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1Dipartimento di Economia, Università di Genova, Piazza F. Vivaldi 5, 16126, Genova, Italy
e-mail: salvatore.federico@unige.it

2Center for Mathematical Economics (IMW), Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
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Abstract: We study the problem of optimally managing an inventory with unknown demand trend. Our
formulation leads to a stochastic control problem under partial observation, in which a Brownian motion
with non-observable drift can be singularly controlled in both an upward and downward direction. We
first derive the equivalent separated problem under full information, with state-space components given
by the Brownian motion and the filtering estimate of its unknown drift, and we then completely solve
this latter problem. Our approach uses the transition amongst three different but equivalent problem
formulations, links between two-dimensional bounded-variation stochastic control problems and games
of optimal stopping, and probabilistic methods in combination with refined viscosity theory arguments.
We show substantial regularity of (a transformed version of) the value function, we construct an optimal
control rule, and we show that the free boundaries delineating (transformed) action and inaction regions
are bounded globally Lipschitz continuous functions. To our knowledge this is the first time that such
a problem has been solved in the literature.
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1. Introduction

In real-world situations, decision makers are usually faced with the uncertainty of noise or volatility in the
dynamics of an underlying stochastic process. However, in many occasions they are also faced with uncertainty
in their estimation of the drift of this monitored stochastic process. In other words, decision makers might not
know the exact growth characteristics of the future value of the underlying process. They may find themselves
observing the evolution of its value, but cannot perfectly distinguish whether the cause of its variations is
due to the drift or the stochastic driver of the process. Through their observations, they can update their
beliefs about the drift, however due to the aforementioned inability of distinguishing the cause of variations,
the information acquired by observations is inevitably noisy. Such an uncertainty about the drift therefore
adds a structural risk component to decision making, in addition to the noise from the stochastic driver of
the underlying process. Such scenaria have already received attention in the mathematical economic/financial
literature, such as [13] for investment timing, [8] for asset trading, [18] for optimal liquidation, [16] for contract
theory, and [12] and [14] for dividend payments.

In this paper, we consider the optimal management of inventory when the demand is stochastic and par-
tially observed. There exists an enormous literature on optimal inventory management (see, e.g. [40] for an
overview and the significance of inventory control in operations and profitability of companies). The optimal
singular/impulsive control literature of stochastic inventory systems has so far assumed that the dynamics of
the inventory is fully known to decision makers, see e.g. [1], [6], [7], [22], [23], [24] [37], [38] [39], amongst many
others. Some of the most celebrated results are the optimality of (constant) threshold strategies determining
(a) base-stock policies – maintaining inventory above a fixed shortage level – and (b) restrictions on the size
of inventory, in order to manage storage-related costs. In this paper, we generalise the existing literature on
the singular control of inventories by assuming that the demand rate or the mean of the random demand for
the product is unknown to decision makers. This can be relevant to companies operating in newly established
markets or producing a novel good, for which there is limited knowledge about the demand trend. In particu-
lar, we will show in this paper how the aforementioned optimal strategies are no longer triggered by constant
thresholds, but by functions of the decision maker’s learning process of the unknown demand rate. We further
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note that our analysis and results in this paper can also contribute to applications way beyond the inventory
management literature; for instance, to cash balance management problems (see, e.g. [19]), when the drift of
the cash process is unknown to managers.

The model and general results. We consider decision makers who can observe in real time the evolution
of the (random) inventory level St = x + µt + ηBt, which represents the production minus the stochastic
demand for the product at time t (see [22], [37] for the first such models, and e.g. [39] for a detailed description
of Brownian inventory systems). The inventory has a deterministic “net demand” rate µ, which is unknown
to decision makers, and a stochastic part modelling the volatility associated to demand via a standard one-
dimensional Brownian motion B and a constant volatility parameter η > 0. The decision makers can control
the inventory via a bounded-variation process Pt = P+

t −P−t , where P±t are increasing processes that provide
the minimal decomposition of P and define the total amount of increase/decrease of the inventory process up
to time t. The controlled inventory level is therefore given by

Xt = St + Pt = x+ µt+ ηBt + P+
t − P−t for all t ≥ 0 .

Note that, a positive value of X naturally models the current excess inventory level, while the absolute value
of a negative X models the backlog in production.

Both levels of excess inventory and backorder bare (non-necessarily symmetric) holding and shortage costs
per unit of time, modelled via a suitable convex function C(X) which is based on the level of X. On one hand,
if the holding costs and expenses/investments into more storage space C(X) to accommodate an increasing
inventory X become too costly, the decision maker can unload part of the excess inventory in various ways (e.g.
start promotions, send to outlets, donate, ship to another facility, or destroy) at a cost K− proportional to the
inventory volume that is unloaded. On the other hand, when shortage costs, loss of dissatisfied customers and
penalties for delayed shipments C(X) due to undesirable levels of backlog X, become too costly, the decision
maker can place an inventory replenishment order to raise the inventory level. This would come at a cost K+

proportional to the inventory volume that is ordered.
Overall, the aforementioned holding and shortage costs C(X) need to be controlled but the proportional

costs K± of controlling the inventory create a trade off. The decision maker thus needs to find the right
balance between letting the storage system evolve freely according to the realised demand and the timings of
controlling it, so that the overall cost is minimised. The question we therefore study in the sequel is “What
is the optimal inventory management strategy that minimises the total expected (discounted) future holding,
shortage and control costs, when the demand rate is unknown?”.

As in most of the aforementioned literature, we allow the rate of reduction dP− and increase dP+ to be
unbounded and allow them to reduce or increase, respectively, the level of X instantaneously. In mathematical
terms, the aforementioned question is formulated as a bounded-variation stochastic control problem of a
linearly controlled one-dimensional diffusion with the novelty of a random (non-observable) drift µ. To the
best of our knowledge, this is the first time that the complete solution to a bounded-variation problem under
partial observation is derived. Given that the drift of X is unknown to the decision maker, the analysis of
this question becomes considerably harder than in standard versions of the aforementioned problem with full
information (see, e.g. [22]). In order to model this additional uncertainty, we assume that the random variable
µ ∈ {µ0, µ1}, for some µ0, µ1 ∈ R such that µ0 < µ1. The decision makers can only observe the overall
evolution of S, whose natural filtration modelling the information available to them up to time t, is denoted
by FSt , while they just have a prior belief π := P(µ = µ1) ∈ (0, 1) on the value of µ at time t = 0. Their belief
on the drift is however continuously updated as new information is revealed and their belief process takes the
form Πt := P(µ = µ1 | FSt ), according to standard filtering techniques (for a survey, see e.g. [32]). Naturally,
the decisions whether to act/control the system or not, are not based solely on the position of the Brownian
(inventory) system X, as in standard problems where the drift is known (see, e.g. [22]). These decisions are now
adapted dynamically according to the current belief on the drift µ of the system, thus they depend strongly on
the learning process Π of the decision maker. However, under this filtering estimate of the drift, the dynamics
of the problem becomes essentially two-dimensional and diffusive, which results in an associated variational
formulation with partial differential equations (PDEs). Therefore, obtaining explicit solutions is not possible in
general. Nevertheless, using our methodology that combines various different techniques (as we outline later),
we manage to solve the problem and provide the complete characterisation of the optimal control strategy.

Given the convexity of C, when the (inventory) level X is relatively high (resp., low) resulting in a large
holding (resp., shortage) marginal cost C ′(X), the decision maker has an incentive to exert control P− (resp.,
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P+) to decrease (resp., increase) the level of X. The decision maker must find an optimal control strategy
P ?+ and P ?− that minimises the overall expected future holding and shortage costs counterbalanced with
the proportional costs K± per unit of control exerted. Indeed, we successfully prove in this paper, that
such an optimal strategy P ?+ and P ?− exists and is explicitly characterised by two boundaries, each one
associated with one of the control processes P ?±. These boundaries then split the space in three distinct but
connected regions: (a) An action region that is divided into two parts, namely the areas above or below these
boundaries, prescribing that when X is either relatively large or small, the decision maker should intervene
by decreasing or increasing X, respectively, and bring X inside the area which is between the two boundaries;
and (b) an intermediate waiting (inaction) region for relatively intermediate values of X, which is precisely
the aforementioned area between the two boundaries.

To the best of our knowledge, the study and complete characterisation of these boundaries which define
the solution of a bounded-variation stochastic control problem under partial information on the dynamics of
the underlying diffusion, has also never been addressed in the literature. We prove that the aforementioned
boundaries triggered by X are monotone functions of the belief process Π and can be completely characterised
in terms of monotone Lipschitz continuous curves solving a system of nonlinear integral equations. The depen-
dence of the optimal boundaries on the belief variable Π is in contrast to the full information cases, where the
decision makers must intervene whenever X breaches some constant thresholds, irrespective of its past evolu-
tion (see, e.g. [22]). In fact, we also prove that our boundaries are bounded by these (constant) thresholds of
the full information cases. This further shows that our model extends and complements the existing literature
on bounded-variation stochastic control problems in the case when there is uncertainty about the drift of the
underlying process.

Our contributions, approach and an overview of the mathematical analysis. Our contribution
in this paper is twofold. From the point of view of its application, even though the literature on the optimal
management of inventory is extremely rich (see, e.g. papers cited before), there is no model where the demand
is assumed to be partially observed and lump-sum as well as singularly continuous actions on the inventory
are allowed. To the best of our knowledge, this makes our paper a pioneer in this class of problems, which is
our first main contribution. From the mathematical theory perspective, the development of methods to tackle
optimal control problems with absolutely continuous (regular) controls and partial observation has an extensive
history, see e.g. [2], [27], [28], and [30]. However, the literature on the characterisation of the optimal policy in
singular stochastic control problems with partial observation is limited, and actually deals only with monotone
controls. We firstly refer to [33] that studies singular control problems with partial information via the study
of their associated backward stochastic differential equations (BSDEs) leading to general maximum principles;
[12] that solves the optimal dividend problem under partial information on the drift of the revenue process of
a firm that can default, creating also an absorption state; [14] that studies a dynamic model of a firm whose
shareholders learn about its profitability, face costs of external financing and costs of holding cash; and [4] that
considers the debt-reduction problem of a government that has partial information on the underlying business
conditions. Contrary to the aforementioned papers with monotone controllers, we allow the decision maker to
both decrease and increase the underlying process by using controls of bounded-variation. Thus, our paper is
expanding the traditional bounded-variation control theory towards the direction of partial information, by
providing a methodology for dealing with such problems, achieving the complete characterisation of the free
boundaries that define the optimal control, and achieving also notable value function regularity properties.
This is our second main contribution, on which we elaborate in the remaining of this section.

By relying on classical filtering theory (see [32]) we first determine an equivalent problem under full in-
formation, the so-called “separated problem”. This is a genuine two-dimensional bounded-variation singular
stochastic control problem, with state-space described by the level of the inventory and the decision maker’s
belief on the demand rate. Given the two-dimensional nature of the problem, the traditional “guess and verify”
approach is not effective. Indeed, this would require at first the construction of an explicit solution to a PDE
with (gradient) boundary conditions, which in general cannot be obtained.

We instead use a more direct approach that allows for a thorough study of the regularity and structure of
the problem’s value function V , and eventually leads to the complete characterisation of the optimal control
strategy. To be more precise, we begin with connecting our two-dimensional bounded-variation stochastic
control problem to a suitable zero-sum optimal stopping game (Dynkin game), such that Vx = v where v
denotes the value of the game with underlying two-dimensional, uncontrolled, degenerate diffusion (S,Π)
taking values in R × (0, 1). The players in this game can be thought of as the two forces who wish to either
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increase or decrease marginally the level of the process X. By studying the game, we are able to characterise
the optimal stopping strategy of each player via two free boundary functions a±(π) for π ∈ (0, 1), which are
monotone and bounded.

Then, via a change of measure, the original two-dimensional controlled process (X,Π) is transformed into
(X,Φ) with decoupled dynamics that takes values in R× (0,∞). Under these new (x, ϕ)–coordinates, we show
that the transformed control value function V (x, ϕ), game value function v(x, ϕ), and associated free boundary
functions b±(ϕ) inherit all properties proved for V (x, π), v(x, π) and a±(π). Using these properties, and proving
local semiconcavity of V , allow us to show via fine techniques from viscosity theory that V ∈ C1(R× (0,∞)).
Because of the degeneracy of the process (X,Φ) (in which X and Φ are driven by the same Brownian motion),
in order to derive further regularity of the control problem’s value function it is useful to derive the intrinsic
parabolic formulation of the problem (see also [25] and [12]). This is achieved by passing yet to another
transformation (X,Y ) of our state process taking values in R2. In these new coordinates we prove that the

transformed control value function V̂ (x, y) is also continuously differentiable and it is furthermore such that

V̂xx admits a continuous extension to the closure of the associated inaction region (where a linear parabolic
PDE holds). This regularity is then employed in order to prove a verification theorem identifying an optimal
control rule. This keeps for almost all times the diffusion (X,Φ) within the closure of the inaction region
{(x, ϕ) : b+(ϕ) < x < b−(ϕ)}, according to a Skorokhod reflection.

