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Abstract

The works of this thesis fall into the broad, highly interdisciplinary field of research on

opinion dynamics and social networks, which has been studied from different perspectives

by sociologists, social psychologists, economists, politicians, cybernetists, mathematicians,

computer scientists and even theoretical physicists, for many decades. So far, most models

make the basic assumption that agents tend to follow the trend (they are conformist)

and that nobody has a kind of opposite behavior (anti-conformism). Recently, a few

studies consider such kind of opposite behavior, under the name of anti-conformists,

hipsters, contrarians, anti-coordination, etc. Unlike the well-developed theory of opinion

dynamics with conformists, the studies with anti-conformists are taking their first steps.

This Ph.D thesis aims to answer the following questions: Given a society of agents in a

(fixed or endogenous) network, given a mechanism of influence for each agent, how the

behavior/opinion of the agents will evolve with time, and in particular can it be expected

that it converges to some stable situation, and in this case, which one? The main objective

is to obtain the conditions (both on the agent- and network-level) required to generate

specific network level phenomena, e.g., reaching a consensus/polarization.

The first work provides a detailed study of the threshold model, where both conformist

and anti-conformist agents coexist. The study bears essentially on the convergence of the

opinion dynamics in the society of agents, i.e., finding absorbing classes, cycles, etc. Also,

we are interested in the existence of cascade effects, as this may constitute an undesirable

phenomenon in collective behavior. The study is divided into two parts. In the first one,

the threshold model is studied by supposing a fixed complete network, where every one is

connected to every one, like in the seminal work of Granovetter. The cases of a uniform

distribution of the threshold, of a Gaussian distribution are studied, and finally a result

for arbitrary distributions is given, supposing there is one type of anti-conformist. In a

second part, the graph is no more complete and we suppose that the neighborhood of an

agent is random, drawn at each time step from a distribution. Two cases are distinguished

where the degree (number of links) of an agent is fixed, and where there is an arbitrary

degree distribution. We show the existence of cascades and that for most societies, the

opinion converges to a chaotic situation.

The second work studies the dynamics of continuous cultural traits (as a specific type of

continuous opinions) in an OLG (overlapping generation) structure and in an endogenous
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social network, where the network changes are inherited. Children learn their cultural trait

from their parents and their social environment modelled by network. Parents want their

children to adopt a cultural trait that is similar to their own and engage in the socialization

process of their children by forming new links or deleting connections. Changing links

from the inherited network is costly, but having many links is beneficial. We propose

three ways to endogenize the process of network formation. In the first one, the network

is supposed to be directed and each dynasty can either form or delete a directed link

unilaterally with another dynasty. Therefore, at each period, each family faces a utility

opitimization problem where a trade-off between own utility losses and the improvements

of child’s cultural trait. We have shown that if the cost of network changes is greater than

the cost of child care, extremists will never add links, and in the case of sufficiently low

cost, extremists may cut all ties with the society. In the second and third models, the

network is supposed to be undirected. In the second model, we assume that after each

period, a pairwise stable network (PS network for short) is reached. In this case, there

always exist sufficiently small cost parameters such that the empty network is the unique

PS network. In the third model, we assume that after each period, a pairwise stable

network with transfers (PST network for short) is reached. We have shown the existence

of the PST network for each period, however, it is not necessary to be unique. Moreover,

a necessary and sufficient condition is given such that a network is PST for given V (t)

and G(t). The convergence of cultural traits in this case is guaranteed. Regarding the

efficiency of the network, we show that there always exist sufficiently small cost parameters

such that the empty network is the unique efficient network, and sufficiently large costs

of child care such that the complete network is the unique efficient network. Moreover,

more detailed dynamics of cultural traits are studied when the costs of network changes

and benefits from integration are low, intermediate, and large, respectively.

The third work proposes an appropriate updating rule of continuous opinions for modeling

anti-conformity behavior, defined according to the repelling function, which gives the shift

of the opinion based on the current opinion and the reference opinion for an agent. Two

models of continuous opinion dynamics (with opinion value on a continuous scale [0,1]) are

studied in undirected networks, by introducing the heterogeneity in the sense of conformity

and anti-conformity behavior either in nodes or in links. In the first one, the society is

composed of both conformist and anti-conformist agents. Conformist agents update their
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opinions following the DeGroot rule with equal weights, however, anti-conformist agents

would like to repel from others, and the repelling level is negatively related to the opinion

distance between the anti-conformist and her reference point. No consensus will be reached

for any connected network in the presence of anti-conformist agent. Instead, opinions

converge to a disagreement or oscillate over time. In the second part, by supposing a

signed graph where agents have positive links (+1) with their friends and negative links

(−1) with their enemies, agents update their opinion as the sum of the averaged opinion

of their friends and repelling value from their enemies. When the network is balanced, i.e.,

there are two communitarian groups, and each sub-network corresponding to each group

is connected and the initial opinion ranges of the two groups are disjoint, the consensus

within each group is guaranteed. Both synchronous and asynchronous updating models

are discussed in these two parts.
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Chapter 1

Introduction

1.1 Opinion Dynamics and Social Networks

The works of this thesis fall into the broad, highly interdisciplinary field of research on
opinion dynamics and social networks which has been studied for many decades, in dif-
ferent communities related to social and behavioral sciences, economics, politics, physics,
control theory, mathematics, computer science, etc. Opinions, beliefs, actions, decisions,
attitudes, and social norms are intimately intertwined with each other. We form our
opinions on every aspect of our life, from personal interests (e.g., favorite colors/foods),
to social norms (e.g., the acceptable behavior in certain circumstances), to economic de-
cisions (e.g., consumption budget, tax rate), and even to political attitudes, etc. How
do we form our opinions? On the one hand, we acquire our beliefs and opinions through
learning from our parents or guardians, as we are taught the basic values and beliefs since
childhood (e.g. Bisin and Verdier (2000), Bisin and Verdier (2001)). On the other hand,
to a large extent, we learn from our social environment and update our opinions and
beliefs instantly based on our experience and the information obtained by observing the
behaviors of others, communicating with people directly or indirectly via different means
of communicational devices, surfing in social media and so on (Acemoglu and Ozdaglar
(2011)). Social networks play a crucial role in modeling opinion dynamics as people are
constantly interacting and influencing each other. Experimental evidences provided by
Galton (1907), Lorge et al. (1958), Hommes et al. (2005) and Yaniv and Milyavsky (2007)
demonstrate that the aggregate (such as median and averaged) estimates of a group are
very close to the true value. This wisdom of crowd effect can somehow show the im-
portance of social influence. As the social aspect of opinion dynamics, social learning
focuses on studying how dispersed information are gathered and how accurate it is in the
presence of misinformation and manipulation. When it refers to true value or accurate

