
Journal of Integrative Bioinformatics 2021; aop

Marcel Friedrichs*

BioDWH2: an automated graph-based data
warehouse and mapping tool
https://doi.org/10.1515/jib-2020-0033

Received October 12, 2020; accepted January 25, 2021; published online 22 2021

Abstract: Data integration plays a vital role in scientific research. In biomedical research, the OMICS fields
have shown the need for larger datasets, like proteomics, pharmacogenomics, and newer fields like foodomics.
As research projects require multiple data sources, mapping between these sources becomes necessary.
Utilized workflow systems and integration tools therefore need to process large amounts of heterogeneous
data formats, check for data source updates, and find suitable mapping methods to cross-reference entities
from different databases. This article presents BioDWH2, an open-source, graph-based data warehouse and
mapping tool, capable of helping researchers with these issues. A workspace centered approach allows
project-specific data source selections and Neo4j or GraphQL server tools enable quick access to the database
for analysis. The BioDWH2 tools are available to the scientific community at https://github.com/BioDWH2.

Keywords: data warehousing; database; graph database; pipeline; software tools.

1 Introduction

Most studies in life science research require data to conduct different kinds of analyses. With the inception
of the OMICS fields such as genomics, transcriptomics, and proteomics each required new, large databases
to capture their unique requirements. As the number and complexity of OMICS fields increases such as
pharmacogenomics, allergenomics, or Foodomics, the need for more databases and information increases
as well. Imker conducted a survey of published databases in the Nucleic Acids Research (NAR) database
issues and concluded that as of 2018, 1700 databases were covered in 25 years [1]. The 27th NAR issue from
2019 added 65 new resources and with updates and removals now count 1637 databases [2]. This number
only represents the NAR published databases and the total number of databases available online is likely
much higher. For the use-case of medical information systems, multiple OMICS levels are relevant in drug
therapy safety [3, 4]. Before, it was feasible to only make use of one major pharmacological database, such as
“ABDAMED” for the German healthcare market [5]. The growing opportunities of molecular information in
the clinical context [6, 7] necessitates the integration of more data sources of high quality from other OMICS
fields. This includes finding meaningful relationships between drugs, diseases, and their molecular bases
such as gene and protein variants, RNA regulation, and drug pathways. Examples would be the “PharmGKB”
[8], “DrugBank” [9], and “OMIM” [10] databases. The integration and mapping of this information could
provide an in-depth understanding of individual patient cases and reduce adverse drug reactions towards
personalized medicine.

This growth in OMICS fields and data sources necessitates research projects to have a reliable and easy
to use integration pipeline for data warehousing and information mapping. Additionally, data sources are

*Corresponding author: Marcel Friedrichs, Bielefeld University, Faculty of Technology, Bioinformatics/Medical Informatics
Department, Bielefeld, Germany, E-mail: mfriedrichs@techfak.uni-bielefeld.de. https://orcid.org/0000-0001-9846-7212

Open Access. ©2021 Marcel Friedrichs, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jib-2020-0033
https://github.com/BioDWH2
mailto:mfriedrichs@techfak.uni-bielefeld.de
https://orcid.org/0000-0001-9846-7212


2 | M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool

heterogeneous in format and availability and have a specific focus to which the format is tailored to. A uniform
integration process into a singular data format is therefore beneficial. Another issue is the loose coupling of
data sources. Identification systems and external references for entities are included in data sources but can’t
guarantee that the referenced data sources will not change. Strong mapping of entities in a data warehouse
by introducing a mapping layer and connecting entities from different data sources is another important step.
Bringing large amounts of data together helps researchers focus on the analyses they want to perform in one
place.

This article presents BioDWH2, an open-source, graph-based data warehouse and mapping tool, helping
researchers with data integration and mapping tasks. The goal is a simple setup and execution, and with as
little custom configuration as possible.

2 Related work

Data integration efforts can be twofold: either a complete integration platform is available for diverse research
projects and requirements, or a specific integration workflow is implemented just for one project without being
easily reused for other projects. Both have advantages and disadvantages. Project-specific workflows can be
fast and focused on requirements. In contrast, complete platforms need to handle a multitude of potential
needs. On the other hand, a complete platform may require less knowledge about the integration process
from the end-user who in turn can focus on the analyses needed.