In order to obtain finer regularity and a characterisation of the free boundaries triggering the optimal control
rule, we continue our analysis in the (x, y)–coordinates. Here, by introducing a new transformed Dynkin game
with value v̂(x, y), we are able to show that the (x, ϕ)-inaction region transforms into an open set of R2

which is delineated by two strictly increasing curves x = c±(y). By exploiting the structure of transformation
linking the (x, ϕ)-plane to the (x, y)-plane, we then obtain an easy proof of the fact that c± are Lipschitz-
continuous functions, with Lipschitz constant L = 1. Such a result is of particular independent interest,
given the importance of Lipschitz regularity in obstacle problems (see the introduction of [10] for a detailed
account on this and its related literature). Moreover, we believe that the simple argument of our proof can
be applied also to other singular control/optimal stopping problems with partial observation, thus providing
an alternative – to the more technical approach developed in [10] – for obtaining the Lipschitz regularity of
the optimal stopping boundaries. The Lipschitz property of c± is then employed to show via probabilistic
techniques à la [11] that the Dynkin game’s value function is continuously differentiable in R2; that is, a global
smooth-fit property holds. The latter fact is finally useful in proving that v̂xx ∈ L∞loc(R2) and in obtaining a
system of nonlinear integral equations solved by c±.

Overall, notwithstanding the degeneracy of the associated PDE in the variational formulation of the original
control problem, by using our probabilistic methodology in combination with viscosity theory arguments and
switching between three equivalent formulations (under change of variables): (a) we achieve a notable global
regularity of the value function V , namely V ∈ C1(R × (0,∞)), and we deduce that its transformed version

V̂ is actually C2,1 in the closure of its inaction region; (b) we use these properties in order to construct an
optimal control strategy in terms of the belief-dependent process t 7→ b±(Φt); (c) we obtain global Lipschitz

continuity of the free boundaries c± arising in the transformed problem V̂ , which are then characterised via
nonlinear integral equations.

Note that, using our methodology as described above, we manage to obtain the minimal (necessary) reg-
ularity in order to construct an optimal control strategy and verify its optimality. As in multi-dimensional
settings proving regularity properties of the control value function can be very challenging, having a method-
ology that takes a different route can be very helpful in studying similar problems with singular controls under
partial observation. Moreover, it is worth observing that backtracking all the involved change of variables, the
characterisation of c± effectively turns into a characterisation of the free boundaries b± and consequently of
a± in the original (x, π)–coordinates.

Structure of the paper. The rest of this paper is organised as follows. In Section 2, we present the model,
formulate the control problem, and then derive the separated problem V . The first related optimal stopping
game is derived in Section 3, while Section 4 introduces the first useful change of coordinates. Section 5 then
studies the regularity of the (transformed) control problem’s value function V , and Section 6 presents the
verification theorem and the construction of an optimal control. Finally, in Section 7: we introduce the last
change of variables; we obtain the Lipschitz-continuity of the corresponding free boundaries c±; we prove the
smooth-fit property of the transformed Dynkin game’s value function v̂; and we derive the integral equations
for c±.
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2. Problem Formulation and the Separated Problem

On a complete probability space (Ω,F ,P), we define a one-dimensional Brownian motion (Bt)t≥0 whose
P-augmented natural filtration is denoted by (FBt )t≥0. Moreover, we define a random variable µ which is
independent of the Brownian motion B and can take two possible real values, namely µ ∈ {µ0, µ1}, where
µ0, µ1 ∈ R. Without loss of generality, we assume henceforth that µ1 > µ0 and that

π := P(µ = µ1) ∈ (0, 1).

In absence of any intervention, the underlying (stochastic inventory) process St as observed by the decision
maker, follows the dynamics

dSt = µdt+ ηdBt, S0 = x ∈ R,
for some η > 0. Recall that the drift µ of the process S is not observable by the decision maker, who can
only monitor the evolution of the process S itself. In light of this observation, the decision maker select their
control strategy P based solely on their observation of the process S. By denoting the natural filtration of any
process Y by FY := (FYt )t≥0, we can therefore define the set of admissible controls

A := {P : Ω× R+ → R such that t 7→ Pt is right-continuous, (locally) of bounded variation

and P is FS − adapted}.

To be more precise, we consider the minimal decomposition of the bounded-variation control P ∈ A to be

Pt = P+
t − P−t ,

where P+ and P− are then nondecreasing, right-continuous FS–adapted processes. From now on, we set
P±0− = 0 a.s. for any P ∈ A. Hence, the reference (controlled inventory) process is given by

XP
t := St + Pt, (2.1)

where P ∈ A, and such that XP
0− = x. Note that, when P ≡ 0, the inventory process is uncontrolled and takes

the form X0 = S.
Given the aforementioned setting, the decision maker’s goal is to minimise the overall (discounted) cost of

holding, shortage and controlling the inventory process. In mathematical terms, the bounded-variation control
problem of the decision maker is given by

inf
P∈A

E

[∫ ∞
0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
, (2.2)

where E denotes the expectation under the probability measure P, ρ > 0 is the decision maker’s discount rate
of future costs, K+,K− > 0 are the marginal costs per unit of control exerted on XP , and C : R → R+ is a
holding and shortage cost function which satisfies the following standing assumption.

Assumption 2.1. There exists constants p > 1, α0, α1, α2 > 0 such that the following hold true:

(i) for every x ∈ R
0 ≤ C(x) ≤ α0(1 + |x|p);

(ii) for every x, x′ ∈ R,

|C(x)− C(x′)| ≤ α1

(
1 + C(x) + C(x′)

)1− 1
p |x− x′|;

(iii) for every x, x′ ∈ R and λ ∈ (0, 1),

0 ≤ λC(x) + (1− λ)C(x′)− C(λx+ (1− λ)x′) ≤ α2λ(1− λ)(1 + C(x) + C(x′))(1− 2
p )

+

|x− x′|2;

Notice that Assumption 2.1.(iii) above implies that C is convex and locally semiconcave. Hence, by [5,

Corollary 3.3.8], we have that C ∈ C1,Lip
loc (R;R+). A classical quadratic holding cost C(x) = (x−x)2, for some

target level x ∈ R, clearly satisfies Assumption 2.1.
Given the feature of a non-observable µ, Problem (2.2) is not Markovian and cannot be therefore tackled

via a dynamic programming approach. In the following, we will derive a new equivalent Markovian problem
under full information, the so-called “separated problem”. This will be then solved by exploiting its connection
to a zero-sum game of optimal stopping and by a careful analysis of the regularity of its value function.



Federico, Ferrari and Rodosthenous / Inventory Control with Unknown Demand Trend 6

2.1. The separated problem

In order to derive the equivalent problem under full information, we use standard arguments from filtering
theory (see, e.g., [32, Section 4.2]) and we define the “belief” process

Πt := P(µ = µ1 | FSt ), t ≥ 0,

according to which, decision makers update their beliefs on the (true) value of the drift µ based on the arrival
of new information via the observation of the process S. Then, the dynamics of XP and Π can be written as{

dXP
t = (µ1Πt + µ0(1−Πt))dt+ ηdWt + dPt, XP

0− = x ∈ R,
dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),

(2.3)

where the innovation process W , given by

dWt =
dSt
η
−
(
µ0

η
+ γΠt

)
dt, for all t ≥ 0,

is an FS-Brownian motion on (Ω,F ,P) according to Lévy’s characterisation theorem (see, e.g., [32, Theorem
4.1]), and

γ :=
µ1 − µ0

η
> 0.

It can be verified that the pair (XP ,Π) is an FS-adapted (time-homogeneous strong) Markov process on
(Ω,F ,P) as a unique strong solution of the system of stochastic differential equations in (2.3) (see, e.g. [35,
Chapter V]). In (2.3), the (unknown/non-observable) drift µ of X in the original model is replaced with its
filtering estimate E[µ | Ft]. Moreover, the belief (learning) process Π = (Πt)t≥0 involved in the filtering is
a bounded martingale on [0, 1] such that Π∞ ∈ {0, 1}, due to the fact that all information eventually gets
revealed at time t =∞.

Then, for (XP ,Π) as in (2.3), with (x, π) ∈ O := R× (0, 1), we define the full-information problem

V (x, π) := inf
P∈A

E

[∫ ∞
0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
, (2.4)

where all the processes involved are now FS-adapted. Hence, Problem (2.4) is a two-dimensional Markovian
singular stochastic control problem with controls of bounded variation. Moreover, by uniqueness of the strong
solution to the belief equation, a control P ? is optimal for (2.2) if and only if it is optimal for (2.4), and the
values in (2.2) and (2.4) coincide.

Note that, in light of the dynamics of (XP ,Π) in (2.3), a high value of Π close to 1 would imply that the
decision maker has a strong belief in a high drift µ1, while a low Π close to 0 would imply, on the contrary, a
strong belief in a low drift µ0 scenario.

Remark 2.2 (Full information cases). In the formulation (2.2), the case of prior belief π := P(µ = µ1) ∈ {0, 1}
implies the certainty of the decision maker regarding whether µ = µ0 or µ = µ1. Hence, in this case, there is
no uncertainty about the value of the drift µ, which is not a random variable any more. Respectively, in the
formulation (2.4), the case of prior belief Π0 = π ∈ {0, 1} yields that the belief process Π will actually remain
constant through time, due to its dynamics which imply that Πt = π for all t > 0. Therefore, we equivalently
have that such values of π ∈ {0, 1} correspond to the full information cases.

In these cases, the optimal control problem becomes a standard one-dimensional bounded-variation stochastic
control problem, for which an early study can be found in [22]. The optimal control strategy in such a case is
triggered by two constant boundaries within which the process XP is kept (via a Skorokhod reflection).

Given the convexity of C as in Assumption 2.1, and the linear structure of P 7→ XP in (2.3), by following
standard arguments based on Komlós’ theorem (see, e.g., [20, Proposition 3.4]) the next result can be shown.

Proposition 2.3. There exists an optimal control P ? for (2.4). Moreover, this is unique (up to indistinguisha-
bility) if C is strictly convex.
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3. The First Related Optimal Stopping Game

We now derive a zero-sum optimal stopping game (Dynkin game) related to V , and we provide preliminary
properties of its value function and of the geometry of its state space. In this section, the uncontrolled process
X0 with Pt ≡ 0 for all t ≥ 0 becomes involved in the analysis, so we recall from (2.3) that (X0

t ,Πt)t≥0 ≡
(St,Πt)t≥0 is the two-dimensional strong Markov process solving{

dX0
t = (µ1Πt + µ0(1−Πt))dt+ ηdWt, X0

0 = x ∈ R,
dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),

(3.1)

Proposition 3.1. Consider the process (X0
t ,Πt)t≥0 defined in (3.1) and define

v(x, π) := inf
σ

sup
τ

E(x,π)

[ ∫ τ∧σ

0

e−ρtC ′(X0
t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
, (3.2)

where the optimisation is taken over the set of FW -stopping times and E(x,π) denotes the expectation conditioned
on (X0

0 ,Π0) = (x, π) ∈ O. Consider also the control value function V (x, π) defined in (2.4). Then, we have
the following properties:

(i) x 7→ V (x, π) is differentiable and v(x, π) = Vx(x, π).
(ii) x 7→ V (x, π) is convex and therefore x 7→ v(x, π) is nondecreasing.

(iii) π 7→ v(x, π) is nondecreasing.
(iv) (x, π) 7→ v(x, π) is continuous on R× (0, 1).

Proof. In this proof, whenever we need to stress the dependence of the state process on its starting point, we
denote by (X0;(x′,π′),Ππ′) the unique strong solution to (3.1) starting at (x′, π′) ∈ O at time zero. We prove
separately the four parts.

Proof of (i). Thanks to Proposition 2.3, it suffices to apply [29, Theorem 3.2] upon setting G ≡ 0,

H(ω, t, x) := e−ρtC
(
x+ ηWt(ω) +

∫ t

0

(
µ1Πs(ω) + µ0(1−Πs(ω))

)
ds
)
, (ω, t, x) ∈ Ω× R+ × R,

γt := e−ρtK+, νt := e−ρtK−, t ≥ 0,

and noticing that the proof in [29] can be easily adapted to our infinite-time horizon discounted setting.

Proof of (ii). Denote by (XP ;(x,π),Ππ) the unique strong solution to (2.3) when (XP
0− ,Π0) = (x, π). The

convexity of V (x, π) with respect to x, can be easily shown by exploiting the convexity of C(x) and the linear
structure of (x, P ) 7→ XP ;(x,π), for any P ∈ A and (x, π) ∈ O. The nondecreasing property of v(·, π) then
follows from the fact that v = Vx from part (i).

Proof of (iii). Notice that

X0
t = x+ ηWt +

∫ t

0

(
µ1Πs + µ0(1−Πs)

)
ds, t ≥ 0, (3.3)

and that π 7→ Ππ is nondecreasing due to standard comparison theorems for strong solutions to one-dimensional
stochastic differential equations [26, Chapter 5.2]. Then, the claim follows from (3.2) and Assumption 2.1
according to which x 7→ C ′(x) is nondecreasing.

Proof of (iv). By [29, Theorem 3.1] and Proposition 2.3 we know that, for any (x, π) ∈ O, (3.2) admits a
saddle point. Take (xn, πn)→ (x, π) as n ↑ ∞, and let (τ?, σ?) and (τ?n, σ

?
n) realize the saddle-points for (x, π)

and (xn, πn), respectively. Then, we have

v(x, π)− v(xn, πn) ≤ E

[ ∫ τ?∧σ?n

0

e−ρt
(
C ′(X

0;(x,π)
t )− C ′(X0;(xn,πn)

t )
)

dt

]
≤ E

[ ∫ ∞
0

e−ρt
∣∣∣C ′(X0;(x,π)

t )− C ′(X0;(xn,πn)
t )

∣∣∣dt].
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Without loss of generality, we can take (xn, πn) ⊂ (x− ε, x+ ε)× (π − ε, π + ε), for a suitable ε > 0 and for
n sufficiently large. Then, by Assumption 2.1.(ii) and standard estimates using Assumption 2.1.(i), (3.3) and
the fact that Π is bounded in [0, 1], we can invoke the dominated convergence theorem and obtain

lim sup
n→∞

(v(x, π)− v(xn, πn)) ≤ 0.

