν2. The y axes are scaled as specified in the top-left
corner of each panel.

resolvent G(z) with the covariance tensor of the Vµν to evaluate (3.87) for different index combi-
nations which essentially correspond to the individual δµ1ν1δµ2ν2 or δµ1ν2δµ2ν1 branches in (3.120).
Their results coincide with ours in these cases.

A related problem was also studied by Nation and Porras in Ref. [252]. Their setup is identical
to the one in Deutsch’s 1991 paper [114], i.e., the perturbation matrices are sampled from the
Gaussian Orthogonal Ensemble (GOE), meaning that all entries are real-valued. Methodologically,
they extended the approach from [253], approximating the Unµ by Gaussian random variables with
an additional orthogonality constraint, resulting in an approximation that violates the reduction
property (3.88b) (see Eq. (48) in Ref. [252]).

Perhaps surprisingly, it appears that our result (3.120), explicitly derived for complex-valued
perturbation ensembles, can be generalized straightforwardly to the real-valued case. Since the
Isserlis-Wick theorem takes a slightly different form (the matrices Uµν are now real-valued and
orthogonal), one should add an additional δµ1µ2δν1ν2 branch with weight fn1n2

µ1ν1
, observing that the

δµ1µ2δν1ν2 and δµ1ν2δµ2ν1 branches must share the same dependence on the “uncontracted” indices
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Figure 3.7: Fourth moment of eigenvector overlaps E[Un1µ1Un2µ2Un1ν1Un2ν2 ], adopting real-valued pertur-
bations, for various combinations of fixed and variable indices as indicated in the respective panels. Dots:
Numerical averages over 105 randomly sampled perturbation matrices Vµν from the Gaussian Orthogonal
Ensemble with mean zero and variance σ2

v = 1. The unperturbed Hamiltonian is (3.27) with a level spacing
of ε = 1, and the coupling strength is λ = 1.33, so Γ = Nv ≈ 11 (cf. Eqs. (3.9) and (3.65)). Red lines:
Analytical approximation (3.120) from supersymmetry methods (originally obtained for complex-valued
perturbation ensembles). Blue lines: Analytical approximation from Ref. [252] obtained by an extension
of Deutsch’s method from [114, 253]. The y axes are scaled as specified in the top-left corner of each panel.

by symmetry. Apart from this modification, the overall structure is seemingly similar at leading
order, as is illustrated by means of example in Fig. 3.7. Namely, we choose a similar setup for the
system Hamiltonian as in Fig. 3.6, but sample the perturbation from the GOE instead. As before,
the dots show the empirical moments (note that the δµ1ν2δµ2ν1 branch is probed), while the solid
red lines correspond to (3.120) and again agree very well with the numerics. For comparison, we
also display the approximation from Ref. [252] as solid blue lines, unveiling that these expressions
reproduce the dependence qualitatively, but cannot faithfully recover all quantitative details.

3.4.4 Alternative approach and higher-order moments

The supersymmetry methods employed in the previous subsections are a powerful approach to
compute asymptotically exact expressions for eigenvector overlap moments like (3.29). Yet the
calculations quickly become technically involved and eventually unsustainable as foreshadowed by
the need for an amending symmetry restoration in the fourth-order calculation in Sec. 3.4.3. On the
other hand, the final result (3.120) with (3.113b) and (3.121) for the fourth moment suggests that
higher-order moments may ultimately be well approximated in terms of combinations of the second
moments from (3.61). In this subsection, we therefore briefly sketch a generalized approximation
scheme which allows to reduce correlators like (3.29) of arbitrary order to combinations of the
second moment (3.61). Details can be found in the Supplemental Material of Ref. [226].

Independent Gaussian eigenvectors. It is known that the distribution of the Unµ is approxi-
mately Gaussian [114, 253], and for Gaussian random variables, higher-order moments collapse to
combinations of second moments as a consequence of the Isserlis-Wick theorem. Approximating
the Unµ as Gaussian and additionally independent random variables was precisely the approach
from Refs. [114, 253]. Under these premises, one readily obtains, for example, a decomposition of
the fourth moment (3.87) into second-moment expressions,

E[Un1µ1Un2µ2U
∗
n1ν1

U∗n2ν2
] ≈ δµ1ν1δµ2ν2 u(En1 − Eµ1)u(En2 − Eµ2)

+ δn1n2δµ1ν2δµ2ν1 u(En1 − Eµ2)u(En2 − Eµ1) .
(3.125)

We observe that the δµ1ν1δµ2ν2 branch coincides with the leading-order approximation (3.120) found
in the previous subsection by supersymmetry methods, but the crucial fn1n2

µ1µ2
term in the δµ1ν2δµ2ν1

branch is missing entirely. Consequently, also the reduction properties (3.88) are violated. While
this approximation was sufficient for the purposes of Ref. [114], namely to establish thermalization
for the majority of perturbed systems similar to (3.1), it is unfortunately too simplistic for our
aim of predicting the dynamical relaxation behavior [226]. More precisely, as detailed in [226],
assuming an approximately Gaussian distribution for the Unµ turns out to be still tenable (see
also Refs. [208, 252]), whereas the independence assumption has to be abandoned because the
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concomitant violations of the unitarity constraint (particularly the properties (3.88a) and (3.88b))
are too severe.

Orthogonal eigenvector approximation. Exploiting those insights, the main idea of the alterna-
tive approach is to maintain a set of “raw” perturbed eigenvectors (or overlap products Unµ) that
are independent and Gaussian distributed, but to enforce the unitarity constraint in expressions
like (3.29) explicitly by an additional ad hoc orthogonalization.

Consider a product (3.29) of eigenvector overlaps Unµ = λ〈n|µ〉0 comprising K distinct per-
turbed eigenvectors |n1〉λ, . . . , |nK〉λ. For each of the |nk〉λ, we introduce a random vector vnk =
(vnk1 , . . . , vnkN ), independent of vnl for k 6= l, whose components vnkµ are independent random
variables following a Gaussian distribution of mean zero and variance u(Enk − Eµ). Denoting
averages over this ensemble of random vectors by the symbol E[ · · · ], we thus have E

[
vnkµ
]

= 0 and
E
[
vnkµ vnk∗ν

]
= δµν u(Enk − Eµ). Hence the vnkµ exhibit the same first two moments as the Unkµ

for all nk and µ, but contrary to these Unkµ, the auxiliary vnkµ are all mutually independent by
construction. In other words, the vnkµ are an explicit implementation of the assumption adopted
in the previous paragraph, where we temporarily considered the Unµ as independent, Gaussian-
distributed random variables. The vnkµ thus represent the aforementioned set of raw perturbed
eigenvectors.

In general, an individual realization of these raw vectors will violate the unitarity conditions∑
µ v

nk∗
µ vnlµ = δkl and (if K = N)

∑
k v

nk∗
µ vnkν = δµν satisfied by the Unµ, even though both

relations still hold on average. To overcome that deficiency, we define a second set of random
vectors {v̂nk} by orthogonalizing the independent vnk via the Gram-Schmidt process, i.e.,

v̂nkµ := ak

vnkµ − k−1∑
j=1

v̂njµ
∑
ν

v̂nj∗ν vnkν

 , (3.126)

with ak chosen such that
∑
µ|v̂nkµ |2 = 1. The v̂nkµ now form an orthonormal set by construction,

i.e.,
∑
µ v̂

nk∗
µ v̂nlµ = δkl. The suggested scheme to compute eigenvector overlap moments like (3.29)

then consists in approximating

E[Un1µ1U
∗
n1ν1

Un2µ2U
∗
n2ν2
· · · ] ≈ E[ v̂n1

µ1
v̂n1∗
ν1

v̂n2
µ2
v̂n2∗
ν2
· · · ] , (3.127)

i.e., we take the v̂nkµ as proxies for the true Unkµ. Finally, we observe that the normalization
factors ak ≈ 1 because the raw vnk are already orthonormalized on average. It turns out [226]
that the deviations of the ak from unity are subleading in the final approximations for the overlap
moments (3.29), meaning that they are accompanied by inverse powers of the number Nv of mixed
levels that are beyond the leading order N−3

v we are interested in (see also the discussion around
Eqs. (3.112) and (3.113)). Hence we will directly set ak = 1 for all k in the following.

Computation of overlap moments. Upon substitution of (3.126) into (3.127), the eigenvector
overlap moments from (3.29) can be approximated in terms of moments of the vnkµ . Since the latter
are independent and unbiased Gaussian random variables by definition, the Isserlis-Wick theorem
[239, 240] provides a straightforward algorithm to reduce these expressions to linear combinations of
products of their second moments, which in turn are expressed in terms of the overlap distribution
u(E) of the “true” overlap factors Unµ (cf. Eq. (3.60)). This way we accomplish the aforementioned
reduction of higher-order moments to the exactly known second-order result from Sec. 3.4.2. For a
moment involving K factors of Unµ, we thus need, according to (3.126) and (3.127), the moments
of orders K,K + 2, . . . , 2K of the K independent raw vectors vnk with components vnkµ .

As an explicit example, we present the derivation of the fourth-order approximation in Ap-
pendix E.3. This calculation yields

E[ v̂n1
µ1
v̂n2
µ2
v̂n1∗
ν1

v̂n2∗
ν2

] = δµ1ν1δµ2ν2 d
n1n2
µ1µ2

+ δµ1ν2δµ2ν1

(
δn1n2d

n1n2
µ1µ2

+ f̂n1n2
µ1µ2

)
(3.128)

to leading order in Nv for every branch, respectively, with dn1n2
µ1µ2

from (3.113b) and

f̂n1n2
µ1µ2

:= u(En1−Eµ1)u(En1−Eµ2) [ũ(En1−En2)− u(En2−Eµ1)− u(En2−Eµ2)] , (3.129)
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where ũ(E) is given by Eq. (3.116) as before. An obvious shortcoming of this approximation is that
it is not symmetric upon exchanging all labels 1 and 2 (see the preliminary considerations at the
beginning of Sec. 3.4.3), traced back to the unequal treatment of the perturbed eigenvectors |n1〉λ
and |n2〉λ or, equivalently, the asymmetric construction (3.126) of v̂n1 and v̂n2 from vn1 and vn2 . As
a remedy, we could either symmetrize (3.129) a posteriori or employ a symmetric orthogonalization
procedure (e.g., Löwdin orthogonalization [255, 256]) right from the beginning. However, we avoid
such technical complications here since this missing symmetry is eventually unimportant when
it comes to computing ensemble averages of time-dependent expectation values as in Eq. (3.7),
basically because the average in question is already symmetrized by means of the sum over n1 and
n2 there. More importantly, the reduction properties from Eqs. (3.88a) and (3.88b) are verified
straightforwardly.

The approximation (3.127) with (3.128) for the fourth moment in the weak-perturbation limit,
such that u(E) is given by (3.67), had already been included as dashed gray lines in Fig. 3.6
above. The comparison of this approximate result with numerical simulations or the supersymme-
try solution (3.120) does not reveal overly convincing agreement at first glance. Nonetheless, the
qualitative reproduction of the essential features of the correlator E[Un1µ1Un2µ2U

∗
n1ν1

U∗n2ν2
] along

with the faithful incorporation of the reduction properties (3.88a) and (3.88b) will turn out to be
sufficient for the purpose of computing the ensemble-averaged time evolution (3.7) in Sec. 3.6, and
the same holds true for the higher-order moments when bounding the variance (3.8). In spite of the
substantial technical simplifications compared to the supersymmetry approach from the previous
subsections, the actual calculations of higher-order moments quickly become quite cumbersome,
too, but can at least be aided by computer algebra software.

3.5 Prethermalization

Having established their mathematical background, we finally begin to state the main physical
results of this chapter, which characterize the relaxation of the observable expectation values
〈A〉ρλ(t). Despite the fourfold dependence of these expectation values on the Unµ (see Eq. (3.7)),
it is possible to gain interesting insights regarding the difference

∆λ(t) := 〈A〉ρλ(t) − 〈A〉ρ0(t) (3.130)

of the perturbed and unperturbed expectation values by exploiting just the second moment (3.30)
of eigenvector overlaps (overlap distribution), i.e., without resorting to the considerably more
involved fourth and eighth moments. Notably, we will obtain an analytical argument for why
prethermalization (cf. Sec. 2.2.3) can be commonly expected when an integrable system is subject
to weak integrability-breaking perturbations [177]. More generally, a similar scenario potentially
arises whenever a nonthermalizing (e.g., many-body localized) system exhibiting sufficiently fast
equilibration [97] is weakly perturbed such that the constraints inhibiting thermalization are re-
moved.

Bound on expectation-value differences. The first step in the derivation establishes a rigorous
bound on the difference ∆λ(t) from (3.130). With the definition W (t) := e−iHλteiH0t, ∆λ(t) can
be written as

∆λ(t) = tr[ρ0(t)W †(t)AW (t)]− tr[ρ0(t)A] . (3.131)

Next it is helpful to introduce the two “moments” ŵ1(t) := 2 Re tr{E[W (t)]ρ0(t)} and ŵ2(t) :=
tr{E[W (t)] ρ0(t)E[W †(t)]} involving the ensemble-averaged (nonunitary) operator E[W (t)]. Ex-
ploiting these definitions, the ensemble average of the difference (3.130) can then be upper-bounded
in modulus by a series of manipulations detailed in the Supplemental Material of Ref. [177], yield-
ing

E[|∆λ(t)|] ≤ ∆Ad(t) with d(t) := 1
2

[
3
√

1− ŵ2(t) +
√

1− 5ŵ2(t) + ŵ1(t)2
]
. (3.132)

As before, ∆A is the spectral range of the observable A (see Eq. (2.18)). So far, no assumptions
about the ensemble of perturbations V in (3.1) were necessary, i.e., the bound (3.132) is completely
general and independent of the distribution (3.24).
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Moreover, by means of Markov’s inequality (2.28), the bound (3.132) on the ensemble average of
differences between the unperturbed and perturbed dynamics can be used to bound the probability
to observe such differences in an individual realization of the perturbation ensemble, leading to

P(|∆λ(t)| ≥ κ) ≤ ∆Ad(t)
κ

(3.133)

for arbitrary κ > 0. Hence the probability to observe differences above the resolution κ = δA of the
macroscopic operator A is small as long as d(t) from (3.132) is much smaller than the measurement
precision ∆A/δA.

From a technical point of view, it is remarkable that the otherwise commonly required step of
computing the variance of the considered quantity to establish its typicality property (see Sec. 2.3.1)
can be circumvented here. This is because the quantity |∆λ(t)|, whose expectation value is bounded
in (3.132), is nonnegative, so Markov’s inequality (2.28) can be applied in place of Chebyshev’s
inequality (2.29). Ultimately, this and the fact that averages of order W (t)2 have “magically”
disappeared when passing from (3.131) to (3.132) explain why the second moment of eigenvector
overlaps will suffice to evaluate d(t) for the considered perturbation ensembles and thus to provide
a more quantitative interpretation of (3.132) and (3.133).

Exploiting ensemble properties. As our next step, we successively incorporate certain proper-
ties of the allowed perturbation ensembles (see also Secs. 3.2 and 3.3) to simplify the right-hand
side of (3.132) and extract the physical implications of this general bound. The details of these
derivations can be found in Appendix E.4 (or in the Supplemental Material of Ref. [177], too).
The primary objects of study in this context are the matrix elements

Wµν(t) := 0〈µ|W (t)|ν〉0 =
∑
n

ei(Eµ−Eλn)t U∗nµ Unν (3.134)

of the operator W (t) in the unperturbed eigenbasis {|µ〉0}. First, we assume that the statistical
properties of the matrix elements Vµν are invariant upon multiplication of the basis vectors {|µ〉0}
by arbitrary sign factors sµ ∈ {−1, 1}, a special case of phase invariance as discussed below
Eq. (3.22) with φµ ∈ {0, π}. It follows that the ensemble-averaged operator E[W (t)] is diagonal in
the unperturbed eigenbasis, i.e.,

E[Wµν(t)] = δµν E[wµ(t)] (3.135)

for some well-defined function wµ(t) (see Eq. (E.35)). Second, the ensemble average of this function
wµ(t) is independent of µ provided that Prerequisites (i) and (iv) from Sec. 3.2 are satisfied, such
that

E[Wµν(t)] = δµν ŵ(t) (3.136)

for another well-defined function ŵ(t). Hence E[W (t)] is actually proportional to the identity
operator. If one additionally requires that the distribution of all diagonal matrix elements Vµµ be
equivalent to the one of −Vµµ, which is essentially contained in Prerequisite (iv) again, potentially
after adding a trivial constant to V (see the remarks below Eq. (3.22)), it can be inferred that the
function ŵ(t) is real-valued. Exploiting all this to evaluate the functions ŵ1(t) and ŵ2(t) defined
below Eq. (3.131) yields ŵ1(t) = 2ŵ(t) and ŵ2(t) = ŵ(t)2. Substituting into (3.132), we finally
obtain the bound

E[|∆λ(t)|] ≤ ∆Ad(t) with d(t) = 2
√

1− ŵ(t)2 (3.137)

for the ensemble-averaged difference between the perturbed and unperturbed dynamics. The ques-
tion regarding the smallness of d(t) thus boils down to the time dependence of ŵ(t). Closer
inspection of (3.134) in conjunction with (3.136) reveals that ŵ(0) = 1 and 0 ≤ |ŵ(t)| ≤ 1. Pro-
vided that the ensemble is well-behaved, such that averages over eigenvector overlaps as in (3.134)
are reasonably smooth, the function ŵ(t) can also be expected to depend smoothly on t, so there
is indeed room for an appreciable time span up to which ŵ(t) ≈ 1, and consequently the perturbed
dynamics will typically resemble the unperturbed one during this interval (see also Eq. (3.133)).
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Quantitative estimate. So far, only abstract properties of possible perturbation ensembles were
taken into account to make the general bound (3.132) more concrete, leading to (3.137) under
still rather general assumptions about the V operators. Notably, it was not necessary to assume
small level fluctuations (cf. Prerequisite (v)) or small correlations or even statistical independence
of the matrix elements Vµν (cf. Prerequisite (vi)). Hence the bound (3.137) applies to the specific
perturbation ensembles introduced in Sec. 3.3, but also to considerably more general situations.
For more quantitative insights regarding the smallness of d(t), however, we will now employ results
from Sec. 3.4 for those more specific ensembles from Sec. 3.3.

By requiring also Prerequisite (v), we can approximate Eλn ≈ En in the exponent of (3.134) and
apply our results from Sec. 3.4.2 for the second moment of eigenvector overlaps to compute ŵ(t)
in (3.135). Combining Prerequisite (v) with Eqs. (3.32), (3.134), and (3.135), we then find that

ŵ(t) =
∑
n

e−i(En−Eµ)t u(En − Eµ) = [gλ(t)]∗ , (3.138)

where we defined
gλ(t) :=

∑
n

eiEnt u(En) =
∫

dED(E) eiEt u(E) , (3.139)

and D(E) is the density of states, see Eq. (2.11). This Fourier transform (3.139) of the overlap
distribution u(E) from (3.32) will turn out to play a crucial role in characterizing the response of
the system to typical perturbations in the subsequent Sec. 3.6, too. Since we already established
that ŵ(t) is real-valued (see above Eq. (3.137)), we actually find the same property for gλ(t),
implying ŵ(t) = gλ(t).

In the present setup, we are naturally most interested in the case of weak perturbations because
only then can we possibly expect that marked signatures of the special (nonthermalizing) reference
dynamics survive also in the perturbed system. Exploiting that the overlap distribution universally
assumes the Breit-Wigner form (3.33) for the considered ensembles in this regime, we find ŵ(t) =
e−Γ |t|/2 via (3.138) and (3.139). Substituting into (3.137), we are then left with

E[|∆λ(t)|] ≤ ∆Ad(t) with d(t) = 2
√

1− e−Γ |t| ≤ 2
√
Γ |t| . (3.140)

Focusing on t > 0, the energy range Γ of the overlap distribution (3.33) thus determines the time
scale up to which deviations between the unperturbed and perturbed dynamics remain small for
nearly all perturbations of the considered ensemble: For any given t � κ2/(∆A)2Γ , Eqs. (3.133)
and (3.140) imply that 〈A〉ρλ(t) and 〈A〉ρ0(t) are indistinguishable on the preset precision level κ with
overwhelming probability when randomly drawing a perturbation from the considered ensemble.
Moreover, similarly as in Sec. 3.6.1 below, this argument is readily extended from single time points
to intervals, meaning that we can typically expect resemblance of the unperturbed and perturbed
dynamics during the entire initial relaxation period.

Interpretation and discussion. We finally come back to the scenario outlined in the beginning
of this section, namely when the reference system H0 exhibits certain constraints (such as inte-
grability or many-body localization) which inhibit thermalization. In spite of such restrictions, as
time progresses, a nonequilibrium initial state is still commonly expected to relax towards some
nonthermal equilibrium state under rather general assumptions (cf. Sec. 2.2.1). We denote the
time scale of this unperturbed relaxation by τ0.

Turning to the perturbed systems, on the one hand, the vast majority of perturbations in any
considered ensemble will cause the system to thermalize eventually [114, 252, 257, 258] because
they usually break the aforementioned constraints. On the other hand, the bound (3.140) implies a
close resemblance between the unperturbed and perturbed dynamics up to times of order Γ−1. As
long as τ0 � Γ−1, the perturbed system will therefore also display the initial relaxation towards a
nonequilibrium, quasistationary state found in the reference dynamics. The ultimate approach of
thermal equilibrium will only set in at times beyond Γ−1. This is precisely the type of relaxation
known as prethermalization in the literature [9, 31, 33, 175, 176, 178], and the results of this
section and Ref. [177] establish that it is the generic behavior of nonthermalizing systems subject to
sufficiently weak perturbations which remove obstructions for thermalization. The most important
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and paradigmatic case arises when the reference system is integrable whereas the perturbed one is
not.

It remains to be clarified what “sufficiently weak” in this context means. Taking the condition
τ0 � Γ−1 and substituting the definition (3.65) of Γ , we find that the perturbation strength λσv
should satisfy

λ2σ2
v �

ε

τ0
. (3.141)

For the entire argument to be valid, we then have to verify that this condition is compatible with
Prerequisites (ii) and (iii) from Sec. 3.2, which essentially delimit Γ as ε� Γ � ∆E , i.e., between
the mean level spacing ε and the total extent ∆E of the microcanonical energy window IE (cf.
Eq. (2.9)). In terms of the perturbation strength, this implies ε2 � λ2σ2

v � ε∆E . As discussed
around Eq. (3.9), the lower bound is a natural condition for the perturbation to have any noticeable
effect at all. Combined with (3.141), we thus have ε2 � λ2σ2

v � ε/τ0, meaning that τ0 should
be very much smaller than the time scale set by the inverse level spacing (sometimes called the
“Heisenberg time” in the literature [98]) to leave enough room for visible effects of the perturbation.
Since the level spacing decreases exponentially with the degrees of freedom, this Heisenberg time
usually exceeds the age of the universe by many orders of magnitude in macroscopic systems, hence
τ0 � ε−1 will always hold in practice.

For a given perturbation λV satisfying λσv � ε, Eq. (3.141) therefore essentially states how fast
the relaxation in the unperturbed system must be in order that prethermalization can occur. The
in some sense optimal situation arises when the system relaxes as fast as τ0 ∼ ∆−1

E . In this case,
the right-hand side of (3.141) coincides with the upper bound Γ � ∆E entailed in Prerequisite (ii)
for the perturbation to leave the system’s thermodynamic properties unchanged. Such fast relax-
ation times can indeed arise under quite generic circumstances, especially if equilibration happens
without macroscopic transport currents [9, 96, 97, 100].

To sum up, we demonstrated that a nonthermalizing many-body system prepared out of equilibrium
and relaxing on a time scale τ0 will commonly exhibit prethermalization when subject to generic
perturbations whose strength satisfies λ2σ2

v � ε/τ0, provided that they are strong enough to have
an effect on the relaxation behavior at all. This conclusion is based on the bound (3.140) for
the difference between perturbed and unperturbed expectation values as well as the results from
Refs. [114, 252, 257] ensuring that these systems will typically thermalize in the long run. The
time scale on which this ultimate thermalization takes place, however, is not accessible from those
results. The quantity Γ−1 from (3.65) merely provides a lower bound according to (3.140). The
results presented in the next section, in turn, will allow us to obtain a direct estimate of this time
scale of thermalization and will in fact even yield a prediction for the dynamical details of the
entire relaxation process.

3.6 Typical time evolution

After the somewhat technical elaborations on prerequisites, perturbation ensembles, and overlap
moments as well as a digression on prethermalization, we are finally ready to tackle the principal
goal of this chapter as formulated in Sec. 3.1, namely, to find a prediction for the observable
expectation values (3.2) of perturbed isolated many-body quantum systems. As outlined towards
the end of Sec. 3.1, the intended typicality approach (see also Sec. 2.3) boils down to computing
the ensemble-averaged dynamics (3.7) and bounding the variance (3.8). These steps will be carried
out in Sec. 3.6.1. A major role in the final prediction is played by the so-called response profile
function, which we already met briefly in the previous section. The properties of this response
profile will be analyzed extensively in Sec. 3.6.2, before we will close this section with a more
detailed discussion of the result and its implications in Sec. 3.6.3. Another important aspect of
any theoretical investigation is the comparison of predictions with concrete physical systems, to
which we will turn in the subsequent Sec. 3.7.
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3.6.1 Expectation-value dynamics

Ensemble-averaged dynamics. As outlined at the end of Sec. 3.1, our first step to derive a
prediction for the perturbed time-dependent expectation values (3.2) consists in calculating the
average over all perturbations of a suitably chosen ensemble from Sec. 3.3. To this end, we resume
with Eq. (3.7) for this ensemble-averaged dynamics. Adopting Prerequisite (v) of sufficiently small
level fluctuations, we can write (3.7) as

E[〈A〉ρλ(t)] =
∑
µ1,µ2,
ν1,ν2

ρµ1ν2(0)Aµ2ν1

∑
m,n

ei(En−Em)t E[Umµ1Unµ2U
∗
mν1

U∗nν2
] . (3.142)

We will first focus on the case of sufficiently weak perturbations, for which we evaluated the
required fourth-order moment of eigenvector overlaps in Sec. 3.4.3. Utilizing the result (3.35) from
there (see also Eq. (3.120)), we find that

E[〈A〉ρλ(t)] =
∑
µ,ν

{∑
n

dnnµν ρµµ(0)Aνν +
∑
m,n

ei(En−Em)t [dmnµν ρµν(0)Aνµ + fmnµν ρµµ(0)Aνν
]}

(3.143)
with dmnµν and fmnµν as specified in Eqs. (3.35b) and (3.35c), respectively. To evaluate the sums over
m and n, we adopt our usual convention to replace sums over energy eigenstates by integrals with
a constant density of states ε−1, justified by Prerequisite (iii), which implies that both dmnµν and
fmnµν are slowly varying functions of the associated energies compared to the mean level spacing ε.
For the first term in (3.143), we then obtain∑

n

dnnµν =
∫ dE

ε
u(E − Eµ)u(E − Eν) = ũ(Eµ − Eν) (3.144)

with the overlap distribution u(E) assuming the Breit-Wigner form (3.33), and where we ex-
ploited (3.62) and the definition (3.116) of ũ(E) in the last equality. For the second term, we
proceed similarly to find ∑

m,n

ei(Em−En)tdmnµν = ei(Eν−Eµ)t |gλ(t)|2 . (3.145)

Here gλ(t) is the above announced response profile, defined in accordance with (3.139) as the
Fourier transform of the overlap distribution u(E) from (3.32), i.e.,

gλ(t) =
∫ dE

ε
eiEt u(E) . (3.146)

Note that we explicitly indicate the dependence on the coupling strength λ here again, which is
inherited from u(E) but notationally suppressed there. For the presently studied case with u(E)
given by (3.33), we thus find gλ(t) = e−Γ |t|/2 with Γ from (3.65). For the third term in (3.143),
we observe that the summation over m and n also leads to a Fourier transformation. It can be
readily evaluated by means of residue techniques, yielding∑

m,n

ei(Em−En)tfmnµν = r(t, Eµ − Eν)− e−Γ |t| ũ(Eµ − Eν) (3.147)

with
r(t, ω) := e−Γ |t| ũ(ω)

[
1− cos(ωt)− Γ sin(ω|t|)

ω

]
. (3.148)

Collecting (3.144), (3.145), and (3.147), we thus conclude that the ensemble-averaged perturbed
expectation values in the weak-perturbation limit take the form

E[〈A〉ρλ(t)] = 〈A〉̃ρλ + |gλ(t)|2
[
〈A〉ρ0(t) − 〈A〉̃ρλ

]
+R(t) , (3.149)

where the state ρ̃λ is defined in terms of its matrix elements in the eigenbasis of the unperturbed
Hamiltonian as

0〈µ|ρ̃λ|ν〉0 := δµν
∑
α

ũ(Eµ − Eα) ραα(0) (3.150)
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and the last term in (3.149) is given by

R(t) :=
∑
µ,ν

ρµµ(0)Aνν r(t, Eµ − Eν) (3.151)

with r(t, ω) from (3.148). This latter term satisfies R(t → 0) = R(t → ∞) = 0 and turns out to
be negligible in essentially all situations of practical relevance (see also Sec. 3.6.3 below). Taking
this into account in (3.149), we arrive at our final result for the ensemble-averaged dynamics,

E[〈A〉ρλ(t)] = 〈A〉̃ρλ + |gλ(t)|2
[
〈A〉ρ0(t) − 〈A〉̃ρλ

]
. (3.152)

Until now, we explicitly worked in the limit of weak perturbations where u(E) is the Breit-Wigner
distribution (3.33), implying that ũ(E) in (3.150) is also of the Breit-Wigner form with the width
parameter Γ from (3.65) replaced by 2Γ , and gλ(t) from (3.146) describes an exponential de-
cay, gλ(t) = e−Γ |t|/2. However, we eventually reach the same final result (3.152) when substi-
tuting in (3.142) the generalized approximation for the fourth moment of eigenvector overlaps
from (3.128), except that u(E) now is the general overlap distribution (3.32) associated with the
perturbation profile σ2

v(E) from (3.10) via (3.31) and encoding the corresponding second mo-
ment of eigenvector overlaps via (3.30). In other words, Eq. (3.152) also describes the ensemble-
averaged observable expectation values for general σ2

v(E) and λ provided that Eqs. (3.116), (3.150),
and (3.146) are evaluated for the overlap distribution (3.32) obtained from the corresponding solu-
tion G(z) of (3.31). In particular, the resulting expression for E[〈A〉ρλ(t)] is also structurally similar
to Eq. (3.149), but with a slightly different remnant term R(t), which is nonetheless found to be
negligible again.

Variance. The crucial second step of the adopted typicality approach concerns the deviations
ξV (t) = 〈A〉ρλ(t)−E[〈A〉ρλ(t)] between one particular realization V from the perturbation ensemble
and the average behavior (see also Eq. (3.3)). The idea here is to bound the variance E[ξV (t)2],
which leads to a bound for the probability to observe such deviations via Chebyshev’s inequal-
ity (2.29). In view of (3.8), we thus need to compute the ensemble average of the square of (3.6),

E
[(
〈A〉ρλ(t)

)2] =
∑

µ1,µ2,µ3,µ4
ν1,ν2,ν3,ν4

ρµ1ν2(0) ρµ3ν4(0)Aµ2ν1 Aµ4ν3

×
∑
n1,n2
n3,n4

ei(En4−En3 +En2−En1 )t E[Un1µ1Un2µ2Un3µ3Un4µ4U
∗
n1ν1

U∗n2ν2
U∗n3ν3

U∗n4ν4
] ,

(3.153)
where we exploited Prerequisite (v) similarly as in Eq. (3.142). Hence we have to determine
the eighth moment of eigenvector overlaps (3.29). By means of the approximation scheme from
Sec. 3.4.4, this leads to a quite extensive linear combination of pairwise Kronecker-δ contractions
between the µi and νj indices, weighted by factors involving the second moments E[|Unµ|2] =
u(En−Eµ). The crucial observation is that all terms of order unity in the number of mixed levels
Nv from (3.9) cancel exactly against the terms obtained by squaring (3.142) [226]. With (3.8), one
therefore eventually finds that

E[ξV (t)2] ≤ c (∆A)2

Nv
, (3.154)

where c is a positive constant of order 103 or less, independent of any system details (particularly
H0, λ, σ2

v(E), ρ(0), or A), and ∆A denotes the measurement range of A as before (see the Supple-
mental Material of Ref. [226] for details). Therefore, considering that Nv grows exponentially with
the system size (cf. Eq. (3.9)), the variance (3.154) indeed turns out to be unimaginably small in
macroscopic systems or even moderately large mesoscopic ones.

The relation (3.154) thus establishes the crucial concentration-of-measure property of the time-
dependent expectation values in any of the admitted perturbation ensembles from Sec. 3.3. We
illustrate this measure concentration by an explicit example in Fig. 3.8, comparing fluctuations
in systems of different dimensions N and different numbers of mixed levels Nv (cf. Eqs. (3.9)
and (3.154)). The unperturbed Hamiltonian H0 is taken as in (3.27) with a fixed level spacing
ε = 512/N . The perturbations are drawn from the Gaussian Unitary Ensemble (GUE), i.e., the
entries follow a complex normal distribution with mean zero and variance σ2

v = 1. The coupling
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Figure 3.8: Numerical illustration of measure concentration of the perturbed time-dependent expectation
values for systems of different dimensions N with H0 from (3.27) and perturbations from the GUE with
σ2
v = 1. Observable and initial state are constructed according to (3.155) and (2.39), respectively, with
h(t) = sinc(t/0.05) and κ = 1. Parameters are scaled as ε = 512/N , λ = 1.33

√
512/N , implying Γ =

11.2 = const and Nv = 11.2 × 512/N . For each value of N , we sample 50 realizations of V and compute
the resulting average time evolution E[〈A〉ρλ(t)] and variance E[ξV (t)2] empirically. a. Time evolution of
the unperturbed (solid black line) and perturbed (shaded blue range) systems along with the theoretically
predicted average (3.152) (dashed red line) with gλ(t) = e−Γ |t|/2 (see below Eq. (3.146)) and 〈A〉̃ρλ = 0. For
the perturbed dynamics, the shaded ranges span one standard deviation around the mean. b. Time- and
ensemble-averaged fluctuations (3.158) as a function of the number Nv of levels mixed by the perturbation
(cf. Eqs. (3.9) and (3.154)). Gray dots correspond to time averages over the relaxation phase, t ∈ [0, 0.05π],
black dots additionally include the stationary phase, t ∈ [0, 1]. The dashed red line is given by 0.05/Nv as
a guide to the eye.

strength is scaled as λ = 1.33
√

512/N . For N = 512, this is the same setup as in Fig. 3.6. The
particular scaling of λ and ε with N is chosen to ensure that the width Γ = 11.2 of the overlap
distribution u(E) (see Eqs. (3.33) and (3.65)) is independent of N , implying that also the relaxation
time scale mediated by the perturbations via gλ(t) = e−Γ |t|/2 (see below Eq. (3.146)) is the same
for all N . At the same time, the number of mixed levels scales as Nv = Γ/ε = 11.2 (512/N), so
the fluctuations are expected to decrease as N is increased according to (3.154).

For the observable A, we adopt the construction from Ref. [259] of an ETH-compatible observable
with prescribed reference dynamics 〈A〉ρ0(t) = h(t) by choosing

Aµν := ĥ(Eµ − Eν)Mµν . (3.155)

Here ĥ(ω) is the Fourier transform of the desired dynamics h(t) and Mµν = Mνµ are real-valued,
independent, Gaussian-distributed random variables of vanishing mean and variance 1/N for µ ≤ ν.
Within the dynamical-typicality framework, starting from an initial state ρ(0) = |ψ〉〈ψ| generated
according to (2.39) with κ = 1, this indeed yields 〈A〉ρ0(t) = h(t) as the typical dynamics found
in sufficiently large systems [259]. In the following example, we choose Π in (2.39) as a projector
onto the central 20 % of states.

In Fig. 3.8a, we show the so-obtained reference dynamics for h(t) = sinc(20t) and various N as
black solid lines. We then generate 50 random perturbations V from the GUE for each N and
compute the empirical mean and variance of the resulting 〈A〉ρλ(t) numerically for all t. The blue
shaded areas in Fig. 3.8 show the ranges of one standard deviation around the mean. We also depict
the analytically calculated ensemble average (3.152) with gλ(t) = e−Γ |t|/2 (see below Eq. (3.146))
and 〈A〉̃ρλ = 0 as red dashed lines. Reassuringly, these predictions lie well in the middle of the
shaded areas. Moreover, we observe that the fluctuations indeed decrease qualitatively as Nv is
increased. To quantify this decrease, we look at the time average of the squared fluctuations ξV (t)2

from (3.8) during a fixed interval [t1, t2],

ξ2
V (t1, t2) := 1

t2 − t1

∫ t2

t1

dt ξV (t)2 . (3.156)

The empirical average of this quantity over all V samples, which is an estimate of the ensemble
average E[ξ2

V (t1, t2)], is displayed in Fig. 3.8b for two different intervals: The gray dots focus on the
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initial relaxation period with t1 = 0 and t2 = π/20 (the first zero of h(t)), whereas the black dots
incorporate the stationary phase as well by employing t2 = 1 instead. In both cases, we observe
that the integrated fluctuations (3.156) approximately decrease like 1/Nv, reinforcing the scaling
obtained in (3.154) and thus verifying measure concentration in this particular example.

Typical dynamics. The smallness of the variance (3.154) entails that deviations from the average
behavior (3.152) are exceedingly rare when randomly sampling a perturbation from any of the
considered ensembles. As mentioned in Sec. 2.3.1, this notion can be cast into a more quantitative
form by applying Chebyshev’s inequality (2.29) to the random variable 〈A〉ρλ(t). Choosing, for
example, κ = ∆A/N

1/3
v in (2.29), we obtain that

P
(∣∣〈A〉ρλ(t) − E[〈A〉ρλ(t)]

∣∣ ≥ ∆A

N
1/3
v

)
≤ c

N
1/3
v

(3.157)

for any preset time point t. Given that Nv increases exponentially with the degrees of freedom
(see Eq. (3.9)), the probability that an individual perturbation induces deviations from the average
behavior above any practically reasonable measurement precision is thus unimaginably small for
the considered many-body systems. Moreover, it is straightforward to extend the bound (3.157)
to entire time intervals [96]. To this end, we consider again the time-averaged squared fluctuations
ξ2
V (t1, t2) from (3.156). Averaging over the ensemble of perturbations and exploiting (3.154) leads
to

E
[
ξ2
V (t1, t2)

]
≤ c (∆A)2

Nv
, (3.158)

and since ξ2
V (t1, t2) ≥ 0, Markov’s inequality (2.28) implies that

P
(
ξ2
V (t1, t2) ≥ (∆A)2

N
1/2
v

)
≤ c

N
1/2
v

. (3.159)

Consequently, the probability to observe noticeable deviations from the average dynamics during
an extended time interval [t1, t2], and thus for any given time t ∈ [t1, t2], is also exceedingly
small. Altogether, we therefore conclude that the ensemble average E[〈A〉ρλ(t)] from (3.152) is an
excellent approximation of the actual dynamics 〈A〉ρλ(t) for the overwhelming majority of times t
and perturbations V from any admissible ensemble. Put differently, Eq. (3.152) is thus turned into
a prediction for the relaxation behavior of an individual perturbed system,

〈A〉ρλ(t) = 〈A〉̃ρλ + |gλ(t)|2
[
〈A〉ρ0(t) − 〈A〉̃ρλ

]
, (3.160)

where exceptions from this typical behavior for a single perturbation are exponentially suppressed
in the system’s degrees of freedom. This relation (3.160) between the perturbed and unperturbed
time-dependent expectation values constitutes the main result of the present chapter. Evidently
the principle characteristic governing the modifications induced by the perturbation is the re-
sponse profile gλ(t) from (3.146). We will therefore analyze this quantity in more detail in the
ensuing Sec. 3.6.2, before discussing the implications of the result for concrete physical systems in
Sec. 3.6.3.

At last, we remark that the prediction (3.160) bears some structural resemblance to the typical
relaxation prediction (2.40) for a rather different set of Hamiltonians (see Sec. 2.3.2). We therefore
highlight that the present relation (3.160) is in fact quite distinct: Instead of the initial value 〈A〉ρ(0),
the time-dependent expectation values 〈A〉ρ0(t) of the unperturbed reference system occur in the
bracket on the right-hand side, implying that this bracket is generally time dependent, too, contrary
to the one in (2.40). Furthermore, also the response profile gλ(t) is distinct from and somewhat
more complicated than the function d̂(t) in (2.40) since the former is the Fourier transform of the
product D(E)u(E) whereas d̂(t) is obtained by Fourier transformation of just D(E). Apart from
that, the similarity essentially arises because the structure of Eqs. (2.40) or (3.160) itself is kind of
generic, entailing a long-time limit and a characterization of the time-dependent deviations from
it for finite times.
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3.6.2 Response profile

According to the theoretical prediction (3.160), the response profile gλ(t) from (3.146) encodes how
the perturbed expectation values typically deviate from the reference dynamics when randomly
sampling perturbations from an ensemble as introduced in Sec. 3.3. This function gλ(t) is defined
as the Fourier transform of the overlap distribution u(E) from (3.32) describing the second mo-
ment of eigenvector overlaps between the perturbed and unperturbed Hamiltonians. This overlap
distribution, in turn, was discussed extensively in Sec. 3.4.2 as part of a more general exploration
of the ensemble-averaged resolvent G(z) from (3.58) solving the integral equation (3.31), whose
imaginary part entails u(E) via (3.32).

Most of the subsequently established properties of the response profile gλ(t) can therefore be
understood as translations of corresponding properties of the overlap distribution u(E) from the
energy to the time domain. Notably, the (approximate) universality of G(z) and thus u(E) will
carry over to gλ(t), whose indifference towards the detailed structure of the perturbation (i.e., the
perturbation profile σ2

v(E)) will turn out to be even more striking in some sense.

General properties. We begin by collecting a few general properties and observations independent
of any particular choice of the perturbation ensemble or strength. The normalization of u(E),∫

dE u(E)/ε = 1, immediately implies that

gλ(0) = 1 . (3.161)

Moreover, if u(E) is a regular function, which it is found to be in all examples of practical relevance,
we also have

lim
t→±∞

gλ(t) = 0 . (3.162)

Next, the fact that u(E) is real-valued in combination with the symmetry (3.62) entails that gλ(t)
is also real-valued and symmetric in time, i.e.,

gλ(−t) = gλ(t) . (3.163)

Finally, the energy scale Γv associated with the width of the overlap distribution (see the discussion
around Eq. (3.9)) provides an estimate of the typical relaxation time scale Γ−1

v of gλ(t). All these
properties will be seen explicitly in the following examples, too.

Special cases. As our first concrete set of examples, we discuss the three special cases for the
overlap distribution considered in Sec. 3.4.2. In the first of these examples, pertaining to the limit
of weak perturbations such that Γ � ∆v (see Eqs. (3.13), (3.65), and (3.66)), the perturbation
profile is effectively constant and u(E) is the Breit-Wigner distribution (3.33). Hence the response
profile (3.146) describes an exponential decay,

gλ(t) = e−Γ |t|/2 . (3.164)

In the opposite limit of an effectively narrow perturbation profile, corresponding to stronger per-
turbations satisfying γ � ∆v (see Eqs. (3.13), (3.69), and (3.71)), u(E) assumes a semicircle
distribution (3.34), whose Fourier transform is

gλ(t) = 2 J1(γt)
γt

. (3.165)

Here J1(x) is the Bessel function of the first kind of order 1. Observing that u(E) generically
approaches these two limits for sufficiently small or large values of λ, respectively, while keeping
all other parameters fixed, the same must hold for gλ(t) as λ is varied. Accordingly, we can expect
an essentially exponential response profile (3.164) for weak perturbations, which gradually crosses
over to the Bessel-like behavior (3.165) with increasing λ, provided the prerequisites from Sec. 3.2
remain satisfied. An estimate for the coupling λc at which the crossover approximately occurs was
given in Eq. (3.73).

In the third special case considered in Sec. 3.4.2, the perturbation profile was taken to exhibit the
Breit-Wigner form (3.74). Approximations for gλ(t) can be extracted from the exact solution (3.77)
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for G(z) by truncating the continued fraction at some finite order Mcf and computing the Fourier
transform of its imaginary part. In particular, the second-order approximation (3.78) yields

gλ(t) =
(γ+ − Γ

2 ) e−γ−|t| − Γ e−γ0|t| + (γ− − Γ
2 ) e−γ+|t|

2(γ0 − Γ ) (3.166)

with γ± ≡ γ±1 and γn as defined in (3.79), ultimately depending only on the overall perturbation
strength αvλ2 and the perturbation band width ∆v. Since the expansion in the order Mcf of the
continued fractions basically amounts to a weak-perturbation expansion, the approximation (3.166)
is expected to apply primarily to the regime of moderately small λ. However, as we will see below
(e.g., in Fig. 3.9), the approximation works remarkably well across a large range of λ values and
for perturbation profiles other than the Breit-Wigner one from (3.74), too.

Integro-differential equation and numerical solutions. The ensemble-averaged resolvent G(z)
solves the integral equation (3.31). Observing that gλ(t) is related to the Fourier transform of its
imaginary part, it is possible to transform the equation (3.31) into an equation directly for gλ(t).
Notably, this will relate the response profile gλ(t) to the Fourier transform

σ̂2
v(t) :=

∫ dE
ε

eiEt σ2
v(E) (3.167)

of the perturbation profile σ2
v(E) from (3.10). To this end, we let z = x − iη for fixed η > 0,

multiply both sides of (3.31) by eixt, and integrate over x. With the definition

hη(t) :=
∫

dx eixtG(x− iη) , (3.168)

this procedure results in

1
i

(
∂

∂t
+ η

)
hη(t)− λ2

∫ dE
ε
σ2
v(E)

∫
dx
∫

dy e−ixtG(x− iη)G(y − iη) δ(x− y − E) = 2π δ(t) .

(3.169)
Expressing the δ distribution on the left-hand side by a Fourier integral, 2π δ(x− y−E) =∫

ds ei(x−y−E)s, exploiting the definitions (3.167) and (3.168), and taking the limit η → 0+, we
obtain

ḣ0+(t) + λ2

2πi

∫
ds h0+(t− s)h0+(s) σ̂2

v(s) = 2πi δ(t) , (3.170)

where the dot in the first term denotes the derivative with respect to time t. In view of the δ inho-
mogeneity on the right-hand side, we now make an ansatz of the form h0+(t) = 2πiΘ(t) g(t), where
g(t) is assumed to be a bounded and sufficiently smooth function of t. Substituting into (3.170),
we are left with

Θ(t) ġ(t) + λ2
∫ t

0
ds g(t− s) g(s) σ̂2

v(s) = 0 . (3.171)

We observe that if g(0) ∈ R, then the function g(t) is real-valued for all t > 0, too. Taking into
account (3.32), (3.146) and (3.168), we furthermore notice that

gλ(t) = 1
2πi [h0+(t)− h0+(−t)∗] = Θ(t) g(t) +Θ(−t)[g(−t)]∗ . (3.172)

For t > 0, we therefore conclude that gλ(t) satisfies the integro-differential equation

ġλ(t) = −λ2
∫ t

0
ds gλ(t− s) gλ(s) σ̂2

v(s) . (3.173)

The response profile for t < 0 is then obtained via (3.163). Moreover, it also solves (3.173) as
can be verified by noticing that σ2

v(E) = σ2
v(−E) is a real-valued and even function, so the same

applies to its Fourier transform σ̂2
v(t) from (3.167). In conclusion, the response profile gλ(t) thus

satisfies (3.173) for all t.

Solving (3.173) together with the initial condition (3.161) thus offers a direct way to numerically
determine the response profile for any given perturbation profile σ2

v(E), provided that its Fourier
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transform σ̂2
v(t) exists. Another way to obtain gλ(t) for general perturbation profiles σ2

v(E) is to
solve the integral equation (3.31) numerically using, for instance, a pseudospectral expansion in
terms of Chebyshev rational functions as suggested in Sec. 3.4.2. Extracting the overlap distribu-
tion u(E) from such a numerical solution via (3.32), we can then perform a (numerical) Fourier
transformation to find gλ(t).

