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From prejudice to racial profiling and back

A näıve intuitive statistician’s curse

Manuel Foerster∗ Dominik Karos†

February 25, 2021

Abstract

A designer conducts random searches to detect criminals, and may condition the

search probability on individuals’ appearance. She updates her belief about the

distribution of criminals across appearances using her search results, but incorrectly

takes her sample distribution for the population distribution. In equilibrium she

employs optimal search probabilities given her belief, and her belief is consistent

with her findings. We show that she will be discriminating an appearance if and only

if she overestimates the probability of this appearance’s being criminal. Moreover,

in a linear model, tightening her budget will worsen the situation of those most

discriminated against.

Keywords: Biased inference, police search, näıve intuitive statistics, racial profiling,

discrimination.

1 Introduction

In the years 2014 to 2017, New York City (NYC) police arrested or summoned 19,328

individuals after stopping them, and possibly frisking them, in the street. Black people
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Group Population (NYC) Arrests/Summons Stops
White 1,875,108 1,938 10,228
Latino 2,346,883 6,540 26,181
Black 1,875,108 9,840 49,362
Others 1,245,527 1,010 6,612
Total 8,185,314 19,328 92,383

Table 1: Stops and arrests/summons by NYC police force, 2014–2017.

accounted for 9,840 or 52% of these arrests, while at the same time they represent only

23% of the population. Does this imply that black people are disproportionally criminal?

Of course not! The reason lies in the last column of Table 1.1 More than 53% of all

stops targeted black people, that is, the sample distribution crucially deviates from the

population distribution.2

The (misleading) calculation above illustrates the problem that this paper addresses:

a näıve (intuitive) statistician (Juslin et al., 2007) will conclude that black people account

for almost 52% of all (serious) infractions—ignoring the discrepancy between sample and

population distribution. We do not expect our reader to make this mistake, but we do

point out that this mistake is more common than one might hope: a growing body of

evidence suggests that people lack the “metacognitive ability” to analyze and quantify

sampling biases and to correct their judgments accordingly (Fiedler, 2000, 2012; Fiedler

et al., 2019). Alarmingly, if this mistake is common among those who are responsible

for conducting these stops, we will enter a vicious cycle: black people are stopped dis-

proportionally often, they are perceived as disproportionally criminal, and, hence, will be

stopped more often.

This vicious cycle is the topic of this paper. We start by considering a designer who

faces a population in which each individual is endowed with a privately known and binary

conduct (being criminal or not) and a publicly known appearance (race, age, sex, etc.).

1These numbers stem from the report “Stop-and-Frisk in the de Bla-
sio Era” by the New York Civil Liberties Union, retrieved from
https://nyclu.org/sites/default/files/field documents/20190314 nyclu stopfrisk singles.pdf and
https://nyclu.org/sites/default/files/field documents/20190314 nyclu stopfrisk appendices onlineonly.pdf,
accessed December 15, 2020.

2This pattern is not unique to the NYC police, see Abrahams (2020), Horrace and Rohlin (2016),
Pierson et al. (2020) and Sanga (2009) for evidence of discrimination/racial profiling in police stops.
Lang and Kahn-Lang Spitzer (2020) provide a recent survey on racial discrimination.
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The designer’s objective is to identify criminals by conducting random searches. A search

rule specifies the probabilities with which individuals of each appearance will be searched.

We assume that the designer is endowed with a budget to conduct searches, and that she

solves a constrained maximization problem: her objective function is increasing in the

expected number of successful searches, and decreasing as the discrepancies in search

probabilities across appearances become large, because discrimination might lead to legal

or social sanctions.

Next, we allow the designer to update her belief about the conditional probability

that an individual of a given appearance is criminal based on the outcome of her search.

However, we assume that she makes the mistake above, i.e., she takes the sample dis-

tribution for the population distribution. A belief is admissible given a search rule if it

coincides with the updated belief that is calculated in this fashion, i.e., if posterior and

prior are identical. We provide necessary and sufficient conditions for the existence of an

admissible belief, we show that this belief must be unique, and we provide a connection

between the error in an admissible belief and the extent to which the underlying search

rule is discriminatory.

Our main result combines the two steps: an equilibrium consists of a belief and a search

rule such that the search rule solves the designer’s maximization problem given her belief,

and her belief is admissible given the search rule. We provide sufficient conditions for

the existence of an equilibrium and show that the designer will target an appearance

disproportionally if and only if she overestimates the probability of this appearance’s

being criminal (compared to the true distribution).

Our final result shows how model parameters such as sanctions for discriminatory

search rules or budget cuts affect the equilibrium in a linear model. In particular, we

show that simple budget cuts, that is, a reduction of the average search probability,

will have the same effect as a decrease in sanctions for discrimination. Namely, while

the overall percentage of the population that will be the victim of discrimination will

decrease, the extent of discrimination facing the most-discriminated-against individuals

will increase.

We demonstrate in this paper how racial profiling as documented above may be both

the cause and the consequence of common racial prejudices, that is, the overestimation

of black people’s being criminal (Hurwitz and Peffley, 1997; Chiricos et al., 2001; Welch,

2007). Furthermore, our investigation of budget cuts reveals that “defunding the police”
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will not lead to less discrimination against marginalized groups. On the contrary, the

situation of those who face the strongest discrimination will actually become worse.

The rest of the paper is structured as follows: after providing some related literature

in Section 2 and some preliminaries in Section 3, we state and solve the designer’s maxi-

mization problem in Section 4 and investigate her updated belief in Section 5. In Section

6 we introduce the equilibrium, and in Section 7 we consider the linear case. Section 8

concludes the paper with a brief discussion.