Arguing symmetrically, now with the couple of stopping times (τ?n, σ
?), we also find

lim sup
n→∞

(v(xn, πn)− v(x, π)) ≤ 0.

Combining the last two inequalities, we obtain the desired continuity claim.

In the rest of this section, we focus on the study of the optimal stopping game v presented in (3.2), due
to its connection to our stochastic control problem (cf. Proposition 3.1). To that end, we define below the
so-called continuation (waiting) region

C1 :=
{

(x, π) ∈ O : −K+ < v(x, π) < K−
}
, (3.4)

and the stopping region S1 := S1
+ ∪ S1

−, whose components are given by

S1
+ :=

{
(x, π) ∈ O : v(x, π) ≤ −K+

}
, S1

− :=
{

(x, π) ∈ O : v(x, π) ≥ K−
}
. (3.5)

In light of the continuity of v in Proposition 3.1.(iv), we conclude that the continuation region C1 is an open
set, while the two components of the stopping regions S1

± are both closed sets. We can therefore define the
free boundaries

a+(π) := sup
{
x ∈ R : v(x, π) ≤ −K+

}
and a−(π) := inf

{
x ∈ R : v(x, π) ≥ K−

}
. (3.6)

Here, and throughout the rest of this paper, we use the convention sup ∅ = −∞ and inf ∅ = +∞. Then, by
using the fact that v is nondecreasing with respect to x (see Proposition 3.1.(ii)), we can obtain the structure
of the continuation and stopping regions, which take the form

C1 =
{

(x, π) ∈ O : a+(π) < x < a−(π)
}
, (3.7)

S+
1 =

{
(x, π) ∈ O : x ≤ a+(π)

}
and S−1 =

{
(x, π) ∈ O : x ≥ a−(π)

}
. (3.8)

Clearly, the continuity of v further implies that the free boundaries a± are strictly separated, namely

a+(π) < a−(π) for all π ∈ (0, 1).

We now prove some preliminary properties of the free boundaries π 7→ a±(π).

Proposition 3.2. The free boundaries a± defined in (3.6) satisfy the following properties:

(i) a±(·) are nonincreasing on (0, 1).
(ii) a+(·) is left-continuous and a−(·) is right-continuous on (0, 1).

(iii) There exist constants x∗± ∈ R, such that

x∗+ ≤ a+(π) < a−(π) ≤ x∗−, ∀ π ∈ (0, 1). (3.9)

Moreover, letting (C ′)−1 be the generalised inverse of C ′, we have a+(π) ≤ (C ′)−1(−ρK+) and a−(π) ≥
(C ′)−1(ρK−) for all π ∈ (0, 1).

Proof. We prove separately the four parts.

Proof of (i). This is a consequence of the definitions of a±(·) in (3.6) and the fact that v(x, ·) is nondecreasing
for any x ∈ R; cf. Proposition 3.1.(iii).

Proof of (ii). This follows from part (i) above and the closedness of the sets S1
±.

Proof of (iii). The fact that a+(π) ≤ (C ′)−1(−ρK+) and a−(π) ≥ (C ′)−1(ρK−) follows by noticing that
S+

1 ⊆ {x ∈ R : x ≤ (C ′)−1(−ρK+)} and S−1 ⊆ {x ∈ R : x ≥ (C ′)−1(ρK−)}.
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In order to show the other bounds, we proceed as follows. Since µ1 > µ0 and Πt > 0, we have P(x,π)-a.s.,
for any t ≥ 0, that

X0
t = x+ ηWt +

∫ t

0

(
µ1Πs + µ0(1−Πs)

)
ds = x+ ηWt + µ0t+

∫ t

0

(µ1 − µ0)Πsds

≥ x+ ηWt + µ0t =: X0
t .

Similarly, using that Πt < 1, we get that

X0
t ≤ x+ ηWt + µ1t =: X

0

t .

Therefore, the latter two estimates yield that X0
t ≤ X0

t ≤ X
0

t for all t ≥ 0. Combining these inequalities
with the fact that C ′(·) is nondecreasing due to Assumption 2.1 and the definition (3.2) of the value function
v(x, π), we conclude that

v0(x) ≤ v(x, π) ≤ v1(x), for all (x, π) ∈ O, (3.10)

where we have introduced the one-dimensional optimal stopping games

v0(x) := inf
σ∈T

sup
τ∈T

E

[ ∫ τ∧σ

0

e−ρtC ′(X0
t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
and

v1(x) := inf
σ∈T

sup
τ∈T

E

[ ∫ τ∧σ

0

e−ρtC ′(X
0

t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
.

Because both v0(·) and v1(·) are nondecreasing on R, standard techniques allow to show that there exists finite
x?−, x

?
+ such that

{x ∈ R : x ≥ x?−} = {x ∈ R : v0(x) ≥ K−}

and

{x ∈ R : x ≤ x?+} = {x ∈ R : v1(x) ≤ −K+}.

Hence, combining the latter two regions together with the inequalities in (3.10), we eventually get that

{x ∈ R : x ≥ x?−} ⊆ {(x, π) ∈ O : v(x, π) ≥ K−} = S−1 . (3.11)

and

{x ∈ R : x ≤ x?+} ⊆ {(x, π) ∈ O : v(x, π) ≤ −K+} = S+
1 , (3.12)

Hence, S±1 6= ∅ and the claim follows from (3.11)-(3.12).

Recall that, the higher the value of π, the stronger the decision makers’ belief is about µ begin equal to
µ1, which is the highest possible value (recall that µ1 > µ0). Taking this into account, we notice from the
monotonicity (nonincreasing) of the free boundary functions a±(π) in Proposition 3.2.(i) that: The more the
decision maker’s belief tends towards µ1 (higher inventory level on average), the more cautious they need to be,
thus they tend to intervene (by unloading part of excess inventory) more often to make sure that the inventory
level X is kept below the optimal threshold a−(π), despite its strong tendency to go up, so that the overall
(holding and control) costs are minimised. On the other hand, they are more willing to delay interventions
(by placing replenishment orders) to increase the inventory level X, by optimally setting a lower “base-stock”
level a+(π) as their belief grows towards µ1 (higher inventory level on average). This reflects the fact that the
inventory level X will not breach this lower boundary too often under their belief that µ = µ1 and eventually
achieves the minimisation of the overall (shortage and control) costs.
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Figure 1: An illustrative drawing of the free boundaries a+ and a− satisfying Proposition 3.2. In the picture,
α := (C ′)−1(ρK−) and β := (C ′)−1(−ρK+).

4. A Decoupling Change of Measure

In order to provide further results about the optimal control problem (2.4) and the associated Dynkin game
(3.2), it is convenient to decouple the dynamics of the controlled inventory process XP and the belief process
Π. This can be achieved via a transformation of state space and a change of measure, as we explain in the
following subsections.

4.1. Transformation of process Π to Φ.

We first recall from (2.3) (see also (3.1)), that for any prior belief Π0 = π ∈ (0, 1), we have Πt ∈ (0, 1) for all
t ∈ (0,∞). Hence, we define the process

Φt :=
Πt

1−Πt
, t ≥ 0,

whose dynamics are given via Itô’s formula by

dΦt = γ2ΠtΦtdt+ γΦtdWt = γΦt(γΠtdt+ dWt), Φ0 = ϕ :=
π

1− π
. (4.1)

Note that, the process Φ is known as the “likelihood ratio process” in the literature of filtering theory (see,
e.g. [25]).

4.2. Change of measure from P to QT , for some fixed T > 0.

We begin by defining the exponential martingale

ζT := exp

{
−γ
∫ T

0

ΠsdWs −
1

2

∫ T

0

γ2Π2
sds

}
,
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and the measure QT ∼ P on (Ω,FT ) by
dQT
dP

= ζT .

Then, the process

W ∗t := Ws + γ

∫ t

0

Πsds, t ∈ [0, T ],

is a Brownian motion in [0, T ] under QT , and the dynamics of Φ in (4.1) simplifies to

dΦt = γΦtdW
∗
t , t ∈ (0, T ], Φ0 = ϕ, (4.2)

hence Φ is an exponential martingale under QT .
Consequently, applying the same change of measure to the process XP from (2.3), we get that

dXP
t = µ0dt+ ηdW ∗t + dP+

t − dP−t , t ∈ [0, T ], XP
0− = x. (4.3)

In order to change the measure also in the cost criterion of our value function in (2.4), we further define
the process

Zt :=
1 + Φt
1 + ϕ

, t ∈ [0, T ],

which can be verified via Itô’s formula to satisfy

Zt = 1/ζt, for every t ∈ [0, T ].

Hence, denoting by EQT the expectation under QT , we have that

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

) ]
=

1

1 + ϕ
EQT

[
(1 + ΦT )

∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
. (4.4)

Since the process (1+Φt)t≥0 defines a nonnegative martingale under QT , by [15, Theorem 57] (and the example
after the theorem) we can write

EQT

[
(1 + ΦT )

∫ T

0

e−ρtC(XP
t )dt

]
= EQT

[ ∫ T

0

e−ρt(1 + Φt)C(XP
t )dt

]
,

as well as

EQT

[
(1 + ΦT )

∫ T

0

e−ρtdP±t

]
= EQT

[ ∫ T

0

e−ρt(1 + Φt)dP
±
t

]
.

Hence, combining together the above expressions of the expectations EQT we get that (4.4) can be expressed
in the form of

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
=

1

1 + ϕ
EQT

[ ∫ T

0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
. (4.5)

4.3. Passing to the limit as T → ∞ and to the new measure Q.

We firstly notice that passing to the limit as T → ∞ cannot be performed directly to the latter expression
in (4.5), since the measure QT changes with T . Nevertheless, notice that the right-hand side of (4.5) only
depends on the law of the processes involved. Given that we are only interested in the value function (2.4) and
eventually in the optimal feedback control P ? (cf. Proposition 2.3) – which do not depend on the laws – we
can introduce a new auxiliary problem.
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To that end, we define a new filtered probability space (Ω,F ,F,Q) supporting a Brownian motion (W t)t≥0

and the strong solution to the controlled stochastic differential equation{
dX

P

t = µ0dt+ ηdW t + dP
+

t − dP
−
t , X

P

0− = x,

dΦt = γΦtdW t, Φ0 = ϕ := π
1−π ,

for P = P
+ − P− ∈ A, where

A :=
{
P : Ω× R+ → R such that t 7→ P t is right-continuous, (locally) of bounded variation

and P is F− adapted
}
.

Then, denoting by E the expectation on (Ω,F) under P, we have for every T > 0, that

EQT

[ ∫ T

0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

) ]
= E

[ ∫ T

0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
,

due to the equivalence in law of the process (XP
t ,Φt,W

∗
t , Pt)t≥0 under QT and the process (X

P

t , Φt, W t,
P t)t≥0 under Q. Therefore, combining the above equality with (4.5), we eventually get

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
=

1

1 + ϕ
E

[ ∫ T

0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
, (4.6)

Thanks to (4.6), we can now take limits as T →∞ and obtain, in view of the definitions (2.4) of the control
value function and (4.1) of the starting value ϕ, that

V (x, π) = (1− π)V
(
x,

π

1− π

)
, or equivalently V (x, ϕ) = (1 + ϕ)V

(
x,

ϕ

1 + ϕ

)
, (4.7)

where we define

V (x, ϕ) := inf
P∈A

E

[ ∫ ∞
0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
.

Therefore, in order to obtain the value function V (x, π) from (2.4), we could instead solve first the above
problem to get V (x, ϕ) and then use the equality in (4.7). However, in order to simplify the notation, from now
on in the study of V we will simply write (Ω,F ,F,Q,EQ,W,X,Φ, P,A) instead of (Ω,F ,F,Q,E,W ,X,Φ, P ,A).

4.4. The optimal control problem with state-space process (XP ,Φ) under the new measure Q.

Summarising the results from Sections 4.1–4.3, we henceforth focus on the study of the following optimal
control problem

V (x, ϕ) := inf
P∈A

EQ

[ ∫ ∞
0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
=: inf

P∈A
J x,ϕ(P ). (4.8)

under the dynamics {
dXP

t = µ0dt+ ηdWt + dP+
t − dP−t , XP

0− = x ∈ R,
dΦt = γΦtdWt, Φ0 = ϕ := π

1−π ∈ (0,∞),
(4.9)

for a standard Brownian motion W . In light of the equality in (4.7), this will lead to the original value function
V (x, π) from (2.4). In the remaining of Section 4, we expand our study – beyond the values of the control
problems – to the relationship between the free boundaries in the two formulations, since these boundaries
will eventually define the optimal control strategy (see Section 6).
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4.5. The optimal stopping game associated to (4.8)–(4.9) under the new measure Q.

The next result is concerned with properties of the value function defined in (4.8) and its connection to an
associated optimal stopping game. The proof is omitted for brevity, since it can be proved by employing
arguments similar to those used in the proof of Propositions 2.3 and 3.1 above.

Proposition 4.1. Consider the problem defined in (4.8)–(4.9).

(i) There exists an optimal control P ? solving (4.8). Moreover, P ? is unique (up to indistinguishability) if
C is strictly convex.