Crossover in the time domain. We already explored above that gλ(t) undergoes a transition from
the exponential decay (3.164) for small coupling λ to the Bessel-like behavior (3.165) for large λ,
at least under the rather mild condition that σ2

v(E) is sufficiently slowly varying compared to the
level spacing ε (see also the discussion around Eq. (3.63)). Interestingly, a similar crossover is
observed universally in the time domain. To investigate this crossover in more detail, the integral
equation (3.173) provides a convenient starting point.

To determine the asymptotic behavior as t → ∞, we use the ansatz gλ(t) ∼ e−κt. Inserting it
into (3.173) and employing the inverse transformation of (3.167) together with σ̂2

v(−t) = σ̂2
v(t) (see

below Eq. (3.173)), we obtain

κ = λ2
∫ t

0
ds σ̂2

v(s) t→∞−−−−→ πλ2σ2
v

ε
= Γ

2 . (3.174)

Here Γ was defined in (3.65). Hence gλ(t) approaches for large t the limiting expression (3.164),
which was previously found to govern the regime of small λ or large ∆v. Hence the approxima-
tion (3.165) for large λ will eventually break down at large times for any fixed, finite value of λ
because the associated asymptotic behavior there is gλ(t) ∼ t−3/2 as t→∞.

For small times t, in turn, the integral equation (3.173) can be used to find a Taylor series repre-
sentation of gλ(t) by evaluating the derivatives g(k)

λ (t) := dkgλ(t)/dtk recursively at t = 0, provided
that the corresponding integrals on the right-hand side exist. More precisely, the value of g(k)

λ (0)
can thereby be related to the moments

Σn := 1
σ2
v

∫
dE Enσ2

v(E) (n ∈ N0) (3.175)

of the perturbation profile of order n ≤ k − 2. Hence the kth derivative of gλ(t) at t = 0 exists if
the (k− 2)th moment of σ2

v(E) is finite. Moreover, we note that—if they exist—the odd moments
of σ2

v(E) vanish because it is an even function (see below Eq. (3.10)).

To establish the relationship between the derivatives of gλ(t) and the moments of σ2
v(E), we first

notice that ġλ(0) = 0 if the integrand in (3.173) is sufficiently regular. Differentiating (3.173) with
respect to t, we find that

g̈λ(t) = −λ2 gλ(t) σ̂2
v(t)−

∫ t

0
ds ġλ(t− s) gλ(s) σ̂2

v(s) (3.176)

and hence
g̈λ(0) = −λ2σ̂2

v(0) = −λ2 σ2
v Σ0/ε = −2λ2σ2

v∆v/ε = −γ2/4 , (3.177)
where we adopted the definition (3.69) in the last equality. If the band width ∆v of σ2

v(E) is
finite, the curvature of g(t) is thus also universally determined by just two characteristics of the
perturbation profile, its overall strength αvλ2 and its band width ∆v (see Eqs. (3.12) and (3.13)).
Moreover, for finite band width and finite but small λ, we therefore conclude that the weak-
perturbation asymptotics (3.164) will eventually break down for very small times t because neither
does its first derivative vanish nor does the second derivative agree with (3.177). Put differently,
the limits λ→ 0 and t→ 0 do not commute.

Upon repeated differentiation of (3.173) or (3.176), it is now straightforward to obtain expressions
for higher-order derivatives g(k)

λ (t), depending recursively on derivatives of lower order. Specifically,
we can readily verify by induction that

g
(2n)
λ (t) = −λ2

n−1∑
r=0

g
(2n−2r−2)
λ (0)

2r∑
k=0

(
2r
k

)
dkσ̂2

v(t)
dtk g

(2r−k)
λ (t)− λ2

∫ t

0
ds g(2n−1)

λ (t− s) gλ(s) σ̂2
v(s) ,

(3.178a)
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g
(2n+1)
λ (t) = −λ2

n−1∑
r=0

g
(2n−2r−2)
λ (0)

2r∑
k=0

(
2r+1
k

)
dkσ̂2

v(t)
dtk g

(2r+1−k)
λ (t)− λ2

∫ t

0
ds g(2n)

λ (t− s) gλ(s) σ̂2
v(s)

(3.178b)

for all n ∈ N. Evaluated at t = 0 (and still assuming regularity of the integrands), this implies

g
(2n)
λ (0) = −λ2αv

n−1∑
r=0

g
(2n−2r−1)
λ (0)

r∑
k=0

(
2r
2k

)
(−1)kΣk g(2r−2k)

λ (0) , (3.179a)

g
(2n+1)
λ (0) = 0 . (3.179b)

For small t, in particular, we thus observe that

gλ(t) = 1− γ2t2

8 +O(t4) . (3.180)

Altogether, we thus found that the short-time dynamics is governed by the quadratic polyno-
mial (3.180), whereas the long-time limit is dominated by the exponential decay (3.164). The time
scale at which the crossover between these two regimes occurs can be estimated by equating (3.180)
with the leading order of (3.164), e−Γ |t|/2 ' 1− Γ |t|/2, yielding

tc := π

∆v
. (3.181)

To leading order, the crossover time is thus solely determined by the perturbation’s band width
∆v, irrespective of its strength λσv. This is consistent with the findings from Ref. [206], where a
transition from a Gaussian behavior to an exponential decay around the time ∆−1

v was predicted
based on a related random matrix model and numerical observations (see also Sec. 3.8).

Notably, the Bessel-type asymptotic expression (3.165) for gλ(t) in case of large λ or small ∆v

agrees with (3.180) to third order and can thus serve as a general approximation for the regime of
small times, too.

Graphical illustration and universality. Summarizing the asymptotic analysis of this subsection,
we found that, for any sufficiently regular perturbation profile with fixed αv and ∆v, the response
profile gλ(t) approaches universal functions for small and large coupling strengths λ as well as
for short and long times t. Universal here means that the functions solely depend on those two
parameters αv and ∆v, regardless of further details of the perturbation profile σ2

v(E).

For small λ� λc (cf. Eq. (3.73)), the response profile approaches (3.164) and is thus predominantly
exponential on the relevant time scales. For large λ� λc, in turn, gλ(t) turns into the Bessel-like
form (3.165) for those relevant time scales where it noticeably deviates from zero. For intermediate
values, we expect a smooth crossover between these two limiting cases.

Perhaps surprisingly, the same limiting expressions govern the behavior of gλ(t) at fixed λ for long
and short times, respectively. For large times t� tc (cf. Eq. (3.181)), the decay of gλ(t) eventually
becomes exponential as in (3.164), whereas for small times t� tc, it is well approximated by the
Bessel-like behavior (3.165). At intermediate times, we again expect a crossover between these
two limits. We remark that the relaxation time scale corresponding to λc, which is obtained
by evaluating either Γ−1 from (3.65) or γ−1 from (3.69) for λ = λc, is given by tc/4. Hence the
transition in the time domain will typically only be visible for moderately small couplings λ . λc.

All findings of the present subsection are illustrated in Fig. 3.9. The four rows in this figure show
numerical solutions (solid black lines) of the squared magnitude |gλ(t)|2 of the response profile
(which is the relevant quantity for the dynamics, see Eq. (3.160)) for four different perturbation
profiles: the step profile (3.85), the exponential profile (3.21), the Breit-Wigner profile (3.74), and
the double Breit-Wigner profile (3.86). In all cases, ε−1 = 512, σ2

v = 0.2 (hence αv ≈ 102), and
∆v = 1.46, and the perturbation profiles are also sketched in the left-most panel of each row. These
response profile functions are thus in direct correspondence to the overlap distributions displayed
for the same four perturbation profiles in Fig. 3.5 (up to the scaling factor ε/π). The coupling
strength λ is varied from λ = 0.02 to λ = 0.16 from left to right, tuning across the transition
around λc ≈ 0.05 according to (3.73).
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Figure 3.9: Squared response profile |gλ(t)|2 for various perturbation profiles σ2
v(E) (see insets of the

left-most column) and coupling strengths λ (see top-right corner of each panel). For all configurations,
ε−1 = 512, σ2

v = 0.2, and ∆v = 750ε ≈ 1.46, yielding a crossover coupling of λc ≈ 0.05 according
to (3.73) and a crossover time tc ≈ 2.2 according to (3.181). Solid: Numerical solutions obtained by
Fourier transformation of the respective overlap distributions u(E) = ε ImG+(E)/π from Fig. 3.5 for
a. the step profile (3.85); b. the exponential profile (3.21); c. the Breit-Wigner profile (3.74); d. the double
Breit-Wigner profile (3.86) with b1 = 0.45, b2 = 0.9, d = 3.5. Dashed: Universal asymptotic solutions
for weak (red, Eq. (3.164)) and strong (blue, Eq. (3.165)) coupling. Dotted: gλ(t) from (3.166) for the
Breit-Wigner profile (3.74), obtained from the second-order continued fraction truncation (3.78) for G(z).

With each of these numerically exact solutions for gλ(t), we plot the corresponding asymptotic ex-
pressions for weak (dashed red lines) and strong (dashed blue lines) perturbations from Eqs. (3.164)
and (3.165), respectively. Recalling that αv and ∆v are fixed, these dashed curves are thus identical
in every column. The transition between the two limiting shapes is clearly visible as λ is varied.
Moreover, this also demonstrates the aforementioned crossover in the time domain, which is best
observed in the left-most column of each row, noting that the expected crossover time is tc ≈ 2.2
according to (3.181).

In addition, we show in each panel the approximation (3.166) (dotted yellow lines) obtained from
the second-order continued-fraction truncation of G(z) for the Breit-Wigner perturbation pro-
file (3.74). Naturally, this approximation is therefore expected to work best in Fig. 3.9c. Having
said this, it turns out that the agreement is also amazingly good for the other three perturbation
profiles. This illustrates directly the (approximate) universality of the response profile, which was
already foreshadowed by the universal limiting expressions for small and large coupling strengths
and short and long times. As visualized in Fig. 3.9, the behavior of gλ(t) for any reasonably regular
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perturbation profile is largely determined by the values of αv and ∆v.

For completeness, we mention that there are some deviations between the second-order continued-
fraction solution (3.166) for even larger times t and values of the coupling λ not shown here
[248]. However, for such large values of λ, the premises from Sec. 3.2, notably Prerequisite (ii),
will presumably break down, too, meaning that this situation was essentially excluded a priori.
Otherwise, this scenario will still be covered well by the strong-perturbation asymptotics (3.165).
Furthermore, we recall that a related universality was observed in Sec. 3.4.2 (see Figs. 3.4 and 3.5
in particular) for the ensemble-averaged resolvent G(z) from (3.57) already.

Altogether, we therefore conclude that the analytic expressions (3.164), (3.165), and (3.166), which
were originally obtained for special cases of the perturbation profile, in fact cover a very broad
(if not comprehensive) regime of physically relevant coupling strengths and perturbation profiles.
Moreover, the necessary information about the perturbation has been reduced even further. Instead
of the full perturbation profile, which was the starting point of our modeling in Sec. 3.2, we infer
that, in essence, only the intrinsic strength αv from (3.12) and the band width ∆v from (3.13) are
required for a decent description of the response profile gλ(t).

3.6.3 Discussion

The main result of this chapter, stated in Sec. 3.6.1, is the prediction (3.160) of how the time-
dependent expectation values of the reference system H0 change under the influence of most per-
turbations. The principal characteristic is the response profile gλ(t), whose properties we studied
extensively in the previous subsection. Here, we will first elaborate on the other quantities appear-
ing in (3.149) and (3.160), namely R(t) and 〈A〉̃ρλ . We also discuss the validity of Prerequisite (v)
about negligibly small level fluctuations. Thereafter, we will comment on what the result (3.160)
entails for the real physical system of interest in (3.1) and its “true” perturbation.

Bound for the remnant term. We had already commented briefly on the remnant term R(t)
from (3.151) below that equation, arguing that R(t = 0) = R(t→∞) = 0 and even R(t) ' 0 for all
practical purposes. As a first step to fortify the latter claim, we notice that

∫
dω r(t, ω) = 0 for all

t, where r(t, ω) was defined in (3.148). If the reference system H0 satisfies the ETH (see Sec. 2.2.2),
the relevant diagonal matrix elements Aνν of A in the eigenbasis of H0, corresponding to levels
Eν ∈ IE (see Eq. (2.9)) and appearing in (3.151), are well approximated by the microcanonical
expectation value, i.e., Aνν ≈ 〈A〉ρmc . Employing this approximation in (3.151) and rewriting the
sum over ν as an integral as usual, we then readily find that R(t) = 0 in this case.

More generally, the magnitude of R(t) can be bounded on the relevant relaxation time scales in
terms of the violation of the ETH as measured by summing the deviations between Aνν and 〈A〉ρmc

across the energy window IE from (2.9), i.e.,

∆mc(A) :=
∑

ν :Eν∈IE

|Aνν − 〈A〉ρmc | . (3.182)

To this end, we first rewrite the result (3.149) in the form

E[〈A〉ρλ(t)] = 〈A〉̃ρλ + |gλ(t)|2
[
〈A〉ρ0(t) − 〈A〉̃ρλ + R̃(t)

]
(3.183)

with

R̃(t) :=
∑
µ,ν

ρµµ(0)Aνν r̃(t, Eµ − Eν) , r̃(t, ω) := ũ(ω)
[
1− cos(ωt)− Γ sin(ω|t|)

ω

]
, (3.184)

meaning that we factored out the response-profile contribution |gλ(t)|2 = e−Γ |t| in Eqs. (3.148)
and (3.151). As detailed in Appendix E.5, we can then show that

|R̃(t)| ≤ Cκ∆mc(A)
Nv

for all t ≤ tκ∗ , (3.185)

where tκ∗ = − ln(κ)/Γ is the time up to which deviations of E[〈A〉ρλ(t)] from 〈A〉̃ρλ are resolvable
with precision κ, i.e., |gλ(t)|2 = e−Γ |t| ≥ κ. Furthermore, Cκ is a constant that roughly corresponds
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to the number of digits precision (e.g., Cκ ≈ 20 for κ = 10−20) and Nv is the number of mixed
levels from (3.9). Given that the latter number scales exponentially in the degrees of freedom f ,
mild violations of the ETH as quantified by (3.182) are thus indeed negligible, even though the
scaling of ∆mc(A) has to be taken into account in any concrete example, too.

The derivation of an even stronger bound applying to the original R(t) and for all times t can be
found in Ref. [260], yielding

R(t)2 ≤ ∆2
mc(A)
50Nv

, (3.186)

where
∆2

mc(A) :=
∑

ν :Eν∈IE

(Aνν − 〈A〉ρmc)2 (3.187)

also measures the violation of the ETH, albeit in terms of the squared magnitude of deviations
between the diagonal matrix elements and the microcanonical prediction. Even if the strong ETH
is violated, the reference system may still often satisfy the weak ETH (cf. Sec. 2.2.2 and particularly
Eq. (2.26)), e.g., if the Hamiltonian has translational symmetry. As a consequence of Eq. (2.26), the
violation quantified by (3.187) will then be subextensive in N , whereas Nv from (3.9) is expected
to grow extensively with N . The bound (3.186) thus entails that R(t) is indeed negligible if the
system is sufficiently large.

Similar estimates are also expected to apply to the pertinent remnant terms for larger perturba-
tions, arising from the approximation (3.128) of the fourth-order overlap moment, as well as due
to (subleading) corrections to any such approximation. Moreover, these bounds are quite conser-
vative, considering that the individual terms in the sum in (3.151) are oscillating for any fixed t,
meaning that cancellations unaccounted for in the above bounds will arise naturally. Notably, we
have so far never encountered a particular example where R(t) in (3.149) entailed visible deviations
from (3.152).

Long-time limit and prethermalization. In light of R(t) being negligible, we will concentrate ex-
clusively on Eq. (3.160) for the typical expectation values. Taking into account the property (3.162)
of gλ(t), we understand that the perturbed systems are predicted to equilibrate (even if the un-
perturbed system does not), and that the corresponding stationary expectation value approached
for long times is 〈A〉̃ρλ with the state ρ̃λ from (3.150). This quantity was already at the focus of
Deutsch’s early studies on thermalization [114, 253] (see also Ref. [257]). According to its defini-
tion (3.150), the state ρ̃λ is based on the diagonal ensemble ρ0 (see Sec. 2.2.1) of the reference
system H0, but the level occupations are additionally averaged over the energy scale Γv that mea-
sures the mixing of unperturbed eigenvectors caused by the perturbation. If the reference system
satisfies the (strong) ETH, then already ρ0 can be well approximated by the microcanonical den-
sity operator ρmc, and the same will hold for ρ̃λ. Moreover, even if the unperturbed system is,
for example, integrable and fulfills just the weak ETH, expectation values with respect to ρ̃λ will
usually still coincide with those obtained from the microcanonical ensemble ρmc [7, 114, 252, 257],
unless the perturbations are very weak or still exhibit conservation laws disregarded in ρmc. Quite
generally, the prediction (3.160) can therefore be simplified further by setting 〈A〉̃ρλ = 〈A〉ρmc and
thus

〈A〉ρλ(t) = 〈A〉ρmc + |gλ(t)|2
[
〈A〉ρ0(t) − 〈A〉ρmc

]
. (3.188)

Hence the perturbed dynamics will typically resemble the behavior of the unperturbed system
initially, notably even if the latter does not thermalize or even equilibrate, but will eventually
approach a thermal state as time progresses. At this point we thus highlight that the predic-
tion (3.188) includes, as a special case, a description of the prethermalization process discussed in
Sec. 3.5, as announced towards the end of that subsection (see also Sec. 2.2.3 and Table 3.1).

Adopting the results from Ref. [97] (see also Sec. 2.3.2 and Eq. (2.40) in particular), if applicable,
one can even devise an additional prediction for the unperturbed dynamics 〈A〉ρ0(t). In this case,
the entire prethermalization scenario is captured by an analytical theory that merely depends
on the initial value 〈A〉ρ0(0), the nonthermal stationary value 〈A〉ρ0 , and the temperature (for
the prediction of 〈A〉ρ0(t), see Eq. (2.40) and Ref. [97]) as well as the thermal value 〈A〉ρmc , the
intrinsic perturbation strength αv, and (possibly) the perturbation band width ∆v (for the present
prediction of 〈A〉ρλ(t) from 〈A〉ρ0(t)).
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Fermi’s golden rule. Another interesting and important special case entailed in the result (3.160)
is a form of Fermi’s golden rule [1]. If we choose the initial state to be an eigenstate of the reference
system, ρ(0) = |νi〉〈νi|, and take the projector A = |νf〉〈νf | onto another unperturbed eigenstate as
our observable, the time-dependent expectation value 〈A〉ρλ(t) is just the probability pνi→νf (t) to
observe the transition from |νi〉 to |νf〉 after time t. Upon substitution into (3.160), we find that

pνi→νf (t) = ũ(Eνf − Eνi)
[
1− |gλ(t)|2

]
+ δνiνf |gλ(t)|2 . (3.189)

For sufficiently weak perturbations, in particular, the response profile gλ(t) assumes the expo-
nential form (3.164), such that the transition probability according to (3.189) approaches its pre-
dicted equilibrium value ũ(Eνf − Eνi) at the rate Γ = 2πλ2σ2

v/ε (see Eq. (3.65)). Observing that
σ2
v ' E[|Vµν |2] in this case, Eq. (3.189) is the ensemble average of Fermi’s golden rule in dis-

guise. It is noteworthy that this relation was derived here by nonperturbative methods, contrary
to the “traditional” approach. This is particularly reflected by the fact that (3.189) is expected to
hold beyond the traditional (exponential) golden-rule regime when gλ(t) is given by the solutions
of (3.173) in general. Yet the analysis from Sec. 3.6.2 suggests that the traditional rule with the
exponential gλ(t) will eventually apply at late times.

Insignificance of level fluctuations. As promised in Sec. 3.2 (see below Eq. (3.18)), we finally
come back to the question of when the fluctuations of energy levels are negligible for the dynamics so
that we can, in particular, approximate Eλn−Eλm in (3.7) by En−Em as required in Prerequisite (v)
(see also Eq. (3.142)). As recorded in (3.18), the influence of level fluctuations on the relaxation
dynamics is expected to be negligible as long as the relaxation time tR is much larger than the
inverse perturbation strength, tR � (λσ0)−1.

According to our main result (3.160), the relaxation time tR is set by the characteristic time scale
of the response profile gλ(t). Focusing on sufficiently weak perturbations first, such that gλ(t)
is given by (3.164), we associate tR with Γ−1 from (3.65). The condition tR � (λσ0)−1 is then
equivalent to

σ0

σv
� 2πλσv

ε
≈
√
Nv (3.190)

with Nv from (3.9), and where we identified Γv = Γ (see above Eq. (3.9) and Eq. (3.33)) in the
last step. In view of (3.9), the fluctuations σ0 of the diagonal matrix elements Vµµ may exceed
the fluctuations σv of the off-diagonal Vµν by many orders of magnitude without violating the
condition (3.190) and hence (3.18).

For stronger perturbations, such that gλ(t) assumes the form (3.165), the typical relaxation time
is γ−1 from (3.69). The condition (3.18) then leads to

σ0

σv
�
√
∆v

ε
. (3.191)

Since the level spacing ε decreases exponentially in the degrees of freedom f , whereas the band
width ∆v (i.e., the energy range of the perturbation) should be roughly independent of f , we
eventually reach the same conclusion that the fluctuations of the diagonal matrix elements of V
remain insignificant with respect to the relaxation dynamics even if they exceed the off-diagonal
fluctuations by many orders of magnitude.

Finally, we remark that we would have arrived at the same conclusions, too, if the rigorous
bound (3.19) had been employed in lieu of (3.18). Observing that the time scale tR decreases
gradually as the response profile crosses over from (3.164) to (3.165), we have thus justified the
generic validity of Prerequisite (v) a posteriori.

Applicability to real systems. The original goal formulated at the beginning of this chapter was
to describe the dynamics of an actual physical system with Hamiltonian (3.1). So far, we showed
that the vast majority of perturbations within any of the admitted ensembles from Sec. 3.3 result in
the relaxation behavior (3.160) or (3.188). It thus remains to be argued that the true perturbation
of the system of interest is a typical member of one of those considered ensembles. Unfortunately, it
is virtually impossible to prove this for any concrete given system, so we can only collect evidence
supporting this conjecture and investigate disqualifying properties (see also Sec. 2.3). In the

83



subsequent considerations, we take the prerequisites collected in Sec. 3.2 for granted. That is to
say, we exclude violations of these requirements, which were explicitly exploited in the derivation of
the prediction (3.160), from the following discussion since a system may fail to follow this prediction
for obvious reasons in that case.

Eventually, the decisive question is whether or not the key features of the true perturbation with
regard to the relaxation behavior are shared by the majority of perturbations in a suitable ensemble.
Summarizing the preceding subsections, we established that the relaxation dynamics induced by
a large variety of perturbations is essentially determined by the perturbation profile (3.10), i.e.,
the coarse-grained squared magnitude of the perturbation matrix elements Vµν in the unperturbed
basis. In fact, the discussion of the response profile from Sec. 3.6.2 suggests that an even stronger
reduction to just the parameters αv from (3.12) and∆v from (3.13) is legitimate. At the same time,
minor fluctuations of the Vµν around their “true” values will not entail any noticeable deviations
since, from a mathematical point of view, the propagator e−iHλt is continuous in these variables, and
from a physical point of view, no experiment (real or numerical) would be reproducible otherwise.

Thereby, the large freedom to choose the precise distribution (3.24) of the perturbation operator
leaves room to tailor an ensemble in such a way that the true perturbation of interest is realized
with reasonably high probability. Moreover, the structure of the considered ensembles was designed
to emulate common features of real perturbations such as bandedness, sparsity, etc. (see Sec. 3.3),
reinforcing that real perturbations can be faithfully modeled or embedded in such an ensemble. Yet
the fact that the true perturbation is sampled with reasonable probability within a single ensemble
does not necessarily imply that it leads to the typical behavior of that ensemble when it comes
to the relaxation behavior of observable expectation values. Indeed, if this behavior depended on
some subtle details of the perturbation (for instance, the value of a single matrix element Vµν as
an extreme example), the observed dynamics could still deviate from the typical behavior of the
majority in case that this subtle feature happens to assume a rare value. Fortunately, again, the
predicted behavior (3.160) is remarkably robust and—as demonstrated in Sec. 3.6.2 in particular—
independent of any fine-tuned perturbation characteristics.

Nevertheless, there are certain possible features of physical perturbations that are not explicitly
accounted for. Such features are, for example, special operators commuting with the perturbation
(notably the observable A [238, 259]) or quenches from systems with few symmetries (such as
nonintegrable ones) to systems with more symmetries (such as integrable ones). Interestingly, it
may still be possible to model such setups within the present approach if the considered observable
and initial state do not explicitly “probe” these features. In any case, those examples constitute
rather special situations.

In contrast, a potentially severe shortcoming is the only rudimentary modeling of the local and
few-body character of interactions in common physical systems. While the considered ensembles
explicitly allow for a banded and sparse matrix structure as it is often found as a result of local and
few-body perturbations (e.g., if the reference system is noninteracting, see also below Eq. (3.10)),
there is no geometry or notion of physical entities (“particles” or “bodies”) incorporated, mean-
ing that sparsity and bandedness arise randomly in the considered perturbations and not in the
way implied by the physical structure. It is known that such issues may render physical systems
atypical with respect to certain random matrix ensembles [87, 107, 237], i.e., certain aspects of the
true system may therefore indeed behave atypically compared to a selected ensemble, even though
all considered characteristics (that is, the perturbation profile (3.10)) formally agree. Moreover,
the outcome of our theoretical prediction (3.160) that essentially all experimentally relevant ob-
servables behave similarly can certainly not be upheld if the initial state exhibits macroscopic
inhomogeneities. For instance, Lieb-Robinson bounds [7, 105] (see also Sec. 2.2.1) limit the speed
at which a local perturbation can spread across a locally interacting lattice system, implying that
observables probing regions far away from the perturbation will notice the change later than those
monitoring the vicinity of the perturbation, and thus the two will relax on different time scales.
On the other hand, these issues are again not expected to matter if the considered setup does not
explicitly probe them. In particular, the ad hoc modeling of locality and sparsity should there-
fore still be satisfactory if the initial state (or the observable) are sufficiently homogeneous on a
macroscopic scale.
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This raises an interesting point about admissible initial states and observables in general. The only
explicit requirement on the initial state for the derivation was a well-defined macroscopic energy
(cf. Prerequisite (i)). Whereas the prediction (3.160) and especially the response profile (3.146)
do not exhibit an explicit dependence on any more specific properties of the state, there is an
implicit dependence mediated by the density of states (or rather, the mean level spacing ε), which
sets a basic energy and thus also time scale for the reference system as well as a scale to gauge
the perturbation strength. Since the mean level spacing may change with the state’s energy
(see also Fig. 3.1), initial states pertaining to different energy windows will generally also lead to
different relaxation characteristics in (3.160). On the other hand, besides a finite spectral range and
resolution (cf. Eqs. (2.18) and (2.19)), there are no obvious restrictions as far as the observable A is
concerned. However, we remark that there will always be special combinations of initial state and
observable correlated in such a way that the resulting dynamics is atypical with respect to a given
perturbation ensemble. Put differently, every combination of an observable A and an initial state
ρ(0) entails a set of atypical perturbations (which could in principle contain the true perturbation
of interest), and furthermore these atypical perturbations will generally differ for different A and
ρ(0). A priori, however, it is unfortunately not immediately obvious whether a given combination
of A, ρ(0), and V is correlated such that it behaves atypically compared to the remaining members
of a certain ensemble.

In summary, there is compelling evidence to believe that real perturbations can be modeled in
terms of the ensembles considered here, unless there are specific reasons to the contrary. These
reasons may be explicitly comprehensible in a given setup (macroscopically inhomogeneous initial
state, quench from general to special case, ...) or they may be rooted more subtly in correlations
between the Hamiltonian, the observable, and/or the initial state. Consequently, it is imperative
to verify the prediction (3.160) in explicit numerical or experimental examples, and this will be
the subject of the next subsection.

3.7 Examples

The purpose of our present theory was to explain the perturbed relaxation of isolated many-body
quantum systems, and the main result (3.160) or (3.188) provides a prediction for this relaxation in
the form of a relation between the time-dependent expectation of the perturbed and unperturbed
systems. A natural next step is thus to test this prediction against numerical and experimental
data for concrete example systems, for which we partly employ numerical studies on our own
and partly adopt pertinent results from the literature. The investigated systems will usually still
be (effectively) small from a macroscopic point of view since it is clearly impossible to simulate
exactly (numerically or experimentally) a quantum system of, say, 1023 degrees of freedom. Yet
the analytical result (3.160) will turn out to reproduce the prevailing features of the dynamics
remarkably well. Looking ahead, the large variety of models and setups which are amenable to
and described well by the theory underpins its broad applicability and the considerable generality
of the prediction (3.160).

General remarks. In the spirit of the setup and applications described in Sec. 3.1, we generally
take the reference dynamics 〈A〉ρ0(t) of the unperturbed system H0 as given, i.e., as an input to the
theory. The essential second input then is the perturbation profile σ2

v(E) from (3.10) or at least
the intrinsic perturbation strength αv from (3.12) and, ideally, the band width ∆v from (3.13).
In numerical examples, these quantities can be determined in principle by exact diagonalization
or approximately identified, for example, by means of typicality methods and imaginary time
evolution. From these characteristics, the response profile gλ(t) can be computed numerically for
general σ2

v(E) or estimated by means of the analytical approximations (3.164), (3.165), and (3.166),
depending on the information available.

Similarly, if detailed numerical information is available, for example, from exact diagonalization,
also the state ρ̃λ from (3.150) can be calculated directly from the initial occupations ρµµ(0) of
the unperturbed levels and the function ũ(E) from (3.116), which is derived from the overlap
distribution (3.32) and thus the perturbation profile, too. However, employing the result (3.188),
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Figure 3.10: Time evolution in the two-dimensional spin- 1
2 model Hλ = H0 + λV with H0 from (3.20a)

and V from (3.20b) for various perturbation strengths. Solid: Numerical simulation results obtained by
exact diagonalization. Dashed: Analytical prediction (3.160), employing the numerical solution for λ = 0
(solid black curve) for the reference dynamics 〈A〉ρ0(t), the second-order continued-fraction result (3.166)
for the response profile gλ(t) with the empirically determined intrinsic perturbation strength αv = 2.64
and band width ∆v = 7.32 (cf. Figs. 3.1 and 3.2), and 〈A〉̃ρλ as indicated below. Dotted: Analytical
prediction (3.160) adopting the weak-perturbation and large-time asymptotics (3.164) instead (same pa-
rameters). a. Time-dependent expectation values of the magnetization correlation mc from (3.192), start-
ing from the state (3.194). The long-time limiting values are computed directly via Eq. (3.150), yielding
〈mc〉̃ρλ = −0.0896,−0.0820,−0.0830,−0.0738 for λ = 0.2, 0.4, 0.8, 1.6, respectively. b. Time-dependent
expectation values of the spin-flip correlation jc from (3.195), starting from the dynamical-typicality
state (2.39) with A = jc, κ = 2, and Π projecting onto the central 2048 energy levels. The long-time
limiting values are the thermal expectation values, 〈jc〉̃ρλ = 〈jc〉ρmc = 0.

the thermal expectation value 〈A〉ρmc is often obtained even simpler by symmetry arguments or
other methods.

Unfortunately, such detailed information about a certain system is not always available, and it
may sometimes not even be possible to decide unequivocally whether all of the prerequisites from
Sec. 3.2 are satisfied in the setup in question, hence this will be tacitly assumed in these cases.
Moreover, the perturbation profile σ2

v(E) or the parameters αv and ∆v are often not assessed or
quoted along with time series of observable expectation values in the literature, not least because
determining these quantities quickly becomes unfeasible for larger system sizes. In this case,
Eqs. (3.160) and (3.188) still amount to powerful predictions of the relaxation behavior since
one or two fit parameters are sufficient to forecast the dynamics for a broad range of coupling
strengths λ and times t. Depending on the specific setting and the information on hand, the
various analytical approximations for gλ(t) provide different degrees of control and precision. If
nothing or only the rough strength of the perturbation is known and presumed to be weak, then
gλ(t) may be approximated by (3.164) with αv as the only free parameter according to (3.65). If
the perturbation strength and band width are accessible or the regime of stronger perturbations
is reached, the approximation (3.166) can be used with ∆v as an additional parameter (see also
Eq. (3.79)). For even stronger perturbations, one might also adopt (3.165) instead.

Two-dimensional spin-1/2 lattice. As our first example, we take the spin- 1
2 system defined on a

4× 4 lattice as introduced in Sec. 3.2. The unperturbed Hamiltonian (3.20a) consists of isotropic
Heisenberg interactions between nearest neighbors and the perturbation (3.20b) comprises spin-
flip terms (with respect to the z direction) between next-nearest neighbors. The properties of this
system were analyzed in detail in Figs. 3.1 and 3.2 using exact diagonalization. In particular, we
found that ε = 1.90× 10−3, σ2

v = 5.02× 10−3, and ∆v = 7.32, hence αv = 2.64. For the transition
between the limiting forms (3.164) and (3.165) of gλ(t), the corresponding crossover coupling (3.73)
is thus λc ≈ 0.75, and the crossover time (3.181) is tc ≈ 0.43.

We consider two different combinations of observables and initial states, both focusing on the
central spins at sites (2, 2) and (3, 3), which could thus be regarded as the “system” with the
remaining spins around them serving as a “bath.” The first observable measures the magnetization
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correlation in the z direction between these two sites,

mc := σz2,2 σ
z
3,3 . (3.192)

To achieve an appreciable nonequilibrium initial value, we prepare the two “system spins” in the
“up” state, whereas the bath is supposed to be in equilibrium, modeled by a random (Haar-
distributed) pure state on the corresponding subspace. Finally, to satisfy Prerequisite (i) of a
well-defined macroscopic energy, we filter the so-obtained state by means of a Gaussian projector

ΠE,∆E := e−(H0−E)2/2∆2
E√

2π∆2
E

(3.193)

of mean energy E = 0 and standard deviation ∆E = 2 [133, 201, 202]. Roughly speaking, this
simulates a macroscopic measurement of the system energy that yielded E = 0. Altogether, the
initial state is thus given by ρ(0) = |ψ〉〈ψ| with

|ψ〉 ∝ ΠE,∆E σ+
2,2 σ

+
3,3|φ〉 , (3.194)

where σ+
i,j := σxi,j + iσyi,j and |φ〉 is a Haar-distributed random vector on the full

(16
8
)
-dimensional

Hilbert space of the zero-magnetization subsector (see also Sec. 3.2). The resulting dynamics is
shown for various coupling strengths λ by the solid lines in Fig. 3.10a.

The second observable we consider is the spin-flip correlation between the two “system” sites,

jc := σx2,2 σ
y
3,3 − σ

y
2,2 σ

x
3,3 = 1

2i
(
σ−2,2 σ

+
3,3 − σ

+
2,2 σ

−
3,3
)
, (3.195)

with σ±i,j := σxi,j ± iσyi,j . The initial state ρ(0) = |ψ〉〈ψ| is chosen in the spirit of the dynamical-
typicality construction according to (2.39) with Π projecting onto the central 2048 states of the
zero-magnetization sector (ensuring Prerequisite (i)), and κ = 2. For several choices of λ, this
leads to the dynamics depicted by the solid lines in Fig. 3.10b.

Since all parameters entering the analytical prediction (3.160) with the second-order continued-
fraction expression (3.166) for the response profile gλ(t) are explicitly available, we can directly
compare that prediction to the numerical simulation without any free parameters, resulting in
the dashed curves in Fig. 3.10. For the reference dynamics 〈A〉ρ0(t), we thereby adopted the
corresponding numerical results from the solid black curves in the respective panels. The long-
time limit 〈A〉̃ρλ is explicitly computed via (3.150) for A = mc in Fig. 3.10a, exploiting the known
occupations ρµµ(0) and calculating the overlap distribution u(E) numerically as a Chebyshev series
(cf. Sec. 3.4.2), assuming an exponential perturbation profile (3.21) with σ2

v = 5.02 × 10−3 and
∆v = 7.32 (cf. Fig. 3.2c). The explicit values are stated in the caption of Fig. 3.10. Note that the
associated microcanonical expectation value 〈mc〉ρmc = −0.0805 as obtained from the energy shell
of the central 60 % of states (see below Eq. (3.20b)) could be employed as well without significant
loss of accuracy. This route is adopted for A = jc in Fig. 3.10b, where we effectively use the
prediction (3.188) instead, taking 〈A〉̃ρλ = 〈A〉ρmc = 0 (by symmetry). The agreement between
theory and numerics is very good in both settings and for all values of λ, i.e., across the transition
from weak to stronger perturbations with the crossover around λc ≈ 0.75.

For completeness, we also show the analytical prediction obtained by utilizing the approxima-
tion (3.164), expected to apply for weak perturbations λ� λc ≈ 0.75 or late times t� tc ≈ 0.43.
In these limits, we likewise find good agreement between the prediction and the numerical results.
At the same time, it becomes apparent that this approximation cannot faithfully describe stronger
perturbations at short times.

Bosonic Hubbard chain. As a second example, we consider the bosonic Hubbard chain as studied
by Flesch and co-workers in Ref. [261], defined by the Hamiltonian

H = −J
L∑
i=1

(
b†i+1bi + b†i bi+1

)
+ U

2

L∑
i=1

ni(ni − 1) (3.196)

with periodic boundary conditions. Here b†i and bi are the bosonic creation and annihilation
operators on site i, and ni := b†i bi. In Ref. [261], time-dependent expectation values of the odd-site
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Figure 3.11: Time evolution in the bosonic Hubbard chain with Hamiltonian H from (3.196) for J = 1,
various coupling strengths λ = 1/U and a. the odd single-site occupation n1 or b. the nearest-neighbor
hopping correlation Im b†1b2 (see below Eq. (3.196)). The initial state ρ(0) consists of singly occupied even
sites and empty odd sites. Dash-dotted: Analytical solutions 〈n1〉ρ0(t) = [1−J0(4t)]/2 and 〈Im b†1b2〉ρ0(t) =
J1(4t)/2 for the reference dynamics with λ = 0 in an infinite chain. Solid: Numerical tDMRG results
from Ref. [261] for L = 32, vertically shifted in steps of −0.25 for better visibility. Dotted: Analytical
prediction (3.188), employing the analytic result (dash-dotted black curve) for the reference dynamics
〈A〉ρ0(t), the weak-perturbation response profile (3.164) with αv = 0.79, the thermal expectation values
〈n1〉ρmc = 1

2 and 〈Im b†1b2〉ρmc = 0, and the same vertical shifts as for the numerics.

occupation n1 and of the nearest-neighbor hopping correlation Im b†1b2 = (b†1b2 − b†2b1)/2i were
computed for a chain of length L = 32 with J = 1 and various values of the interaction strength U
using time-dependent density-matrix renormalization group (tDMRG) methods. The considered
initial state ρ(0) has one particle on every even site and empty odd sites. The obtained results are
reproduced by the solid lines in Fig. 3.11.

To compare to the analytic prediction (3.188), we choose the limit U →∞ of large interactions as
our reference case. In this limit, the Hamiltonian (3.196) becomes equivalent to a spin- 1

2 XX model,
which thus comprises our reference Hamiltonian H0. The time-dependent expectation values are
known analytically in this case [261] and are given by 〈n1〉ρ0(t) = [1−J0(4t)]/2 and 〈Im b†1b2〉ρ0(t) =
J1(4t)/2, respectively, where Jα(x) are Bessel functions of the first kind. Corrections for large
but finite U and the given initial state can be obtained by means of an expansion in the inverse
interaction strength U−1 [262]. The leading-order contribution U−1V consists of nearest and next-
nearest neighbor interactions as well as three-spin terms, and serves as the perturbation in our
setup (3.1). The coupling strength is thus λ = U−1.

The values of the parameters αv and ∆v are not available from Ref. [261]. Since the coupling
values of the data presented in Fig. 3.11 turn out to lie well inside the weak-perturbation regime2,
we choose the expression (3.164) for the response profile, so αv is the only fit parameter required.
With αv = 0.79 and the microcanonical expectation values 〈n1〉ρmc = 1

2 and 〈Im b†1b2〉ρmc = 0, the
prediction (3.188) then leads to the dotted curves in Fig. 3.11. The agreement with the numerical
data is again very pleasing.

Cold-atom experiments. A great and quite recent technological advancement is the ability to
emulate lattice systems of interacting bosons or fermions experimentally by confining ultracold
atoms using optical traps [26–28, 30] (see also the discussion at the end of Sec. 2.1). In particular,
an effective bosonic Hubbard chain (3.196) was realized experimentally by Trotzky et al. [32],
deliberately aiming at reproducing the setup from Ref. [261] (see Fig. 3.11) as closely as possible.

In Fig. 3.12, we compare their experimentally measured expectation values of the single-site occu-
pation n1 with our theory (3.188), employing the same parameter values as in Fig. 3.11, i.e., there
are no additional fit parameters. The analytical prediction describes the experimental data very

2The estimated crossover coupling (3.73) is λc ≈ 1.5 when using the more refined response profile (3.166) and
fitting both αv and ∆v .
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Figure 3.12: Time evolution of the single-site occupation in an optical lattice of ultracold, repulsively
interacting Rb atoms. Dots: Experimental data adopted from Fig. 2 of Ref. [32]. The experimental setup
emulates the bosonic Hubbard model (3.196) with the same initial conditions as in Fig. 3.11. Dash-dotted:
Analytical solution 〈n1〉ρ0(t) = [1− J0(4t)]/2 for the reference dynamics with λ = 0 in an infinite bosonic
Hubbard chain. Solid: Analytical prediction (3.188), employing the analytical result (dash-dotted black
curve) for the reference dynamics 〈A〉ρ0(t), the weak-perturbation response profile (3.164) with αv = 0.79,
and the thermal expectation value 〈n1〉ρmc = 1

2 , i.e., the same parameters as in Fig. 3.11. Like there, the
perturbed data are shifted vertically in steps of −0.25 for better visibility.

well, especially for the larger values of λ. In view of the numerical simulations shown in Fig. 3.11
and their good agreement with the theory, the model (3.196) presumably misses some relevant
features of the cold-atom experiment for very small λ. Indeed, the authors of Ref. [32] speculate
about possible origins of these deviations themselves, identifying tunneling between different copies
of the chain as well as nonadiabatic heating as the primary sources of deviations. Since the regime
of small λ corresponds to small values of the tunneling constant J in (3.196) in the way parameters
are controlled in the experiment [32], the relative influence of those effects is arguably strongest
there.

Spin-1/2 XXZ chain. As another example, we turn to the antiferromagnetic spin- 1
2 XXZ chain,

whose Hamiltonian reads

H = J
∑
i

(
σxi σ

x
i+1 + σyi σ

y
i+1 +∆σzi σ

z
i+1
)
, (3.197)

where σαi are Pauli matrices acting on site i as before. Note that this system is integrable for all
values of the parameters J > 0 and ∆ ≥ 0 [162]. Furthermore, it exhibits a phase transition from a
gapless Luttinger liquid for ∆ ≤ 1 to a gapped, Ising-ordered antiferromagnetic phase for ∆ > 1.

In Fig. 3.13a, we compare our prediction (3.160) to numerically obtained results by Barmettler
et al. [263], who studied the dynamics of the system (3.197) for J = 1/4 and various values of
the anisotropy parameter ∆ in a formally infinite chain using a time-evolving block-decimation
(TEBD) algorithm, which effectively keeps track of up to 7000 dominant states. The system was
prepared in a Néel state of alternating up and down spins, i.e., ρ(0) = |ψ〉 〈ψ| with |ψ〉 = |↑↓↑↓ · · ·〉,
and the monitored observable was the staggered magnetization

Mz
s := 1

2L
∑
i

(−1)iσzi . (3.198)

The most natural choice in view of the available data is to take the case ∆ = 0 as the reference
systemH0 and identify the coupling strength λ with the anisotropy parameter∆. The unperturbed
system is thus an XX model, effectively similar to the example from Fig. 3.11, but the perturbation,
which couples neighboring spins in the z direction, is different. Notably, the unperturbed dynamics
is again known exactly, 〈Mz

s 〉ρ0(t) = J0(2t)/2 [263]. The long-time limit is 〈A〉̃ρλ = 0 by symmetry
and is thus equal to the thermal expectation value 〈A〉ρmc despite the system’s integrability. We
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Figure 3.13: a. Time evolution of the staggered magnetization (3.198) in the spin- 1
2 chain (3.197), starting

from a Néel initial state, for various values of the anisotropy parameter λ = ∆. Solid: Numerical infinite-
size TEBD results adopted from Figs. 1 and 2 of Ref. [263] and vertically shifted in steps of −0.25.
Dash-dotted: Analytical solution 〈Mz

s 〉ρ0(t) = J0(2t)/2 for the unperturbed dynamics (λ = 0). Dotted:
Analytical prediction (3.160), employing the analytically known reference dynamics (dash-dotted black
curve), the weak-perturbation response profile (3.164) with αv = 0.073, and 〈A〉̃ρλ = 0 by symmetry.
b. Time evolution of the correlation (3.200) between conjugated momentum modes k and k̄ in the fermionic
Hubbard model (3.199) on a Bethe lattice of infinite coordination number, starting from a state with one
particle per site with alternating spins between nearest neighbors, for various interaction strengths λ = U .
Solid: Numerical DMFT results, adopted from Fig. 3 of Ref. [264] and vertically shifted in steps of
−0.5. Dashed: Analytical prediction (3.188) using the unperturbed result (λ = 0, black solid curve) for
〈Re c†

k̄
ck〉ρ0(t), 〈Re c†

k̄
ck〉ρmc = 0, and the two-parameter approximation (3.166) for the response profile with

fitted αv = 0.045 and ∆v = 4.9. Dotted: Analytical prediction employing instead the weak-perturbation
approximation (3.164) for the response profile with the same parameters.

content ourselves with the weak-perturbation asymptotics (3.164) again and treat the unknown
ratio αv as the only fit parameter, yielding αv = 0.073.

The resulting theoretical predictions (dotted lines in Fig. 3.13a) are in excellent agreement with
the numerical results (solid lines) for all values of λ up to the critical point at λ = ∆ = 1.

Fermionic Hubbard model on Bethe lattice. As our next example, we consider the fermionic
Hubbard model on a Bethe lattice of infinite coordination number in the form studied by Balzer et
al. in Ref. [264]. Denoting pairs of connected sites i and j by i ↔ j and introducing the creation
and annihilation operators c†iσ and ciσ, respectively, for a fermion of spin σ ∈ {↑, ↓} on site i, the
Hamiltonian takes the form

H = −
∑
i↔j,σ

c†iσcjσ + U
∑
i

(
ni↑ − 1

2
) (
ni↓ − 1

2
)

(3.199)

with niσ := c†iσciσ. The first term here describes hopping between neighboring sites and the
second term is a repulsive (U > 0) on-site interaction. The system is integrable for U = 0
and nonintegrable for 0 < U < ∞ [264]. We select the interaction as the perturbation in our
setup (3.1), i.e., λ = U . The unperturbed Hamiltonian H0 is diagonalized essentially by Fourier
transformation, introducing (in a slight abuse of notation) creation and annihilation operators
c†k and ck, respectively, of momentum modes k. Choosing an initial state with one particle per
lattice site and alternating spins between nearest neighbors, Balzer et al. then calculated time-
dependent expectation values for various values of λ using dynamical mean-field theory (DMFT),
investigating, in particular, the correlation

Re c†
k̄
c
k

= 1
2

(
c†
k̄
c
k

+ c†kck̄

)
(3.200)

between conjugated momentum modes k and k̄ whose single-particle energies agree up to a sign
factor [264]. The obtained dynamics is shown by the solid lines in Fig. 3.13b.
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To compare to the prediction (3.188), we adopt 〈Re c†
k̄
c
k
〉ρmc = 0 and the expression (3.166) for the

response profile. Since the explicit values of αv and ∆v are unfortunately not known, we estimate
them by a fit and find αv = 0.045 and ∆v = 4.9. This yields the dashed curves in Fig. 3.13b for
the theoretical prediction, which again agree well with the numerics

We note that the estimates for αv and ∆v imply a crossover coupling (3.73) of λc ≈ 4.7 and a
crossover time (3.181) of tc ≈ 0.64, hence the data displayed in Fig. 3.13b all satisfy λ < λc.
Therefore, we also show the corresponding weak-perturbation approximation as dotted lines in
the figure, using (3.164) for the response profile. This reveals that the improved two-parameter
approximation (3.166) performs better for larger λ values and times t . tc, indicating that the
perturbation matrix Vµν could indeed exhibit a decisive banded structure.