2 Related literature

This paper is related to the literature on optimal police search. Press (2009), Meng (2012)

and Hoogstrate and Klaassen (2011, 2015) investigate the optimal search strategy for rare

malfeasors, for instance at airport security checkpoints. These authors assume that there

is exactly one criminal individual in a finite population and that beliefs are exogenous.

They show that, similar to our solution of the designer’s maximization problem, optimal

search strategies which use only limited resources will be discriminatory. Knowles et al.

(2001) and Persico and Todd (2005) investigate a game between the police and individuals,

who decide whether or not to abide the law. They model prejudice as an exogenous

difference in search costs and show that success rates are equal across appearances in

equilibrium if search costs are equal, which suggests an empirical test of racial bias.3

To the best of our knowledge, we are the first to study a model of police search in

which prejudice may arise endogenously in the form of biased beliefs as a consequence of

discrimination.

Discrimination will result in biased beliefs if the designer is a näıve statistician, that

is, if she ignores discrepancies between sample and population distribution. Thus, our

paper connects to the literature on sampling and statistical inference. In Osborne and

Rubinstein (1998), players sample each of their available actions once and then choose

the action with the best performance, ignoring that the samples are random; Spiegler

(2006a,b) studies firm competition over consumers who choose according to this proce-

3The test uses success rates to distinguish between statistical discrimination due to differences in
criminality and racist preferences. It is based on the idea that there is heterogeneity besides race, sex,
age, etc. only visible to police officers, such that success rates can be expected to decrease as search rates
increase. See also Anwar and Fang (2006), Dominitz and Knowles (2006) and Persico and Todd (2006)
for generalizations of these models.
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dure. In the sampling equilibrium of Osborne and Rubinstein (2003), players obtain a

sample of other players’ actions and best respond to the sample averages. In a recent

contribution, Salant and Cherry (2020) incorporate a statistical inference procedure into

sampling equilibrium. In contrast to these contributions, the sample distribution in our

model is endogenous and may be biased due to discrimination.

3 Notation and preliminaries

Consider a population N = [0, 1]. Individual i ∈ N ’s conduct is an element α ∈ {G,B};
her appearance is an element ω ∈ Ω, where Ω is finite. A type is a pair (α, ω) ∈ Θ ≡
{G,B} × Ω of a conduct and an appearance. Our interpretation of type (α, ω) is that

ω consists of i’s visible characteristics, such as race, sex, age, etc., while α captures

whether i is “good” or “bad”, i.e., abides the law or is criminal. Types are distributed

according to some strictly positive distribution p ∈ ∆◦ (Θ). To keep notation simple, let

p (ω) = pΩ (ω) = p (G,ω) + p (B,ω) denote the marginal distribution over appearances.

We assume that the type of any i ∈ N is exogenously given: individuals do not decide

whether or not to abide the law. Thus, the objective of the designer in this paper is the

detection of criminals rather than deterrence. For this purpose, she can randomly search

individuals. The probability that an individual is searched can be contingent on the

individual’s appearance. Thus, a search rule is a map π : Ω→ ∆ ({search, don’t search}).
To keep notation simple, we write πω = π (search|ω), π = (πω)ω∈Ω ∈ [0, 1]Ω, and we define

π̄ =
∑

ω∈Ω p (ω)πω as the average search probability given search rule π. We say that a

search rule discriminates against appearance ω if πω > π̄.

Throughout the paper we work under the assumption that the true distribution p is

unknown to the designer. Nevertheless, the designer has some belief q ∈ ∆ (Θ) about the

distribution of types. While individuals’ conducts are unknown, their appearances are

not. Thus, we assume that q is correct at least across appearances.

Consistency. For all ω ∈ Ω it holds that q (ω) = p (ω).

For a given belief q the expected success rate and the expected variance of a search rule
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π are given by

E = E (π) =
∑
ω∈Ω

q (B|ω) q (ω) πω (1)

and V = V (π) =
∑
ω∈Ω

q (ω) (πω − π̄)2 , (2)

respectively.

4 From disparities to discriminatory search rules

Suppose that the designer with given belief q has two objectives when choosing a search

rule: first, to detect as many individuals with conduct B as possible, and second, to be

not “too discriminatory”, i.e., to use a search rule according to which the probabilities of

being searched do not vary too much across appearances. Formally, let U : [0, 1]2 → R be

a quasi-concave and continuously differentiable utility function that maps the expected

success rate E and the expected variance V of π to U (E, V ). We assume that UE > 0

and UV < 0, i.e., U is increasing in the expected success and decreasing in the expected

variance of the search rule. At this point we can already provide some intuition about

optimal behavior given such a rule: on the one hand, as UE > 0, the designer will look for

criminals where she deems it most promising, i.e., where q (B|ω) is large.4 On the other

hand, as UV < 0, any discrepancies among the search probabilities for different appear-

ances will negatively affect the designer’s utility. (Maybe because such behavior comes

with a flavor of discrimination and might lead to costly social or even legal sanctions.)

Quasi-concavity of U means that, the more severely discrimination becomes, the more

strongly the success rate must increase in order to make up for it in terms of utility.

With the notation above, the designer’s maximization problem is

max
π

U (E(π), V (π)) (3)

s.t. 0 ≤ πω ≤ 1 for all ω ∈ Ω (4)∑
ω∈Ω

q (ω)πω ≤ k, (5)

4Arrow (1973) coined the term statistical discrimination for such behavior.
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where k < 1. The budget constraint (5) ensures that it is not optimal for the designer to

search every individual with probability 1; otherwise the problem would be mathemat-

ically trivial and the solution useless for any practical purposes. Note that the budget

constraint depends only on the correct parts of the designer’s belief. In particular, it is

equivalent to π̄ ≤ k.