1
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estimation, it is related to well-defined questions such as the weight of an ox (Galton
(1907)). However, we also form our opinions on questions to which there is no correct
and clear answer.
In social science, as described by Lewin (1947) and Proskurnikov and Tempo (2017), there
was a shift from focusing on individual approaches to interests on social structures and
social dynamics during 20th century. As the quantitative method socialmetry and graph-
ical tool sociogram are introduced into social analysis (Moreno (1934), Moreno (1951)), it
attracts more and more attention, not only from sociologists, but also from economists, cy-
bernetists, politicians, physicists, computer scientists and so on (Proskurnikov and Tempo
(2017)). At the same time, it also promotes the development of studies on networks and
network dynamics. Tremendous amount of research from all fields focused on studying
the convergence to agreement (consensus) and its conditions. For example, researchers
working on control theory are interested in the global consensus protocols caused by lo-
cal interactions. The interested readers are referred to Jackson (2010), Acemoglu and
Ozdaglar (2011) and Proskurnikov and Tempo (2017) for detailed overview surveys, and
Bullo (2019) for a thorough reference book on Network Systems.
In general, models of opinion dynamics study how agents’ opinion on one topic or multi-
ple topics are evolving and what are the convergence and consensus conditions on both
individual level and network level. The opinion of agents’ opinion on one topic is usually
represented as an integer for discrete opinions (e.g., yes or no) or a real number for contin-
uous opinions (e.g., tax rate). Compared to the large amount of research on opinions on
single topic, few studies also consider opinions on multiple topics (see Axelrod (1997), Ye
et al. (2020)), with the help of the belief system which is usually an interdependence ma-
trix. The dynamic interacting process takes place either in a continuous time interval or in
each discrete time instant. Agents communicate and influence within their neighborhood
during the interactions and thereafter update their opinions.
As mentioned by Proskurnikov and Tempo (2017), the earliest models of opinion dynamics
date back to 1930s from a macroscopic and statistical perspective (see Rashevsky (1939),
Rashevsky (1947)), which are mainly for large-scale communities. One of the earliest
and widely used agent-based model of opinion dynamics is the French-Harary-DeGroot
model (French Jr (1956), Harary (1959), Harary et al. (1965), DeGroot (1974) ) (which
is also called DeGroot model in the literature), which can describe both small and large
groups. As a sociologist and psychologist, French Jr. proposed the model of opinion
dynamics in French Jr (1956) to study the social power of each agent, i.e., the ability of
each agent to influence the final consensus opinion, which is also the centrality of each
agent (node) in a social network (graph) from a network theoretical perspective. Later on,
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Frank Harary (Harary (1959), Harary et al. (1965)) and Morris DeGroot (DeGroot (1974)
) generalized this model and provide the network conditions to guarantee the consensus of
opinions. The DeGroot model is also called "iterative opinion pooling", since agents update
their opinions iteratively as the weighted average of the opinions of their neighbors. The
weights are usually placed in a row-stochastic influence matrix W , where the element wij
is referred to as the level of trust that agent i holds on agent j. Essentially, the DeGroot
model is a discrete-time and synchronous model since all agents update their opinions
simultaneously at each time instant. Extensions and variations of the DeGroot model have
been proposed to generalize it to a continuous-time framework, e.g., the Abelson model
(Abelson (1964)), and to a asynchronous framework, e.g., the gossip model (Ravazzi et al.
(2014), Liu et al. (2011)). The typical behavior of the DeGroot model is the presence
of consensus, while in real life disagreement is also ubiquitous (Abelson (1964)). Out of
this consideration, different kinds of variations of the DeGroot model have been proposed.
For example, some variations introduce stubborn agent whose opinion remains unchanged
during the iterative pooling process (see Hegselmann and Krause (2015), Masuda (2015)),
by introducing an attachment of each agent to its initial opinion (stubborn agents are also
called by physicists as independent agents (Sznajd-Weron et al. (2011), Sznajd-Weron
et al. (2014)), inflexibles (Galam and Jacobs (2007)), zealots (Mobilia (2003))); some
other variations introduce negative influences, i.e., the element wij of the weight matrixW
can be positive or negative, thus W is no more row-stochastic; some variations considered
that agents are only interacting with those who hold opinions close enough to them by
introducing confidence bounds (Hegselmann et al. (2002), Weisbuch (2004), see also the
survey on continuous opinion dynamics with bounded confidence Lorenz (2007)).
Studies on the DeGoot model of continuous opinion dynamics are well-developed due to
its technical tractability and simplicity. Another simple and tractable model of discrete
(usually binary) opinion dynamics is the threshold model, in which a special case is the
majority rule model (Galam (2002)) when the threshold is equal to 0.5, introduced by
Granovetter (1978), Schelling (2006), among others. Suppose that each agent holds one
opinion or action from the set {0, 1}, where action 1 refers to "yes, active, etc.," while
action 0 refers to "no, inactive, etc." This model simply says that an agent takes action 1 if
sufficiently many people in his neighborhood takes action 1. The simplicity of the model
allows for a deep analysis (see the surveys by Mossel and Tamuz (2017) and Castellano
et al. (2009a)), and one remarkable result already observed in the pioneering work of
Granovetter (1978) was that a cascade effect occurs, supposing that the population of
agents starts from an initial state where nobody is active, and that the distribution of the
threshold value is uniform over the population. Then, after a finite number of steps, all
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agents become active. Interestingly, the latter study was done in the context of a mob,
where the available actions were "to riot" (action 1) or to be inactive (action 0). Then,
agents with threshold 0 were called "instigators’" as they start to riot alone, and this
indeed forms the seed of the cascade effect, ending in a mob rioting. This topic has been
very much studied, as demonstrated by a recent monograph on mob control (Breer et al.
(2017)), written by researchers in control theory.

Another stretch of modeling binary opinion dynamics (especially popular in the fields
of physics and sociophysics) is the Sznajd model, the voter model and their extensions.
Sznajd-Weron proposed the Sznajd model in Sznajd-Weron and Sznajd (2000), by adopt-
ing the Ising spin system (Galam (2004b)) which is widely used and applied in sociology,
economy and statistical physics (Sznajd-Weron (2005)). The agent who holds binary
opinions is called a spin or spinson (as a combination of spin and person), and it is
imaged as (↑ or ↓) in the Ising spin system. To describe the influence of local interaction
on the global social phenomenon, the Sznajd model introduced a new concept of spin
dynamics as follows. Suppose n agents are ordered in a line A1, A2, . . . , An such that Ai
and Ai+1 are neighbors, ∀i = 1, . . . , n − 1. As the first step, a pair of spins Ai and Ai+1

are chosen to influence Ai−1 and Ai+2. As the second step, if Ai = Ai+1, then Ai−1 = Ai

and Ai+2 = Ai+1, i.e., their nearest neighbors will copy their opinions if they agree (this
is called social validation); if Ai 6= Ai+1, then Ai−1 = Ai+1 and Ai+2 = Ai. Slanina et al.
(2008) modified this model such that Ai and Ai+1 stay unchanged in case of Ai 6= Ai+1,
and this coincides with a special case of the q-voter model which will be described below.
The original voter model was proposed by Clifford and Sudbury (1973), where agents are
situated in a static graph. At each time instant, an agent is chosen at random to be active
and copies the opinion of a random neighbor. Castellano et al. (2009b) generalized this
model to the q-voter model in the lattice network where the active agent is influenced
by its q randomly picked neighbors (with possible repetitions). The active agent, say i,
will copy the opinion of the q neighbors if they agree, otherwise agent i will flip with
probability ε. The case when q = 2 and ε = 0 coincides with the modified Sznajd
model mentioned above (Jȩdrzejewski et al. (2016)). Many works are conducted based
on these two models, e.g., Jȩdrzejewski et al. (2016) generalized the q-voter model to
complex networks, Przybyła et al. (2011) extended the Sznajd model by incorporating
also the idea of the q-voter model, and so on. Both the classical Sznajd model and the
q-voter model imply the idea of conformity (or repetition, i.e., the copy of the opinion
of others), while some latest research also considers the non-conformity (independent or
anti-conformity) behavior. As described by Nyczka and Sznajd-Weron (2013b), the Ising
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model of social influence has three main components: topology consisting of a set of finite
nodes and a set of finite links (e.g., regular lattice, complete graph); dynamical binary
opinions; internal interactions including conformity and anti-conformity and the external
interactions caused by some external force such as a strong leader.
Even though the amount of models of opinion dynamics is huge, they can be classified and
applied differently from various perspectives. This will be discussed in the next section
(Section 1.2).

1.2 Different Aspects of Modeling Opinion Dynamics

1.2.1 Continuous opinion and discrete opinion

The opinion dynamics models can be divided into continuous opinion dynamics models
and discrete opinion dynamics models, while in the latter group of models, binary opinion
dynamics are more often studied.
The group of models of continuous opinion dynamics deals with problems in which the
opinion of people can be expressed as real numbers (e.g., tax rates, prices, quantitative
predictions). As discussed in the previous section (Section 1.1), the most frequently used
and the fundamental model of continuous opinion dynamics is the DeGroot model, based
on which a large amount of generalizations and extensions are conducted. A remark-
able modification of the DeGroot model is the Friedkin-Johnsen model (Friedkin and
Johnsen (1990), Friedkin and Johnsen (1999)), which is validated for small and medium-
size groups with experimental evidence (Childress and Friedkin (2012), Friedkin et al.
(2016a), Proskurnikov and Tempo (2017)). The Friedkin-Johnsen model supposes that
agents are continuously influenced by their initial opinion over the dynamic process (i.e.,
agents are attached to their initial opinions), by introducing a diagonal matrix into the
DeGroot model, with the elements of the diagonal matrix indicating the susceptibility of
agents to social influence (Proskurnikov and Tempo (2017)). Due to this introduction of
agents’ stubbornness, this model is able to explain the presence of strong diversity, i.e.,
the distribution of opinions is not concentrated into sharp clusters (Ye (2019)). These
models are comparatively simple since they are all linear models so that they can be
analyzed by powerful linear techniques such as graph theory, Markov chain theory and
matrix theory.
The continuous-time counterpart of the DeGroot model was proposed by Abelson (Abel-
son (1964)). Meanwhile, Abelson also extended it to a nonlinear form and formulated the
community cleavage problem (Friedkin (2015)) or Abelson’s diversity puzzle (Kurahashi-
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Nakamura et al. (2016)) as: "Since universal ultimate agreement is an ubiquitous outcome
of a very broad class of mathematical models, we are naturally led to inquire what on
earth one must assume in order to generate the bimodal outcome of community cleavage
studies." In general, consensus is too strong to be realistic (Abelson (1967)), disagreement
such as clusters and cleavage are to be identified. One way is to introduce the role of
stubborn agents (or partially stubborn agents) as in the Friedkin-Johnsen model. The
other ways leading to community cleavage include introducing time-varying weight ma-
trices (Lorenz (2005b)), considering bounded confidence (Hegselmann et al. (2002)), and
incorporating negative influences (e.g., Altafini (2012a), Altafini (2012b) for continuous
opinions and Grabisch et al. (2019) for binary opinions). The models of continuous opin-
ion dynamic under bounded confidence, proposed by Krause (2000) and Deffuant et al.
(2000) independently, are also nonlinear in the sense that the model changes with the
opinion of agents. Therefore, the above-mentioned powerful mathematical tools such as
Markov chains and matrix theory are not applicable and thus rigorous analysis is hard
to obtain (Hegselmann et al. (2002)). Instead, some results are based on simulations on
computers.
Next, the group of models of discrete opinion dynamics is mainly applied to cases when
there is no compromises in between any two opinions, actions or decisions. For example,
the Ising model was used to model the behavior of labors ("go on the strike" or not) during
the strike in Galam et al. (1982); the voter model is a useful framework for the study on
innovation diffusion, decisions and epidemics (Yildiz et al. (2011)); the Sznajd model and
its modifications are able to be applied in politics, marketing and finance; Grabisch and
Rusinowska (2013) proposed the model of influence based on aggregation functions for
yes-no opinion dynamics, provided a detailed analysis of the convergence, and gave all
the absorbing classes and states. While both continuous opinions and discrete opinions
are common in life, one natural idea is that agents express internal continuous opinions
(preferences on two alternatives) as discrete actions. Based on this idea, the CODA
(Continuous Opinions and Discrete Actions) updating rule was proposed by Martins
(2008) and applied to both voter model and the Sznajd model, which can explain the
appearance of extremists.