As a last remark on this example, we point out that the reference dynamics here exhibits persistent
oscillations, i.e., the unperturbed system does not equilibrate (cf. Sec. 2.2). Hence the example
demonstrates that such systems are equally covered by the present theoretical approach, as they
should since there was no formal restriction necessary that would exclude them.

Two coupled spin-1/2 chains. For our last example, we consider an isolated system consisting
of two antiferromagnetic Heisenberg spin- 1

2 chains of length L with periodic boundary conditions,
such that the respective Hamiltonians H(1) and H(2) are given by

H(s) :=
∑
i

σs,i · σs,i+1 . (3.201)

As usual, σs,i = (σxs,i, σ
y
s,i, σ

z
s,i) is a vector of Pauli matrices acting on the ith site of chain s ∈ {1, 2}.

In the unperturbed system, the chains are completely isolated from each other such that

H0 := H(1) +H(2) . (3.202)

By means of the perturbation V , we now bring them into contact, coupling the ith sites of both
chains via Heisenberg terms, too, such that

V :=
∑
i

σ1,i · σ2,i . (3.203)

The perturbed system Hλ = H0 +λV thus constitutes a so-called spin ladder. We remark that this
setup implements the first two example scenarios from Table 3.1 since the perturbation couples
two isolated subsystems and breaks the integrability of the simple one-dimensional chains.

We focus on the zero-magnetization sector in the (arbitrarily chosen) z direction. The initial state
ρ(0) = |ψ〉〈ψ| is based on an infinite-temperature state modeled by a state |φ〉 drawn uniformly at
random from that sector, but we subsequently align two neighboring spins in the first chain in the
“up” state and the corresponding spins in the second chain in the “down” state. Consequently,

|ψ〉 ∝ σ+
1,1σ

+
1,2σ

−
2,1σ

−
2,2|φ〉 (3.204)

with σ±s,i = σxs,i± iσys,i. Since this state already exhibits a relatively narrow energy distribution for
the system sizes employed in the following, there is no need for additional filtering (i.e., applying
a reasonably narrow filter does not have a significant effect on the dynamics).

Using a second-order Suzuki-Trotter decomposition with time step ∆t = 0.01, we simulate the time
evolution for chains of length L = 12, amounting to a total of 2L = 24 lattice sites. The solid lines in
Fig. 3.14a show the resulting dynamics of the single-site magnetization σz1,1 for the uncoupled chains
(λ = 0, black) as well as for various coupling strengths λ > 0 (color-coded as indicated in the legend
of subfigure b). Since the magnetization is conserved within every chain individually for λ = 0,
the equilibrium expectation value is 〈σz1,1〉̄ρ0 = 2/L = 0.17 for the unperturbed dynamics. Upon
coupling the two chains, conservation of the subchain magnetizations is broken, so 〈σz1,1〉ρmc = 0.
According to Sec. 3.5 (see also Sec. 2.2.3), we thus expect prethermalization for sufficiently weak
perturbations, and this is indeed observed as highlighted in particular in the log-linear plot of the
inset.

To compare to the theory (3.188), we display the predictions obtained by adopting both the
second-order continued-fraction approximation (3.166) (dashed lines) and the weak-perturbation
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Figure 3.14: Time evolution of two coupled spin- 1
2 chains with Hλ = H0 + λV , where H0 and V

are given by (3.202) and (3.203), respectively, for various coupling strengths, starting from the state
ρ(0) = |ψ〉〈ψ| with |ψ〉 from (3.204). Solid: Numerical simulation results obtained by Suzuki-Trotter
propagation. Dashed: Analytical prediction (3.160), employing the numerical solution for λ = 0 (solid
black curve) for the reference dynamics 〈A〉ρ0(t), the second-order continued-fraction result (3.166) for
the response profile gλ(t) with the intrinsic perturbation strength αv = 0.95 and band width ∆v = 5.8,
and 〈A〉̃ρλ as indicated below. Dotted: Analytical prediction (3.160) adopting the weak-perturbation
and large-time asymptotics (3.164) instead (same parameters). a. Time-dependent expectation values
of the single-site magnetization A = σz1,1, adopting 〈σz1,1〉̃ρλ = 〈σz1,1〉ρmc = 0. b. Time-dependent ex-
pectation values of the magnetization correlation A = σz1,1σ

z
1,2, utilizing the long-time limiting values

〈σz1,1σz1,2〉̃ρλ = −0.014,−0.019,−0.026,−0.038,−0.045, respectively, for λ = 0.1, 0.2, 0.4, 0.8, 1.2. Curves
for λ > 0 are shifted in steps of −0.1 for better visibility.

asymptotics (3.164) for the response profile gλ(t). Since the system size is beyond our numerical
capabilities for exact diagonalization, we treat the intrinsic strength αv and the band width ∆v

of the perturbation as fit parameters, yielding αv = 0.95 and ∆v = 5.8. For the crossover cou-
pling (3.73) between the weak- and strong-perturbation regimes, this yields an estimate of λc ≈ 1.1.
Note that exact diagonalization of a smaller system with L = 9 suggests that the actual response
profile is asymptotically exponential with a minor plateau at small energy differences. Moreover,
an exponential fit to that profile yields estimates on the order of αv ≈ 2 and ∆v ≈ 7 . . . 8, indicating
that the adopted values for the L = 12 ladder are in the right ballpark. The resulting agreement
between theory and numerics is excellent for both choices of the response profile when λ is small
and remains very good also for larger values of λ in case of the second-order continued-fraction
approximation (3.166).

In Fig. 3.14b, we show a similar comparison between numerics and theory for the magnetization
correlation σz1,1σz1,2 between the initially aligned spins, adopting the same values for αv and ∆v.
Since the expectation values approached at long times display some variability, we use the numerical
values as indicated in the figure caption for 〈A〉̃ρλ in the theoretical prediction (3.160). The resulting
agreement with the simulation data is again quite pleasing.

This concludes our collection of illustrating examples. We remark that additional examples (involv-
ing, among others, spinless fermions and hard-core bosons) can also be found in Refs. [226, 248].
In summary, we demonstrated that the main theoretical result (3.160) of this chapter successfully
predicts the perturbed relaxation of several, quite distinct quantum many-body systems, including
bosons, fermions, and spins, one-, two-, and infinite-dimensional setups, as well as integrable and
nonintegrable models and equilibrating or nonequilibrating reference dynamics.

3.8 Connections, flaws, and prospects

Asking for the response of a given system to a perturbation is a very natural question, which has
been investigated in numerous settings and examples in the past. In the context of quantum many-
body systems, however, analytical results in this direction are rather scarce. One reason for this
may be that the standard approach, perturbation theory à la Rayleigh-Schrödinger, is practically
unfeasible or at least questionable due to the unimaginably small energy differences occurring in
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the denominators of such a perturbative expansion (see also below Eq. (3.1)). For instance, Fermi’s
golden rule, which we briefly discussed in Sec. 3.6.3, is traditionally derived within a perturbative
scheme, but its applicability to many-body quantum systems can hardly be justified this way. Yet
there are a few studies aiming at characterizing the response in such many-body systems in terms
of analytical derivations or heuristics, e.g., Refs. [178, 206, 208, 259, 265, 266]. Below we will
comment on how our findings here and in Refs. [177, 226, 227, 248] relate to those works which
are closest in spirit to our approach, i.e., which adopt tools from typicality and random matrix
theory.

The typicality approach itself is also in some sense uncontrolled as discussed in Secs. 2.3 and 3.6.3,
especially because it is often hard to determine in advance whether a given system can be emulated
faithfully as a typical member of a particular ensemble of systems. Hence it is of utmost importance
upon construction of the ensemble to incorporate the key mechanisms governing the situation under
study. To conclude this chapter, we will therefore come back to scenarios of perturbed relaxation
that are important, but not covered by our present approach (see also Sec. 3.6.3), and speculate
about potential extensions to amend the theory accordingly.

Relation to other studies. The conceptual foundations of the approach chosen here were laid in
the works [114, 253] by Deutsch, who investigated thermalization (i.e., the equality of time-averaged
and thermal expectation values) in the setup (3.1) of randomly perturbed quantum many-body
systems (see also Secs. 2.2.2 and 2.3.2). In this regard, he developed, in particular, a method
to calculate the second moment (3.30) of eigenvector overlaps Unµ from (3.5) for perturbations
from the Gaussian Orthogonal Ensemble (GOE) and adapted it to estimate also higher-order
moments by assuming that the Unµ are independent Gaussian random variables. While such a
simplification is sufficient to establish thermalization of most perturbed systems [114, 257], we
observed in Sec. 3.4.4 that it violates the unitarity constraint of the Unµ and can therefore not be
adopted to the problem of calculating (ensemble-averaged) time-dependent expectation values as
in (3.6) [248]. Moreover, strictly speaking, a rigorous justification of the original argument from
Ref. [114] regarding thermalization can only be given by means of the fourth-order moment as
derived here in Eq. (3.35) (see also the final paragraph of Sec. 3.4.3).

Using the same setup as in Ref. [114] with perturbations from the GOE, Nation and Porras extended
Deutsch’s method to approximate eigenvector overlaps and found an expression for the fourth
moment (3.87) [252], which includes some of the corrections, but still violates certain reduction
properties, notably Eq. (3.88b) (see Eq. (48) in [252] as well as Fig. 3.7 above). Employing their
approximate result, they obtained a relation similar to (3.152) with g(t) = e−Γ |t|/2 for the ensemble-
averaged time evolution in Ref. [208], in accordance with our result (3.164) for perturbations
with an infinite band width (such as the GOE matrices). However, due to the missing reduction
property, the class of admissible observables was limited to operators A whose matrix elements
Aµν = 0〈µ|A|ν〉0 are zero unless the index difference µ − ν is from a small (nonextensive) set of
values. Moreover, concentration of measure (or “self-averaging”) of the time evolution as in (3.154)
was postulated without proof in Ref. [208].

The relaxation behavior of a small system coupled to a large bath was investigated by Genway et
al. in Ref. [206] by means of a random matrix model for the system-bath coupling. The adopted
ensemble is generated from a Dyson Brownian motion [267] and leads to a distribution of the matrix
elements Vµν that is approximately equal to (3.23) with the step perturbation profile (3.85). The
main result of Ref. [206] is an approximation for the ensemble-averaged time-dependent reduced
density matrix of the system. When applied to calculate the expectation values of system observ-
ables, it leads to a relation akin to (3.152). Notably, Genway et al. also observed a time-domain
crossover of the relaxation characteristics from Gaussian to exponential behavior, occurring on a
time scale of order ∆−1

v (cf. Sec. 3.6.2 and especially Eq. (3.181)). An argument for concentration
of measure in a very closely related setting assuming weak coupling between the system and the
bath such that the total perturbation strength λσv decreases with increasing size of the compound
was given in Ref. [205].

Finally, a similar setup with random perturbations exhibiting a step profile (3.85) was also investi-
gated by Richter et al. in Ref. [266] using projection-operator methods. The final expression for the
(ensemble-averaged) perturbed expectation values again resembles (3.152), at least if 〈A〉̃ρλ = 0 and
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gλ(t) = e−Γ |t|/2, even though the derivation adopts some simplifications regarding the correlations
of perturbation matrix elements and restrictions on the initial state ρ(0).

To sum up, it is quite remarkable that special cases of (3.152) are recovered by different approaches
of varying degree of rigor (see also Ref. [248] for yet another sketchy argument leading to a similar
result). This structural stability of the result only corroborates its fundamental nature.

Constrained relaxation. It is not uncommon that realistic systems exhibit certain symmetries
or relations between the key operators H0, V , A, and ρ(0) (see Sec. 3.1), which usually restrict
the effective Hilbert space explored by the system. Since the perturbation ensembles introduced
in Sec. 3.3 do not explicitly incorporate such symmetries, it is important to ask under which
circumstances they may lead to “atypical behavior” in the sense of noticeable deviations of the
perturbed relaxation from (3.160). We therefore consider several scenarios.

First, there may be conservation laws Q pertaining to both the unperturbed Hamiltonian H0 and
the perturbation V , i.e., [H0, Q] = [V,Q] = 0 and hence also [Hλ, Q] = 0 for all λ in (3.1). Such a
conservation law Q naturally divides the Hilbert space into sectors of constant Q, i.e., subspaces
within which 〈ψ|Q|ψ〉 takes the same value for all states |ψ〉. In this case, one should restrict
the analysis right from the beginning to the relevant subsectors populated by the initial state
ρ(0). For each subsector, provided that it is still of sufficiently high dimension, the corresponding
perturbation profile σ2

v(E) from (3.10) should be assessed individually, yielding a possibly distinct
response profile gλ(t) for each sector, too. The resulting prediction for the perturbed relaxation
then involves a combination of terms similar to (3.160) for the dynamics within each sector as well
as interference terms between those sectors.

The simplest (and perhaps most common) case is that ρ(0) lives on just one subsector. An example
of this kind is the two-dimensional spin system (3.20), for which both H0 and V commute with
the total magnetization Mz (see below Eq. (3.20b)). Hence we focused on the Mz = 0 sector for
the analysis of the level distribution (Fig. 3.1) and the perturbation profile (Fig. 3.2) in Sec. 3.2,
which was also the sector occupied by the initial states considered in Sec. 3.7 as an example to test
the perturbed relaxation prediction (see Fig. 3.10 in particular). The same applies to the example
of two coupled spin chains from Fig. 3.14 in Sec. 3.7. Another example for this setting explicitly
considered in Sec. 3.7 is the XXZ chain (3.197) (see also Fig. 3.13a), whose Hamiltonian Hλ again
commutes with the total magnetization Mz and is, in fact, integrable for all values of λ.

Second, there may be conservation laws Q of the unperturbed system H0 that are broken by the
perturbation. This is an important case as it applies, for example, to the transition from an
integrable H0 to a nonintegrable Hλ (λ > 0) and is thus the prime example for prethermalization
(see Secs. 2.2.3 and 3.5). In this scenario, our typicality approach is generally expected to work
as the overwhelming majority of perturbations in any ensemble from Sec. 3.3 will violate the
conservation laws similarly to the true V . The opposite situation, where Hλ exhibits special
symmetries for some λ whereas H0 does not, is excluded for obvious reasons since such a scenario
would entail a very special perturbation (see also Prerequisite (vi) from Sec. 3.2 as well as the
discussion in Sec. 3.6.3).

Third, there may be operators Q that commute with the true perturbation V , [V,Q] = 0, but
not with the reference Hamiltonian H0, hence [Hλ, Q] 6= 0 for all λ. In such a situation, it is not
unlikely that the typical behavior of the random perturbations from Sec. 3.3 deviates from the
true dynamics because most perturbations from the ensemble will violate [V,Q] = 0, contrary to
the true perturbation of interest. In particular, examples for the special case Q = A were found to
yield a different relaxation behavior in some circumstances in Refs. [238, 259]. However, a setup
with [V,A] = 0 but [H0, A] 6= 0 does not automatically imply deviations from the relaxation dy-
namics (3.160) induced by the perturbation ensembles considered here. For instance, the staggered
magnetization (3.198) commutes with the perturbation, but not with the reference Hamiltonian in
our XXZ-chain example from Eq. (3.197) and Fig. 3.13a, yet the agreement between theory and
numerics was found to be very good. Similarly as discussed in Sec. 3.6.3, the considered combi-
nation of the initial state and observable must also explicitly scan for the additional symmetry in
order for deviations to occur.

Nevertheless, it is certainly desirable in general to include the knowledge about such additional
symmetries of the perturbation into the definition of the considered ensembles. One way to do so
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could be to introduce a (Gaussian) “penalty weight” proportional to the commutator [V,Q] in the
probability distribution (3.24) of the V ensemble. While the averaging procedure can then still
be carried out similarly as in Secs. 3.4.2 and 3.4.3, the constraint leads to additional terms that
severely complicate the integration over the supersymmetric degrees of freedom, hence we did not
manage to arrive at a reasonably clear and simple result.

Local and few-body interactions. The observation that fundamental interactions in physical
systems are local and of few-body type is certainly an important characteristic for their dynamics.
We already touched upon the shortcomings of our present approach in this regard in Sec. 3.6.3.
The conclusion was that the particular setup under study should not probe local or few-body
properties explicitly in order to be amenable to the theory, for instance, by restricting to initial
states and/or observables which are sufficiently homogeneous on a macroscopic level. Here we will
briefly comment on ways to extend the typicality approach so that it respects the locality and
few-body character of a given model.

There are a few studies which investigate equilibration and thermalization by means of random
matrix ensembles with an additional local or few-body structure [107, 237, 268–271]. Moreover,
matrices built from random interactions between a limited number of degrees of freedom—going
by the name of embedded ensembles—have also been considered to some extent in the random-
matrix community, see, for example, Refs. [272–277]. Unfortunately, most of these investigations
employed numerical methods by and large, meaning that rather little is known analytically about
those ensembles.

An immediate connection to the relaxation theory from this chapter could be established by consid-
ering a free (noninteracting) reference system H0 and model the few-body interactions V by such
an embedded ensemble. If the overlap distribution u(E) from (3.32) were available, much of the
formalism from Sec. 3.4.4 could be readily adapted to find a first approximation for higher-order
moments, even though the additional correlations in the embedded ensemble could invalidate the
concomitant, rather coarse reduction of higher-order moments to second order. To include locality
as well, one needs to impose a model of the system’s geometry, e.g., by means of a lattice. Re-
stricting the interaction to nearby sites or scaling its strength according to the distance between
sites can then serve as a proxy for the local character of fundamental interactions.

Apparently, these additional structures introduce quite strong correlations between the matrix
elements of the perturbation, and they should manifest in the final result (e.g., a prediction of
the perturbed relaxation) in some way. Having less interactions (compared to the perturbation
ensembles from Sec. 3.3) thus makes the analytical treatment much more complicated. Moreover,
it is not even clear a priori whether or not the so-generated random matrix ensembles can be
utilized for a typicality argument in the sense that they exhibit concentration of measure for the
resulting relaxation dynamics. Pursuing further analytical progress in this direction will thus be a
challenging, yet potentially exciting endeavor.

Driven systems. So far, we only considered time-independent perturbations. Then again, it
is not uncommon that a given setup depends on some time-dependent control parameter. Prime
examples of this kind are (finite-time) quenches [7, 83, 174, 278–281] or periodically driven systems
[282, 283]. Hence it is an interesting and quite natural question whether the results of this chapter
can be extended to time-dependent couplings λ = λ(t).

The following two chapters will consider dynamics of quantum many-body systems in such time-
dependent settings. In Chapter 4, we investigate so-called echo protocols [284, 285], whose time
dependence is still relatively simple as there is only a single parameter change involved. The more
general case of largely arbitrary protocols λ(t) will be dealt with in Chapter 5.
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4 Echo dynamics

As expounded in the introduction (Chapter 1), the ubiquitous irreversibility of macroscopic pro-
cesses is not reflected in the fundamental laws governing their microscopic constituents, but rather
emerges as the practical impossibility to revert the dynamics of a large system resulting from the
complicated (or “chaotic” [158, 159, 163]) character of interactions between them. Our under-
standing of the underlying mechanism, however, is still far from comprehensive.

In this chapter, we will explore aspects of this irreversibility for many-body systems within the
realm of nonrelativistic quantum mechanics by means of so-called echo protocols. The goal is to
quantify how small deviations in the initial state or the dynamical laws propagate and manifest
themselves in macroscopic observables. The fact that macroscopic experiments are generally repro-
ducible despite the practical impossibility to prepare a large system in exactly the same microstate
suggests that the usual relaxation behavior of macroscopic observables is somewhat insensitive to
such small deviations [181, 182]. On the other hand, it is well known at least for classically chaotic
systems that the distance between close-by phase-space points grows with time [158, 159], so it
would be generally desirable to extract signatures of this indicator of chaos and irreversibility by
means of macroscopic observables.

Echo protocols offer one way to carry out such an investigation. The general idea is to prepare
a given system out of equilibrium and to compare its observable dynamics forward in time to an
(effectively) time-reversed setup. Small and usually uncontrolled inaccuracies in this time-reversed
setting lead to deviations between the two scenarios, which become macroscopically detectable
in the nonequilibrium regime. Their scaling with various control parameters can be taken as a
measure for how irreversible the considered dynamics is.

In essence, the results presented in this chapter have been published in Refs. [260, 286]. The
concept and reasoning behind echo protocols and experiments will be introduced in more detail
in Sec. 4.1. Thereafter, we will first consider two examples from classical mechanics in Sec. 4.2
that will help us to work out the distinct behavior of quantum systems in the ensuing sections.
Namely, we will examine the effects two different types of inaccuracies or imperfections on the
echo dynamics in Secs. 4.3 and 4.4, and conclude with a discussion and comparison between the
classical and quantum cases in Sec. 4.5.

4.1 Echo protocols and irreversibility

Protocol and imperfections. As usual, we focus on isolated many-body quantum systems and
start from a reference system with time-independent Hamiltonian

H0 :=
∑
µ

Eµ|µ〉00〈µ| . (4.1)

Moreover, we will again monitor the dynamics of the system by means of an experimentally realistic
observable A. Denoting the (pure or mixed) state of the system at time t by ρ(t), the principal
object of study are thus the time-dependent expectation values 〈A〉ρ(t) := tr[ρ(t)A] as before.

In general, our echo protocols consist of two main phases. For the first phase, the system is prepared
in some initial state ρ(0) := ρT, henceforth called the target state, and subsequently relaxes for a
certain waiting time τ according to the reference Hamiltonian H0. During this forward phase, the
state is thus given by

ρ(t) = ρf(t) := e−iH0t ρT eiH0t (4.2)

for 0 ≤ t ≤ τ . At time t = τ , the system has reached the return state ρR := ρf(τ). At this point, we
perform an effective time reversal by switching to the negative Hamiltonian −H0, thus simulating
time running backwards in the subsequent evolution since a true time reversal is unfeasible for
obvious reasons. We will comment on the practicality of such a transformation from H0 to −H0
in a minute and may regard it as a gedankenexperiment for the time being. If this effective time
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reversal is implemented perfectly, the system will simply trace out the same sequence of states
as during the forward phase (4.2), but in reverse order. In particular, we thus end up in the
target state ρT again after time t = 2τ . However, in practice there will be unavoidable errors or
imperfections in carrying out this procedure, which will lead to deviations between the forward
and backward dynamics. Intriguingly, we can learn something from these imperfections about the
investigated system and its irreversibility.

In the following, we will consider two types of imperfections. The first one concerns the return
state ρR, i.e., the initial state for the backward evolution. During the process of changing from the
forward Hamiltonian H0 to the backward Hamiltonian H̃0 := −H0, the state of the system may be
slightly perturbed, too, resulting in an imperfect return states ρ′R. We model this by acting with
a perturbing or scrambling Hamiltonian W on ρR for a short scrambling time δ, such that

ρs(t) := e−iWtρReiWt (4.3)

is the state of the system during the scrambling phase, and ρ′R := ρs(δ). Note that the usage of
the word “scrambling” here merely indicates the mixing or perturbing character of the operation
and is unrelated to the more specific meaning in the context of out-of-time-ordered correlators.
Consequently, the state ρ(τ + t) := ρs(t) for 0 ≤ t ≤ δ. This mechanism of perturbing the return
state will be referred to as imperfect preparation in the following.

The second type of inaccuracies regards the time-reversed Hamiltonian, which may potentially not
be the perfect inverse of the forward Hamiltonian H0, but could be slightly perturbed such that
H̃ := −H0 + εV is the Hamiltonian acting during the backward phase. Hence

ρb(t) := ei(H0−εV )t ρ′R e−i(H0−εV )t (4.4)

is the state during that phase and ρ(τ + δ + t) := ρb(t) for 0 ≤ t ≤ τ . The presence of the
perturbation V during the backward evolution will be called imperfect reversal in the following.
Note that ε here quantifies the magnitude of the inaccuracies and should not be confused with the
mean level spacing ε of the Hamiltonian introduced in (2.11).

At the end of the entire process, the system will then be in the state ρ′T := ρb(τ), a perturbed
version of the target state whose deviations from the reference state ρ(0) = ρT may in principle
depend, for fixed perturbations V and W , on the scrambling time δ, the magnitude ε of reversal
inaccuracies, and the waiting time τ . Altogether, we may summarize our imperfect echo protocol
schematically as

ρT
τ−−−−−→
H0

ρR
δ−−−−−→
W

ρ′R
τ−−−−−−→

−H0+εV
ρ′T . (4.5)

Echo experiments. To realize an echo protocol such as (4.5) experimentally, we need the pos-
sibility to change the sign of the Hamiltonian H0 of a given system. While such a procedure is
unphysical in many situations (e.g., because it would require negative particle masses), it is in fact
a well-established technique in spin systems.

The first experiments of this type are the famous Hahn echoes [287], where an initially aligned set
of noninteracting spins (typically nuclear spins of some liquid) precesses in an external magnetic
field. Due to local inhomogeneities of the field strengths, however, the individual spins precess at
slightly different frequencies, causing a dephasing such that the magnetization decays. Applying a
so-called π pulse after time τ inverts the orientation of all spins, which is equivalent to an inversion
of the external field and hence the Hamiltonian. Consequently, the spins start to converge again
during the subsequent evolution and will eventually be aligned again after another time period
τ , restoring the original magnetization. Due to remnant interactions between the spins as well
as with the environment, however, the final alignment will usually not be perfect, i.e., the final
magnetization will not quite reach the original level. This is exactly the type of effective time
reversal in the presence of imperfections we have in mind with the protocol (4.5).

Imperfect spin echoes are also at the heart of magnetic resonance imaging (MRI) [288]. This
well-known medical imaging technique targets the nuclear spin of hydrogen atoms by means of an
echo protocol. Different imperfections and concentrations in different tissues lead to different decay
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characteristics of the echo signal, which thus allows to identify those tissues. Hence “imperfections”
are in fact not a bug, but a feature in this application.

Since the first experiments by Hahn in 1950, the capabilities to perform an effective time re-
versal have been adapted to many classes of interacting spin systems using so-called magic- or
polarization-echo techniques [37–44]. Here the dominant part of the interacting Hamiltonian is ef-
fectively reversed by applying sophisticated pulse sequences of radiofrequency external fields during
the backward phase. More generally, such techniques can be used experimentally to adjust the
coupling parameters in a variety of effective spin systems over a wide range [45–47, 289].

Further suggestions or experimental realizations of an effective time reversal in quantum systems
include tuning a cold-atom gas across a Feshbach resonance [290–292] or employing quantum
simulators [36, 289] (see also the discussion at the end of Sec. 2.1). In all these setups, there will
naturally be inaccuracies in the effective time reversal, both because it is usually only feasible to
invert the dominant part of the Hamiltonian and due to limited experimental precision in carrying
out the corresponding protocols.

Echo signal. We intend to quantify the influence of imperfections on the echo dynamics in terms
of an experimentally realistic observable A. To detect a signature of the imperfections, it is clear
that we have to operate in the nonequilibrium regime. Indeed, if we are initially in equilibrium
(ρ ' ρ̄), then the expectation values 〈A〉ρ(t) will remain very close to the equilibrium value 〈A〉̄ρ
for all times during the forward evolution, and the small imperfections during the scrambling and
backward phases will not have any noticeable effect either. Therefore, we take it for granted that
the systems starts out in a nonequilibrium state ρT.

Usually (cf. Sec. 2.2), the system will subsequently relax during the forward phase such that the
expectation values approach the equilibrium value 〈A〉̄ρ, which moreover generically coincides with
the thermal expectation value 〈A〉ρmc . Of foremost interest in the following are therefore the
deviations

A(t) := 〈A〉ρ(t) − 〈A〉ρmc (4.6)

of the time-dependent expectation values from the thermal values. For now, this should merely be
understood as a constant offset −〈A〉ρmc added to the time-dependent expectation value 〈A〉ρ(t).
We emphasize that the calculations presented below do not require that the system should actually
equilibrate, let alone thermalize (see also Fig. 4.5b below for an explicit example that does not
equilibrate). Nevertheless, the quantity (4.6) will arise naturally as a suitable measure of the echo
signal.

In case of a perfect time reversal (δ = ε = 0), we obviously have A(τ + t) = A(τ − t) for all
0 ≤ t ≤ τ . Due to the delicate calibration of the initial state ρ(0) and the observable A necessary
to achieve nonequilibrium conditions at all (see Secs. 2.2 and 2.3), it is reasonable to expect that
the essentially uncontrolled inaccuracies will generically push the system closer to equilibrium,
i.e.,

|A(τ + δ + t)| . |A(τ − t)| (0 ≤ t ≤ τ) . (4.7)

By quantifying how sensitive the deviations of the perturbed signal A(τ + δ + t) from the perfect
signal A(τ − t) are, we can thus assess the degree of irreversibility of the considered system: The
faster A(τ + δ + t) decays with δ, ε, or τ compared to A(τ − t), the harder it is to revert the
dynamics, and the more extraordinary or special are the initially probed nonequilibrium states.

The central object of study in the following will therefore be the ratio A(τ+δ+t)/A(τ−t) between
the perturbed and perfect echo signals. The main result of this chapter is an analytical prediction
for this relative echo signal in isolated many-body quantum systems.

Especially relevant is the ratio of the echo signal at the end of the protocol (4.5) to the signal at the
beginning because in the generic case, this is the time point where the system will be farthest away
from equilibrium, entailing that the effects of imperfections will be most pronounced. We denote
this relative echo peak height, which generally depends on the two parameters δ and ε characterizing
the magnitude of imperfections as well as on the waiting time τ , by

F(δ, ε, τ) := A(2τ + δ)
A(0) =

〈A〉ρ′T − 〈A〉ρmc

〈A〉ρT − 〈A〉ρmc

. (4.8)
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Outline of the derivation. To arrive at an analytical prediction for the relative echo signal and
thus also the echo peak (4.8), we will again employ typicality methods. Such an approach is indeed
particularly suited to investigate the present problem since we only have limited (if any) knowledge
about the imperfections (i.e., the operators V and W in (4.5)) that lead to deviations from the
perfect echo. Modeling our partial ignorance by considering suitable ensembles of random operators
V and W is thus a very natural strategy, i.e., it is not just convenient, but also inevitable.

From a computational point of view, we follow the same steps as sketched in Sec. 2.3.1. First,
we compute the average effect of all imperfections in a chosen ensemble. Second, we prove that
the deviations for a single realization of these imperfections from the average effect is practically
undetectable for nearly all members of the ensemble. Third, we compare the so-obtained “typical”
echo signal to concrete numerical examples.

We will first address the two types of imperfections introduced below Eq. (4.2) individually: the
imperfect preparation scenario (δ > 0, ε = 0) in Sec. 4.3 and the imperfect reversal scenario (δ = 0,
ε > 0) in Sec. 4.4. How to combine the two situations will then be explained in Sec. 4.5. Before all
that, however, we will consider a classical example in Sec. 4.2 as a reference to highlight certain
peculiarities of the quantum echoes.

4.2 Classical examples

In this section, we will briefly explore an example of echo dynamics from the realm of classical
mechanics, focusing on the pure “imperfect preparation” scenario (ε = 0 in (4.5)) because here the
differences to the quantum case are most striking.

Chaos. On the classical level, the chaotic dynamics of nonlinear systems and concepts like sensi-
tive dependence on initial conditions and mixing [158, 159] elucidate how a small uncertainty about
the initial state spreads uniformly across the available phase space in time3. Notably, initially close-
by points in phase space separate exponentially in time at a rate quantified by so-called Lyapunov
exponents. Together with a maximum entropy principle, whereby the macroscopic equilibrium
state is simply the one with the largest number of compatible microstates (see also Sec. 2.1), this
offers an explanation for why chaotic systems with many degrees of freedom approach equilibrium
and stay there for most of the time, meaning that deviations, such as Poincaré recurrences, can
and will occur but very rarely.

With regard to echo protocols, therefore, a small imprecision in setting up the return state at the
point of reversal will usually lead to a final state that differs noticeably from the initial target state.
If the dynamics is chaotic in the classical sense, we can generically expect that these differences
grow with the waiting time τ . However, as outlined in the introduction to this chapter, differences
between two phase-space points are often hardly amenable from a macroscopic point of view,
precisely because macroscopic observables cannot distinguish between equivalent microstates. The
aim of the following two examples is therefore to demonstrate that macroscopic observables can
indeed detect those chaos indicators by means of echo protocols.

Two-dimensional gas in a box. As a first example of echo dynamics in a classical system, we
consider a gas of N two-dimensional spherical particles of radius R and mass m in a box V :=
{(x, y) : 0 ≤ x < Lx, 0 ≤ y < Ly} with periodic boundary conditions. The particles essentially
interact via hard-core collisions, modeled by a very steep pair potential of the form

U(r) := U0

[( 2R
r

)32 − 1
]2
Θ(2R− r) , (4.9)

where r denotes the center-of-mass distance of the two interacting particles, U0 is a constant, and
Θ(x) is the Heaviside step function as usual. Denoting the position and momentum of the ith

3Note that due to the conservation of phase space volume under Hamiltonian dynamics, this does not mean that all
points in the phase space compatible with the macroscopic configuration can be reached, but there will typically
be close-by reachable neighbors for any such point. More precisely, one could say that the diameter of the
time-evolved initial volume approaches the diameter of the full compatible phase space.
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Figure 4.1: Time evolution of a two-dimensional gas of particles in a box of dimensions 60 × 30 with
periodic boundary conditions, described by the classical Hamiltonian function (4.10) with m = 1, R = 1,
U0 = 0.2, prepared in a triangular block with all particles at rest except for the left-most one with initial
momentum (p0,x, p0,y) = (2, 0.1). Each panel depicts a snapshot of the system configuration after time t
as indicated in the top-left corner.
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Figure 4.2: Configuration of the system from Fig. 4.1 after completion of the imperfect-preparation echo
protocol, i.e., at time t = 2τ (black disks), for various waiting times τ . Imperfections are introduced by
rotations of the reversed momentum vectors by random angles drawn uniformly from [−δ, δ] with a. δ = 0.01
and b. δ = 0.04. For comparison, the perfect echo state is shown as well (gray disks).
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Figure 4.3: Time evolution of the relative mass MR/M in the right compartment forward in time (black)
and under the imperfect-preparation echo protocol (cf. Figs. 4.1 and 4.2) for various waiting times (color-
coded as indicated) and imperfections δ = 0.01 (light) and δ = 0.04 (dark). Inset: Echo peak height (4.11)
as a function of the waiting time τ for δ = 0.01 (light) and δ = 0.04 (dark).

100



particle by ri and pi, respectively, the classical Hamiltonian function of the system thus reads

H(p, r) =
∑
i

p2
i

2m +
∑
i<j

U(|ri − rj |) . (4.10)

To study the echo dynamics of macroscopic observables, we divide the box into left and right
compartments VL := {(x, y) ∈ V : x < Lx/2} and VR := {(x, y) ∈ V : x ≥ Lx/2}, respectively, and
observe the total mass MR in the right half. In thermal equilibrium, we thus have MR,mc = M/2
with M = Nm the total mass of all particles.

The system is prepared in a nonequilibrium target state with the particles arranged in a triangle
as shown in the top-left panel of Fig. 4.1. The momentum of the left-most particle at x = Lx/2,
y = Ly/2 is set to some finite value (px,0, py,0), whereas all other particles are at rest initially. We
then integrate the Hamiltonian (Newtonian) equations of motion resulting from (4.10) numerically
using a velocity-Verlet algorithm.

Several snapshots of the (forward) dynamics for N = 105 particles with m = 1, R = 1 in a box
with Lx = 60, Ly = 30, interaction strength U0 = 0.2, and initial momentum (px,0, py,0) = (2, 0.1)
of the left-most particle are shown in Fig. 4.1. The initial impetus of the left particle induces a
shock wave propagating through the triangular block and detaching the top and bottom particles
on the right (t ≈ 4). Once the these “corner particles” hit back onto the remaining block (t ≈ 30),
the triangular shape starts to dissolve and the dynamics becomes increasingly complicated and
“chaotic,” approaching a roughly homogeneous distribution of particles in the box (t & 100),
meaning that the system thermalizes.

To implement the imperfect-preparation protocol, we perform an effective time reversal at t = τ by
flipping all momenta from pi(τ) to −pi(τ) (yielding the “return state”), such that the system would
evolve back towards the triangular target state in the subsequent evolution with the Hamiltonian
function from (4.10). Imperfections in the return state are introduced by additionally rotating
all pi(τ) by random angles δi chosen independently from a uniform distribution in the interval
[−δ, δ].

As a consequence, the particle positions at time t = 2τ generally deviate from those at t = 0. This
is illustrated in Fig. 4.2 for two different choices of δ (rows) and four waiting times τ (columns),
where we show the resulting final configuration after completion of the entire protocol at t = 2τ
(black disks). Since the chaoticity of the dynamics inevitably entails some sensitivity against
numerical inaccuracies as well, we also plot the final state as obtained without perturbations of
the return state (δ = 0, gray disks) to ensure that numerical inaccuracies are not (yet) relevant.
Qualitatively, the figure suggests that the system is somewhat sensitive to the initial conditions
since the deviations between the perfect and perturbed target states (i.e., between the gray and
black configurations) clearly increases with increasing waiting time τ (as well as with increasing
δ).

Since we eventually intend to quantify this sensitivity by means of macroscopic observables, we
also monitor the massMR in the right compartment of the box as introduced above. From Fig. 4.2,
it is already qualitatively apparent that the associated echo peak

Fcl(δ, τ) := MR(τ)−MR,mc

MR(0)−MR,mc
(4.11)

will generally decay with both δ and τ . This is corroborated quantitatively in Fig. 4.3, where we
depict the time evolution of MR/M as well as the echo peak height (4.11) as a function of τ and
indeed observe that the signal is generally attenuated more the larger δ is and the longer we wait
to initiate the reversal.

Classical spins. Another important example, particularly with regard to the realizability of time
reversal in the quantum setting, are spin systems. We briefly review the investigations by Fine and
co-workers [293–296] concerning echo dynamics and chaoticity of classical spins. The employed
classical Hamiltonian function is commonly given by

H(S) =
∑
i↔j,α

Jα S
α
i S

α
j , (4.12)
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defined on different lattice geometries with i↔ j denoting a pair of neighboring sites. The Si =
(Sxi , S

y
i , S

z
i ) represent the classical spin degrees of freedom on the ith site such that S2

i = 1, and
Jx, Jy, Jz are coupling constants.

In Ref. [293, 294] it is demonstrated that, except for the (integrable) Ising model where two of
the Jα vanish, the dynamics of these systems is generally chaotic in the sense that the largest
Lyapunov exponent is positive, meaning that close-by states in phase space separate exponentially
with time. These classical spins systems thus generically exhibit sensitive dependence on initial
conditions.

Refs. [295, 296] deal with echo protocols similar to (4.5) in systems of the form (4.12) in particular
and monitor the dynamics of a macroscopic observable, namely, the magnetization in the x direction
Mx, whose equilibrium value is Mx

mc = 0. The imperfections introduced at t = τ consist of
rotations of the spin vectors around randomly chosen axes by random angles between [−δ, δ] with
δ = π/100. For our purposes, the key result of Ref. [295] is that the echo peak height Fcl(δ, τ) :=
Mx(2τ)/Mx(0) is found to decay exponentially with the waiting time τ , where the rate is twice the
largest Lyapunov exponent. This corroborates the chaotic character of the dynamics and illustrates
that echo protocols can indeed detect sensitive dependence on initial conditions. Similarly to the
classical two-dimensional gas studied above, the echo signal of classical spins is thus attenuated
with the waiting time τ .

Refs. [295, 296] also present a similar analysis for the quantum analog of the system (4.12), where
Si are spin operators of spin quantum number 1

2 or 15
2 . In the spin- 1

2 case [295], no exponential
decay of the echo peak height F(δ, τ) with τ is found. Instead, the authors report a power-law
decay of F(δ, τ) with τ for small times, and the results indicate that F(δ, τ) settles down to a
nonzero constant for larger values of τ . In the spin- 15

2 case [296], the echo signal shows some
resemblance to an exponential decay for small τ , yet it again approaches a nonzero plateau value
as τ increases. As one might have expected, the behavior of this system of large quantum spins
is thus somewhat closer to the classical case than the “more quantum” spin- 1

2 example, but there
are still marked differences especially for large τ . These observations foreshadow the persistence
of echo signals in many-body quantum systems to be derived in the subsequent Sec. 4.3 in a much
more general setting.

4.3 Imperfect preparation

After our excursion into the realm of classical mechanics, we resume the investigation of echo
dynamics in the quantum setting. As sketched in Sec. 4.1, there are two types of imperfections we
intend to consider. We begin with the imperfect-preparation scenario here, meaning that δ > 0
and ε = 0 in (4.5), leaving us with the protocol

ρT
τ−−−−→
H0

ρR
δ−−−−→
W

ρ′R
τ−−−−→
−H0

ρ′T . (4.13)

The inaccuracies thus affect only the short scrambling phase that models potential disruptions when
changing from the forward to the backward Hamiltonian, whereas the backward evolution itself is
considered to be clean and governed by the perfect inverse −H0. By analogy with the classical
examples discussed in Sec. 4.2, this protocol may roughly be understood as a probe for sensitive
dependence on initial conditions since it measures how a small difference between the return states
ρR and ρ′R propagates under the influence of the Hamiltonian H̃0 = −H0 and manifests itself after
the time τ in the target states ρT and ρ′T.

We remark that, on the one hand, the scrambling phase in this context may be regarded as an
actual short time interval during which the system evolves under the perturbation Hamiltonian
W . On the other hand, more abstractly, it may simply be viewed as a rotation in the pertinent
Hilbert space of dimension N by an “angle” δ around the (properly normalized) “axis”W since the
skew-Hermitian operators iW generate the unitary group U(N) or subgroups thereof, depending
on the choice of the W ensemble.
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4.3.1 Typical echo signal

Prerequisites. We begin by collecting the principal assumptions about the isolated many-body
system under study taken for granted in the derivations of this section. The first one is the standard
requirement that the system should have a well-defined macroscopic energy E . As explained in
Sec. 2.1, this means that there is an energy window IE as in (2.9) such that populations ρµµ(0) =
0〈µ|ρ(0)|µ〉0 of the initial state with Eµ /∈ IE are negligible for the dynamics. Consequently, the
state ρf(t) from (4.2) is concentrated on this energy window for all times t, too. We recall that
the dimension of this energy window is denoted by N and is exponentially large in the system’s
degrees of freedom according to (2.10). Contrary to the setting in Sec. 3, however, we do not
require the density of states D(E) from (2.11) to be constant, implying that we can also be a little
more tolerant regarding the extent of IE and allow somewhat larger windows.

The second principal assumption is that the perturbation W acting during the scrambling phase
and taking ρR to ρ′R is so small that it does not change the energy of the system macroscopically.
As a consequence, the state ρ(t) at any time, i.e., during the entire course of the protocol (4.13),
only significantly occupies energy levels with Eµ ∈ IE . Throughout the rest of Sec. 4.3, summations
over energy levels are thus implicitly understood to be restricted to the window IE of dimension
N .

For clarity of the presentation, we furthermore assume that the populations W〈n|ρR|n〉W of the
return state ρR in the eigenbasis {|n〉W } of the scrambling Hamiltonian W are approximately
uniformly distributed within the energy window IE . On the one hand, this is a natural assumption
in the absence of additional knowledge about the type of inaccuracies modeled byW . On the other
hand, the following findings can be generalized straightforwardly to take into account the precise
distribution of ρR in the eigenbasis of W by adapting the results from Ref. [100] accordingly (see
also the discussion following Eq. (4.27) below).

Ensemble of scrambling operators. The operator W models largely uncontrolled inaccuracies to
which the system is subjected during the scrambling phase. Yet it is clear that the character of
the system cannot change completely during that phase because it still entails, for example, the
same degrees of freedom. We choose to model this partial knowledge and partial ignorance about
the nature of W by an ensemble of random operators similar to the one adopted in Ref. [96]: The
eigenvalues EWn of W are assumed to be given and fixed, whereas the corresponding eigenvectors
|n〉W are drawn at random according to the Haar measure of the appropriate symmetry group
associated with the Hilbert space of the energy window IE . More precisely, the transformation
matrices

Ũnµ := W〈n|µ〉0 (4.14)

between the eigenbasis {|µ〉0} of the reference Hamiltonian H0 and the eigenbasis {|n〉W } of W
will be drawn from that symmetry group, and we explicitly consider the circular unitary ensemble
(CUE) associated with the unitary group U(N) as well as the circular orthogonal ensemble (COE)
of symmetric unitary matrices.

This modeling still leaves some flexibility allowing to incorporate additional information about the
system via the eigenvalues EWn . If no further information is available, one possibility is to choose
them related (or equal) to the actual system Hamiltonian H. Alternatively, for instance, the
well-known Gaussian Unitary Ensemble (GUE) is obtained by combining the CUE with randomly
drawn EWn from a semicircle distribution [163]. In the more abstract Lie-group perspective, where
the action of e−iWδ is viewed merely as a rotation in Hilbert space, the eigenvalues EWn represent
weights for the directions represented by the eigenvectors |n〉W .

Ensemble-averaged echo signal. To establish a prediction of the echo signal, we first compute
the average effect of the scrambling operators W from one of those ensembles on the state ρb(t)
during the backward evolution (cf. Eq. (4.4) with ε = 0). By means of the transformation matrices
Ũnµ from (4.14), the matrix elements of ρb(t) in the eigenbasis of H0 can be written as

0〈µ|ρb(t)|ν〉0 =
∑

α,β,m,n

e−i(Eν−Eµ)t ei(EWn −E
W
m )δ ei(Eβ−Eα)τ

0〈α|ρT|β〉0 ŨmαŨ∗mµŨ∗nβŨnν . (4.15)
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The corresponding time-dependent expectation value of the observable A during the backward
phase can then be computed as

〈A〉ρb(t) =
∑
µ,ν

0〈µ|ρb(t)|ν〉0 0〈ν|A|µ〉0 . (4.16)

According to the definition of the considered W ensembles, the only random quantities in the
relation (4.15) are the Ũnµ. Similarly as in Chapter 3 (cf. Eq. (3.142)), the ensemble-averaged
state is thus essentially determined by the average over four factors of transformation matrix
elements. For the CUE and COE considered here, such averages can be evaluated as detailed in
Ref. [197] (see also the explicit example from Sec. 2.3.2). Denoting ensemble averages by E[ · · · ]
again, we obtain

E[Ũn1α1Ũn2α2Ũ
∗
n1β1

Ũ∗n2β2
] = v1,1 (δα1β1δα2β2 + δn1n2δα1β2δα2β1)

+ v2 (δα1β2δα2β1 + δn1n2δα1β1δα2β2) .
(4.17)

Here the so-called symmetry factors v1,1 and v2 take the values v1,1 = 1
N2−1 and v2 = − 1

N(N2−1)
for the CUE or v1,1 = N+2

N(N+1)(N+3) and v2 = − 1
N(N+1)(N+3) for the COE. Since N � 1 in our

setting (see Eq. (2.10)), we can treat both cases simultaneously by settling for the leading-order
approximation v1,1 ' 1

N2 and v2 ' − 1
N3 . Taking the ensemble average in Eq. (4.15), we then

find

E[0〈µ|ρb(t)|ν〉0] = ei(Eν−Eµ)(τ−t)
0〈µ|ρT|ν〉0

[
1
N2

∑
m,n

ei(EWn −E
W
m )δ − 1

N2

]

+ δµν
N

[
1− 1

N2

∑
m,n

ei(EWn −E
W
m )δ

]
.

