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Homotopy type of the complex of free factors of a free group

Benjamin Brück and Radhika Gupta

Abstract

We show that the complex of free factors of a free group of rank n � 2 is homotopy equivalent
to a wedge of spheres of dimension n− 2. We also prove that for n � 2, the complement of
(unreduced) Outer space in the free splitting complex is homotopy equivalent to the complex
of free factor systems and moreover is (n− 2)-connected. In addition, we show that for every
non-trivial free factor system of a free group, the corresponding relative free splitting complex
is contractible.

1. Introduction

Let F be the free group of finite rank n. A free factor of F is a subgroup A such that F = A ∗B
for some subgroup B of F. Let [.] denote the conjugacy class of a subgroup of F. Define Fn to
be the partially ordered set (poset) of conjugacy classes of proper, non-trivial free factors of F

where [A] � [B] if for suitable representatives, one has A ⊆ B. We will call the order complex
(geometric realisation) of this poset the complex of free factors or free factor complex and
denote it also by Fn. Since a maximal nested chain of conjugacy classes of free factors has
length n− 2 (see Section 2 for the notational conventions we use), Fn is (n− 2)-dimensional.
Note that for n = 2, our definition differs from the usual one: commonly, two conjugacy classes
of free factors of F2 are connected by an edge in F2 if they have representatives that span a
basis. There is a natural action of the group of outer automorphisms of F, denoted Out(F),
on Fn. The geometry of this complex has been studied very well in recent years and it was
used to improve the understanding of Out(F). Most notably, Bestvina and Feighn in [2] showed
that Fn is Gromov-hyperbolic, in analogy to Masur–Minsky’s hyperbolicity result for the curve
complex of a surface [21]. In this paper, we investigate the topology of Fn. Our main result is
as follows:

Theorem A. For n � 2, the free factor complex Fn is homotopy equivalent to a countable
infinite wedge of spheres of dimension n− 2.

In [19], Hatcher and Vogtmann showed that the geometric realisation of the poset of proper
free factors in F is homotopy equivalent to a wedge of spheres of dimension n− 2. Note that
Hatcher and Vogtmann’s complex is different from the free factor complex Fn in that its vertices
are proper free factors and not conjugacy classes of proper free factors. Since Fn comes with
a natural action of Out(F) instead of Aut(F), the focus has shifted more towards this version
over the years.
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Motivation

The motivation for describing the homotopy type of this and similar factor complexes comes
from the analogy with the rational Tits building, Δ(n,Q), associated to SLn(Z). The definition
of these Out(F)-simplicial complexes is similar to Δ(n,Q). By the Solomon–Tits theorem ([25]),
the rational Tits building is homotopy equivalent to a wedge of spheres of dimension n− 2. In
[6], Borel and Serre used this to show that the dualising module of any torsion free finite index
subgroup Γ of SLn(Z) is H̃n−2(Δ(n,Q),Z) =: D, that is,

Hi(Γ,M) ∼= Hd−i(Γ,M ⊗D)

for any Γ-module M , for all i > 0, and d equal to the virtual cohomological dimension of
SLn(Z).

This relationship between SLn(Z) and Δ(n,Q) has been successfully extended to the mapping
class group of an orientable surface of genus g and p punctures MCG(Σg,p) and the associated
curve complex C(Σg,p). Harvey ([13]) defined the curve complex and showed that it can be
seen as a boundary structure of Teichmüller space. Harer ([14] for punctured surfaces) and
Ivanov ([20] for closed surfaces) showed that this complex is homotopy equivalent to a wedge
of spheres. As a consequence, the top-dimensional reduced homology of the curve complex is
the dualising module for the mapping class group.

The rational Tits building and the curve complex capture the asymptotic geometry of the
symmetric space for SLn(Z) and Teichmüller space for MCG(Σ), respectively. In this paper, we
also obtain some partial results about the asymptotic geometry of Culler–Vogtmann’s Outer
space CVn.

Asymptotic geometry of Outer space

Let CVn be Culler–Vogtmann’s Outer space and L be its spine. We denote by CVr
n reduced

Outer space which has spine K. Let FSn be the free splitting complex. For the definitions, see
Section 3. We view L,K and FSn as partially ordered sets and use the same notation for both
the poset and its order complex. As explained in Section 3, FSn is the simplicial completion of
CVn and L is a subposet of FSn. Analogously, there is a natural subposet FSr

n of FSn which
is the simplicial completion of CVr

n and contains K.
Before we state our next theorem, we consider another poset FFn (defined in [18]), whose

order complex is called the complex of free factor systems (also denoted by FFn). A free
factor system of F is a finite collection of the form A = {[A1], . . . , [Ak]}, where k > 0, each
Ai is a proper, non-trivial free factor of F, such that there exists a free factorisation F =
A1 ∗ · · · ∗Ak ∗ FN . There is a partial ordering � on the set of free factor systems given as
follows: A � A′ if for every [Ai] ∈ A there exists [A′

j ] ∈ A′ such that Ai ⊆ A′
j up to conjugation.

This poset of free factor systems is denoted by FFn. The poset Fn of free factors is a subposet of
FFn. In fact, Fn and FFn are quasi-isometric to each other by [18, Proposition 6.3]. However,
Theorem A and the following result show that they are not homotopy equivalent.

Theorem B. FSn \ L and FFn are homotopy equivalent. Moreover, for n � 2, they are
(n− 2)-connected.

In order to establish the homotopy equivalence FSn \ L � FFn, we are led to study relative
versions of the free splitting complex: Whenever one has a free splitting S of F, the set of
conjugacy classes of non-trivial vertex stabilisers forms a free factor system V(S). Now for a
free factor system A in F, the poset of free splittings of F relative to A, denoted FSn(A), is the
subposet of FSn consisting of all free splittings S ∈ FSn such that A � V(S). Its realisation is
the relative free splitting complex studied in [18]. Hatcher [15] showed that FSn is contractible.
We extend this result to the relative setting and show:
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Theorem C. For any free factor system A of F, the relative free splitting complex FSn(A)
is contractible.

In [7], Bux, Smillie and Vogtmann introduced an equivariant deformation retract of CVr
n

called jewel space, denoted by Jn. They showed that Jn is homeomorphic to the bordification
of Outer space defined by Bestvina and Feighn in [1] and asked what the homotopy type of
its boundary ∂Jn is. We mention the following result of Vogtmann to contrast the currently
known results about the connectivity of the simplicial boundaries of unreduced and reduced
Outer space and also because our methods for establishing Theorem A and Theorem B give
an alternate proof (albeit longer) of the (n− 3)-connectivity of FSr

n \K.

Theorem D (Vogtmann, Private Communication, 2018). FSr
n \K and ∂Jn are homotopy

equivalent. Moreover, for n � 3, they are (n− 3)-connected.

The partial results in Theorems B and D lead to the following question.

Question 1.1. What are the homotopy types of FSn \ L, FFn and FSr
n \K?

Unfortunately, we cannot answer this. The main difficulty we are faced with is that FFn

is (2n− 3)-dimensional [18, Proposition 6.1] and our method cannot be pushed to get higher
connectivity results or lower the dimension. Note that the curve complex of a closed surface
of genus g is (3g − 4)-dimensional but nevertheless it is homotopy equivalent to a wedge of
spheres of dimension 2g − 2. For further comments on this, see Section 8.3.

Methods of proof

Various methods have been used to determine the homotopy type of some of the complexes
mentioned in this introduction: shelling orders for Δ(n,Q), flow arguments for FSn, spectral
sequences for Hatcher–Vogtmann’s complex of free factors, and Morse theory for the curve
complex. In this paper, we view all our simplicial complexes as order complexes of posets and
use various Quillen type fibre lemmas (see Section 2 for details) to get the desired results. In
particular, the following poset version of the Vietoris–Begle theorem (see [12, Corollary 2.4])
is the main tool we use.

Lemma 2.1 [23, Propositions 1.6 and 7.6]. Let f : P → Q be a poset map.

(1) If for all x ∈ Q, the fibre f−1(Q�x) is contractible, then f induces a homotopy
equivalence on geometric realisations.

(2) If for all x ∈ Q, the fibre f−1(Q�x) is n-connected , then P is n-connected if and only
if Q is n-connected.

Paper outline

In Section 2, we set the notation for posets, state the various fibre lemmas and mention some
results from algebraic topology which will be used later. In Section 3, we define (un-) reduced
Culler–Vogtmann Outer space, its spine and the free splitting complex. We also explain the
relationship between these spaces. Section 4 can be read independently of the rest of the paper.
It establishes the homotopy type of posets of certain subgraphs of a fixed graph. In Section 5,
we show contractibility of the relative free splitting complexes (Theorem C). This result is used
in Section 6 to prove the homotopy equivalence of FSn \ L and FFn (the first statement of
Theorem B). Also in Section 6, we show that Fn is homotopy equivalent to the subposet of
FSn, denoted FS1, given by free splittings with exactly one non-trivial vertex group. Finally,
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in Section 7, we prove Theorem B, Theorem A and the second statement of Theorem D. We
close this article in Section 8 with some remarks concerning the complex of sphere systems and
relative versions of our results and give an illustration of our considerations in the case where
n = 2.

Proof outline for Theorem A

We now describe a brief outline for the proof of Theorem A, which also sheds some light on the
structure of the paper. See Section 7 for the detailed proof. We first establish in Proposition 6.1
that FS1 and Fn are homotopy equivalent. Consider the pair of posets (X,Y ) where X = L
and Y = FS1. In Section 7, we define a particular subposet Z of X × Y with projection maps
p1 : Z → X and p2 : Z → Y . We then show that the fibres of the map p2 (in the sense of
Lemma 2.1) are contractible and the fibres of p1 are given by posets of subgraphs which are
(n− 3)-connected. Applying Lemma 2.1 twice then gives us that FS1, equivalently Fn, is
(n− 3)-connected. Since Fn is (n− 2)-dimensional, we obtain the desired result.

For the proof of the second statement of Theorem B (respectively, Theorem D), we consider
the pair (X,Y ) = (L,FSn \ L) (respectively, (X,Y ) = (K,FSr

n \K)).