(ii) x 7→ V (x, ϕ) is convex and differentiable, such that V x(x, ϕ) = v(x, ϕ) on R× (0,∞), for

v̄(x, ϕ) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0

e−ρt(1 + Φt)C
′(X0

t )dt−K+(1 + Φτ )e−ρτ1{τ<σ}

+K−(1 + Φσ)e−ρσ1{τ>σ}

]
. (4.10)

Here, the optimisation is taken over the set of FW -stopping times and the state-space process is given by{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dΦt = γΦtdWt, Φ0 = ϕ := π
1−π ∈ (0,∞).

(4.11)

It further follows from the previous analysis, namely Sections 4.1–4.3, that the value function v(x, π) of the
optimal stopping game in (3.2) is connected to the value function v̄(x, ϕ) of the new game introduced above
in (4.10), according to (see also (4.7) for the control value functions) the following equality

v̄(x, ϕ) = (1 + ϕ) v
(
x,

ϕ

1 + ϕ

)
. (4.12)

In view of the above relationship, the value function v̄(·, ·) inherits important properties which have already
been proved for v(·, ·) in Section 3. In particular, we have directly from Proposition 3.1.(ii) and (iv) the
following result.

Proposition 4.2. The value function v̄ defined in (4.10) satisfies the following properties:

(i) (x, ϕ) 7→ v̄(x, ϕ) is continuous over R× (0,∞);
(ii) x 7→ v̄(x, ϕ) is nondecreasing.

Following similar steps as in Section 3 to study the new game (4.10), we define below the so-called contin-
uation (waiting) region

C2 :=
{

(x, ϕ) ∈ R× (0,∞) : −K+(1 + ϕ) < v̄(x, ϕ) < K−(1 + ϕ)
}
, (4.13)

and the stopping region S2 := S2
+ ∪ S2

−, whose components are given by

S+
2 :=

{
(x, ϕ) ∈ R× (0,∞) : v̄(x, ϕ) ≤ −K+(1 + ϕ)

}
, (4.14)

S−2 :=
{

(x, ϕ) ∈ R× (0,∞) : v̄(x, ϕ) ≥ K−(1 + ϕ)
}
. (4.15)

Moreover, in light of the continuity of v̄ in Proposition 4.2.(i), we conclude that the continuation region C2
is an open set, while the two components of the stopping regions S2

± are both closed sets. We can therefore
define the free boundaries

b+(ϕ) := sup
{
x ∈ R : v(x, ϕ) ≤ K+(1 + ϕ)

}
, (4.16)

b−(ϕ) := inf{x ∈ R : v(x, ϕ) ≥ K−(1 + ϕ)}. (4.17)

Then, by using the fact that v̄ is nondecreasing with respect to x (see Proposition 4.2.(ii)), we can obtain the
structure of the continuation and stopping regions, which take the form

C2 =
{

(x, ϕ) ∈ R× (0,∞) : b+(ϕ) < x < b−(ϕ)
}
, (4.18)

S+
2 =

{
(x, ϕ) ∈ R× (0,∞) : x ≤ b+(ϕ)

}
and S−2 =

{
(x, ϕ) ∈ R× (0,∞) : b−(ϕ) ≤ x

}
. (4.19)
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Clearly, the continuity of v̄ implies that these free boundaries b± are strictly separated, namely b+(ϕ) < b−(ϕ)
for all ϕ ∈ (0,∞).

Moreover, observe that the relationship in (4.12) together with the definitions (3.4) and (4.13) of C1 and
C2, respectively, imply that the latter two regions are equal under the transformation from (x, π)- to (x, ϕ)-
coordinates. To be more precise, for any (x, π) ∈ R× (0, 1), define the transformation

T := (T 1, T 2) : R× (0, 1)→ R× (0,∞), (T 1(x, π), T 2(x, π)) =
(
x,

π

1− π

)
,

which is invertible and its inverse is given by

T
−1

(x, ϕ) =
(
x,

ϕ

1 + ϕ

)
, (x, ϕ) ∈ R× (0,∞).

Hence, T : R× (0, 1)→ R× (0,∞) is a global diffeomorphism, which implies together with the expressions of
(3.4)–(3.5) and (4.13)–(4.15) that

C2 = T (C1) and S±2 = T (S±1 ).

Taking this into account together with the expressions (3.7)–(3.8) of C1 and S±1 , we can further conclude from
the expressions (4.18)–(4.19) of C2 and S±2 that

b±(ϕ) = a±

(
ϕ

1 + ϕ

)
. (4.20)

Hence, in light of the previously proved results for a± in Proposition 3.2, we also obtain the following
preliminary properties of the free boundaries ϕ 7→ b±(ϕ).

Proposition 4.3. The free boundaries b± defined in (4.16)–(4.17) satisfy the following properties:

(i) b±(·) are nonincreasing on (0,∞).
(ii) b+(·) is left-continuous and b−(·) is right-continuous on (0,∞).

(iii) b±(·) are bounded by x∗± as in Proposition 3.2:

x∗+ ≤ b+(ϕ) < b−(ϕ) ≤ x∗−, ∀ ϕ ∈ (0,∞).

Moreover, we have b+(ϕ) ≤ (C ′)−1(−ρK+) and b−(ϕ) ≥ (C ′)−1(ρK−) for all ϕ ∈ (0,∞).

Notice that the explicit relationship (4.20) between the free boundaries a± and b± that we proved above, is
not only crucial for retrieving the original boundaries a± from b±, but it is also particularly useful in the proof
of Proposition 4.3.(i) and (iii). In fact, proving the monotonicity and boundedness of b± by directly working
on the Dynkin game (4.10) is not a straightforward task.

Up this point, we managed to obtain the structure of the optimal stopping strategies and preliminary
properties of the corresponding optimal stopping boundaries associated with these strategies, for both Dynkin
games (3.2) and (4.10) connected to the optimal control problems (2.4) and (4.8), respectively. Moreover,
we managed to obtain some regularity results for the value functions of the latter control problems (see
Propositions 3.1, 4.1 and 4.2). In Sections 5 and 6 below, building on the aforementioned analysis, we show
that the control value function V has the sufficient regularity needed to construct an optimal control strategy.
This will involve the boundaries b±.

5. HJB Equation and Regularity of V

In this section, we introduce the Hamilton-Jacobi-Bellman (HJB) equation (variational inequality) associated
to the control value function V defined in (4.8) and state-space process (XP ,Φ) given by (4.9). First, let
D ⊆ R2 be an open domain and define the space Ck,h(D;R) as the space of functions f : D → R which are
k-times continuously differentiable with respect to the first variable and h-times continuously differentiable
with respect to the second variable. When k = h we simply write Ch.

We begin our study with the following ex ante regularity result for V . Its proof can be found in the Appendix.
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Proposition 5.1. The control value function V defined in (4.8) is locally semiconcave; that is, for every R > 0
there exists LR > 0 such that for all λ ∈ [0, 1] and all (x, ϕ), (x′, ϕ′) such that |(x, ϕ)| ≤ R and |(x′, ϕ′)| ≤ R,
we have

λV (x, ϕ) + (1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′)) ≤ LRλ(1− λ)|(x, ϕ)− (x′, ϕ′)|2.

In particular, by [5, Theorem 2.17], we conclude that V is locally Lipschitz.

Given the locally Lipschitz continuity proved in the previous result, we now aim at employing the HJB
equation to investigate further regularity of V . To that end, we define on f ∈ C2(R × (0,∞);R) the second
order differential operator

Lf(x, ϕ) := µ0fx(x, ϕ) +
1

2

(
η2fxx(x, ϕ) + γ2ϕ2fϕϕ(x, ϕ) + 2γηϕfxϕ(x, ϕ)

)
. (5.1)

By the dynamic programming principle, we expect that V solves (in a suitable sense) the HJB equation (in
the form of a variational inequality)

max
{

(ρ− L)u(x, ϕ)− (1 + ϕ)C(x), −ux(x, ϕ)−K+(1 + ϕ), ux(x, ϕ)−K−(1 + ϕ)
}

= 0, (5.2)

for (x, ϕ) ∈ R × (0,∞). In particular, we now first show that the value function V of the control problem
defined in (4.8) is a viscosity solution to (5.2). We present the formal definition of the latter notion below.

Definition 5.2. A function u ∈ C0(R× (0,∞);R) is called a viscosity solution to (5.2) if it is both a viscosity
subsolution and supersolution, where:

(i) a function u ∈ C0(R×(0,∞);R) is called a viscosity subsolution to (5.2) if, for every (x, ϕ) ∈ R×(0,∞)
and every β ∈ C2(R× (0,∞);R) such that u− β attains a local maximum at (x, ϕ), it holds

max
{

(ρ− L)β(x, ϕ)− (1 + ϕ)C(x), −βx(x, ϕ)−K+(1 + ϕ), βx(x, ϕ)−K−(1 + ϕ)
}
≤ 0.

(ii) a function u ∈ C0(R×(0,∞);R) is called a viscosity supersolution to (5.2) if, for every (x, ϕ) ∈ R×(0,∞)
and every β ∈ C2(R× (0,∞);R) such that u− β attains a local minimum at (x, ϕ), it holds

max
{

(ρ− L)β(x, ϕ)− (1 + ϕ)C(x), −βx(x, ϕ)−K+(1 + ϕ), βx(x, ϕ)−K−(1 + ϕ)
}
≥ 0.

Following the arguments developed in Theorem 5.1 in Section VIII.5 of [21], and using the a priori regularity
obtained in Proposition 5.1, one can show the following classical result.

Proposition 5.3. The value function V defined in (4.8) is a locally Lipschitz continuous viscosity solution to
(5.2).

Recall the definition (4.13) of the continuation region C2 of problem v(x, ϕ) in (4.10) and the relationship
V x(x, ϕ) = v(x, ϕ) on R× (0,∞) from Proposition 4.1.(ii), to observe that

C2 =
{

(x, ϕ) ∈ R× (0,∞) : −K+(1 + ϕ) < V x(x, ϕ) < K−(1 + ϕ)
}
, (5.3)

This implies that C2 identifies also with the so-called “inaction region” of V , as suggested also by the HJB
equation (5.2). Combining the latter fact with Proposition 5.3 clearly implies the following result.

Corollary 5.4. The value function V defined in (4.8) is a locally Lipschitz continuous viscosity solution to

(ρ− L)u(x, ϕ)− (1 + ϕ)C(x) = 0, for all (x, ϕ) ∈ C2.

The result in Corollary 5.4 will be used in the forthcoming analysis to upgrade the regularity of the value
function in the closure of its inaction region which is the main goal of Section 5. Before reaching this (final) step
of our analysis in this section, we need to further prove that V is actually globally continuously differentiable.
We present this result in the following proposition, which is proved by using once again Proposition 5.3 together
with the properties of V proved in Proposition 5.1 and in Section 4.5.

Proposition 5.5. The value function V defined in (4.8) satisfies V ∈ C1(R× (0,∞);R).
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Proof. In order to prove that V ∈ C1(R×(0,∞);R), we need to prove that both (classical) derivatives V x(x, ϕ)
and V ϕ(x, ϕ) of V (x, ϕ) in the directions x and ϕ, respectively, are continuous on R × (0,∞). We therefore
split the proof of the desired claim in the following two steps.

Step 1. Continuity of V x. We already know from Proposition 4.1.(ii) that V x = v̄ exists and from Proposition
4.2.(i) that (x, ϕ) 7→ v̄(x, ϕ) is continuous over R × (0,∞). Hence, we conclude that (x, ϕ) 7→ V x(x, ϕ) is
continuous on R× (0,∞).

Step 2. Continuity of V ϕ. Let us now show that the (classical) derivative V ϕ exists at each (xo, ϕo) ∈
R× (0,∞).

We assume, without loss of generality1, that V is actually concave in a neighborhood I of (xo, ϕo). Then,
by concavity of V in I, the right- and left-derivatives of V exist in the ϕ-direction at (xo, ϕo). We denote

these derivatives by V
+

ϕ (xo, ϕo) and V
−
ϕ (xo, ϕo), respectively, and due to concavity they satisfy the inequality

V
−
ϕ (xo, ϕo) ≥ V

+

ϕ (xo, ϕo). Then, in order to show that V ϕ exists, it suffices to show that the strict inequality

V
−
ϕ (xo, ϕo) > V

+

ϕ (xo, ϕo) cannot hold. Aiming for a contradiction, we assume henceforth that V
−
ϕ (xo, ϕo) >

V
+

ϕ (xo, ϕo) does hold true.

It follows from [36, Theorem 23.4] and the fact that V x exists and is continuous (cf. Step 1 above) that
there exist vectors

ζ := (V x(xo, ϕo), ζϕ), η := (V x(xo, ϕo), ηϕ) ∈ D+V (xo, ϕo) such that ζϕ < ηϕ ,

where we denote by D+V (xo, ϕo) the superdifferential of V at (xo, ϕo). For any (x, ϕ) ∈ I, we then define

g(x, ϕ) := V (xo, ϕo) + V x(xo, ϕo)(x− xo) + ηϕ(ϕ− ϕo) ∧ ζϕ(ϕ− ϕo)

and notice that V (xo, ϕo) = g(xo, ϕo), while we also get by concavity that

V (x, ϕ) ≤ g(x, ϕ), ∀ (x, ϕ) ∈ I.

Next, we consider the sequence of functions (fn)n∈N ⊂ C2(R× (0,∞);R) defined by

fn(x, ϕ) := g(x, ϕo) +
1

2
(ηϕ + ζϕ)(ϕ− ϕo)−

n

2
(ϕ− ϕo)2, ∀ n ∈ N.