(4.18)

In the first term on the right-hand side of this equation, we identify the matrix elements

0〈µ|ρf(τ − t)|ν〉0 = ei(Eν−Eµ)(τ−t)
0〈µ|ρT|ν〉0 (4.19)

of the forward state from (4.2), which would constitute the perfect echo in the absence of inaccu-
racies. Recalling that we work exclusively within the energy window IE from (2.9), we furthermore
recognize the matrix elements

0〈µ|ρmc|ν〉0 = δµν
N

(4.20)

of the microcanonical density operator (2.5) in the second line of (4.18). To shed light on the
remaining terms, we introduce the normalized (or relative) density of states (cf. Eq. (2.11))

dW (E) := 1
N

∑
n

δ(E − EWn ) (4.21)

of the scrambling Hamiltonian W as well as its Fourier transform

d̂W (t) :=
∫

dE dW (E) eiEt . (4.22)

Taking all these considerations into account in Eq. (4.18), the ensemble-averaged backward state
is thus given by

E[ρb(t)] = ρf(τ − t)
[
|d̂W (δ)|2 − 1

N2

]
+ ρmc

[
1− |d̂W (δ)|2

]
. (4.23)

In view of (2.10), the term proportional to 1/N2 here is negligible. With the definition (4.6) and
Eq. (4.16), and observing the relation between ρ(t) and ρb(t) as defined below Eq. (4.4), we thus
conclude that the ensemble-averaged echo signal relates to the perfect echo as

E[A(τ + δ + t)] = |d̂W (δ)|2A(τ − t) . (4.24)
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Variance. In the second step of the typicality algorithm, we again consider the fluctuations of
the echo signal A(τ + δ + t) for a single realization W of the scrambling Hamiltonian around the
average behavior E[A(τ+δ+ t)], i.e., the variance of A(τ+δ+ t). In view of Eqs. (4.15) and (4.16),
computing this variance amounts to an ensemble average over eight factors of the transformation
matrices Ũnµ from (4.14). With the aid of Ref. [197], this calculation can be carried out as detailed
in Appendix E.6 and leads to

E
[
(A(τ + δ + t)− E[A(τ + δ + t)])2

]
≤ 11(∆A)2

N
+O

(
1
N2

)
. (4.25)

As usual, ∆A here denotes the measurement range of A from (2.18). Hence the variance decreases
inversely proportionally to the dimension N of the energy window IE and thus exponentially fast
in the degrees of freedom (see Eq. (2.10)).

Typical echo upon imperfect preparation. In this form, the bound in (4.25) combined with
Chebyshev’s inequality (2.29) implies that, for any given time point t, the probability to observe
noticeable deviations between the echo dynamics induced by a single scrambling Hamiltonian
W and the average over all W is exponentially suppressed in the degrees of freedom (cf. also
Eq. (3.157)). Similarly as in Sec. 3.6.1 (see Eq. (3.159) in particular), we can immediately extend
this statement to most time points in any preset time interval. Together with (4.24), we therefore
infer that the relative echo signal is given by

A(τ + δ + t)
A(τ − t) = |d̂W (δ)|2 (4.26)

for nearly all imperfections W and times 0 ≤ t ≤ τ . The modifications from the perfect echo
arising due to the scrambling phase are thus basically encoded in the Fourier-transformed density
of states d̂W (t). This function d̂W (t) thus plays the role of a response profile similarly to gλ(t)
in Chapter 3 (see Eqs. (3.146) and (3.160)). Evaluating (4.26) at t = τ , the height of the echo
peak (4.8), in particular, is typically found to be

F(δ, 0, τ) = |d̂W (δ)|2 . (4.27)

Hence the relative echo signal and the peak height in particular are given by the squared magnitude
of the Fourier transform (4.22) of the scrambling operator’s DOS (4.21) evaluated at the scrambling
time δ. Remarkably, this relative echo signal is independent of the waiting time τ , in striking
contrast to the classical case (see Sec. 4.2 and Refs. [293–295]). This suggests that sensitive
dependence on initial conditions, a prime indicator of chaos in classical systems, may not have a
direct quantum analog.

As mentioned in the beginning of this subsection, we adopted the working hypothesis that the
return state ρR populates the eigenstates of the scrambling Hamiltonian W approximately homo-
geneously. If this is not the case and the concrete occupations W〈n|ρR|n〉W are actually known,
the procedure from Ref. [100] can be employed to incorporate these imbalances in the echo-signal
prediction. The resulting echo signal is still structurally similar to Eq. (4.26), but the integrand
of the function d̂W (t) from (4.22) must be supplemented by an additional weight factor depending
on the populations of levels around E, i.e., it becomes the Fourier transform of the “occupation
density” d′W (E) := 1

N

∑
n δ(E − EWn )W〈n|ρR|n〉W . Importantly, the right-hand side of (4.26) will

still be independent of t, but it will usually depend on τ now since the occupation density d′W (E)
of ρR = ρf(τ) in the eigenbasis of W generally changes as long as the system is out of equilibrium,
and even in equilibrium it will keep changing. Nevertheless, if the reference system H0 equilibrates,
then also the modified d′W (E) will eventually become independent of τ (on a coarse-grained scale)
and we will observe a persistent and asymptotically constant echo peak similar to (4.27).
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4.3.2 Examples

To verify the somewhat surprising persistence of echo peaks in quantum many-body systems, we
consider two explicit examples.

Spin-1/2 XXX chain. The first example is the paradigmatic spin- 1
2 XXX chain, whose Hamilto-

nian comprises a one-dimensional lattice of spin degrees of freedom that are coupled via isotropic
Heisenberg interactions,

H0 := −
L−1∑
i=1

σi · σi+1 . (4.28)

Here σi = (σxi , σ
y
i , σ

z
i ) is a vector of Pauli matrices acting on site i. We prepare the system in

the target state ρT = |ψ〉〈ψ| with the Néel state |ψ〉 = |↓↑↓↑ · · · 〉 and monitor the staggered
magnetization in the z direction,

Mz
s := 1

L

L∑
i=1

(−1)i σzi . (4.29)

Note that the initial state significantly occupies levels across the entire spectrum of H0, hence
formally the energy window from (2.9) spans the full Hilbert space. (Recall that we do not rely
on the—otherwise often employed—assumption of a constant DOS in the present setting.) The
scrambling Hamiltonian W is chosen of the form

W =
∑
i<j

3∑
α,β=1

Jαβij σαi σ
β
j (4.30)

with the couplings Jαβij drawn independently from a standard normal distribution. On the one
hand, this scrambling Hamiltonian thus complies with the general structure of the spin model and
its interactions. On the other hand, the erratic, uncontrolled nature of the modeled imperfections
is reflected in the random choice of the couplings. Note that in the form (4.30), the operator norm
of W scales as L2. Since we will only consider fixed values of L in the following, this is of no
further concern. However, if one intends to compare the effect of the perturbation across different
system sizes, the scaling of L can of course make a difference. In particular, in the more abstract
perspective of W as a generator of Hilbert space rotations (see below Eqs. (4.13) and (4.14)), the

a

0 1 2 3 4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

t

〈M
sz
〉 ρ

(t
)

●●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●

0 0.025 0.05 0.075

0

0.25

0.5

0.75

1

δ

ℱ
(δ

,0
,τ
)

b

0 5 10 15 20

t

●●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●

0 0.025 0.05 0.075

0

0.25

0.5

0.75

1

δ

ℱ
(δ

,0
,τ
) δ

0.0005

0.015

0.03

0.04

0.05

0.09

Figure 4.4: Echo dynamics under the imperfect-preparation protocol (4.13) in the spin- 1
2 XXX chain

from (4.28) for various scrambling times δ and waiting times a. τ = 2 and b. τ = 10. The observable
is the staggered magnetization (4.29), the initial (target) state ρT = |ψ〉〈ψ| with |ψ〉 = |↓↑↓↑ · · ·〉 is
the Néel state. Solid: Numerical results from exact diagonalization of a chain of length L = 14 for the
forward (black) and backward (color-coded as indicated in the right panel) dynamics. Dashed: Analytical
prediction (4.26) for the perturbed backward dynamics using the analytically known Fourier-transformed
DOS d̂W (t) from (4.32) and 〈Mz

s 〉ρmc = 0 by symmetry. The dashed lines lie essentially on top of the solid
ones and are therefore sometimes hardly distinguishable. Dotted: Levels of the echo peak F(δ, 0, τ)A(0),
showing that the height is independent of τ . Insets: Comparison of the numerical (dots) and theoretical
(solid line, cf. Eq. (4.27)) echo peak height F(δ, 0, τ) from (4.8) as a function of the scrambling time δ.
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Figure 4.5: Echo dynamics under the imperfect-preparation protocol (4.13) in the spin- 1
2 XXX chain

from (4.28). a. Relative echo peak height (4.8) as a function of δ for the same setup as in Fig. 4.4, but
very short waiting times τ . Dots: Numerical results from exact diagonalization for various τ as indicated.
Solid: Theoretical (τ -independent) prediction (4.27) using d̂W (t) from (4.32) and 〈A〉ρmc = 0. b. Time-
dependent expectation values for the observable A = (|ν1〉00〈ν2|+ |ν2〉00〈ν1|)/2 and target state ρT = |φ〉〈φ|
with |φ〉 = (|ν1〉0 + |ν2〉0)/

√
2 for τ = 26 and various scrambling times δ, where ν1 = 7936 and ν2 = 8448

(such that ν1 + ν2 = 214 = N).

operator W essentially encodes a rotation axis and should therefore be normalized such that its
magnitude is independent of the system size.

Of particular convenience for our present purposes is the fact that the DOS dW (E) of W is known
exactly for L� 1 [297]. Namely, it assumes the form of a Gaussian of mean zero and variance

σ2
DOS = 9L(L− 1)/2 . (4.31)

For its Fourier transform from (4.22), we therefore conclude that it is also Gaussian,

d̂W (t) = e−σ
2
DOSt

2/2 . (4.32)

This allows us to compare our theoretical predictions (4.26) and (4.27) to a numerical simulation
of the system (4.28) subject to an imperfect-preparation perturbation (4.30) without any sort of
fitting. For a chain of length L = 14, observing the staggered magnetization (4.29) and starting
from the Néel state, such a comparison is carried out in Fig. 4.4. For the various choices of
the scrambling and waiting times δ and τ , respectively, the analytical prediction is in excellent
agreement with the numerical results and all features of the theory are recovered: The perturbed
echo signal resembles the perfect echo, but is attenuated as quantified by the Fourier-transformed
DOS of the scrambling operator W : increasingly strongly with increasing δ, but independently of
τ .

However, we remark that there is in fact a residual dependence on τ for very short values τ . 1
below the relaxation time. This is shown in Fig. 4.5a, which displays the relative echo peak
height (4.8) as a function of δ for various τ ≤ 1. We observe that the mitigation of the echo
peak is less than theoretically predicted, with the discrepancies increasing as τ is decreased. As
explained below Eq. (4.27), such deviations from the prediction (4.27) for times below the system’s
relaxation time can occur due to a violation of the assumption that the return state ρR is uniformly
distributed across the levels |n〉W of W (see also third paragraph of this Sec. 4.3.1). Due to its
few-body spin structure, the scrambling Hamiltonian (4.30) is still sensitive to polarizations of
the individual lattice sites, and the special pattern of the Néel state is only gradually washed out
during the forward evolution. More subtlely, and as usual in typicality arguments (cf. Sec. 2.3),
deviations may also be caused by dependencies or correlations between H, W , A, and ρT that are
disregarded by the chosen ensemble of scrambling operators. Again, if such correlations play a role,
then their effect is expected to be most pronounced when ρR is still out of equilibrium because
this is the regime where correlations are indeed crucial. Similar dependencies for relatively small
values of τ have also been observed, for instance, in Refs. [295, 296, 298]; we will come back to this
point in the discussion in Sec. 4.5.
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Figure 4.6: Echo dynamics under the imperfect-preparation protocol (4.13) in a random matrix model
with H0 as in (3.27) with level spacing ε = 1/512. The observable A is a random matrix from the GOE,
and the target state ρT = |ψ〉〈ψ| is constructed according to the dynamical typicality prescription (2.39)
with κ = 1 and Π projecting onto the central 2048 states. Solid: Numerical time evolution from exact
diagonalization for a scrambling Hamiltonian W drawn at random from the GUE, waiting times τ =
0.5, 2, 5, and various scrambling times δ as indicated. Dashed: Corresponding theoretical prediction (4.26)
with d̂W (t) from (4.33) and 〈A〉mc = 0. Dotted: Levels of the echo peak height (4.27).

Then again, we point out that small-τ deviations of this kind are not found universally in the
system (4.28) with the perturbation (4.30). An example without such deviations is the setup
from Fig. 4.5b, which involves the same H0 from (4.28) and W from (4.30) as in Figs. 4.4
and 4.5a. However, the initial state is now given by a superposition of two eigenstates |ν1〉0
and |ν2〉0 of the reference Hamiltonian H0 with ν1 = 7936 and ν2 = 8448, where the indices
run from 1 to N = 2L = 16 384 and increase with increasing energy Eν . The observable
A = (|ν1〉00〈ν2| + |ν2〉00〈ν1|)/2 quantifies cross-correlations between these two eigenstates and ex-
hibits perpetual oscillations during the forward evolution since the state ρf(t) (cf. Eq. (4.2)) is
periodic with frequency Eν2 −Eν1 . In particular, the system does not equilibrate in this scenario,
but the analytical prediction again describes the numerically observed behavior remarkably well.

Random matrix example. As a second illustrational example, we consider an artificial, but clean
random matrix system which, by construction, does not exhibit any of the aforementioned corre-
lations. For the reference system, we choose the Hamiltonian H0 from (3.27) with a level spacing
ε = 1/512 and dimension N = 214 = 16 384. The considered observable is drawn randomly from
the Gaussian Orthogonal Ensemble (GOE). The initial state is ρ(0) = |ψ〉〈ψ| with |ψ〉 generated as
in (2.39) with κ = 1 and Π projecting onto the central 2048 states. The scrambling Hamiltonian
W is a random matrix from the Gaussian Unitary Ensemble (GUE), so dW (E) is a semicircle of
radius 2 [163] and the corresponding Fourier transform from (4.22) is given by

d̂W (t) = J1(2t)
t

(4.33)

with the Bessel function J1(x) of the first kind of order 1. In essence, this is thus an explicit
realization of the ensembles of imperfections introduced around Eq. (4.14).

As in the previous examples from Figs. 4.4 and 4.5, all parameters in (4.26) are known explicitly
and the analytical prediction is free of any fit parameters. Theory and numerics are in excellent
agreement, even for the shortest waiting time τ = 0.5 where the system has not yet equilibrated
upon initiation of the time reversal.

4.4 Imperfect reversal

A second special case of the general echo protocol (4.5) involves only inaccuracies of the imperfect-
reversal type (see below Eq. (4.4)), such that δ = 0 and ε > 0. Hence the echo protocol for this
section reads

ρT
τ−−−−−→
H0

ρR
τ−−−−−−→

−H0+εV
ρ′T , (4.34)

108



i.e., we have an imperfect version of the time-reversed Hamiltonian −H0 acting continually during
the backward phase, but the state at the point of reversal ρR is assumed to be unaffected. As
mentioned in Sec. 4.1, this scenario is of particular relevance for echo experiments since in practice
only the dominant part of the respective Hamiltonian can be effectively reversed and the precision
to carry out the required sophisticated manipulations is ultimately limited.

We remark that (4.34) entails as a special case the so-called Loschmidt echo [284, 299, 300] when
choosing A = ρT = |ψ〉〈ψ| with a pure state |ψ〉. This Loschmidt echo was one of the first
popular quantifiers for irreversibility in quantum systems, but it is notoriously difficult to measure
in macroscopic systems [285, 298, 301] (see, however, Ref. [300] for an experimental realization).

4.4.1 Typical echo signal

Prerequisites and perturbation ensembles. In the imperfect-reversal protocol (4.34), the struc-
ture of the Hamiltonian H̃ε := −H0 + εV governing the backward evolution is akin to Eq. (3.1),
i.e., the setup for perturbed relaxation considered in Chapter 3. Indeed, it is natural to take the
inaccuracies present during the backward phase to be “ordinary” perturbations with a structure
similar to those introduced in Secs. 3.2 and 3.3. In this spirit, we will consider the same classes
of perturbation ensembles from Sec. 3.3 for the operators V in (4.34) again, as defined specifically
in Eqs. (3.23) and (3.24). We recall that these comprise, in particular, banded and sparse per-
turbation matrices Vµν = 0〈µ|V |ν〉0, both of which are common features in realistic perturbations
[130, 134, 209, 219, 230, 232–235].

Consequently, the reference system H0 should satisfy the same prerequisites as formulated in
Sec. 3.2. Notably, and contrary to Sec. 4.3, we require again that the density of states within the
energy window (2.9) should be approximately constant as in (2.13).

Ensemble-averaged echo signal and variance. From a mathematical point of view, evaluating
the ensemble-averaged echo signal and its variance for the protocol (4.34) and the perturbation
ensembles from Sec. 3.3 is merely a corollary of the results from Sec. 3.6.1, even though the physical
perspective is quite distinct. By analogy with (3.5), we denote the overlap between an eigenstate
|n〉ε of H0 − εV and |µ〉0 of H0 by Unµ := ε〈n|µ〉0. The corresponding eigenvalues are Eεn and Eµ,
respectively. Focusing on the expectation values of the observable A during the backward phase,
we then obtain

〈A〉ρb(t) =
∑
m,n

∑
µ1,µ2,
ν1,ν2

e−i(Eεn−E
ε
m)t ei(Eν2−Eµ1 )τ

0〈µ1|ρT|ν2〉0 0〈µ2|A|ν1〉0 Umµ1Unµ2U
∗
mν1

U∗nν2
. (4.35)

To take the ensemble average, we restrict to the regime of small ε since the inaccuracies should not
prevail in the resulting dynamics. Employing Prerequisite (v) from Sec. 3.2 to replace Eεn − Eεm
by En − Em upon averaging, we can then substitute the result (3.35) for the fourth moment of
eigenvector overlaps and find that

E[〈A〉ρb(t)] =
∑
n

dnnµν 0〈µ|ρT|µ〉0 0〈ν|A|ν〉0

+
∑
m,n

e−i(En−Em)t
∑
µ,ν

[
ei(Eν−Eµ)τ dmnµν 0〈µ|ρT|ν〉00〈ν|A|µ〉0 + fmnµν 0〈µ|ρT|µ〉0 0〈ν|A|ν〉0

]
(4.36)

with dmnµν and fmnµν as defined in Eqs. (3.35b) and (3.35c), respectively. The remaining sums in
this relation can be calculated similarly as in Sec. 3.6.1 (see Eqs. (3.144)–(3.148)), meaning that
we eventually arrive at

E[〈A〉ρb(t)]− 〈A〉̃ρε = e−2παv|t|ε2 [
〈A〉ρf(τ−t) − 〈A〉̃ρε

]
+R(t) (4.37)

with the intrinsic perturbation strength αv = σ2
v/ε from (3.12), ρf(t) from (4.2), and where ρ̃ε

and R(t) are defined as in Eqs. (3.150) and (3.151), respectively, observing that ρ(0) = ρT. As
explained in Sec. 3.6.3, the term R(t) is generally negligible (see the discussion around Eqs. (3.185)
and (3.186)) and we can commonly identify 〈A〉̃ρε = 〈A〉ρmc (see above Eq. (3.188)). Defining
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α̃v := 2παv and employing the definition (4.6), the ensemble-averaged echo signal thus takes the
form

E[A(τ + t)] = e−α̃vtε
2
A(τ − t) (0 ≤ t ≤ τ) . (4.38)

Computing the variance of A(τ + t) within the perturbation ensemble proceeds analogously to
Sec. 3.6.1 again. Similarly as in Eq. (3.154), we obtain

E
[
(A(τ + t)− E[A(τ + t)])2

]
≤ c(∆A)2

Nv
(4.39)

with some constant c . O(103), the spectral range ∆A of the observable, and the number Nv of
unperturbed levels mixed by the perturbation. Considering (3.9), we conclude that the variance
decreases again exponentially with the system’s degrees of freedom.

Typical echo upon imperfect reversal. Invoking the same machinery as usual, the bound (4.39)
on the variance of A(τ + t) implies, via Chebyshev’s and Markov’s inequalities, that the observable
echo signal for an individual (sufficiently weak) perturbation drawn at random from any admitted
ensemble will be practically indistinguishable from the average (4.38) for nearly all times t ∈ [0, τ ].
Consequently, the relative echo signal in the imperfect-reversal scenario is found to be excellently
approximated by

A(τ + t)
A(τ − t) = e−α̃vtε

2
(4.40)

for the vast majority of imperfections V and times 0 ≤ t ≤ τ . For the relative height of the echo
peak (4.8), this implies

F(0, ε, τ) = e−α̃vτε
2
. (4.41)

In contrast to the imperfections at the point of reversal discussed in Sec. 4.3, the continuous
exposure to perturbations during the backward evolution is reflected in a dependence of the peak
height on the waiting time τ . The mitigation of the echo peak is exponential in the waiting time
τ (at fixed ε) and Gaussian in the magnitude of inaccuracies ε (at fixed τ).

We confined ourselves to the limit of weak imperfections here. In view of the considerations
from Sec. 3.6.2, the result (4.41) is thus expected to describe the observable echo peak for suffi-
ciently small ε or sufficiently large τ . Furthermore, the relations (4.40) and (4.41) are generalized
straightforwardly to the regime of larger perturbation strengths and/or smaller times by replac-
ing the right-hand sides with the corresponding response profile (3.146) (i.e., |gε(t)|2 and |gε(τ)|2,
respectively).

4.4.2 Examples

Spin-1/2 XXX chain. To validate the theoretical predictions (4.40) and (4.41), we consider the
spin- 1

2 XXX chain with Hamiltonian H0 from (4.28) again. As before, we focus on the staggered
magnetization Mz

s from (4.29), and we model the imperfections V acting during the backward
evolution by an operator similar to (4.30), i.e., V =

∑
i<j

∑
α,β J

αβ
ij σ

α
i σ

β
j with independent, Gaus-

sian distributed Jαβij of vanishing mean and unit variance. The target state ρT is based on the
Néel state |↓↑↓↑ · · · 〉, too, but in order to satisfy the requirement of a homogeneous density of
states of H0 (cf. Prerequisite (i)), we apply an additional Gaussian filter ΠE,∆E (cf. Eq. (3.193)
and Refs. [133, 201, 202]) to obtain ρT = |ψ〉〈ψ| with

|ψ〉 ∝ Π0,∆E |↓↑↓↑ · · · 〉 (4.42)

and ∆E = 1.3. For the considered chain of length L = 14, this means that roughly 15 % of the total
N = 214 levels have energies Eµ ∈ [−∆E , ∆E ]. The initially observed staggered magnetization 〈A〉ρT

is thus reduced from its maximal value of 1, but still noticeably out of equilibrium (see Fig. 4.7).

To estimate the relevant intrinsic perturbation strength α̃v from (3.12), we focus on the window
IE = [−2∆E , 2∆E ], which includes about 95 % of the weight of the Gaussian filter. Upon exact
diagonalization of H0 from (4.28), we then find ε−1 ≈ 962 for the density of states (inverse mean
level spacing). To determine the scale σ2

v from (3.11), we inspect the matrix elements Vµν =
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Figure 4.7: Echo dynamics under the imperfect-reversal protocol (4.34) in the spin- 1
2 XXX chain from (4.28)

subject to imperfections V of the form (4.30) for reversal times τ = 5, 7.5, 10 and different perturba-
tion strengths ε as indicated. The observable is the staggered magnetization (4.29), the target state is
ρT = |ψ〉〈ψ| with the filtered Néel state |ψ〉 from (4.42). Solid: Numerical results from exact diagonal-
ization of a chain of length L = 14 for the forward (black) and backward (colored) dynamics for τ = 5
(red-toned curves), τ = 7.5 (blue-toned), and τ = 10 (green-toned). Dashed: Corresponding analytical
prediction (4.40) using the numerically determined value α̃v = 440 and 〈Mz

s 〉ρmc = 0. Inset: Numerical
(dots) and theoretically predicted (lines) relative echo peak heights (4.8) as a function of the perturbation
strength ε for the three values of τ .

0〈µ|V |ν〉0 in the window IE and average within a band of 1000 states (i.e., for 0 < |Eµ −Eν | . 1).
This yields σ2

v ≈ 0.0729 and hence α̃v = 2πσ2
vε
−1 ≈ 440. The thermal expectation value is

〈Mz
s 〉ρmc = 0 as before. Consequently, all parameters in the predictions (4.40) and (4.41) are again

known explicitly, and we can compare theory and numerics without any fit parameters.

This comparison for the described setup is exemplified in Fig. 4.7, and we observe good agreement
of the prediction with the numerical data. Minor deviations occur for small τ and large ε. As
explained below Eq. (4.41), this is the regime where the approximation e−α̃vtε2 on the right-hand
side of (4.40) must eventually be replaced by the more general response profile (3.146).

Experiments. In standard applications such as magnetic resonance imaging, it is commonly taken
for granted that the echo signal decays exponentially with the waiting time τ [288]. The concrete
“imperfections” acting in the corresponding setting are remnant interactions among the spins and
with the environment (see also the discussion below Eq. (4.5)). The theory developed in this
section demonstrates that such an exponential decay can indeed be expected generically as long
as the influence of the imperfections is sufficiently weak.

An explicit echo experiment for interacting spins was conducted, for example, by Levstein et al.
in Ref. [43], investigating nuclear spins in polycristalline samples of cymantrene and ferrocene.
The authors observe that the echo peak height indeed decays exponentially with the waiting time
τ in the cymantrene sample, whereas their data for the ferrocene sample lead them to suggest
a Gaussian decay. As a matter of fact, the imperfections (i.e., the experimentally nonreversible
components of the Hamiltonian) are much stronger in the latter case [43], such that deviations
from the exponential decay are in line with our general observations below Eq. (4.41). Moreover,
in view of the limited size of the data set (only four points), the crossover towards a Gaussian-like
shape is compatible with our prediction of an eventually Bessel-like response profile (3.165) since
both functional forms could fit the data equally well.

4.5 Combined effect and discussion

Combining imperfect preparation and reversal. As motivated in Sec. 4.1, in any real experi-
ment we will presumably encounter both imperfect-preparation and imperfect-reversal inaccura-
cies. Hence the generally appropriate echo protocol is of the form (4.5). As long as the underlying
mechanisms behind the inaccuracies W (imperfect preparation) and V (imperfect reversal) are
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independent in the sense that their effect can be modeled by statistically uncorrelated random
operatorsW and V , it is straightforward to merge the results from Secs. 4.3 and Secs. 4.4. Such an
assumption is not unreasonable because the two types of imperfections act during different stages
of the protocol and under somewhat distinct circumstances. In particular, the dominant contribu-
tions during the backward evolution (imperfect reversal) will usually be due to unreverted parts
of the Hamiltonian, whereas the inaccuracies during the scrambling phase (imperfect preparation)
are mostly due to experimental limitations such as a finite switching time from H0 to −H0 and
improper isolation during that change.

The relative echo signal under the joint, but independent influence of both imperfections is then
simply obtained by multiplying the right-hand sides of Eq. (4.26) and (4.40), i.e.,

A(τ + δ + t)
A(τ − t) = |d̂W (δ)|2 e−α̃vtε

2
. (4.43)

This prediction of the backward-phase dynamics for the general echo protocol (4.5) represents the
main result of this chapter. Likewise, the relative echo peak height is then given by

F(δ, ε, τ) = |d̂W (δ)|2 e−α̃vτε
2
. (4.44)

We emphasize once more that both types of inaccuracies typically attenuate the observable echo
signal, and for both of them the mitigation becomes stronger with growing magnitude δ or ε,
but only the continuously acting inaccuracies of the imperfect-reversal type lead to a stronger
suppression with increasing waiting time τ .

Relation to previous works. As already mentioned in Sec. 4.1, echo protocols have been explored
in a variety of experimental setups; see, for instance, Refs. [37–44, 287]. Then again, there are
a few more theoretical studies of echo protocols of the forms (4.13) or (4.34) in the context of
quantum many-body systems [285, 295, 296, 298, 301], which are also oriented more strongly
towards extracting general principles. Yet these studies assume a somewhat different perspective
than our present approach.

Elsayed, Fine, and co-workers [295, 296] concentrated mostly on similarities and differences in the
echo peak height F(δ, 0, τ) from (4.8) between spin models in classical and quantum mechanics
when adopting the imperfect-preparation scenario (cf. Secs. 4.2 and 4.3). Based on predecessor
works [293, 294], they reinforce the exponential attenuation of the echo peak height in classical
systems. In the quantum setting, by contrast, they find a power-law attenuation with τ for short
times τ . In all their numerical simulations of quantum systems, however, F(δ, 0, τ) never fully
decays as a function of τ and instead eventually settles down to distinctly nonzero values, in
accordance with the asymptotic persistence of quantum echoes we identified in Sec. 4.3. (Recall
that a residual dependence for short τ below the relaxation time does not contradict our analysis
there as explained below Eq. (4.27).)

The studies [285, 298, 301] by Schmitt, Kehrein, and co-workers focus mostly on the thermody-
namic limit in quantum systems and explore which of the classical chaos indicators carry over
to the quantum setting in formally infinite systems. Our present investigation, which explicitly
considers large, but finite systems, therefore assumes a complementary perspective. In particular,
Refs. [285, 298] find a persistent contribution for the imperfect-preparation setting in their numer-
ical simulations of finite systems, but employ a somewhat provisional extrapolating projection to
argue that this persistent echo vanishes in the thermodynamic limit.

Our results from Sec. 4.3 suggest that the scaling of the scrambling Hamiltonian W with the
system size (e.g., the degrees of freedom f) is decisive in this context. If W grows extensively
with f , meaning that the relative density of states dW (E) from (4.21) broadens accordingly, then
its Fourier transform d̂W (t) from (4.22) will decay ever faster as f increases and will eventually
become zero instantaneously for all t > 0. In contrast, if W does not grow extensively with f and
hence the (effective) width of dW (E) is bounded for all f , then also the echo peaks are predicted to
persist for sufficiently small scrambling times δ. A similar observation that the limits δ ‖W‖ → 0
and f → ∞ do not commute was also made in Ref. [298]. Which type of scaling is appropriate
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depends to some extent on the character of the imperfections in a concrete setup and also on
the physical motivation for considering imperfect echoes in the first place (see also the discussion
below Eq. (4.30)). Recalling that dW (E) is actually the relative density of states of W in the
significantly populated energy window IE (cf. Eq. (2.9)), an unbounded broadening of this energy
window with f is unphysical because it would entail a macroscopically unrealistic Schrödinger-
cat state. This is reinforced by the extension discussed below Eq. (4.27), whereby it is in fact
the Fourier transform of the return state’s energy distribution d′W (E) which encodes the effect
of inaccuracies. In any case, we point out that chaos theory in classical mechanics does usually
not operate in the thermodynamic limit and actually often considers rather small systems. Hence
working in the thermodynamic limit is generally not an immediate imperative when comparing
chaotic dynamics in classical and quantum systems.

An exemplary investigation of the imperfect-reversal setting in the transverse-field Ising model
was conducted in Ref. [301]. The authors suggested a classification of systems into “irreversible”
or “reversible” depending on whether the echo peak decays exponentially with τ (“irreversible”)
or slower (“reversible”). In this sense, the findings from Sec. 4.4 in conjunction with the analysis
from Sec. 3.6.2, which showed that the exponential decay of the response profile prevails at large
times, indicate that quantum many-body systems are generically “irreversible.” However, like all
other potential indicators of chaos and irreversibility, such a classification does certainly not cover
all practically relevant aspects.

Another such indicator, which gained some popularity recently, are so-called out-of-time-ordered
correlators (OTOCs) [302, 303], which are believed to encode a rough analog of Lyapunov exponents
from classical chaos theory in quantum systems, even though this correspondence is far from
complete [304, 305]. Due to their considerably more involved structure, comprising products of
two different observables evaluated at different times, we do not see an immediate relation to
our present investigation of echo dynamics and thus refrain from attempting any more detailed
comparison. The same also applies to other proposed indicators of quantum chaos such as level
statistics [163, 233] or eigenstate thermalization (see Sec. 2.2.2).

Finally, from a methodological point of view, the imperfect-preparation scenario is related to the
transportless equilibration theory for isolated many-body quantum systems from Ref. [96] (see also
Refs. [97, 100] and Sec. 2.3.2). In this context, the scrambling phase can be understood as a typical
relaxation process under the action of the scrambling Hamiltonian, and the system’s past and future
(i.e., the forward and backward evolution stages) are somewhat trivial time translations of the state
that could be gauged away in principle by a redefinition of the observable (see also Ref. [286]).
Similarly, and as already mentioned in Sec. 4.4, the imperfect-reversal scenario can essentially be
seen as a corollary of the perturbed relaxation theory from Chapter 3 and Ref. [226].

Conclusions. This chapter’s study of echo dynamics in isolated many-body quantum systems
dealt with two types of imperfections accompanying the concomitant effective time reversal. The
general setup stars a quantum system prepared in a nonequilibrium state and evolving for a cer-
tain waiting time τ , followed by another period of duration τ during which it evolves under the
time-reversed Hamiltonian. The first type of inaccuracies, named imperfect preparation, entails a
distortion of the system’s state at the point of reversal. The second type, called imperfect reversal,
emulates an inaccurate implementation of the time-reversed Hamiltonian. In the spirit of typicality
methods, we modeled these imperfections by suitable random operators, calculated their average
effect, and showed that the individually observed behavior under most of these inaccuracies is
practically indistinguishable from the average. This promotes the average behavior to a prediction
for a single run of the suggested protocol.

Both types of imperfections generically lead to an attenuation of the observable echo signal and
the peak height after completion of the entire protocol. For sufficiently small inaccuracies of
the imperfect-reversal type, the suppression of the peak is Gaussian in the magnitude ε of the
perturbation and exponential in the waiting time τ , in line with the commonly observed behavior
in applications. The inaccuracies of the imperfect-preparation type, in contrast, do not entail such
a decay with τ . Whereas a mild dependence of the observable peak height on τ can occur for small
τ below the relaxation time, the peaks are predicted to become independent of τ in the long run
and to persist ad infinitum. This behavior of quantum systems is manifestly different from similar
classical examples as demonstrated in Sec. 4.2 and Refs. [293–295].
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A detailed test of our analytical predictions against numerical simulations of a spin- 1
2 XXX chain

revealed good agreement, notably without resorting to any kind of fitting procedure. Another
noteworthy aspect of these numerical verifications is that the exemplary imperfections V and W
were of similar structure and both given by (4.30), but their modeling in terms of random matrix
ensembles was quite different. In particular, the crucial characteristic of the W ensembles is the
(relative) density of states dW (E) from (4.21), whereas the crucial characteristic of the V ensembles
is the perturbation profile (3.10) or, for the case of sufficiently weak perturbations, the intrinsic
strength (3.12). In view of the convincing agreement between the respective theories and numerics
in Figs. 4.4, 4.5 and 4.7, the explicitly employed imperfections from (4.30) can thus be embedded
into both ensembles, with each of them highlighting or sensing different features of the “true”
imperfections.

Changing perspectives, echo protocols such as (4.5) may be seen as an example for a driven system,
i.e., a setup in which some external control parameter can be manipulated such that certain
components of the Hamiltonian vary in time. The echo protocols (4.13) and (4.34) considered
in this chapter involve switching between two distinct (constant) Hamiltonians (or three for the
combined protocol (4.5)), so the resulting time dependence is still rather simple. Carrying on along
these lines, an inspection of different and more versatile driving protocols will be at the heart of
the ensuing Chapter 5.
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5 Driven systems

The relaxation theory from Chapter 3 describes how many-body quantum systems approach equi-
librium under the influence of reasonably weak perturbations, but still being completely isolated
and on their own. In particular, system parameters like interaction strengths or force fields were
assumed to be fixed once and for all.

In this chapter, we will soften these restrictions to some extent by studying the response of a
given system to perturbations with a time-dependent amplitude. The general procedure is already
familiar from Chapter 3: Starting from the known behavior of some reference system, we will derive
predictions for the time-dependent expectation values of experimentally realistic observables for a
related system subject to time-dependent perturbations. Specific applications include periodically
driven many-body quantum systems [282, 283] and finite-time quantum quenches [278–281].

The derivation will build again on a typicality argument, supplemented by a suitable transformation
of the time-dependent problem into a family of time-independent problems to which previous
methods and results can be applied. The resulting predictions of the dynamics will be most reliable
for relatively short times, which can nonetheless extend significantly beyond the characteristic
time scale of the driving in certain parameter regimes. Notably, our present approach is thus
complementary to the majority of studies for periodically driven systems from the literature, which
predominantly focus on the long-time behavior at stroboscopic times, meaning that the dynamics
is assessed at integer multiples of the driving period only (see, for example, Refs. [306–309]).

In Sec. 5.1, we will describe the setup more concretely and outline the computational strategy.
In Sec. 5.2 we will collect prerequisites of the derivation and assess the expected validity of the
eventual theory, which in turn will be established in Sec. 5.3. We will then compare the theory to
concrete examples in Sec. 5.4 and finally discuss the result in a broader context in Sec. 5.5.

5.1 Setup and methods

Goal. Similarly as in Chapter 3, we intend to investigate the dynamics of many-body quantum
systems under the influence of weak-to-moderate perturbations, meaning that the total Hamilto-
nian is composed of two operators: a reference Hamiltonian H0 and a perturbation V , both of
which should exhibit basically the same properties as before. Contrary to Chapter 3, however, we
now allow the coupling strength λ = λ(t) to be time dependent, hence the total Hamiltonian

H(t) := H0 + λ(t)V (5.1)

becomes time dependent, too. The function λ(t) will be called the driving protocol. As before, we
study the dynamics in terms of expectation values of experimentally realistic observables A and
assume that the system is prepared in some pure or mixed initial state ρ(0) with a well-defined
macroscopic energy (see Sec. 2.1). The state

ρ(t) = U(t) ρ(0)U(t)† (5.2)

at any later time evolves according to the Liouville-von Neumann equation (2.2), i.e., U(t) solves
Eq. (2.3) with t0 = 0 fixed. Since the Hamiltonian is time dependent, however, this solution is no
longer of the simple exponential form e−iHt.

Another immediate consequence is that the system is no longer isolated because the adjustment of
the coupling parameter λ(t) apparently requires some external manipulations. As a result, both
the occupations of the (instantaneous) Hamiltonian’s energy levels and the energy expectation
value 〈H(t)〉ρ(t) will generally change with time. Nevertheless, we will assume that these effects
are reasonably small on the time scales of interest as will be laid out in more detail in Sec. 5.2
below.

The overall goal of this chapter is again very similar to Chapter 3: Assuming that we know the
dynamics 〈A〉ρ0(t) of the undriven reference system with Hamiltonian H0 and time-evolved state
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ρ0(t) := e−iH0tρ(0) eiH0t, we aim to predict the time-dependent expectation values 〈A〉ρ(t) of the
driven system. In the same vein, we also intend to adopt a typicality argument by considering
an ensemble of perturbation operators V and showing that nearly all members of the ensemble
entail similar dynamics for fixed ρ(0), A, and λ(t). However, the time dependence of H(t) poses
additional challenges, which we will tackle by means of a Magnus expansion in combination with
a set of time-independent auxiliary Hamiltonians as sketched below.

Applications. Time-dependent variations of some parameters of an otherwise isolated system
occur in many different situations. Arguably the most intensely studied case involves periodically
driven systems, meaning that the protocol λ(t) satisfies λ(t + τ) = λ(t) for some driving period
τ > 0. The perturbation in this case may consist of, for example, varying electromagnetic fields,
the operational cycle of an engine with repeated coupling to different environments, or, more
generally, rather arbitrary externally applied forces. In the controlled environment of cold-atom
[26–28, 30, 60] or polarization-echo experiments [45–47, 289] (see also Secs. 2.1 and 4.1), such
external manipulations can also be exploited to modulate intrinsic properties of the system such
as tunneling amplitudes or interaction strengths. Hence the results presented in the following can
readily be tested experimentally. Moreover, periodic driving has been suggested and utilized as a
means to engineer effective phases with unusual material properties and so-called “Floquet time
crystals;” see, for instance, Refs. [310–317]. However, such exotic phases will not be our primary
interest in the following since these properties usually emerge in a quasistationary regime at late
times, whereas our focus will be on the response at short times when the system is still far from
some (quasi)equilibrium state. Hence we mostly have in mind the more “traditional” cases of
periodically time-dependent perturbations mentioned first.

Another important example of time-dependent variations that can be modeled by Hamiltonians
of the form (5.1) are quenches [7, 83, 174]. In this case, which constitutes a popular method to
prepare nonequilibrium states (see also Sec. 2.2.3), some parameter of the Hamiltonian (e.g., an
interaction strength) is tuned from one value to another one. In fact, we already mentioned this in
Sec. 3.1 (see Table 3.1 in particular) as a potential application for the time-independent relaxation
theory, too, because indeed such quenches are commonly assumed to happen instantaneously, i.e.,
the corresponding parameter change is taken to occur suddenly, in a discontinuous way. In any
practical application, however, this change will obviously be carried out in a possibly small, but
finite time [278–281]. Our present framework is especially suited to address this scenario in a
rather general setting because it particularly assesses the short-time response. By comparison
with the results from Chapter 3, we can thus discern how the finite quench time affects the ensuing
relaxation.

In any case, we point out that the methods adopted in the following are largely independent of the
precise time dependence of λ(t) and not restricted to periodic functions or functions approaching
some constant value. As long as the amplitude does not become overly large, any reasonably
well-behaved functional form of λ(t) will thus be admitted (see also Sec. 5.2 for more details on
the prerequisites), meaning that the theory can in principal be adopted to more general situations
than the ones describe above if they happen to be found in a certain setup of interest.

Magnus expansion. As mentioned above, the time-dependent Hamiltonian H(t) entails consid-
erable technical complications because there is no simple solution of the evolution equation (2.3)
for the propagator U(t). A formal solution can be given in terms of a Dyson series [1], i.e., a
perturbative expansion in powers of H(t) or V if one adopts the interaction picture instead. We
will briefly consider such an expansion for a qualitative analysis of the driving effects in Sec. 5.2.
However, employing the Dyson series for quantitative estimates has several disadvantages. Most
notably, truncating the series at a finite order yields a nonunitary approximation for U(t), implying
that normalization of the state is not guaranteed.

An alternative approximate construction of U(t) is given by the so-called Magnus expansion [318].
In general, the propagator is expressed as

U(t) = eΩ(t) , Ω(t) =
∞∑
k=1

Ωk(t) , (5.3)
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where the individual terms Ωk(t) in the exponent consist of integrals over k−1 nested commutators
of H(t) at different time points. We remark that Ωk(t) can be expressed as a function of the cor-
responding terms of the Dyson series up to order k [318], so there is a direct relation between both
approaches, elucidating the perturbative character of the Magnus expansion. Crucially, however,
every Ωk(t) is skew-Hermitian, Ωk(t)† = −Ωk(t), so the truncated series still leads to a unitary
operator. The first two terms in the Magnus expansion are

Ω1(t) = −i
∫ t

0
dt1 H(t1) , Ω2(t) = −1

2

∫ t

0
dt1
∫ t1

0
dt2 [H(t1), H(t2)] , (5.4)

and we will generally content ourselves with this low-order truncation. We point out that the
question of convergence of the Magnus expansion can generally be a subtle issue. In our present
setting, convergence is guaranteed up to times t such that

∫ t
0 ds ‖H(s)‖ < π, but can extend

to considerably longer times, too [318]. Here ‖H(s)‖ is the operator norm of H(s). Due to the
extensive growth of H(t) with the degrees of freedom, guaranteed convergence is thus generally
very limited for typical many-body systems, but the expansion can still remain valuable as an
asymptotic series [308, 309]. In general, we therefore cannot expect to obtain predictions for
arbitrarily late times from the Magnus expansion, and the restriction to a truncated series will
usually diminish the applicability further. Yet the predictions will turn out to be useful for short
times or high-frequency driving, and may even capture the entire relaxation process if the system
approaches a stationary state sufficiently fast.

For Hamiltonians H(t) of the form (5.1), the first two terms in the Magnus expansion can be
written as

Ω1(t) = −i [H0 t+ Λ1(t)V ] , Ω2(t) =
[
Λ2(t)− t

2Λ1(t)
]

[V,H0] , (5.5)

where
Λ1(t) :=

∫ t

0
ds λ(s) , Λ2(t) :=

∫ t

0
ds Λ1(s) (5.6)

are the first and second integrals of the driving protocol λ(t).

Auxiliary dynamics. The Magnus expansion provides us with a more explicit expression of the
propagator in terms of the operators H0 and V entering the Hamiltonian (5.1) as well as the time
dependence mediated via λ(t). However, we still need a way to conveniently express the time-
dependent expectation values 〈A〉ρ(t) in the eigenbasis {|µ〉0} of the unperturbed Hamiltonian H0
to adopt a typicality scheme similarly as in Chapter 3.

The idea is to introduce a family of time-independent auxiliary Hamiltonians {H(t′)} with t′ ≥ 0
being a fixed parameter. The dynamics in any of these auxiliary systems may then be assessed by
means of the predictions from Chapter 3 and suitably combined to obtain an approximation of the
time-dependent problem. Based on the Magnus expansion (5.3), we therefore define

H(t′) := iΩ(t′)/t′ . (5.7)

Starting from the same initial state ρ(0) of interest and keeping t′ fixed, any of these Hamiltonians
H(t′) generates a time evolution given by

ρ(t, t′) := e−iH(t′)t ρ(0) eiH(t′)t . (5.8)

Introducing the eigenvalues E(t′)
n and eigenvectors |n(t′)〉 ofH(t′), the observable expectation values

under the auxiliary dynamics take the form

〈A〉ρ(t,t′) =
∑
m,n

ei(E(t′)
n −E(t′)

m )t 〈m(t′)|ρ(0)|n(t′)〉 〈n(t′)|A|m(t′)〉 . (5.9)

This relation is already structurally similar to Eq. (3.4). Provided that all the H(t′) can be
written in the form (3.1) and satisfy the prerequisites from Sec. 3.2, we can thus employ the
prediction (3.160) for the relaxation under the influence of time-independent perturbations to assess
the 〈A〉ρ(t,t′) Moreover, observing (5.2), (5.3), (5.7), and (5.8), we conclude that the true state ρ(t)

117



under the driven dynamics can be obtained from the auxiliary states ρ(t, t′) as ρ(t) = ρ(t, t) and
thus

〈A〉ρ(t) = 〈A〉ρ(t,t) . (5.10)

We remark that the latter correspondence between the true and the auxiliary dynamics is exact,
provided that the Magnus expansion (5.3) converges. The additional approximation necessary here
compared to Chapter 3 is that we have to truncate the Magnus expansion after the second order
to recast the auxiliary Hamiltonians H(t′) in the form (3.1).

Mapping to perturbed-relaxation setting. Employing the Magnus expansion up to second order
from (5.5), the auxiliary Hamiltonians from (5.7) can be approximated as

H(t′) ≈ H0 + V (t′) (5.11)

with
V (t′) := Λ1(t′)

t′
V +

[
Λ2(t′)
t′
− Λ1(t′)

2

]
i[V,H0] . (5.12)

Since these auxiliary perturbation operators V (t′) are linear in the underlying basic perturbation
V from (5.1), this constitutes the desired mapping of the family of auxiliary Hamiltonians H(t′)

to the class of systems (3.1) treated in Chapter 3. Expressing V (t′) in the eigenbasis {|µ〉0} of the
unperturbed Hamiltonian H0, we obtain

V (t′)
µν =

{
Λ1(t′)
t′
− i(Eµ − Eν)

[
Λ2(t′)
t′
− Λ1(t′)

2

]}
Vµν , (5.13)

where we wrote Vµν := 0〈µ|V |ν〉0, V (t′)
µν := 0〈µ|V (t′)|ν〉0, etc. for the matrix elements in the un-

perturbed basis and Eµ for the eigenvalue of H0 corresponding to the eigenstate |µ〉0, similarly as
in Chapter 3. Since the perturbation V is supposed to have similar properties as before, too, it
exhibits, in particular, a well-defined perturbation profile σ2

v(E) as specified in Eq. (3.10). In view
of (5.13), the operators V (t′) therefore have an effective perturbation profile

σ2
v(E, t′) :=

[
ϕ1(t′) + E2ϕ2(t′)

]
σ2
v(E) (5.14)

with

ϕ1(t′) :=
[
Λ1(t′)
t′

]2
, ϕ2(t′) :=

[
Λ2(t′)
t′
− Λ1(t′)

2

]2
, (5.15)

such that |V (t′)
µν |2 ' σ2

v(Eµ − Eν , t
′). Note that the coupling λ, which was used to control the

perturbation strength in Chapter 3, has now been absorbed into the effective perturbation profile
σ2
v(E, t′) since both Λ1(t) and Λ2(t) are proportional to the amplitude of the driving protocol
λ(t).