2. Preliminaries on poset topology

Let P = (P,�) be a poset (partially ordered set). If x ∈ P , the sets P�x and P�x are defined
by

P�x := {y ∈ P | y � x}, P�x := {y ∈ P | y � x}.

A chain of length l in P is a totally ordered subset x0 < x1 < . . . < xl. For each poset
P = (P,�), one has an associated simplicial complex Δ(P ) called the order complex of P .
Its vertices are the elements of P and higher dimensional simplices are given by the chains of
P . When we speak about the realisation of the poset P , we mean the geometric realisations of
its order complex and denote this space by ‖P‖ := ‖Δ(P )‖. With an abuse of notation, we will
attribute topological properties (for example, homotopy groups and connectivity properties)
to a poset when we mean that its realisation has these properties.

A map f : P → Q between two posets is called a poset map if x � y implies f(x) � f(y).
Such a poset map induces a simplicial map from Δ(P ) to Δ(Q) and hence a continuous map
on the realisations of the posets. It will be denoted by ‖f‖ or just by f if what is meant is
clear from the context.

The direct product P ×Q of two posets P and Q is the poset whose underlying set is the
Cartesian product {(p, q) | p ∈ P, q ∈ Q} and whose order relation is given by

(p, q) �P×Q (p′, q′) if p �P p′ and q �Q q′.

2.1. Fibre theorems

An important tool to study the topology of posets is given by so-called fibre lemmas comparing
the connectivity properties of posets P and Q by analysing the fibres of a poset map between
them. The first such fibre theorem appeared in [22, Theorem A] and is known as Quillen’s
fibre lemma. For this text, we need the following version of it:

Lemma 2.1 [23, Propositions 1.6 and 7.6]. Let f : P → Q be a poset map.

(1) If for all x ∈ Q, the fibre f−1(Q�x) is contractible, then f induces a homotopy
equivalence on geometric realisations.

(2) If for all x ∈ Q, the fibre f−1(Q�x) is n-connected , then P is n-connected if and only
if Q is n-connected.
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For a poset P = (P,�), let P op = (P,�op) be the poset defined by x �op y :⇔ y � x. Using
the fact that one has a natural identification Δ(P ) ∼= Δ(P op), one can draw the same conclusion
as in the last lemma if one shows that f−1(Q�x) is k-connected for all x ∈ Q.

Another result that we will frequently use is:

Lemma 2.2 [23]. If f, g : P → Q are poset maps such that f(x) � g(x) for all x ∈ P , then
they induce homotopic maps ‖f‖, ‖g‖ on geometric realisations. In particular, if f : P → P is
monotone, that is, f(x) � x for all x ∈ P or f(x) � x for all x ∈ P , then ‖f‖ is homotopic to
the identity.

Usually, the connectivity results one can obtain using fibre lemmas are bounded above by
the degree of connectivity of the fibre. The following lemma gives a sufficient condition for
obtaining a slightly better degree of connectivity. We will make use of it in Section 7.

Lemma 2.3. Let f : P → Q be a poset map where Q is (k + 1)-connected. Assume that
for all q ∈ Q, the fibre f−1(Q�q) is k-connected and the map g∗ : πk+1(f−1(Q�q)) → πk+1(P )
induced by the inclusion g : f−1(Q�q) ↪→ P is trivial. Then P is (k + 1)-connected.

Proof. Applying Lemma 2.1, one gets that P is k-connected.
We now show that πk+1(P ) also vanishes, which implies that P is in fact (k + 1)-connected.

Consider a map i : Sk+1 → ‖P‖ from the (k + 1)-sphere to P . Using simplicial approximation
(see, for example, [26, Chapter 3.4]) we can (after possibly precomposing with a homotopy)
assume that i is simplicial with respect to a simplicial structure τ on Sk+1. We wish to show
that i extends to a map î : Bk+2 → ‖P‖, where Bk+2 is the (k + 2)-ball and î|∂Bk+2 = i.

Consider the simplicial map h := f ◦ i : Sk+1 → ‖Q‖. Since Q is (k + 1)-connected, it extends
to a map ĥ : Bk+2 → ‖Q‖ such that ĥ|∂Bk+2 = h. Simplicial approximation applied to the pair
(Bk+2, Sk+1) allows us to assume that ĥ is simplicial with respect to a simplicial structure τ ′ on
Bk+2 such that τ ′ agrees with τ on ∂Bk+2 = Sk+1. For this, we might need to do barycentric
subdivision and replace i by a homotopic map again. We now show that ĥ lifts to a map
h̃ : Bk+2 → ‖P‖ such that h̃|∂Bk+2 = i by defining ĥ inductively on the simplices of τ ′.

We do induction on the skeleta of τ ′. To start, let v be a vertex of τ ′. If v ∈ τ , then h̃(v) :=
i(v); otherwise set h̃(v) to be any vertex in f−1(ĥ(v)). Now assume that for m � k + 1, the
map h̃ has been defined on the (m− 1)-skeleton such that h̃ restricts to i on τ and for every
(m− 1)-simplex σm−1 of τ ′, we have

h̃(σm−1) ⊆
∥∥f−1(Q�maxσm−1)

∥∥,
where maxσm−1 is the largest vertex in ĥ(σm−1). Let σm be an m-simplex of τ ′. Clearly, we
have maxσm � maxσm−1 for every (m− 1)-face σm−1 of σm. Hence, h̃(∂σm) ⊆ f−1(Q�maxσm

)
and by assumption, f−1(Q�maxσm

) is k-connected. Thus h̃ extends to σm such that h̃(σm) ⊆
f−1(Q�maxσm

). Finally, for a (k + 2)-simplex σ, we have h̃(∂σ) ⊆ f−1(Q�maxσ). Since the
image g∗(πk+1(f−1(Q�maxσ))) in πk+1(P ) is trivial, the map h̃ extends to σ. Thus we have
shown that P is (k + 1)-connected. �

2.2. The nerve of a covering

The nerve of a family of sets (Xi)i∈I is the simplicial complex N (Xi)i∈I that has vertex set I
and where a finite subset σ ⊆ I forms a simplex if and only if

⋂
i∈σ Xi = ∅. The Nerve Theorem

is another standard tool which exists in various versions. For simplicial complexes, it can be
stated as follows:
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Lemma 2.4 [3, Theorem 10.6]. Let X be a simplicial complex and (Xi)i∈I a family
of subcomplexes such that X =

⋃
i∈I Xi. Suppose that every non-empty finite intersection

Xi1 ∩ . . . ∩Xik is contractible. Then X is homotopy equivalent to the nerve N ((Xi)i∈I).

2.3. Alexander duality and the Whitehead theorem

Alexander duality allows one to compute homology groups of compact subspaces of spheres by
looking at the homology of their complement. We will need the following poset version of it
which is due to Stanley.

Lemma 2.5 [27; 30, Theorem 5.1.1]. Let P be a poset such that ‖P‖ is homeomorphic to
an n-sphere and let Q ⊂ P be a subposet. Then for all i, one has

H̃i(‖Q‖; Z) ∼= H̃n−i−1(‖P \Q‖; Z).

In order to deduce information about the homotopy type of a space from its homology
groups, we need a corollary of the theorems of Whitehead and Hurewicz.

Theorem 2.6 (Hurewicz theorem [16, Theorem 4.32]). If a space X is (n− 1)-connected,
n � 2, then H̃i(X) = 0 for all 0 < i < n and πn(X) is isomorphic to Hn(X).

Theorem 2.7 (Whitehead theorem, [16, Corollary 4.33]). A map f : X → Y between
simply-connected CW-complexes is a homotopy equivalence if f∗ : Hk(X) → Hk(Y ) is an
isomorphism for each k.

Corollary 2.8. Let X be a simply-connected CW-complex such that

H̃i(X) =

{
Zλ, i = n,

0, otherwise.

Then X is homotopy equivalent to a wedge of λ spheres of dimension n.

Proof. By the Hurewicz theorem, X is in fact (n− 1)-connected and πn(X) ∼= H̃n(X) = Zλ.
Now take a disjoint union

⊔
μ�λ Sμ of n-spheres. For each μ � λ, choose a generator Sμ → X of

the μth summand of πn(X). This gives rise to a map f : Y → X where Y is the space obtained
by wedging together the Sμ along their base points. This induces an isomorphism f∗ on all
homology groups, so the claim follows from the Whitehead theorem. �

Remark 2.9. A CW complex is n-spherical if it is homotopy equivalent to a wedge of n-
spheres. By the preceding theorems, an n-dimensional complex X is n-spherical if and only if
πi(X) is trivial for all i < n.

3. Outer space and its relatives

Throughout this section, let F be a free group of finite rank n � 2.

3.1. Outer space, its spine and the free splitting complex

Identify F with π1(R, ∗) where R is a rose with n petals. A marked graph G is a graph of rank n
equipped with a homotopy equivalence m : R → G called a marking. The marking determines
an identification of F with π1(G,m(∗)).

(Unreduced) Culler–Vogtmann Outer space CVn, defined in [9], is the space of equivalence
classes of marked metric graphs G of volume one such that every vertex of G has valence at
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least three. Outer space can be decomposed into a disjoint union of open simplices, where the
missing faces are thought of as ‘sitting at infinity’. There is a natural simplicial completion
obtained by adding the missing faces at infinity. The subspace of this completion consisting of
all the open faces sitting at infinity is called the simplicial boundary ∂sCVn of Outer space.

A free splitting S of F is a non-trivial, minimal, simplicial F-tree with trivial edge stabilisers.
The vertex group system of a free splitting S is the (finite) set of conjugacy classes of its vertex
stabilisers. Two free splittings S and S′ are equivalent if they are equivariantly isomorphic. We
say that S′ collapses to S if there is a collapse map S′ → S which collapses an F-invariant set
of edges. The poset of free splittings FSn is given by the set of all equivalence classes of free
splittings of F where S � S′ if S′ collapses to S. The free splitting complex is the order complex
Δ(FSn) of the poset of free splittings. Outer space naturally embeds as a subspace of ‖FSn‖.
In fact, the free splitting complex is naturally identified with the barycentric subdivision of
the simplicial completion of CVn. Each free splitting S can equivalently be seen as a graph of
groups decomposition of F with trivial edge groups by taking the quotient S/F. We will often
adopt this point of view in later sections without further notice.