Töpel et al. developed the original BioDWH tool for the integration of heterogeneous data sources into a
data warehouse [11]. The data sources are integrated into a relational database based on SQL and a simple
user interface can guide the user through setup and configuration. No mapping of information is provided as
only a simple data warehouse is generated. One important feature is the monitoring of data source updates
and consequently updated data integration. With the increasing and widespread use of graph databases
[12–14], using a relational database for large data warehouses may not be best suited anymore. Especially for
an additional mapping layer, the analysis of relational tables with joining queries will become very slow and
sometimes unfeasible [15]. While graph databases can outperform relational databases, they also provide the
opportunity to reveal novel relationships in heterogeneous data [12].

ONDEX/KnetBuilder is part of the larger KnetMiner ecosystem of data integration and analysis tools
which has grown significantly over the years [16]. Starting with gene regulatory networks, there are now
multiple public instances such as for plants and human diseases, and as an open-source tool can be
used by everybody. KnetMiner heavily relies on the Resource Description Framework (RDF) format for
graph representation. As RDF is very detailed in their descriptors it can sometimes be more cumber-
some to set up and Uniform Resource Identifiers (URI’s) for entities and properties may not be avail-
able and have to be created. On the other hand, the mapping between entities is simplified by the
uniqueness of entity URI’s. Configuration of the KnetBuilder tool can be more involved, as data source
parsers need special Extensible Markup Language (XML) configurations that describe attributes and format-
specific properties. Additionally, a workflow has to be created and configured for which files to be used
and more.

In contrast to BioDWH and KnetMiner, GenCoNet is a project-specific integration workflow for the analysis
of the molecular basis of comorbid diseases hypertension and asthma [17]. Specific data sources of high quality
were selected, filtered, and only relevant information integrated into a knowledge graph. The graph is hereby
kept small and creating analysis queries is easier, but the extension of the graph with new information as
the project continues is slower and requires more effort. Additionally, the database was constructed directly
in a Neo4j graph database (https://neo4j.com). While being easy, the workflow depends on the version and
continuation of the database system. While Neo4j is unlikely to go away soon, dependence on third party
system is always important to be aware of.

https://neo4j.com


M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool | 3

3 Implementation

BioDWH2 is implemented as a modular open-source Java program, that is easily extensible with new data
source modules. An existing installation of the Java Runtime Environment (JRE) 8 is required to run BioDWH2.

3.1 BioDWH2 workspace

The main concept for BioDWH2 is the workspace. Because different projects may require different data sources,
the workspace allows users to create physically separate data warehouse projects without interfering with
previous projects. Additionally, the workspace concept is built with a strict folder structure as visualized in
Listing 1. The root folder of the workspace contains a configuration file and a folder “sources” for the data.
Each data source resides in a separate folder structure containing the metadata file and a source folder for all
the raw data files. Graph files for each data source are generated in the respective data source folder and the
final merged and mapped graph files are generated in the “sources” folder.

Listing 1. Example of the workspace structure with data sources “PharmGKB” and “HGNC”.

The workspace is configured via a configuration file in JSON format as seen in Listing 2. Version and
creation date-time are properties generated by the tool on workspace creation. A version number for the
workspace is necessary, to ensure a workspace can be upgraded to newer versions on breaking changes in the
future. For end-users, the data source ids property is currently the most relevant one. This field defines which



4 | M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool

data sources will be integrated into this workspace project by their respective ID. In the example of Listing
2 the data sources “HGNC” [18] and “NDF-RT” [19] are used. Some data sources need additional information
to function properly. As an example, the “DrugBank” updater needs the user’s credentials to download the
database automatically which can be provided using the data source properties in the configuration file.

Listing 2. Example of the JSON encoded configuration file for a workspace.

Each data source in the workspace is generated with a metadata JSON file storing relevant status infor-
mation. An example for the “PharmGKB” data source is visualized in Listing 3. It contains the current version,
update timestamp, the source file names downloaded, and flags for each step of the data source processing
indicating whether the step was successful.