5.2 Prerequisites and expected applicability

Before investigating the consequences of the transformation relating the dynamics generated by
H(t) and H(t′), we scrutinize under which conditions this strategy can be reasonably expected to
work.

Auxiliary Hamiltonians. As explained in Sec. 5.1, we intend to adopt the theoretical predictions
from Chapter 3 to the dynamics generated by the auxiliary Hamiltonians H(t′) from (5.11). For
this to be valid, these H(t′) should thus satisfy the prerequisites collected in Sec. 3.2 in particular.

Prerequisite (i), which required a homogeneous density of states D(E) of H0, does not need any
further discussion because the reference Hamiltonian H0 in (5.11) and (5.1) is assumed to be of
similar type as in (3.1), and the same holds for the initial state ρ(0). As before, we will denote the
corresponding mean level spacing by ε, i.e., D(E) ≈ ε−1.

Prerequisite (ii), which stipulated sufficiently weak perturbations and thereby essentially demanded
a property similar to Prerequisite (i) also for the perturbed systems, is more subtle. On the one
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hand, the strength of the perturbation V (t′) depends on the driving protocol λ(t) via the integrals
Λ1(t) and Λ2(t) from (5.6). If λ(t) is unbiased in the sense that its time average λ(t) vanishes, then
Λ1(t) is bounded and Λ2(t) will grow at most linearly in t. By inspection of the amplitude functions
ϕ1(t) and ϕ2(t) from (5.15), we understand that the effective perturbation strength as mediated
by the driving is thus bounded, too, meaning that the weak-perturbation criterion translates into a
corresponding weak-driving prerequisite. On the other hand, for fixed t′, the effective perturbation
profile σ2

v(E, t′) from (5.14) generally decays slower with the energy separation E of the coupled
levels than the underlying “pure” profile σ2

v(E) of the operator V . We thus additionally require
that σ2

v(E) should decay at least quadratically as E →∞ such that σ2
v(E, t′) remains bounded.

Another subtlety arises from the fact that the energy level occupations in the driven system are
not conserved, meaning that the pertinent window of nonnegligibly populated levels generically
broadens over the course of time. This spreading of the state in energy is essentially a higher-order
effect [309] and therefore does not become apparent in our present setting because of our restriction
to second order of the Magnus expansion. Hence the assumption of a homogeneous density of states
is unproblematic within our present approximation, but this approximation itself will eventually
become questionable at late times, accompanied by a broadening of the energy distribution and a
varying density of states. We will come back to this point below.

Since Prerequisite (iii), which called for sufficiently strong perturbations, turned out to be largely
dispensable at last in Chapter 3, it should not cause any problems in the present setting either.
Likewise, as shown above, Prerequisite (iv) of a well-defined (effective) perturbation profile is
automatically satisfied if the underlying operator V from (5.1) exhibits such a well-defined profile.

Prerequisite (v) of sufficiently small level fluctuations relates to similar issues as Prerequisite (ii),
but since the analysis around Eq. (3.18) and from Sec. 3.6.3 revealed that there is plenty of room for
such fluctuations without a noticeable effect on the dynamics within the relevant relaxation time,
we do not expect any complications in the present setting. Finally, Prerequisite (vi), requiring
sufficiently small correlations between the perturbation matrix elements V (t′)

µν , is unaffected by
the modifications due to the auxiliary dynamics since the V (t′) essentially inherit their matrix
structure from V according to (5.13). More precisely, the randomization entailed in the typicality
approach still only affects the pure perturbation operator V and the correlations between H0 and
V introduced in V (t′) via Eq. (5.12) are explicitly taken into account.

Short times and high frequencies. The above observations suggest that predicting the auxiliary
dynamics generated by the approximate H(t′) from (5.11) by means of the result (3.160) from
Chapter 3 should usually yield satisfactory results without any significant further restrictions. The
remaining question regarding the usefulness of the proposed approach is therefore whether or rather
under which circumstances the second-order truncation (5.11) is a reliable approximation of the
true auxiliary Hamiltonian from (5.7).

We already commented on the general convergence issues of the Magnus expansion below Eq. (5.4).
Since the terms Ωk(t) are in direct correspondence to the terms up to the same order of the Dyson
series, the second-order approximation will generally perform best at short times. In case of periodic
driving with a period τ such that λ(t+ τ) = λ(t), the Floquet theorem states that the propagator
U(t) can be decomposed as UP(t) e−iHFt with the time-independent Floquet Hamiltonian HF and
the periodic unitary operator UP(t) = UP(t + τ) [319]. The Magnus series can then be adapted
to this special structure by expanding HF and UP(t) individually [282, 318]. For sufficiently small
periods τ such that

∫ τ
0 dt ‖H(t)‖ < 0.21, the series will then converge for all times t. Generally

speaking, the Floquet-Magnus series can be regarded as an expansion in the driving period τ and
thus constitutes a high-frequency approximation of the propagator. While we will not explicitly
exploit the Floquet theorem in our approach since it does not offer any technical advantages for
the present problem, remnants of this special suitability for fast driving will become apparent in
the final prediction, too (see Sec. 5.3.3 in particular).

We remark that the somewhat trivial limit of extremely slow driving is also reflected correctly: If
λ(t) can be treated as essentially constant, λ(t) = λ0, then ϕ1(t) = λ2

0 and ϕ2(t) = 0 according
to (5.15), meaning that the perturbation profile σ2

v(E, t′) = λ2
0 σ

2
v(E) is mapped back onto the case

of time-independent perturbations from Chapter 3.

119



As with the relaxation theory for time-independent perturbations from Chapter 3, the common
locality and few-body properties of possible perturbations V are not explicitly accounted for in the
considered ensembles (see Sec. 3.8), hence the initial state should be approximately homogeneous in
space on a macroscopic level, or at least the observable should not probe potential inhomogeneities.
Put differently, the theory will not cover response behavior involving macroscopic transport and
thus considerably longer time scales, but only local, short-time effects of the driving. Since the
predictions are not expected to reach into the late-time regime anyway due to the truncated Magnus
expansion, this does not pose any additional restrictions, though.

Energy distribution and heating. Finally, we come back to the issue already mentioned in the dis-
cussion of Prerequisite (ii) above, namely the fact that the level populations of the (instantaneous)
Hamiltonian H(t) are no longer conserved in the time-dependent setting. To get a qualitative
understanding of how the energy distribution changes under the driving, we temporarily switch to
the Dirac or interaction picture by defining Aint(t) := eiH0tA e−iH0t and ρint(t) := eiH0t ρ(t) e−iH0t,
meaning that time-dependent expectation values can be computed as 〈A〉ρ(t) = 〈Aint(t)〉ρint(t) as
well. In the interaction picture, the time-evolved state is thus obtained from the initial state ρ(0)
via the interaction-picture propagator Uint(t) := eiH0tU(t) as ρint(t) = Uint(t)ρ(0)Uint(t)†. From
Eq. (2.3), it follows that Uint(t) solves

U̇int(t) = −iλ(t)Vint(t)Uint(t) with Uint(0) = 1 , (5.16)

where Vint(t) := eiH0t V e−iH0t. Expanding the solution in a Dyson series [1], we then find

Uint(t) = 1− i
∫ t

0
dt1 λ(t1)Vint(t1)−

∫ t

0
dt1
∫ t1

0
dt2 λ(t1)λ(t2)Vint(t1)Vint(t2) + . . . (5.17)

To first order, the time-dependent expectation values can therefore be calculated as

〈Aint(t)〉ρint(t) = 〈Aint(t)〉ρ(0) + i
∫ t

0
dt1 λ(t1) 〈[Vint(t1), Aint(t)]〉ρ(0) + . . . (5.18)

This is just the Kubo formula describing the linear response of the observable expectation values
to the time-dependent perturbation λ(t)V . We concentrate on the case of unbiased protocols
λ(t) such that λ(t) = 0, meaning that the unperturbed Hamiltonian H0 is also the time-averaged
Hamiltonian, H(t) = H0. If this was not the case, we could absorb the corresponding offset λ(t)V
into the definition of H0 for the purpose of the following discussion. Since we are interested in
the energy distribution, we now inspect one particular eigenstate |µ〉0 of the unperturbed, time-
averaged Hamiltonian H0 by choosing A = Πµ := |µ〉00〈µ|. Substituting into (5.18) and returning
to the Schrödinger picture, we obtain

〈Πµ〉ρ(t) = ρµµ(0)− 2 Im
∑
α

ρµα(0)Vαµ
∫ t

0
dt1 λ(t1) ei(Eα−Eµ)t1 + . . . (5.19)

For the sake of the ensuing argument, we focus on a single-frequency driving λ(t) = λ0 sin(ωt),
observing that similar considerations can be carried out for individual Fourier components of a
more general protocol. In other words, if λ̂(ω) is the Fourier transform of λ(t), the following
reasoning can be applied to any frequency ω with λ̂(ω) 6= 0. Note that for periodic driving with
period τ = 2π/ω, the frequency spectrum λ̂(ω) is discrete with contributions from integer multiples
of the base frequency 2π/τ only. Moreover, we may think of ρ(0) = |ψ〉〈ψ| as a pure state with
coefficients ψµ := 0〈µ|ψ〉 in the unperturbed basis since any mixed state will be a linear combination
of such pure states. Hence ρµα(0) = ψµψ

∗
α. Generally speaking, Eq. (5.19) then expresses that the

µth unperturbed level can exchange population or occupation “weights” with any other level α.
However, significant and persistent changes will only occur if

(i) the matrix element Vµα is relatively large and

(ii) the energy difference |Eα − Eµ| roughly matches the driving frequency ω.

Condition (i) directly relates to the perturbation profile σ2
v(E) from (3.10). In particular, for the

common case of a banded matrix structure, significant exchanges of population will only occur
between states with |Eα − Eµ| . ∆v, where ∆v is the band width from (3.13), and the farther
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Figure 5.1: Illustration of the resonance condition for the exchange of level populations. The state |µ〉0
at energy Eµ (red) is directly resonant at frequency ω with all states |α〉0 such that |Eα − Eµ| ≈ ω and
|Eα − Eµ| . ∆v (green). The blue states, in turn, are examples of states that are not directly resonant
with |µ〉0, but are connected by (second-order) resonance chains via an intermediate state (dotted lines).

apart the levels are in the spectrum, the less they will typically interact. Condition (ii) ensures that
the modifications are persistent on the relevant time scales and do not average out over short time
intervals. If both conditions are met, we call the states |µ〉0 and |α〉0 directly resonant at frequency
ω. In general, we expect that populations between two resonant states are approximately balanced
as time progresses, at least if the life times of both states are of the same order, which should
typically be the case for most such pairs in a generic many-body system.

Naturally, the occupation of the µth level will receive further corrections from higher-order terms
in the series (5.19). Nevertheless, the general mechanism remains the same. For instance, the
second-order correction reads (see also Eq. (5.17))∣∣∣∣∣∑

α

Vµαψ
∗
α

∫ t

0
dt1 λ(t1) ei(Eα−Eµ)t1

∣∣∣∣∣
2

− 2 Re
∑
α,β

ψ∗αVαβVβµψµ

∫ t

0
dt1 λ(t1) ei(Eβ−Eµ)t1

∫ t1

0
dt2 λ(t2) ei(Eα−Eβ)t2 .

(5.20)

The terms in the first line can again contribute significantly only if the states |µ〉0 and |α〉0 are
directly resonant. In the second line, by contrast, population can be exchanged indirectly via an
intermediate state |β〉0. This state |β〉0, however, must be directly resonant with both |µ〉0 and
|α〉0.

As sketched in Fig. 5.1, the generally emerging picture is thus as follows: Populations can be
exchanged between resonant states. Two states |µ〉0 and |α〉0 are resonant if there exists a sequence
of states |α〉0 =: |β0〉0, |β1〉0, . . . , |βM 〉0 := |µ〉0 such that, for all m = 1, . . . ,M , the states |βm−1〉0
and |βm〉0 are directly resonant at frequency ω and the corresponding Fourier component λ̂(ω) of
the driving protocol λ(t) is nonvanishing. Such a sequence is called a resonance chain of order M .
In a sufficiently generic setting, almost all states will be resonant with each other. However, higher-
order resonance chains will typically be suppressed: For sufficiently weak driving, the amplitudes
λ(t) or, more precisely, the product λ(t)σv(ω) will be small. Since every additional state in a
resonance chain is accompanied by an extra factor on the order of λ(t)σv(ω), longer chains will
contribute relatively less. Moreover, the bandedness of the perturbation V entails that the matrix
elements Vβm−1βm decay with |Eβm−1 − Eβm |, hence contributions from higher frequencies are
relatively suppressed, too.

We remark that the ultimate spreading of the populations in energy generically leads to energy
absorption and thus heating of the system [306, 320–323]. The reason is that the level density of
many-body systems usually increases with increasing energy. A given eigenstate |µ〉0 of the time-
averaged Hamiltonian H0 will therefore be resonant with more states whose energy is higher than
Eµ than with states of lower energy, meaning that the occupations are gradually shifted towards
higher energies.

Under physically reasonable additional assumptions about the system, such as locality of inter-
actions, the effect of driving frequencies and interaction ranges can be assessed in more rigorous
terms than the above resonance-chain argument. For instance, Refs. [307, 309, 324, 325] provide
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upper bounds for the heating rate that decay exponentially with the driving frequency, reinforcing
the suppression of energy dispersion for fast driving. The phenomenology is thus reminiscent of
prethermalization since the system spends a long time near a quasistationary state associated with
the initial energy shell [308, 309, 314, 317, 323, 325]. Nevertheless, at very late times, periodi-
cally driven many-body systems are generically expected to reach a state of infinite temperature
[306, 320–323].

Altogether, populations will be balanced primarily between states that are close-by in energy,
even though the spreading will generally increase over time. Mechanisms that are expected to
impede and defer this spreading include weak perturbations (small driving amplitude), high driving
frequencies, and small perturbation band widths. These observations match favorably with the
above-collected criteria for the validity of our typicality approach in combination with the truncated
Magnus expansion, supplemented by the additional supporting factor of short-ranged perturbations
in energy, i.e., small ∆v. Whereas the eventual theoretical prediction will thus presumably break
down at late times, we anticipate that it should apply the longer the better those three criteria are
satisfied.

5.3 Typical response

Having made sure that the results from Chapter 3 should be readily applicable to the auxiliary
Hamiltonians H(t′), we proceed with the strategy proposed in Sec. 5.1 and establish in Sec. 5.3.1
a prediction for the driven dynamics based on the behavior of the auxiliary systems. As before,
there will be a characteristic response-profile function encoding the modifications of the reference
dynamics caused by the driving. This response profile will be inspected more closely in Sec. 5.3.2.
In Sec. 5.3.3 we will then put our expectations about the regime of applicability as formulated in
the previous section to a quantitative test.

5.3.1 Prediction for driven time evolution

Auxiliary dynamics. Provided that the prerequisites from Sec. 5.2 hold, the auxiliary systems with
approximate Hamiltonians H(t′) of the form (5.11) can be described by the relaxation theory for
isolated many-body quantum systems under the influence of time-independent perturbations from
Chapter 3. The main result (3.160) then applies to every individual H(t′), so the time-dependent
expectation values 〈A〉ρ(t,t′) from (5.9) are predicted to be given by

〈A〉ρ(t,t′) = 〈A〉̃ρ(t′) + |g(t, t′)|2
[
〈A〉ρ0(t) − 〈A〉̃ρ(t′)

]
. (5.21)

Here 〈A〉ρ0(t) denotes the undriven reference dynamics as before, whereas the other quantities are
defined similarly as in Chapter 3, but inherit a parametric dependence on the auxiliary time t′
via the perturbation profile σ2

v(E, t′) from (5.14). To wit, we can introduce for every H(t′) an
ensemble-averaged resolvent G(z, t′) which satisfies G(z−H0, t

′) = E[(z−H(t′))−1] (cf. Eq. (3.58))
and solves

G(z, t′)
[
z −

∫ dE
ε
G(z − E, t′)σ2

v(E, t′)
]

= 1 (5.22)

according to (3.59) (see also Eq. (3.31)). Similarly as in (3.32), we can extract from these ensemble-
averaged resolvents an overlap distribution u(E, t′) := ε limη→0+ ImG(E − iη, t′)/π, which de-
scribes, in particular, the second moment E[|〈n(t′)|µ〉0|2] = u(En − Eµ, t′) of the overlap between
the eigenvectors |n(t′)〉 of H(t′) (see above Eq. (5.9)) and |µ〉0 of H0. The function g(t, t′) is the
corresponding response profile, i.e., the Fourier transform of u(E, t′) in E,

g(t, t′) :=
∫ dE

ε
eiEt u(E, t′) , (5.23)

see also Eq. (3.146). Likewise, the state ρ̃(t′) is defined by analogy with ρ̃λ from (3.150) in terms
of its matrix elements in the unperturbed basis as

0〈µ|ρ̃(t′)|ν〉0 := δµν
∑
α

ũ(Eµ − Eα, t′) ραα(0) , (5.24)
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where ũ(E, t′) :=
∫

dE′ u(E − E′, t′)u(E′, t′)/ε (cf. Eq. (3.116)). As discussed above Eq. (3.188),
the expectation value 〈A〉̃ρ(t′) can commonly be identified with the thermal prediction 〈A〉ρmc . In
practice, we can therefore usually reduce the dependence of Eq. (5.21) on the auxiliary time t′ such
that

〈A〉ρ(t,t′) = 〈A〉ρmc + |g(t, t′)|2
[
〈A〉ρ0(t) − 〈A〉ρmc

]
. (5.25)

Driven dynamics. As explained above Eq. (5.10), the actual dynamics of the driven system (5.1)
can be retrieved from the family of undriven auxiliary dynamics mediated by the Hamiltonians
H(t′) upon identifying t′ = t, i.e., the time-dependent expectation values of the auxiliary system
H(t) at time t coincide with those of the driven system at time t, cf. Eq. (5.10). Approximating
H(t′) by the second-order Magnus expansion from (5.7), we can thus employ the result (5.21) to
obtain a prediction for the time-dependent expectation values of the driven system,

〈A〉ρ(t) = 〈A〉̃ρ(t) + |g(t, t)|2
[
〈A〉ρ0(t) − 〈A〉̃ρ(t)

]
. (5.26)

Hence the behavior of the driven system is expected to resemble the undriven dynamics, but
experiences modifications according to the generalized response profile g(t, t′) from (5.23). More
precisely, this response profile modulates the undriven dynamics with respect to a generally also
time-dependent base line 〈A〉̃ρ(t). The latter quantity, however, will usually be approximated well by
the thermal expectation value associated with the reference system, such that the prediction (5.26)
takes the form

〈A〉ρ(t) = 〈A〉ρmc + |g(t, t)|2
[
〈A〉ρ0(t) − 〈A〉ρmc

]
. (5.27)

We emphasize that ρmc here corresponds to the microcanonical density operator for the initially
populated energy window and not to an infinite-temperature state that may possibly be reached
at very late times beyond the scope of applicability of our present approach.

The predictions (5.26) and (5.27) are the main results of the present chapter, extending the per-
turbed relaxation theory from Chapter 3 to explicitly time-dependent perturbations. The general
structure is similar to the results (3.160) and (3.188) for time-independent perturbations. Never-
theless, as we will see in the following, the response profile will exhibit considerably more diverse
behavior as a consequence of the driving.

5.3.2 Response profile

The key quantity governing the deviations of the driven dynamics from the unperturbed behavior
is once again the response profile in its generalized form (5.23). For any fixed t′, this function
g(t, t′) has similar properties as the response profile gλ(t) from (3.146), which describes the effect
of time-independent perturbations and was discussed in detail in Sec. 3.6.2. In view of Eqs. (5.26)
and (5.27), however, the functional dependence on t for t′ = t is of primary interest.

Overview of special cases. For the function gλ(t), explicit solutions could be constructed in three
special cases: for weak perturbation or large times, for strong perturbation or small times, and for
perturbations with a Breit-Wigner profile (3.74). Unfortunately, for the solutions in the first and
third cases, there is no obvious way to generalize them to the present time-dependent setting. The
reason is that the perturbation profiles σ2

v(E) pertaining to these two cases were either constant (for
weak perturbations) or slowly decaying like σ2

v(E) ∼ E−2 as E →∞ (for the Breit-Wigner profile);
see also Sec. 3.4.2. The effective perturbation profile σ2

v(E, t′) corresponding to the approximate
auxiliary Hamiltonian H(t′) from (5.11), however, scales like σ2

v(E, t′) ∼ E2σ2
v(E) for large E,

which renders it infeasible to solve the integral equation (5.22) by means of the methods employed
in Sec. 3.4.2.

For the second case of reasonably strong perturbation or small times, by contrast, we can proceed
similarly as in Eqs. (3.68) through (3.72) to find an explicit approximation of g(t, t′). Fortunately,
this is also the most important case in the present setting: On the one hand, the perturbations have
to be somewhat stronger than in the setup from Chapter 3 to have a noticeable effect, especially
in the case of periodic driving because fast switching of the sign of λ(t) will usually revert some
of the effects, similarly to the effective partial time reversal protocols studied in Chapter 4. On
the other hand, our approach is naturally limited to shorter times as explained in Sec. 5.2, even
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though the detailed validity analysis in Sec. 5.3.3 will reveal that the truncated Magnus expansion
generally still applies to longer times than the following approximation will.

Narrow profile or strong perturbations. In the same spirit as above Eq. (3.68), we thus turn
to the integral equation (5.22) and assume that the effective perturbation profile σ2

v(E, t′) decays
much faster as a function of E than the ensemble-averaged resolvent G(z, t′) does with z. As before,
this corresponds to the case of strong mixing of the perturbed and unperturbed eigenvectors due
to a relatively strong perturbation V (t′) or to the case of a relatively narrow perturbation profile
σ2
v(E, t′). Approximating G(z − E, t′) by G(z, t′) in the integrand and substituting (5.14) for the

perturbation profile leads again to a purely algebraic equation,

[γ(t′)G(z, t′)]2 /4− z G(z, t′) + 1 = 0 (5.28)

with
γ(t′) :=

√
4αv [2∆v ϕ1(t′) +Σ2 ϕ2(t′)] , (5.29)

where αv and ∆v are the intrinsic strength and band width of the true perturbation operator
V as introduced in Eqs. (3.12) and (3.13), respectively, and Σ2 is the second moment (3.175)
of the perturbation profile σ2

v(E) (note that ∆v is half the zeroth moment). Comparing with
Eq. (3.69), the occurrence of this second moment Σ2 indicates that the response profile g(t, t′) for
driven dynamics is more sensitive to details of the perturbation than its counterpart gλ(t) for the
undriven setting.

Solving Eq. (5.28) for G(z, t′), we find the same functional form as in (3.70) with γ replaced by
γ(t′). The initial assumption that the decay of σ2

v(E, t′) in its first argument is much faster than
that of G(z, t′) is thus verified self-consistently if γ(t′)� ∆v. In view of Eq. (5.29) in combination
with (5.15) (see also Fig. 5.2), this condition is guaranteed in particular if |λ(t)| � λc for all t,
where λc is the crossover coupling between the weak- and strong-perturbation regimes introduced
in Eq. (3.73). The t′-dependent overlap distribution defined below Eq. (5.22) is then found to be

u(E, t′) = 2ε
πγ(t′)

√
γ(t′)2 − E2Θ(γ(t′)2 − E2) . (5.30)

Substituting into (5.23), we are left with the response profile for sufficiently strong or sufficiently
short-ranged (in energy) and generally time-dependent perturbations,

g(t, t′) = 2J1(γ(t′) t)
γ(t′) t , (5.31)

where J1(x) is the first-order Bessel function of the first kind as usual.

Integro-differential equation. General solutions for g(t, t′) can only be calculated numerically.
In principle, we could solve the integral equation (5.22) and calculate g(t, t′) from the Fourier
transform of the solution’s imaginary part according to (5.23). However, solving (5.22) for every
time point t′ = t of interest is not very practical. Instead, it is much more convenient to work
with an integro-differential representation of g(t, t′) directly, i.e., an analog of Eq. (3.173) for gλ(t).
Performing similar steps as between Eqs. (3.167) and (3.173), we readily find that g(t, t′) solves
the integro-differential equation

∂g(t, t′)
∂t

= −
∫ t

0
ds g(t− s, t′) g(s, t′) σ̂2

v(s, t′) , (5.32)

where
σ̂2
v(t, t′) :=

∫ dE
ε

eiEt σ2
v(E, t′) (5.33)

is the Fourier transform of the effective perturbation profile σ2
v(E, t′) from (5.14) in E. Alterna-

tively, we may substitute (5.14) directly into (5.33) and subsequently into (5.32), leading to

∂g(t, t′)
∂t

= −
∫ t

0
ds g(t− s, t′) g(s, t′)

[
ϕ1(t′)− ϕ2(t′) ∂

2

∂s2

]
σ̂2
v(s) , (5.34)
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Figure 5.2: Various driving protocols along with the corresponding coefficient functions ϕ1(t) and ϕ2(t)
from (5.15) in the insets. a. Step protocol (5.35); b. sinusoidal protocol (5.36); c. linear ramp proto-
col (5.37).

where σ̂2
v(t) is the Fourier transform (3.167) of the perturbation profile σ2

v(E) corresponding to
the pure perturbation operator V , and ϕ1(t′) and ϕ2(t′) were defined in (5.15) (see also Fig. 5.2
below for examples). This latter representation in particular reveals explicitly how the driving
protocol λ(t) and the perturbation operator V from (5.1) determine the response profile and thus
the modified dynamics of the driven system compared to the behavior of the reference system with
Hamiltonian H0.

Moreover, for any given driving protocol λ(t) and perturbation profile σ2
v(E), the associated re-

sponse profile g(t, t′) and especially its value g(t, t) can be calculated straightforwardly by integrat-
ing Eq. (5.32) or Eq. (5.34), respectively, taking account of the initial conditions g(0, t′) = 1 and
∂tg(0, t′) = 0 (cf. Eq. (3.161) and above Eq. (3.176)). Since the integrand on the right-hand side
depends only on times s ≤ t, this can be achieved by simple forward-integration algorithms for
any fixed t′. To evaluate the predictions (5.26) or (5.27), the required value g(t, t) is thus obtained
by setting t′ = t and integrating up to time t. Given the effective double-integral structure, the
computing time therefore scales quadratically with the number of time steps.

Finally, for very fast driving and very short times such that ϕ1(t) � ϕ2(t) (i.e., when the first-
order truncation of the Magnus expansion suffices), we observe that Eq. (5.34) reduces to the
relation (3.173) for the response profile gλ(t) describing the effect of time-independent perturbations
with a parametric dependence λ = ϕ1(t′). In this regime, we can thus approximate g(t, t′) ≈
gϕ1(t′)(t) and have the additional analytical solutions (3.164) and (3.166) at our disposal again.

5.3.3 Validity analysis

The qualitative considerations from Sec. 5.2 suggest that there are three parameter regimes which
favor the applicability of the theory: weak perturbations, small perturbation band widths, and
high frequencies. The first two of these criteria pertain to in some sense opposite regimes because
the strength of the perturbation is usually assessed relatively to its band width; see, for instance,
Eqs. (3.66), (3.71), or (3.73). Moreover, the perturbations need not become too weak because they
will not entail any noticeable effect otherwise, particularly in combination with high-frequency
driving. Hence we intend to explore the parameter regime in which the theory (5.26) is valid in
more quantitative detail.

Testbed. To obviate any additional errors due to an imprecise modeling, we choose a random-
matrix model (5.1) which is a direct representative of the perturbation ensembles from Sec. 3.3.
The undriven Hamiltonian H0 is given by (3.27) with a constant level spacing of ε = 1/512. The
perturbation matrix (Vµν) is drawn according to (3.24) with the marginal distributions pµν(v)
from (3.23) taking a Gaussian form, namely Eq. (3.28) with s = 0 (no sparsity). For the perturba-
tion profile σ2

v(E) from (3.10), we focus on the exponential and step shapes from (3.21) and (3.85),
respectively.

As for the driving, we consider two periodic protocols with amplitude λ0 and period τ : a step
protocol

λ(t) = λ0 sgn
[
sin
(

2πt
τ

)]
, (5.35)
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where sgn(x) denotes the sign function, and a sinusoidal protocol

λ(t) = λ0 sin
(

2πt
τ

)
. (5.36)

In addition, we also study a nonperiodic, quench-like protocol in the form of a linear ramp to a
target amplitude λ0 in time τ ,

λ(t) = λ0Θ(t)
[
t

τ
Θ(τ − t) +Θ(t− τ)

]
. (5.37)

These three driving protocols are visualized in Fig. 5.2 together with the functions ϕ1(t) and
ϕ2(t) defined in (5.15), which encode the effect of the driving protocol on the response profile
according to (5.34). For the unbiased periodic protocols, we point out that neither ϕ1(t) nor
ϕ2(t) are periodic, but they oscillate approximately at the the same frequency as the driving,
with ϕ1(t) being minimal (in fact, vanishing) at multiples of the driving period, whereas ϕ2(t)
becomes maximal there. Moreover, ϕ1(t) is damped and decays to zero as t → ∞, whereas ϕ2(t)
is asymptotically periodic.

The total Hilbert space dimension of our test system is N = 214 = 16 384, and we choose an
unperturbed eigenstate |α〉0 from the middle of the spectrum (α = 213 = 8192) as the initial state
ρ(0) = |α〉00〈α|. We then monitor the survival probability or fidelity [284, 326] of this initial state
by taking A = ρ(0) as the observable. This entails 〈A〉ρ0(t) = 1 and, for sufficiently strong mixing of
the eigenvectors such that (3.9) holds, 〈A〉̃ρ(t) ' 0. Consequently, the predicted dynamics according
to (5.26) is precisely the squared response profile, 〈A〉ρ(t) = |g(t, t)|2.

As demonstrated in Ref. [227] (see Fig. 2 there in particular), such a setup agrees virtually flaw-
lessly with the theory in the case of time-independent perturbations, meaning that any deviations
manifesting in the driven setting can be attributed to the additional approximations, notably the
truncation of the Magnus series.

Periodic driving. We consider the two periodic protocols (5.35) and (5.36) first. Fig. 5.3 displays
a comparison of results for the squared response profile |g(t, t)|2 for a variety of different configu-
rations. All plots contain three types of curves: The solid black ones show the simulated fidelity
of the random-matrix model, i.e., the time-dependent expectation values 〈A〉ρ(t) of the observable
A = ρ(0). If the theory is correct, this fidelity coincides with |g(t, t)|2, hence these simulated curves
correspond to the “true” squared response profile. The long-dashed red curves represent the the-
oretical prediction (5.23) of the response profile within the second-order Magnus approximation,
obtained by integrating Eq. (5.34) numerically exactly. The short-dashed blue curves show the
strong-perturbation or narrow-band asymptotics (5.31).

Every subfigure contains data for step driving (Eq. (5.35) and Fig. 5.2a) in the left column and
data for sinusoidal driving (Eq. (5.36) and Fig. 5.2b) in the right column with periods τ = 0.5, 1, 2
in the three rows, respectively. The driving amplitudes λ0 and/or the perturbation profiles and
band widths are different in the four subfigures, chosen such that the comparison of neighboring
ones highlights the effect of one of those parameters.

We inspect how the accuracy of the theory depends on the driving period or frequency first,
focusing on the numerically exact predictions (long-dashed, red). As apparent from all subfigures
and anticipated in Sec. 5.2, good agreement between theory and numerics is generally found for
longer times in case of small periods or high frequencies. We also notice that the effect of the driving
is less pronounced in this case: At very high frequencies, the response profile g(t, t) approaches
unity, meaning that the system is unable to follow the rapidly oscillating perturbation and is thus
expected to essentially reproduce the reference dynamics induced by the time-averaged Hamiltonian
H0.

Next we observe that the shape of the driving profile (step vs. sinusoidal) is seemingly of minor
relevance with respect to the accuracy since deviations become noticeable at similar times when
all other parameters are fixed, i.e., when comparing left and right panels in every row. In this
context, it should also be pointed out that the effective perturbation strength λ(t)2 is smaller
under sinusoidal driving than under step driving.

126



simulation theory (exact) theory (strong asympt.)

step, τ = 0.5

0.96

0.98

1

|g
(t

,t
)|

2

sin, τ = 0.5

step, τ = 1

0.8

0.9

1

|g
(t

,t
)|

2

sin, τ = 1

step, τ = 2

0 2 4 6 8

0.4

0.6

0.8

1

t

|g
(t

,t
)|

2

sin, τ = 2

0 2 4 6 8

t

a
step, τ = 0.5

0.8

0.9

1

|g
(t

,t
)|

2

sin, τ = 0.5

step, τ = 1

0.4

0.6

0.8

1

|g
(t

,t
)|

2

sin, τ = 1

step, τ = 2

0 2 4 6 8

0

0.5

1

t
|g
(t

,t
)|

2

sin, τ = 2

0 2 4 6 8

t

b

step, τ = 0.5

0.96

0.98

1

|g
(t

,t
)|

2

sin, τ = 0.5

step, τ = 1

0.8

0.9

1

|g
(t

,t
)|

2

sin, τ = 1

step, τ = 2

0 2 4 6 8

0.4

0.6

0.8

1

t

|g
(t

,t
)|

2

sin, τ = 2

0 2 4 6 8

t

c
step, τ = 0.5

0.7

0.8

0.9

1

|g
(t

,t
)|

2

sin, τ = 0.5

step, τ = 1

0

0.5

1

|g
(t

,t
)|

2

sin, τ = 1

step, τ = 2

0 2 4 6 8

0

0.5

1

t

|g
(t

,t
)|

2

sin, τ = 2

0 2 4 6 8

t

d

Figure 5.3: Response profiles under driven dynamics for the step and sinusoidal driving protocols λ(t)
from (5.35) and (5.36), respectively, with periods τ = 0.5, 1, 2 (see top-right corner of each panel) and
different amplitudes as well as different perturbation profiles σ2

v(E) (see below). Solid (black): Numerical
simulation of a system of dimension N = 214 with Hamiltonian H(t) from (5.1), where H0 is of the
form (3.27) with ε−1 = 512 and the perturbation V is sampled randomly according to (3.23) and (3.28)
with s = 0 and σ2

v(E) as detailed below. The initial state is ρ(0) = |α〉00〈α| with α = N/2 = 213

and the observable is the fidelity, A = ρ(0). Long-dashed (red): Theoretical prediction (5.27) exploiting
〈A〉ρ0(t) = 1 and 〈A〉ρmc ' 0 such that 〈A〉ρ(t) = |g(t, t)|2, where g(t, t) is the numerically exact solution of
the integro-differential equation (5.34) for the respective driving protocol and perturbation profile. Short-
dashed (blue): Same, but adopting for g(t, t) the respective asymptotic solution (5.31) of (5.34) for strong
perturbations and short times. a. Exponential perturbation profile (3.21) with σ2

v = 1, ∆v = 250ε ≈ 0.49,
and driving amplitude λ0 = 0.04; b. exponential perturbation profile (3.21) with σ2

v = 1, ∆v = 250ε ≈ 0.49,
and driving amplitude λ0 = 0.08; c. step perturbation profile (3.85) with σ2

v = 1, ∆v = 250ε ≈ 0.49, and
driving amplitude λ0 = 0.04; d. exponential perturbation profile (3.21) with σ2

v = 1, ∆v = 500ε ≈ 0.98,
and driving amplitude λ0 = 0.08.
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To discuss the role of the driving amplitude (or, more generally, the perturbation strength), it is
instructive to compare Figs. 5.3a and b, for which λ0 = 0.04 and λ0 = 0.08, respectively, whereas
the perturbation profile σ2

v(E) is of the exponential form (3.21) with ∆v = 250ε ≈ 0.49 in both
cases. Since the corresponding crossover coupling (3.73) is λc ≈ 0.014 for this configuration, both
amplitudes correspond to relatively strong perturbations. Similarly as for the driving shape, we
conclude that the onset of deviations between theory and numerics is largely independent of the
driving amplitude.

On the contrary, the band width ∆v of the perturbation profile has a significant influence on the
accuracy of the prediction. This becomes apparent by comparing Figs. 5.3b and d, both of which
have the same driving amplitude λ0 = 0.08 and an exponential perturbation profile (3.21), but
differ in terms of ∆v = 250ε ≈ 0.49 in Fig. 5.3b as opposed to ∆v = 500ε ≈ 0.98 in Fig. 5.3d. As
visualized in the figure, the theory reproduces the numerics for considerably longer times when the
band width is smaller. This is again in line with the expectations formulated in Sec. 5.2 by means
of the arguably somewhat crude perturbation-theoretic picture. There we observed that smaller
band widths entail stronger suppression of higher-order resonance chains between the unperturbed
energy levels and are thus expected to prevent the dispersal of level populations for longer times.
We recall that a similar effect was expected for weaker perturbations, but is apparently much less
pronounced (see above), which is highlighted as well by noticing that the crossover coupling (3.73)
associated with Fig. 5.3d is λc ≈ 0.020, hence λ0/λc ≈ 4.1. This should be contrasted with
λ0/λc ≈ 5.7 in Fig. 5.3b. As far as the distance from the expected crossover is concerned, the
setting in Fig. 5.3b thus amounts to a stronger perturbation than the one in Fig. 5.3d, yet the
agreement between theory and numerics is markedly better in the former case. We presume that
the reason for the greater importance of a small band width for convergence is that it specifically
suppresses transitions between levels that are far apart in the unperturbed spectrum, whereas a
small perturbation strength attenuates all transitions homogeneously. Hence a small band width
prevents the spreading of populations more effectively, especially the dominating contributions due
to short resonance chains.

Finally, the relevance of the perturbation profile’s shape can be assessed by considering Figs. 5.3a
and c, where the exponential form (3.21) is employed in subfigure a and the step form (3.85) in
subfigure c. Our first observation by mere comparison of the respective simulation results (solid
black curves) is that there are some noticeable differences between the responses to those two
profiles. That is to say, the response profiles are certainly similar in both cases, but they are
still somewhat more sensitive with respect to the perturbation profile than their counterparts for
time-independent perturbations studied in Sec. 3.6.2 (see Fig. 3.9 in particular). Comparing the
exact theoretical curves (long-dashed red) to the simulation results, the agreement appears to be
slightly better for the exponential than for the step profile, at least for the smaller periods τ =
0.5, 1. Interestingly, the opposite applies when comparing the numerics to the asymptotic response
profile (5.31) for strong perturbations (short-dashed blue curves). Here satisfactory agreement is
found for considerably longer times in case of the step perturbation profile. The reason is that
the crossover between the weak- and strong-perturbation regimes is then significantly sharper, as
illustrated, for example, in Fig. 3.9 for the case of time-independent perturbations.

Generally speaking, it should be no surprise that the strong-perturbation asymptotics works better
for larger driving amplitudes. Nevertheless, it is somewhat remarkable that it gives equally good
(if not better) results for the sinusoidal driving compared to the step driving. This is unexpected
in so far as the amplitude is always in the strong-perturbation regime for the step driving, whereas
it temporarily becomes arbitrarily small during the sinusoidal protocol.

In summary, the explicit validity analysis for periodic driving confirms our expectations from
Sec. 5.2 regarding the favorable effect of high frequencies and small perturbation band widths. By
contrast, the third supporting factor identified there, namely weak perturbations, turns out to be
of minor importance. Considering the overall scale of |g(t, t)|2 in Fig. 5.3, this is reassuring because
the particular combination of small driving amplitudes with high frequencies will not lead to any
noticeable effect on the dynamics at all, so moderately large perturbation strengths are certainly
of greater interest.
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Figure 5.4: Response profiles for a linear quench according to the driving protocol λ(t) from (5.35) for four
different quench times τ (see top-right corner of each panel) and different target amplitudes λ0 (color-coded,
see legend in left-most panel). Solid: Numerical simulation of the test-system dynamics 〈A〉ρ(t) similarly
as in Fig. 5.3, utilizing an exponential perturbation profile (3.21) with σ2

v = 1 and ∆v = 500ε ≈ 0.98.
Dashed: Theoretical prediction (5.27) exploiting 〈A〉ρ0(t) = 1 and 〈A〉ρmc ' 0 such that 〈A〉ρ(t) = |g(t, t)|2,
where g(t, t) is the numerically exact solution of the integro-differential equation (5.34) for the respective
driving protocol and perturbation profile. Dotted: Same, but adopting for g(t, t) the respective asymptotic
solution (5.31) of (5.34) for strong perturbations and short times.

Finite-time quenches. To assess the validity in the second principal application of finite-time
quenches, we adopt the linear-ramp protocol (5.37) and otherwise consider the same test system
as before. In Fig. 5.4, the simulated fidelity for such a linear quench (solid curves) is compared
to the numerically exact theoretical prediction of the associated squared response profile |g(t, t)|2
solving (5.34) (dashed curves) as well as to the strong-perturbation asymptotics (5.31) (dotted
curves). We content ourselves with an exponential perturbation profile (3.10) with σ2

v = 1 and
∆v = 500ε ≈ 0.98. Note that this corresponds to the least favorable setup considered in Fig. 5.3
(subfigure d). The general conclusions turned out to be the same for other perturbation profiles
and band widths.

The first observation is that the finite quench time delays the relaxation as one might have an-
ticipated: The slower the quench, the longer the system will follow the unperturbed reference
dynamics. To compare the effect of finite quench times to instantaneous quenches, we consider the
corresponding integro-differential equations (5.34) and (3.173) for the respective response profiles
g(t, t′) and gλ(t). Inspecting the post-quench dynamics first, we substitute the protocol (5.37) into
the definitions of ϕ1(t) and ϕ2(t) from (5.15). For late times (t� τ), we then find that ϕ1(t) ∼ λ2

0
and ϕ2(t) ∼ λ0τ

2/16. If the quench time is very short (τ → 0), we thus recover the relation (3.173)
for instantaneous quenches from the finite-time result (5.34). The slower the quench, the more im-
portant does the correction effect due to the ϕ2(t′) term in (5.34) become. For very short times
at the beginning of the quench, in turn, we find that ϕ1(t) ∼ (λ0t/2τ)2 and ϕ2(t) ∼ (λ0t

2/12τ)2.
Together with (5.34), we therefore conclude that the rate at which g(t, t′) changes with t becomes
smaller with increasing τ , leading to the above-observed delayed response for slow quenches.

Coming back to Fig. 5.4, we also notice that deviations between numerics and theory occur at late
times and for slow quenches first, conforming with our expectation from Sec. 5.2. Remarkably, the
agreement between the numerics (solid lines) and the exact theory (dashed lines) is still very good
for all target amplitudes up to the longest quench times considered. Small deviations for slower
quenches become noticeable only for weak perturbations since the response profile decays slower
in this case, too, such that there is still nontrivial behavior beyond the presumed validity regime
of the second-order Magnus approximation. Note that the crossover coupling (3.73) is λc ≈ 0.020,
meaning that the selected target amplitudes cover the full range from relatively weak to strong
perturbations. The strong-perturbation approximation (5.31) for g(t, t) naturally works best for
the largest target amplitude λ0 = 0.08, but still describes the short-time behavior for all three
perturbation strengths, in accordance with the analysis from Sec. 3.6.2.

To conclude, the present validity analysis demonstrates that the theoretical assumptions can be
upheld over a significant range of parameters. The dynamics under both periodic and quench-like
driving protocols is reproduced excellently for time scales up to several multiples of the characteris-
tic driving time τ (period or quench duration). The interplay of fast driving and small perturbation
band widths turns out to be particularly beneficial for the applicability at later times.
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5.4 Examples

As in the previous chapters, an important ingredient to establish the usefulness of the obtained
relations for the typical dynamics is to test them in concrete physical models. Since it is our
perception that the short-time response of many-body systems to time-dependent driving has
received only little attention in the literature so far (see also Sec. 5.5 below), we will rely on
numerical simulations of our own and thereby re-encounter two spin- 1

2 systems which already
featured as illustrations of the relaxation theory for time-independent perturbations in Sec. 3.7.

Two-dimensional spin-1/2 lattice. In our first example, we look into the 4 × 4 spin- 1
2 lattice

first introduced in Sec. 3.2 again. The Hamiltonian is of the form (5.1) with H0 from (3.20a) and
V from (3.20b). As before, we focus on an energy window comprising the central 60 % of states
with mean level spacing ε = 1.90× 10−3. The perturbation profile σ2

v(E) is approximately of the
exponential form (3.21) with σ2

v = 5.02× 10−3 and ∆v = 7.32, hence αv = 2.64.

We already investigated the dynamics of this system under time-independent perturbations in
Sec. 3.7 (see Fig. 3.10 in particular) and employ the same basic setup here. That is to say, we
consider the central magnetization correlation mc from (3.192) for the initial state ρ(0) = |ψ〉〈ψ|
from (3.194) on the one hand and the central spin-flip correlation jc from (3.195) for an initial
state using the dynamical-typicality scheme (2.39) as specified below Eq. (3.195).

Fig. 5.5 shows the resulting undriven behavior together with driven dynamics for three different
periods and two amplitudes (solid lines). For the dynamics of mc in Fig. 5.5a, we adopt the
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Figure 5.5: Time evolution in the two-dimensional spin- 1
2 model H(t) = H0 + λ(t)V with H0 from (3.20a)

and V from (3.20b) under periodic driving for periods τ = 0.1, 0.2, 0.5 (see top-right corner of each panel)
and amplitudes λ0 = 0, 0.8, 1.6 (see legend) for two different observables A and initial states ρ(0) =
|ψ〉〈ψ| (see below). Solid: Numerical simulation results obtained using exact diagonalization for the
undriven dynamics (λ0 = 0) and a fourth-order Runge-Kutta scheme for the driven case (λ0 > 0). Dashed:
Analytical prediction (5.27), employing the numerical solution for λ0 = 0 (solid black curve) for the
reference dynamics 〈A〉ρ0(t), the exact numerical solution of (5.34) for the response profile g(t, t) with
the empirically determined exponential perturbation profile (3.21) with intrinsic perturbation strength
αv = 2.64 and band width ∆v = 7.32 (cf. Figs. 3.1 and 3.2), and the known 〈A〉ρmc (see below). Dotted:
Analytical prediction (5.27) adopting the strong-perturbation asymptotics (5.31) for g(t, t) instead. a. A =
mc from (3.192) with 〈mc〉ρmc = −0.0805 (see below Eq. (3.195)), |ψ〉 from (3.194), and sinusoidal driving
protocol (5.36). Curves for λ0 > 0 are shifted in steps of −0.05 for better visibility. b. A = jc from (3.195)
with 〈jc〉ρmc = 0 (see below Eq. (3.195)), |ψ〉 as described below Eq. (3.195), and sinusoidal driving
protocol (5.36). Curves for λ0 > 0 are shifted in steps of −0.1 for better visibility.
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Figure 5.6: Time evolution in the two-dimensional spin- 1
2 model H(t) = H0 + λ(t)V with H0 from (3.20a)

and V from (3.20b) under the linear-ramp driving protocol (5.37) for quench times τ = 0.2, 0.5, 1 (see
top-right corner of each panel) and amplitudes λ0 = 0, 0.4, 0.8, 1.6 (see legend). Solid: Numerical simula-
tion results obtained using exact diagonalization for the undriven dynamics (λ0 = 0) and a fourth-order
Runge-Kutta scheme for the driven case (λ0 > 0). Dashed: Analytical prediction (5.27), employing the
numerical solution for λ0 = 0 (solid black curve) for the reference dynamics 〈mc〉ρ0(t), the exact numerical
solution of (5.34) for the response profile g(t, t) with the empirically determined exponential perturbation
profile (3.21) with intrinsic perturbation strength αv = 2.64 and band width ∆v = 7.32 (cf. Figs. 3.1
and 3.2), and the known 〈mc〉ρmc = −0.0805 (see below Eq. (3.195)). Dotted: Analytical prediction (5.27)
adopting the strong-perturbation asymptotics (5.31) for g(t, t) instead.

sinusoidal driving protocol (5.36), whereas the step protocol (5.35) is used for jc in Fig. 5.5b
to give variety. The theoretical prediction (5.27) is compared to those numerical simulations by
exploiting the numerics (solid black curve) for the undriven dynamics 〈A〉ρ0(t) and the known
values 〈mc〉 = −0.0805 and 〈jc〉 = 0 (see below Eq. (3.195)) for the thermal expectation values.
The response profile g(t, t′) is either evaluated exactly by solving (5.34) numerically (dashed lines)
or approximated analytically using the asymptotic solution (5.31) (dotted lines).

