
2 Conquaire Infrastructure for
Continuous Quality Control

Fabian Herrmann1, Christian Pietsch2, Philipp Cimiano1

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center, Bielefeld University

2 – Bielefeld University Library, Bielefeld University

Abstract
In this chapter, we briefly describe the Git-based infrastructure that has been
implemented as a result of the Conquaire project to support analytical repro-
ducibility. The infrastructure implemented relies on principles of continuous
integration as used in software engineering projects. Importantly, we rely on
a distributed version control system (DVCS) to store computational artifacts
that are key to reproducing the analytical results of an experiment. Using a
DVCS has the benefit that artifacts can be versioned and each version can be
uniquely addressed via a revision number. The DVCS implementation we rely
on is Git, extended by GitLab as a web interface and collaboration platform.
The heart of the infrastructure implemented in the Conquaire project is the so
called Conquaire server. We assume that each research project deposits rele-
vant data and code in a Git repository. In the background, a GitLab CI Runner
on the Conquaire server is triggered by Git push events on the local GitLab
server and executes a number of tests on the data and runs the code or script
to reproduce a particular result. By this, we ensure that results can be repro-
duced independently of the original researchers on a separate machine. In this
chapter, we briefly describe the infrastructure implemented and how tests are
automatically executed when updates are committed to the Git repository.

2.1 Introduction
Principles of continuous integration have long been applied in software engi-
neering to increase the quality of software artifacts and to prevent issues and
failures due do integration of code developed in a distributed fashion by multiple
developers in large software engineering projects. The heart of any continuous
integration setup is typically a so-called integration server that runs a number

17

Cimiano P., Pietsch C., & Wiljes C. (Eds.) (2021). Studies in Analytical Reproducibility: the
Conquaire Project. Bielefeld. https://doi.org/10.4119/unibi/2942780

https://doi.org/10.4119/unibi/2942780

2 Conquaire Infrastructure for Continuous Quality Control

of tests once updates of the software are committed and pushed, and possibly
rejects the committed changes if they do not pass a number of tests. In contin-
uous integration, software developers are encouraged to submit smaller changes
in regular intervals to prevent errors and the well known ‘integration hell’.

Inspired by continuous integration principles, in Conquaire we have attempted
to transfer these principles from the domain of software engineering into the
domain of research data management. The starting point for any continuous
integration is the availability of a repository into which data and code can be
committed. Thus, a central part of the Conquaire architecture is a Distributed
Version Control System (DVCS) that allows researchers to deposit their artifacts
into a central repository. An important advantage of such a repository is that
data and code can be versioned and each version can be uniquely referenced
by a specific revision number. This allows to pinpoint and reference the exact
version of code and data that was used to obtain a certain result, a central
element of reproducibility.

Within Conquaire, we selected Git as a DVCS and GitLab as a web interface
and collaboration platform to implement a university-wide repository allowing
researchers to store their digital and computational research artifacts, code and
data in particular. A key component of the Conquaire architecture is the so
called Conquaire server, which in Conquaire acts as a continuous integration
server. Upon a new commit, the GitLab CI Runner on the Conquaire server ex-
ecutes a number of predefined tests on code and data and runs code or scripts on
data with the goal of reproducing a specific result. A central goal of Conquaire
is to support the reproduction of a certain result independently on a separate
machine that is out of the direct control of the original researchers.

The Conquaire server applies a number of quality checks on the data and
publishes the results of these tests on a web server, sending an email to the
person that committed the data to inform about the result of the test. Thus,
researchers can get informed on the fact whether there are any problems with
their data so that they can react early. We distinguish in Conquaire between
generic tests that are specific for a certain file format (e.g. CSV or XML) and
tests that are specific to the particular research projects. After tests are run,
corresponding badges are generated indicating whether the tests were passed
or not and rendered within a report that summarizes the results of the test.
Conquaire is thus using principles from gamification to score the quality of data
and thus create incentives for researchers to strive for high quality data that
passes all tests.

In this chapter, we briefly describe the Conquaire approach to continuous
integration as well as the core pieces and modules of the infrastructure imple-
mented as part of the Conquaire project to verify quality of the data. In Section
2.2, we motivate our choice for Git and GitLab. In Section 2.3, we describe how
we have implemented the Conquaire continuous integration infrastructure.