Listing 3. Example of the JSON encoded metadata file for the “PharmGKB” data source.

3.2 Architecture

BioDWH2 is designed with a modular architecture to be easily extensible and maintainable. An overview of
the architecture is visualized in Figure 1. The central component of the architecture is the BioDWH2-Core, used
as a dependency in all other components. BioDWH2-Main is the component referencing the core and all data
source modules and provides a simple command-line interface (CLI) for creating and maintaining workspaces.
The third component is the data source modules, representing the modular part of the architecture. Each data
source is implemented as a separate module, either bundled into the main program during compilation or
loaded from a jar file via the java classpath. The end-users interact with the BioDWH2 program via CLI and
therefore indirectly with the BioDWH2-Main component.

The BioDWH2-Core provides base classes and utility methods for the implementation of data source
modules. The development of new modules is therefore as easy as extending core classes and individually
implementing multiple methods for updating, parsing, exporting, and mapping. A set of IO utilities in the core
further simplify the implementation process, such as file format parsers for Open Biological and Biomedical
Ontology (OBO), XML, structure-data file (SDF), and more. The steps in which data sources are processed are
further outlined in the next section.



M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool | 5

Figure 1: Architecture of Bio-
DWH2 comprised of the core,
data source, and main modules.
BioDWH2-Neo4j-Server and Bio-
DWH2-GraphQL-Server are tools
for using BioDWH2 databases
with existing platforms such as
Neo4j.

3.3 Program flow

BioDWH2 has a defined program flow used for all workspace projects as visualized in Figure 2. For simplicity
the jar file in the following command line listings is called “BioDWH2.jar”. Available downloads of the jar are
versioned such as “BioDWH2-v0.1.7.jar”. First, a workspace has to be created at a provided location on the
user’s machine using the following command.

Figure 2: The program flow of BioDWH2 from the cre-
ation of a workspace to the final merged and mapped
graph database. When new data is available, the process
starts over at the update step.

After the required data sources have been configured in the workspaces “config.json”, either the
workspace can be updated, or the status can be checked. Checking the status of the workspace provides
detailed information on the configured data sources, whether they are up-to-date, the workspace version, the
newest version, and the time of the last update. The status can be checked with the following command and
the output is visualized in Figure 3.

Figure 3: Example output of the BioDWH2 status command.

Updating a workspace is split into multiple tasks, of which three are executed sequentially per data
source. Starting the update process is done using the following command:



6 | M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool

Figure 4: Example meta graph statistics for the ‘‘UNII’’ data source.

First, the data source checks whether a new version is available online and downloads it accordingly to
the data source’s “sources” directory. Next, a parser loads all relevant data from the sources which are then
used by the exporter. The exporter transforms the raw source data into an internal graph data structure of
nodes and edges. Nodes hereby represent entities such as “Drug” or “Gene” and edges their relationships
such as “targets” or “is associated with”. The graphs are then stored as intermediates in the data sources
directory in Graph markup language (GraphML) format [20]. GraphML was chosen for its simple structure and
widespread adoption and interoperability. Additionally, a meta graph for each data source graph is generated
and the statistics stored in the data sources directory as “meta-graph-statistics.txt”. An example for the “UNII”
[21] data source statistics is visualized in Figure 4. This statistics may help as a first overview of the generated
graph. Once all data source modules finished their tasks BioDWH2 collects all intermediate graphs. These are
then merged into one large graph which is again stored on disk in GraphML format in the workspace directory.
This merged graph already represents a first graph-based data warehouse of all the data sources. As for the
data sources, meta graph statistics are generated for the merged graph. Finally, the mapper uses the merged
graph and adds a meta-layer of nodes and edges connecting the various data sources where possible. The
mapping process is further described in the following section.