The overall conclusions are similar to the observations from Sec. 5.3.3: The agreement between the
numerics and the exact theory is very good for high frequencies (small τ) and/or short times. The
deviations at late times and lower frequencies appear slightly larger in Fig. 5.5b, but the theory
still reflects the dynamics qualitatively. The asymptotic theory for strong perturbations performs
less convincingly, but the driving amplitudes do not reach very far into the strong-perturbation
regime either since the crossover coupling (3.73) is λc ≈ 0.75.

In Fig. 5.6, we compare numerics and theory for the linear quench protocol (5.37), focusing on the
magnetization correlation mc in an otherwise identical setup. In this more realistic quench setting
compared to Fig. 5.4, we again observe the expected delayed response, entailing that the finite-
quench dynamics remains closer to the undriven behavior for longer quench times. The theory
reproduces the numerical data well in general with small deviations becoming more pronounced at
later times.

Two coupled spin-1/2 chains. As a second example system, we consider two isolated spin chains
that are coupled by the perturbation, such that H(t) in Eq. (5.1) is composed of H0 and V as
given in (3.202) and (3.203), respectively. For time-independent coupling strengths, a comparison
between numerics and the corresponding theory from Chapter 3 had been carried out in Fig. 3.14.
We take the same initial state ρ(0) = |ψ〉〈ψ| as specified in Eq. (3.204) and focus on the single-site
magnetization σz1,1.

Fig. 5.7a shows the observed dynamics for the sinusoidal driving protocol (5.36) and various ampli-
tudes and periods. As usual, the solid lines correspond to the “true” dynamics as obtained from a
numerical integration of Schrödinger’s equation using a second-order Suzuki-Trotter decomposition
with time step ∆t = 0.01. We also plot the theoretical prediction (5.27) exploiting 〈σz1,1〉ρmc = 0
(see dash-dotted lines) and the solution of (5.34) for g(t, t′) adopting an exponential perturbation
profile (3.21) with αv = 0.90 and ∆v = 5.8, the same estimates as in Sec. 3.7 (cf. Fig. 3.14).
This yields the dashed curves in Fig. 5.7a, which are in excellent agreement with the numerics for
small τ = 0.25 (left panel) and likewise match well for the larger value of τ = 2 (right panel).
More pronounced deviations become visible for the intermediate value of τ = 0.5 (middle panel)
and larger driving amplitudes. Here the theory predicts that the expectation values stabilize near
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Figure 5.7: Time evolution for two coupled spin- 1
2 chains withH(t) = H0+λ(t)V , whereH0 and V are given

by (3.202) and (3.203), respectively, under periodic driving for periods τ = 0.25, 0.5, 2 (see top-right corner
of each panel) and various amplitudes (see legend). The observable A = σz1,1 is a single-site magnetization,
the initial state is ρ(0) = |ψ〉〈ψ| with |ψ〉 from (3.204). Solid: Numerical simulation results obtained using
a second-order Suzuki-Trotter decomposition with time step ∆t = 0.01. Dash-dotted (only a): Thermal
expectation value 〈σz1,1〉ρmc = 0. Dashed: Analytical prediction (5.27), employing the numerical solution
for λ0 = 0 (solid black curve) for the reference dynamics 〈σz1,1〉ρ0(t), the exact numerical solution of (5.34)
for the response profile g(t, t) adopting an exponential perturbation profile (3.21) with αv = 0.95 and
∆v = 5.8 (see Fig. 3.14 and corresponding discussion), and 〈σz1,1〉ρmc = 0. Dotted (only b): Analytical
prediction (5.27) adopting the strong-perturbation asymptotics (5.31) for g(t, t) instead. Data for λ0 > 0
are shifted in steps of −0.1 for better visibility. a. Sinusoidal driving protocol (5.36); b. biased-cosine
driving protocol (5.38).

a value different from 〈σz1,1〉ρmc = 0 (dash-dotted lines), whereas the actually observed behavior
shows an approach towards 〈σz1,1〉ρmc . Comparing to the left and right panels, we observe that the
numerics indeed stays away from 〈σz1,1〉ρmc for higher frequencies (left panel), and the theory indeed
predicts an approach of 〈σz1,1〉ρmc for smaller frequencies (right panel). Qualitatively, the theory
thus entails a similar crossover between the limiting regimes of fast and slow driving as suggested
by the numerics, but misses the precise point of the transition.

Note that the crossover coupling λc ≈ 1.1, so the figure contains data for rather small amplitudes.
Particularly in combination with high frequencies (left panel), it appears that the dynamics barely
changes compared to the unperturbed behavior. We emphasize that this is a nontrivial correct
prediction of the theory, too. Since 〈σz1,1〉ρmc = 0 whereas the observed value at long times is
noticeably larger than zero, the fact that 〈σz1,1〉ρ(t) as calculated from (5.27) settles down to a
nonthermal value in accordance with the numerics is solely encoded in the response profile g(t, t′)
obtained via (5.34). This should be contrasted with the behavior observed for a constant pertur-
bation shown in Fig. 3.14a: Here the dynamics eventually approaches 〈σz1,1〉ρmc = 0 for seemingly
arbitrarily small λ > 0. For sufficiently fast driving, the dynamics thus exhibits characteristics
reminiscent of prethermalization in the sense that the system avoids to thermalize for an extended
period of time (see also the discussion in the subsequent section), and the theory correctly repro-
duces this behavior.

In Fig. 5.7b, we apply a perhaps experimentally more realistic driving protocol of the form

λ(t) = λ0

2

[
1− cos

(
2πt
τ

)]
, (5.38)

which we imagine to be implemented, for example, by varying the spatial distance between the
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two chains. Note that this is a biased protocol since λ(t) = λ0/2, i.e., it can be viewed as a
mixture of a pure (unbiased) periodic driving and a finite-time quench (on average). In all other
respects, the setup is the same as in Fig. 5.7a. Note that we no longer display the equilibrium
value 〈σz1,1〉ρmc = 0 since all configurations (except for the undriven case λ = 0) ultimately approach
this value. Instead, we now include (similarly as in Figs. 5.5 and 5.6) the theoretical prediction
utilizing for g(t, t′) the asymptotic form (5.31) for strong perturbations (dotted lines), which has
been omitted in Fig. 5.7a for the sake of clarity. We observe that the exact theory (dashed lines)
conforms almost flawlessly with the numerics for high frequencies or small amplitudes, whereas
minor deviations occur for lower frequencies and larger amplitudes, similar to the ones observed in
the undriven scenario from Fig. 3.14a. The strong-perturbation approximation, in turn, performs
reasonably well for high frequencies and large amplitudes or short times, i.e., in the regime where
it is supposed to do so.

5.5 Discussion

The main result of this chapter is the prediction (5.27) describing the typical short-time response
of nearly isolated many-body quantum systems to time-dependent perturbations λ(t)V when the
operators V are contained in one of the ensembles introduced in Sec. 3.3. As demonstrated for
various models and setups in Sec. 3.7, these perturbation ensembles capture the effect of realistic
physical perturbations in many different situations, and indeed we found good agreement between
the enhanced relaxation theory for driven systems and realistic example systems in Sec. 5.4 here
again. Notably, the theory correctly predicts highly nontrivial time-dependent expectation values
in those systems remarkably well in the expected regime of validity (see, in particular, Figs. 5.5
and 5.7 as well as Fig. 5.3). Moreover, it applies to largely arbitrary driving protocols as long
as the amplitudes do not become overly large, including the important special cases of periodic
driving and finite-time quenches.

The connection between the driven dynamics and the undriven behavior is established by the
response profile g(t, t′), which links the function σ2

v(E) from (3.10) as the decisive perturbation
characteristic to the dynamical response via the integro-differential equation (5.34). Integrating
this equation numerically is straightforward and thus readily allows to evaluate the theoretical
prediction (5.27) quantitatively. Moreover, we also derived an explicit analytical expression (5.31)
which solves Eq. (5.34) for reasonably large perturbation strengths or small band widths ∆v.

Limitations. Even though the theory is applicable to a large variety of different models, it also
suffers from some limitations, which are ultimately due to the adopted modeling of perturbations
and approximations employed during the derivation. The typicality approach and its embedding
of the true perturbation of interest into an ensemble of operators with similar perturbation profiles
entails essentially the same restrictions regarding admissible setups as in the time-independent
setting. These restrictions (as well as potential strategies to overcome them) have been discussed
in detail in Secs. 3.6.2 and 3.8. Notably, we still need to demand that the dynamics should not
involve macroscopic transport, i.e., the initial state should be roughly homogeneous in space on
a macroscopic level or at least the observable should be insensitive to potential inhomogeneities.
Furthermore, regarding the description of finite-time quenches, the often adopted setting where
the system is prepared in the ground state of the pre-quench Hamiltonian is unfortunately beyond
the scope of our present analysis, too, because the assumption of a homogeneous level density (see
Prerequisite (i)) will commonly be violated then. Similarly, quenches between integrable models
are presumably not covered if the relevant local integrals of motion change with λ(t), whereas
quenches between models with identical conserved quantities or from integrable to nonintegrable
ones are generally admitted (see also the discussion in Sec. 3.8).

The truncated Magnus expansion utilized during the derivation implies additional restrictions,
which were expounded based on theoretical considerations in Sec. 5.2 and verified quantitatively
in Sec. 5.3.3. They entail that the theoretical prediction cannot be expected to apply at late
times and will be more reliable if the characteristic time scale of the driving protocol is short (or,
equivalently, for high driving frequencies). Moreover, relatively narrow perturbation profiles with
a small band width (see Eq. (3.13)) have a positive impact on the applicability.
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A natural question regards the inclusion of higher-order terms from the Magnus expansion into the
auxiliary Hamiltonians (5.7). Generally speaking, such corrections should enhance the applicability
further into the regime of longer times and slower driving. Unfortunately, though, such an extension
will involve significant technical complications. The virtue of the second-order truncation is that
it is still linear in V , which enables a direct mapping onto the setting from Chapter 3. The third-
order contribution, by contrast, contains terms of order V 2. In principle, such a contribution could
be accounted for by introducing renormalized variances and covariances in the distribution p(V )
of V from (3.24). This particularly affects, for example, the step from Eq. (3.47) (or Eq. (3.45))
to Eq. (3.50) in the calculation of the second moment of eigenvector overlaps from Sec. 3.4.2: In
lieu of the independent Gaussian distributions (3.49) for the matrix elements Vµν , we would have
to employ a still Gaussian, but correlated joint distribution p(V ) for them. While this does not
preclude performing the ensemble average and arriving at an analog of Eq. (3.50), the subsequent
steps of the calculation to process the supersymmetric degrees of freedom become considerably more
involved. As indicated in Sec. 3.8 already, an efficient way to deal with correlated perturbation
ensembles seems to be vital for further progress.

Relation to other studies. Regarding the detailed dynamics of many-body quantum systems
subject to arbitrary driving protocols, analytical investigations are generally scarce. When it comes
to identifying general principles regarding the behavior of periodically driven systems in particular,
the focus in the literature thus far has clearly been on the long-time behavior, usually assessed
in terms of stroboscopic dynamics, where states and observable expectation values are considered
at integer multiples of the driving period only [306, 309, 323, 325, 327–330]. Since periodically
driven systems can be shown to approach a periodic state synchronized with the driving at long
times under basically the same prerequisites for which isolated systems equilibrate (cf. Sec. 2.2.1)
[328, 331], the asymptotic behavior is indeed essentially characterized by stroboscopic observations.
This stroboscopic time evolution can be described in terms of the Floquet Hamiltonian HF (see also
Sec. 5.2), an effective, time-independent Hamiltonian related to the propagator for one period via
U(τ) = e−iHFτ . Note that, contrary to U(τ), the Floquet Hamiltonian HF is not unique because
we can add arbitrary multiples of the driving frequency 2π

τ to any of its eigenvalues and still obtain
the same time-evolved state at stroboscopic times. Within our approach outlined in Sec. 5.1,
we can identify HF with the auxiliary Hamiltonian H(τ) from (5.7) due to (5.3). Adopting the
second-order truncation (5.11) of the Magnus expansion and assuming an unbiased driving such
that Λ1(τ) = λ(t) = 0, we thus find HF ≈ H0 + i[V,H0]Λ2(τ)/τ . Besides the Magnus expansion,
also a variety of other approaches have been suggested to calculate HF approximately; see, for
instance, Refs. [330, 332, 333].

To assess the asymptotic behavior of periodically driven systems at late times, one can then
adopt well-established tools and concepts from quantum statistical mechanics for time-independent
Hamiltonians (cf. Chapter 2) to HF, leading to effective “periodic thermodynamics” [328]. In the
end, many of the concepts presented in Chapter 2 are believed to have a corresponding “Floquet
analog,” such as a Floquet ETH [138, 309, 315, 320], a periodic Gibbs ensemble [328, 329], Floquet
many-body localization [315, 321, 327, 333–335], Floquet prethermalization [308, 309, 314, 317, 323,
325], etc.

The generally emerging picture is that periodically driven quantum many-body systems eventually
absorb energy indefinitely and heat up to infinite temperature [306, 320–323], meaning that the
level populations of the time-averaged Hamiltonian approach a uniform distribution, unless there
are mechanism preventing thermalization such as an extensive number of conserved quantities
[328, 331] or many-body localization [321, 333, 335]. However, even in the generic case, energy
absorption can be suppressed for time scales that are exponentially large in the driving frequency
[307, 309, 324, 325], which comes in useful for the applicability of the theory developed here. In
fact, the time scale for the onset of heating has been related to the time scale when the Magnus
expansion breaks down [306, 322, 327]. In the regime where the Magnus expansion is applicable,
which is the maximal time scale up to which the methodological approach from this chapter can
possibly work, the energy distribution will thus not spread significantly compared to its initial
form, justifying once more our considerations from Sec. 5.2 regarding the homogeneous density of
states in the relevant subspace for the dynamics.

An interesting suggestion to extract the matrix structure of the driving operator V in the eigenba-
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sis of the reference Hamiltonian H0 based on the heating rates observed at late times for different
driving frequencies was put forward in Ref. [323]. Given the direct relationship between the pertur-
bation profile σ2

v(E) and the response profile g(t, t′) as encoded in Eq. (5.34), it might be possible
to probe that matrix structure based on the short-time response of the system, too. Note that
such a reconstruction should in principle be possible already from the response to time-independent
perturbations via Eq. (3.173), but since the corresponding response profile gλ(t) turned out to be
rather insensitive to details of σ2

v(E), extremely high measurement precision would be required
to extract details beyond the intrinsic strength αv and the band width ∆v. In the driven case,
by contrast, the response profile g(t, t′) exhibited somewhat higher susceptibility to variations of
σ2
v(E), and the freedom to choose essentially arbitrary protocols λ(t) entails a greater variability

of probe dynamics as well. In particular the second moment Σ2 of σ2
v(E) (cf. Eq. (3.175)) should

be accessible with relatively little effort due to Eqs. (5.14) and (5.32) (see also Eq. (5.29)).

Generally speaking, the results of this chapter therefore complement the aforementioned earlier
studies of the stroboscopic long-time behavior by a detailed, continuously time-resolved description
of the dynamics at short times, which can still cover multiple driving periods provided that the
frequency is sufficiently high and the perturbation profile sufficiently narrow. As far as the above
collected phenomenology is concerned, the present theory thus seems particularly suited to describe
the initial transient of systems exhibiting Floquet prethermalization [308, 309, 314, 317, 325].
Note that this concept of Floquet prethermalization is not restricted to time-averaged or undriven
systems H0 with conserved quantities that are broken by the perturbation V . Instead, it applies
likewise to generic (nonintegrable) systems and describes the behavior that a system driven at
high frequency spends a long time close to the equilibrium state associated with the time-averaged
Hamiltonian H0 (or, more generally, some truncated approximation of the Floquet Hamiltonian
HF [308, 309]) and the initial energy 〈H0〉ρ(0), which will commonly be a thermal state, albeit
at finite temperature. “True” thermal equilibrium is then reached at later times in the form of
an infinite-temperature state. Observing that ρmc in Eq. (5.27) refers to the prethermal state
corresponding to the initially occupied energy window, the prediction thus precisely describes such
Floquet-prethermalization transient dynamics, at least if the undriven system thermalizes. The
eventual approach of an infinite-temperature state, however, is not accounted for and cannot be
hoped to emerge within a Magnus-expansion scheme as explained above.

Experiments. Much like the theoretical investigations of periodically driven quantum many-body
systems, experimental efforts regarding dynamical properties have mostly concentrated on the
long-time behavior and the emergence of exotic phases [283]. Unfortunately, we thus could not
make out any experimental time-series data in the literature that would allow a direct comparison
with the derived theoretical predictions. Nevertheless, obtaining such data should be readily
possible in principle with presently available methods and techniques, for instance by means of
cold atoms or tunable effective spin systems as employed in polarization-echo experiments (see
also Secs. 2.1 and 4.1). The only caveat is to determine the perturbation profile σ2

v(E) in a
given experimental setup. We argue that this can be circumvented by considering a similar setup
with time-independent perturbations first (λ(t) = λ0). In this case, the theory from Chapter 3,
notably Eq. (3.188) in combination with (3.166) for gλ(t), can be employed to determine the
intrinsic strength αv and band width ∆v of the relevant perturbation (cf. Eqs. (3.12) and (3.13)).
Based on these estimates, the response profile for time-dependent perturbations g(t, t′) can then
be approximated by solving Eq. (5.34) for a generic perturbation profile such as the exponential
form (3.21). As demonstrated in Fig. 5.3 (cf. subfigures a and c), for sufficiently short times and
high frequencies, the observable differences of time-dependent expectation values between different
perturbation profiles will be relatively small and presumably below the experimental uncertainties.
Note that such a method was also effectively adopted in the example from Fig. 5.7, even though the
choice of an exponential profile was guided by numerical observations for smaller system sizes (see
also the discussion around Fig. 3.14). On the other hand, if the experimental accuracy is higher,
this high-resolution information can be exploited to determine the perturbation profile from the
experiment as indicated above.

Connection to echo dynamics. The close methodological relationship between the present chap-
ter and Chapter 3 has already been stressed on several occasions. Notwithstanding, the analysis
of driven systems here is also similar or perhaps complementary to the echo dynamics studied in
Chapter 4. Indeed, the protocol (4.34) for imperfect reversal can be mapped to the model (5.1)
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by a suitable definition of H0, V , and λ(t) in terms of the echo operators4 H
(e)
0 , V (e) and the

parameter ε. We point out, however, that such a mapping would generally violate Prerequisite (vi)
of small correlations between H0 and V in (5.1). More importantly, though, the resulting pertur-
bation V would not be small because the dominant contribution comes from H

(e)
0 , the reference

Hamiltonian of the echo protocol. The echo studies from Chapter 4 are thus not simply a special
case of the analysis from this chapter for weak-to-moderate perturbations, but rather describe a
different setting. In fact, the roles of H0 and V are essentially reversed in the echo setup, meaning
that the latter could also be viewed as a theory for extremely strong driving, albeit restricted to a
single cycle.

The echo protocol (4.13) for the imperfect-preparation scenario, in turn, was meant to model in-
accuracies during the process of switching from H

(e)
0 to −H(e)

0 . Perhaps more realistically, this
switching could be modeled by a finite-time quench from H(0) = H

(e)
0 to H(δ) = −H(e)

0 mediated
by a perturbation V = −2H(e)

0 , supplemented by additional terms to describe the actual inaccu-
racies. Hence the pertinent perturbation operator V violates Prerequisite (vi), too. Again, the
echo setting thus represents a rather different situation that cannot be simply embedded into the
present approach for driven systems.

4Note that we introduced the superscript “(e)” for operators pertaining to the echo setting from Chapter 4 since
their meaning is generally different from the reference Hamiltonian and perturbation operators in (5.1) for the
present chapter.

136



6 Conclusions

The central theme of this thesis was to find comparatively simple relations for the behavior of many-
body systems based on the well-verified theoretical modeling of their individual constituents. For
our everyday experience, the relevant microscopic degrees of freedom are atoms and molecules,
whose behavior is described by nonrelativistic quantum mechanics. If many degrees of freedom
are involved, the microscopic dynamics is usually extremely complicated and hardly analytically
tractable. Yet the macroscopically observable behavior is often surprisingly regular. For instance,
as expounded in Chapter 2, it is well-established that isolated many-body quantum systems generi-
cally equilibrate, meaning that observable expectation values become essentially stationary at long
times, and usually even thermalize, i.e., the stationary values coincide with the prediction from
the pertinent thermodynamic ensemble (e.g., microcanonical or canonical).

Our primary interest was to describe the dynamics of systems that are initially far from such an
equilibrium state under the influence of weak-to-moderate perturbations: How do these systems
relax towards equilibrium (Chapter 3)? Can we characterize the irreversibility of the relaxation
processes (Chapter 4)? And how does time-dependent driving affect the response (Chapter 5)? In
essence, our answers to these questions consisted in analytical predictions for the time evolution
of expectation values of experimentally realistic observables in three distinct but related setups.

Typicality. The common procedure to derive these predictions is based on so-called typicality
methods [6, 179, 180]. Conceptionally, these exploit the phenomenologically well-established fact
that the behavior of a macroscopic system is often characterized by a few parameters (e.g., energy,
pressure, magnetization, ...), meaning that it is not necessary to know all complicated microscopic
details to describe it. The general idea of the typicality approach is thus to temporarily consider,
instead of one particular system, an entire class of similar systems. In our case, this amounts to an
ensemble of Hamiltonians H, which are supposed to emulate the key features of the true system
of interest as closely as possible. In a first step, we calculated the average dynamics over all H
from a given ensemble. Second, we showed that the probability that a single system from the
ensemble exhibits noticeable deviations from the average behavior is exponentially suppressed in
the degrees of freedom. In the considered many-body setting, the dynamics of nearly all systems
in the ensemble is thus practically indistinguishable from the average. In a third step, we argued
that the true system of interest is one of those “typical” members, unless there are specific reasons
to the contrary. Hence the ensemble-averaged dynamics becomes the aforementioned prediction
for the actual behavior of the true system.

From a technical point of view, the pivotal step is to evaluate averages over products of transforma-
tion matrix elements between a fixed reference basis of the underlying Hilbert space and the variable
eigenbases of the individual H in the ensemble. Depending on the precise problem, we adopted
various approaches to do so, most notably so-called supersymmetry methods [163, 220, 222–224]
as developed in the context of random matrix theory and extended for our present purposes.

Perturbed relaxation. In Chapter 3, we studied systems whose Hamiltonian Hλ = H0 + λV
can be split into two parts: an unperturbed reference system H0 one the one hand, for which we
assume that the dynamics is known, and a perturbation λV on the other hand, which should be
sufficiently weak so that the thermodynamical properties of the system do not change noticeably.
The dynamical properties can then still be modified significantly, especially if the reference system
is in some sense “more regular” or “simpler,” for example because it is noninteracting, consists of
isolated subsystems, has one or more conservation laws that are broken by the perturbation, etc.

Predicting the response of a given system to a perturbation is a recurrent and important prob-
lem in many areas of physics. In the context of many-body systems, however, remarkably little
is known analytically. Not least, this is the case because arguably the standard method using
ordinary perturbation theory (i.e., expanding the propagator in powers of λ) is usually limited to
uninterestingly small time scales below the relevant relaxation time due to the exceedingly dense
many-body energy spectrum and the concomitant small denominators in the perturbation series.

We evaded this difficulty by employing a typicality approach for the perturbation operator V .
Importantly, our perturbation ensembles admit sparse and banded matrix representations of V
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(in the eigenbasis of H0) as they commonly arise as a result of the local and few-body character
of interactions. However, a caveat is that the precise geometry and form of interactions are not
considered directly, so relaxation processes involving macroscopic currents may in general show
deviations from the theory. Yet our resulting analytical prediction for the time-dependent per-
turbed expectation values, Eq. (3.160), provides a unified framework for such diverse phenomena
as prethermalization, quantum quenches, or the relaxation of system-bath compounds in the ab-
sence of macroscopic spatial inhomogeneities. For weak perturbations and late times, in particular,
it furthermore demonstrates Fermi’s golden rule in the many-body context.

Besides describing the evolution towards equilibrium, the theory also provides a characterization
of the eventually reached equilibrium state, which generalizes and concretizes previous results
obtained in a similar setup [114, 257]. As in those earlier studies, the overall conclusion is that
perturbed many-body systems will generically thermalize in the long run.

Echo dynamics. In Chapter 4, we investigated so-called “echo protocols” [284, 285], which allow
us to quantify irreversibility and the stability of nonequilibrium states in isolated many-body
quantum systems in terms of macroscopic observables. The general procedure works as follows:
A system with Hamiltonian H0 is prepared in a nonequilibrium target state and subsequently
relaxes for a certain waiting time τ to reach the return state. At this point, an (effective) time
reversal is performed by switching to the Hamiltonian −H0, a transformation that can be realized
at least approximately, for example, in spin systems or using quantum simulators. If implemented
perfectly, this procedure would take the system back to the target state after another period of
time τ . However, (a) tiny distortions of the return state as well as (b) imperfections in the time-
reversed Hamiltonian, both of which are practically unavoidable in experiments, lead to a different,
perturbed target state at the end of the process. This perturbed target state will generically be
closer to equilibrium than the initially prepared target state because the imperfections spoil the
fine-tuned correlations required for nonequilibrium conditions. The dependence of these differences
between the initial and final states on the magnitude of the imperfections and the waiting time τ
conveys information about the irreversibility of the dynamics by quantifying how difficult it is to
perform an effective time reversal.

We assessed to what extent the difference of the final state from the perfect target state manifests
itself in macroscopic observables, modeling the usually uncontrolled and partly unknown imper-
fections of types (a) and (b) by suitable random operators. By means of a typicality argument,
we again extracted analytical predictions for the time-dependent expectation values under the pre-
scribed echo protocols, namely Eq. (4.26) for imperfections of type (a), Eq. (4.40) for type (b),
and Eq. (4.43) for their combined effect.

By analogy with classical chaos theory, the imperfect-preparation scenario with imperfections of
type (a), where the state at the point of reversal is slightly perturbed, may roughly be regarded as
a probe for sensitive dependence on initial conditions. The most remarkable aspect of our findings
in this regard is that the strength of the observable echo peak relative to the deflection from
equilibrium at the beginning of the protocol is essentially independent of the waiting time τ in the
long run. This is in striking contrast to the corresponding scenario in classical chaotic systems,
where the echo peak decays with τ as quantified by the concept of Lyapunov exponents.

The imperfections of type (b), pertaining to the imperfect-reversal scenario where the time-reversed
Hamiltonian is slightly perturbed as −H0 + εV , are of particular relevance with respect to experi-
mental realizations of echo dynamics because one can usually only revert the dominant part of the
Hamiltonian and the accuracy to carry out the sophisticated manipulations to do so is naturally
limited. The obtained result, which is closely related to the investigations from Chapter 3, states
that the decay of the relative echo peak is expected to be Gaussian in the magnitude ε of the
imperfections and exponential in the waiting time τ .

Driven systems. In Chapter 5, we advanced the relaxation theory from Chapter 3 to cover situ-
ations with time-dependent couplings of the perturbation, investigating Hamiltonians of the form
H(t) = H0 + λ(t)V . As before, it is assumed that the dynamics of the time-independent reference
system with Hamiltonian H0 is known. The generalization was achieved by transforming the prob-
lem of time evolution under a single time-dependent Hamiltonian into a family of time-evolution
problems for time-independent auxiliary Hamiltonians based on a truncated Magnus expansion
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[318] of the propagator. These auxiliary systems can then be treated by a suitable extension of
the previous theory for the typical relaxation under time-independent perturbations. Combining
the typical behavior of all auxiliary systems, we arrived at a theoretical prediction, Eq. (5.27), for
the driven dynamics generated by the original, time-dependent Hamiltonian.

The approximations adopted during the aforementioned transformation entail that the resulting
response theory works best for short times and fast driving, but still for largely arbitrary protocols
λ(t) as long as the amplitude remains within reasonable bounds for a perturbative approach to be
justified at all. Particularly interesting applications are periodically driven systems or finite-time
quenches. Importantly, our theory targets a regime that is largely unexplored in the literature,
where the focus regarding periodically driven systems in particular has been on long-time properties
of prethermal states and the question of eventual heating [306, 309, 328]. For sufficiently high
frequencies, our present theory describes the detailed approach of such prethermal states.

Response profiles. The key element in all of the theoretical predictions was some scalar function
that characterizes the principal modifications of the respective reference dynamics induced by
the different types of perturbations, which we dubbed the response profile. For relaxation under
time-independent perturbations and echo inaccuracies of the imperfect-reversal type, the relevant
response profile is gλ(t) from (3.146). For echo inaccuracies of the imperfect-preparation type, it is
d̂W (t) from (4.22), and for the response to time-dependent perturbations, it is g(t, t′) from (5.23).
All of these characteristic functions arise as Fourier transforms of some energy distribution, namely
the second moment of eigenvector overlaps between unperturbed and perturbed Hamiltonians in
the case of gλ(t) and g(t, t′) (see Eq. (3.32) and above Eq. (5.23), respectively), and the scrambling
operator’s density of states (4.21) in the case of d̂W (t).

For gλ(t) and g(t, t′), we furthermore established the integro-differential equations (3.173) and
(5.34), respectively, which relate those response profiles to the perturbation profile (3.10), i.e., the
locally averaged magnitude of perturbation matrix elements as a function of the energy difference
between the coupled levels of the reference system. Those integro-differential equations thus single
out the perturbation profile as the essential characteristic determining the perturbed dynamics
within the theories’ regimes of applicability.

Interestingly, the equations resemble common relations for response functions, but are distinctly
nonlinear with the effective “memory kernel” depending on the respective response-profile function
itself. Analytical solutions were obtained for certain special cases, notably for sufficiently weak or
sufficiently strong perturbations and for perturbation profiles with a Breit-Wigner shape in the
case of gλ(t) as well as for sufficiently strong driving or very short times in the case of g(t, t′).
For the rest, the response profiles can be calculated numerically by integration of the respective
integro-differential equation using standard techniques. Moreover, the function gλ(t) (and to a
lesser extent also g(t, t′)) turned out to be somewhat insensitive with respect to details of the
perturbation profile. For gλ(t) in particular, this led to the analytical approximation (3.166),
which is presumed to cover essentially all cases of physical relevance and depends only on the
perturbation strength and its band width (cf. Eqs. (3.12) and (3.13)).

Verification. We demonstrated the wide applicability of each of the acquired theoretical descrip-
tions by comparison with experimental and/or numerical data from the literature and our own
simulations for various distinct model systems. We particularly highlight the entirely parameter-
free predictions of nonequilibrium many-body dynamics in realistic models from Figs. 3.10, 4.4,
4.7, 5.5, and 5.6. These demonstrate that the good agreement is not simply a coincidence or the
result of excessive fitting. In all other examples, at most two fit parameters sufficed to describe
the full time evolution of several different coupling strengths, observables, initial states, or driving
protocols at once, which reinforces the explanatory power of the results. Not least, the considered
models were quite diverse in their degrees of freedom (including spins, bosons, and fermions), in
the interactions between them, as well as in the underlying spatial or lattice structure.

Possible extensions. The adopted typicality approach entails that certain characteristics of the
system of interest are disregarded. On the one hand, as mentioned before, this is a desired effect
in general since it can be utilized to separate important from unimportant properties with respect
to the observable dynamics. On the other hand, a theoretical prediction based on a typicality
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argument cannot be expected to apply when primary drivers of those dynamics remain unaccounted
for.

Regarding the typicality ensembles employed in this thesis, potentially important but largely dis-
regarded characteristics of physical systems include, in particular, local interactions between only
a limited number of constituents (see above) as well as correlations or functional dependencies
between Hamiltonians, observables, and initial states. Sometimes it is intuitively clear when such
aspects become relevant, for instance if a locally interacting system shows dynamics involving
macroscopic transport. Nevertheless, improving our understanding of when those and other prop-
erties matter remains an important open issue. In addition, it would naturally be desirable to
extend or modify the considered ensembles such that those properties can be taken into account
when they are important.

The tiny piece of the puzzle. At last, we come back to the grand question underlying the research
of this thesis as phrased in the introduction from Chapter 1: How does the observable macroscopic
regularity arise from the fundamental laws describing the motion and interactions of individual
atoms and molecules? We believe that the present results indeed contributed a tiny piece of the
puzzle as promised in the beginning.

Our starting point was a quantum mechanical description of (nearly) isolated many-body systems,
where we focused on three different setups: perturbed relaxation, echo protocols, and short-time
dynamics of driven systems. In all three cases, we considered large classes of microscopically dis-
tinct systems which shared some essential macroscopic properties, namely the density of states
and possibly the perturbation profile (or even just the perturbation strength and band width).
We then demonstrated that nearly all systems within any such class exhibit macroscopically in-
distinguishable dynamics, and we furthermore presented quantitative predictions for this typical
behavior. Notably, this incidence of macroscopic regularity among microscopically rather different
systems was derived entirely within the framework of quantum mechanics and essentially merely
exploited the high number of degrees of freedom. Hence the indifference of large systems to many
details at the level of their constituents is indeed somehow built into the fundamental laws, albeit
not in an immediately obvious way.

Within all of the three setups, the considered systems were still rather generic and included a large
variety of concrete physical models with different degrees of freedom and interactions between
them. In fact, one might even argue that the classes were a little too generic because certain
aspects common to the microscopic models that make up our reality, especially the locality and
few-body character of interactions, were not directly taken into account. Nevertheless, the theory
evidently covers a large number of nontrivial and physically important situations in which these
properties are not the pivotal mechanism behind the macroscopically perceivable behavior. In other
words, the devised predictions successfully characterize the macroscopically observable dynamics
based on the microscopic laws in many different scenarios—but there is still a lot to explore.
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A Abbreviations and conventions

Serving as a quick reference, we collect various abbreviations and conventions used throughout
the thesis in this appendix, namely a list of abbreviations in Appendix A.1, a list of concepts in
Appendix A.2 and a list of symbols in Appendix A.3.

A.1 Abbreviations

The following list of abbreviations is sorted alphabetically.

cf. compare

DOS density of states

e.g. for example

Eq(s). Equation(s)

ETH eigenstate thermalization hypothesis

et al. and others

etc. et cetera

Fig(s). Figure(s)

GGE generalized Gibbs ensemble

GOE Gaussian Orthogonal Ensemble

GUE Gaussian Unitary Ensemble

i.e. that means

LIOM local integral(s) of motion

MBL many-body localization

Sec(s). Section(s)

Tab. Table

A.2 Concepts

The following list of concepts is sorted alphabetically by key word.

Averages. There are three basic types of averaging procedures employed repeatedly. Averages
over typicality ensembles are denoted by

E[ · · · ] . (A.1)

In particular, the ensembles consist of perturbation operators V throughout Chapters 3 and 5 as
well as in Sec. 4.4, and of scrambling Hamiltonians W in Sec. 4.3.

Time averages are denoted by an overbar,

· · · := 1
t2 − t1

∫ t2

t1

dt · · · . (A.2)

The precise interval depends on the context, most common is the choice t1 = 0 and t2 →∞.

Quantum expectation value of observables for a system in the state ρ are denoted by angular
brackets,

〈 · · · 〉ρ := tr [ρ · · · ] . (A.3)
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Commutator. The commutator of two linear operators A and B is denoted by [A,B] := AB−BA
(see below Eq. (2.2)).

Complex conjugation. For a complex number z ∈ C, its complex conjugate is denoted by z∗ =
Re z − i Im z. For an anticommuting number χ, the formal complex conjugate is denoted by χ∗
with the definitions (χ∗)∗ = −χ and (χ1χ2)∗ = χ∗1χ

∗
2, cf. Appendix B.1.

Complex integration measure. Integrals of a complex variable z over the entire plane C are
defined as a double integral of Re z and Im z over the real line. We use the notation∫

dzdz∗ · · · = 2
∫

d(Re z)
∫

d(Im z) · · · , (A.4)

observing that the Jacobian determinant associated with the coordinate transformation(
z
z∗

)
=
(

1 i
1 −i

)(
Re z
Im z

)
(A.5)

is |∂(z, z∗)/∂(Re z, Im z)| = 2.

Fourier transformation. Fourier transforms are mostly computed as characteristic functions ĥ(t)
for certain energy distributions h(E), following the convention

ĥ(t) :=
∫

dE eiEt h(E) . (A.6)

The overhat notation is generally employed to denote the Fourier transform, with the notable
exception of the pair u(E) (overlap distribution, Eq. (3.32)) and gλ(t) (response profile, Eq. (3.146))
as well as their extensions u(E, t′) and g(t, t′) from Chapter 5 (see Eq. (5.23)). The corresponding
inverse transformation is thus

h(E) =
∫ dt

2π e−iEt ĥ(t) . (A.7)

Hilbert space bases and matrix elements. For concrete computations, we almost exclusively
adopt eigenbases of relevant Hamiltonians. The following table summarizes the employed Hamil-
tonians along with the notation used for their eigenvalues, eigenstates, and matrix elements of a
self-adjoint operator A:

Hamiltonian eigenvalues eigenstates observable matrix elements
H En |n〉 Amn

H0 Eµ |µ〉0 Aµν

Hλ Eλn |n〉λ Aλmn

H(t′) E
(t′)
n |n(t′)〉 A

(t′)
mn

W EWn |n〉W AWmn

Particularly note that references to the eigenbasis of the unperturbed Hamiltonian H0 use Greek
indices, whereas Latin indices are used for all other Hamiltonians, notably Hλ.

Intervals. For a, b ∈ R, open and closed intervals are denoted by (a, b) := {x ∈ R : a < x < b},
[a, b] := {x ∈ R : a ≤ x ≤ b}, [a, b) := {x ∈ R : a ≤ x < b}, (a, b] := {x ∈ R : a < x ≤ b}.

Limits of sums and integrals. Sum, products, and integrals without limits for the summation
indices or integration variables run over the entire respective domain, typically N or {1, . . . , N} for
sums and products, and R for integrals.

Pauli matrices. The Pauli matrices are

σx :=
(

0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
. (A.8)

The corresponding raising and lowering operators σ+ and σ− are defined as σ± := σx ± iσy. If
supplemented with subscripts, all these Pauli operators act on a specific subspace of the full Hilbert
space, usually associated with a particular lattice site.
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Supersymmetry methods. For a general overview of conventions regarding anticommuting num-
bers, graded algebras, and related supersymmetry concepts, see Appendix B.

Units. The reduced Planck constant is set to unity, ~ = 1. Hence, in particular, time and energy
as well as position and momentum are reciprocal to each other.

A.3 Symbols

The following list collects symbolic notation used in different places of the thesis. Definitions that
occur only in a single, limited scope are deliberately omitted. Symbols are sorted alphabetically
with Greek letters placed according to their English names and little letters before capital letters.

A generic observable

αv intrinsic perturbation strength per level spacing, see Eq. (3.12)

A(t) deviation of the time-dependent expectation value 〈A〉ρ(t) from the thermal value
〈A〉ρmc , see Eq. (4.6)

β inverse temperature, see above Eq. (2.8)

βn Lagrange multipliers of the generalized Gibbs ensemble, see Eq. (2.27)

Bn(x) Chebyshev rational function, see Eq. (3.80)

C set of complex numbers

D(E) density of states (DOS), see Eq. (2.11)

δ magnitude of inaccuracies of the imperfect-preparation type in echo protocols, see
above Eq. (4.3)

δA spectral resolution of the observable A, see Eq. (2.19)

∆A spectral range of the observable A, see Eq. (2.18)

∆E width of the energy window IE , see Eq. (2.9)

δmn Kronecker delta, δmn = 1 if m = n, 0 otherwise

δ(x) Dirac delta distribution

det( · · · ) determinant (of a matrix)

∆v perturbation band width, see Eq. (3.13)

dW (E) relative density of states of the scrambling Hamiltonian W , see Eq. (4.21)

d̂W (t) Fourier transform of dW (E), see Eq. (4.22)

E macroscopic total system energy, see above Eq. (2.5)

E[ · · · ] average over typicality ensemble, see Sec. 2.3.1

En eigenvalue (energy level) of the Hamiltonian H or H0, see below Eq. (2.1) or below
Eq. (3.5), respectively

Eλn eigenvalue (energy level) of the Hamiltonian Hλ, see above Eq. (3.4)

ε mean level spacing in energy window IE , see Eqs. (2.9) and (2.13)

ε magnitude of inaccuracies of the imperfect-reversal type in echo protocols, see above
Eq. (4.4)

f degrees of freedom, see above Eq. (2.10)

F(δ, ε, τ) relative echo peak height, see Eq. (4.8)
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γ energy scale of u(E) and relaxation constant of gλ(t) for strong perturbations, see
Eq. (3.69)

γ(t′) instantaneous relaxation constant of g(t, t′) for strong perturbations, see Eq. (5.29)

Γ energy scale of u(E) and relaxation constant of gλ(t) for weak perturbations, see
Eq. (3.65)

gλ(t) response profile for time-independent perturbations, see Eq. (3.146)

g(t, t′) response profile for time-dependent perturbations, see Eq. (5.23)

G(z) scalar ensemble-averaged resolvent of Hλ, see Eqs. (3.57) and (3.58)

G(z) resolvent of Hλ, see Eq. (3.36)

G(z, t′) scalar ensemble-averaged resolvent of H(t′), see above Eq. (5.22)

H generic Hamiltonian

H generic Hilbert space, see Sec. 2.1

H0 unperturbed reference Hamiltonian, see Eq. (3.1)

HE Hilbert space associated with the energy window IE (and possible further con-
straints), see below Eq. (2.9)

H(t) time-dependent Hamiltonian, notably of driven systems from Chapter 5, see Eq. (5.1)

H(t′) Hamiltonian of auxiliary system for driven dynamics, see Eq. (5.7)

Hλ Hamiltonian composed of an unperturbed component H0 and a perturbation λV ,
see Eq. (3.1)

IE macroscopically small, but microscopically large energy window, see Eq. (2.9)

Im z imaginary part of the complex number z

Jν(x) νth Bessel function of the first kind

L one-dimensional extent (number of sites) of a lattice model

λ perturbation coupling strength, see Eq. (3.1)

λc crossover coupling between weak- and strong-perturbation regimes, see Eq. (3.73)

λ(t) driving protocol, see Eq. (5.1)

|n〉 eigenstate of the Hamiltonian H, see below Eq. (2.1)

N number of energy levels within the energy window IE , dimension ofHE , see Eqs. (2.9)
and (2.10)

N macroscopic total number of particles, see above Eq. (2.5)

N set of natural numbers, N = {1, 2, . . .}

N0 set of natural numbers including zero, N0 = {0, 1, 2, . . .}

|n〉λ eigenstate of the Hamiltonian Hλ, see above Eq. (3.4)

Nv number of unperturbed energy levels mixed by the perturbation, see Eq. (3.9)

O( · · · ) Landau symbol, order of magnitude

p(V ) probability density function of a perturbation ensemble, see Eq. (3.24)

P probability measure of a typicality ensemble, see Sec. 2.3.1

Π generic projection operator

ΠE,∆E Gaussian energy filter (projection operator), see Eq. (3.193)

Πn projection onto eigenspace of nth eigenvalue, see above Eq. (2.1)
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pmax largest occupation probability of an energy level, see Eq. (2.14)

pµν(v) marginal probability density function of the matrix element Vµν , see Eq. (3.23)

|ψ〉 generic pure state

PV
∫
· · · principal-value integral

Q generic conserved quantity, see below Eq. (2.4)

Q(n) local integral of motion of an integrable system, see Sec. 2.2.3

R set of real numbers

Re z real part of the complex number z

ρ generic density operator of a (pure or mixed) quantum state

ρ̄ time-averaged state/diagonal ensemble, see Eqs. (2.16) and (2.17)

ρ(0) density operator of the initial state of a quantum system

ρcan canonical density operator, see Eq. (2.8)

ρGGE density operator of the generalized Gibbs ensemble, see Eq. (2.27)

ρ̃λ predicted asymptotic long-time state of perturbed relaxation, see Eq. (3.150)

ρλ(t) time-evolved state with Hamiltonian Hλ

ρmc microcanonical density operator, see Eq. (2.5)

ρR return state, i.e., state at the point of reversal of an echo protocol, see below Eq. (4.2)

ρ′R perturbed return state, see below Eq. (4.3)

ρ(t) time-evolved state with Hamiltonian H (possible time-dependent, cf. Eq. (5.1))

ρ(t, t′) time-evolved state with Hamiltonian H(t′), see Eq. (5.8)

ρT target state, i.e., initial state of an echo protocol, see above Eq. (4.2)

ρ′T perturbed target state, see above Eq. (4.5)

sdet( · · · ) superdeterminant of a supermatrix, see Eq. (B.18)

S(E), S(E ,N ,V) Boltzmann entropy, see Eq. (2.7)

sgn(x) sign function, +1 if x > 0, 0 if x = 0, −1 if x < 0

σ2
0 variance of level fluctuations/diagonal perturbation matrix elements, see below

Eq. (3.14)

σαi αth Pauli matrix acting on lattice site i, see below Eq. (3.197)

Σn nth moment of the perturbation profile, see Eq. (3.175)

σ2
v intrinsic perturbation strength, see Eq. (3.11)

σ2
v(E) perturbation profile, see Eq. (3.10)

σ2
v(E, t′) perturbation profile of V (t′), see Eq. (5.14)

S(ρ) von Neumann entropy, see Eq. (2.6)

str( · · · ) supertrace of a supermatrix, see Eq. (B.16)

Sym(k) symmetric group of degree k

T temperature, see above Eq. (2.8)

( · · · )T transpose (of a matrix)

146



τ length of a time interval, see Sec. 2.2.1; particularly for echo protocols (Chapter 4):
waiting time, i.e., duration of the forward evolution phase, see above Eq. (4.2);
particularly for driven systems (Chapter 5): characteristic time scale of the driving
protocol (e.g. period, quench time)

tc crossover time to exponential/Fermi-golden-rule decay characteristics, see Eq. (3.181)

Θ(x) Heaviside step function

Tn(x) Chebyshev polynomial of the first kind, see above Eq. (3.80)

tr( · · · ) trace (of operator/matrix)

u(E) overlap distribution, see Eqs. (3.32) and (3.60)

ũ(E) self-convolution of u(E), see Eq. (3.116)

U(N) unitary group of degree N

Unµ transformation matrix element/eigenstate overlap between the Hamiltonians Hλ

and H0, see Eq. (3.5)

Ũnµ transformation matrix element/eigenstate overlap between the HamiltoniansW and
H0, see Eq. (4.14)

U(t, t0), U(t) time-evolution operator/propagator, see Eq. (2.3)

V perturbation operator, see Eq. (3.1)

V macroscopic volume of the system, see above Eq. (2.5)

V (t′) second-order Magnus approximation for perturbation part of H(t′), see Eqs. (5.11)
and (5.12)

W scrambling Hamiltonian, see above Eq. (4.3)

ξV (t) deviations of perturbed time-dependent expectation values from ensemble average,
see Eq. (3.3)

ξ2
V (t1, t2) time-averaged squared deviations of expectation values from ensemble average, see

Eq. (3.156)

Z canonical partition function, see below Eq. (2.8)

1 identity operator of a given vector space or algebra

|↓〉 “spin down,” eigenstate of σz with eigenvalue −1

|↑〉 “spin up,” eigenstate of σz with eigenvalue +1
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B Supersymmetry methods

This appendix provides a brief overview of supersymmetry concepts employed explicitly or implic-
itly in the main text and Sec. 3.4 in particular. For more exhaustive and explanatory introductions
to and reviews of the topic, confer Refs. [163, 220–225, 336, 337].

B.1 Anticommuting numbers and graded algebra

Anticommuting numbers. We consider a set {χ1, χ2, . . .} of anticommuting or Grassmann num-
bers. For any two such numbers χα and χβ , we introduce a formal multiplication operation with
the defining property that

χαχβ = −χβχα . (B.1)

Hence these anticommuting numbers can be multiplied much like ordinary numbers x and y (e.g.,
x, y ∈ C), but the product of two Grassmann numbers is anticommuting in contrast to the product
of two ordinary numbers, xy = yx, which we will thus also call commuting or c-numbers in the
following. The defining relation (B.1) immediately implies

χ2
α = 0 (B.2)

for all α. Therefore, in any product of anticommuting numbers, each of the factors can only occur
once.