As this problem maximizes a continuous function on a compact set, it has a solution.5

Our first result delivers an important property of this solution: a designer who perceives

disparities in conduct across appearances (be her perception correct or not) will use a

discriminatory search rule, and she will search those appearances more often that she

believes to be more prone to being criminal. The proofs of all results can be found in the

appendix.

Proposition 1. For any given belief q, the maximization problem in (3)–(5) has a unique

solution π, and this solution satisfies πω ≥ πω
′

whenever q (B|ω) ≥ q (B|ω′). Moreover,

there is c ∈ R such that πω ≥ π̄ if and only if q (B|ω) ≥ q(B) + c. If π is an interior

solution, then c = 0.

A few remarks seem in order. First, the optimal search rule satisfies some monotonicity

property with respect to the conditional beliefs q (B|ω). The more some appearance ω

is perceived to have conduct B, the more likely an individual of this appearance will be

searched.6 Second, the constant c depends on the type of corner solutions: if, for instance,

the budget k is small, then no appearance will be searched with probability 1, but some

might be searched with probability 0. In this case c is positive, that is, an appearance

ω will be searched disproportionally often if and only if the conditional belief q (B|ω)

exceeds q(B) by at least c; otherwise, ω will be searched less often than the average.

It is worth mentioning that interior solutions are particularly attractive for two reasons:

first, here an appearance will be discriminated against, i.e., searched more often than the

average, if and only if it is perceived to be positively correlated with conduct B. Second,

for interior solutions the (normalized) discrimination gap of any appearance ω, that is,

5It is clear from the discussion above that for any solution of the maximization problem the budget
constraint will be binding. When we later refer to an interior solution of the problem, we mean a solution
for which the multipliers that correspond to the constraints in (4) are 0.

6The converse of this statement is not true as it might be the case, if k is very small, that πω = πω′
= 0

even if q (B|ω) > q (B|ω′).
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the relative difference between the average search probability and πω, is given by

δω ≡ πω − π̄
π̄

=
UE (E, V )

2kUV (E, V )
(q (B)− q (B|ω)) (6)

and, hence, proportional to the difference between q(B) and q (B|ω). The following

corollary establishes a necessary and sufficient condition for the solution to be interior.

Corollary 2. For any given belief q, the solution π of the maximization problem (3)–(5)

is an interior solution if and only if

− UE (E, V )

2UV (E, V )
(q (B)− q (B|ω)) ≤ k ≤ 1− UE (E, V )

2UV (E, V )
(q (B)− q (B|ω)) , (7)

where E and V are defined as in (1) and (2), respectively. In particular, in this case, for

all ω ∈ Ω it holds that πω ≥ π̄ if and only if q (B|ω) ≥ q(B).

Of course, the conditions in Corollary 2 are difficult to verify ex ante for arbitrary utility

functions U . However, if U is linear in both arguments, then (7) is independent of the

solution π.

Example 3. Let U (E, V ) = aE − bV with a ≤ b, and let k ∈
[
a
2b
, 1− a

2b

]
. Then the

conditions in Corollary 2 are satisfied for all beliefs q. In this case

δω =
a

2bk
(q (B|ω)− q(B))

for all ω ∈ Ω. We refrain from any comparative statics at this point, as these will be dealt

with in Section 7, where the designer’s belief q will no longer be assumed exogenous. �

5 From discriminatory search rules to biased beliefs

In the previous section we have found the optimal search rule for a given belief q. In

this section we shall investigate how a given search rule may affect the designer’s belief.

The mathematically competent reader of our paper will probably argue that, as long

as each appearance is searched with positive probability and the number of searches is

sufficiently large, the designer will eventually learn the true distribution p, whatever her

initial belief q might have been. The point we want to make here is that the designer
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might, unfortunately, not be that competent. In particular, she might behave as a näıve

statistician and argue as follows:

I have conducted M searches, and a certain number R of these searches

have led to the detection of an individual with conduct B. So, the overall crim-

inality rate is τ (B) = R
M

. Moreover, among all those with conduct B, there

were S individuals who had appearance ω. Thus, the conditional probability

that an individual with conduct B has appearance ω is τ (ω|B) = S
R

.

Before we formalize these calculations, we want to point out the major flaws in the

argument: the designer makes the implicit assumption that her sample is representative.

The calculations are perfectly fine for calculating the (conditional) probabilities in the

sample, they just might not be the same as in the overall population if the sample is

biased. The second flaw is that the designer only considers individuals with conduct

B. We will discuss the consequences of this feature below, after we have formalized the

designer’s argument.

Suppose the designer conducts searches according to some search rule π. Then the

sample distribution is defined by

τπ (α) =

∑
ω′∈Ω π

ω′p (ω′) p (α|ω′)∑
ω′∈Ω π

ω′p (ω′)
=

∑
ω′∈Ω π

ω′p (α, ω′)

π̄
(8)

τπ (ω|α) =
πωp(ω)p (α|ω)∑

ω′∈Ω π
ω′p(ω′)p (α|ω′)

=
πωp (α, ω)∑

ω′∈Ω π
ω′p (α, ω′)

, (9)

for α = G,B. Even if the search rule π is discriminatory, i.e., if πω > π̄ for some ω ∈ Ω,

a designer who calculated τπ according to these formulas for both G and B would soon

realize that τπ is not consistent, i.e., that her statistic is flawed. Indeed, in this case

τπ (ω) = τπ (ω|B) τπ(B) + τπ (ω|G) τπ(G) =
πωp (B,ω) + πωp (G,ω)

π̄
=
πω

π̄
p (ω) 6= p (ω) .

So, a designer who discriminates against some appearances but who keeps book on all

positive and negative findings while conducting searches will be able to figure out that

something is wrong with the distribution τπ.