1.2.2 Continuous-time and discrete-time

The opinion dynamics models can be divided into continuous-time and discrete-time opin-
ion dynamics models. The DeGroot model is a discrete-time opinion dynamics model.
For averaging systems similar to the DeGroot model, mathematical techniques can be
used to find the conditions of convergence and consensus. By supposing that the time in-
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terval between two steps is very small, Abelson (1964) extended the DeGroot model to its
continuous-time counterpart. The linear form of the Abelson model is represented by the
Laplacian flow. Some results on ordinary differential equations and matrix exponential
of Laplacian matrices are applied to find the equilibria and convergence of the Laplacian
flow dynamics (Bullo (2019)).
Taylor extended the linear Abelson model (Taylor (1968)), by introducing a certain num-
ber (say, m) of communication sources such as mass media with static opinions (si,
i = 1, . . . ,m) that can constantly influence agents. Indeed, the Taylor model is equivalent
to the Abelson model with extra m stubborn agents with their opinions si unchanged
during the process. Alternatively, the Taylor model can also be transformed into the
opinion dynamic model where agents are prejudiced, i.e., agents hold some internal opin-
ion, formed by personal experience, mass media, etc. The multidimensional extension of
the Taylor model is also applied to containment control problems in multi-agent systems
(Cao et al. (2012)). The discrete-time counterpart of the Taylor model – the Friedkin-
Johnsen model which is equivalent to the DeGroot model with stubborn agents, can also
be considered as a containment control algorithm in discrete time process.
The models of opinion dynamics are not limited to the classifications mentioned in this
section. Some other classification criteria also exist such as the dimension of opinions.
Most of the models in this section are opinion dynamics on a single topic, however,
recently some researchers are also working on opinion dynamics on multidimensional topics
(Parsegov et al. (2016), Friedkin et al. (2016b), and Ye et al. (2020) for a continuous-time
counterpart to the former two works).

1.2.3 Bayesian models and non-Bayesian models

In the opinion formation process, agents are initially attached to some initial opinions (i.e.,
priors) which will be updated based on a certain updating rule, after agents communicate
with their friends, obtain some information from mass media, or observe the behavior of
their neighbors (i.e., information acquisition). The models of opinion dynamics can be
divided into Bayesian models and non-Bayesian models, according to whether agents use
Bayes rule (given by the formula 1.1) as the opinions updating rule or not. Given two
probabilistic events A and B, the Bayes rule states that the conditional probability that
A is true given B being true, i.e., P(A | B), is given by the product of the conditional
probability that B is true given that A is true and the unconditional probability of A,
divided by the unconditional probability of B.
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P(A | B) = P(B | A) · P(A)
P(B) (1.1)

The Bayesian approach assumes that agents are Bayesian and thus update their opinion
optimally given the information they have obtained. It applies to problems where the
questions on which agents form opinions are well-defined, i.e., there is a clear answer
to the question, and we call this clear answer true value of the world. Bayesian agents
have a reliable model of the world such that they have a clear idea of the (subjective)
probabilities or likelihood of all possible events (i.e., priors), and such that they can obtain
information from the actions of others (Acemoglu and Ozdaglar (2011)). Motivated by
the Condorcet’s Jury Theorem stating that if agents report their information truthfully,
it is sufficient to aggregate the dispersed information to reveal the true value of the
world (Condorcet (1976)), Acemoglu et al. (2011), Bikhchandani et al. (1992) show that
instead of information aggregation, herding effect and information cascades can occur in
the context of Bayesian learning, when agents observe all the previous actions of the other
agents.
All the models mentioned before this section (including the DeGroot model and its vari-
ations, the threshold model, the voter model, etc.) are non-Bayesian models, which will
be discussed in detailed in Chapter 2. Compared to the challenging and restrictive per-
spective of the Bayesian models, non-Bayesian models seem to provide a more natural
staring point to study the spread of misinformation (Acemoglu et al. (2010), Molavi et al.
(2018)). However, Bayesian models are still useful benchmarks to evaluate non-Bayesian
models. Mueller-Frank (2014) showed that in a strongly connected network consisting
only of non-Bayesian agents, the presence of at least one Bayesian agent is sufficient for
each agent to aggregate information perfectly. Molavi et al. (2017) provided a foundation
of the non-Bayesian models of opinion dynamics in a general framework, where agents also
receive private signals in addition to the iterated averaging, and furthermore identified
the forces that lead to information aggregation in social networks.

1.3 Synchronous and Asynchronous

Different activation regimes (such as synchronization or synchronization of agents’ ac-
tivation, different interaction size at each time step and so on) can produce different
results in opinion dynamic models (Alizadeh et al. (2015)). It may happen that some
interesting phenomena exhibited in the synchronous updating model disappear in the
asynchronous setting, and therein stability appears instead of striking spatial chaos (Hu-
berman and Glance (1993), Nowak and May (1992)). By describing the order of updates
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as a sequence of subsets of the population N , Bredereck and Elkind (2017) defined the
synchronous updating accordingly, as the updating sequence (N,N, . . . , N) and defined
the asynchronous updating as that with each subset being a singleton. This captures the
idea that only one agent is active at each time. The active agent can either meet another
agent with a certain probability to exchange opinions or observe the opinions of all her
neighbors, and thereafter has her own opinion updated.
In control theory, models of opinion dynamics are given either in the discrete time ver-
sion or in the continuous time version, and they are all synchronous, such as the De-
Groot model and its continuous-time counterpart, i.e., the linear Abelson’s model (see
Section 2.2). There is no relation between the continuous/discrete aspect and the syn-
chronous/asynchronous aspect. However, in many models in physics, asynchronous mod-
els tend to continuous models as the time between two steps of iteration tends to 0.
Acemoglu and Ozdaglar (2011) modeled an asynchronous updating process by supposing
that at each time, agent i is chosen to be active with probability 1/n,∀i ∈ N and in case
of agent i being active, agent i will meet agent j and exchange opinions with probability
pij ≥ 0, where ∑n

j=1 pij = 1,∀i ∈ N . Moreover, for a better approximation of many real
situations, some researchers also consider the opinion dynamics in a random neighborhood
setting. For example, Grabisch and Li (2020) studied the synchronous opinion dynamics
for binary opinions in a random neighborhood setting in which a random neighborhood
is realized in each period. Nyczka and Sznajd-Weron (2013a) studied the asynchronous
q-voter model and assumed that both the voter and the group that can influence the
voter are randomly chosen (random active agent and random neighborhood). Ramazi
et al. (2016) showed that for threshold-based dynamics, the equilibrium can be reached in
both the synchronous and asynchronous setting, and it can also be almost surely reached
in partial synchronous setting 1. These results reveal that the asynchrony does not lead
to cycles or non-convergence, neither does the irregular network topology. Instead, the
coexistence of heterogenous behavior (such as conformity and anti-conformity behavior)
play a role in the presence of cycles or non-convergence (Ramazi et al. (2016), Grabisch
and Li (2020)).