18

2.2 Why we use Git and GitLab

2.2 Why we use Git and GitLab

2.2.1 Git
One of the inspirations for this project came from the observation that GitHub
had become popular not just among software developers, but also among other
knowledge workers such as scientists. GitHub, as the name suggests, is built
around Git (although second-class support for SVN was added later). So, of
course, we looked at Git first, but we avoided committing ourselves to Git in
the project proposal because a fair evaluation of all options was to be part of
the project. We have to admit that we did not conduct a deep and thorough
research to find alternatives. Git is the dominant versioning software today,
and there is no foreseeable competitor. According to a survey by the popular
question and answer website StackOverflow in 20151, out of 16,694 participants
who answered this question, 69.3% used Git, 36.9% used SVN, 12.2% used TFS,
7.9% used Mercurial, 4.2% used CVS, 3.3% used Perforce, 5.8% used some other
versioning software, and 9.3% used no versioning software at all. Other studies2

come to similar conclusions.
Teaching researchers how to use a versioning software that is not widely used

(such as Mercurial or Perforce) or is limited to one operating system (such
as TFS) or is obsolete (such as CVS) was out of the question as we will not
always be there to support them. Eventually, when they require help from
other colleagues or their system administrator, Git will most likely be one of
the versioning software they will know and provide support for. Of course,
there are other criteria besides popularity that must be considered. A clear
benefit of distributed versioning systems is that they can be used offline as they
maintain the full history, including branches, locally. This is crucial to ensure
long-term availability of data as lots of copies keep stuff safe, as the saying
goes. As SVN is not a distributed versioning system, this alternative is ruled
out. It goes without saying that any software used for archiving should be open
source and freely licensed (FOSS). At the very least, its storage format must
be documented openly. Freely available source code is a very precise way of
documenting a storage format. Table 2.2 summarizes the main features that
lead us to the decision to use Git to implement a university-wide distributed
version control system.

We see two main disadvantages of using Git: (1) problems related learnabili-
ty/usability and (2) lack of support of large files. Regarding learnability, finding
out how hard it is for non-technical users to learn to use Git will be one of the
outcomes of this project. Our working hypothesis is that for versioning research
data, it is sufficient to learn a small subset of Git, which should not be too
challenging. With respect to large files, the problem is that Git was originally
not intended to be used with large files. The same is true for most versioning

1https://insights.stackoverflow.com/survey/2015
2https://rhodecode.com/insights/version-control-systems-2016

19

https://github.com
http://safepln.org/
https://insights.stackoverflow.com/survey/2015
https://rhodecode.com/insights/version-control-systems-2016

2 Conquaire Infrastructure for Continuous Quality Control

software name popularity actively maintained distributed cross-platform FOSS
CVS low no no yes yes
Git high yes yes yes yes
Mercurial low yes yes yes yes
Perforce low yes no yes no
SVN medium yes no yes yes
TFS low yes no no no

Table 2.2: Features of different versioning systems

systems. They are intended for tracking changes that are caused by intellectual
efforts: these rarely result in large files directly. Still, we want to include large
files such as video recordings when documenting research projects. By large
in this context, we mean a file larger than 50 MB. GitHub for instance warns
users when pushing a file larger than 50 MB and does not accept files larger
than 100 MB. Video files will often be larger than 100 MB. Fortunately, a free
(MIT-licensed) and open-source extension to Git called Git Large File Storage
(or Git LFS) can be used to alleviate this problem. It works around Git’s size
limitations by uploading large files to a separate storage area while tracking
only metadata about these large files inside Git.

Using Git on the command line can be demanding. In our experience, graph-
ical user interfaces (GUIs) that promise a more intuitive interaction style with
Git often do not live up to expectations. Instead, we recommend a web interface.

2.2.2 GitLab
The web interface we use for Git is GitLab. GitLab started out as a GitHub
clone, and became popular very quickly because it is available as a freely licensed
community edition that includes source code needed for running a GitLab in-
stance on premises.

Other web interfaces for Git such as Gogs and its derivatives were ruled out
early on because they do not offer crucial enterprise features such as single sign-
on (SSO) via LDAP or SAML2. Rolling out our source code hosting facility
university-wide is part of the Conquaire project goals, so we needed to integrate
with the Shibboleth-based identity management system of Bielefeld University.
GitLab’s SAML2 authentication method does just that.

GitLab proved to be an excellent choice because the makers of GitLab added
the right features as our project progressed. For example, GitLab CI evolved
from a simple continuous integration tool to a very powerful one, culminating in
Auto DevOps, a feature set that provides a range of quality checks for software
source code – not unlike what Conquaire provides for research data. However,
Auto DevOps arrived only towards the end of the Conquaire project, so it did
not influence our design decisions.