But, as it happens, in practice there seldomly is a book for negative searches: only

positive searches, that is, searches in which conduct B was detected, will be documented
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and counted. Our designer as well only makes her calculations for conduct B. This leaves

plenty of room for errors that the designer will not be able to detect herself: she might

have some belief q, conduct searches according to some rule π, calculate the (biased)

distribution τπ based on individuals with conduct B, and see herself confirmed in her

belief if τπ and q coincide. To make this statement more formal, we define:

Definition 4 (B-admissibility). A belief q ∈ ∆ (Θ) is B-admissible (at π) if q (B) =

τπ (B) and q (ω|B) = τπ (ω|B) for all ω ∈ Ω.

Our next proposition characterizes the search rules under which the designer can have a

consistent B-admissible belief, such that the results of the search will confirm her belief.

Proposition 5. For any search rule π, there is q ∈ ∆ (Θ) which is consistent and B-

admissible at π if and only if

πωp (B|ω) ≤ π̄ (10)

for all ω ∈ Ω. In this case, q is unique. Moreover, q (B|ω) ≥ p (B|ω) if and only if

πω ≥ π̄.

The first finding of this proposition deserves a brief discussion, as it does not seem entirely

plausible at first sight. The necessity of (10) stems from the fact that if an appearance ω

with high conditional probability p (B|ω) were searched too often, the conditional proba-

bility q (B|ω) would not be well-defined any more.

The last part of Proposition 5, on the other hand, is in line with our expectation: if

an appearance ω is searched more often than the average, then the conditional proba-

bility that this appearance has conduct B is higher in the sample distribution than in

the population distribution. This implies, in particular, that a consistent belief q that is

B-admissible at some discriminatory search rule π is biased: there are at least two ap-

pearances for whom the conditional probabilities q (B|ω) are over- and underestimated,

respectively.

6 Equilibrium beliefs and search rules

In the previous two sections we have made two observations: a designer who perceives

disparities in conduct across appearances will use a discriminatory search rule; and a
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näıve statistician who uses a discriminatory search rule will develop a biased belief. In

this section we will bring both parts of the problem together: we ask whether there are

a belief and a search rule such that the former is B-admissible given the latter, and the

latter is optimal given the former.

Definition 6. A pair (q, π) of a consistent belief q and a search rule π is an equilibrium

if q is B-admissible at π, and π solves the maximization problem (3)–(5) for q.

And indeed: we answer our question with the affirmative. In particular, the designer will

be discriminating against an appearance in equilibrium if and only if she overestimates

the probability of this appearance’s being criminal (compared to the true distribution).

Theorem 7. Suppose that p and k are such that p (B|ω) ≤ k for all ω ∈ Ω. Then there is

an equilibrium (q, π). If, additionally, k ∈
[
− UE(E,V )

2UV (E,V )
, 1 + UE(E,V )

2UV (E,V )

]
holds at equilibrium,

then the following are equivalent:

(i) q (B|ω) ≥ q (B),

(ii) q (B|ω) ≥ p (B|ω),

(iii) πω ≥ π̄.

The conditions in Theorem 7 are sufficient but not necessary. The additional conditions

on U and k in the second part ensure that at equilibrium the optimal search rule is an

interior solution of the maximization problem (3)–(5). In this case an appearance will be

discriminated against by π if and only if it is perceived to be criminal more often than the

average. Observe, however, that Theorem 7 does not guarantee that appearances which

are more prone to have conduct B according to the true distribution p are searched more

often than others in equilibrium. That is, without further assumptions it might be the

case that p (B|ω) > p (B|ω′) and, at the same time, q (B|ω) < q (B|ω′) and πω < πω
′
.

(Recall that the latter two inequalities are equivalent in equilibrium by Proposition 1.)

We close this section with a brief discussion on whether the true distribution p might

arise in equilibrium. The answer is: it might, but generically it does not.

Corollary 8. There is an equilibrium (q, π) with q = p if and only if p (B|ω) = p(B) for

all ω ∈ Ω.

So, indeed, if appearance and conduct are correlated, then the correct distribution p

cannot be part of an equilibrium. This means that, generically speaking, whenever our

näıve statistician feels her belief confirmed, she must be wrong.
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7 The linear case

We have mentioned before that without further restrictions we might find an equilibrium

in which an appearance ω is believed to be more criminal than another appearance ω′,

while in fact it is the other way around. A class of utility functions which rules out such

a possibility are the linear functions that we considered in Example 3. In particular, in

this case perceived disparities are larger than actual disparities.

Theorem 9. Let Ω = {ω1, . . . , ωm} and let p be such that p (B|ω1) ≥ . . . ≥ p (B|ωm)

with at least one strict inequality. Let further U (E, V ) = aE − bV with a < 2b, and let k

be such that p (B|ω1) ≤ k ≤ 1− (1− p(ω1)) a
2b

. Then there is a unique equilibrium (q, π),

and this equilibrium has the following properties:

(i) q (B|ω1) ≥ . . . ≥ q (B|ωm) and πω
1 ≥ . . . ≥ πω

m
with at least one strict inequality

in each chain;

(ii) there is m∗ ≥ 1 such that πω
`
> π̄ for all ` ≤ m∗ and πω

` ≤ π̄ for all ` > m∗;

(iii) if a
2bk

increases (within the boundaries above), then q(B) increases, m∗ (weakly)

decreases, and δw
1

increases.