1.4 Conformity and Anti-conformity Behavior

Before the 21st century, most of the models of opinion dynamics made the basic assump-
tion that agents tend to follow the trend (i.e., they are conformist), and the existence
of opposite behavior (anti-conformity or counter-conformity) was neglected. Even in

1In partial synchronous updating setting, a random number of agents update opinions simultaneously.
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the field of psychology, as Jahoda (1959) criticized, conformity was over-emphasized in
the psychological literature, and the emphasis obscured the reality of non-conformity or
anti-conformity (Hornsey et al. (2003)). The famous experimental study by Asch (1955)
showed that agents tend to conform to the wrong judgement of their predecessors even if
some of them know already that the judgement was wrong. A follow-up study (Deutsch
and Gerard (1955)) distinguished two forms of social influence that lead to the wrong
judgement. While normative social influence drives some agents to behave like majority
in order to avoid social censure, informational social influence explains the conformity
behavior in the sense that agents are uncertain about the answer, so they might rely
on the judgement of the majority of the society (Hornsey et al. (2003)). This was later
supported by Frideres et al. (1971), Terry et al. (2000), Zafar (2011).
Motivated by this idea, Buechel et al. (2015) modeled the continuous opinion dynamics
by allowing agents to misrepresent opinions in a conforming or anti-conforming way, and
furthermore showed that agents’ social power is decreasing in the degree of conformity.
The other branch of study on continuous opinion dynamics with anti-conformity behavior
(or negative social influence) is based on the notion of coopetition, which was first intro-
duced by Carfì and Schilirò (2012) in the study of the Green Economy and then applied
to opinion dynamics with negative influences for a better understanding and explaining
the disagreement of opinions. In "coopetitive" networks agents can both cooperate and
compete, corresponding to the positive and negative influences among agents, respectively
(Proskurnikov and Tempo (2018)), i.e., agents are situated in a signed graph. Altafini
proposed a model of influence with antagonistic interactions based on the theory of struc-
turally balanced network (Altafini (2012b), Altafini (2012a), Harary et al. (1953)). The
idea of structural balancedness can be interpreted as the ancient proverb the friend of
my enemy is my enemy, the enemy of my enemy is my friend (Schwartz (2010)). The
original Altafini model is coincident with the Abelson model with an influence matrix that
can have both positive and negative elements. By doing gauge transformation, the struc-
turally balanced network can be transformed into the corresponding nonnegative network
sharing the same convergence properties. It was shown that in case of a structurally bal-
anced network (without self-loops), the bipartite consensus can be achieved. However, for
a structurally unbalanced and strongly connected network, the consensus value is always
the origin, regardless of the initial conditions (Altafini (2012a), Meng et al. (2016) ). In a
recent paper coauthored by Altafini (Shi et al. (2019)), the authors defined two rules for
negative influences: the opposing rule where the opinion of an agent is attracted by the
opposite of the opinion of her neighbor via negative links, and the repelling rule where
the two agents repel each other instead of being attracted via negative links.
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It also attracts many researchers to study binary opinion dynamics with non-conformity
behavior in recent years. In sociophysics, the first idea about anti-conformist agents
seems to have been introduced by Galam (2004a) under the name of contrarians. Later
works include those of Borghesi (Borghesi and Galam (2006)), Sznajd-Weron (Nyczka and
Sznajd-Weron (2013b)) and also Juul and Porter (Juul and Porter (2019)). In Nyczka
and Sznajd-Weron (2013b), the q-voter model is studied, where it is supposed that agents
may adopt with some probability an anti-conformist attitude, while the threshold model
is considered under this assumption in Nowak and Sznajd-Weron (2019). Close to this
model is the recent study of Juul and Porter (2019) about the spreading of two competing
products, say A and B, where anti-conformist agents are called hipsters (see Touboul
(2014) where this terminology has been introduced). In Juul and Porter (2019), starting
from a network with all nodes inactive, a single node is uniformly chosen at random to
adopt one product, say A, which buries the seed for the spreading process. They assume
the threshold of a player (who can be a conformist or a hipster) is the minimum proportion
of their active neighbors such that this player becomes active, and the transition from
active to inactive is a one-way process. Once the player becomes active, they must adopt
one product according to the following rules: if he is a conformist, he will adopt the most
popular product over his neighborhood; if he is a hipster, he will adopt the less popular
product over the whole population. Under this assumption, they found that even a small
proportion of hipsters can lead to a reversal of the popularity of two competing products.
Javarone (2014) provided a computational study of the non-conformity behavior in both
local (neighborhood) and global (population) perspective, based on the majority rule
voting. Ramazi et al. (2016), Nowak and Sznajd-Weron (2019) and Grabisch and Li (2020)
studied the linear threshold-based dynamics with anti-conformity behavior. In Nowak and
Sznajd-Weron (2019), agents are selected at random for updating and their threshold is
the same for all agents, however, an agent is not a priori conformist or anti-conformist,
but is one or the other with some probability, which are different in Ramazi et al. (2016)
and Grabisch and Li (2020). Both Ramazi et al. (2016) and Grabisch and Li (2020) have
shown that the equilibrium can be reached in the society of exclusive conformist agents
or in the society of exclusive anti-conformist agents, and that coexistence of coordinating
and anti-coordinating agents leads to cycles or non-convergence in the binary opinion
dynamics.
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1.5 Network Theory and Network Formation

As network structure is crucial for the convergence of opinion dynamics and the social
power of agents, it is important to incorporate network theory and network formation
process into the study of modeling opinion dynamics.
One famous example in the field of network study is "Florentine Marriages", describing
the Medici family, which did not stand out with respect to wealth and political clout, rose
in power and eclipse those with both greater wealth and political power, due to its high
betweenness (i.e., the number of the shortest paths that pass through the Medici divided
by the number of all the shortest paths between any two distinct nodes, see Freeman
(1977)) in the network of marriages between some key families in Florence (Padgett and
Ansell (1993)). This example is always used as an example to show that the structure of
social network is important beyond a simple comparison of degrees (i.e., how many social
ties or links each agent has), and it further-on motivates the study of network formation,
e.g., how did this marriage network form and was it optimal (Jackson (2010))?
Different measures of centrality have been proposed and developed to capture different
aspects of the position that a node is placed in a certain network. The simplest measure
of centrality of a given node, say i, is to count how many social ties it has, say di, and
dividing this number by n − 1 gives its degree centrality2 , where n is the total number
of nodes (Freeman (1978)), i.e., Cd(i) = di

n−1 . Define the distance between two nodes i
and j as the length of (i.e., the number of links in) a shortest path between two nodes,
denoted by dij 3. Closeness centrality measures how close the given node i is to all other
nodes, i.e., how easily the given node can contact all other nodes, defined as the inverse
of the average distance between one node and any other node Ccl(i) = n−1∑

j 6=i dij
. Some

other variants have been proposed for unconnected networks (Newman (2003), Csardi
et al. (2006)). A particular variant is the decay centrality (Jackson and Wolinsky (1996),
Jackson (2010)), defined as Cdecay(i) = ∑

j 6=i δ
dij , where 0 < δ < 1 is a decay parameter.

As mentioned in the previous paragraph, the betweenness centrality of a node i is defined
as

Cbe(i) =
2
∑

k/∈{j,i}

∑
j 6=i

gjk(i)
gjk

(n− 1)(n− 2) ,

where gjk is the number of shortest paths (geodesics) from j to k, and gjk(i) is the number
of shortest paths from j to k containing i (Freeman (1977)). Another widely-used branch
of measure of centrality is eigenvector based centrality measures, among which Bonacich