The spine L of CVn is given by the subposet of FSn consisting of all free splittings that have
trivial vertex stabilisers. We can interpret ‖L‖ as a subspace of CVn. It consists of all marked
metric graphs G satisfying the following property: the subgraph spanned by the set of all edges
of G not having maximal length forms a forest. In [9], Culler and Vogtmann showed that L is a
contractible deformation retract of CVn. By the definitions above, we have a homeomorphism

∂sCVn
∼= ‖FSn \ L‖.

An edge e of a graph G is called a separating edge if removing it from G results in a
disconnected graph. The subspace of CVn consisting of all marked graphs that do not contain
separating edges is called reduced Outer space, denoted CVr

n. It is an equivariant deformation
retract of CVn. Similarly to the unreduced cased, there is a poset K such that CVr

n retracts to
‖K‖. It is the subposet of L consisting of all marked graphs having no separating edges and is
called the spine (of reduced Outer space).

The barycentric subdivision of the simplicial closure of reduced Outer space is given by the
order complex (see Section 2) of the poset FSr

n consisting of all those free splittings S ∈ FSn

such that the quotient S/F does not have any separating edges. Just as in the unreduced case,
we have

∂sCVr
n
∼= ‖FSr

n \K‖.

3.2. Relative Outer space and its spine

In [11], Guirardel and Levitt define relative Outer space for a countable group that splits
as a free product G = G1 ∗ . . . ∗Gk ∗ FN where N + k � 2. They also prove contractibil-
ity of relative Outer space. We will later on consider the case where G = F splits as
F = A1 ∗ . . . ∗Ak ∗ FN for k > 0. Let A = {[A1], . . . , [Ak]} be the associated free factor system
of F.

Subgroups of F that are conjugate into a free factor in A are called peripheral subgroups.
An (F,A)-tree is an R-tree with an isometric action of F, in which every peripheral subgroup
fixes a unique point. Two (F,A)-trees are equivalent if there exists an F-equivariant isometry
between them. A Grushko (F,A)-graph is the quotient by F of a minimal, simplicial metric
(F,A)-tree, whose set of point stabilisers is the free factor system A and edge stabilisers are
trivial. Relative Outer space is the space of homothety classes of equivalence classes of Grushko
(F,A)-graphs. The spine of relative Outer space, denoted by L(F,A), is the subposet of FSn

consisting of all free splittings whose system of vertex stabilisers is given by A. Its realisation
can be seen as a subspace of relative Outer space. Since relative Outer space deformation
retracts onto its spine, L(F,A) is contractible.
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4. Posets of graphs

In this section, we study (finite) posets of subgraphs of a given graph G. For the combinatorial
arguments we use, let us set up the following notation:

In what follows, all graphs are assumed to be finite. They are allowed to have loops and
multiple edges. For a graph G, we denote the set of its vertices by V (G) and the set of its
edges by E(G). If e ∈ E(G) is an edge, then G− e is defined to be the graph obtained from
G by removing e and G/e is obtained by collapsing e and identifying its two endpoints to a
new vertex ve. A graph is called a tree if it is contractible. It is called a forest if it is a disjoint
union of trees.

Throughout this section, we will only care about edge-induced subgraphs, that is, when we
talk about a ‘subgraph H of G’, we will always assume that H is possibly disconnected but
does not contain any isolated vertices. Hence, we can interpret any subgraph of G as a subset
of E(G).

Definition 4.1. A core subgraph H of a graph G is a proper subgraph such that the
fundamental group of each connected component of H is non-trivial and no vertex of H has
valence one in H. Every graph G contains a unique maximal core subgraph that we will refer
to as the core of G, denoted by G̊.

Note that, in contrast to the convention introduced in [1], our core subgraphs are allowed to
have separating edges.

4.1. The poset of all core subgraphs

Definition 4.2. Let G be a graph. We define the following posets of subgraphs of G; all of
them are ordered by inclusion.

(1) Sub(G) is the poset of all proper subgraphs of G that are non-empty. Equivalently,
Sub(G) can be seen as the poset of all proper, non-empty subsets of E(G).

(2) For(G) denotes the poset of all proper, non-empty subgraphs of G that are forests.
(3) X(G) is defined to be the poset of proper subgraphs of G that are non-empty and where

at least one connected component has non-trivial fundamental group.
(4) C(G) is the poset of all proper core subgraphs of G.

Clearly one has

C(G) ⊆ X(G) ⊆ Sub(G)

and

X(G) = Sub(G) \ For(G).

Examples of the realisation of X(G) can be found in the Appendix, see Figure 3.
The proof of the following lemma is fairly standard and we will use the argument several

times throughout this article. For the sake of completeness, here we will spell it out once.

Lemma 4.3. X(G) deformation retracts to C(G).

Proof. Every subgraph H ∈ X(G) contains a unique maximal core subgraph H̊ and if H1 ⊆
H2, one has H̊1 ⊆ H̊2. Hence, sending each H to this core subgraph H̊ defines a poset map
f : X(G) → C(G) restricting to the identity on C(G). Let ι denote the inclusion C(G) ↪→ X(G).
Then the composition ι ◦ f : X(G) → X(G) clearly satisfies ι ◦ f(H) � H for all H ∈ X(G)
which by Lemma 2.2 implies that it is homotopic to the identity. As ι ◦ f |C(G) ≡ id, this finishes
the proof. �
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Figure 1. Simple connectedness of X(G).

Proposition 4.4. Let G be a finite connected graph whose fundamental group has rank
n � 2 and assume that every vertex of G has valence at least 3. Then X(G) is contractible
if and only if G has a separating edge. If G does not have a separating edge, then X(G) is
homotopy equivalent to a wedge of spheres of dimension n− 2.

Proof. Note that Sub(G) can be seen as the poset of all proper faces of a simplex with
vertex set E(G). Hence, its realisation ‖Sub(G)‖ is homeomorphic to a sphere of dimension
|E(G)| − 2.

By [28, Proposition 2.2], the poset For(G) is contractible if and only if G has a separating
edge and is homotopy equivalent to a wedge of (|V (G)| − 2)-spheres if it does not contain a
separating edge. We want to use Alexander duality as stated in Lemma 2.5 to describe the
homology groups of X(G) = Sub(G) \ For(G).

If G has a separating edge, it immediately follows from Alexander duality that all reduced
homology groups of X(G) vanish. If on the other hand G does not have a separating edge, then
the only non-trivial homology group of X(G) appears in dimension

(|E(G)| − 2) − 1 − (|V (G)| − 2) = n− 2,

where it is given by a direct sum of copies of Z.
We next want to show that for n � 4, the realisation of X(G) is simply-connected in order

to apply the Whitehead theorem.
Denote by Sub(G)(k) the subposet of Sub(G) given by those subgraphs having precisely

(|E(G)| − k) edges. As n � 4, removing at most three edges from G results in a graph with non-
trivial fundamental group. Hence, we have Sub(G)(k) ⊂ X(G) for k = 1, 2, 3. The realisation
of

Sub(G)(�3) := Sub(G)(1) ∪ Sub(G)(2) ∪ Sub(G)(3)

forms a subspace of ‖X(G)‖ that is homeomorphic to the 2-skeleton of an (|E(G)| − 2)-simplex.
In particular, it is simply-connected.

Now let ρ be a closed edge path in ‖X(G)‖ given by the sequence of vertices (H =
H1, H2, . . . , Hk = H). We want to show that it can be homotoped to a path in ‖Sub(G)(1) ∪
Sub(G)(2)‖. Whenever we have an edge (Hi−1 ⊂ Hi) such that Hi has at least two edges less
than G, there is a subgraph H ′

i ∈ Sub(G)(1) containing Hi. As the chain (Hi−1 ⊂ Hi ⊂ H ′
i)

forms a simplex in X(G), we can replace the segment (Hi−1, Hi) by (Hi−1, H
′
i, Hi) and hence

assume that every second vertex crossed by ρ lies in Sub(G)(1) (see the left-hand side of
Figure 1). Next take a segment (Hi−1 ⊃ Hi ⊂ Hi+1) where Hi−1 = E(G) \ {x} and Hi+1 =
E(G) \ {y} lie in Sub(G)(1). In this situation, the two chains (Hi ⊆ E(G) \ {x, y} ⊂ Hi−1) and
(Hi ⊆ E(G) \ {x, y} ⊂ Hi+1) form simplices contained in X(G). It follows that we can perform
a homotopy in order to replace (Hi−1 ⊃ Hi ⊂ Hi+1) by (Hi−1 ⊃ E(G) \ {x, y} ⊂ Hi+1).

This argument shows that every closed path can be homotoped to a path that lies in
‖Sub(G)(�3)‖. As this is a simply-connected subset of ‖X(G)‖, it follows that X(G) itself
is simply-connected for n � 4. Applying Corollary 2.8 yields the result.
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The only cases that remain are those where n = 2 or 3. However, as we assumed that every
vertex of G has valence at least 3, there are only finitely many such graphs. Using Lemma 4.3,
it is not hard to verify the claim using a case-by-case analysis. For completeness, the proof for
n = 3 can be found in the Appendix. �

Remark 4.5. Assuming that each vertex of G has valence at least 3 does not impose any
restrictions for the considerations in this article as every graph in Outer space satisfies this
condition. However, note that we only used this assumption in the case where n = 2 or 3 and
there it only shortened the argument and could easily be dropped.

4.2. The poset of connected core subgraphs

Definition 4.6. For a graph G, we define cX(G) to be the poset of all proper connected
subgraphs of G that are not trees

cX(G) = {H subgraph of G | G = H connected, π1(H) = {1}}

ordered by inclusion. Let cC(G) by the poset of all proper connected core subgraphs of G.