Part (iii) of Theorem 9 is particularly intriguing. A decrease in budget k, ceteris paribus,

causes an increase in a
2bk

and thereby an increase in the perceived average crime rate. At

the same time, that part of the population whose crime rate is underestimated—that is,

appearances ω with πω < π̄—increases as well. This means that those who remain facing

discrimination will be perceived even more criminal. In particular, the discrimination

gap (6) of those individuals who face the strongest discrimination will further increase,

and they will hence suffer most from budget cuts. The intuition behind this mechanism

is easily explained: as budgets are cut, i.e., as fewer people will be searched, incentives

become stronger to search where it seems most promising. But this will shift searches

towards those who have been discriminated against most before. Observe that a decrease

in k has exactly the same consequences as a decrease in b, the parameter that deter-

mines the sanction for discrimination. Thus, increasing sanctions will have exactly the

opposite effect: more appearances will be discriminated against, but less harshly, and the

overestimation of the crime rate will be reduced.
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The above discussion suggests that budget cuts or lower sanctions may overall increase

discrimination. To investigate this question, we introduce a measure of discrimination

that is comparable across different average search probabilities (and hence budgets). The

normalized expected variance

Ṽ (π) ≡
∑
ω∈Ω

q (ω)

(
πω − π̄
π̄

)2

of a search rule π measures the dispersion of search probabilities relative to the average

search probability. We show that indeed budget cuts or lower sanctions increase the

normalized expected variance.

Corollary 10. Under the conditions of Theorem 9, the unique equilibrium (q, π) is such

that Ṽ (π) is increasing in a
2bk

(within the stated boundaries).

8 Discussion

In this paper we studied a designer who distributes resources to the searches of certain

types. She is doing so by maximizing, subject to a budget constraint, a utility function

that depends both on the success rate of her searches and the discrepancies in search

probabilities across appearances. When evaluating the conducted searches, she makes the

mistake of taking the distribution of her sample for the population distribution—which is

wrong as long as she does not search all appearances with equal probability. Generically

speaking, any belief that is self-confirming in the sense that it is based on the result

of searches which in turn are based on the belief must be incorrect. In particular, the

designer overestimates the probability with which an appearance is criminal if and only

if she is discriminating this appearance. Moreover, we show that in a linear model, as

the budget constraint becomes tighter, both the overestimation of the crime rate and the

situation of those who face the strongest discrimination will worsen. The latter finding

should be strongly considered when campaigning for the defunding of police forces due to

alleged racial discrimination. At the same time, sanctioning discriminatory search rules

will have the opposite effect: in this case more appearances will be discriminated, but

they will be discriminated less strongly, and the overestimation of the crime rate will be

reduced.
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A Appendix

Proof of Proposition 1. For uniqueness it is sufficient to show that U is strictly quasi-

concave in π. To this end note that E is linear and V is strictly convex in π. So, for any

two search rules π1, π2 and α ∈ (0, 1), it holds that

U (x (απ1 + (1− α) π2)) > U (αx (π1) + (1− α)x (π2)) ≥ min{U (x (π1)) , U (x (π2))},

where the first inequality follows from U ’s being strictly decreasing in V , and the second

inequality follows from U ’s being quasi-concave in x. So, the solution is unique.

For any ω ∈ Ω, let λω, λ̄ω denote the Lagrange multipliers that correspond to the con-

straints πω ≥ 0 and πω ≤ 1, respectively; and let µ denote the multiplier that corresponds

to (5). Then, using that q(ω) = p(ω) for all ω ∈ Ω, the first order conditions are given as

q (B|ω) p(ω)UE (E, V ) + 2p (ω) (πω − π̄)UV (E, V ) + λω − λ̄ω − µp (ω) = 0

for all ω ∈ Ω. Summing up over all ω ∈ Ω delivers

q(B)UE (E, V ) +
∑
ω∈Ω

(
λω − λ̄ω

)
= µ.

Thus,

q (B|ω) p(ω)UE (E, V ) + 2p (ω) (πω − π̄)UV (E, V ) + λω − λ̄ω
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= p (ω)

(
q(B)UE (E, V ) +

∑
ω∈Ω

(
λω − λ̄ω

))

or, equivalently,

πω − π̄ =
UE (E, V ) (q(B)− q (B|ω)) +

∑
ω′∈Ω

(
λω
′ − λ̄ω′

)
2UV (E, V )

− λω − λ̄ω

2p (ω)UV (E, V )
. (11)

We first show that πω ≥ πω
′

whenever q (B|ω) ≥ q (B|ω′). So, let q (B|ω) ≥ q (B|ω′).
Suppose first that λω = λ̄ω = 0 and recall that UV (E, V ) < 0. Assume for a moment that

λ̄ω
′
> 0, i.e., πω

′
= 1. Then the right hand side of (11) is strictly smaller for ω′ than for

ω. Thus, 1 = πω
′
< πω ≤ 1, which is impossible. So, λ̄ω

′
= 0 must hold. If λω

′
> 0, then

πω
′

= 0 ≤ πω as required. If λω
′

= 0, then the right hand side of (11) is weakly smaller

for ω′ than for ω, so that πω
′ ≤ πω. Suppose next that λ̄ω > 0. Then πω = 1 ≥ πω

′
.

Finally, suppose that λω > 0, i.e., πω = 0. Assume that πω
′
> 0, that is, λω

′
= 0. Then

the right hand side of (11) is strictly smaller for ω′ than for ω, so that πω
′
< πω = 0,

which is impossible. So, πω ≥ πω
′

whenever q (B|ω) ≥ q (B|ω′).
We next show that πω ≥ π̄ if and only if

q (B|ω) ≥ q (B) +
1

UE (E, V )

∑
ω′∈Ω

(
λω
′ − λ̄ω′

)
. (12)

Indeed, by Equation (11), and since UV < 0, this is true if λω = λ̄ω = 0, i.e., if πω ∈ (0, 1).

Suppose that λω > 0, i.e., πω = 0 and λ̄ω = 0. Then πω < π̄ is true. On the other

hand, the left hand side of (11) is negative so that the reverse of (12) must hold as well.