20

2.3 Conquaire Continuous Quality Control Infrastructure

2.3 Conquaire Continuous Quality Control
Infrastructure

2.3.1 Overview
A part of the Conquaire project was the development of automated data quality
tests. The quality checks are integrated into the GitLab platform from the
University of Bielefeld. The checks are written in Python 3.6 and use the lxml
package3 for parsing XML files as the only external requirement. The pipeline
of the quality check is shown in Figure 2.1 below. All steps are described in
sections below.

FAIR check

Search AUTHOR, LICENSE, README files.

Create feedback as LOG file.

CSV check

Search for .csv and optional associated .ini files.

Parse located files and check for validity.

Create feedback as LOG and HTML file.

XML check

Search for .xml and optional associated .dtd files.

Parse located files and check for validity.

Create feedback as LOG and HTML file.

Results and badge

Create global result HTML file
containing feedback from individual tests.

Create badge.json as global result indicator.

Notify user

Send mail to user containing the badge
and a link to global result HTML file.

Figure 2.1: Workflow of Conquaire Quality Check.

By adding a preconfigured YAML file (in this case: .gitlab-ci.yml) to a repos-
itory on the GitLab instance, the checks are automatically executed via a con-
tinuous integration runner on the GitLab server.
The runner creates a docker container. As the docker image we use the python:3.6-
alpine image because it is lightweight and only contains an installed version of
Python 3.6. In addition to that, we install the lxml package and a SMTP4

3https://lxml.de/
4https://wiki.debian.org/sSMTP

21

https://lxml.de/
https://wiki.debian.org/sSMTP

2 Conquaire Infrastructure for Continuous Quality Control

instance to notify the user about the results from a check. The user is informed
via email about the result of applying the test. The mail contains information
about the repository and a URL to a HTML site containing the detailed feed-
back which can be rendered by any browser. The mail also shows the user the
overall test result which is displayed as a badge icon. The same icon is displayed
in PUB if the user decides to create a data publication.

2.3.2 Example of pre-configured YAML file
The pre-configured file has to be stored in the root folder of the repository. For
each commit to the repository, it is automatically executed by the CI runner
and performs the Conquaire quality checks for the given repository. The user
only has to change the value of the -d parameter as it represents the local path
to the data inside the repository. In the given example, a folder named data
inside the repository contains the files which should be tested.
qua l i ty −check :

Use s ma l l e s t docker python image .
image : python :3.6 − a lp i n e
be f o r e_sc r i p t :

Create temporary mail c o n f i g u r a t i o n f i l e s .
− mkdir / e tc /ssmtp
− echo " root=${GITLAB_USER_EMAIL}" > / etc /ssmtp/ssmtp . conf
− echo " mailhub=conqua i re . uni−b i e l e f e l d . de " >>

/ etc /ssmtp/ssmtp . conf
− echo " hostname=g i t l ab −runner . conqua i re . uni−b i e l e f e l d . de "

>> / etc /ssmtp/ssmtp . conf
I n s t a l l lxml and ssmtp package f o r sending feedback mail .
− apk add py3−lxml ssmtp

s c r i p t :
Execute qua l i t y check ing p i p e l i n e .
− / usr / bin /python3 /opt/ conqua i re / qual i ty_checks / s r c /main . py

−f / var /www/html/ feedback /
− l " https : // conqua i re . uni−b i e l e f e l d . de/ feedback /"
−r " $ (pwd) "
−d " data "
−gn " ${GITLAB_USER_NAME}"
−ge " ${GITLAB_USER_EMAIL}"
−gu " ${CI_PROJECT_URL}"
−gp " ${CI_PROJECT_PATH}"
−gs " ${CI_COMMIT_SHA}"

Choose docker CI runner on g i t l a b s e r v e r .
tags :

− dockerexec

22

2.3 Conquaire Continuous Quality Control Infrastructure

The whole pipeline is executed in a docker container and makes use of con-
tinuous integration variables provided by GitLab. They are automatically filled
with the information from the users GitLab profile.

2.3.3 Quality checks
The Conquaire Quality Check pipeline involves a variety of tests that are au-
tomatically performed on the Git repository. Each time a commit occurs, the
GitLab CI runner calls our pipeline, and several scripts are executed to guaran-
tee that the provided data is in the best possible state. The three main checks
that are implemented are the FAIR check, the CSV check, and the XML check.
The pipeline is designed to be very modular and flexible to make it as easy as
possible to extend it with further checks, i.e., for additional file types.