Later on, we will be interested in the homotopy type of cC(G) as it occurs as the fibre of
a map we will use to study higher connectivity of Fn. However, it is easier to describe the
structure of cX(G), so we set up the following Lemma.

Lemma 4.7. cX(G) deformation retracts to cC(G).

Proof. As we allow our core subgraphs to have separating edges, the unique maximal core
subgraph H̊ contained in a connected non-tree subgraph H is connected as well. Hence, sending
H to H̊ defines a monotone poset map cX(G) → cC(G). Using Lemma 2.2 as in the proof of
Lemma 4.3, the claim follows. �

Definition 4.8 (Valence-2-homotopy). Let G be a finite connected graph and v ∈ V (G) be
a vertex of valence two with adjacent edges e1 = e2. We define Gv to be the graph obtained
from G by replacing the segment e1ve2 by a new edge ev; that is,

V (Gv) = V (G) \ {v}, E(Gv) = {ev} ∪ E(G) \ {e1, e2}

and ev connects the endpoints of e1 and e2 that are not equal to v.

The graphs we want to study have no vertices of valence smaller than 3. In order to preserve
this property throughout the induction procedure used in the proof of Proposition 4.10, we
need the following:

Lemma 4.9. Let G be as in Definition 4.8. Then ‖ cX(G)‖ � ‖ cX(Gv)‖.

Proof. Define poset maps φ : cX(G) → cX(Gv) and ψ : cX(Gv) → cX(G) as follows:

φ(H) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H \ {e1} , e1 ∈ H, e2 ∈ H,

H \ {e2} , e1 ∈ H, e2 ∈ H,

{ev} ∪H \ {e1, e2} , e1 ∈ H and e2 ∈ H,

H , else.

ψ(K) :=

{
{e1, e2} ∪K \ {ev} , ev ∈ K,

K , else.
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By definition, one has ψ ◦ φ(H) ⊆ H and φ ◦ ψ(K) = K, hence by Lemma 2.2, the maps φ and
ψ induce inverse homotopy equivalences on geometric realisations. �

Proposition 4.10. Let G be a finite connected graph whose fundamental group has rank
n � 2 and assume that every vertex of G has valence at least 3. Then ‖ cX(G)‖ is homotopy
equivalent to a wedge of (n− 2)-spheres.

Proof. We do induction on n. If n = 2, there are exactly three graphs having only vertices
of valence at least 3. It is easy to check that for all of them, the poset of proper connected core
subgraphs is a disjoint union of two or three points, that is, a wedge of 0-spheres. Now assume
G is a graph whose fundamental group has rank n > 2. If every edge of G is a loop, G is a rose
with n petals and every proper non-empty subset of E(G) is an element of cX(G). Hence, the
order complex of cX(G) is given by the set of all proper faces of a simplex of dimension n− 1
whose vertices are in one-to-one correspondence with the edges of G.

Now assume that G has an edge e that is not a loop. Whenever H ∈ cX(G), the set H \ {e}
can be seen as a connected non-tree subgraph of G/e. If H is not equal to G− e, then H \ {e}
is a proper subgraph of G/e. Consequently, we get a poset map

φ : cX(G) \ {G− e} → cX(G/e)

H �→ H \ {e}.

On the other hand, if we take a subgraph K ∈ cX(G/e) that contains the vertex ve to which
e was collapsed, it is easy to see that K ∪ {e} is an element of cX(G) \ {G− e}. This way, we
can define a poset map

ψ : cX(G/e) → cX(G) \ {G− e}

K �→
{
K ∪ {e} , ve ∈ V (K),
K , else.

One has ψ ◦ φ(H) ⊇ H and φ ◦ ψ(K) = K, so using Lemma 2.2, the realisations of these two
posets are homotopy equivalent.

When e is a separating edge, the graph G− e is not connected so in particular not an element
of cX(G). It follows that ‖ cX(G)‖ is homotopy equivalent to ‖ cX(G/e)‖. As G/e has one edge
less than G and every vertex in G/e has valence at least 3, we can apply induction.

If on the other hand e is not a separating edge, G− e is a connected graph having the same
number of vertices as G and one edge less. This implies rk(π1(G− e)) = n− 1. After possibly
applying Lemma 4.9, we may assume that each vertex in G− e has valence at least 3.

‖ cX(G)‖ is obtained from ‖ cX(G) \ {G− e}‖ by attaching the star of G− e along its
link. The link of G− e in ‖ cX(G)‖ is naturally isomorphic to ‖ cX(G− e)‖ which is by
induction homotopy equivalent to a wedge of (n− 3)-spheres. The star of a vertex is always
contractible and gluing a contractible set to an (n− 2)-spherical complex along an (n− 3)-
spherical subcomplex results in an (n− 2)-spherical complex, so the claim follows (see, for
example, [7, Lemma 6.2]). �

5. Contractibility of relative free splitting complexes

Throughout this section, let n � 2. For a free splitting S, let V(S) denote its vertex group
system. Given a free factor system A in F, the poset of free splittings of F relative to A, denoted
FSn(A), is the subposet of FSn consisting of all free splittings S ∈ FSn such that A � V(S).
Its realisation is the relative free splitting complex studied in [18], where the authors showed
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that it is non-empty, connected and hyperbolic. For a proper free factor A in F, let FS1
n([A])

be the subposet of FSn([A]) consisting of all free splittings having exactly one non-trivial
vertex group [B] � [A]. The aim of this section is to show that both FSn(A) and FS1([A]) are
contractible (Theorem 5.1 and Theorem 5.8).

The geometric realisation of FSn(A), denoted ‖FSn(A)‖, can also be described as the
simplicial closure of relative Outer space for A, as defined in [11]. We view the relative Outer
space of A as a projectivised deformation space PD and use results of [10, 11] to obtain
contractibility of FSn(A). We also use this technique to prove contractibility of another family
of subcomplexes defined in Section 5.3 as a step to prove Theorem 5.8. We now briefly recall
the set up and outline for proving contractibility of deformation spaces à la Skora. We refer
the reader to [8, 10, 11] for details.

5.1. Contractibility à la Skora

Let T be the set of all non-trivial minimal metric simplicial F-trees. It can be given two
different types of topologies, the Gromov–Hausdorff topology and the weak topology. Let D
be unprojectivised relative Outer space for A. Then D is a subset of T and can also be given
the two topologies. We denote by D̄ the closure of D in the space of non-trivial minimal R-
trees with action of F, equipped with the Gromov–Hausdorff topology. In what follows, we will
change views between these spaces and their projectivised versions. This is justified by the fact
that in both the Gromov–Hausdorff and the weak topology, T is homeomorphic to PT × R,
which allows to transfer results from one setting to the other (see the comments in [10, p.
152]).

In [10, Theorem 6.1], it is shown that D̄ with the Gromov–Hausdorff topology is contractible.
The key technique for proving contractibility is Skora’s idea of deforming morphisms between
metric trees: For T, T ′ ∈ T , a map f : T ′ → T is called a morphism if it is F-equivariant and
every edge of T ′ can be written as a finite union of subsegments, each of which is mapped
bijectively onto a segment in T . Given a morphism f : T0 → T , there is a canonical way of
constructing intermediate trees Tt for 0 � t � ∞ with T∞ = T (see [11, 24]). The tree Tt

depends continuously on f and t in the Gromov–Hausdorff topology. There exist morphisms
φt : T0 → Tt and ψt : Tt → T with ψt ◦ φt = f . In particular, this implies that if T0 and T are
in D, then so is Tt.

In order to prove contractibility of PD̄, Guirardel–Levitt define a map ρ : D̄ × [0,∞] → D̄
as follows: Fix T0 ∈ D with a minimal number of edge orbits — this means that every vertex
has non-trivial stabiliser — and let C0 be the closed simplex in D̄ containing T0. Then C0 is
contractible. They associate to T ∈ D̄ a morphism fT : T0(T ) → T , where T0(T ) is a metric
tree in C0. Skora’s deformation provides intermediate trees Tt(T ). Set ρ(T, t) := Tt(T ). Then
ρ(T,∞) = T and ρ(D̄ × {0}) ⊆ C0. Guirardel–Levitt show that under the choices they make,
ρ is continuous with respect to the Gromov–Hausdorff topology.

5.2. Contractibility of FSn(A)

The relative free splitting complex ‖FSn(A)‖ can be seen as a subset of PT . The usual
simplicial topology on ‖FSn(A)‖ agrees with the subspace topology it inherits from PT ,
equipped with the weak topology. This weak topology on ‖FSn(A)‖ restricts to the weak
topology on PD.

To prove that FSn(A) is contractible, we now show that ρ restricts to a map on ‖FSn(A)‖
and that the restriction is continuous in the weak topology.

Theorem 5.1. Let n � 2. For all free factor systems A in F, the poset of free splittings
FSn(A) of F relative to A is contractible.



HOMOTOPY TYPE OF THE COMPLEX OF FREE FACTORS OF A FREE GROUP 1749

↪→
↪→

a

b c

a

b cc

a

b

b

a

GB1|G B2|G G↪→ ↪→

Figure 2. Examples of B|G for G ∈ L. Here F3 = 〈a, b, c〉, B1 = 〈abc〉 and B2 = 〈a, b〉.

Proof. Up to projectivising, FSn(A) is a subset of D̄. Let ρ : ‖FSn(A)‖ × [0,∞] → D̄ be
the restriction of the map defined in [10]. We will show that the image of ρ is contained in
‖FSn(A)‖ and that the map is continuous with respect to the weak topology on ‖FSn(A)‖.
The weak topology agrees with the simplicial topology on ‖FSn(A)‖, so it is sufficient to prove
the continuity of the restrictions ρσ : σ × [0,∞] → ‖FSn(A)‖, where σ is a closed simplex of
‖FSn(A)‖.