Similarly, if λ̄ω > 0, i.e., πω = 1 and λω = 0, then πω > π̄. Thus, the left hand side

of (11) is positive and the strict version of (12) must hold. Hence, the proposition is

true with c = 1
UE(E,V )

∑
ω′∈Ω

(
λω
′ − λ̄ω′

)
. In particular, if π is an interior solution, i.e., if

λω = λ̄ω = 0 for all ω ∈ Ω, then c = 0.

Proof of Corollary 2. It is sufficient to show that a solution to the maximization problem

that consists only of (3) and (5) satisfies the constraints in (4) if and only if the inequalities

in (7) hold. From (11) one finds that any solution to the problem without the constraints
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in (4) satisfies

πω = k +
UE (E, V )

2UV (E, V )
(q (B)− q (B|ω))

for all ω ∈ Ω, where we use that the budget constraint (5) is binding. In particular, we

find that k ≥ − UE(E,V )
2UV (E,V )

(q (B)− q (B|ω)) if and only if

πω ≥ UE (E, V )

2UV (E, V )
(q (B)− q (B|ω)− q (B) + q (B|ω)) = 0.

Similarly, k ≤ 1− UE(E,V )
2UV (E,V )

(q (B)− q (B|ω)) if and only if

πω ≤ 1− UE (E, V )

2UV (E, V )
(q (B)− q (B|ω)) +

UE (E, V )

2UV (E, V )
(q (B)− q (B|ω)) = 1.

Thus, π is an interior solution of the maximization problem (3)–(5) if and only if it is a

solution that satisfies (7).

Proof of Proposition 5. Consistency and B-admissibility together uniquely define q by

q (B,ω) = τπ (ω|B) τπ (B) =
πω

π̄
p (B,ω) (13)

q (G,ω) = p (ω)− τπ (ω|B) τπ (B) = p (ω)− πω

π̄
p (B,ω)

for all ω ∈ Ω. We have to show that q is a probability distribution if and only if (10)

is satisfied. We have to show that q is a probability distribution if and only if (10) is

satisfied. Independently of (10) we have that q (B,ω) ≥ 0 for all ω ∈ Ω and∑
ω∈Ω

q (B,ω) + q (G,ω) =
∑
ω∈Ω

p (ω) = 1.

Moreover, q (G,ω) ≥ 0 if and only if p (ω) ≥ πω

π̄
p (B,ω), which is equivalent to (10). By

consistency of q we have that q (B|ω) ≥ p (B|ω) if and only if q (B,ω) ≥ p (B,ω), which

is equivalent to πω ≥ π̄ by (13).

Proof of Theorem 7. Let Π be the set of search rules that satisfy π̄ = k. Let φ : ∆ (Θ)→
Π be the map that maps q to the optimal search rule π with respect to the problem
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(3)–(5). This is well defined as the budget constraint (5) ensures that π ∈ Π. Moreover,

as the objective function in (3) is continuous in q, and the constraints are independent of

q, φ is continuous in q.

Let ψ : Π → ∆ (Θ) be the map that maps π to the unique B-admissible q ∈ ∆ (Θ).

Observe that this is well defined by Proposition 5 as πωp (B|ω) ≤ p (B|ω) ≤ k = π̄ for all

π ∈ Π. In particular, ψ is continuous in π.

The map φ ◦ ψ : Π → Π is, thus, a continuous map from a compact convex set into

itself. Hence, it has a fixed point π and a corresponding belief q = ψ (π), such that, by

construction, q is B-admissible at π and π solves the maximization problem (3)–(5).

If, additionally, k ∈
[
− UE(E,V )

2UV (E,V )
, 1 + UE(E,V )

2UV (E,V )

]
at equilibrium, then π is an interior

solution by Corollary 2. Thus, by Proposition 1, (i) and (iii) are equivalent; and by

Proposition 5, (ii) and (iii) are equivalent.

Proof of Corollary 8. If p (B|ω) = p(B) for all ω ∈ Ω one finds that the search rule π

with πω = k = π̄ for all ω ∈ Ω solves the maximization problem (3)–(5). For this search

rule Equations (8) and (9) deliver τπ = p.

On the other hand, suppose that there is ω with p (B|ω) 6= p(B) and assume that

there is an equilibrium (p, π). Then there are ω, ω′ such that p (B|ω) > p (B|ω′), which

implies πω > πω
′

by Proposition 1. Thus, as not all πω are equal, there is ω∗ such that

πω
∗
> π̄. By Proposition 5, p (B|ω∗) = τπ (B|ω∗) > p (B|ω∗), which is impossible.

Proof of Theorem 9. Since k ≥ p (B|ω1) ≥ p (B|ω) for all ω ∈ Ω, an equilibrium exist

by Theorem 7. Because of Example 3, Equation (13), and the consistency of q, any

equilibrium (q, π) such that π is an inner solution of the maximization problem in (3)–(5)

must satisfy the equation system

πω = k +
a

2b
(q (B|ω)− q(B)) (14)

q (B|ω) =
πω

k
p (B|ω) (15)

q(B) =
∑
ω∈Ω

p (ω) q (B|ω) . (16)

We show that this equation system has a unique solution (q, π) and that this solution

is an equilibrium. This then implies that π is an interior solution for the maximization

problem in (3)–(5).
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Substituting (15) into (14) and solving for πω delivers

πω =
k − a

2b
q(B)

1− a
2b
p(B|ω)
k

= k
1− a

2bk
q(B)

1− a
2bk
p (B|ω)

and

q (B|ω) = p (B|ω)
1− a

2bk
q(B)

1− a
2bk
p (B|ω)

. (17)

(Since a < 2b and k ≥ p (B|ω) for all ω ∈ Ω all fractions are well defined.) Substituting

(17) into (16) delivers

q (B) =
∑
ω∈Ω

p (ω) p (B|ω)
1− a

2bk
q(B)

1− a
2bk
p (B|ω)

=
∑
ω∈Ω

p (ω) p (B|ω)

1− a
2bk
p (B|ω)

− q(B)
a

2bk

∑
ω∈Ω

p (ω) p (B|ω)

1− a
2bk
p (B|ω)

,

and solving for q(B) we find

q(B) =
∑
ω∈Ω

p (ω)

p(B|ω)
1− a

2bk
p(B|ω)

1 + a
2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)

.