Multiplication of an ordinary c-number a with an anticommuting number χ is commuting by
definition,

aχ = χa . (B.3)

Requiring associativity, it follows that in any product of three or more Grassmann numbers, any
group of an even number of Grassmann factors similarly behaves like a c-number, e.g.,

(χ1χ2)χ3 = χ1(χ2χ3) = −χ1(χ3χ2) = −(χ1χ3)χ2 = (χ3χ1)χ2 = χ3(χ1χ2) . (B.4)

We point out that the label “c-number” is sometimes assigned in the literature to any type of object
that commutes with other factors in a product, thus including the product χ1χ2, for example. Our
notion here is more restrictive: c-numbers are elements of the underlying field (usually C).

Grassmann algebra. Upon multiplication with c-numbers and with each other, the basic anti-
commuting numbers χ1, χ2, . . . act as generators of the Grassmann algebra

A := span {χα1 · · ·χαn : n ∈ N0, α1 < · · · < αn} . (B.5)

where spanS denotes the set of all linear combination of elements in S over the given c-number
field. Within this algebra, we can define the subalgebra AB of commuting elements, consisting
of all terms that involve products of an even number of Grassmann generators only. This is also
called the bosonic sector of the Grassmann algebra, and its elements are said to have even parity,
ς(a) = 0 for a ∈ AB. Similarly, we can define the subset AF of anticommuting elements containing
only products of an odd number of Grassmann generators. This is also known as the fermionic
sector of the Grassmann algebra, comprising elements of odd parity, ς(a) = 1 for a ∈ AF. Note
that AF does not form a subalgebra. Obviously, every element z ∈ A can be decomposed uniquely
into zB ∈ AB and zF ∈ AF such that z = zB + zF.

Complex conjugation. In analogy with ordinary complex numbers, it is often convenient (notably
if the underlying field of c-numbers is C) to define a complex structure on the Grassmann algebra,
too. In this setting, the Grassmann generators come in pairs, χ1, χ

∗
1, χ2, χ

∗
2, . . ., but a priori there

is no connection between χα and χ∗α. In other words, we could just as well label χ∗ ≡ ξ, for
instance.
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However, we define a formal, artificial relationship between the anticommuting numbers χ and χ∗.
We call this relation “complex conjugation” and denote it by the star ∗ symbol as well. It is defined
as

(χ)∗ := χ∗ and (χ∗)∗ := −χ . (B.6)
The choice of sign in the second defining relation is again for convenience. Furthermore, the
complex conjugate of a product of several generators is defined as (χ1χ2χ3 · · · )∗ := χ∗1χ

∗
2χ
∗
3 · · · .

With these choices, the anticommuting numbers χα, χ∗α, χβ , and χ∗β satisfy

(χ∗αχβ)∗ = (χ∗α)∗χ∗β = χ∗βχα . (B.7)

Complex conjugation of arbitrary elements in A is then defined in terms of ordinary complex
conjugation for c-numbers and the above rules for (products of) the Grassmann generators.

B.2 Linear algebra in superspaces

Supervector. As a generalization of ordinary vector spaces, we define a superspace consisting of
supervectors

Z =
(
z

ζ

)
, z =


z1
...
znB

 , ζ =


ζ1
...
ζnF

 (B.8)

with nB commuting (“bosonic”) components zk ∈ AB and nF anticommuting (“fermionic”) com-
ponents ζk ∈ AF. We will also write ZB ≡ z and ZF ≡ ζ to address the bosonic and fermionic
sectors, respectively. Naturally, these supervectors can be multiplied by c-numbers as usual, i.e.,
aZ denotes the supervector Z with all its components multiplied by a ∈ C (or whatever the under-
lying field may be). Similarly, the complex conjugate Z∗ of a supervector Z is defined by complex
conjugation of all its components, bosonic and fermionic, according to the above-specified rules.
Defining the adjoint supervector

Z† :=
(
z† ζ†

)
, z† =

(
z∗1 · · · z∗nB

)
, ζ† =

(
ζ∗1 · · · ζ∗nF

)
(B.9)

of the supervector Z, we can also introduce an inner product between supervectors Z(1) and Z(2)

as

Z(1)†Z(2) =
nB∑
k=1

z
(1)∗
k z

(2)
k +

nF∑
k=1

ζ
(1)∗
k ζ

(2)
k , (B.10)

which satisfies (Z(1)†Z(2))∗ = Z(2)†Z(1), in particular, due to the convention (B.6).

Supermatrices. Linear mappings between supervectors are mediated by supermatrices such as

M =
(
MBB MBF

MFB MFF

)
(B.11)

with MBB ∈ AnB×nB
B , MBF ∈ AnB×nF

F , MFB ∈ AnF×nB
F , MFF ∈ AnF×nF

B . Note that the dimen-
sionalities and domains of the four blocks ensure that

MZ =
(
MBBz +MBFζ

MFBz +MFFζ

)
(B.12)

is again a supervector in the same superspace, i.e., with the same structure and dimensionality as
Z in (B.8).

A standard transformation for ordinary matrices is transposition. If the matrix A has compo-
nents Aij , then its transpose AT is defined as the matrix with components (AT)ij = Aji. For
supermatrices like M in (B.11), it is convenient to also introduce a supertranspose

M sT :=
(
MT

BB MT
FB

−MT
BF MT

FF

)
. (B.13)
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The supertranspose thus consists of the ordinary transpose, supplemented by an additional minus
sign for the fermionic-bosonic (FB) block. We remark that different conventions exist such that the
minus sign is sometimes placed in front of the BF component of the ordinary transpose instead. An
important consequence is that (M1M2)sT = M sT

2 M sT
1 for two supermatrices M1 and M2, whereas

no such relation holds for the ordinary transpose of a supermatrix due to the anticommuting
character of the BF and FB blocks. Note, however, that (M sT)sT 6= M in general.

Complex conjugation of a supermatrix is again defined by conjugating all components individually.
We can then define the Hermitian adjoint as

M† = (M∗)sT = (M sT)∗ (B.14)

implying
(M1M2)† = M†2M

†
1 and M†† = M . (B.15)

By analogy with ordinary matrices, the supermatrix M is called Hermitian if M = M†. Similarly,
a unitary supermatrix M preserves the inner product of two supervectors Z(1) and Z(2), i.e.,
(MZ(1))†(MZ(2)) = Z(1)†Z(2), implying M†M = 1 in particular. For generalized inner products
Z(1)†LZ(2) with a metric tensor L, the preserving transformations M with M†LM = L are called
pseudounitary.

Based on the ordinary trace, denoted by the symbol tr( · · · ), we define the supertrace of the
supermatrix M as

strM = trMBB − trMFF . (B.16)

This definition entails linearity, cyclic invariance, and preservation under (super)transposition,

str(M1 +M2) = strM1 +strM2 , str(M1M2M3) = str(M3M1M2) , str(M sT) = strM , (B.17)

such that the supertrace behaves much like the usual trace operation for ordinary matrices. Another
important concept from linear algebra is the determinant det( · · · ) of a matrix. The appropriate
generalization to supermatrices is the superdeterminant

sdetM =
det
(
MBB −MBFM

−1
FFMFB

)
detMFF

(B.18)

requiring MFF or rather the c-number part of it to be invertible; otherwise the superdeterminant
does not exist. If in turn the inverse of MBB exists, the (inverse) superdeterminant can be defined
equivalently as

(sdetM)−1 =
det
(
MFF −MFBM

−1
BBMBF

)
detMBB

. (B.19)

If the supermatrix M is block-diagonal such that MBF = MFB = 0, these definitions entail

sdet
(
MBB 0

0 MFF

)
= detMBB

detMFF
(B.20)

in particular. Even more specifically, any supermatrix that is a multiple of the identity has unit
superdeterminant, sdet(a1) = 1 (a ∈ AB). Further important consequences are

sdet(M sT) = sdetM , sdet(M1M2) = sdet(M1) sdet(M2) , and ln sdetM = str lnM ,
(B.21)

where the logarithm is defined in terms of the Taylor expansion of ln(1 + [M − 1]) in M − 1.
Hence the superdeterminant (in combination with the supertrace) behaves similarly to the ordinary
determinant for ordinary matrices.

B.3 Differentiation and integration

Functions of anticommuting numbers. Due to (B.2), an arbitrary function f can at most be
linear in any of the generators χ1, χ2, . . . (or any other anticommuting degree of freedom ζ ∈ AF).
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Put differently, the Taylor series of f(χ1, χ2, . . .) terminates at first order. Hence the most general
function of a single Grassmann variable f(χ) can be written in the form

f(χ) = a0 + χa1 , (B.22)

where a0, a1 ∈ A may contain commuting and anticommuting terms, but no dependence on χ.
Note that in order for f to have definite parity, we need a0 ∈ AB ⇔ a1 ∈ AF and vice versa.
Similarly, functions of several variables can be written out in a multilinear form. For example, the
most general function of three Grassmann generators f(χ1, χ2, χ3) is

f(χ1, χ2, χ3) = a000 + χ1a100 + χ2a010 + χ3a001 + χ1χ2a110 + χ1χ3a101 + χ2χ3a011 + χ1χ2χ3a111 ,
(B.23)

where again all the coefficients aijk are independent of χ1, χ2, and χ3. Moreover, if f depends on
all generators of the Grassmann algebra, the coefficients similar to aijk can be chosen as c-numbers
without loss of generality.

Differentiation. Derivatives of a function f(χ) with respect to the Grassmann generator χ are
defined by analogy with ordinary calculus as the linear part of the corresponding Taylor expan-
sion,

→
∂

∂χ
(a0 + χa1) = a1 . (B.24)

The so-defined operation is obviously linear. However, care must be taken regarding the order of
terms. For instance, if a1 ∈ AF, then

→
∂

∂χ
(a0 + a1χ) =

→
∂

∂χ
(a0 − χa1) = −a1 . (B.25)

Generally speaking, by exploiting linearity, the differential operator
→
∂ /∂χ thus behaves like an

element of AF: →
∂

∂χ
(a0 + a1χ) =

→
∂

∂χ
(a1χ) = −a1

→
∂

∂χ
χ = −a1 . (B.26)

In other words,
→
∂ /∂χ acts on everything to its right and eliminates a Grassmann generator χ if

it stands immediately next to it. This is also called the left-derivative as the dependent variable
χ has to be moved to the left in every product, observing anticommutation, before the derivative
can act. Similarly, we can define a right-derivative

(a0 + χa1)
←
∂

∂χ
= (−a1χ)

←
∂

∂χ
= −a1 . (B.27)

Since any function is at most linear in the generator χ, higher derivatives always vanish, i.e.,
→
∂2/∂χ2 =

←
∂2/∂χ2 = 0. For the product f(χ)g(χ) of two functions f(χ) = a0 + χa1 and g(χ) =

b0+χb1, the familiar product rule from ordinary calculus holds as well, provided that the respective
factors have definite parity and the anticommuting character is respected. Denoting the parity of
f by ς(f), we then verify straightforwardly that

→
∂

∂χ
[f(χ)g(χ)] =

→
∂ f(χ)
∂χ

g(χ) + (−1)ς(f)f(χ)
→
∂ g(χ)
∂χ

. (B.28)

Similarly, derivatives of several variables can be combined by treating every operator like an element
of AF,

→
∂ k

∂χ1 · · · ∂χk
:=

→
∂

∂χ1
· · ·

→
∂

∂χk
. (B.29)

For instance, taking the function f(χ1, χ2, χ3) from (B.23), we find
→
∂ 2f(χ1, χ2, χ3)

∂χ1∂χ3
= −a101 + χ2a111 . (B.30)
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Grassmann integral. Even though there is no classical geometrical picture such as a number
line for Grassmann numbers, we can define an integral over anticommuting degrees of freedom
by requiring certain properties of ordinary (Riemann or Lebesgue) integrals. As we will see,
demanding linearity and shift invariance of the measure defines the Grassmann-Berezin integral
uniquely up to a multiplicative constant. As observed in Eq. (B.22), the most general function of
one Grassmann variable is f(χ) = a0 + χa1. By linearity, we mean that∫

dχ (a0 + χa1) !=
(∫

dχ
)
a0 +

(∫
dχ χ

)
a1 . (B.31)

Note that it is meaningless to define a domain of integration because the Grassmann algebra
does not have a geometry. In this sense, “

∫
dχ · · · ” is to be read as an integral over all possible

values of χ, i.e., it is similar to a real integral of the form “
∫∞
−∞ dx · · · ”. This leads to the second

defining property. Since real integrals over an infinite domain are invariant under a shift of the
integration variable, we demand that the Grassmann integral be invariant under the transformation
χ 7→ χ′ := χ+ ζ, where ζ is a second Grassmann variable independent of χ. More precisely,∫

dχ (a0 + χa1) !=
∫

dχ′ [a0 + (χ′ − ζ) a1] =
∫

dχ′ [(a0 − ζa1) + χ′a1] . (B.32)

Applying the linearity condition (B.31) to this relation, we immediately find
∫

dχ = 0. Further-
more,

∫
dχ χ must evaluate to a constant, which we choose to be 1 by convention (again, different

choices can be found in the literature). Hence we define the Grassmann-Berezin integral as∫
dχ (a0 + χa1) := a1 . (B.33)

Remarkably, this is the same relation as we obtained for the (left-)derivative in Eq. (B.24): For
anticommmuting numbers, differentiation and integration are the same operation. In summary,
the defining relations for differentiation and integration of Grassmann variables are, in our con-
vention,

→
∂

∂χ
(a0 + χa1) =

∫
dχ (a0 + χa1) = a1 , (B.34)

where a0, a1 ∈ A may contain both commuting and anticommuting variables, but no dependence
on χ. Similarly to higher-order derivatives, multiple integrals can be evaluated sequentially.

Linear transformations. Besides shifting integration variables, we will also want to scale them
occasionally. Therefore, we consider the transformation χ 7→ χ′ := tχ with t ∈ AB. Requiring

1 =
∫

dχ χ !=
∫

dχ′ χ′ =
∫

dχ′ tχ , (B.35)

we find that we need to have dχ′ = t−1dχ. This should be contrasted with the transformation of
differentials for c-numbers, where d(tx) = tdx (t = const).

For the higher-dimensional generalization, consider a Grassmann vector χ = (χ1, . . . , χN ) and the
linear transformation χ 7→ χ′ := Tχ with T ∈ AN×NB , i.e., χ′α =

∑
β Tαβχβ . The nonvanishing

part of the integrand in an integral over dχ′ = dχ′1 · · · dχ′N is proportional to

χ′1 · · ·χ′N =
∑

α1,...,αN

T1α1 · · ·TNαN χα1 · · ·χαN =
∑

σ∈Sym(N)

T1σ(1) · · ·TNσ(N) χσ(1) · · ·χσ(N) ,

(B.36)
where Sym(N) denotes the symmetric group of degree N , i.e., the set of all permutations of
{1, . . . , N}. Here the second equality holds because all terms where any two indices αi and αj (i 6=
j) coincide vanish due to the Grassmann character of the χα. Rearranging the vector components,
we can equivalently write this as

χ′1 · · ·χ′N =
∑

σ∈Sym(N)

sgn(σ)T1σ(1) · · ·TNσ(N) χ1 · · ·χN = (detT )χ1 · · ·χN . (B.37)

Consequently, for Grassmann variables the N -dimensional differential transforms as d(Tχ) =
(detT )−1 dχ, in contrast to the c-number case, where d(Tx) = (detT ) dx.
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C Gaussian integrals

Gaussian integrals over commuting and anticommuting variables (cf. Appendix B) feature promi-
nently in the derivations of Sec. 3.4 in particular. Here we collect basic properties of such inte-
grals for commuting (Appendix C.1), anticommuting (Appendix C.2), and supersymmetric (Ap-
pendix C.3) variables. We also discuss the related supersymmetric Hubbard-Stratonovich trans-
formation in Appendix C.4.

C.1 Commuting variables

One real variable. Since all Gaussian integrals over real- or complex-valued vectors can be reduced
to the real, one-dimensional case, this forms the natural starting point of our collection of results.
To this end, let a > 0. Then

I(a) :=
∫ ∞
−∞

dx e−ax
2

=
√
π

a
. (C.1)

Indeed, upon substituting x 7→
√
ax, we find I(a) = I(1)/

√
a. The square I(1)2 can be computed

using polar coordinates,

I(1)2 =
∫

dxdy e−(x2+y2) =
∫ ∞

0
dr
∫ 2π

0
dφ re−r

2
= −π e−r

2
∣∣∣∞
r2=0

= π . (C.2)

Consequently, we have I(1) =
√
π, and (C.1) follows.

One complex variable. Next we consider a Gaussian integral over a single complex variable and
find ∫

dz dz∗ e−a|z|
2

= 2π
a
. (C.3)

To prove this, we first observe that, by definition, the complex integral consists of two real integrals,
cf. Eq. (A.4). Therefore, we can exploit the result (C.1) for real-valued Gaussian integrals and
obtain∫

dz dz∗ e−a|z|
2

= 2
∫

d(Re z)
∫

d(Im z) e−a[(Re z)2+(Im z)2] = 2
[∫

dx e−ax
2
]2

, (C.4)

leading to (C.3).

Multiple complex variables. We generalize the result to an arbitrary number N of complex
variables, collected in a vector z = (z1, . . . , zN ). If A ∈ CN×N is Hermitian (A† = A) and positive
definite, then ∫

[dz dz∗] e−z
†Az = (2π)N

detA . (C.5)

Here [dz dz∗] :=
∏n
α=1 dzα dz∗α. To prove Eq. (C.5), we notice that, since A is Hermitian, there

exists a unitary matrix U ∈ U(N) such that UAU† = diag(a1, . . . , aN ), where aα are the real eigen-
values of A. Moreover, since A is positive definite, aα > 0. Using the coordinate transformation
z 7→ z′ := Uz, we then obtain∫

[dz dz∗] e−z
†Az =

∫
[dz dz∗] e−

∑
α
z′∗α aαz

′
α =

∏
α

∫
dz′α dz′∗α e−aα|z

′
α|

2
=
∏
α

2π
aα

, (C.6)

where we used (C.3) in the last step. Hence we have shown (C.5).

According to (C.5), we can express the determinant of a Hermitian, positive definite matrix A in
terms of a Gaussian integral. We will now show how individual matrix elements of the inverse
A−1 arise as the correlators or moments of the Gaussian distribution. To this end, we define the
generating function

Z(h, h∗) :=
∫

[dz dz∗] e−z
†Az+h†z+z†h . (C.7)
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This is indeed the generating function of moments of a Gaussian distribution (up to normalization)
with covariance matrix A−1 because

∂Z(h, h∗)
∂h∗µ1

· · · ∂h∗µk∂hν1 · · · ∂hνl

∣∣∣∣
h=h∗=0

=
∫

[dz dz∗] zµ1 · · · zµkz∗ν1
· · · z∗νl e−z

†Az . (C.8)

As usual, h and h∗ are treated as independent variables for differentiation, basically in the same
way as for the case of integration, in the sense of the coordinate transformation (A.5) above.
Since A is positive definite, it is invertible and we can shift the integration variable in (C.7) as
z 7→ z′ := z −A−1h to obtain

Z(h, h∗) = eh
†A−1h

∫
[dz′ dz′∗] e−z

′†Az′ = (2π)N

detA eh
†A−1h. (C.9)

With this explicit expression for the generating function, we can compute arbitrary moments of
the form (C.8). For the second-order correlator, we find∫

[dz dz∗] zµz∗ν e−z
†Az = (2π)N

detA (A−1)µν , (C.10)

establishing the aforementioned connection between correlators and matrix elements of A−1. For
higher-order correlators, we are left with the Isserlis-Wick theorem [239, 240] upon repeated dif-
ferentiation according to (C.8). It states that the correlator is obtained by summing over all pairs
of z and z∗ variables and replacing any such pair by the corresponding second-order correlator.
In particular, this means that we always need an equal number of z and z∗ terms to obtain a
nonvanishing contribution. More explicitly, we thus find∫

[dz dz∗] zµ1 · · · zµkz∗ν1
· · · z∗νk e−z

†Az = (2π)N

detA
∑

σ∈Sym(k)

(A−1)µ1νσ(1) · · · (A
−1)µkνσ(k) , (C.11)

where Sym(k) denotes the symmetric group of degree k, i.e., the set of all permutations of
{1, . . . , k}.

C.2 Anticommuting variables

Two Grassmann variables. The simplest case of a Gaussian integral over anticommuting numbers
involves two Grassmannian degrees of freedom as there is no quadratic form of a single Grassmann
variable. By analogy with the c-number setting, we choose them as (formal) complex conjugates,
χ and χ∗, but emphasize again that complex conjugation is an artificial operation for Grassmann
numbers and only introduced for convenience when combining commuting and anticommuting
degrees of freedom (cf. Appendix B.1). For arbitrary a ∈ AB, we then find∫

dχdχ∗ eχ
∗aχ = a . (C.12)

Observing that eχ∗aχ = 1 + χ∗aχ, this follows directly from the definition of the Grassmann
integral (B.34).

Multiple Grassmann variables. For the multidimensional generalization, let A ∈ AN×NB be nor-
mal so that it is diagonalizable by a unitary transformation U ∈ U(N), and denote the eigenvalues
by a1, . . . , aN . We then find that ∫

[dχdχ∗] eχ
†Aχ = detA , (C.13)

where [dχdχ∗] =
∏N
α=1 dχαdχ∗α. This can be shown similarly as in the c-number case by trans-

forming χ 7→ χ′ := Uχ and χ† 7→ χ′† := χ†U†. This transformation diagonalizes the matrix A,
and since detU = 1, we get∫

[dχdχ∗] eχ
†Aχ =

∫
[dχ′dχ′∗] e

∑
α
χ′†α aαχ

′
α =

∏
α

∫
[dχ′αdχ′∗α ] eχ

′†
α aαχ

′
α =

∏
α

aα , (C.14)
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proving the claim.

Defining a generating function

Z(η, η∗) :=
∫

[dχdχ∗] eχ
†Aχ+η†χ+χ†η (C.15)

similarly to the c-number case, we can likewise express correlators of anticommuting variables.
Assuming that A is invertible, the integral in (C.16) can be evaluated by transforming χ 7→ χ′ :=
χ+A−1η, χ† 7→ χ′† := χ† + η†A−1 to give

Z(η, η∗) = (detA) e−η
†A−1η . (C.16)

Correlation functions can then be computed by differentiation,

→
∂ k

∂η∗µ1
· · · ∂η∗µk

Z(η, η∗)
←
∂ l

∂ην1 · · · ∂ηνl

∣∣∣∣∣∣η→0,
η∗→0

=
∫

[dχdχ∗]χµ1 · · ·χµkχ∗ν1
· · ·χ∗νl eχ

†Aχ , (C.17)

where, by convention, derivatives are evaluated from inside to outside, i.e., for the left-derivatives,
→
∂ /∂η∗µk is evaluated first and

→
∂ /∂η∗µ1

last, whereas for the right-derivatives,
←
∂ /∂ην1 is evaluated

first and
←
∂ /∂ηνl last (cf. Appendix B.3). Note that due to anticommutativity, the correlator

vanishes if any two of the indices µ1, . . . , µk are the same, and similarly for ν1, . . . , νl. Calculating
the derivatives leads to the Isserlis-Wick theorem as for complex Gaussian integrals, except that we
have to bear in mind anticommutativity and the additional minus sign in the exponent of (C.16).
Hence ∫

[dχdχ∗]χµ1 · · ·χµkχ∗ν1
· · ·χ∗νl eχ

†Aχ

= −|εµ1···µkεν1···νk | (detA)
∑

σ∈Sym(k)

sgn(σ)(A−1)µ1νσ(1) · · · (A
−1)µkνσ(k) ,

(C.18)

where εµ1···µk denotes the completely antisymmetric k-dimensional Levi-Civita symbol. (Note the
absolute value in Eq. (C.18), so the mere purpose of this prefactor is to ensure that all µi and all
νi are distinct.)

C.3 Supersymmetric variables

Gaussian integrals in superspace can be readily evaluated by combining the results from Appen-
dices C.1 and C.2. Similarly as in Appendix B.2, we consider a supervectorX = (x χ)T consisting of
nB commuting variables x = (x1, . . . , xnB) ∈ CnB and nF Grassmann generators χ = (χ1, . . . , χnF),
which are accompanied by their nF formal complex conjugates, the generators χ∗ = (χ∗1, . . . , χ∗nF

).
Furthermore, let A be a supermatrix as in (B.11). As one might have anticipated, the Gaussian
integral associated with the quadratic form X†AX, convergence presumed, yields essentially the
superdeterminant, i.e., ∫

[dXdX∗] e−X
†AX = (2π)nB (−1)nF

sdetA . (C.19)

Here [dXdX∗] = [dxdx∗][dχdχ∗]. To show this, we write out the exponent in terms of the different
sectors first,∫

[dXdX∗] e−X
†AX =

∫
[dxdx∗] e−x

†ABBx

∫
[dχdχ∗] e−χ

†AFFχ−x†ABFχ−χ†AFBx (C.20)

The fermionic integral can be carried out similarly as in Eqs. (C.15) and (C.16), leading to∫
[dXdX∗] e−X

†AX = (−1)nF detAFF

∫
[dxdx∗] e−x

†(ABB−ABFA
−1
FFAFB)x . (C.21)
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For convergence, we thus need that the c-number component of ABB − ABFA
−1
FFAFB is positive

definite. The remaining bosonic integral is then of the form (C.5), leaving us with∫
[dXdX∗] e−X

†AX = (2π)nB (−1)nF
detAFF

det(ABB −ABFA
−1
FFAFB)

. (C.22)

Taking into account the definition (B.18) of the superdeterminant, this is equivalent to Eq. (C.19).

Furthermore, we can again define the generating function

Z(H,H∗) :=
∫ [dXdX∗]

(2π)nB(−1)nF
e−X

†AX+H†X+X†H = eH†AH

sdetA (C.23)

depending on the supervector H = (h1 · · · hnB η1 · · · ηnF)T. As before, this generating func-
tion Z(H,H∗) encodes the correlation functions and brings them forward upon differentiation,

→
∂ k

∂H∗µ1
· · · ∂H∗µk

Z(H,H∗)
←
∂ l

∂Hν1 · · · ∂Hνl

∣∣∣∣∣∣H→0,
H∗→0

=
∫ [dXdX∗]

(2π)nB(−1)nF
Xµ1 · · ·XµkX

∗
ν1
· · ·X∗νl e−X

†AX ,

(C.24)
Here the indices 1, . . . , nB and nB + 1, . . . , nB +nF, respectively, refer to the bosonic and fermionic
components of the supervectors X and H. For bosonic components, the left- and right-derivatives
act just like ordinary differential operators on Z(H,H∗). The Isserlis-Wick theorem generalizes in
the obvious way, i.e., ∫ [dXdX∗]

(2π)nB(−1)nF
Xµ1 · · ·XµkX

∗
ν1
· · ·X∗νk e−X

†AX

= 1
sdetA

∑
σ∈Sym(k)

εσ (A−1)µ1νσ(1) · · · (A
−1)µkνσ(k) ,

(C.25)

where εσ is 1 if the permutation σ is of even parity in the elements corresponding to fermionic
indices νi and −1 otherwise, and provided that none of the fermionic indices appear twice among
the µi or the νi, respectively.

C.4 Hubbard-Stratonovich transformation

As a particular application of Gaussian integrals in superspace, we demonstrate explicitly the super-
symmetric Hubbard-Stratonovich transformation, which allows to reduce integrals with exponents
of fourth order in a supervector to second-order Gaussian ones; see also Eqs. (3.51) and (3.103)
from the main text.

One auxiliary supermatrix. The basic form of the supersymmetric Hubbard-Stratonovich trans-
formation [220, 243, 244] to decouple a homogeneous quartic term in the exponent of a superintegral
is defined by the identity

exp
[
−λ

2

2
∑

α,β
str
(
XαX

†
αLXβX

†
βL
)]

=
∫ dR

2π exp
[
− str

(
R2

2λ2 + iR
∑

α
XαX

†
αL

)]
(C.26)

with N two-dimensional supervectors Xα = (xα χα) and an ordinary diagonal matrix L =
diag(`B, `F), where `B, `F ∈ R. Furthermore, the integration variable is a supermatrix

R =
(
r1 ρ

ρ∗ ir2

)
, r1, r2 ∈ R, ρ, ρ∗ ∈ AF (C.27)

and [dR] ≡ dr1 dr2 dρ dρ∗. To prove this relation, we observe that the terms in the exponent on
the left-hand side of Eq. (C.26) expand to

str
(
XαX

†
αLXβX

†
βL
)

= `2B x
∗
αxαx

∗
βxβ−`2F χ∗αχαχ∗βχβ−`B`F x∗αχαχ∗βxβ+`B`Fχ∗αxαx∗βχβ . (C.28)
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We now inspect the right-hand side of (C.26). In the exponent there, we find the terms

str(R2) = r2
1 + r2

2 + 2ρρ∗ (C.29)

and
str(RXαX

†
αL) = `Bx

∗
αr1xα + `Bx

∗
αρχα + `Fχ

∗
αρ
∗xα + i`Fχ∗αr2χα . (C.30)

The total integral over R thus factorizes into a bosonic and a fermionic contribution,∫ dR
2π exp

[
− str

(
R2

2λ2 + iR
∑

α
XαX

†
αL

)]
=
∫ dr1 dr2

2π exp
[
−r

2
1 + r2

2
2λ2 − ir1`B

∑
α

x∗αxα + r2`F
∑
α

χ∗αχα

]

×
∫

dρdρ∗ exp
[
ρ∗ρ

λ2 − iρ`B
∑
α

x∗αχα + iρ∗`F
∑
α

χ∗αxα

]
.

(C.31)

Evaluating these Gaussian integrals along the lines of Appendices C.1 and C.2, we find∫ dR
2π exp

[
− str

(
R2

2λ2 + iR
∑

α
XαX

†
αL

)]

= exp

−λ2

2
∑
α,β

(
`2Bx

∗
αxαx

∗
βxβ − `2Fχ∗αχαχ∗βχβ − `B`Fx∗αχαχ∗βxβ + `B`Fχ

∗
αxαx

∗
βχβ

) . (C.32)

In view of (C.28), this is precisely the left-hand side of Eq. (C.26), and thus the identity has been
proved.

Several auxiliary supermatrices. If the summands on the left-hand side of Eq. (C.26) are weighted
by an additional factor depending on α and β (like in Eq. (3.51)), we need to invoke N auxiliary
supermatrices Rα of the form (C.27). The Hubbard-Stratonovich transformation is then mediated
by the identity

exp
[
− 1

2

∑
α,β

sαβ str(XαX
†
αLXβX

†
βL)

]
=
∫ [dR]

(2π)N exp
[
− 1

2

∑
α,β

(s−1)αβ str(RαRβ) + i
∑

α
str(RαXαX

†
αL)

]
.

(C.33)

As before, the Xα are N two-dimensional supervectors. Furthermore, s = (sαβ) is a real symmetric
matrix with inverse s−1 and [dR] =

∏
α dRα. The proof of this relation works essentially anal-

ogously to the case from Eq. (C.26) with only one Hubbard-Stratonovich supermatrix R, except
that the resulting Gaussian integrals over the auxiliary degrees of freedom r1α, r2α, ρα, and ρ∗α are
now N -dimensional, too. Namely, after substitution of the parametrization (C.27) for every Rα,
the right-hand side of (C.33) becomes∫ [dR]

(2π)N exp
[
− 1

2

∑
α,β

(s−1)αβ str(RαRβ) + i
∑

α
str(RαXαX

†
αL)

]
=
∫ [dR]

(2π)N exp

−1
2
∑
α,β

[
r1α(s−1)αβr1β + r2α(s−1)αβr2β

]
− i`B

∑
α

r1αx
∗
αxα + `F

∑
α

r2αχ
∗
αχα


× exp

∑
α,β

ρ∗α(s−1)αβρβ − i`B
∑
α

ραx
∗
αχα + i`F

∑
α

ρ∗αχ
∗
αxα

 (C.34)

= exp

−1
2
∑
α,β

sαβ
(
`2Bx

∗
αxαx

∗
βxβ − `2Fχ∗αχαχ∗βχβ − `B`Fx∗αχαχ∗βxβ + `B`Fχ

∗
αxαx

∗
βχβ

) .
(C.35)

Comparison with the left-hand side of Eq. (C.33) establishes the proof.

157



D Saddle-point approximation

The saddle-point method is a powerful approach to evaluate integrals depending exponentially on
a large parameter N approximately or even asymptotically exactly as N →∞. We will only sketch
the key ideas and results here and refer to Refs. [221, 245, 246], for example, for a more thorough
discussion of convergence, higher-order corrections, and other technicalities.

The foundation is Laplace’s method for purely real integrals, which will be described in Ap-
pendix D.1. Appendix D.2 presents the generalization to the case of complex contour integrals, i.e.,
what is commonly known as the “saddle-point method” in the literature. Appendix D.3 discusses
the extension to supersymmetric integrals.

D.1 Laplace’s method

Base case. The basic case is an integral over a real interval [a, b] of the form

IN :=
∫ b

a

dx eNf(x) g(x) , (D.1)

where f and g are real-valued functions independent of N . For large values of N , the integrand
is dominated by the region where f(x) assumes its maximal value because the larger f(x), the
stronger eNf(x) grows with N . In other words, the relative influence of points in the vicinity of the
maximizing x̂ ∈ (a, b) (i.e., f(x̂) ≥ f(x) for all x ∈ [a, b]) increases with increasing N . Hence the
idea is to approximate f(x) in the exponent in (D.1) by a Taylor series around x̂,

IN =
∫ b

a

dx eNf(x0)+N
2 f
′′(x̂) (x−x̂)2+O((x−x̂)3) g(x) . (D.2)

Note that the first derivative vanishes and the second derivative is negative because x̂ describes
a maximum by assumption. Furthermore, we take for granted that the maximum does not lie
at the boundaries of the interval [a, b]. Cases with x̂ at the boundary or degenerate maxima
(such that f ′′(x̂) = 0) can nonetheless be treated by similar methods [246]. Since the integral
is dominated by a small region around x̂, we can truncate the Taylor expansion at second order.
Indeed, the exponential in (D.2) now has a Gaussian shape with width (“standard deviation”)
σN := 1/

√
N |f ′′(x̂)| and hence becomes ever narrower (relatively speaking) as N is increased. For

sufficiently large N , we can thus furthermore approximate g(x) by g(x̂), such that

IN ' eNf(x̂) g(x̂)
∫ b

a

dx eN2 f
′′(x̂) (x−x̂)2

. (D.3)

Moreover, since the integrand quickly becomes negligibly small if x is more than a few multiples
of σN away from x̂, we can extend the domain of integration to the entire real line. The resulting
Gaussian integral was evaluated in Appendix C.1 (see Eq. (C.1)), yielding

IN =
∫ b

a

dx eNf(x) g(x) ' eNf(x̂) g(x̂)

√
2π

−Nf ′′(x̂) . (D.4)

This is the leading-order asymptotics for the integral IN as N → ∞. If desired, higher-order
corrections could be calculated in principle by including higher-order terms in the Taylor series of
f(x) and g(x) [246]. Furthermore, if the function f(x) exhibits several maxima of equal importance
(equal height) within the domain of integration, we have to sum in (D.4) over the contributions of
all such x̂ where f(x) assumes the global maximum. Even though we did not encounter a saddle
point (it is hiding in the complex plane), the result (D.4) is a first special case of a saddle-point
approximation.
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Multivariate extension. It is straightforward to extend the method to functions f, g : Ω → R,
defined on a d-dimensional, simply connected domain Ω ⊆ Rd. To this end, we consider the
integral

IN :=
∫
Ω

dx eNf(x) g(x) . (D.5)

Expanding f(x) to second order around a global maximum x̂ ∈ Ω from the interior of Ω yields

f(x) = f(x̂) + 1
2
∑
i,j

(xi − x̂i)f ′′(x̂)ij(xj − x̂j) +O
(
(x− x̂)3) , (D.6)

where f ′′(x̂) denotes the Hessian matrix of f(x) evaluated at x̂, i.e., the matrix of second derivatives
f ′′(x)ij = ∂2f(x)/∂xi∂xj . We assume that x̂ is a simple maximum such that f ′′(x̂) is negative
definite. The contribution from such a maximum can then be approximated by a d-dimensional
Gaussian integral by analogy with the one-dimensional case, leading to

IN =
∫
Ω

dx eNf(x) g(x) '
∑

x̂
eNf(x̂) g(x̂)

(
2π
N

)d/2
[det(−f ′′(x̂))]−1/2 (D.7)

for the total integral, where, in case there are several relevant maxima of f(x) in Ω, we sum over
all their locations x̂ on the right-hand side .

D.2 Saddle-point method for complex integrals

Constant phase and steepest descent. The integrand in (D.1) was purely real, i.e., f(x), g(x),
N , and x were all real-valued. We would like to generalize the asymptotic relation (D.4) to integrals
of the form

IN :=
∫
C

dz eNf(z) g(z) , (D.8)

where C is a contour in the complex plane, N is a large, real parameter as before, and f(z) and
g(z) are complex-valued, analytic functions on a domain Ω ⊆ C such that C ⊆ Ω.

We first observe that taking g(z) to be complex-valued does not entail any serious complications
compared to the case from (D.1) because the integral can be split into two contributions involving
the real and imaginary parts of g(z), respectively. Allowing for complex-valued f(z), by contrast,
can change the phenomenology distinctly. A first guess towards an approximation could be that
the integral IN is dominated again by regions around the maximum of Re f(z) for z ∈ C. However,
Im f(z) does not necessarily vanish at such a maximum, meaning that the Taylor expansion has a
purely imaginary contribution at linear order. While the Gaussian integral obtained by truncating
the Taylor expression at second order will usually still be convergent, a nonvanishing imaginary
part can entail rapid oscillations as N →∞ which in turn diminish the effect of the narrow real part
and implicate that the integral is not dominated by the region around that maximum of Re f(z)
in general. Moreover, Cauchy’s theorem implies that the value of IN is independent of the precise
contour C so long as the end points are fixed and a possible deformation can be dragged back
continuously onto the original contour without crossing any singularities of the integrand. Hence
a maximum of Re f(z) along one contour may not be a maximum anymore along an equivalent
second contour.

This freedom to choose the precise path of integration in fact provides the key to the saddle-point
approximation in the complex case. Indeed, the problem is essentially traced back to the basic real
case from (D.1) if we find a valid deformed contour C ′ ⊆ Ω whose end points agree with those of
C and for which f(z) has a constant imaginary part so that the phase of the exponential in (D.8)
is constant. To wit, substituting f(z) = u(z) + iv with real-valued u(z) and constant v ∈ R into
Eq. (D.8) yields

IN = eiNv
∫
C′

dz eNu(z) g(z) = eiNv
∫ b

a

dt eNu(ζ(t)) g(ζ(t)) ζ̇(t) , (D.9)
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where z = ζ(t) with t ∈ [a, b] parametrizes the path C ′. Separating the real and imaginary parts
of g(ζ(t))ζ̇(t), the remaining integrals are then indeed of the form (D.1) and can be evaluated
using (D.4) or its pertinent extensions [246]. This approach is also called the method of steepest
descent because starting from the maximum of u(z), the contour C ′ of constant v = Im f(z) is
also the contour along which u(z) = Re f(z) decays most rapidly as a consequence of the Cauchy-
Riemann equations. Moreover, if ẑ denotes the location of the maximum such that u′(ẑ) = 0, then
also f ′(ẑ) = 0 since the derivative vanishes along the curve with constant Im f(z) = v and f(z) is
analytic. Hence ẑ is a stationary point of f(z) and, as another consequence of the Cauchy-Riemann
equations, a saddle point of u(z) because ∂2u/∂x2 = −∂2u/∂y2 with x = Re z, y = Im z.

Employing a deformed contour C ′ that describes a path of steepest descent cutting through the
saddle points of f(z), Laplace’s method can thus be used to find the leading-order behavior of
the integral (D.8) as N → ∞ or even a full asymptotic expansion by means of the appropriate
extensions to calculate higher-order corrections [245, 246]. In practice, a suitable contour C ′ may
consist of several segments. Some of them involve a constant phase of f(z), so their contribution
can be determined by Laplace’s method, and others connect those segments of constant phase such
that the integrand ideally vanishes or is at least subleading [246].

Leading-order approximation from vicinity of saddle points. Finding a contour C ′ consisting of
contributing constant-phase and negligible joining segments can generally become cumbersome or
even impossible. Fortunately, it suffices to inspect the neighborhood of the dominant saddle points
if we are only interested in the leading-order approximation. For this purpose, we must still deform
the contour such that it passes through the relevant saddle points along the direction of steepest
descent, but it need not be of constant phase away from those saddles as long as it stays in the
corresponding valley, i.e., the real part of f(z) does not exceed the value at the saddle point.

If ẑ is a relevant saddle point, we can parametrize the integration contour in the vicinity of ẑ
as z = ζ(t) := ẑ + t e−iθ with a fixed phase θ ∈ (−π, π] and t running from −η to η (η > 0
fixed). Moreover, we denote the second derivative of f(z) at ẑ by f ′′(ẑ) =: f2 eiφ with f2 > 0 and
φ ∈ (−π, π]. The Taylor expansion of f(z) around ẑ along the path z = ζ(t) then reads

f(ζ(t)) = f(ẑ) + 1
2f2 t

2 ei(φ+2θ) +O(t3) . (D.10)

For ζ(t) to pass through ẑ along the direction of steepest descent, we thus need to choose θ such
that φ + 2θ = (2n + 1)π (n ∈ Z), e.g., θ = (π − φ)/2. The contribution from the immediate
neighborhood of ẑ to the integral (D.8) can thus be written as

eNf(ẑ)+i(π−φ)/2 g(ẑ)
∫ η

−η
dt e−N2 f2 t

2
. (D.11)

For sufficiently large N , we can extend the domain of the remaining integral to the entire real line
similarly as in Appendix D.1 and are left with a standard real Gaussian integral. If ẑ is the only
dominant saddle, the integral (D.8) can thus be approximated as

IN =
∫
C

dz eNf(z) g(z) ' eNf(ẑ)+i(π−φ)/2 g(ẑ)
√

2π
Nf2

= eNf(ẑ) g(ẑ)

√
2π

−Nf ′′(ẑ) . (D.12)

If there are several relevant saddle points, their contributions have to be summed accordingly.
Furthermore, this result can again be generalized to analytic functions f, g : Ω → C on a d-
dimensional complex and simply connected domain Ω ⊆ Cd. Given a d-dimensional contour
C ⊆ Ω, it takes essentially the same form as in the real-valued case (cf. Eq. (D.7)), provided that
the original contour C can be deformed such that it passes through the dominant saddle points {ẑ}
from the interior of Ω in the direction of steepest descent and stays in the corresponding valleys
in between. In this case,

IN =
∫
C

dz eNf(z) g(z) '
∑

ẑ
eNf(ẑ) g(ẑ)

(
2π
N

)d/2
[det(−f ′′(ẑ))]−1/2

. (D.13)
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D.3 Supersymmetric extension

Anticommuting variables. To adapt the saddle-point method to superspace, we should verify that
the result (D.13) has a formal analog for anticommuting variables. We content ourselves with the
simplest case. Noting that the Taylor expansion of a function of a single anticommmuting variable
terminates at first order, we thus consider two anticommuting numbers χ, χ∗ and an integral of
the form

IN :=
∫

dχdχ∗ eNf(χ,χ∗) g(χ, χ∗) , (D.14)

where f(χ, χ∗) and g(χ, χ∗) are functions of even Grassmann parity (see also Appendix B). Their
general forms are

f(χ, χ∗) = f00 + χf10 + χ∗ f01 + χχ∗ f11 , (D.15a)
g(χ, χ∗) = g00 + χ g10 + χ∗ g01 + χχ∗ g11 (D.15b)

with f00, f11, g00, g11 ∈ AB and f01, f10, g01, g10 ∈ AF, respectively. Splitting off the c-number
component of f(χ, χ∗) and expanding the exponential for the remaining terms, we can evaluate
the integral (D.14) explicitly and find

IN = eNf00
[
N2f01 f10 g00 +N(f01 g10 − f10 g01 + f11 g00) + g11

]
. (D.16)

Next we try to relate this result to an expansion around the “stationary points” of f(χ, χ∗). We
first observe that f(χ, χ∗) from (D.15a) can be expanded as

f(χ, χ∗) = f(χ̂, χ̂∗) + (χ− χ̂)
→
∂

∂χ
f(χ, χ∗)

∣∣∣∣
χ̂,χ̂∗

+ (χ∗ − χ̂∗)
→
∂

∂χ∗
f(χ, χ∗)

∣∣∣∣
χ̂,χ̂∗

+ 1
2(χ− χ̂)

→
∂

∂χ
f(χ, χ∗)

←
∂

∂χ∗

∣∣∣∣
χ̂,χ̂∗

(χ∗ − χ̂∗) + 1
2(χ∗ − χ̂∗)

→
∂

∂χ∗
f(χ, χ∗)

←
∂

∂χ

∣∣∣∣
χ̂,χ̂∗

(χ− χ̂)

(D.17)
for arbitrary χ̂, χ̂∗ ∈ AF. Choosing χ̂ = f01 f

−1
11 and χ̂∗ = −f10 f

−1
11 (the “saddle point”), the first

order terms of this Taylor expansion vanish. The integral (D.14) can thus be written as

IN = eNf(χ̂,χ̂∗)
∫

dχdχ∗ exp

N
2

(
χ− χ̂
χ∗ − χ̂∗

)T

f ′′(χ̂, χ̂∗)
(
χ− χ̂
χ∗ − χ̂∗

) g(χ, χ∗) , (D.18)

where we introduced the notation

f ′′(χ, χ∗) =

 →
∂
∂χf(χ, χ∗)

←
∂
∂χ

→
∂
∂χf(χ, χ∗)

←
∂
∂χ∗

→
∂
∂χ∗ f(χ, χ∗)

←
∂
∂χ

→
∂
∂χ∗ f(χ, χ∗)

←
∂
∂χ∗

 =
(

0 f11

−f11 0

)
(D.19)

for the matrix of second derivatives of f(χ, χ∗). In the spirit of the saddle-point approximation for
ordinary integrals, we now replace g(χ, χ∗) by g(χ̂, χ̂∗) in the integrand in (D.18) as well and shift
the integration variables in the remaining Gaussian integral. Employing Eqs. (D.15), we obtain

eNf(χ̂,χ̂∗) g(χ̂, χ̂∗) = eNf00

f11

(
N f01 f10 g00 + f01 g10 − f10 g01 + f11 g00 − f01 f10 f

−1
11 g11

)
(D.20)

for the prefactor, and

∫
dχdχ∗ exp

N
2

(
χ

χ∗

)T

f ′′(χ̂, χ̂∗)
(
χ

χ∗

) =
√
N2 det[f ′′(χ̂, χ̂∗)] = N f11 (D.21)

for the remaining Gaussian integral. Comparing the exact result (D.16) to the product of Eqs. (D.20)
and (D.21), we conclude that we can write

IN =
∫

dχdχ∗ eNf(χ,χ∗) g(χ, χ∗) ' eNf(χ̂,χ̂∗) g(χ̂, χ̂∗)
√
N2 det[f ′′(χ̂, χ̂∗)] (D.22)
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to leading order in N . Hence the approximation is of a similar structure as in the complex case
(cf. Eq. (D.13)) with the decisive difference that the product of Nd/2 and the square root of the
Hessian determinant occurs in the numerator rather than in the denominator. The difference is thus
similar to the difference between Gaussian integrals over commuting or anticommuting variables
(see Appendix C), precisely because such Gaussian integrals are the key element leading to this
contribution. In view of the unification of commuting and anticommuting Gaussian integrals by
means of the superdeterminant (see Appendix C.3), it should not be too surprising that a similar
unification can be achieved regarding the saddle-point approximation.

Saddle-point approximation in superspace. Combining the insights about complex contour in-
tegrals and the anticommuting saddle-point approximation, the results generalize essentially in the
expected way to integrals in superspace. To sketch the pertinent extension, we consider integrals
of the form

IN :=
∫ [dX]

(2π)d eNf(X) g(X) , (D.23)

where f(X) and g(X) are functions of even Grassmann parity with a generally complex-valued
c-number component and X is a 4d-dimensional supervector of the form

X = (x1 · · · x2d χ1 · · · χ2d )T (D.24)

with xi ∈ R (or a subset thereof) and Grassmann generators χi. Note that the relevant super-
integrals from the main text over Hubbard-Stratonovich auxiliary matrices R of the form (3.52)
or (3.104) can be cast into this form by collecting the matrix elements of R in a suitable vector
X. For instance, we may identify xα ≡ r1α, xN+α ≡ r2α, χα ≡ ρα, and χN+α ≡ ρ∗α in (3.52). In
particular, the xi may or may not consist of pairs of real and imaginary parts of a complex variable,
and the χi may or may not consist of pairs of formally conjugated Grassmann generators.