We first show that for T ∈ ‖FSn(A)‖, the intermediate trees Tt(T ) are also in ‖FSn(A)‖.
Let fT : T0(T ) → T be the morphism between T0(T ), T ∈ ‖FSn(A)‖ as defined in [10]. We have
morphisms φt : T0(T ) → Tt and ψt : Tt → T with ψt ◦ φt = fT , so [11, Lemma 4.3] implies that
Tt(T ) is a simplicial tree. Since φt is a morphism, in particular equivariant, we have that
A � V(Tt(T )). Since ψt is also a morphism and T has trivial edge stabilisers, the same is true
for Tt(T ). Therefore, Tt(T ) ∈ ‖FSn(A)‖.

Another consequence of [11, Lemma 4.3] is that there are only finitely many possibilities
for the intermediate tree Tt(T ), up to equivariant homeomorphism. This implies that for any
closed simplex σ in ‖FSn(A)‖, the set of intermediate trees Tt(T ) = ρ(T, t), for t � 0 and
T ∈ σ is contained in a finite union of simplices of ‖FSn(A)‖. On any finite union of simplices
in ‖FSn(A)‖, a set is open with respect to the Gromov–Hausdorff topology if and only if it is
open with respect to the weak topology (see [10, Proposition 5.2] and the remark below it).
Hence, the continuity of ρσ with respect to the weak topology on ‖FSn(A)‖ follows from the
fact that ρσ is continuous in the Gromov–Hausdorff topology ([10, Corollary 6.3] applied to
‖FSn(A)‖). �

5.3. Contractibility of FS1([A])

A similar argument as in the proof of Theorem 5.1 does not quite work to prove contractibility
of FS1([A]) (see Remark 5.7). Instead, in this section we write FS1([A]) as a union of subposets
X(A,A1, . . . , Am : F), defined below, each of which is contractible. We then use the nerve of
this covering to prove contractibility of FS1([A]).

Let G be a graph in L, the spine of CVn, and B a finitely generated subgroup of F.

Definition 5.2 (B|G). In [2], Bestvina and Feighn define B|G to be the core of the covering
space of G corresponding to [B]. There is a canonical immersion from B|G into G which
gives B|G a marking. We say G has a subgraph with fundamental group B if B|G ↪→ G is
an embedding.

For example, take G to be a rose with three petals and labels a, b, c. Consider the subgroups
B1 = 〈abc〉 and B2 = 〈a, b〉 of F3 = 〈a, b, c〉. Then B2|G ↪→ G is an embedding and we say G
has a subgraph with fundamental group B2. But B1|G ↪→ G is an immersion that is not an
embedding. See Figure 2.

We extend the above definition to any free splitting S ∈ FSn.
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Figure 3. Examples of B|S for S ∈ FSn. Here F7 = 〈a, b, c, d, e, f〉, B1 = 〈d, a, b〉, B2 = 〈d, c〉
and B3 = 〈d, f〉.

Definition 5.3 (B|S). Let B be a proper free factor of F such that for every V ∈ V(S),
the intersection [B] ∩ V is either trivial or equal to V . Consider a blow-up Ŝ ∈ L of S obtained
by blowing up all the vertex groups of S to roses. Then there is an immersion B|Ŝ ↪→ Ŝ. We
say S has a subgraph with fundamental group B or B|S is a subgraph of S if B|Ŝ ↪→ Ŝ is an
embedding for (some such) Ŝ ∈ L. Define B|S to be the graph obtained by collapsing in B|Ŝ
the roses corresponding to each V ∈ V(S) contained in [B].

In order to see that B|S is well defined, consider two splittings Ŝ and Ŝ′ defined as in
Definition 5.3. Such splittings can only differ in the roses corresponding to the vertex stabilisers
of S. Thus collapsing the roses for V ∈ V(S) in B|Ŝ and B|Ŝ′ yields the same graph B|S. See
Figure 3 for some examples of B|S.

Definition 5.4. For a chain of free factors of F given by A⊂A1 ⊂ . . . ⊂Al ⊂B0 ⊂ . . .⊂Bm:

• let X(A : B0, . . . , Bm) be the poset of all free splittings S such that V(S) is equal to [A]
and Bi|S is a subgraph of S for every 0 � i � m;

• let X(A,A1, . . . , Al : B0, . . . , Bm) be the poset of all free splittings S such that one has
V(S) ∈ {[A], [A0], . . . , [Al]} and Bi|S is a subgraph of S for every 0 � i � m.

Lemma 5.5. X(A : B0, . . . , Bm) is contractible.

Proof. Since ‖X(A : B0, . . . , Bm)‖ is a subcomplex of PD, the projectivised Outer space
relative to [A], we can consider the restriction ρ : ‖X(A : B0, . . . , Bm)‖ × [0,∞] → PD of the
map ρ defined in Section 5.1. Let T0 ∈ X(A : B0, . . . , Bm) be a tree with minimal number of
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edge orbits. For any T ∈ X(A : B0, . . . , Bm), let fT : T0(T ) → T be the morphism as defined
in [11]. As in the proof of Theorem 5.1, we only need to show that the intermediate trees
Tt(T ) are also in X(A : B0, . . . , Bm). For 0 � i � m, both T0(T ) and T have a subgraph with
fundamental group Bi. By equivariance, the morphism fT restricts to a morphism between the
lifts of Bi|T0(T ) in T0(T ) and Bi|T in T . The map fT folds paths in T0(T ) that have the same
image in T . By definition, Tt(T ) is obtained by performing only folds of paths up to length t
(see [11, Section 3.1]). As fT maps Bi|T0(T ) to Bi|T , it follows that Tt(T ) also has a subgraph
with fundamental group Bi. Thus Tt(T ) ∈ X(A : B0, . . . , Bm). �

Lemma 5.6. X(A,A1, . . . , Al:B0, . . . , Bm) is contractible. In particular, X(A,A1, . . . , Al:F)
is contractible.

Proof. The proof is by induction on l. By Lemma 5.5, the claim holds true for all m if l = 0.
Now assume that it holds true up to l − 1.

Then in particular, the posets

Xl−1 := X(A,A1, . . . , Al−1 : B0, . . . , Bm), Xl−1,l := X(A,A1, . . . , Al−1 : Al, B0, . . . , Bm)

and Xl := X(Al : B0, . . . , Bm)

are contractible. By definition Xl−1,l is the subposet of Xl−1 consisting of all those S ∈ Xl−1

that collapse to some free splitting in Xl. For each such S ∈ Xl−1, there is a unique maximal
splitting S′ ∈ Xl, on which S collapses, namely the subgraph S′ = S/(Al|S) obtained by
collapsing Al|S. Hence, the map

Xl ∪Xl−1,l → Xl

S �→
{
S′, S ∈ Xl−1,l,

S, S ∈ Xl,

induces a deformation retraction ‖Xl−1,l ∪Xl‖ → ‖Xl‖.
It follows that ‖X(A,A1, . . . , Al : B0, . . . , Bm)‖ = ‖Xl−1 ∪Xl‖ is obtained by gluing

together ‖Xl−1‖ and ‖Xl‖ along ‖Xl−1,l‖. Now ‖Xl−1‖, ‖Xl−1,l‖ and ‖Xl‖ are contractible
by assumption, whence the claim follows. �

Remark 5.7. We would like to remark that Lemma 5.6 cannot be proved using Skora
paths as was done in the proof of Lemma 5.5. It is possible to construct Skora paths between
T0, T ∈ X(A,A1 : F) such that there exists an intermediate tree Tt with V(Tt) /∈ {[A], [A1]}.
For the same reason, Skora paths are not useful to show contractibilty of FS1([A]) directly.

We are now ready to prove that FS1([A]) is contractible.

Theorem 5.8. Let n � 2. For all proper free factors A in F, the poset FS1
n([A]) consisting

of all free splittings having exactly one non-trivial vertex group [B] � [A] is contractible.

Proof. Each simplex σ in the order complex Δ(FS1(A)) is of the form S0 → . . . → Sk where
each Si is a free splitting of F collapsing to Si+1. Furthermore, the vertex group systems of these
free splittings form a chain V(S0) � . . . � V(Sk) of free factor systems such that [A] � V(Si)
for all i. It follows that σ is contained in Δ(X(A,V(S0), . . . ,V(Sk) : F)). Hence the realisation
‖FS1([A])‖ can be written as a union∥∥FS1([A])

∥∥ =
⋃

A⊂A1⊂...⊂Al

‖X(A,A1, . . . , Al : F)‖.
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By Lemma 5.6, each ‖X(A,A1, . . . , Al : F)‖ is contractible. Furthermore, one has

‖X(A,A1, . . . , Al : F)‖ ∩ ‖X(A,B1, . . . , Bm : F)‖ = ‖X(A,C1, . . . , Ck : F)‖

where [A] < [C1] < . . . < [Ck] is the longest common subchain of [A] < [A1] < . . . < [Al] and
[A] < [B1] < . . . < [Bm]. Consequently, all intersections of these sets are contractible and
Lemma 2.4 implies that ‖FS1([A])‖ is homotopy equivalent to the nerve of this covering.
However, as all of these sets contain ‖X(A : F)‖, they intersect non-trivially, so this nerve
complex is contractible. �

6. Factor complexes at infinity

In this short section, we connect the factor complexes considered so far to subposets of FSn

which sit at the boundary of the simplicial completion of CVn. Let FS1
n be the subposet of

FSn given by free splittings that have exactly one non-trivial vertex group. For fixed n � 2,
we define

FS∗ := FSn \ L, FS1 := FS1
n, FSr,∗ := FSr

n \K.

The next proposition follows almost immediately from the contractibility of the relative free
splitting complexes established in the preceding section.

Proposition 6.1. Let n � 2.

(1) FS∗ is homotopy equivalent to FFn.
(2) FS1 is homotopy equivalent to Fn.

Proof. Assigning to each splitting S ∈ FS∗ the free factor system V(S) given by its non-
trivial vertex stabilisers defines a poset map f : FS∗ → FFop

n . For any poset P , there is a
natural isomorphism of the order complexes ΔP and ΔP op. Hence, Δ(FFop

n ) ∼= Δ(FFn) which
allows us to interpret f as an order-inverting map f : FS∗ → FFn.