Such a sequence satisfies the following collection of properties:
fn(xo, ϕo) = g(xo, ϕo) = V (xo, ϕo), ∀ n ∈ N,
fn ≥ V in a neighborhood of (xo, ϕo), ∀ n ∈ N,
fnx (xo, ϕo) = V x(xo, ϕo), fnxx(xo, ϕo) = 0 = fnxϕ(xo, ϕo), fnϕϕ(xo, ϕo) = −n, ∀ n ∈ N.

(5.4)

Then, using the viscosity subsolution property (cf. Definition 5.2.(i)) of V at (xo, ϕo) yields

0 ≥ (ρ− L)fn(xo, ϕo)− (1 + ϕo)C(xo)
n→∞−→ +∞,

which gives the desired contradiction. Hence, by arbitrariness of (xo, ϕo), we have that V is differentiable in
the direction ϕ.

In view of the aforementioned differentiability in the direction ϕ and the semiconcavity of V (cf. Proposition
5.1) we conclude from [36, Theorem 25.5] that V ϕ is continuous on R× (0,∞).

We are now ready to show the final result of this section, namely to upgrade the regularity of the value
function of the control problem to the minimal required regularity for constructing a candidate optimal control
policy and verify its optimality in Section 6.

To this end, we define for any (x, ϕ) ∈ R× (0,∞) the transformation

T := (T1, T2) : R× (0,∞)→ R2, (T1(x, ϕ), T2(x, ϕ)) =
(
x, x− η

γ
log(ϕ)

)
, (5.5)

1This can be done by replacing the (locally) semiconcave V (x, ϕ) by W (x, ϕ) := V (x, ϕ)− C0|(x− xo, ϕ− ϕo)|2 for suitable
C0 > 0 in the subsequent argument.
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which is invertible with inverse given by

T−1(x, y) =
(
x, e

γ
η (x−y)

)
, (x, y) ∈ R2.

Using the latter inverse transformation, we introduce the transformed version V̂ (x, y) of the value function
V (x, ϕ) defined in (4.8) by

V̂ (x, y) := V (x, e
γ
η (x−y)), (x, y) ∈ R2. (5.6)

Moreover, direct calculations yield that

V̂x(x, y) + V̂y(x, y) = V x(x, e
γ
η (x−y)), (x, y) ∈ R2. (5.7)

Given that T : R× (0,∞)→ R2 is a global diffeomorphism, we have from (5.3) and (5.7) that the open set

C3 :=
{

(x, y) ∈ R2 : −K+(1 + e
γ
η (x−y)) <

(
V̂x + V̂y

)
(x, y) < K−(1 + e

γ
η (x−y))

}
= T (C2). (5.8)

Finally, define the second-order linear differential operator on f ∈ C2,1(R2;R) by

LX,Y f(x, y) :=
1

2
η2fxx(x, y) + µ0fx(x, y) +

1

2
(µ0 + µ1)fy(x, y) (5.9)

Proposition 5.6. The transformed value function V̂ defined in (5.6) satisfies V̂ ∈ C2,1(C3;R), where C3

denotes the closure of the open set C3 defined in (5.8). In addition, V̂ is a classical solution to(
ρ− LX,Y

)
u(x, y) = C(x)(1 + e

γ
η (x−y)), for all (x, y) ∈ C3. (5.10)

Proof. First of all, due to Corollary 5.4 and the expression of the transformed value function in (5.6), one can

easily verify that V̂ is a viscosity solution to (5.10) on C3 due to (5.8). Then, in light of Proposition 5.5 and

the above smooth transformation, we also obtain that V̂ ∈ C1(R2;R).

By a standard localization argument based on the fact that V̂ is a continuously differentiable viscosity
solution to (5.10) on C3 and results for Dirichlet boundary problems involving partial differential equations of

parabolic type (see [31]), we have that actually V̂ ∈ C2,1(C3;R) and solves (5.10) on C3 in a classical sense.
Hence,

1

2
η2V̂xx(x, y) = −C(x)(1 + e

γ
η (x−y)) + ρV̂ (x, y)− µ0V̂x(x, y)− 1

2
(µ0 + µ1)V̂y(x, y), (5.11)

for all (x, y) ∈ C3. However, since we know that V̂ ∈ C1(R2;R) and since the right-hand side of (5.11) only

involves functions that are continuous on R2, we conclude that V̂xx admits a continuous extension on C3. This
completes the proof of the claim.

6. Verification Theorem and Optimal Control

Given the regularity of V̂ obtained in Proposition 5.6 and the relation (5.6) between V̂ with the value function
V defined in (4.8), we are now able to prove a verification theorem. Namely, we provide in this section the
optimal control for V in terms of the boundaries b± defined in (4.16)–(4.17). Before we commence the analysis,
recall also the properties of the latter boundaries proved in Proposition 4.3.

6.1. Construction of control P̂ for state-space process (XP̂ ,Φ).

For any given (x, ϕ) ∈ R × (0,∞), we define the admissible control strategy P̂ := P̂+ − P̂− such that the
following couple of properties hold true:b+(Φt) ≤ X P̂

t ≤ b−(Φt), Q⊗ dt− a.e.;

P̂+
t =

∫
[0,t]

1{XP̂s ≤b+(Φs)}dP̂
+
s and P̂−t =

∫
[0,t]

1{XP̂s ≥b−(Φs)}dP̂
−
s , t ≥ 0.

(6.1)
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In practice, according to the aforementioned strategy, a lump-sum increase or decrease of the inventory
process X may be required, whenever the inventory level Xt− happens to be either strictly below the boundary
b+(Φt) or above the boundary b−(Φt), respectively. The purpose of these jumps of at most one of the controls

P̂±t at each such t ≥ 0, of size either (b+(Φt)−X P̂
t−)+ or (X P̂

t−−b−(Φt))
+, is to bring immediately the inventory

level Xt inside the interval [b+(Φt), b−(Φt)]. Mathematically, these are the actions caused at any time t ≥ 0, by

the jump parts ∆P̂±t := P̂±t − P̂±t− of the controls P̂±. Then, the strategy prescribes taking action (increase or
decrease the inventory) when the inventory process Xt approaches, at any time t ≥ 0, either boundary b+(Φt)
from above or boundary b−(Φt) from below. The purpose of these actions now is to make sure (with a minimal
effort) that the inventory level Xt is kept inside the interval [b+(Φt), b−(Φt)]. Mathematically, these actions are

caused by the continuous parts of the respective controls P̂± and are the so-called Skorokhod reflection-type
policies.

Given that the dynamics of X P̂ and Φ are decoupled (cf. (4.9)), the solution triplet (X P̂
t ,Φt, P̂t)t≥0 to the

Skorokhod reflection problem at the boundaries b± can be constructed as in [20, Section 4.3]. It further follows
from (6.1) above together with the definitions (4.16)–(4.17) of boundaries b±, the region C2 from (4.18) and the

fact that v̄ = V x from Proposition 4.1.(ii), that the nondecreasing processes P̂± are such that the state-space

process (X P̂ ,Φ) and the induced (random) measures dP̂± on R+ satisfy:
(X P̂

t ,Φt) ∈ C2, for Q⊗ dt-a.e., with C2 as in (4.18);

dP̂+ has support on
{
t ≥ 0 : V x(X P̂

t ,Φt) ≤ −K+(1 + Φt)
}

;

dP̂− has support on
{
t ≥ 0 : V x(X P̂

t ,Φt) ≥ K−(1 + Φt)
}
.

(6.2)

6.2. Transformation of controlled process (XP̂ ,Φ) to (XP̂ , Y P̂ ).

We now use the transformation (5.5) from (x, ϕ)- to (x, y)-coordinates, in order to define the controlled process

Y P̂t := X P̂
t −

η

γ
log(Φt), t ≥ 0, (6.3)

whose dynamics are given via Itô-Meyer’s formula by

dY P̂t =
1

2
(µ0 + µ1)dt+ dP̂+

t − dP̂−t , Y P̂0− = y := x− η

γ
log(ϕ) .

Recalling the transformed value function (5.6) and the relation in (5.7), we have

V̂ (X P̂
t , Y

P̂
t ) := V

(
X P̂
t , e

γ
η (XP̂t −Y

P̂
t )
)

and V̂x(X P̂
t , Y

P̂
t ) + V̂y(X P̂

t , Y
P̂
t ) = V x

(
X P̂
t , e

γ
η (XP̂t −Y

P̂
t )
)
, (6.4)

under the dynamics{
dX P̂

t = µ0dt+ ηdWt + dP̂+
t − dP̂−t , X P̂

0− = x ∈ R,
dY P̂t = 1

2 (µ0 + µ1)dt+ dP̂+
t − dP̂−t , Y P̂0− = y := x− η

γ log(ϕ) ∈ R.
(6.5)

Hence, in light of (6.4)–(6.5), we can express the control P̂ defined in Section 6.1 in terms of the state-space

process (X P̂ , Y P̂ ) via
(X P̂

t , Y
P̂
t ) ∈ C3, for Q⊗ dt-a.e., where C3 is defined in (5.8);

dP̂+ has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y
P̂
t ) ≤ −K+

(
1 + e

γ
η (XP̂t −Y

P̂
t )
)}

;

dP̂− has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y
P̂
t ) ≥ K−

(
1 + e

γ
η (XP̂t −Y

P̂
t ))
)}
.

(6.6)

6.3. Optimality of control P̂ .

In this section we prove the optimality of the control P̂ defined through (6.1), which is equivalently expressed

by (6.2) in terms of the state-space process (X P̂ ,Φ) and by (6.6) in terms of the state-space process (X P̂ , Y P̂ ),
see Sections 6.1–6.2.
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Theorem 6.1 (Verification Theorem). The admissible control P̂ ∈ A defined through (6.1) (see also (6.2) and

(6.6)) is optimal for Problem (4.8). Actually, P̂ is the unique optimal control (up to indistinguishability) if C
is strictly convex.

Proof. Recall that V̂ ∈ C2,1(C3;R) by Proposition 5.6, where V̂ is the transformed value function in (5.6). By

the Tietze extension theorem, it can be extended to a function Ṽ ∈ C2,1(R2;R).

Let now (X P̂
0−, Y

P̂
0−) = (x, y) ≡ (x, x − η log(ϕ)/γ) ∈ C3 be given and fixed, and define τn := inf

{
t ≥ 0 :

|(X P̂
t , Y

P̂
t )| > n

}
∧ n, for n ∈ N with state-space process (X P̂ , Y P̂ ) as defined in (6.5). Then, noticing that

(X P̂
t , Y

P̂
t ) ∈ C3, Q-a.s. for all t ≥ 0, and that Ṽ = V̂ on C3 we can apply Dynkin’s formula to the process

e−ρtṼ (X P̂
t , Y

P̂
t ) on the (random) time interval [0, τn], obtaining

V̂ (x, y) = EQ

[
e−ρτn V̂ (X P̂

τn , Y
P̂
τn)

]
− EQ

[ ∫ τn

0

e−ρs
(
LX,Y − ρ

)
V̂ (X P̂

s , Y
P̂
s )ds

]
− EQ

[ ∫ τn

0

e−ρs
(
V̂x + V̂y

)
(X P̂

s , Y
P̂
s )dP̂ cs

]
− EQ

[ ∑
0≤s≤τn

e−ρs
(
V̂ (X P̂

s , Y
P̂
s )− V̂ (X P̂

s−, Y
P̂
s−)
)]
, (6.7)

where P̂ c denotes the continuous part of P̂ and the final sum is non-zero only for (at most countably many)

times s such that ∆P̂s := P̂s − P̂s− 6= 0. Clearly, ∆P̂s = ∆P̂+
s −∆P̂−s , where ∆P̂±s := P̂±s − P̂±s− and notice

that ∑
0≤s≤τn

e−ρs
(
V̂ (X P̂

s , Y
P̂
s )− V̂ (X P̂

s−, Y
P̂
s−)
)

=
∑

0≤s≤τn

e−ρs
∫ ∆P̂+

s

0

(
V̂x + V̂y

)
(X P̂

s− + u, Y P̂s− + u)du

−
∑

0≤s≤τn

e−ρs
∫ ∆P̂−s

0

(
V̂x + V̂y

)
(X P̂

s− − u, Y P̂s− − u)du. (6.8)

Hence, plugging (6.8) into (6.7) and using (5.10), we obtain

V̂ (x, y) = EQ

[
e−ρτn V̂ (X P̂

τn , Y
P̂
τn)

]
+ EQ

[ ∫ τn

0

e−ρs
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
C(X P̂

s )ds

]
− EQ

[ ∫ τn

0

e−ρs
(
V̂x + V̂y

)
(X P̂

s , Y
P̂
s )d

(
P̂+,c
s − P̂−,cs

)]
− EQ

[ ∑
0≤s≤τn

e−ρs
∫ ∆P̂+

s

0

(
V̂x + V̂y

)
(X P̂

s− + u, Y P̂s− + u)du

−
∑

0≤s≤τn

e−ρs
∫ ∆P̂−s

0

(
V̂x + V̂y

)
(X P̂

s− − u, Y P̂s− − u)du

]
. (6.9)

Using now the nonnegativity of V̂ as well as the second and third property of control P̂ in (6.6), we see that
(6.9) becomes

V̂ (x, y) ≥ EQ

[ ∫ τn

0

e−ρs
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
C(X P̂

s )ds

]
+ EQ

[ ∫ τn

0

e−ρsK+
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂+

s +

∫ τn

0

e−ρsK−
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂−s

]
.