2A node with degree n− 1 is considered to be fully connected.
3dij =∞, if i and j are not connected.
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centrality became very popular. The Bonacich centrality is given by the eigenvector
of the network g, i.e., λCbo(g) = gCbo(g), where λ is the eigenvalue corresponding to
Cbo(g) (Bonacich (1972)). Moreover, in opinion dynamics models, the Bonacich centrality
can also characterize opinion leadership or social power (Friedkin (1991), Buechel et al.
(2015)), i.e., the level of influence on the final consensus opinion.
One important question we need to answer by modeling network formation models is why
are certain network structures formed instead of any other structure. Two concepts are
proposed: one is stability or equilibrium of the network dynamics, based on maximizing
individual incentives; the other is efficiency of the network, measuring the overall societal
welfare (Jackson (2010)). Pairwise stability is a simple stability concept proposed by
Jackson and Wolinsky (1996) to capture the mutual consent required for forming a link
between two agents, while Nash equilibrium based solutions fail to capture this point.
A pairwise stable (PS for short) network requires that no agents wants to delete a link
unilaterally and no two unconnected agents both want to form a link, considering one link
at a time. Later on, some refinements of the pairwise stability were proposed, such as
strong stability (Dutta and Mutuswami (1997), Jackson and Van den Nouweland (2005)),
allowing larger coalitions to deviate than just pairs of agents, pairwise Nash stability
(Bloch and Jackson (2006), Calvó-Armengol and İlkılıç (2009)), considering multiple link
deletion. An strong efficient network is the one maximizing the total societal utility,
while an efficient network is the one that no other network can have larger total societal
utility (Jackson and Wolinsky (1996)). The other standard notion of efficiency is Pareto
efficiency, requiring that the Pareto efficient network is not Pareto dominated by any
other network (Pareto (1964)). In general there is an incompatibility of stability and
efficiency, thus the transfers among agents were introduced to ensure that at least one
efficient network is PS (Jackson and Wolinsky (1996), Jackson (2010)). The notion of
pairwise stable network with transfers (PST network for short) was proposed, assuming
that transfers among agents are allowed (Bloch and Jackson (2007)). A PST network
requires that no pair of agents can jointly benefit by forming or deleting a link. Jackson
andWatts (2001), Goyal and Joshi (2006), Sarangi et al. (2011), Hellmann (2013) provided
sufficient conditions for the existence and uniqueness of PS networks. Interesting readers
should consult Jackson (2010) for a thorough reference book on Networks, and Jackson
(2005) for a survey on network formation models.



Chapter 2

Preliminaries

2.1 Non-negative Matrices

This section heavily borrows from material contained in Dym (2013), Seneta (2006),
Proskurnikov and Tempo (2017) and the compendium of Michel Grabisch. By convention,
the transpose of a matrix is denoted by ′. A matrix T = (tij) is nonnegative (positive)
if all of its elements tij are nonnegative (positive). A nonnegative n × n matrix T is
row-stochastic if ∑n

j=1 tij = 1, ∀i = 1, . . . , n. Let N := {1, 2, . . . , n}. The kth power of
T = [tij] is denoted by T k = [t(k)

ij ]. To any nonnegative matrix T = [Tij] we associate a
directed graph Γ with set of nodes N , and the set of arcs {(i, j) | i, j ∈ N, tij > 0}.

Definition 2.1 (walk). A walk of length k from node i to node j (denoted by i→ j1) is a
sequence of nodes i = i0, i1, . . . , ik = j such that (il−1, il) is an arc in Γ for l = 1, . . . , k2.

Definition 2.2 (cycle). A cycle around i is defined as a walk from i to i which does not
pass through i between the starting and the ending points.

Definition 2.3 (component). A (connected) component is a set of nodes C such that
either C is a singleton or i↔ j for every distinct i, j ∈ C.

Definition 2.4 (class, strongly connected component). A class or strongly connected
component is a set of nodes C such that either C is a singleton or i↔ j for every distinct
i, j ∈ C, and any C ′ ⊂ C does not fulfill the latter property.

Definition 2.5 (essential, inessential). A class is essential if no arc is going out of it,
otherwise it is inessential.

1i9 j refers to that there is no walk from node i to j and i↔ j means that both the walk from i to
j and the walk from j to i exist.

2Remark that the existence of such a walk is equivalent to t(k)
ij > 0.

14
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The canonical form of a matrix T with q essential classes and w inessential classes is

T =



T1 0 . . . 0 0

0 T2
. . . ... 0

... . . . . . . 0
0 . . . 0 Tq 0

R Q


(2.1)

with

Q =



Q1 0 . . . 0

Q2
...

... . . .
S . . . Qw


where elements in N have been ordered so that essential classes come first (in any order),
then inessential classes, so that if for any i and j in two distinct inessential classes, i is
ranked before j, we have i9 j. We have

T k =



T k1 0 . . . 0 0

0 T k2
. . . ... 0

... . . . . . . 0
0 . . . 0 T kq 0

Rk Qk


(2.2)

with

Qk =



Qk
1 0 . . . 0

Qk
2

...
... . . .
Sk . . . Qk

w

 ,

where Sk and Rk are in general difficult to compute.

Fact 2.1. lim
k→∞

Qk = 0.

Definition 2.6 (regular). T is regular if the limit T∞ = limk→∞ T
k exists.

Definition 2.7 (fully regular). T is fully regular if T∞ = 1np′∞ for some p∞ ∈ Rn, i.e.,
T∞ has identical rows.

Definition 2.8 (primitive). T is primitive if T k > 0 for some integer k, i.e., each entry
is positive.
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Definition 2.9 (irreducible). T is irreducible if for every i, j ∈ N , ∃ an integer m(i, j)
such that tm(i,j)

ij > 0.

Definition 2.10 (period). The period τ(i) of node i ∈ N such that i → i is the greatest
common divisor of those k satisfying tkii > 0, i.e., k is the length of a walk from i to i.

If i↔ j, then τ(i) = τ(j). So if i and j are from the same class, then they have the same
period, and this is said to be the period of the class.

Definition 2.11 (aperiodic). A class C is aperiodic if τ(i) = 1 for some i in the class.

Fact 2.2. T is primitive if T is irreducible and aperiodic.

Definition 2.12 (spectrum). The spectrum of T is the set of its eigenvalues.

Definition 2.13 (spectral radius). The spectral radius of T is the largest absolute value of
its eigenvalues (i.e., supremum among the absolute values of the elements in its spectrum),
denoted by ρ(T ).

Definition 2.14 (characteristic equation/polynomial, eigenvalue). The characteristic equa-
tion or the characteristic polynomial of T is det(T −λI) = 0 (i.e., Tu = λu has a nonzero
solution), with I the identity matrix. The solutions λ of this equation are called eigenval-
ues of T .

Theorem 2.1 (Perron-Frobenius for primitive matrices). If T is primitive, then ∃ an
eigenvalue r such that:

(i) r is real and r > 0;

(ii) With r can be associated a left and right eigenvector with positive components;

(iii) r > |λ| for every eigenvalue λ different from r;

(iv) There is a unique eigenvector associated to r, up to a multiplicative constant;

(v) If 0 ≤ B ≤ T and β is an eigenvalue of B, then |β| ≤ r. Moreover, |β| = r implies
B = T ;

(vi) r is a simple root of the characteristic equation of T .

Fact 2.3. If in addition T is row-stochastic, then r = 1.

Fact 2.4. If T is primitive, then ∃v which is a left eigenvector of T , such that limk→∞ T
k =

1 · v′.
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Lemma 2.1. Let T be a finite n×n matrix such that lim
k→∞

T k = 0. Then [I − T ]−1 exists

and [I − T ]−1 =
∞∑
k=0

T k with T 0 = I.

Definition 2.15 (M-matrix). A square matrix Z is an M-matrix if it admits a decompo-
sition Z = sI −A, with s ≥ ρ(A) and A is nonnegative, where ρ(A) is the spectral radius
of A.

Lemma 2.2. Z = (zij) is an M-matrix if zij ≤ 0 when i 6= j and zii ≥
∑
j 6=i |zij|.

Definition 2.16 (Laplacian matrix). Given a weighted graph G = (V,E,A) where A is a
weight matrix, its Laplacian matrix is defined by

L[A] = (lij)i,j∈V , where lij =


−aij, i 6= j∑
k 6=i

aik, i = j.
(2.3)

Fact 2.5. The Laplacian matrix is an M-matrix and 0 is an eigenvalue since L[A] ·1 = 0.

Definition 2.17 (Hurwitz matrix). A square matrix T is Hurwitz if all of its eigenvalues
have a strictly negative real part. Then the differential equation ẋ = Ax is asymptotically
stable, i.e., x(t)→ 0 when t→∞.

Definition 2.18 (Schur (stable) matrix). A square matrix T is a Schur (stable) matrix if
ρ(T ) ≤ 1, i.e., the spectral radius of T is strictly less than one. That is, all eigenvalues of
T lie inside the unit circle. In this case, the dynamical system x(t+ 1) = Ax(t) is stable.

2.2 The DeGroot Model and The Abelson’s Model

2.2.1 The DeGroot model

Consider a society of n agents, whose opinions are denoted as x1, . . . , xn, situated in a
weighted graph3, associated with the influence matrix W . The element of the influence
matrix wij refers to the weight that agent i put on the opinion of agent j, i.e., wij measures
to what extent agent j influences agent i. W is nonnegative and row-stochastic. Agents
exchange opinions and thereafter update opinions in each discrete time slot. Mathemati-
cally, at time t = 0, 1, 2, . . ., agent i’s opinion xi(t) evolves as follows:

xi(t+ 1) =
n∑
j=1

wijxj(t). (2.4)

3The terms graph and network will be used interchangeably in this thesis.
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Denote the vector of opinions of all agents at time t as x(t) = (x1(t), . . . , xn(t))T , then
the opinion dynamical system is given by

x(t+ 1) = Wx(t). (2.5)

Definition 2.19. The model (2.5) is convergent if the limit x(∞) = lim
k→∞

x(k) = lim
k→∞

W kx(0)
exists, ∀x(0) ∈ Rn.