Thus, with (17) we find

q (B|ω) =
p (B|ω)

1− a
2bk
p (B|ω)

(
1− a

2bk
q(B)

)
=

p (B|ω)

1− a
2bk
p (B|ω)

1−
a

2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)

1 + a
2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)


=

p (B|ω)

1− a
2bk
p (B|ω)

1

1 + a
2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)

=

p(B|ω)
1− a

2bk
p(B|ω)

1 + a
2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)

. (18)

Together with (15) we see that q and π are uniquely determined. It is left to show

20



that they form an equilibrium, i.e., that π is a well-defined search rule and that q is a

probability distribution. Observe from (18) that q (B|ω) ≥ 0 for all ω ∈ Ω since a < 2b

and k ≥ p (B|ω) for all ω ∈ Ω. Hence, by (15), πω ≥ 0 for all ω ∈ Ω. Moreover, by (18)

it holds that

q
(
B|ω1

)
≥ . . . ≥ q (B|ωm) , (19)

and, thus, by (15),

πω
1 ≥ . . . ≥ πω

m

. (20)

In order to show that π is a search rule, it is therefore sufficient to show that πω
1 ≤ 1.

Equations (15) and (18) together with p (B|ω1) ≤ k yield

πω
1

=
k

p (B|ω1)
q
(
B|ω1

)
=

k
1− a

2bk
p(B|ω1)

1 + a
2bk

∑
ω′∈Ω

p(ω′)p(B|ω′)
1− a

2bk
p(B|ω′)

≤
k

1− a
2bk

p(B|ω1)

1 + a
2bk

p(ω1)p(B|ω1)
1− a

2bk
p(B|ω1)

=
k

1− (1− p (ω1)) a
2bk
p (B|ω1)

≤ k

1− (1− p (ω1)) a
2b

≤ 1,

where the last inequality follows from the upper bound on k. So, π is indeed a search

rule. Finally, q (B|ω) = πω p(B|ω)
k
≤ πω ≤ 1 by (15). Thus, (q, π) is indeed an equilibrium.

Moreover, we have shown claim (i) in Equations (19) and (20).

The second assertion follows immediately from the first as πω
1
> π̄ > πω

m
.

We next show that q(B) increases as a
2bk

increases. Let fω(x) = p(ω)p(B|ω)
1−p(B|ω)x

and g (x) =∑
ω∈Ω

fω(x)
1+x

∑
ω′ fω′ (x)

, and observe that q(B) = g
(
a

2bk

)
. We have that

f ′ω(x) =
p (ω) p (B|ω)2

(1− p (B|ω)x)2 =
p (B|ω)

1− p (B|ω)x
fω(x)

and

(xfω(x))′ = fω(x) + xf ′ω(x) =
1

1− p (B|ω)x
fω(x).
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Thus,

g′(x) =

(∑
ω∈Ω

fω(x)

1 + x
∑

ω′∈Ω fω′(x)

)′

=

(
1 + x

∑
ω′∈Ω

fω′(x)

)−2

∑
ω∈Ω

[
p (B|ω)

1− p (B|ω)x
fω(x)

(
1 + x

∑
ω′∈Ω

fω′(x)

)
− fω(x)

∑
ω′∈Ω

fω′(x)

1− p (B|ω′)x

]

=

(
1 + x

∑
ω′∈Ω

fω′(x)

)−2 [∑
ω∈Ω

fω(x)

(
p (B|ω)x

1− p (B|ω)x

∑
ω′∈Ω

fω′(x)−
∑
ω′∈Ω

fω′(x)

1− p (B|ω′)x

)

+
∑
ω∈Ω

p (B|ω)

1− p (B|ω)x
fω(x)

]
.

=

(
1 + x

∑
ω′∈Ω

fω′(x)

)−2 [∑
ω′∈Ω

fω′(x)
∑
ω∈Ω

p (B|ω)x− 1

1− p (B|ω)x
fω(x) +

∑
ω∈Ω

p (B|ω)

1− p (B|ω)x
fω(x)

]

=

(
1 + x

∑
ω′∈Ω

fω′(x)

)−2∑
ω∈Ω

fω(x)

(
−
∑
ω′∈Ω

fω′(x) +
p (B|ω)

1− p (B|ω)x

)

=

(
1 + x

∑
ω′∈Ω

fω′(x)

)−2
∑
ω∈Ω

p (ω)

(
p (B|ω)

1− p (B|ω)x

)2

−

(∑
ω∈Ω

p (ω)
p (B|ω)

1− p (B|ω)x

)2


>0,

where the last inequality comes from Jensen’s inequality. So, q(B) is indeed increasing in
a

2bk
.