3.4 Data source mapping

Mapping data sources in a workspace is split into two parts. First, nodes are mapped by shared identifiers
and secondly, edge paths between nodes in each data source are mapped. The core mapping process works
without any knowledge of the individual data sources. Instead, data source specific implementations of the
“MappingDescriber” class tell the mapper which node labels and edge paths they can describe for their data
source. The mapper then uses these descriptions to add nodes and edges in a meta-layer. If multiple entities
from different data sources mapped to the same meta-node, these data sources are now interconnected. Nodes
that can be described are mapped as visualized in Figure 5. First, a new mapping node is created using the
identifiers and label as described by the “MappingDescriber” for a specific node. Then, other mapping nodes
with overlapping identifiers are collected and collapsed into a singular mapping node.

In the trivial case of length one, mapping edge paths would be handled the same as nodes. As a
requirement, the two nodes connected by an edge path need to be connected to mapping nodes. The edge can
then be mapped as a mapping edge between the two mapping nodes as visualized in Figure 6.

However, meaningful relationships between nodes may involve not only a singular edge but a path of
edges due to helper or annotation nodes needed for representing the data sources. Mapping singular edges
can therefore be seen as an edge path of length one. There is no hard limit on the path length, but longer paths
will in turn be more time consuming due to the number of requests on the graph database. The BioDWH2



M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool | 7

Figure 5: Steps of the node mapping process. (1) The data sources are merged into a single graph. (2) Mapping nodes are created
for the first data source and connected with their respective data source nodes. (3) The next data source is mapped resulting in
an identifier overlap between two mapping nodes. (4) The overlapping mapping nodes are merged into a singular node.

Figure 6: Trivial edge mapping between two mapped data source nodes.
(1) Two nodes gene and drug in blue from the same data source are
connected with a TARGETS edge. They both are connected to their
respective mapping node in grey. (2) A new edge with the mapped label
from the TARGETS edge is created between the mapping nodes.

mapper is handling this requirement by asking the data source’s “MappingDescriber” for paths that should be
mapped, as the data source modules should know which paths are important. Paths are hereby represented
by a list of labels starting with a node label and alternating between edge and node labels until finishing again
with a node label. An example for such a path is the NDF-RT “induces” relationship represented as [“Drug”,
“INDUCES”, “Disease”]. These paths are then searched for iteratively by the mapper in the graph. In this
example starting from all nodes with the “Drug” label, adjacent edges are searched for which have the label
“INDUCES” and are connected to nodes with the “Disease” label. For longer paths this process continues until
the full paths are found and the “MappingDescriber” is called to describe each of them. Finally, using this
description a new edge is created between the mapping nodes of the first and last node in the path, annotated
with the data source id from which it has been mapped. A path example of length two is visualized in Figure 7.
The type of mapped paths is up to the data source module developers and should be chosen with great care to
not alter the relationships meaning. A set of global relationship names are defined in the BioDWH2 core such
as “INDICATES”, “CONTRAINDICATES”, or “INDUCES”. However, any name can be provided to not hinder
the development of new data source modules with novel relationship types. The final mapped graph is stored
in GraphML format in the workspace directory together with the meta graph statistics.

In this first version of BioDWH2, the user has no direct control over the mapping process, which is
planned as a future development. In contrast to combining entities from different data sources, the generated

Figure 7: Path mapping of three data source nodes and two edges. (1) Two nodes variant and chemical in orange from the same
data source are both associated with a VariantDrugAnnotation node. They both are connected to their respective mapping node
in grey. The path of length two is matched and provided to the path mapping. (2) A new edge with the mapped label from the
ASSOCIATED_WITH edges is created between the mapping nodes.



8 | M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool

mapping layer is non-destructive of the original data sources. Therefore, the meaning of the data sources is
preserved. Another advantage could be the use of the mapping layer separate from the original data sources,
for example in an autocomplete field. The mapping layer provides the user with the ability of finding novel
relationships between previously disconnected entities and data sources. Finally, if multiple data sources
provide relationships between two entities the mapping layer represents them as multiple edges between the
respective mapping nodes. This may be used in finding significant relationships by consensus of different
data sources in the mapping layer. This does not replace an in-depth analysis of the relationships context and
parameters, but may provide a starting point for further analysis.