Definition 2.20. A convergent model (2.5) is said to reach a consensus if x1(∞) = . . . =
xn(∞), ∀x(0) ∈ Rn.

Convergence and consensus conditions The conditions of convergence and consen-
sus are direct consequences of the results on nonnegative matrices presented in Section
2.1.

Fact 2.6. If W is regular, then the model (2.5) is convergent; if W is fully regular, then
the model (2.5) reaches a consensus.

Lemma 2.3. If W is irreducible, then the model (2.5) is convergent if and only if W is
primitive. In this case the model (2.5) also reaches a consensus.

Obtaining the steady-state opinion The argument t is dropped from x(t) and xi(t)
if there is no risk of confusion. The influence matrix W can be put under the canonical
form 2.1, after identification of the essential and inessential classes. Partition x into the
inessential and essential classes, i.e., x = [xE, xI ] = [xE1 , · · · , xEq , xI1 , · · · , xIw ]. Denote
the steady-state opinion vector as x̄ = [x̄E, x̄I ], where x̄ = limt→∞ x(t). The model (2.5)
can be written as: 

xE(t+ 1) = TixE(t)

xI(t+ 1) = RxE(t) +QxI(t).

For essential classes, x̄Ei = T∞i xEi(0), i = 1, . . . , q. According to fact 2.4, for each
primitive Ti, ∃v(i) which is a left eigenvector of Ti, such that T∞i = 1 · v′(i). Therefore,

x̄Ei = 1 · v′(i)xEi(0), (2.6)

i.e., each agent in Ei converges to consensus v′(i)xEi(0). On the other hand, for inessential
classes, the steady-state vector must satisfy

x̄I = Rx̄E +Qx̄I , (2.7)



2.2. The DeGroot Model and The Abelson’s Model 19

i.e., x̄I = (I−Q)−1Rx̄E, if I−Q is invertible. By fact 2.1 and lemma 2.1, I−Q is always
invertible. Thus the steady-state opinion always exists, obtained by 2.6 and 2.7.

Social power SupposeW is primitive, then all agents converge to consensus x̄, obtained
by x̄ = v′x(0), where v is the left eigenvector of W . As the final consensus is a weighted
sum of the initial opinion, the ith element of v is called the social power of agent i in the
final consensus.

Stubborn agents in the DeGroot model

Definition 2.21. An agent i is said to be stubborn if xi(t) = xi(0),∀t ∈ N, i.e., wii = 1.

Fact 2.7. If more than one stubborn agent exist, then consensus is impossible to be
reached.

Corollary 2.1. Proskurnikov and Tempo (2017) If there are s ≥ 1 stubborn agents, who
are connected by walks to all other agents, then the model (2.5) is convergent. The final
opinion x∞ is a convex combination of the opinions of stubborn agents.

Example 2.1. Consider the DeGroot model with n = 3 agents, corresponding to the graph
in Figure 2.1. Agent 1 has equal weights on all agents. Agent 2 has no self-confidence
since w22 = 0 and trust more agent 3 than agent 1. Agent 3 is a stubborn agent since
w33 = 1 and will keep the initial opinion unchanged. Obviously x3(t) = 9,∀t. Rearranging
the weight matrix such that the essential class (i.e., agent 3) comes first and then the
inessential class (agents 2 and agent 1), we obtain:

Wcanonical =


1 0 0

3/4 0 1/4
1/3 1/3 1/3

 .
By x̄E = x̄3 = 9 and 2.7, we have

x̄2

x̄1

 =
3/4

1/3

 9 +
 0 1/4

1/3 1/3

x̄2

x̄1

 (2.8)

which gives the solution x̄2 = x̄1 = 9. Remark that this is in accordance with Corollary
2.1.
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1 2

3

1/3
1/31/3

3/4

1/4

1

(a) The network structure

W =

1/3 1/3 1/3
1/4 0 3/4
0 0 1



(b) The influence matrix W

Figure 2.1: Example 2.1 of the DeGroot model with n = 3 agents, among which agent
3 is stubborn. The steady-state opinion is fully determined by the initial opinion of the
stubborn agent: x1(∞) = x2(∞) = x3(∞) = 9.

2.2.2 The linear Abelson’s model

The linear Abelson’s model is the continuous-time version of the DeGroot model (2.5)
obtained by supposing the time between two steps of iteration is sufficiently small:

ẋi(t) =
∑
j 6=i

aij(xj(t)− xi(t)), i = 1, . . . , n (2.9)

where A = (aij) is nonnegative but not necessarily row-stochastic. Its equivalent matrix
form is

ẋi(t) = −L[A]x(t), (2.10)

where L[A] is the Laplacian matrix (2.3) of the weighted graph corresponding to A.

Converge and consensus conditions

Fact 2.8. The model (2.10) is always convergent.

Fact 2.9. For any A ≥ 0, P∞ = lim
t→∞

e−L[A]t exists and the opinion vector in 2.10 con-
verges to x∞ = P∞x(0).

Fact 2.10. Consensus is reached in model (2.10) if G[A] is strongly connected, and in
this case the consensus vector is x∞1 = · · · = x∞n = p′∞x(0) with p∞ uniquely given by
p′∞1 = 1 and p′∞L[A] = 0.

Social power Similar to the DeGroot model, if consensus is reached in model (2.10),
then the ith element of p∞ is the social power of agent i in the final consensus.
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2.3 The Friedkin-Johnsen Model and the Taylor’s Model

2.3.1 The Friedkin-Johnsen Model

The Friedkin-Johnsen Model (F-J model for short) is given by

x(t+ 1) = ΛWx(t) + (I − Λ)u (2.11)

where W is a nonnegative and row-stochastic weight matrix, Λ = diag(λ1, . . . , λn) is a
diagonal matrix with λi ∈ [0, 1] the susceptibility of agent i to social influence, and u is a
constant vector of agents’ prejudices.

Remark 2.1.
1) If Λ = I, then the F-J model recovers the DeGroot model.
2)The traditional F-J model supposed that u = x(0), i.e., prejudices of agents are their
initial opinions (Friedkin and Johnsen (1999)).

Definition 2.22 (prejudiced agent). Agent i is prejudiced if λi < 1.

Definition 2.23 (P-(in)dependent). Agent i (situated in a graph G(A)) is P −dependent
(prejudice-dependent) if i is prejudiced or there exists a walk from some prejudiced agent
j to i in the graph G(A). Otherwise, agent i is P-independent.

Converge conditions Writing x = [x1x2] with x1, x2 the vectors pertaining to the P-
dependent and P-independent agents, respectively, the model (2.11) can be decomposed
as

x1(t+ 1) = Λ11[W 11x1(t) +W 12x2(t)] + (I − Λ11)u1 (2.12)

x2(t+ 1) = W 22x2(t).4 (2.13)

Fact 2.11.
1) The system 2.12 is asymptotically stable, i.e., Λ11W 11 is Schur stable.
2) The model (2.11) is convergent if and only if all agents are P-dependent or the model
2.13 is convergent (i.e., W 22 is regular).

Steady-state opinions If the model 2.13 is convergent, then the steady-state opinion
vector x2(∞) can be obtained by applying the results on the Degroot model (Section 2.2).
Then

x1(∞) = V

 u1

x2(∞)


4Remark that W 22 is row-stochastic, so the P-independent agents obey the DeGroot model.
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where V = (I − V 11W 11)−1[I − Λ11Λ11W 12].5

Social power Recall that the social power of agent i in the Degroot model is defined
as the ratio of the initial opinion xi(0) to the final consensus opinion. This notion is
extended to the F-J model when u = x(0), as the mean weight of xi(0) in determining
the final opinions (Friedkin (1991), Friedkin (2015)). The Friedkin’s influence centrality
vector is defined as c := 1

n
V ′1n, which is obtained from

1
n

n∑
i=1

xi(∞) = 1
n
V ′1nx(0) = c′x(0).