We show that m∗ decreases as a
2bk

increases. For this purpose, by the continuity of the

solution in a
2bk

, it is sufficient to show that if πω = π̄, i.e., if ω is exactly on the brink of

being discriminated against, ω will not be discriminated after an increase in a
2bk

. So, let

πω = π̄. By Equations (15) and (18) this is equivalent to

p (B|ω)

1− a
2bk
p (B|ω)

=
∑
ω′∈Ω

p (ω′)
p (B|ω′)

1− a
2bk
p (B|ω′)

. (21)
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Let x = a
2bk

. Differentiating the left hand side with respect to x yields

d

dx

[
p (B|ω)

1− xp (B|ω)

]
=

(p (B|ω))2

(1− xp (B|ω))2 =

(∑
ω′∈Ω

p (ω′)
p (B|ω′)

1− xp (B|ω′)

)2

<
∑
ω′∈Ω

p (ω′)

(
p (B|ω′)

1− xp (B|ω′)

)2

=
d

dx

[∑
ω′∈Ω

p (ω′)
p (B|ω′)

1− xp (B|ω′)

]
,

where the second equality follows from (21). Thus, ω will not be discriminated after an

increase in a
2bk

.

Finally, let again x = a
2bk

and observe from Equation (17) that

q (B|ω)− q(B) = p (B|ω)
1− xq(B)

1− xp (B|ω)
− q(B)

1− xp (B|ω)

1− xp (B|ω)
=
p (B|ω)− q(B)

1− xp (B|ω)
.

Hence, as π is an interior solution of the designer’s maximization problem, Equation (6)

delivers

δω = x (q (B)− q (B|ω)) = x
p (B|ω)− q(B)

1− xp (B|ω)
.

Thus, we find

dδω

dx
=

(
p (B|ω)− q(B) + x

(
−dq(B)

dx

))
(1− xp (B|ω))− x (p (B|ω)− q(B)) (−p (B|ω))

(1− xp (B|ω))2

=
p (B|ω)− q(B)− xdq(B)

dx
(1− xp (B|ω))

(1− xp (B|ω))2

=
p (B|ω)

(
1 + x2 dq(B)

dx

)
− q(B)− xdq(B)

dx

(1− xp (B|ω))2 .

for all ω ∈ Ω. Observe that ∂δω

∂x
≥ 0 implies ∂δω

′

∂x
> ∂δω

∂x
for all ω′ ∈ Ω with p (B|ω′) >

p (B|ω). In particular, it is impossible that ∂δω

∂x
= 0 for all ω ∈ Ω since p (B|ω1) >

p (B|ωm). Furthermore, since
∑n

l=1 p
(
ωl
)
δω

l
= 0, at least one of the derivatives must be

positive and one must be negative. But this implies that ∂δω
1

∂x
> 0.
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Proof of Corollary 10. Let x = a
2bk

and hω(x) = 1
1−xp(B|ω)

, then (18) simplifies to

q (B|ω) =
p (B|ω)hω(x)

1 + x
∑

ω′∈Ω p (ω′) p (B|ω′)hω′(x)
=

p (B|ω)hω(x)∑
ω′∈Ω p (ω′)hω′(x)

.

Together with (15) we obtain

πω = k
q (B|ω)

p (B|ω)
=

khω(x)∑
ω′∈Ω p (ω′)hω′(x)

.

Consistency of q hence yields

Ṽ (π) =
∑
ω∈Ω

q (ω)

(
πω − π̄
π̄

)2

=
1

π̄2

∑
ω∈Ω

p (ω) (πω)2 − 1 =

∑
ω∈Ω p (ω)hω(x)2(∑
ω′∈Ω p (ω′)hω′(x)

)2 − 1.

Note that

h′ω(x) =
p (B|ω)

(1− xp (B|ω))2 = p (B|ω)hω(x)2.

Hence,

d

dx

( ∑
ω∈Ω p (ω)hω(x)2(∑
ω′∈Ω p (ω′)hω′(x)

)2 − 1

)

=2

(∑
ω′∈Ω

p (ω′)hω′(x)

)−4(∑
ω′∈Ω

p (ω′)hω′(x)

)
·[(∑

ω∈Ω

p (ω) p (B|ω)hω(x)3

)(∑
ω′∈Ω

p (ω′)hω′(x)

)

−

(∑
ω′∈Ω

p (ω′) p (B|ω′)hω′(x)2

)(∑
ω∈Ω

p (ω)hω(x)2

)]

=2

(∑
ω′∈Ω

p (ω′)hω′(x)

)−4(∑
ω′∈Ω

p (ω′)hω′(x)

)
·[∑

ω∈Ω

∑
ω′∈Ω

p (ω) p (ω′) p (B|ω)hω(x)2hω′(x) (hω(x)− hω′(x))

]

=2

(∑
ω′∈Ω

p (ω′)hω′(x)

)−4(∑
ω′∈Ω

p (ω′)hω′(x)

)
·
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[ ∑
ω,ω′∈Ω:

p(B|ω)>p(B|ω′)

p (ω) p (ω′) p (B|ω)hω(x)2hω′(x)︸ ︷︷ ︸
>p(B|ω′)hω(x)hω′ (x)2

(hω(x)− hω′(x))

−
∑

ω,ω′∈Ω:

p(B|ω)<p(B|ω′)

p (ω) p (ω′) p (B|ω)hω(x)2hω′(x) (hω′(x)− hω(x))

]

>2

(∑
ω′∈Ω

p (ω′)hω′(x)

)−4(∑
ω′∈Ω

p (ω′)hω′(x)

)
·[ ∑

ω,ω′∈Ω:

p(B|ω)>p(B|ω′)

p (ω) p (ω′) p (B|ω′)hω(x)hω′(x)2 (hω(x)− hω′(x))

−
∑

ω,ω′∈Ω:

p(B|ω)<p(B|ω′)

p (ω) p (ω′) p (B|ω)hω(x)2hω′(x) (hω′(x)− hω(x))

]

= 0,

where the inequality follows from hω(x) > 1 and p (B|ω) ≥ p (B|ω′) ⇔ hω(x) ≥ hω′(x)

under the conditions of Theorem 9.
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