For any free factor system A in F, the fibre f−1((FFn)�A) is equal to the poset FSn(A) of
free splittings relative to A. This poset is contractible by Theorem 5.1.

The image f(FS1) is equal to Fn, so we can consider its restriction g : FS1 → Fn.
Now for any conjugacy class [A] of free factors in F, the pre-image g−1((Fn)�[A])
is given by the intersection FSn([A]) ∩ FS1 = FS1

n([A]), so Theorem 5.8 finishes the
proof. �

Remark 6.2. The map f : FS∗ → FFn defined in the proof of Proposition 6.1 has already
been used to study the geometry of the complexes in question:

In [18, Section 6.2], the authors define ‘projection maps’ π : FSn → FFn and show that these
maps are Lipschitz with respect to the metrics on the 1-skeleta of FSn and FFn assigning
length 1 to each edge. The map f can be seen as the restriction of such a projection map to
FS∗ and hence is Lipschitz as well.

Using the language of sphere systems (see Section 8.2), Hilion and Horbez in [17, Section
8] consider the poset FSc

n ⊂ FS1 of all free splittings whose corresponding graph of groups
is a rose with non-trivial vertex group, that is, those free splittings of FS1 having only one
orbit of vertices. They show that the inclusion FSc

n ⊂ FS1 defines a quasi-isometry of the
1-skeleta and that the restriction f : FSc

n → Fn has quasi-convex fibres. This is used to deduce
hyperbolicity of Fn.
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7. Higher connectivity of factor complexes

In this section, we will combine the results obtained so far in order to establish higher
connectivity properties of the various complexes defined in the introduction. Fix n � 2 and
define FS∗, FS1 and FSr,∗ as in Section 6.

Let L×FS∗ denote the product poset of the spine of (unreduced) Outer space and its
simplicial boundary. We define Z to be the subposet of L×FS∗ given by all pairs (G,S)
such that G ∈ L and S = G/H is obtained by collapsing a proper core subgraph H ⊂ G. Let
p1 : Z → L and p2 : Z → FS∗ be the natural projection maps.

We want to use Z to study the connectivity properties of FS∗. The methods we use for this
can also be applied to understand the topology of the free factor complex and the boundary
of jewel space. So we will in fact prove connectivity results for all these complexes at the same
time. For this we need to introduce two subposets of Z:

For the first one, we set Z1 to be the subposet of L×FS1 given by all pairs (G,S) such that
S = G/H is obtained by collapsing a proper connected core subgraph H ⊂ G. Let q1 : Z1 → L
and q2 : Z1 → FS1 be the natural projection maps. The poset Z1 is a subposet of Z and q1
and q2 are the restrictions of the projections p1 and p2.

Second, we define Zr to be the subposet of K ×FSr,∗ given by all pairs (G,S) such that
S = G/H is obtained by collapsing a proper core subgraph H ⊂ G. Note that if a graph G
does not contain a separating edge, neither does G/H for any subgraph H ⊂ G. It follows that
Zr is the subposet of Z consisting of all (G,S) such that G ∈ K. The natural projection maps
r1 : Zr → K and r2 : Zr → FSr,∗ are obtained by restricting the maps p1 and p2.

We think of Z, Z1 and Zr as thickened versions of FS∗, FS1 and FSr,∗, respectively. In
order to deduce connectivity results about these three complexes, we proceed in two steps: First
we show that the projections p2, q2 and r2 to the second factors define homotopy equivalences;
then we apply the results of Section 4 to understand the fibres of the projections p1, q1 and r1.

7.1. Projections to the second factor

We first deformation retract the fibres of p2, q2 and r2 to simpler subposets.

Lemma 7.1. (1) For all S ∈ FS∗, the fibre p−1
2 (FS∗

�S) deformation retracts to p−1
2 (S).

(2) For all S ∈ FS1, the fibre q−1
2 (FS1

�S) deformation retracts to q−1
2 (S).

(3) For all S ∈ FSr,∗, the fibre r−1
2 (FSr,∗

�S) deformation retracts to r−1
2 (S).

Proof. We define a map f : p−1
2 (FS∗

�S) → p−1
2 (S) as follows: if (G′, S′) ∈ p−1

2 (FS∗
�S), then

there are collapse maps G′ → S′ and S′ → S. Concatenating these maps, we see that S is
obtained from G′ by collapsing a subgraph H ′ ⊂ G′. As S ∈ FS∗ = FSn \ L, the graph H ′ has
non-trivial fundamental group and can be written as the union of a (possibly trivial) forest T ′

and its (non-trivial) core H̊ ′. We define a map
f : p−1

2 (FS∗
�S) → p−1

2 (S)

(G′, S′) �→ (G′/T ′, S).

As S = (G′/T ′)/H̊ ′, the image (G′/T ′, S) is indeed an element of p−1
2 (S).

Now assume we have (G′′, S′′) � (G′, S′) in p−1
2 (FS∗

�S). We obtain a diagram of collapse
maps
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In general, if there are free splittings S1, S2 ∈ FSn such that there is a collapse map S1 → S2,
then this map is unique up to equivariant isomorphism. Hence, the diagram above commutes
and the collapse map c : G′′ → G′ restricts to a surjection H ′′ → H ′. The graph H ′ is obtained
from H ′′ by collapsing a forest in H ′′ and identifying end points of edges of G′′ that are
collapsed by G′′ → G′. It follows that H ′′ → H ′ restricts to a map H̊ ′′ → H̊ ′. Hence, we have
c(T ′′) ⊇ T ′ which implies G′′/T ′′ � G′/T ′. Consequently f : p−1

2 (FS∗
�S) → p−1

2 (S) is a well-
defined, monotone poset map restricting to the identity on p−1

2 (S). Now one can use Lemma 2.2
and the usual arguments to see that it defines a deformation retraction.

For (2), if (G′, S′) ∈ q−1
2 (FS1

�S), then the splitting S′ is obtained from G′ by collapsing a
connected core subgraph and S is obtained from S′ by collapsing a subgraph. Concatenating
these two collapse maps, one sees that S = G′/H ′ for a subgraph H ′ ⊂ G′. This subgraph
may be disconnected, but only one of its components has non-trivial fundamental group. It
follows that its core H̊ ′ is connected. Using this observation, the map f : p−1

2 (FS∗
�S) → p−1

2 (S)
restricts to a monotone poset map q−1

2 (FS1
�S) → q−1

2 (S). So the second claim follows from
Lemma 2.2 as well.

For (3), recall that if a graph G does not contain a separating edge, then neither does
G/H for any subgraph H ⊂ G. It follows that for all S ∈ FSr,∗, the map f also restricts to a
deformation retraction r−1

2 (FSr,∗
�S) → r−1

2 (S). �

Hence, instead of studying arbitrary fibres, it suffices to consider the pre-images of single
vertices. We start by using the methods from Section 5 to show:

Proposition 7.2. For all S ∈ FS∗, the pre-image p−1
2 (S) is contractible.

Proof. Fix a free splitting S ∈ FS∗ and let [A1], . . . , [Ak] be the components of V(S). Every
element in p−1

2 (S) is given by blowing up the vertices of S with non-trivial vertex stabiliser.
That is, every element in p−1

2 (S) is a pair (G,S) such that there is a unique core subgraph
H ⊂ G having connected components H1, . . . , Hk where π1(Hi) = [Ai] and S = G/H. Fix an
element (G0, S) ∈ p−1

2 (S) such that each H0
i is a rose.

For every element in p−1
2 (S), consider the open simplex in CVn corresponding to it. Let

X ⊂ CVn be the union of all such simplices. We will show that X is contractible using Skora’s
deformation paths. Since p−1

2 (S) is a deformation retract of X, this implies that p−1
2 (S) is

also contractible.
We define a map ρ : X × [0,∞] → CVn as follows (see Section 5 and [10, Section 6] for more

details): fix T0 ∈ X such that T0 is the universal cover of G0 and let C0 be the open simplex
of CVn corresponding to T0. Consider a tree T ∈ X. Both T0 and T are obtained from S by
blowing up the vertices with stabilisers in V(S). Hence, there exists a unique T0(T ) ∈ C0 and
a morphism fT : T0(T ) → T , such that fT maps the minimal subtree stabilised by Ai ∈ [Ai] in
T0(T ) to the minimal subtree of Ai ∈ [Ai] in T . As in Section 5, the morphism fT gives rise to
a sequence of intermediate trees Tt(T ). We set ρ(T, t) := Tt(T ).

Since fT restricts to a morphism between the corresponding minimal subtrees of Ai and it
factors through the morphisms T0(T ) → Tt(T ) and Tt(T ) → T , the intermediate tree Tt(T )
collapses to S and hence is in X. Therefore, we have a map ρ : X × [0,∞] → X. The same
arguments as in the proof of [10, Theorem 6.1(1)] immediately give that ρ is continuous with
respect to the weak topology on X. This implies that X is contractible. �

The following shows that Proposition 7.2 also provides us with sufficient information about
the fibres of q2 and r2.

Proposition 7.3. (1) For all S ∈ FS1, one has q−1
2 (S) = p−1

2 (S).
(2) For all S ∈ FSr,∗, there is a deformation retraction p−1

2 (S) → r−1
2 (S).
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Proof. The first claim follows immediately from the definitions: The map q2 is the restriction
of p2 : Z → FS∗.

The proof of the second claim essentially just uses that K is a deformation retract of L: Let
S ∈ FSr,∗. By definition, p−1

2 (S) can be seen as the poset of all G ∈ L such that there is a
proper core subgraph H ⊂ G with G/H = S. On the other hand, r−1

2 (S) consists of all G ∈ K
satisfying the same property, so r−1

2 (S) = p−1
2 (S) ∩K is a subposet of p−1

2 (S).
For each G ∈ L, there is a unique maximal G′ ∈ K such that G′ � G; it is obtained by

collapsing all the separating edges of G. Now if G ∈ p−1
2 (S) and H ⊂ G is a core subgraph

such that S = G/H, the collapse G → G′ maps H to a core subgraph H ′ ⊂ G′. Because S does
not contain any separating edges, the collapse G → S factors as

It follows that G′ ∈ r−1
2 (S), so the assignment G �→ G′ defines a poset map p−1

2 (S) → r−1
2 (S)

that is monotone and restricts to the identity on r−1
2 (S). The statement now follows from

Lemma 2.2. �

In particular, these fibres are contractible.