2.3.2 The Taylor’s model

Introduced by Taylor (1968), the Taylor’s model is an extension of the linear Abelson’s
model as well as the continuous-time counterpart of the the F-J model. Additional to the
opinion vector x(t), it is also assumed that there are m communication sources providing
static opinions s1, . . . , sm. The model is given by

ẋi(t) =
n∑
j=1

aij(xj(t)− xi(t)) +
m∑
k=1

bik(sk − xi(t)), (2.14)

where B is the matrix of persuability constants. This is equivalent to the Abelson’s model
with k stubborn agents. Mathematically, it is equivalent to the following model:

ẋi(t) =
n∑
j=1

aij(xj(t)− xi(t)) + γi(ui − xi(t)). (2.15)

Similar to the F-J model, ui is the prejudice of agent i, and agent i is prejudiced if γi > 0.6

2.15 can be put in matrix form

ẋi(t) = −(L[A] + Γ)x(t) + Γu, (2.16)

where Γ = diag(γ1, . . . , γn). P-(in)dependent agents are defined in the same way as in
the F-J model. Similarly, writing x = [x1x2] with x1, x2 the vectors pertaining to the
P-dependent and P-independent agents, respectively, the model (2.16) can be decomposed
as

ẋ1(t) = −(L11 + Γ11)x1(t)− L12x2(t) + Γ11u1 (2.17)

5If all agents are P-independent, then V reduces to (I − ΛW )−1(I − Λ).
6Recall that in the F-J model, Agent i is prejudiced if λi < 1 (Def. 2.22).



2.4. The Bounded Confidence Model 23

ẋ2(t) = −L22x2(t). (2.18)

Steady-state opinions

Fact 2.12.
1) The model (2.17) is asymptotically stable, i.e., −(L11 + Γ11) is Hurwitz.
2) L22 is Laplacian, so the P-independent agents obey the Abelson’s model, i.e., the model
2.18 is always convergent. Then the steady-state opinion vector x2(∞) can be obtained by
applying the results on the Abelson’s model (Section 2.2.2).
3) The steady-state opinion vector of the P-dependent agents is given by

x1(∞) = M

 u1

x2(∞)

 , with M = (L11 + Γ11)−1[Γ11 − L12]). (2.19)

4) The matrix M in 2.19 is stochastic, so xi(∞) is a convex combination of u1 and
x2(∞),∀i ∈ N .

2.4 The Bounded Confidence Model

The models of continuous opinion dynamic under bounded confidence, proposed by Krause
(2000) and Deffuant et al. (2000) independently, with the latter being a gossip-based
counterpart of the former model. Gossiping is one of approaches to model asynchronous
interactions, assuming that agents interact in pairs instead of simultaneous interaction.

2.4.1 The Hegselmann-Krause model

The HK model is considered as time-varying extension of the DeGroot model, in the
sense that the weight matrix W (t) is changing over time, since agents only interact with
those in their confidence interval which is state-dependent (i.e., related to the current
opinion value). The confidence interval of agent i is defined as [xi − d, xi + d] ⊂ R with
d > 0 the range of confidence. The set of agents in i’s confidence interval is denoted as
CIi(x) = {j : |xj − xi| ≤ d}. Agents in the set CIi(x) are trusted by agent i.
∀i ∈ N , agent i’s opinion evolves as follows:

xi(t+ 1) =
∑
j∈CIi(x) xj(t)
|CIi(x(t))| , i = 1, . . . , n (2.20)
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Definition 2.24 (d-chain and maximal d-chain). The opinions (xi, . . . , xj) constitute a
d-chain if the distances between two consecutive opinions xm+1 − xm,∀m = 1, . . . , j − 1
are ≤ d. A d-chain is maximal if it is not contained by any longer d-chain.

Lemma 2.4. Two different maximal d-chains cannot merge.

Lemma 2.5. Krause (2000) The model (2.20) preserves the order of x1, . . . , xn, i.e., if
xi1(t) ≤ . . . ≤ xin(t), then xi1(t+ 1) ≤ . . . ≤ xin(t+ 1).

Fact 2.13. Dittmer (2001) ∀x(0), the model 2.20) terminates in finite time steps. The
final opinion x̄ and the termination time depend on x(0) and d. ∀i, j ∈ N , either x̄i = x̄j

or |x̄i − x̄j| > d is true.

2.4.2 The Deffuant-Weisbuch model

At each stage, a pair of agents, say i and j, is chosen at random to exchange their opinions.
i and j interact if and only if they have close opinions. Denote the indicator function of
an event A as I(A). The DW model is given by:

xi(t+ 1) = xi(t) + µ(xj(t)− xi(t))Ik
xj(t+ 1) = xj(t) + µ(xi(t)− xj(t))Ik
xk(t+ 1) = xk(t),∀k 6= i, j

I(t) = I(|xj(t)− xi(t)| ≤ d),

(2.21)

where µ is the convergence parameter which refers to the attraction between opinions.

Fact 2.14. The model (2.21) is convergent almost surely, i.e., ∀i ∈ N , the probability
that limt→∞ xi(t) exists is 1. Denote that x̄i = limt→∞ xi(t), then ∀i, j ∈ N , one almost
surely has either x̄i = x̄j or |x̄i − x̄j| > d. 7

2.5 The Threshold Model

Remark that from Section 2.2 to Section 2.4, models of continuous opinion dynamics are
discussed, while in this section and the next section, models of binary opinion dynamics
will be discussed.
The threshold model focuses on the dynamics of binary opinions, supposing that each
agent i ∈ N is associated with a private threshold θi ∈ [0, 1]. Denote the neighborhood

7Remark that this is in accordance with the results of HK model.
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of agent i as Ni which is defined by the network. At each time t, agent i holds opinion
xi(t) ∈ {0, 1}. Then the threshold model (Granovetter (1978), Schelling (2006)) is defined
by:

xi(t+ 1) =


1, if

∑
j∈Ni

xj(t)
|Ni| ≥ θi

0, otherwise.
(2.22)

Agents display inertia in switching opinions, but once their thresholds have been reached,
the action of even a single neighbor can tip them from one opinion to another. The
following theorem says that the threshold model either converges to a constant vector x̄
or enters a cycle of period 2 in a general form.

Theorem 2.2. Let W = (wij) be a symmetric square matrix, i.e., wij = wji, ∀i, j ∈ N ,
where wij ∈ R and threshold values θi ∈ R, i ∈ N . If the opinion evolves as follows:

xi(t+ 1) =


1, if

n∑
j=1

wijxj(t) ≥ θi

0, otherwise,
(2.23)

then, ∀x(0) ∈ {0, 1}n, ∃t∗ ∈ N, such that ∀t > t∗, it holds that x(t+ 2) = x(t).

Remark 2.2.
1) This theorem only holds for a symmetric matrix W .
2) If θi = 1/2,∀i ∈ N , then the smallest t∗ is |E|, where G = (N,E) is the network.

Granovetter (1978) studied the threshold model in the context of a mob, where the avail-
able actions were "to riot" (action 1) or to be "inactive" (action 0). One remarkable result
was that a cascade effect occurs, supposing that the population of agents situated in a
complete network, i.e., Ni = N, ∀i ∈ N . Suppose that agents starts from an initial state
where nobody is active, and that the distribution of the threshold value is uniform over
the population, i.e., the fractions of agents with thresholds 0, 1/n, . . . , (n − 1)/n are all
equal to 1/n. Then, agents with threshold 0 are called "instigators" as they start to riot
alone, which leads to a domino effect and forms the seed of the cascade effect, ending in
a mob rioting, i.e., all agents become active. More generally, suppose F is the cumulative
distribution function of the threshold. Then the set of fixed points of F coincide with the
set of equilibrium average opinion of the society, i.e., depending on the starting point, the
average opinion of N converges to one of these fixed points.
Remark that the original threshold model supposes that agents are conformist agents since
they will take action 1 if sufficiently enough people takes action 1. Ramazi et al. (2016)
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proposed a "network game" (Γ := (G, τ, {+ or −})) such that the best-response dynamics
are in the form of the threshold model, where Γ is the network, τ is the threshold vector
and + or − correspond to the case of all conformist agents or all anti-conformist agents.
Furthermore, they studied the cases of asynchronous updating where only one agent is
chosen at random to update opinion, of synchronous updating where all agents update
opinions simultaneously and of partial synchronous updating where several agents update
opinions at each time step. Assuming that every asynchronous activation sequence driving
the dynamics is persistent, i.e., ∀t, each agent is guaranteed to be active at some finite
future time, the following holds.

Fact 2.15.
1) Every network of all anti-conformist agents (resp., all conformist agents) who play
Γ := (G, τ, {−}) (resp., Γ := (G, τ, {+})) asynchronously will reach an equilibrium in
finite time (regardless of the distribution of threshold).
2) The network game Γ := (G, τ, {−}) (resp., Γ := (G, τ, {+}) ) admits a pure Nash
Equilibrium.

Assuming that in partial synchronous updating case, for every agent, the inter-activation
times are drawn from mutually independent probability distributions with support on
R≥0, the following holds.