3.5 Data source implementations

Multiple data sources haven already been implemented. These include “HGNC” for genes, “UNII”,
“PharmGKB” and “NDF-RT” for pharmacological information, as well as “USDA-PLANTS” [22] for plant
species. More data source modules are in development such as the pharmacological databases “DrugCentral”
[23] and “DrugBank”. While these data sources are bundled with the BioDWH2 tool and new ones will be added
constantly, the development of new data source modules is also available to the end-users. An implementa-
tion guide is provided in the GitHub repositories documentation. Community implementations provided as
GitHub pull requests are welcome.

3.6 Database access

The main BioDWH2 tool provides integration and mapping, but no analysis capabilities. While analyses may
be performed on the mapped GraphML file directly, this may not be feasible for large databases. Therefore,
two additional tools are available for accessing the workspace data. The BioDWH2-Neo4j-Server allows for
the creation of a Neo4j graph database from the workspace database and running a Neo4j server and browser
which are embedded in the tool itself. No setup of a Neo4j server is needed and queries can be run using the
Cypher query language directly in the user’s web browser. This allows for a frictionless usage of BioDWH2
for users already familiar with the Neo4j ecosystem. An equivalent BioDWH2-GraphQL-Server is currently
in development, to provide a GraphQL (https://graphql.org) endpoint for analysis queries, which directly
operate on the workspace database. A complete overview of the data flow is visualized in Figure 8 with access
to the data using the aforementioned tools.

Figure 8: The complete overview of the BioDWH2 data flow from their heterogeneous sources, via the data source modules and
intermediate graphs, towards the merged and mapped graphs, and finally the access for analysis.

https://graphql.org


M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool | 9

4 Conclusion

The integration and mapping of heterogeneous data sources is an important first step affecting all subsequent
analyses for studies in scientific disciplines. The development of the BioDWH2 tool is intended to ease and
simplify this process for researchers and to be usable with limited to no programming skills. The hope is that
future research projects can focus more quickly on the analysis instead of integration problems using only
the specified data sources needed. As BioDWH2 provides distinct steps in the workflow, users have the option
to use it in different ways suitable for their needs. Using the final mapping layer of the data warehouse may
provide an easy starting point for analyses. For other users, the mapping layer may not be fitting. They still
have the option to use the merged data warehouse and develop their own mapping if needed at all. As a
third option users can utilize the BioDWH2 tool to transform data sources into a uniform graph file format.
This way they will not have to process the heterogeneous data formats themselves. These options provide the
opportunity for a broader user-base to incorporate BioDWH2 into their research projects.

The initial version of BioDWH2 provides robust graph data warehouse and mapping capabilities. However,
multiple future developments are planned. The basic analysis tools will be developed to further simplify
common analysis tasks and guide researches through the database. While simple meta graph statistics have
been implemented, in-depth schema definitions, visualizations, and protocols on how specific entities were
mapped need to be implemented and extended. Using the open and widely used GraphQL language will
further reduce the barrier of analyzing the resulting graph database. Another important future development
will be the possibility to configure certain identifier types as “non-destructive” meaning mapping nodes will
not be merged with these identifier types. This would prevent coarse identifier types to cluster mappings with
important distinctions.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: Authors state no conflict of interest. All authors have read the journal’s
Publication ethics and publication malpractice statement available at the journal’s website and hereby
confirm that they comply with all its parts applicable to the present scientific work.

References
1. Imker HJ. 25 Years of molecular biology databases: a study of proliferation, impact, and maintenance. Front Res Metrics

Anal 2018;3:18..
2. Rigden DJ, Fernández XM. The 27th annual Nucleic Acids Research database issue and molecular biology database

collection. Nucleic Acids Res 2019;48:D1−8..
3. Qian T, Zhu S, Hoshida Y. Use of big data in drug development for precision medicine: an update. Expert Rev Precis Med

Drug Dev 2019;4:189−200..
4. Kapoor R, Tan-Koi WC, Teo YY. Role of pharmacogenetics in public health and clinical health care: a SWOT analysis. Eur J

Hum Genet 2016;24:1651−7..
5. ABDATA Pharma-Daten-Service. ABDAMED; 2021. Available from: https://abdata.de/datenangebot/abdamed/ [Accessed

24 Jan 2021].
6. Krier JB, Kalia SS, Green RC. Genomic sequencing in clinical practice: applications, challenges, and opportunities.