Moreover, we assume that the contour for the bosonic variables has already been chosen such
that it passes through the relevant saddle points of the function f along the direction of steepest
descent and is routed through the valleys in between (see, for example, Ref. [221] for a particularly
thorough discussion of parametrization and convergence issues).

For notational convenience, we will address the components of X as Xi = xi and X2d+i = χi for
i = 1, . . . , 2d in the following. As before, we can expand the function f(X) in the exponent into a
Taylor series around X = X̂ and obtain

f(X) = f(X̂) +
∑
i

(Xi − X̂i)
→
∂

∂Xi
f(X)

∣∣∣∣
X=X̂

+ 1
2
∑
i,j

(Xi − X̂i)
→
∂

∂Xi
f(X)

←
∂

∂Xj

∣∣∣∣
X=X̂

(Xj − X̂j) + . . .

(D.25)
up to second order. Note that the left- and right-derivatives act just like ordinary derivatives on
f(X) for the bosonic variables. In the following, we will denote

f ′′(X̂)ij :=
→
∂

∂Xi
f(X)

←
∂

∂Xj

∣∣∣∣∣∣
X=X̂

(D.26)

for short. Next we choose for X̂ the dominant saddle points, such that the first derivative of f
vanishes, and approximate the integrand in (D.23) by Gaussian forms in their vicinity,

IN '
∑
X̂

eNf(X̂) g(X̂)
∫ [dX]

(2π)d e
N
2

∑
i,j

(Xi−X̂i)f ′′(X̂)ij(Xj−X̂j) (D.27)

Observing that f ′′(X̂) is a regular (4d× 4d) supermatrix, the remaining integral can be evaluated
by means of the methods from Appendix C.3 and yields

IN =
∫ [dX]

(2π)d eNf(X) g(X) '
∑

X̂
eNf(X̂) g(X̂) sdet

[
f ′′(X̂)

]−1/2
. (D.28)

This final approximation is thus indeed structurally similar to the saddle-point approximations (D.7)
and (D.13) for multidimensional real or complex integrals, except that the determinant is replaced
by a superdeterminant and all constant scalar contributions (prefactor involving N , sign in front
of the second derivative) cancel between the fermionic and bosonic contributions.
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E Details on derivations

Here we elaborate in more detail on various steps of the derivations from Chapters 3 and 4.

E.1 Ensemble variance of the dynamics under diagonal perturbations
(Sec. 3.2)

In this appendix, we show Eq. (3.16). Squaring (3.6) with Eλn = En + ελn, the ensemble average
E[(〈A〉ρλ(t))2] can be evaluated similarly as in Eq. (3.15) by a careful analysis of all possible cases
of matching indices between the four level-fluctuation variables ελµ occurring in the corresponding
exponential. Subtracting the square of (3.15), a lengthy but straightforward rearrangement of
terms yields

E
[
ξV (t)2] = E

[(
〈A〉ρλ(t)

)2]− (E[〈A〉ρλ(t)
])2 = V1 + V2 + V3 + V4 + V5 + V6 (E.1)

with

V1 := −
(

1− e−λ
2σ2

0t
2
)∑

µ

[ρµµ(0)]2(Aµµ)2 , (E.2a)

V2 := 4e−2λ2σ2
0t

2
(

2− e−λ
2σ2

0t
2
)

Re
∑
µ,ν

ρµµ(0)Aµµ[ρ0(t)]µνAνµ , (E.2b)

V3 :=
(

1 + e−2λ2σ2
0t

2
− 2e−3λ2σ2

0t
2

+ e−4λ2σ2
0t

2
)∑
µ,ν

([ρ0(t)]µν)2 (Aνµ)2 , (E.2c)

V4 := −e−λ
2σ2

0t
2
(

2− e−λ
2σ2

0t
2
)∑
µ,ν

|[ρ0(t)]µνAνµ|2 , (E.2d)

V5 := −2e−2λ2σ2
0t

2
(

1− e−λ
2σ2

0t
2
)

Re
∑
µ

([ρ0(t)A]µµ)2
, (E.2e)

V6 := 2
(

1− e−λ
2σ2

0t
2
)∑

µ

|[ρ0(t)A]µµ|2 . (E.2f)

With the exception of V2, the sums appearing in these terms can be upper-bounded in modulus by
pmax ‖A‖2, where ‖A‖ denotes the operator norm of A and pmax is the largest population of a single
energy level (see Eq. (2.14)). Furthermore, the various time-dependent prefactors can be bounded
by constants of order unity, such that |V1| ≤ ‖A‖2 pmax, |V3| ≤ 17

16 ‖A‖
2
pmax, |V4| ≤ ‖A‖2 pmax,

|V5| ≤ 8
27 ‖A‖

2
pmax, and |V6| ≤ 2 ‖A‖2 pmax. The sum in V2 is less than or equal to √pmax ‖A‖2

in modulus, hence |V2| ≤ 4 ‖A‖2√pmax Altogether, we thus find

E
[
ξV (t)2] ≤ ‖A‖2 (4√pmax + 11

2 pmax
)
. (E.3)

Since ξV (t) from (3.3) is invariant upon adding an arbitrary constant to A, we can assume ‖A‖ =
∆A/2 without loss of generality, where ∆A is the spectral range of A from (2.18). Observing that√
pmax ≥ pmax since pmax ≤ 1, Eq. (E.3) then implies Eq. (3.16).

E.2 Saddle-point integral for the fourth overlap moment (Sec. 3.4.3)

In this appendix, we expound the evaluation of the integral (3.109) over the saddle-point manifold,
eventually resulting in (3.111).
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Parametrization of the saddle-point manifold. In a first step, we specify a suitable parametriza-
tion of the supermatrix Q = TΛT−1 serving as the integration variable in Eq. (3.109). To this
end, we introduce (2× 2)-dimensional supermatrices

A := exp
(

0 −α∗

α 0

)
and B := exp

(
0 −iβ∗

iβ 0

)
(E.4)

with anticommuting α, α∗, β, β∗. The supermatrix A is unitary, A†A = 1, whereas B is pseu-
dounitary, B†kB = k with k = diag(1,−1). Defining τ̃ := diag(τB, τF) with τB, τF ∈ C, |τF| ≤ 1,
the pseudounitary transformation matrices T , which span the saddle-point manifold and satisfy
T †LT = L (see below Eq. (3.108)), can be parametrized as [163, 223, 338]

T =
(
A 0
0 B

)(√
1 + k|τ̃ |2 kτ̃∗

τ̃
√

1 + k|τ̃ |2

)(
A−1 0

0 B−1

)
. (E.5)

Note that the left and right matrices are block-diagonal in the boson-fermion decomposition, while
the middle matrix is block-diagonal in the retarded-advanced decomposition. Expressing the BB
and FF eigenvalues as τB,F = rB,FeiφB,F with rB ∈ [0,∞), rF ∈ [0, 1], and φB, φF ∈ [0, 2π), the
integration measure associated with the parametrization (E.5) reads [163]

dµ(T ) = drB rB dφB drF rF dφF

π2 (r2
B + r2

F)2 dα dα∗ d(iβ) d(iβ∗) . (E.6)

Adopting the parametrization (E.5) for T in the definition of Q = TΛT−1 with Λ from (3.100), we
obtain

Q =
(
A 0
0 B

)
Q̃

(
A−1 0

0 B−1

)
(E.7)

with

Q̃ :=


`B 0 −

√
`2B − 1 e−iφB 0

0 `F 0
√

1− `2F e−iφF√
`2B − 1 eiφB 0 −`B 0

0
√

1− `2F eiφF 0 −`F

 . (E.8)

Here `B := 1 + 2r2
B ∈ [1,∞) and `F := 1− 2r2

F ∈ [−1, 1], so the corresponding integration measure
is given by

dµ(Q) = −d`B dφB d`F dφF

(2π)2(`B − `F)2 dα dα∗ dβ dβ∗ . (E.9)

Thus we fixed an explicit parametrization for the integration variable Q in (3.109) and specified
the measure dµ(Q).

Explicit form of the integrand. Next, we determine the precise form of the integrand in (3.109)
upon substitution of the parametrization (E.7) for Q. To deal with the supermatrix elements in
the last two lines of Eq. (3.109), we define the functions

Kν(`) :=
[
(z+

1 − Eν)(z−2 − Eν)− iΓ∆z`/2 + Γ 2/4
]−1

. (E.10)

The four supermatrix elements occurring in (3.109) can then be written as

(iΓQ/2 + z̄ +∆zΛ/2− Eνi)
−1

1B,1B

= Kνi(`B)(z−2 − Eµi − iΓ`B/2)(1 + αα∗)−Kνi(`F)(z−2 − Eνi − iΓ`F/2)αα∗ , (E.11a)
(iΓQ/2 + z̄ +∆zΛ/2− Eνi)

−1
1B,2B

= iΓKνi(`B)
√
`2B − 1 e−iφB

(
1
2 + αα∗−ββ∗

4 − αα∗ββ∗

8

)
+ ΓKνi(`F)

√
1− `2F e−iφF α∗β/2 ,

(E.11b)
(iΓQ/2 + z̄ +∆zΛ/2− Eνi)

−1
2B,1B

= −iΓKνi(`B)
√
`2B − 1 eiφB

(
1
2 + αα∗−ββ∗

4 − αα∗ββ∗

8

)
− ΓKνi(`F)

√
1− `2F eiφF αβ∗/2 , (E.11c)
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(iΓQ/2 + z̄ +∆zΛ/2− Eνi)
−1

2B,2B

= Kνi(`B)(z+
1 − Eνi + iΓ`B/2)(1− ββ∗) +Kνi(`F)(z+

1 − Eµi + iΓ`F/2)ββ∗ . (E.11d)

Turning to the exponent in (3.109), we expand it to first order in ∆z since ∆z ∼ ε in the regime
where the pseudounitary symmetry holds. Exploiting the saddle-point equation (3.107), this leads
to

− str
∑

α
ln(iΓQ/2 + z̄ +∆zΛ/2− Eα) = iπ∆z(`B − `F)/ε+O(∆2

z) . (E.12)

Substituting (E.9), (E.11), and (E.12) into the integrand, the integral (3.109) becomes

E
[
Gν1µ1(z+

1 )Gν2µ2(z−2 )
]

=
∫ ∞

1
d`B

∫ 1

−1
d`F

1
(`B − `F)2

∫ 2π

0

dφB

2π

∫ 2π

0

dφF

2π

∫
dα dα∗ dβ dβ∗ exp

[ iπ∆z
ε (`B − `F)

]
× [δµ1ν1δµ2ν2 (D00 +D11 +D10 +D01) + δµ1ν2δµ2ν1 (F00 + F11 + FS + FC)]

(E.13)

with

D00 := Kν1(`B)Kν2(`B)(z+
1 − Eν2 + iΓ

2 `B)(z−2 − Eν1 − iΓ
2 `B) , (E.14a)

D11 := −αα∗ββ∗
[
Kν1(`B)(z−2 − Eµ1 − iΓ

2 `B)−Kν1(`F)(z−2 − Eν1 − iΓ
2 `F)

]
×
[
Kν2(`B)(z+

1 − Eν2 + iΓ
2 `B)−Kν2(`F)(z+

1 − Eν2 + iΓ
2 `F)

]
, (E.14b)

D10 := αα∗
[
Kν1(`B)(z−2 −Eν1− iΓ

2 `B)−Kν1(`F)(z−2 −Eν1− iΓ
2 `F)

]
Kν2(`B)(z+

1 −Eν2 + iΓ
2 `B) ,

(E.14c)
D01 := −ββ∗Kν1(`B)(z−2 −Eν2 + iΓ

2 `B)
[
Kν2(`B)(z+

1 −Eν2 + iΓ
2 `B)−Kν2(`F)(z+

1 −Eµ2 + iΓ
2 `F)

]
,

(E.14d)

F00 := Γ 2

4 Kν1(`B)Kν2(`B)(`2B − 1), (E.14e)

F11 := −αα∗ββ∗Γ
2

4
[
Kν1(`B)Kν2(`B)(`2B − 1) +Kν1(`F)Kν2(`F)(1− `2F)

]
, (E.14f)

FS := (αα∗ − ββ∗)Γ
2

4 Kν1(`B)Kν2(`B) , (E.14g)

FC := − iΓ 2

4

√
`2B − 1

√
1− `2F

[
αβ∗Kν1(`B)Kν2(`F) e−i(φB−φF) + α∗β Kν1(`F)Kν2(`B) ei(φB−φF)

]
.

(E.14h)

Note that the terms have thus been classified according to the branches of δ contractions and their
dependence on the anticommuting integration variables.

Evaluation of the integral. To evaluate the integral (E.13), we analyze the eight different con-
tributions from (E.14) individually. At first sight, only the terms D11 and F11 involving the full
set αα∗ββ∗ of anticommuting variables would contribute, because if any of them is missing, the
corresponding Grassmann integral yields zero. Upon closer inspection, however, we notice that the
integration measure is singular in the commuting variables at the boundary of the associated do-
main where `B = `F = 1, i.e., Q = Λ according to (E.8) or, equivalently, T = 1. If this singularity
is not lifted by the remaining terms in the integrand, we have to invoke the Parisi-Sourlas-Efetov-
Wegner (PSEW) theorem [163, 220, 338–341] to assess the total integral of “0 ·∞” type. According
to the PSEW theorem, the integral then assumes the value of the integrand at the origin, i.e., for
T = 1 or `B = `F = 1 in our present parametrization. The conditions of the theorem are fulfilled
for the contributions from D00 and F00. Substituting `B = `F = 1, we find∫

D00 = D00|`B=`F=1 = G−w(z+
1 − Eν1)G+

w(z−2 − Eν2) (E.15)

and
∫
F00 = 0, where G±w(E) = (E ∓ iΓ/2)−1 was defined in (3.110). The bosonic integrals of D10

and D01 do not diverge due to an additional factor of (`B − `F) in the integrand, hence the total
integrals

∫
D10 =

∫
D01 = 0 due to the vanishing Grassmann contribution. Similarly, the bosonic

integral of FC is convergent, but the Grassmann factors are incomplete, hence
∫
FC = 0. In case

of FS, in turn, the contributions proportional to αα∗ and ββ∗ are identical up to a sign and thus
cancel, implying that

∫
FS = 0, too.
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Finally, there remain the integrals of D11 and F11. The respective Grassmann integrals readily give∫
dαdα∗dβdβ∗ αα∗ββ∗ = 1, and the integrals over φB and φF both yield factors of 2π canceling

against the corresponding factors in the measure. The remaining integrals over `B and `F can be
expressed in terms of the exponential integral function [342]

Ei(z) := −PV
∫ ∞
−z

dt e−t

t
, (E.16)

where “PV” indicates that the integral should be evaluated in the principal-value sense. More
precisely, it is convenient to define the two auxiliary functions

I(v, c) :=
∫ ∞

1
d` eiv`

`+ c
= −e−ivc Ei(iv[c+ 1]) , (E.17)

where the last equality holds for Im v > 0 and |arg(c+ 1)| < π [342, 343], and

J (v, c) :=
∫ 1

−1
d` e−iv`

`+ c
= eivc [Ei(−iv[c+ 1])− Ei(−iv[c− 1])] , (E.18)

which holds for c /∈ [−1, 1] [342, 343]. To compute the integrals of D11 and F11, we decompose
the integrand into partial fractions in `B and `F and employ the definitions (E.17) and (E.18) of
I(v, c) and J (v, c), respectively. Abbreviating aij := zi −Eνj and ck := 2ia1ka2k/Γ∆z + iΓ/2∆z,
we find ∫

D11 =
(a11a21 − a21∆z + Γ 2

4 )(a12a22 + a12∆z + Γ 2

4 )
(a11a21 − a12a22)2∆2

z

×
[
I(π∆zε , c1)− I(π∆zε , c2)

] [
J (π∆zε , c1)− J (π∆zε , c2)

] (E.19)

and∫
F11 = 1

(Eν1 − Eν2)∆z(Eν1 + Eν2 − z+
1 − z

−
2 )

×

{
(a11 − iΓ

2 )(a21 + iΓ
2 )J (π∆zε , c1)

∆z

[
2π(a11 + iΓ

2 )(a21 − iΓ
2 ) I(π∆zε , c1)

Γε
− eiπ∆z/ε

]

−
(a12 − iΓ

2 )(a22 + iΓ
2 )J (π∆zε , c2)

∆z

[
2π(a12 + iΓ

2 )(a22 − iΓ
2 ) I(π∆zε , c2)

Γε
− eiπ∆z/ε

]

−iΓ cos(π∆zε )
[
I(π∆zε , c1)− I(π∆zε , c2)

]
+ Γ sin(π∆zε )

[
c1 I(π∆zε , c1)− c2I(π∆zε , c2)

]}
.

(E.20)
To simplify these expressions, we notice that v = π∆z/ε and c = ck in all arguments for I(v, c) and
J (v, c). Hence the real part entering the exponential integral functions Ei(z) in (E.17) and (E.18) is
given by ±ivck = ∓π(2a1ka2k/Γε+Γ/2ε), at least if η → 0 in z+

1 and z−2 . Since Γ/ε = Nv � 1 (see
Eq. (3.9)), we can approximate Ei(z) in these expressions by the asymptotic relation Ei(z) ∼ ez/z
as Re z → ±∞ (observing a branch-cut discontinuity of 2π in the imaginary part along the negative
real line). This leads to∫

D11 ≈
(

Γε

2π∆z

)2
[

(a12 − iΓ
2 )(a21 + iΓ

2 )
(a11 + iΓ

2 )2(a12 + iΓ
2 )(a21 − iΓ

2 )(a22 − iΓ
2 )2 −

exp
( 2πi∆z

ε

)
(a2

11 + Γ 2/4)(a2
22 + Γ 2/4)

]
(E.21)

and ∫
F11 ≈

iΓε/π∆z

(a11 + iΓ
2 )(a12 + iΓ

2 )(a21 − iΓ
2 )(a22 − iΓ

2 )
. (E.22)

The total integral (3.109) is then obtained by combining the three nonvanishing contributions (E.15),
(E.21), and (E.22) according to (E.13), i.e.,

E
[
Gν1µ1(z+

1 )Gν2µ2(z−2 )
]

= δµ1ν1δµ2ν2

[∫
D00 +

∫
D11

]
+ δµ1ν2δµ2ν1

∫
F11 . (E.23)

The second relevant ensemble average of retarded and advanced resolvents, E
[
Gν1µ1(z−1 )Gν2µ2(z+

2 )
]
,

is obtained from (E.23) by exchanging all labels 1 and 2, i.e., n1 ↔ n2, µ1 ↔ µ2, and ν1 ↔ ν2. Sub-
stituting the explicit expressions and taking the limit η → 0, we eventually recover Eq. (3.111).
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E.3 Example for the alternative overlap-moment approximation (Sec. 3.4.4)

As an example for the approximate evaluation of eigenvector overlap moments (3.29) by the com-
putational scheme sketched in Sec. 3.4.4 and explained in more detail in the Supplemental Material
of Ref. [226], we present how to calculate the fourth moment (3.128) in this approach. In the first
step, we express the orthogonalized v̂nkµ in terms of the independent vnkµ via (3.126), adopting
ak = 1 (see below Eq. (3.127)). For n1 6= n2, we thus obtain

E
[
v̂n1
µ1
v̂n2
µ2
v̂n1∗
ν1

v̂n2∗
ν2

]∣∣
n1 6=n2

= E
[
vn1
µ1
vn2
µ2
vn1∗
ν1

vn2∗
ν2

]
+ E

[
vn1
µ1

(
vn1
µ2

∑
α
vn1∗
α vn2

α

)
vn1∗
ν1

(
vn1∗
ν2

∑
β
vn1
β vn2∗

β

)]
− E

[
vn1
µ1

(
vn1
µ2

∑
α
vn1∗
α vn2

α

)
vn1∗
ν1

vn2∗
ν2

]
− E

[
vn1
µ1
vn2
µ2
vn1∗
ν1

(
vn1∗
ν2

∑
α
vn1
α vn2∗

α

)]
.

(E.24)

As observed in Sec. 3.4.4, we thus need to calculate the moments of four, six, and eight factors
of independent, complex Gaussian vector components vnµ . According to the Isserlis-Wick theorem
[239, 240], such averages are given by the sum of all possible combinations of pairing up factors
of vmµ and vn∗ν (such that m = n and µ = ν) and multiplying their second moments. For the first
term in the second line of (E.24) specifically, this yields

E
[
vn1
µ1
vn2
µ2
vn1∗
ν1

vn2∗
ν2

]
= (δµ1ν1δµ2ν2 + δn1n2δµ1ν2δµ2ν1) E

[
|vn1
µ1
|2
]

E
[
|vn2
µ2
|2
]

= (δµ1ν1δµ2ν2 + δn1n2δµ1ν2δµ2ν1)u(En1 − Eµ1)u(En2 − Eµ2) . (E.25)

Similarly, after a careful inspection of the different possibilities of matching indices, the two terms
in the third line involving six factors of vnµ are found to be given by

E
[
vn1
µ1

(
vn1
µ2

∑
α
vn1∗
α vn2

α

)
vn1∗
ν1

vn2∗
ν2

]
= (δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1)u(En1 − Eµ1)u(En1 − Eµ2)

× {u(En2 − Eν2) + δn1n2 [1 + u(En1 − Eν1)]} , (E.26)

E
[
vn1
µ1
vn2
µ2
vn1∗
ν1

(
vn1∗
ν2

∑
α
vn1
α vn2∗

α

)]
= (δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1)u(En1 − Eµ1)u(En1 − Eµ2)

× {u(En2 − Eµ2) + δn1n2 [1 + u(En1 − Eµ1)]} , (E.27)

where we exploited that
∑
α u(En−Eα) = 1 by definition (see Eq. (3.61)). Additionally employing∑

α u(En1 −Eα)u(En2 −Eα) = ũ(En1 −En2) (cf. Eqs. (3.62) and (3.116)), the second term in the
second line, which comprises eight factors of vnµ , reduces to

E
[
vn1
µ1

(
vn1
µ2

∑
α
vn1∗
α vn2

α

)
vn1∗
ν1

(
vn1∗
ν2

∑
β
vn1
β vn2∗

β

)]
= (δµ1ν1δµ2ν2 + δµ1ν2δµ2ν1)u(En1 − Eµ1)u(En1 − Eµ2)

×
{
u(En1 − Eµ1)u(En2 − Eµ1) + u(En1 − Eµ2)u(En2 − Eµ2) + ũ(En1 − En2)

+δn1n2

[
1 + 2u(En1 − Eµ1) + 2u(En1 − Eµ2) + (u(En1 − Eµ1) + u(En2 − Eµ2))2

]}
.

(E.28)
Observing that every factor of u(E) is of order N−1

v and restricting to the leading order in any of
the δµ1ν1δµ2ν2 or δµ1ν2δµ2ν1 branches, we thus conclude that (E.24) becomes

E
[
v̂n1
µ1
v̂n2
µ2
v̂n1∗
ν1

v̂n2∗
ν2

]∣∣
n1 6=n2

= δµ1ν1δµ2ν2 u(En1 − Eµ1)u(En2 − Eµ2)
+ δµ1ν2δµ2ν1 u(En1 − Eµ1)u(En1 − Eµ2) [ũ(En1 − En2)− u(En2 − Eµ1)− u(En2 − Eµ2)] .

(E.29)
For n1 = n2, in turn, we only have one vector v̂n1 to consider, which is approximated by the
corresponding independent vn1 . Hence the fourth moment is given by (E.25) with n1 = n2.
Combined with (E.29) for n1 6= n2, we then recover Eqs. (3.128) and (3.129) from the main text.
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E.4 Exploiting ensemble properties for the prethermalization bound (Sec. 3.5)

In this appendix, we prove Eqs. (3.135), (3.136), and (3.137), which establish certain properties of
the ensemble average of the operator W (t) from Eq. (3.134) (see also above Eq. (3.131)) based on
characteristics of the underlying perturbation ensemble.

Series expansion of W (t). Recalling the definition W (t) := e−iHλteiH0t, we can represent the
matrix elements Wµν(t) := 0〈µ|W (t)|ν〉0 of this operator in the unperturbed eigenbasis {|µ〉0}
by exploiting the following result from Ref. [344]: Given a complex analytic function φ(z) and
linear operators A and B, the operator φ(A + B), which is defined in terms of the power-series
representation of φ(z), can be expanded as

φ(A+B) =
∞∑
n=0

1
n!Cn(A,B)φ(n)(A) . (E.30)

Here φ(n)(z) denotes the nth derivative of φ(z), and the operators Cn(A,B) satisfy the recurrence
relation

C0 := 1 , Cn := [A,Cn−1] +BCn−1 , (E.31)
where 1 is the identity operator and [A,B] = AB − BA the commutator as usual. Letting
φ(z) := e−izt, A := H0, and B := λV so that W (t) = φ(A + B) eiH0t, it follows straightforwardly
that

Wµν(t) =
∞∑
n=0

(−it)n

n! 0〈µ|Cn|ν〉0 (E.32)

with
C0 := 1 , Cn := [H0, Cn−1] + λV Cn−1 . (E.33)

Proof of Eq. (3.135). First, we demonstrate Eq. (3.135), i.e., we show that E[W (t)] is diagonal
in the unperturbed eigenbasis {|µ〉0} if the V ensemble is invariant under phase changes of the
basis vectors {|µ〉0} (see below Eq. (3.22)). More precisely, consider a second set of unperturbed
basis states {|µ〉′0} obtained from the original one by multiplying all |µ〉0 by arbitrarily chosen sign
factors sµ ∈ {−1, 1}, such that |µ〉′0 = sµ|µ〉0. If the matrix elements 0〈µ|V |ν〉0 and ′0〈µ|V |ν〉′0 have
identical statistical properties for all µ and ν, meaning that all their moments agree, it follows
immediately from the definition (E.33) that also

E[0〈µ|Cn|ν〉0] = E[′0〈µ|Cn|ν〉′0] = sµsν E[0〈µ|Cn|ν〉0] (E.34)

for all n. If µ = ν, this relation is trivially fulfilled due to s2
µ = 1. If µ 6= ν, however, the product

sµsν can be either +1 or −1 depending on the particular choice of the sµ. Since (E.34) must
hold regardless of this choice, it follows that E[0〈µ|Cn|ν〉0] = 0 if µ 6= ν. Together with (E.32), we
therefore find that

E[Wµν(t)] = δµν E[wµ(t)] with wµ(t) :=
∞∑
n=0

(−it)n

n! 0〈µ|Cn|µ〉0 . (E.35)

Proof of Eq. (3.136). Second, we prove Eq. (3.136), i.e., we establish that the ensemble average
E[wµ(t)] of the just-defined function wµ(t) from (E.35) is independent of µ under Prerequisites (i)
and (iv) from Sec. 3.2.

Prerequisite (i) demanded a constant density of states ε−1 of H0 within the energy shell IE . Hence
we can approximate Eν−Eµ by (ν−µ)ε and therefore freely shift indices in such energy differences,
i.e., Eν+α − Eµ+α ≈ Eν − Eµ. Note that the induced error can be estimated using (3.17) and
strictly bounded from above using (3.19).

Prerequisite (iv) stipulated that the variance of Vµν should only depend on the difference Eµ −
Eν (cf. Eq. (3.10)), and since the relevant properties of the pertinent V ensembles are largely
determined by the first two moments (see the discussion below Eq. (3.48)), this property can be
extended to arbitrary moments. In particular, we thus take for granted that

E[Vν0ν1Vν1ν2 · · ·Vνk−1νk ] = vk
(
{Eνi − Eνi−1}ki=1

)
(E.36)
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for arbitrary indices ν0, . . . , νk and all k ∈ N, where vk is a function which only depends on the
differences Eν1 − Eν0 , . . . , Eνk − Eνk−1 .

According to (E.35), it suffices to show that E[0〈µ|Cn|µ〉0] is independent of µ to conclude the same
property for E[wµ(t)]. By definition (see Eq. (E.33)), each operator Cn consists of a sum of terms
involving powers of V and commutators of these powers with the unperturbed Hamiltonian H0.
By inserting complete sets of states 1 =

∑
νi
|νi〉00〈νi| between factors of V , every 0〈µ|Cn|µ〉0 is

found to be a sum of terms of the general form

F (µ; k; s1, . . . , sk) =
∑

ν1,...,νk−1

Vµν1(Eν1−Eµ)s1Vν1ν2(Eν2−Eν1)s2 · · ·Vνk−1µ(Eµ−Eνk−1)sk (E.37)

with k ≤ n, si ∈ N0, and

k +
k∑
i=1

si = n . (E.38)

We remark that the precise combination of F (µ; k; {si}) terms contributing to any 0〈µ|Cn|µ〉0 can
be computed from the recurrence relation (E.33) (see also Ref. [344]), but is irrelevant for the
ensuing argument. Adopting (E.36), the ensemble average of Eq. (E.37) reduces to

E[F (µ; k; s1, . . . , sk)] =
∑

ν1,...,νk−1

(Eν1 − Eµ)s1(Eν2 − Eν1)s2 · · · (Eµ − Eνk−1)sk

× vk
(
Eν1 − Eµ, {Eνi − Eνi−1}k−1

i=2 , Eµ − Eνk−1

)
.

(E.39)

Next we shift the indices νi to νi+µ for all i = 1, . . . , k−1 and exploit Prerequisite (i) as specified
above Eq. (E.36). This leads to

E[F (µ; k; s1, . . . , sk)] =
∑

ν1,...,νk−1

(Eν1)s1(Eν2 − Eν1)s2 · · · (−Eνk−1)sk

× vk
(
Eν1 , {Eνi − Eνi−1}k−1

i=2 ,−Eνk−1

)
.

(E.40)

Since the right-hand side of this relation is manifestly independent of µ, the same must hold for
E[F (µ; k; s1, . . . , sk)]. Consequently, also E[0〈µ|Cn|µ〉0] and thus E[wµ(t)] from (E.35) are indepen-
dent of µ, which implies Eq. (3.136) from the main text with

ŵ(t) :=
∞∑
n=0

(−it)n

n! E[0〈µ|Cn|µ〉0] . (E.41)

Proof of Eq. (3.137). Third and last, we show that Eq. (3.132) reduces to (3.137) if the pertur-
bation ensemble exhibits the previously exploited properties and the distribution of the diagonal
matrix elements Vµµ is invariant under inversion of the sign, meaning that Vµµ and −Vµµ have
identical statistical properties. To this end, as observed above Eq. (3.137), it suffices to show that
ŵ(t) is real-valued. In view of the definition (E.41), we thus need to show that E[0〈µ|Cn|µ〉0] is
purely real for even n and purely imaginary for odd n. Since all 0〈µ|Cn|µ〉0 are sums of terms of
the form (E.37), it is sufficient to verify that

E[F (µ; k; s1, . . . , sk)] = (−1)n E[F (µ; k; s1, . . . , sk)]∗ , (E.42)

where n, k, and si are related via (E.38). Without loss of generality, we can shift the overall energy
scale such that E0 = 0 and hence E−µ = −Eµ according to Prerequisite (i) (see above Eq. (E.36)).
Observing (E.38), we thus find that

(E−ν1)s1(E−ν2 −E−ν1)s2 · · · (−E−νk−1)sk = (−1)n−k (Eν1)s1(Eν2 −Eν1)s2 · · · (−Eνk−1)sk . (E.43)

Next we recall that Vµν and −Vµν are assumed to have identical statistical properties for all µ and
ν in the present setting. Replacing all Vνi−1νi by −Vνi−1νi in (E.36), we therefore conclude that
the functions vk characterizing the moments of the Vµν satisfy

vk
(
{Eνi − Eνi−1}ki=1

)
= (−1)k vk

(
{Eνi − Eνi−1}ki=1

)
. (E.44)
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Furthermore, Hermiticity of V implies Vµν = V ∗νµ and thus

vk
(
{Eνi − Eνi−1}ki=1

)∗ = vk
(
{Eνi−1 − Eνi}ki=1

)
. (E.45)

Combining the latter two equations, we conclude that

vk
(
{Eνi − Eνi−1}ki=1

)
= (−1)k vk

(
{Eνi−1 − Eνi}ki=1

)∗
. (E.46)

Finally, we consider Eq. (E.40) again. Replacing all summation indices νi by −νi, this relation can
be written as

E[F (µ; k; s1, . . . , sk)] =
∑

ν1,...,νk−1

(E−ν1)s1(E−ν2 − E−ν1)s2 · · · (−E−νk−1)sk

× vk
(
E−ν1 , {Eνi−1 − Eνi}k−1

i=2 ,−E−νk−1

)
.

(E.47)

Substituting (E.43) in the first line and utilizing (E.46) in conjunction with E−ν = −Eν (see above
Eq. (E.43)) in the second line, we obtain

E[F (µ; k; s1, . . . , sk)] = (−1)n
∑

ν1,...,νk−1

(Eν1)s1(Eν2 − Eν1)s2 · · · (−Eνk−1)sk

× vk
(
Eν1 , {Eνi − Eνi−1}k−1

i=2 ,−Eνk−1

)∗
.

(E.48)

Comparing (E.40) and (E.48), it follows that Eq. (E.42) holds, which in turn implies Eq. (3.137).

E.5 Bound for the remnant term in the ensemble-averaged dynamics
(Sec. 3.6.3)

In this appendix, we prove the bound (3.185) for the term R̃(t) from (3.184) appearing in the
ensemble-averaged time evolution (3.183). To this end, we first observe that

∫
dω r̃(ω, t) = 0 for

all t (see also above Eq.(3.182)). Hence we can subtract a constant from the observable A without
changing the value of R̃(t). Defining Ã := A− 〈A〉ρmc1, we can thus rewrite (3.184) as

R̃(t) =
∑
µ,ν

ρµµ(0) Ãνν r̃(Eµ − Eν , t) , (E.49)

where the matrix elements Ãνν = 0〈ν|Ã|ν〉0 quantify how strongly the observable A violates the
(diagonal) ETH (see also Eq. (3.182)).

In a first step, we inspect the function r̃(ω, t) from (3.184). We recall that u(E) is given by the
Breit-Wigner distribution (3.33) and thus ũ(E) from (3.116) also assumes the Breit-Wigner form
with Γ replaced by 2Γ . Hence

r̃(ω, t) = 1
πNv

[
1− cos(ωt)− Γ sin(ω|t|)

ω

]
1

1 + (ω/Γ )2 , (E.50)

where we used Γ/ε = Nv as well (see Eq. (3.9) and the explanation above it). For fixed ω ∈ R\{0},
this function is bounded and periodic in t. The maximal value is attained at times

tmax
k := 1

|ω|

[
arctan

(
Γ

|ω|

)
+ (2k + 1)π

]
(k ∈ Z) . (E.51)

To evaluate r̃(ω, t) at one such maximum, we utilize sin(arctan(x) + π) = −x/
√

1 + x2 and
cos(arctan(x) + π) = −1/

√
1 + x2 and find

r̃(ω, t) ≤ 2ε
π|ω|

. (E.52)

Similarly, r̃(ω, t) assumes its minimum for fixed ω 6= 0 at times

tmin
k := 1

|ω|

[
arctan

(
Γ

|ω|

)
+ 2kπ

]
(k ∈ Z) . (E.53)
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Once again evaluating at such a minimum with sin(arctan x) = x/
√

1 + x2 and cos(arctan x) =
1/
√

1 + x2, we obtain
r̃(ω, t) ≥ − ε

π|ω|
. (E.54)

Combining (E.52) and (E.54), we thus find

|r̃(ω, t)| ≤ 2ε
π|ω|

. (E.55)

To continue, we observe that Eq. (3.183) for the ensemble-averaged time evolution asserts that
deviations from the long-time limit 〈A〉̃ρλ decay with |gλ(t)|2 = e−Γ |t| in time. Assuming that we
can measure such deviations with a resolution κ as detailed below Eq. (3.185), the term R̃(t) can
only become relevant at times t ≤ tκ∗ with the “resolvable time” tκ∗ := − lnκ

Γ .

To obtain a useful bound on |R̃(t)| within this regime, we split the double sum in (E.49) into two
parts with |Eµ − Eν | < Γ/b and |Eµ − Eν | ≥ Γ/b, respectively, where b > 0 is chosen such that

b arctan b = − ln κ . (E.56)

Explicitly,

R̃1(t) :=
∑
µ,ν

|Eµ−Eν |<Γ/b

ρµµ(0) Ãνν r̃(Eµ − Eν , t) , (E.57a)

R̃2(t) :=
∑
µ,ν

|Eµ−Eν |≥Γ/b

ρµµ(0) Ãνν r̃(Eµ − Eν , t) . (E.57b)

Coming back to the function r̃(ω, t), we begin with the first case, |ω| = |Eµ − Eν | < Γ/b. As
observed above, the first local maximum of the absolute value |r̃(ω, t)|, corresponding to the first
minimum of r̃(ω, t), lies at tmin

0 = arctan(Γ/|ω|)/|ω|. Since x 7→ x arctan x is a monotonically
increasing function and |ω| < Γ/b, we conclude that tmin

0 > b arctan(b)/Γ = tκ∗. Consequently, the
first maximum of |r̃(ω, t)| is assumed beyond the resolvable time tκ∗. Moreover, since |r̃(ω, 0)| =
0, the function |r̃(ω, t)| is monotonically increasing on the interval [0, tκ∗] and can therefore be
bounded from above by

|r̃(ω, t)| ≤ |r̃(ω, tκ∗)| ≤
1 + b arctan b

πNv
(E.58)

for all t ∈ [0, tκ∗]. Note that we assumed κ < 1 here. For completeness, we remark that (E.58)
remains valid for ω = 0 (which was previously excluded from the discussion) because

|r̃(0, t)| = εt

π
≤ εtκ∗

π
= b arctan b

πNv
. (E.59)

Using the triangle inequality in (E.57a) together with the bound (E.58), we can conclude that

|R̃1(t)| ≤ 1 + b arctan b
πNv

∑
µ,ν

|Eµ−Eν |<Γ/b

ρµµ(0) |Ãνν | . (E.60)

For the second part where |ω| = |Eµ − Eν | ≥ Γ/b, we can directly use the inequality (E.55) and
obtain

|r̃(ω, t)| ≤ 2b
πNv

. (E.61)

Substituting into (E.57b), we are left with

|R̃2(t)| ≤ 2b
πNv

∑
µ,ν

|Eµ−Eν |≥Γ/b

ρµµ(0) |Ãνν | . (E.62)

Combining (E.60) and (E.62), we finally obtain

|R̃(t)| ≤ |R̃1(t)|+ |R̃2(t)| ≤ Cκ
Nv

∑
µ

ρµµ(0)
∑
ν

|Ãνν | =
Cκ
Nv

∆mc(A) , (E.63)

with Cκ := max{2b, 1 + b arctan b}/π, b defined implicitly as a function of κ according to (E.56),
and ∆mc(A) as defined in Eq. (3.182). Hence we derived Eq. (3.185) from the main text.

171



E.6 Ensemble variance of the echo signal under imperfect preparation
(Sec. 4.3.1)

In this appendix, we show Eq. (4.25). Exploiting (4.4) and (4.6), we first rewrite the variance of
A(τ + δ + t) as

E
[
(A(τ + δ + t)− E[A(τ + δ + t)])2

]
= E[

(
〈A〉ρb(t)

)2]−
(
E[〈A〉ρb(t)]

)2 (E.64)

Upon substitution of (4.15) into (4.16) and observing that ρ(0) = ρT, we obtain

〈A〉ρb(t) =
∑
n1,n2

∑
µ1,µ2

∑
ν1,ν2

ei(Eν1−Eµ2 )t ei(EWn2−E
W
n1 )δ ei(Eν2−Eµ1 )τ ρµ1ν2(0)Aµ2ν1

× Ũn1µ1Ũn2µ2Ũ
∗
n1ν1

Ũ∗n2ν2
.

(E.65)

The ensemble average of these time-dependent expectation values during the backward phase was
found to be given by

E
[
〈A〉ρb(t)

]
=
(
〈A〉ρf(τ−t) − 〈A〉ρmc

)
|d̂W (δ)|2 + 〈A〉ρmc −

1
N2 〈A〉ρf(τ−t) (E.66)

in the main text, cf. Eqs. (4.16) and (4.23). Squaring Eq. (E.65) gives(
〈A〉ρb(t)

)2 =
∑
n1...n4

∑
µ1···µ4

∑
ν1···ν4

ei(Eν1−Eµ2 +Eν3−Eµ4 )t ei(EWn2−E
W
n1 +EWn4−E

W
n3 )δ ei(Eν2−Eµ1 +Eν4−Eµ3 )τ

× ρµ1ν2(0) ρµ3ν4(0)Aµ2ν1 Aµ4ν3 Ũn1µ1Ũn2µ2Ũn3µ3Ũn4µ4Ũ
∗
n1ν1

Ũ∗n2ν2
Ũ∗n3ν3

Ũ∗n4ν4
.

(E.67)
To compute the average of this expression over the ensemble of scrambling operators W , we thus
need the average over eight factors of transformation matrix elements Ũnµ (cf. Eq. (4.14)). Similarly
to the fourth moment from Eq. (4.17), this average can be evaluated with the aid of Ref. [197]
by summing over all possible ways of pairing up the first and second indices of Ũ and Ũ∗ factors.
This leads to

E
[
Ũn1µ1Ũn2µ2Ũn3µ3Ũn4µ4Ũ

∗
n1ν1

Ũ∗n2ν2
Ũ∗n3ν3

Ũ∗n4ν4

]
=

∑
P,P ′∈Sym(4)

vP,P ′
4∏
j=1

δnjnP (j) δµjνP ′(j) , (E.68)

where Sym(4) denotes the symmetric group of degree 4, i.e., the set of all permutations of {1, 2, 3, 4}.
Hence the sum in (E.68) comprises (4!)2 = 576 terms. The symmetry factors vP,P ′ depend only
on the cyclic structure of the composed permutation P−1P ′ ∈ Sym(4). As in the main text, it is
sufficient to consider the leading order in N � 1, to which the vP,P ′ coincide for the CUE and
COE ensembles. Consulting Ref. [197], we find that

v1,1,1,1 ' N−4 , v2,1,1 ' −N−5 , v2,2 ' N−6 , v3,1 ' 2N−6 , v4 ' −5N−7 , (E.69)

where the subscripts label the five different combinations of cycle lengths in Sym(4). Plug-
ging (E.68) into (E.67), we observe that the sums over the nj and µj , νj factorize, so we can
analyze them separately. For each P ∈ Sym(4), the corresponding sum over the nj is of the form

FP :=
∑
n1···n4

ei(EWn2−E
W
n1 +EWn4−E

W
n3 )δ

4∏
j=1

δnjnP (j) . (E.70)

The 4! = 24 different permutations P yield eight different terms as listed in Tab. E.1. Note that
the order in N depends again on the cyclic structure of P only.

For each P ′ ∈ Sym(4), in turn, the sums over µj , νj are of the form

GP ′ :=
∑
µ1···µ4

∑
ν1···ν4

ei(Eν1−Eµ2 +Eν3−Eµ4 )t ei(Eν2−Eµ1 +Eν4−Eµ3 )τ

× ρµ1ν2(0) ρµ3ν4(0)Aµ2ν1 Aµ4ν3

∏4

j=1
δµjνP ′(j) .

(E.71)
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Table E.1: Contributions to the average of Eq. (E.67) from the sums over nj for the different permutations
P ∈ Sym(4), cf. Eq. (E.70).

cycles P (cycle notation) FP

1, 1, 1, 1 (1)(2)(3)(4) N4 |d̂W (δ)|4

2, 1, 1 (1 2)(3)(4), (1 4)(2)(3), (1)(2 3)(4), (1)(2)(3 4) N3 |d̂W (δ)|2

(1 3)(2)(4) N3 d̂W (δ)2 d̂∗W (2δ)
(1)(2 4)(3) N3 d̂W (2δ) d̂∗W (δ)2

2, 2 (1 2)(3 4), (1 4)(2 3) N2

(1 3)(2 4) N2 |d̂W (2δ)|2

3, 1 (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 3 4)(2), (1 4 3)(2),
(1)(2 3 4), (1)(2 4 3)

N2 |d̂W (δ)|2

4 (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2) N

Table E.2: Contributions to the average of Eq. (E.67) from the sums over µj , νj for the different permuta-
tions P ′ ∈ Sym(4), cf. Eq. (E.71).

P ′ (cycle notation) GP ′

(1)(2)(3)(4), (1 3)(2 4) (〈A〉ρf(τ−t))2

(1 2)(3)(4), (1)(2)(3 4), (1 2 4 3), (1 3 4 2) N〈A〉ρmc〈A〉ρf(τ−t)

(1 2)(3 4) N2(〈A〉ρmc)2

(1)(2 3)(4), (1 4)(2)(3), (1 3 2 4), (1 4 2 3) tr[A2ρf(τ − t)2]
(1 2 3)(4), (1)(2 3 4), (1 2 4)(3), (1 3 4)(2) N〈A〉ρmctr[Aρf(τ − t)2]
(1 3 2)(4), (1 4 2)(3), (1 4 3)(2), (1)(2 4 3) 〈A2〉ρf(τ−t)

(1 3)(2)(4), (1)(2 4)(3) tr{[ρf(τ − t)A]2}
(1 2 3 4) N2〈A〉ρmctr[ρ2

T]
(1 4 3 2) N〈A2〉ρmc

(1 4)(2 3) N〈A2〉ρmctr[ρ2
T]

The various permutations P ′ lead to the total of ten different expressions for GP ′ collected in
Tab. E.2.

To find the ensemble average of (E.67), we then have to combine the symmetry factors vP,P ′
from (E.69), the FP from Eq. (E.70) and Tab. E.1, and the GP ′ from Eq. (E.71) and Tab. E.2 for
each P, P ′ ∈ Sym(4). Assessing the order of each of these contributions in N is most conveniently
achieved by means of computer algebra software. We find a total of nine terms of order 1, which
cancel exactly in (E.64) against the nine terms of order 1 resulting from (E[〈A〉ρb(t)])2, i.e., by
squaring Eq. (E.66). Consequently, the variance (E.64) vanishes to order 1. At order N−1, the
average of (E.67) contributes 42 terms and the square of (E.66) adds another six terms, leading
to

E
[(
〈A〉ρb(t)

)2]− E
[
〈A〉ρb(t)

] 2 = 1
N

{
2〈A〉ρf(τ−t)〈A〉ρmc − (〈A〉ρmc)2 tr(ρ2

T)

+2|d̂W (δ)|2
[
(〈A〉ρf(τ−t))

2 − 〈A〉ρf(τ−t)〈A〉ρmc + tr[A2ρf(τ − t)2]
−2 tr[Aρf(τ − t)2]〈A〉ρmc + 2(〈A〉ρmc)2 tr(ρ2

T)
]

+
[
d̂W (2δ)d̂W (δ)∗2 + d̂W (δ)2d̂W (2δ)∗

] [
(〈A〉ρmc)2 tr(ρ2

T)− 2 tr[Aρf(τ − t)2] + tr{[ρf(τ − t)A]2}
]

−|d̂W (δ)|4
[
2 tr[A2ρf(τ − t)2]− 8 tr[Aρf(τ − t)2]〈A〉ρmc

+2 tr{[ρf(τ − t)A]2}+ 5(〈A〉ρmc)2 tr(ρ2
T)
]}

+O
(

1
N2

)
.

(E.72)
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We content ourselves with a simple upper bound of this quantity by exploiting the triangle inequal-
ity on the right-hand side. The various combinations of traces over the observable and states can
all be bounded by the squared operator norm ‖A‖2 of A. Moreover, we can exploit |d̂W (δ)| ≤ 1.
Altogether, we then find

E
[(
〈A〉ρb(t)

)2]− E
[
〈A〉ρb(t)

] 2 ≤ 42 ‖A‖2

N
+O

(
1
N2

)
. (E.73)

Together with (E.64) and taking ‖A‖ = ∆A/2 without loss of generality as usual because the
variance is unchanged when adding an arbitrary constant, we finally obtain Eq. (4.25).
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