Every check begins with searching the repository and generating a list of every
file with the specific type using the bash find command. For each file that was
found, the corresponding test script is called to perform the actual checks and
generate a log file with errors and warnings that were observed. The details of
the three specific checks are described below. In the end, an overall feedback file
is created, showing the results of the checks with links to the log files, making
it possible to look into the data and correct it if necessary. The contributor is
informed about the results of the pipeline via email.

FAIR check

In our adaptive implementation of the FAIR metrics5, we check if the three nec-
essary files exist in the repository: the AUTHORS, LICENSE, and README
files.
The files have to be placed in the root directory of the repository to fulfill the
test condition. The files have to have either no extension, plain text (.txt) or
markdown (.md).
We suggest to save the files as markdown files. The markdown file type is used
as a standard in GitLab and many other websites because it has an easy to learn
syntax and can be displayed in a web browser.

The AUTHORS file should contain a list of all the contributors and their
emails for the possibility to contact them. The LICENSE file should describe
how the data can be further used and distributed by other researchers, either by
declaring one of the common licenses or providing their own. The README file
should contain every other information that is related to the data and necessary
or helpful to understand the research that was done, e.g., a description of the
data or the experiment to obtain it.

5http://fairmetrics.org/

23

http://fairmetrics.org/

2 Conquaire Infrastructure for Continuous Quality Control

CSV check

In the CSV file format (.csv), data is organized as a table with comma separated
values. The first step in the CSV check is to test whether the file can be opened
and the table is well-formed, i.e., it has a header and a consistent number of
rows and columns.
The researcher can provide an additional format declaration file (.ini) with his
own specifications of the data, e.g., the type of the column and the expected
range of the values. The quality check reports a warning if a required entry is
missing or a value is out of range or has a wrong type, e.g., a non-numeric value
in a numeric column.

Figure 2.2: Example result of the CSV check.

The log file lists all the errors and warnings that were found, and the row and
column in which they occurred. In addition to that, the corresponding cell is
marked in the table, allowing to conveniently find problematic entries, as seen
in the example in Figure 2.2.

XML check

In the XML file format (.xml), data is organized as a tree structure using tag-
based markup language. The first step in the XML check is to test whether
the file can be opened and the document is well-formed, i.e., the syntax of the
markup language tags is correct.
The researcher can provide an additional doctype definition file (.dtd) with his
own specifications of the data, e.g., the required attributes and some restric-
tions to the values. The quality check reports an error if there is a mismatch
of opening and closing tags, and a warning if the specifications are not fulfilled,

24

2.3 Conquaire Continuous Quality Control Infrastructure

e.g., a value is missing.

Figure 2.3: Example result of the XML check.

The log file lists all the errors and warnings that were found, as well as the line
in which they occurred. In addition to that, the corresponding line is marked
in the document, allowing to conveniently find problematic entries, as seen in
the example in Figure 2.3.

After successful execution, the Conquaire quality check pipeline produces an
overall result HTML file which contains visual feedback of all individual tests
and links to the resulting log and optional HTML files. An example is provided
in Figure 2.4. The feedback shows one of three different colors and badges. A
green badge represents a successful test result, i.e., the data is valid. A yellow
badge indicates well-formed data and the log files can contain some warnings. A
red badge indicates not well-formed data or missing FAIR files. The user should
check the log files and fix the errors before submitting a data publication. The
URL of the overall result is provided to the user via email. This mail is sent
automatically after every commit. In addition to that, an overall badge icon
is created. This badge is equivalent to the badge of the worst individual check
result. This badge is displayed in PUB6 if the user decides to create a data
publication from the repository. The badge is equal to one of the three different
symbols shown in Figure 2.4.
Thus, the Conquaire quality checks are designed to help the researchers to clean
up data, remove inconsistencies and make it fit for use by others.

Fulfilling the FAIR metrics is highly important for the reproducibility of the
data as they are necessary to provide other researchers the information and legal

6https://pub.uni-bielefeld.de/

25

https://pub.uni-bielefeld.de/

2 Conquaire Infrastructure for Continuous Quality Control

Figure 2.4: Example result of the overall result.html.

basis to use the data for their consecutive works. The file type specific checks
help finding and fixing errors before releasing the data to the public. This is
fundamental for reproducibility as only valid data can be used to recreate the
experiment results.