Corollary 7.4. The maps p2 : Z → FS∗, q2 : Z1 → FS1 and r2 : Zr → FSr,∗ are
homotopy equivalences.

Proof. Using Quillen’s fibre lemma, the claim is an immediate consequence of Lemma 7.1,
Proposition 7.2 and Proposition 7.3. �

7.2. Projections to the first factor

Corollary 7.4 allows us to replace FS∗ by its thickened version Z. This has the advantage that
Z possesses a natural projection map p1 to the contractible poset L which we will study in
this subsection.

Lemma 7.5. For all G ∈ L, the fibre p−1
1 (L�G) is homotopy equivalent to C(G), the poset

of proper core subgraphs of G.

Proof. Each element of the fibre p−1
1 (L�G) consists of a pair (G′, S′) where G′ � G in L

and S′ ∈ FS∗ is obtained from G′ by collapsing a proper core subgraph H ′. As G′ is obtained
from G by collapsing a forest, there is a unique, proper core subgraph H of G making the
following diagram commute:

H is the unique core subgraph of G such that π1(H) = π1(H ′).
Because this diagram commutes, the collapse G → G′ induces a collapse G/H → G′/H ′ = S′.

Hence, we get a monotone poset map

f : p−1
1 (L�G) → p−1

1 (G)

(G′, S′) �→ (G,G/H)
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restricting to the identity on p−1
1 (G) ⊆ p−1

1 (L�G). Again Lemma 2.2 implies that f defines a
deformation retraction.

If H and H ′ are proper core subgraphs of G, one has G/H � G/H ′ in FS∗ if and only if
H � H ′ in C(G). It follows that p−1

1 (G) can be identified with C(G)op. Noting that ‖C(G)op‖ ∼=
‖C(G)‖ finishes the proof. �

Lemma 7.6. For all G ∈ L, the fibre q−1
1 (L�G) is homotopy equivalent to cC(G), the poset

of proper connected core subgraphs of G.

Proof. The proof is literally the same as the one of Lemma 7.5 after one makes the following
observation: whenever G′ � G in L and H ′ is a proper connected core subgraph of G′, there is
a unique, proper connected core subgraph H ⊂ G making the diagram

commute. (Here again we use that our core subgraphs are allowed to have separating edges.) �

Theorem 7.7. For n � 3, the posets FS∗, FS1 and FSr,∗ are (n− 3)-connected.

Proof. We already know that FS∗ is homotopy equivalent to Z. To show that Z is (n− 3)-
connected, consider the first projection p1 : Z → L. By Lemma 7.5, the fibre p−1

1 (L�G) is
homotopy equivalent to C(G) for all G ∈ L. Lemma 4.3 and Proposition 4.4 imply that this
poset is at least (n− 3)-connected. Applying Lemma 2.1 finishes the proof.

For FS1, the proof is just the same: By Proposition 7.4, the poset FS1 is homotopy
equivalent to Z1. For each G ∈ L, the fibre q−1

1 (L�G) of the projection map q1 : Z1 → L
is homotopy equivalent to cC(G) by Lemma 7.6. This poset is (n− 2)-spherical by Lemma 4.7
and Proposition 4.10.

Finally, the poset FSr,∗ � Zr is (n− 3)-connected because the fibres of r1 : Zr → K are
equal to those of p1. Indeed, the spine K of reduced Outer space is a downwards-closed subposet
of L and for any G ∈ K, one has r−1

1 (G) = p−1
1 (G). It follows that for all G ∈ K, one has an

equality r−1
1 (K�G) and p−1

1 (L�G). The higher connectivity of FSr,∗ now follows as above. �

For the free factor complex and the boundary of jewel space, the preceding theorem already
yields the best connectivity results that we are able to obtain. We summarise them in the
following two corollaries.

Corollary 7.8. For all n � 2, the free factor complex Fn is homotopy equivalent to a
wedge of (n− 2)-spheres.

Proof. If n = 2, the complex Δ(Fn) is a countable infinite set carrying the discrete topology,
that is, a wedge of 0-spheres. For n � 3, Δ(Fn) is a simplicial complex of dimension n− 2,
so using the Whitehead theorem, it suffices to show that it is (n− 3)-connected and non-
contractible. We have FS1 � Fn by Proposition 6.1, so the complex is (n− 3)-connected by
the preceding theorem.

To prove that it is non-contractible, look at the following subposet Σ ⊂ Fn: Choose a basis
{x1, x2, . . . , xn} of F and let Σ be the poset of all conjugacy classes of free factors generated
by proper subsets of this basis. It is easy to see that ‖Σ‖ is a triangulated (n− 2)-sphere
inside ‖Fn‖. (This subcomplex is the analogue of an apartment in a Tits-building; see also [19,
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Section 5].) In particular, this shows that Hn−2(Fn) is non-trivial, so the complex cannot be
contractible. �

In the reduced setting, Theorem 7.7 and the first statement of Theorem D immediately
imply:

Corollary 7.9. For all n � 3, the boundary ∂Jn is (n− 3)-connected.

For FS∗, we can further improve the result of Theorem 7.7 because the following lemma
gives us additional information about the fibres of p1.

Lemma 7.10. For G ∈ L, let f : p−1
1 (L�G) → Z be the inclusion map. Then the induced

map on homotopy groups f∗ : πn−2(p−1
1 (L�G)) → πn−2(Z) is trivial.

Proof. As p−1
1 (L�G) deformation retracts to p−1

1 (G) (see the proof of Lemma 7.5), it is
sufficient to show that the map f∗ : πn−2(p−1

1 (G)) → πn−2(Z) is trivial. In order to prove this,
we will describe explicit generators for πn−2(p−1

1 (G)) and show that these map to the identity
under f∗.

We start by describing H̃n−2(X(G)), where X(G) is the poset of all proper subgraphs of
G that are non-empty and where at least one component has non-trivial fundamental group:
Recall that the poset Sub(G) of all proper subgraphs of G has a geometric realisation that
is homeomorphic to a sphere of dimension |E(G)| − 2 = |V (G)| + n− 3. Hence, by Alexander
duality (Lemma 2.5), we have an isomorphism

H̃n−2(X(G)) ∼= H̃ |V (G)|+n−3−(n−2)−1(Sub(G) \X(G)) = H̃ |V (G)|−2(For(G)).

The collection {σi}Ni=1 of (|V (G)| − 2)-simplices of ‖For(G)‖ is in bijection with the collection
{Ei}Ni=1 of maximal forests of G. Let φi be the cochain dual to σi, that is, φi(σi) = 1 and
φi(σj) = 0 for j = i. As ‖For(G)‖ has dimension |V (G)| − 2, all of these cochains are cocycles
and the corresponding cohomology classes {[φi]}Ni=1 generate H̃ |V (G)|−2(For(G)). Under the
isomorphism given by Alexander duality, the class [φi] is identified with the cycle corresponding
to the simplex whose vertices are all subgraphs of G− Ei. This simplex can be identified with
(the order complex of) Sub(G/Ei), seen as a subposet of X(G). Since Ei is a maximal forest of
G, the quotient G/Ei is a rose and we have Sub(G/Ei) = X(G/Ei). We write {‖X(G/Ei)‖}Ni=1

for the generating system of H̃n−2(X(G)) that we obtain this way.
This gives us a generating set for πn−2(p−1

1 (G)) as follows: As explained in the proof of
Lemma 7.5, p−1

1 (G) is canonically identified with C(G), the poset of proper core subgraphs
of G. This poset is a deformation retract of X(G) by Lemma 4.3, yielding an identification
πn−2(p−1

1 (G)) ∼= πn−2(X(G)). The involved posets are (n− 3)-connected by Lemma 4.4, so
for n � 4, the Hurewicz Theorem implies that this is further identified with Hn−2(X(G)) =
H̃n−2(X(G)).

After all these identifications, f∗ maps the generator ‖X(G/Ei)‖ ∈ Hn−2(X(G)) ∼=
πn−2(p−1

1 (G)) to the homotopy class of the map ψi : Sn−2 → ‖Z‖ that sends Sn−2 homeomor-
phically to the boundary of the simplex whose vertices are all pairs (G,S), where S is obtained
by collapsing a subgraph of the rose G/Ei. For all these vertices, we have (G,S) � (G/Ei, S).
This implies that ψi is homotopic to the map ψ̃i whose image is the boundary of the simplex
with vertices (G/Ei, S). Because G/Ei is a rose, there exists Gi ∈ L such that Gi has a separating
edge and Gi > G/Ei. Now the image of ψ̃i is contained in ‖p−1

1 (L�Gi
)‖ ⊆ ‖Z‖ and this space

is contractible by Lemma 4.4. Hence, [ψ̃i] = f∗(‖X(G/Ei)‖) is trivial.
For n = 3, the lemma follows by an explicit computation. �



1758 BENJAMIN BRÜCK AND RADHIKA GUPTA

Remark 7.11. It is possible that in Z, the pre-image p−1
1 (G) has multiple contractions.

This can give rise to higher dimensional spheres in Z. See Example A.1 at the end of the
paper.

We are now ready to prove:

Theorem 7.12. For n � 2, the poset FS∗ is (n− 2)-connected.

Proof. By Corollary 7.4, FS∗ is homotopy equivalent to Z. The spine L of Outer space is
contractible and it follows from Lemma 7.5 and Proposition 4.4 that the fibres of p1 : Z → L
are either (n− 3)-connected or contractible. Using Lemma 7.10 and applying Lemma 2.3, one
gets that FS∗ is (n− 2)-connected. �

Proposition 6.1 immediately implies the following corollary which completes the proof of
Theorem B.

Corollary 7.13. The complex FFn of free factor systems is (n− 2)-connected.