Dialogues Clin Neurosci 2016;18:299−312..
7. Sanderson SC, Hill M, Patch C, Searle B, Lewis C, Chitty LS. Delivering genome sequencing in clinical practice: an interview

study with healthcare professionals involved in the 100000 Genomes Project. BMJ Open 2019;9:e029699..
8. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for

personalized medicine. Clin Pharmacol Ther 2012;92:414−17..
9. Wishart DS. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res

2006;34:D668−72..
10. Online Mendelian Inheritance in Man, OMIM®. Baltimore, MD, McKusick-Nathans Institute of Genetic Medicine, Johns

Hopkins University; 2021. Available from: https://omim.org [Accessed 24 Jan 2021].

https://abdata.de/datenangebot/abdamed/
https://omim.org


10 | M. Friedrichs: BioDWH2: an automated data warehouse and mapping tool

11. Töpel T, Kormeier B, Klassen A, Hofestädt R. BioDWH: a data warehouse kit for life science data integration. J Integr Bioinf
2008;5. https://doi.org/10.1515/jib-2008-93.

12. Yoon BH, Kim SK, Kim SY. Use of graph database for the integration of heterogeneous biological data. Genom Inf
2017;15:19..

13. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al. Reactome graph database: efficient access
to complex pathway data. PLoS Comput Biol 2018;14:e1005968..

14. Himmelstein DS, Baranzini SE. Heterogeneous network edge prediction: a data integration approach to prioritize
disease-associated genes. PLoS Comput Biol 2015;11:e1004259..

15. Lysenko A, Roznovăţ IA, Saqi M, Mazein A, Rawlings CJ, Auffray C. Representing and querying disease networks using
graph databases. BioData Min 2016;9:23..

16. Hassani-Pak K, Castellote M, Esch M, Hindle M, Lysenko A, Taubert J, et al. Developing integrated crop knowledge
networks to advance candidate gene discovery. Appl Transl Genom 2016;11:18−26..

17. Shoshi A, Hofestädt R, Zolotareva O, Friedrichs M, Maier A, Ivanisenko VA, et al. GenCoNet − a graph database for the
analysis of comorbidities by gene networks. J Integr Bioinf 2018;15. https://doi.org/10.1515/jib-2018-0049.

18. Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, et al. Genenames.org: the HGNC and VGNC resources in 2019.
Nucleic Acids Res 2018;47:D786−92..

19. NDF-RT Release Notes 2014. Available from: https://evs.nci.nih.gov/ftp1/NDF-RT/ReadMe.txt [Accessed 24 Jan 2021].
20. Brandes U, Eiglsperger M, Lerner J, Pich C. Graph markup language GraphML. In: Tamassia R, editor. Discrete mathematics

and its applications, Handbook of graph drawing visualization. Boca Raton: CRC Press; 2013:517−41 pp.
21. FDA Global Substance Registration System. Unique ingredient identifier (UNII); 2021. Available from: https://fdasis.nlm.

nih.gov/srs/ [Accessed 24 Jan 2021].
22. USDA, NRCS. The PLANTS database. Greensboro, NC 27401-4901 USA: National Plant Data Team; 2021. Available from:

http://plants.usda.gov [Accessed 24 Jan 2021].
23. Avram S, Bologa CG, Holmes J, Bocci G, Wilson TB, Nguyen DT, et al. DrugCentral 2021 supports drug discovery and

repositioning. Nucleic Acids Res 2020;49:D1160−9..

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/jib-2020-
0033).

https://doi.org/10.1515/jib-2008-93
https://doi.org/10.1515/jib-2018-0049
https://evs.nci.nih.gov/ftp1/NDF-RT/ReadMe.txt
https://fdasis.nlm.nih.gov/srs/
http://plants.usda.gov
https://doi.org/10.1515/jib-2020-0033
https://doi.org/10.1515/jib-2020-0033

	1 Introduction
	2 Related work
	3 Implementation
	3.1 BioDWH2 workspace
	3.2 Architecture
	3.3 Program flow
	3.4 Data source mapping
	3.5 Data source implementations
	3.6 Database access

	4 Conclusion