2.4 Summary
In this chapter, we have briefly described how the Conquaire infrastructure
implemented at Bielefeld University applies continuous integration principles
to support reproduction of analytical results but also ensure high quality and
valid data. The basis of the infrastructure is a distributed version control system
(DVCS) that stores different versions of computational artifacts. In this chapter,
we have argued why we have selected Git as a basis to implement this DVCS at
Bielefeld University and why we have selected GitLab as a graphical and web-
based user interface to access Git and foster collaboration. We have further
described how the Conquaire infrastructure automatically runs a number of
quality checks on the data once a new commit has been performed. The user
merely has to add a YAML file to the root directory of the repository. This
YAML file will trigger the GitLab CI runner to execute a number of standard
tests on CSV and XML files to check whether the data is consistent, syntactically
well-formed and complies with schema declarations. The results of each test are
written into a log file and used to generate a report that is published as a website
on a web server. A link to this report is sent to the user committing the data for
inspection of the results of the tests, giving access to the detailed logs. Building
on principles of gamification and to create incentives for committing ready-to-
use-data, the Conquaire systems assigns badges to the data corresponding to

26

2.4 Summary

whether they passed the tests or not and visualizes these badges in the reports
generated and optionally on a PUB page where the data has been published.

During the Conquaire project, we have run a number of Git workshops with all
case study partners, confirming our hypothesis that the subset of Git commands
that is needed to commit data into the repository can be easily learned by our
target population. On the basis of our experience, we can definitely recommend
Git, GitLab and our architecture for continuous integration to implement an
institutional infrastructure for hosting data and checking their quality as a basis
to ensure reproducibility of research results.

27

	Preface
	Introduction
	Motivation
	Overview of Conquaire Infrastructure and Workflow
	Case Studies in Computational Reproducibility
	Analysis
	Levels of Reproducibility
	Data formats used by case study partners
	Tools used by case study partners
	Reproducibility Analysis

	Summary
	Bibliography

	Conquaire Infrastructure for Continuous Quality Control
	Introduction
	Why we use Git and GitLab
	Git
	GitLab

	Conquaire Continuous Quality Control Infrastructure
	Overview
	Example of pre-configured YAML file
	Quality checks

	Summary

	Reproducibility of whole-body movement analyses of insects
	Introduction
	Methods
	Data workflow: acquisition and processing pipeline
	Data acquisition: Experimental procedure
	Manual editing and annotation
	Secondary processing: Whole-body kinematics

	Analytical Reproducibility
	Analysis pipeline, data formats and software tools
	Technical Challenges and Issues

	Conclusion
	Bibliography

	Reproducing Trajectory Analysis of Bumblebee Exploration Flights
	Introduction
	Experiment settings and data acquisition pipeline
	Computational Environment for Reproducibility
	Software Migration
	Virtualization
	Continuous Integration supporting quality control

	Conclusion
	Bibliography

	Reproducing experiments of ice nucleation in atmospheric chemistry
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experimental data
	Main Results

	Analytical Reproducibility
	Research Data - Primary
	Research Data - Analyzed and Processed
	Data Workflow Lifecycle
	Summary of Reproducibility Experiment

	Conclusion
	Bibliography

	Visualization of economic agent-based simulations
	Introduction
	Methods
	The FLAME Environment
	Simulation Data

	Analytical Reproducibility
	Data Analysis Pipeline
	Plotting with FLAViz

	Summary and limitations
	Conclusion
	Bibliography

	Reproducing experiments on early verb understanding in infants
	Introduction
	Methods
	Experimental settings and data acquisition pipeline
	Methods applied to analyze the data
	Main Results

	Analytical Reproducibility
	Data Workflow Lifecycle
	Reproducibility Results

	Summary of computational reproduction experiment
	Conclusion
	Bibliography

	Reproducing an experiment in automatic disfluency detection
	Introduction
	Methods
	Analytical Reproducibility
	Summary of reproducibility experiment
	Conclusion
	Bibliography

	Reproducing the analysis of sequential visual processing
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experiment data

	Analytical Reproducibility
	Research Data
	Analytical Reproducibility status
	Discussion of reproducibility experiment

	Conclusion
	Bibliography

	Reproducibility in Human-Robot Interaction Research: A Case Study
	Introduction
	Experimental Settings and Methods
	The JSE Experiment
	Replication in Indiana

	Analytical Reproducibility: Results & Lessons Learned
	Technical Obstacles & Procedural Issues
	Results of the Pilot Study on Reproducibility in HRI

	Analysis of reproducibility experiment
	Conclusion
	Bibliography

	Conclusion
	Leere Seite