Then, we take limits as n ↑ ∞ and we invoke Fatou’s lemma (given the nonnegativity of all the integrands
above) to find that

V̂ (x, y) ≥ EQ

[ ∫ ∞
0

e−ρs
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
C(X P̂

s )ds

]
+ EQ

[ ∫ ∞
0

e−ρsK+
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂+

s +

∫ ∞
0

e−ρsK−
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂−s

]
. (6.10)
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Figure 2: An illustrative drawing of the free boundaries b+ and b− satisfying Proposition 4.3. In the picture,
α := (C ′)−1(ρK−) and β := (C ′)−1(−ρK+). Moreover, the vertical arrows identify the directions of

exercise of the optimal control P̂ defined through (6.1).

Given now thatX P̂−Y P̂ = η log(Φ)/γ by definition (6.3), and that (5.6) yields V̂ (x, y) = V̂ (x, x−η log(ϕ)/γ) =
V (x, ϕ), we further conclude from (6.10) that for any (x, ϕ) ∈ C2 (as we had assumed (x, y) ≡ (x, x −
η log(ϕ)/γ) ∈ C3)

V (x, ϕ) ≥ EQ

[ ∫ ∞
0

e−ρs
(
1 + Φs

)
C(X P̂

s )ds+

∫ ∞
0

e−ρs
(
1 + Φs

)(
K+dP̂+

s +K−dP̂−s
)]

= J x,ϕ(P̂ ). (6.11)

Combining this inequality with definition (4.8), i.e. V (x, ϕ) ≤ J x,ϕ(P̂ ), we prove that P̂ is an optimal control,
for any (x, ϕ) ∈ C2.

Suppose now that (x, ϕ) is such that x < b+(ϕ), so that (x, ϕ) ∈ S+
2 . Then, according to (6.1) (see also

(6.2)), and using (6.11), we have that

J x,ϕ(P̂ ) = K+(1 + ϕ)
(
b+(ϕ)− x) + J b+(ϕ),ϕ(P̂ ) ≤ V (b+(ϕ), ϕ)−

∫ b+(ϕ)

x

V x(z, ϕ) = V (x, ϕ).

Proceeding similarly also for (x, ϕ) such that x > b−(ϕ), we conclude that P̂ is indeed optimal for any
(x, ϕ) ∈ R2.

7. Refined Regularity of the Free Boundaries and their Characterization

In this section we will obtain substantial regularity of the value v̄(x, ϕ) of the Dynkin game (4.10), as well as
an analytical characterisation of its corresponding free boundaries b±. Due to Theorem 6.1, this consequently

leads to the complete knowledge of the optimal control rule P̂ .
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7.1. Parabolic formulation and Lipschitz continuity of the free boundaries

In view of a further change of variables, in line with (6.3), we define

Y 0
t := X0

t −
η

γ
log(Φt), t ≥ 0, (7.1)

with X0 as in (4.11). Then, by Itô’s formula, we have{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dY 0
t = 1

2 (µ0 + µ1)dt, Y 0
0 = y := x− η

γ log(ϕ) ∈ R,
(7.2)

and (4.10) rewrites in terms of the new coordinates (x, y) = (X0
0 , Y

0
0 ) as

v̂(x, y) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0

e−ρt
(

1 + e
γ
η (X0

t−Yt)
)
C ′(X0

t )dt−K+e−ρτ
(

1 + e
γ
η (X0

τ−Yτ )
)

1{τ<σ}

+K−e−ρσ
(

1 + e
γ
η (X0

σ−Yσ)
)
1{τ>σ}

]
= v̄

(
x, e

γ
η (x−y)

)
, (x, y) ∈ R2 . (7.3)

In view of the relationship in (7.3), the value function v̂(·, ·) inherits important properties which have already
been proved for v̄(·, ·). To be more precise, we first conclude immediately from Proposition 4.2.(i) the following
result.

Proposition 7.1. The value function (x, y) 7→ v̂(x, y) defined in (7.3) is continuous over R2.

Moreover, since v̄(x, exp{γ(x − y)/η}) = V x(x, exp{γ(x − y)/η}) by Proposition 4.1.(ii), it follows from

(5.7) that v̂(x, y) = V̂x(x, y) + V̂y(x, y) for all (x, y) ∈ R2, and consequently the open set C3 defined in (5.8)
takes the form

C3 =
{

(x, y) ∈ R2 : −K+
(
1 + e

γ
η (x−y)

)
< v̂(x, y) < K−

(
1 + e

γ
η (x−y)

)}
= T (C2). (7.4)

Hence, by also defining the closed sets

S+
3 :=

{
(x, y) ∈ R2 : v̂(x, y) ≤ −K+

(
1 + e

γ
η (x−y)

)}
, (7.5)

S−3 :=
{

(x, y) ∈ R2 : v̂(x, y) ≥ K−
(
1 + e

γ
η (x−y)

)}
, (7.6)

the global diffeomorphism T from (5.5) implies that S±3 = T (S±2 ) as well, where C2 and S±2 are the continuation
and stopping regions (4.13)–(4.15) for the Dynkin game v̄ in (4.10). Combining these relationships with the
structure of the latter regions in (4.18)–(4.19) yields that C3 and S3

± are connected.
In order to obtain the explicit structure of the regions C3 and S3

±, we now define the generalised inverses
of the nonincreasing b± (cf. Proposition 4.3) by

b−1
+ (x) := sup{ϕ ∈ (0,∞) : b+(ϕ) ≥ x} and b−1

− (x) := inf{ϕ ∈ (0,∞) : b−(ϕ) ≤ x}. (7.7)

Since the map ϕ 7→ T2(x, ϕ) in (5.5) is decreasing for any given x ∈ R (cf. the functions b± are nonincreasing
due to Proposition 4.3.(i)), we have

(x, y) ∈ C3 ⇔
(
x, e

γ
η (x−y)

)
∈ C2 ⇔ b−1

+ (x) < e
γ
η (x−y) < b−1

− (x)

⇔ x− η

γ
log(b−1

− (x)) < y < x− η

γ
log(b−1

+ (x)),

while similar relations hold true for the characterisation of S±3 . Then, by defining

c−1
± (x) := x− η

γ
log(b−1

± (x)), (7.8)

we can obtain the structure of the continuation and stopping regions of v̂, which take the form

C3 = {(x, y) ∈ R2 : c−1
− (x) < y < c−1

+ (x)}, (7.9)

S+
3 = {(x, y) ∈ R2 : y ≥ c−1

+ (x)} and S−3 = {(x, y) ∈ R2 : y ≤ c−1
− (x)}. (7.10)

The proof of the next lemma can be found in the Appendix.
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Lemma 7.2. The functions c−1
± (·) defined in (7.8) are strictly increasing, while c−1

+ (·) is left-continuous and

c−1
− (·) is right-continuous on R.

In light of Lemma 7.2, we may define the functions

c+(y) := inf{x ∈ R : y ≤ c−1
+ (x)} and c−(y) := sup{x ∈ R : y ≥ c−1

− (x)}, y ∈ R . (7.11)

In the following result, we prove that y 7→ c±(y) identify with the optimal free boundaries of the Dynkin game
v̂ in (7.3) and provide some important properties such as their global Lipschitz continuity.

Proposition 7.3. The free boundaries c± defined in (7.11) satisfy the following properties:

(i) c±(·) are strictly increasing on R and we have x∗+ ≤ c+(y) < c−(y) ≤ x∗− for all y ∈ R (with x∗± as in
Proposition 3.2). Moreover, c+(y) ≤ (C ′)−1(−ρK+) and c−(y) ≥ (C ′)−1(ρK−) for all y ∈ R;

(ii) c±(·) are Lipschitz-continuous on R with Lipschitz constant L = 1, namely

0 ≤ c±(y)− c±(y′) ≤ y − y′, ∀ y ≥ y′.

(iii) The structure of the continuation and stopping regions for (7.3) take the form

C3 = {(x, y) ∈ R2 : c+(y) < x < c−(y)},
S+

3 = {(x, y) ∈ R2 : x ≤ c+(y)} and S−3 = {(x, y) ∈ R2 : x ≥ c−(y)}.

Proof. We prove separately the three parts.

Proof of (i). The first part of the claim follows from Lemma 7.2, together with the definition (7.11) of c±.
The second and third parts of the claim are due to the fact that T1 as in (5.5) is the identity.

Proof of (ii). Using the definitions (7.8) of c−1
± and the monotonicity of b−1

± (see proof of Lemma 7.2) we
get

c−1
± (x)− c−1

± (x′) =

(
x− η

γ
log(b−1

± (x))

)
−
(
x′ − η

γ
log(b−1

± (x′))

)
≥ x− x′, ∀ x ≥ x′. (7.12)

Combining this with definitions (7.11) and part (i), we obtain the desired claim.

Proof of (iii). This is again due to the definitions (7.11) of c±, their monotonicity from part (i) and the
expressions of the sets in (7.9) and (7.10).

7.2. Global C1-regularity of v̂

For any (x, y) ∈ R2 given and fixed, we consider the strong solution to the dynamics in (7.2), denoted by

X0,x
t = x+ µ0t+ ηWt and Y 0,y

t = y +
1

2
(µ1 + µ0)t, t ≥ 0,

and we define

τ?(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ S+
3 } and σ?(x, y) := inf{t ≥ 0 : (X0,x

t , Y 0,y
t ) ∈ S−3 }. (7.13)

Notice that by [17] and [34], the pair (τ?, σ?) realises a saddle point for the Dynkin game with value v̂ in
(7.3). In the sequel, we aim at deriving the global C1-regularity of v̂(·, ·), following the arguments developed
in [11]. In order to accomplish that, the next result about the regularity (in the probabilistic sense) of (τ?, σ?)
is needed.

Lemma 7.4. Suppose that (xn, yn)n∈N∗ ⊂ C3 is such that (xn, yn)→ (xo, yo), where yo ∈ R and xo := c+(yo)
(resp., xo := c−(yo)), then τ?(xn, yn)→ 0 (resp., σ?(xn, yn)→ 0), Q-a.s..

Proof. We prove the claim for τ?(xn, yn), since the proof for σ?(xn, yn) can be performed analogously. Fix
ω ∈ Ω and assume (aiming for a contradiction) that

lim sup
n→∞

τ?(xn, yn)(ω) =: δ > 0.
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Figure 3: An illustrative drawing of the free boundaries c+ and c− satisfying Proposition 7.3. In the picture,
α := (C ′)−1(ρK−) and β := (C ′)−1(−ρK+).

This means that there exists a subsequence, still labelled by (xn, yn), such that

X0,xn
t (ω) > c+(Y 0,yn

t ) ∀ n ∈ N∗, ∀ t ∈ [0, δ/2]; (7.14)

that is,

xn + µ0t+ ηWt(ω) > c+

(
yn +

1

2
(µ1 + µ0)t

)
∀ n ∈ N∗, ∀ t ∈ [0, δ/2].

Hence, taking the limit as n→∞ and considering that c+ is continuous (see Proposition 7.3.(ii)),

ηWt(ω) ≥ c+
(
yo +

1

2
(µ1 + µ0)t

)
− xo − µ0t, ∀ t ∈ [0, δ/2].

Using now the Lipschitz continuity of c+ (see again Proposition 7.3.(ii)), we further obtain

ηWt(ω) ≥ c+(yo)−
1

2
(µ1 + µ0)−t− xo − µ0t = −1

2

(
(µ1 + µ0)− + µ0

)
t, ∀ n ∈ N∗, ∀ t ∈ [0, δ/2]. (7.15)

However, by the law of iterated logarithm we know that for every ε > 0 there exists a sequence (tn)n∈N
decreasing to 0 such that a.s. for any n ∈ N one has

Wtn ≤ −(1− ε)
√

2tn log
(

log
( 1

tn

))
.

Hence, because
√

2t log
(

log
(

1
t

))
/t → ∞ as t ↓ 0, we have that (7.15) can only happen for ω belonging to a

Q-null set and the proof is complete.

Remark 7.5. From the previous proof one can easily observe that, by replacing the strict inequality with the
large one in (7.14), we can actually prove that τ̌?(xn, yn)→ 0 and σ̌?(xn, yn)→ 0, Q-a.s., where

τ̌?(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ Int(S+
3 )}, σ̌?(x, y) := inf{t ≥ 0 : (X0,x

t , Y 0,y
t ) ∈ Int(S−3 )}. (7.16)
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We now show that the value function v̂(x, y) of the Dynkin game (7.3) is smooth across the topological
boundary ∂C3 of the continuation region C3 from (7.4) in both directions x and y. The details of the proof of
the following result can be found in the Appendix.

Proposition 7.6 (Smooth-fit). Let yo ∈ R and set xo := c±(yo). Then the value function v̂ defined in (7.3)
satisfies

lim
(x,y)→(xo,yo)

(x,y)∈C3

v̂x(x, y) = ∓γ
η
K±e

γ
η (xo−yo) and lim

(x,y)→(xo,yo)

(x,y)∈C3

v̂y(x, y) = ±γ
η
K±e

γ
η (xo−yo).

We are now ready to derive the global C1-regularity of v̂ as well as the local boundedness of its second
derivative in x.

Proposition 7.7. The value function v̂ defined in (7.3) satisfies v̂ ∈ C1(R2;R) and v̂xx ∈ L∞loc(R2;R).