Note that in contrast to the situation here, these arguments cannot be used to deduce (n− 2)-
connectivity of ∂Jn as the fibres of the map r1 a priori do not satisfy the conditions needed
to apply Lemma 2.3. For more comments on the optimality of the result obtained here, see
Section 8.3.

8. Some remarks

8.1. Relative complexes

In [18], the authors do not only study the whole poset of free factor systems, but also relative
versions of it. For a given free factor system A, the poset of free factor systems of F relative to
A consists of all free factor systems B in F such that there are proper inclusions A � B � F.
In other words, this poset is given by (FFn)>A.

Replacing CVn by Outer space relative to A, one can apply the arguments used in the
previous sections in order to show higher connectivity of these relative complexes of free factor
systems. As already in the ‘absolute’ case, we make use of relative Outer space, most proofs can
be taken literally for the relative setting as well. The fibres one obtains and needs to analyse
here correspond to posets of graphs with a labelling of the vertices (as described, for example,
in [1]). This can be done using similar arguments as in the proof of Proposition 4.10.

In his thesis [5], the first-named author studies these relative versions and obtains analogues
of Theorems A, B and C. The results there are proved in the more general setting of
automorphism groups of free products. These are used to determine the homotopy type of
an analogue of the free factor complex for automorphisms of right-angled Artin groups in [4].

8.2. Sphere systems

There is an equivalent description of the free splitting complex in terms of sphere systems. For
this, let Mn be the connected sum of n copies of S1 × S2. This manifold has fundamental
group isomorphic to F. A collection {S1, . . . , Sk} of disjointly embedded 2-spheres in Mn

is called a sphere system if no Si bounds a ball in Mn and no two spheres are isotopic.
The set of isotopy classes of such sphere systems has a partial order given by inclusion
of representatives. The order complex S(Mn) of this poset is called the complex of sphere
systems. Considering the fundamental group of its complement, each sphere system induces
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a free splitting of F. In fact, the free splitting complex FSn is the barycentric subdivision
of S(Mn).

Following this, our considerations in this article can be translated in the language of such
sphere systems: the complex FS∗ corresponds to the complex S∞ ⊂ S(Mn) consisting of all
sphere systems σ whose complement Mn \ σ has at least one connected component that is
not simply-connected. The complex FS1 on the other hand corresponds to S1(Mn) ⊂ S(Mn),
the subcomplex of S(Mn) consisting of sphere systems whose complement has exactly one
component that is not simply-connected.

Using this description, (n− 3)-connectivity of FS∗ can be deduced very quickly as follows:

Proof of (n− 3)-connectivity via sphere systems (Vogtmann, Private Communication, 2018).
Whenever one takes a sphere system σ consisting of at most (n− 1)-many spheres, it induces
a free splitting of π1(Mn) ∼= F with at most n− 1 orbits of edges. It follows that at least one of
the vertex groups of this splitting must be non-trivial, implying that the complement Mn \ σ
contains at least one connected component with non-trivial fundamental group. Hence, the
entire (n− 2)-skeleton of S(Mn) is contained in S∞ ∼= FS∗. However, the complex S(Mn) is
contractible (see [15]), so we have {0} ∼= πn−3(S(Mn)) ∼= πn−3(S∞). �

The same argument also shows (n− 3)-connectivity of FSr,∗ � ∂Jn, the second part of
Theorem D. However, we would like to point out that this does a priori not give a proof for
(n− 2)-connectivity of FS∗ and also in particular does not show connectivity properties of
FS1 � Fn.

8.3. The simplicial boundaries of CV2 and CVr
2

The difference in the degree of connectivity between the reduced and the unreduced setting
might be surprising at first glance, but in fact it can easily be seen when one considers the case
where n = 2.

Here, reduced Outer space CVr
n can be identified with the tesselation of the hyperbolic plane

by the Farey graph (an excellent picture of this tesselation can be found in [29]). The triangles
of this tessellation correspond to the three-edge ‘theta graph’. Each side of such a triangle is
given by graphs that are combinatorially roses with two petals and obtained by collapsing one
of the edges of the theta graph; as the rose is a graph of rank 2, these edges are contained in the
interior of CVr

2. In contrast to that, the vertices of the triangles correspond to loops obtained
by collapsing two edges of the theta graph and hence are points sitting at infinity. Hence, the
simplicial boundary of CVr

2 is homeomorphic to Q, a countable join of 0-spheres.
Starting from reduced Outer space, unreduced CV2 is obtained by adding ‘fins’ above each

edge of the Farey graph. These fins are triangles corresponding to the ‘dumbbell graph’ which
consists of two loops connected by a separating edge. Collapsing this separating edge, one
obtains the side of the triangle that corresponds to the rose. On the other hand, collapsing
one of the two loops of the dumbbell yields a graph of rank 1, forcing the other two sides of
the triangle to sit at infinity. Inside the simplicial boundary ∂sCV2, the concatenation of these
sides now connects two vertices of the adjacent theta graph triangles as depicted in Figure 4.
It follows that ∂sCV2 is isomorphic to the barycentric subdivision of the Farey graph which is
in turn homotopy equivalent to a countable wedge of circles.

This argument answers Question 1.1 for n = 2: Here the lower bounds we get for the degree
of connectivity of the simplicial boundaries ∂sCVr

n � ∂Jn and ∂sCVn � FFn are optimal and
furthermore, the homology of these complexes is concentrated in dimension n− 2 and n− 1,
respectively. For higher rank, this is, however, not clear at all as ∂Jn and FFn have dimension
2n− 3. In the case of ∂Jn, there are obvious (n− 2)-spheres one might expect to be non-trivial
elements of πn−2(∂Jn). Namely whenever one has an open (n− 1)-simplex in CVr

n corresponding
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Figure 4 (colour online). A part of CV2. The turquoise bottom part is reduced Outer space,
together with the red fins on top it forms unreduced Outer space. The faces at infinity are
coloured in plum, where the three round vertices are the only points contained in the reduced
boundary ∂sCVr

n.

to a rose with n petals, all of its faces are contained in the simplicial boundary ∂sCVr
n. We

suspect that the spheres formed by these faces are not contractible inside the boundary but
right now we do not see how this could be shown.

Appendix

The following example illustrates Lemma 7.10 in the case where n = 2.

Example A.1. For n = 2 and G ∈ L, the pre-image p−1
1 (G) is either contractible or a

wedge of 0-spheres. Suppose G is a theta graph. Then a 0-sphere si in p−1
1 (G) is isomorphic

to {G} ×X(Gi), where Gi is a rose obtained from G by collapsing a maximal forest, for
i = 1, 2, 3. We claim that each such 0-sphere is contractible in Z. Indeed, for each rose Gi

consider the dumbbell graph G′
i obtained by blowing up Gi to have a separating edge. Then

p−1
1 (G′

i) is contractible. Now in Z, the sphere si can be homotoped into p−1
1 (G′

i). Thus each
si is contractible in Z. See Figure A.1.

Proof of Proposition 4.4 for n = 3. Figure A.2 shows all possible combinatorial types of
graphs in CV3.

We want to show that for each such graph G, the poset X(G) is homotopy equivalent to
a (non-trivial) wedge of circles if G does not contain a separating edge and is contractible
otherwise. Using Lemma 4.3, it suffices to show the same statement for the poset C(G) of all
core subgraphs.

If G is a rose, the realisation of X(G) = Sub(G) is the boundary of a triangulated 1-sphere.
For the graphs (b)–(e) in Figure A.2, the complex X(G) is depicted in Figure A.3.

As the graphs (f)–(h) do not contain any disconnected core subgraphs, the claim here follows
from Proposition 4.10. The only disconnected core subgraph of (i) consists of the edges 1,4 and
5. Hence, C(G) is derived from cC(G) by attaching the star of the vertex {1, 4, 5} along its
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Z

L

G

G1

G′
1

p−1
1 (G)

p−1
1 (G1)

p−1
1 (G′

1)

p1

Figure A.1 (colour online). Projection map p1 : Z → L for Example A.1.

link. It is an easy exercise to check that the result is homotopy equivalent to a circle. The same
is true for (j) whose only non-connected core subgraph is {1, 2, 4, 6}.

For the remaining graphs (k)–(p), the following tables define Morse functions φ : C(G) → R

with contractible descending links:

(k)
vertex v φ(v)

st({1, 2, 3, 4}) 0
cC(G) \ st({1, 2, 3, 4}) = {{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}} 1

(l)
vertex v φ(v)

st({1, 2, 3, 4}) 0
cC(G) \ st({1, 2, 3, 4}) 1

(m)
vertex v φ(v)

st({1, 2, 3, 4, 5}) 0
cC(G) \ st({1, 2, 3, 4, 5}) 1

(n)

vertex v φ(v)
st({1, 2, 3, 4}) 0
{1, 2, 3, 5} 1

{2, 3, 5}, {1, 3, 4, 5} 2

(o) and (p)

vertex v φ(v)
st({1, 2, 3, 4, 5}) 0
{1, 2, 3, 4, 6} 1

all other core subgraphs containing 6 2
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Figure A.2. All combinatorial types of graphs in CV3

As an illustration, we explain why all the descending links for (n) are contractible:
st({1, 2, 3, 4}) is obviously contractible as this is true for any star in a simplicial complex.
The vertices of C(G) not contained in this star are precisely the proper core subgraphs of
G containing the (separating) edge 5. The descending link of {1, 2, 3, 5} contains a unique
maximal element and hence is contractible; this cone point is given by {1, 2, 3} which is the
unique maximal core subgraph of {1, 2, 3, 5} not containing 5. As {2, 3, 5} does not contain 4,
it is contained in {1, 2, 3, 5} which hence forms a cone point of its descending link. Finally, the
link of {1, 3, 4, 5} is coned off by {1, 3}.

The interested reader may complete this argument to an alternative proof of Proposition 4.4
for arbitrary n � 2 in the case where G contains at least one separating edge. �
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Figure A.3. The realisation of X(G) for rank 3 graphs with four edges (the tetrahedra were
unfolded for better visibility). The first three of them are homotopy equivalent to a wedge of
circles while the last one is contractible.
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