Proof. By standard arguments based on the strong Markov property and Dirichlet boundary problems involv-
ing second-order partial differential equations of parabolic type, one can show that v̂ in (7.3) is a classical
C2,1-solution to

(ρ− LX,Y )u(x, y)−
(
1 + e

γ
η (x−y)

)
C ′(x) = 0, for all (x, y) ∈ C3, (7.17)

where LX,Y is the second-order differential operator defined in (5.9) and C3 is given by (7.4) (see also Propo-
sition 7.3.(iii)). Also, v̂ ∈ C∞ in the interior of S±3 . Hence, by Proposition 7.6 we have that v̂ ∈ C1(R2;R).

Moreover, we have from (7.17) that

1

2
η2v̂xx(x, y) = ρv̂(x, y)− 1

2
(µ1 + µ0)v̂y(x, y)− µ0v̂x(x, y)−

(
1 + e

γ
η (x−y)

)
C ′(x), ∀ (x, y) ∈ C3.

Given that v̂ ∈ C1(R2;R), the right-hand side of the latter equation only involves functions that are continuous
on R2, hence v̂xx admits a continuous extension on the closure of C3, and it is therefore bounded therein.
Therefore, for y ∈ R, we have that v̂x(·, y) is Lipschitz continuous on [c+(y), c−(y)], with Lipschitz constant
K(y) which is locally bounded on R. Combining this with the fact that v̂x(·, y) is infinitely many times
continuously differentiable, and therefore locally bounded, in the stopping regions S±3 , we conclude that v̂xx ∈
L∞loc(R2).

7.3. Integral equations for the free boundaries

By Proposition 7.7, and by using standard arguments based on the strong Markov property (cf. [17] and [34]),
we have that the value function v̂ defined in (7.3) and the free boundaries c+ and c− solve the free-boundary
problem 

(
LX,Y − ρ

)
v̂(x, y) = −(1 + e

γ
η (x−y))C ′(x), c+(y) < x < c−(y), y ∈ R(

LX,Y − ρ
)
v̂(x, y) ≤ −(1 + e

γ
η (x−y))C ′(x), x < c+(y), y ∈ R(

LX,Y − ρ
)
v̂(x, y) ≥ −(1 + e

γ
η (x−y))C ′(x), x > c−(y), y ∈ R

−K+(1 + e
γ
η (x−y)) ≤ v̂(x, y) ≤ K+(1 + e

γ
η (x−y)), (x, y) ∈ R2

v̂(x, y) = −K+(1 + e
γ
η (x−y)), x ≤ c+(y), y ∈ R

v̂(x, y) = K−(1 + e
γ
η (x−y)), x ≥ c−(y), y ∈ R

v̂x(x, y) = ∓γηK
±e

γ
η (x−y), x = c±(y), y ∈ R

v̂y(x, y) = ±γηK
±e

γ
η (x−y), x = c±(y), y ∈ R.

(7.18)

Here LX,Y is the second-order differential operator defined in (5.9) and v̂ ∈ C2,1 inside C3 (cf. Proposition
7.3.(iii)). Hence, via the above results and a suitable application of (a week version of) Itô’s lemma, we firstly
aim at obtaining an integral representation of v̂. This will then lead to a system of coupled integral equations
solved by the free boundaries c± defined in (7.11) (see also Proposition 7.3 for their properties).
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Proposition 7.8. Consider the free boundaries c± defined in (7.11). Then, for any (x, y) ∈ R2, the value
function v̂ of (7.3) can be written as

v̂(x, y) = EQ
(x,y)

[ ∫ ∞
0

e−ρs
(
1 + e

γ
η (X0

s−Y
0
s )
)
C ′(X0

s )1{c+(Y 0
s )<X0

s<c−(Y 0
s )}ds

]
+ EQ

(x,y)

[ ∫ ∞
0

e−ρsρ
(
1 + e

γ
η (X0

s−Y
0
s )
)(
K−1{X0

s≥c−(Y 0
s )} −K+1{X0

s≤c+(Y 0
s )}
)
ds

]
, (7.19)

where EQ
(x,y) is the expectation under P(x,y) such that (X0, Y 0) from (7.2) starts at (x, y) ∈ R2.

The previous representation of v̂ in (7.19), which is proved in the Appendix, allows us to determine a system
of integral equations for c±, which is the main aim of this section. Before we present this result, we denote by

G(z;m, ν) :=
1√

2πν2
e−

(z−m)2

2ν2 , z ∈ R, m ∈ R, ν > 0,

the density function of a Gaussian random variable with mean m and variance ν2.

Proposition 7.9. The free boundaries c± defined in (7.11) solve the system of integral equations

∓K±q(c±(y), y) =

∫ ∞
0

e−ρs
(∫

R

(
1 + e

γ
η (z−Y 0

s )
)
C ′(z)1{c+(Y 0

s )<z<c−(Y 0
s )}G(z; c±(y) + µ0s, η

2s)dz

)
ds

+

∫ ∞
0

e−ρs
(∫

R
ρ
(
1 + e

γ
η (z−Y 0

s )
)(
K−1{z≥c−(Y 0

s )} −K+1{z≤c+(Y 0
s )}
)
G(z; c±(y) + µ0s, η

2s)dz

)
ds.

Moreover, (c+, c−) is the unique solution pair belonging to the set D+ ×D−, where

D+ :=
{
g : R→ R : g is continuous, strictly increasing, s.t. x∗+ ≤ g(y) ≤ (C ′)−1(−ρK+)

}
D− :=

{
g : R→ R : g is continuous, strictly increasing, s.t. (C ′)−1(ρK−) ≤ g(y) ≤ x∗−

}
.

Proof. Taking x = c±(y) in Proposition 7.8, and employing the value function’s continuity (i.e. v̂(c±(y), y) =
∓K±

(
1 + exp{γ(c±(y)− y)/η}

)
, for any y ∈ R), we find that

∓K±q(c±(y), y) = EQ
(c±(y),y)

[ ∫ ∞
0

e−ρs
(
1 + e

γ
η (X0

s−Y
0
s )
)
C ′(X0

s )1{c+(Y 0
s )<X0

s<c−(Y 0
s )}ds

]
+ EQ

(c±(y),y)

[ ∫ ∞
0

e−ρsρ
(
1 + e

γ
η (X0

s−Y
0
s )
)(
K−1{X0

s≥c−(Y 0
s )} −K+1{X0

s≤c+(Y 0
s )}
)
ds

]
. (7.20)

Hence, by noticing that Y 0 is a deterministic process and that X
0,c±(y)
s is Gaussian under Q with mean

c±(y) + µ0s and variance η2s, we easily obtain from (7.20) the desired equations.
The fact that c± belong to the classes D± follows from their continuity, monotonicity, and boundedness in

Proposition 7.3.
Finally, in order to prove the uniqueness claim one can proceed as in [9] (see, in particular Lemma 3.15,

Lemma 3.16, Proposition 3.17 and Theorem 3.18 therein). Given that the present setting creates no additional
difficulties, we omit further details of this verification, hence this completes the proof.

Remark 7.10. The complete characterisation of the boundaries c± provided by Proposition 7.9 together with

(7.8), yield a complete description of the free boundaries b±, at which the optimal control rule P̂ constructed

in (6.1)–(6.2) (see Section 6.1 for details) commands the process (X P̂
t ,Φt)t≥0 to be reflected.

Indeed, once c± are determined by solving (numerically) the system (7.20), we can use (7.8) to obtain b−1
± ,

and consequently determine b± by inverting (7.7). However, since a numerical treatment of (7.20) is non
trivial and outside the scopes of the present work, we do not address it in this paper.
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Appendix A

A.1. Proof of Proposition 5.1

It follows from (4.9), that Φt = ϕMt, where Mt := exp{γWt − γ2t/2}, for any t ≥ 0 and ϕ > 0.
For any (x, ϕ) ∈ R × (0,∞) given and fixed, one clearly has V (x, ϕ) ≤ J x,ϕ(0). Hence, without loss of

generality, we can restrict the attention to all those controls P ∈ A such that, for some constant κo > 0, we
have

EQ

[ ∫ ∞
0

e−ρt
(
1 + ϕMt

)
C(Xx;P

t )dt

]
≤ J x,ϕ(P ) ≤ J x,ϕ(0) = EQ

[ ∫ ∞
0

e−ρt
(
1 + ϕMt

)
C(Xx;0

t )dt

]
= (1 + ϕ)E

[ ∫ ∞
0

e−ρtC(Xx;0
t )dt

]
≤ κo(1 + ϕ)(1 + |x|p). (A-1)

Here, the second equality follows from a change of measure as in Section 4, Xx;0 in the second expectation
evolves as in (4.11), while in the third expectation it evolves as in (3.1), and the last step is due to Assumption
2.1.(i) and standard estimates. In the rest of this proof, we denote by Ao the class of admissible controls P
for which (A-1) holds true.

Then, let (x, ϕ), (x′, ϕ′) such that |(x, ϕ)| ≤ R, |(x′, ϕ′)| ≤ R be given and fixed, and take λ ∈ [0, 1]. Observe
that, by using the definition (4.8) of V (and restricting to the class Ao) we get

λV (x, ϕ)+(1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′))

≤ sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρt
[
λ(1 + ϕMt)C(Xx;P

t ) + (1− λ)(1 + ϕ′Mt)C(Xx′;P
t )

−
(
1 + (λϕ+ (1− λ)ϕ′)Mt

)
C(X

λx+(1−λ)x′;P
t )

]
dt

+

∫ ∞
0

e−ρtK+
[
λ(1 + ϕMt) + (1− λ)(1 + ϕ′Mt)−

(
1 + (λϕ+ (1− λ)ϕ′)Mt

)]
dP+

t

+

∫ ∞
0

e−ρtK−
[
λ(1 + ϕMt) + (1− λ)(1 + ϕ′Mt)−

(
1 + (λϕ+ (1− λ)ϕ′)Mt

)]
dP−t

]
.

By adding and subtracting (1− λ)ϕM
(
C(Xx′;P ) +C(λXx;P

t + (1− λ)Xx′;P
t )

)
in the dt-integral appearing in

the last equation, using the semiconcavity property of C in Assumption 2.1.(iii) together with the solution
Xx;P of (4.9), as well as the fact that sup(f + g) ≤ sup(f) + sup(g), we obtain

λV (x, ϕ) + (1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′))

≤ sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρtα2λ(1− λ)
(

1 + C(Xx;P
t ) + C(Xx′;P

t )
)(1− 2

p )+

|x− x′|2dt

]
+ sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρtϕMt

(
λC(Xx;P

t ) + (1− λ)C(Xx′;P
t )− C(λXx;P

t + (1− λ)Xx′;P
t )

)
dt

+

∫ ∞
0

e−ρt(1− λ)(ϕ− ϕ′)Mt

(
C(λXx;P

t + (1− λ)Xx′;P
t )− C(Xx′;P

t )
)

dt

]
.

Using again the assumed semiconcavity of C and Hölder’s inequality, we further conclude that

λV (x, ϕ) + (1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′))

≤ α2λ(1− λ)|x− x′|2EQ

[ ∫ ∞
0

e−ρtdt

] 2
p

sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρt
(

1 + C(Xx;P
t ) + C(Xx′;P

t )
)

dt

](1− 2
p )+

+ α2λ(1− λ)|x− x′|2 sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρtϕMt

(
1 + C(Xx;P

t ) + C(Xx′;P
t )

)(1− 2
p )+

dt

]
+ α1λ(1− λ)|ϕ− ϕ′||x− x′| sup

P∈Ao
EQ

[ ∫ ∞
0

e−ρtMt

(
1 + C(Xx;P

t ) + C(Xx′;P
t )

)(1− 1
p )

dt

]
.
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We now distinguish the cases p ∈ (1, 2] and p > 2. If p ∈ (1, 2], using that EQ[
∫∞

0
e−ρtMtdt] = 1/ρ and

Hölder’s inequality, we further obtain that

λV (x, ϕ) + (1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′))

≤ α2λ(1− λ)|x− x′|2
(
ρ−

2
p + ρ−1

)
+ α1λ(1− λ)|ϕ− ϕ′||x− x′|EQ

[ ∫ ∞
0

e−ρtMtdt

] 1
p

× sup
P∈Ao

EQ

[ ∫ ∞
0

e−ρtMt

(
1 + C(Xx;P

t ) + C(Xx′;P
t )

)
dt

]1− 1
p

. (A-2)

Hence, employing the estimate (A-1) in (A-2), we find for some κ > 0 that

λV (x, ϕ) + (1− λ)V (x′, ϕ′)− V (λ(x, ϕ) + (1− λ)(x′, ϕ′))

≤ κλ(1− λ)
(
|x− x′|2 + |ϕ− ϕ′||x− x′|(1 + |x|+ |x′|)p−1

)
,

which gives the claimed semiconcavity. The case p > 2 can be actually proved using similar arguments as for
p ∈ (1, 2], therefore its precise proof in omitted for brevity. �

A.2. Proof of Lemma 7.2

Due to (7.7) and Proposition 4.3, we have that b−1
± are nonincreasing, with b−1

+ left-continuous and b−1
− right-

continuous. Combining the aforementioned properties together with the definition (7.8) yields the desired
properties. �

A.3. Proof of Proposition 7.6

We focus on proving the continuity of v̂x across c+, since the other claims can be obtained similarly. To that
end, we firstly simplify the notation by defining (cf. (7.4)–(7.5))

q(x, y) := 1 + e
γ
η (x−y) and ŵ(x, y) := v̂(x, y) +K+q(x, y)

{
> 0, for all (x, y) ∈ R2 \ S+

3 ,

= 0, for all (x, y) ∈ S+
3 ,

(A-3)

and notice that, for every (x, y) ∈ R2 we have

ŵ(x, y)

= sup
τ∈T

inf
σ∈T

EQ

[ ∫ τ∧σ

0

e−ρtq(X0,x
t , Y 0,y

t )
(
C ′(X0,x

t ) + ρK+
)
dt+ (K+ +K−)e−ρσq(X0,x

σ , Y 0,y
σ )1{σ<τ}

]
.

Then, the desired continuity of v̂x across c+ is equivalent to

lim
C33(x,y)→(xo,yo)

ŵx(x, y) = 0, for xo := c+(yo) and yo ∈ R. (A-4)

In the remaining of the proof, we therefore focus on proving (A-4).
Fix (x, y) ∈ C3 and let ε > 0 be such that (x + ε, y) ∈ C3. Denote by τ? ≡ τ?(x, y) and τ̌? ≡ τ̌?(x, y)

from (7.13) and (7.16), respectively. Then, define τ?ε := τ?(x+ ε, y) according to (7.13) and τ̌?ε := τ̌?(x+ ε, y)
according to (7.16). In view of Proposition 7.3.(iii), these take the form

τ?ε = inf{t ≥ 0 : X0,x+ε
t ≤ c+(Y 0,y

t )}, τ̌?ε = inf{t ≥ 0 : X0,x+ε
t < c+(Y 0,y

t )},
τ? = inf{t ≥ 0 : X0,x

t ≤ c+(Y 0,y
t )} and τ̌? = inf{t ≥ 0 : X0,x

t < c+(Y 0,y
t )}.

By the regularity of the Brownian motion, we have τ?ε = τ̌?ε and τ? = τ̌?, and by the continuity of trajectories
of the Brownian motion, we have

lim
ε↓0

τ̌?ε → τ̌? which eventually yields that lim
ε↓0

τ?ε → τ?. (A-5)
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Moreover, Proposition 7.3.(iii) further implies that σ? ≡ σ?(x, y) from (7.13) takes the form

σ? = inf{t ≥ 0 : X0,x
t ≥ c−(Y 0,y

t )}.

Then, we have

ŵ(x+ ε, y)− ŵ(x, y)

ε
≤ 1

ε
EQ

[ ∫ τ?ε∧σ
?

0

e−ρt
(
q(X0,x+ε

t , Y 0,y
t )− q(Xx

t , Yt)
)(
C ′(X0,x+ε

t + ρK+
)
dt

]
+

1

ε
EQ

[ ∫ τ?ε∧σ
?

0

e−ρtq(X0,x
t , Y 0,y

t )
(
C ′(X0,x+ε

t )− C ′(X0,x
t )

)
dt

]
+

1

ε
EQ

[
e−ρσ

?

1{τ?ε>σ?}(K
+ +K−)

(
q(X0,x+ε

σ? , Y 0,y
σ∗ )− q(X0,x

σ? , Y
0,y
σ∗ )

)]
.

Using the Mean-Value Theorem, the above inequality becomes

ŵ(x+ ε, y)− ŵ(x, y)

ε
≤ EQ

[ ∫ τ?ε∧σ
?

0

e−ρtqx(Λεt , Y
0,y
t )

(
C ′(X0,x+ε

t ) + ρK+
)
dt

]
+ EQ

[ ∫ τ?ε∧σ
?

0

e−ρtq(X0,x
t , Y 0,y

t )C ′′(Ξεt )dt+ e−ρσ
?

1{τ?ε>σ?}(K
+ +K−)qx(Θε

σ?)

]
. (A-6)

where Λεt ,Ξ
ε
t ∈ (X0,x

t , X0,x+ε
t ) and Θε

σ? ∈ (X0,x
σ? , X

0,x+ε
σ? ). If now the dominated convergence theorem can be

applied, by taking limits and using (A-5) in (A-6), we get

lim sup
ε↓0

ŵ(x+ ε, y)− ŵ(x, y)

ε
≤ EQ

[ ∫ τ?∧σ?

0

e−ρtqx(X0,x
t , Y 0,y

t )
(
C ′(X0,x

t ) + ρK+
)
dt

]
+ EQ

[ ∫ τ?∧σ?

0

e−ρtq(X0,x
t , Y 0,y

t )C ′′(X0,x
t )dt+ e−ρσ

?

1{τ?≥σ?}(K
+ +K−)qx(X0,x

σ? )

]
.

With similar estimates, we can also get

lim inf
ε↓0

ŵ(x+ ε, y)− ŵ(x, y)

ε
≥ EQ

[ ∫ τ?∧σ?

0

e−ρtqx(X0,x
t , Y 0,y

t )
(
C ′(X0,x

t ) + ρK+
)
dt

]
+ EQ

[ ∫ τ?∧σ?

0

e−ρtq(X0,x
t , Y 0,y

t )C ′′(X0,x
t )dt+ e−ρσ

?

1{τ?≥σ?}(K
+ +K−)qx(X0,x

σ? )

]
.

Hence,

ŵx(x, y) = EQ

[ ∫ τ?∧σ?

0

e−ρtqx(X0,x
t , Y 0,y

t )
(
C ′(X0,x

t ) + ρK+
)
dt

]
+ EQ

[ ∫ τ?∧σ?

0

e−ρtq(X0,x
t , Y 0,y

t )C ′′(X0,x
t )dt+ e−ρσ

?

1{τ?≥σ?}(K
+ +K−)qx(X0,x

σ? )

]
.

Then, we obtain (A-4) by taking the limit as (x, y) → (x0, y0), using Lemma 7.4 and noticing that clearly
lim inf(x,y)→(x0,y0) σ

?(x, y) > 0 (cf. (7.5)–(7.6)).
In order to complete the proof, it remains to show that the dominated convergence theorem can be indeed

invoked when taking limits in (A-6). We show this only for the term

EQ

[ ∫ τ?ε∧σ
?

0

e−ρtqx(Λεt , Y
0,y
t )

(
C ′(X0,x+ε

t ) + ρK+
)
dt

]
in (A-6), as the others can be treated similarly.
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Notice that, since qx(·, y) is positive and increasing, C ′(·) is nondecreasing, and Λεt ≤ X
0,x+ε
t ≤ X0,x+1

t (for
any ε < 1, without loss of generality), we can write∫ τ?ε∧σ

?

0

e−ρtqx(Λεt , Y
0,y
t )

(
C ′(X0,x+ε

t ) + ρK+
)
dt

≤
∫ τ?ε∧σ

?

0

e−ρtqx(X0,x+1
t , Y 0,y

t )
(
C ′(X0,x+1

t ) + ρK+
)
dt

≤ γ

η

∫ ∞
0

e−ρt
(
q(X0,x+1

t , Y 0,y
t ) + 1)

(∣∣C ′(X0,x+1
t )

∣∣+ ρK+
)
dt

Now, on one hand, EQ[
∫∞

0
e−ρt|C ′(X0,x+1

t )|dt] < ∞ due to Assumption 2.1 and standard estimates on the

Brownian motion. On the other hand, by using the definition of q(·, ·) and (7.1), one has q(X0,x+1
t , Y 0,y

t ) =

1 + Φϕt , with ϕ ≡ e
γ
η (x+1−y). Hence,

EQ

[ ∫ ∞
0

e−ρtq(X0,x+1
t , Y 0,y

t )
(∣∣C ′(X0,x+1

t )
∣∣+ ρK+

)
dt

]
= EQ

[ ∫ ∞
0

e−ρt
(
1 + Φϕt )

(∣∣C ′(X0,x+1
t )

∣∣+ ρK+
)
dt

]∣∣∣
ϕ=e

γ
η

(x+1−y)

=
(

1 + e
γ
η (x+1−y)

)
E

[ ∫ ∞
0

e−ρt
(∣∣C ′(X0,x+1

t )
∣∣+ ρK+

)
dt

]
, (A-7)

where the last equality is due to a change of measure as in Section 4 and X0 in the last expectation evolves as
in (3.1). But then, standard estimates together with the growth requirements on C in Assumption 2.1 ensure
that the last expectation in (A-7) is finite, thus completing the proof. �

A.4. Proof of Proposition 7.8

In this proof, we recall the notation q(x, y) := 1 + eγ(x−y)/η, which will be used in the following four steps.

Step 1. Let R > 0 and define τR := inf{t ≥ 0 : |X0
t | ≥ R or |Y 0

t | ≥ R} under P(x,y). Since v̂ ∈ C1(R2;R)
and v̂xx ∈ L∞loc(R2;R) (cf. Proposition 7.7), we can apply a weak version of Itô’s lemma (see, e.g., [3], Lemma
8.1 and Theorem 8.5, pp. 183–186) up to the stopping time τR ∧ T , for some T > 0, to obtain

v̂(x, y) = EQ
(x,y)

[
e−ρ(τR∧T )v̂(X0

τR∧T , Y
0
τR∧T )−

∫ τR∧T

0

e−ρs
(
LX,Y 0 − ρ

)
v̂(X0

s , Y
0
s )ds

]
. (A-8)

The right-hand side of (A-8) is well defined, since Y 0 is a deterministic process, the transition probability of
X0 is absolutely continuous with respect to the Lebesgue measure and (LX,Y − ρ)u is defined up to a set of
zero Lebesgue measure.

Since v̂ solves the free-boundary problem (7.18), we have for almost all (x, y) ∈ R2, that(
LX,Y − ρ

)
v̂(x, y) = −q(x, y)C ′(x)1{c+(y)<x<c−(y)} + ρK+q(x, y)1{x≤c+(y)} − ρK−q(x, y)1{x≥c−(y)},

and using again that the transition probability of X0 is absolutely continuous with respect to the Lebesgue
measure, the equation in (A-8) becomes

v̂(x, y) = EQ
(x,y)

[
e−ρ(τR∧T )v̂(X0

τR∧T , Y
0
τR∧T ) +

∫ τR∧T

0

e−ρsq(X0
s , Y

0
s )C ′(X0

s )1{c+(Y 0
s )<X0

s<c−(Y 0
s )}ds

]
− EQ

(x,y)

[ ∫ τR∧T

0

e−ρsρK+q(X0
s , Y

0
s )1{X0

s≤c+(Y 0
s )}ds−

∫ τR∧T

0

e−ρsρK−q(X0
s , Y

0
s )1{X0

s≥c+(Y 0
s )}ds

]
. (A-9)

Step 2. Using the relationship (7.3) between v̂ and v and the definition (7.2) of (X0, Y 0), we obtain

EQ
(x,y)

[
e−ρ(τR∧T )|v̂(X0

τR∧T , Y
0
τR∧T )|

]
= EQ

(x,y)

[
e−ρ(τR∧T )

∣∣∣v(X0
τR∧T , e

γ
η (X0

τR∧T
−Y 0

τR∧T
)
)∣∣∣]

≤ (K+ ∨K−)EQ
(x,exp{ γη (x−y)})

[
e−ρ(τR∧T )

(
1 + ΦτR∧T

)]
=
(
1 + e

γ
η (x−y)

)
E(x,π)

[
e−ρ(τR∧T )

]
, (A-10)
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for π := eγ(x−y)/η/(1 + eγ(x−y)/η), and where the last step can be justified by performing a change of measure
in the same spirit of Section 4. Clearly, taking limits as R ↑ ∞ and T ↑ ∞ in (A-10) yields

lim
T↑∞

lim
R↑∞

EQ
(x,y)

[
e−ρ(τR∧T )v̂(X0

τR∧T , Y
0
τR∧T )

]
= 0. (A-11)

Step 3. On one hand, notice that using the strong solution (X0, Y 0) to (7.2), we get

EQ
(x,y)

[ ∫ τR∧T

0

e−ρsq(X0
s , Y

0
s )1{X0

s≤c+(Y 0
s )}ds

]
≤ EQ

(x,y)

[ ∫ ∞
0

e−ρsq(X0
s , Y

0
s )ds

]
=

∫ ∞
0

e−ρs
(

1 + EQ
(x,y)

[
e
γ
η (X0

s−Y
0
s )
])

ds =

∫ ∞
0

e−ρs
(

1 + e
γ
η (x−y)EQ

[
eγWs− γ

2

2 s
])

ds <∞,

since W is a Q-Brownian motion, thus the latter expectation is equal to 1. This clearly implies the finiteness of
the latter expectation in (A-9). On the other hand, by a change of measure as that of Section 4 and Assumption
2.1, we also have

EQ
(x,y)

[ ∫ τR∧T

0

e−ρsq(X0
s , Y

0
s )C ′(X0

s )1{c+(Y 0
s )<X0

s<c−(Y 0
s )}ds

]
≤ EQ

(x,y)

[ ∫ ∞
0

e−ρsq(X0
s , Y

0
s )|C ′(X0

s )|ds
]

= (1 + e
γ
η (x−y))E(x,π)

[ ∫ ∞
0

e−ρs|C ′(X0
s )|ds

]
≤
(

1 + e
γ
η (x−y)

)
E(x,π)

[ ∫ ∞
0

e−ρsα0(1 + |X0
s |p)ds

]
<∞,

for π := e
γ
η (x−y)/(1 + e

γ
η (x−y)), where the finiteness of this expectation in the last step follows from standard

estimates on the Brownian motion.

Step 4. Finally, given the finiteness of all the expectations of integrals appearing in (A-9) due to Step 3,
we can apply the monotone convergence theorem to interchange limits as R ↑ ∞ and T ↑ ∞ with these
expectations in (A-9). Therefore, using this fact together with Step 2 we obtain (7.19), which completes the
proof. �
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