Fact 2.16.
1) Every network of all anti-conformist agents (resp., all conformist agents) who play
Γ := (G, τ, {−}) (resp., Γ := (G, τ, {+})) with partially synchronous updates almost surely
reach an equilibrium in finite time.

One remarkable conclusion of these results is that synchrony, population heterogeneity and
irregular network topology are not enough for the presence of cycles or non-convergence,
while the other factors such as the coexistence of anti-conformist and conformist agents
must play a role (Ramazi et al. (2016)). Later on, Vanelli et al. (2019) studied the network
games where both anti-conformist and conformist agents coexist and provide a complete
characterization of the set of Nash equilibria for the complete network.

2.6 The Sznajd model and the q-voter Model

2.6.1 The Sznajd model

The Ising spins chain is defined as n agents ordered in a line A1, A2, . . . , An such that Ai
and Ai+1 are neighbors, and Ai = +1 (imaged as ↑) or −1 (imaged as ↓), ∀i = 1, . . . , n−1.
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The original Sznajd model (Sznajd-Weron and Sznajd (2000)) used the Ising spins chain to
study the dynamics of binary opinions (in a closed community) according to the following
rules 8:

(a) At each time, a pair of neighbored spins Ai, Ai+1 is chosen at random, where i =
1, 2, . . . , n− 1;

(b) If AiAi+1 = 1, then Ai−1 = Ai+2 = Ai;

(c) If AiAi+1 = −1, then Ai−1 = Ai+1 and Ai+2 = Ai.

Fact 2.17. The opinion dynamics obeying the above rules lead to three types of steady
states: 1) ferromagnetic state FS = [1, . . . , 1]; 2) antiferromagnetic state AS = [−1, . . . ,−1];
3) mixed state MS = [. . . , 1,−1, 1,−1 . . .].

Suppose now a noise p (which is called "social temperature" in Sznajd-Weron and Sznajd
(2000)) is introduce in the model, where p is the probability that one agent makes a
random decision instead of following the above rules. Then there exists a threshold p∗,
such that for all p < p∗, the opinion dynamics will reach one of the three steady states.
A later modification on the Sznajd model in Slanina et al. (2008) replaced the rules (b)
and (c) by:

(b’) If AiAi+1 = 1, then Ai−1 = Ai with probability 1/2 or Ai+2 = Ai with probability
1/2, i.e., if the central pair forms an agreement, only one nearest neighbor update
opinion to Ai or Ai+1;

(c’) If AiAi+1 = −1, then Ai−1 = Ai−1 and Ai+2 = Ai+2, i.e., the disagreement of the
central pair has no influence on the opinions of its nearest neighbors.

Slanina et al. (2008) provided an analytical form of the exit probability (defined below)
for this new dynamics.

Definition 2.25. For a given opinion dynamics, the exit probability is defined as the
probability of reaching consensus on +1.

Denote the probability that one randomly chosen agent is in state +1 at the beginning as
p. If the initial states of all agents are completely uncorrelated, then the exit probability
P+ is approximated to p2/(2p2−2p+1).

8This kind of dynamics is called one dimensional outflow dynamics.
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2.6.2 The q-voter model

The original voter model was proposed by Clifford and Sudbury (1973), where agents are
situated in a static graph. At each time instant, an agent is chosen at random to be active
and copies the opinion of a random neighbor. Castellano et al. (2009b) generalized this
model to the q-voter model to study the dynamics of binary opinions (with values +1 or
−1) in a lattice network. At each time t, for a given integer q, one agent is chosen at
random, say i, to update opinion according to the following rule:

(i) q neighbors of i are chosen one by one at random where repetition is allowed, so q
can be an arbitrary integer;

(ii) If the q neighbors are in the same states s ∈ {+1,−1}, then xi(t+ 1) = s;

(iii) Otherwise, agent i flips with probability ε, i.e.,

P(xi(t+ 1) = −xi(t) | q neighbors are in different states) = ε.

Fact 2.18 (Remark that (2), (3) and (4) hold under the assumption of a complete network
(i.e., in mean field).).
(1) Denote the fraction of disagreeing neighbors of agent i as p, then the probability that
agent flips can be computed as a function of p and q given by:

f(p, q) = pq + ε[1− pq − (1− p)q]. (2.24)

(2) The q-voter model with q = 1 reduces to the standard voter model, with exit probability
proportional to p.
(3) The q-voter model with q = 2 and ε = 0 coincides with the modified Sznajd model
with rules (a), (b) and (c’). The q-voter model with q = 2 and ε = 1/2 coincides with the
voter model, and exhibits a "generalized-voter transition" in the sense that for ε > 1/2 the
system is disordered (in a paramagnetic phase) and for ε < 1/2 the system is ordered (in
a ferromagnetic phase).
(4) The q-voter model with q = 3 has a voterlike transition at ε = 1/3, and separated two
ordered (for smaller ε) and disordered phases (for larger ε) as when q = 2.

2.7 Altafini’s Model

Remark that from Section 2.2 to Section 2.4, the (continuous) opinion vector at each
time t is defined in Rn, while in Section 2.5 and Section 2.6, it is defined in {0, 1}n and
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{+1,−1}n, respectively. The original Altafini model (Altafini (2012a)) is coincident with
the Abelson model with an influence matrix that can have both positive and negative
elements, corresponding to a signed graph, also assuming that x̄(t) ∈ Rn,∀t.

2.7.1 Results on balance theory

Definition 2.26 (signed graph). A signed graph G is a triple G = {N,E,A} where (N,E)
is a graph and A = (aij), aij ∈ R is a matrix such that aij 6= 0 if and only if (j, i) ∈ E.9

The followings are assumed throughout this section.

Assumption 2.1.
(1) The graph A has no self-loops, i.e., aii = 0, ∀i ∈ N .
(2) A is symmetric, i.e., aij = aji,∀i, j ∈ N .

Definition 2.27 (structural balancedness). A signed graph G = {N,E,A} is structurally
balanced if N can be partitioned into two disjoint subsets N = N1 ∪ N2 and ∀i, j ∈ N ,
i 6= j, such that


aij ≥ 0, if i, j ∈ Nm (m ∈ {1, 2})

aij ≤ 0, if i ∈ Nm, j ∈ Nn (m,n ∈ {1, 2} and m 6= n).
(2.25)

Otherwise, G is structurally unbalanced.

Definition 2.28 (generalized Laplacian matrix). The generalized Laplacian matrix of the
signed graph G = {N,E,A} is defined by:

L[A] = (lij)i,j∈N , where lij =


−aij, i 6= j∑
k 6=i
|aik|, i = j.

(2.26)

Remark 2.3.
(1) lii =

∑
k 6=i
|aik| =

n∑
k=1
|aik| since aii = 0;

(2) If A nonnegative, 2.26 coincides with the original Laplacian matrix of a weighted graph
2.3

Definition 2.29 (gauge transformation). A gauge transformation is a change of orthant
order in Rn performed by a diagonal matrix D = diag(σ), where σ = [σ1, . . . , σn] and
σi ∈ {±1},∀i = 1, . . . , n.

9Remark that an arc (i, j) means that i has influence on j.
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Denote by LD as the gauge transformation of L by a diagonal matrix D, i.e., LD = DLD.
Then the following holds:

Proposition 2.1. L and LD are isospectral: sp(L) = sp(LD), i.e., the gauge transfor-
mation preserves the spectrum.

Lemma 2.6. The following conditions are equivalent:

(1) G = {N,E,A} is structurally balanced;

(2) 0 is an eigenvalue of L;

(3) ∃ a diagonal matrix D such that DAD has all nonnegative entries;

(4) all cycles (resp., directed cycles) of G are positive for undirected (resp., directed) G.
10

Lemma 2.6 says that by doing a gauge transformation, the structurally balanced net-
work can be transformed into the corresponding nonnegative network sharing the same
convergence properties (Altafini (2012a)).

Example 2.2. Let

A =


0 5 −4
5 0 −2
−4 −2 0


corresponding to a structurally balanced network. The gauge transformation which trans-
forms A into a nonnegative matrix is D = diag(1, 1,−1). Indeed, we obtain

DAD =


1 0 0
0 1 0
0 0 −1




0 5 −4
5 0 −2
−4 −2 0




1 0 0
0 1 0
0 0 −1

 =


0 5 4
5 0 2
4 2 0


which is a nonnegative matrix isospectral with A.

2.7.2 Model of opinion dynamics

The Altafini model is given by

ẋ(t) = −L[A(t)]x(t), t ≥ 0, (2.27)

where L[A(t)] is the generalized Laplacian matrix of G, and x ∈ Rn.
10A cycle is said positive if the product of all weights on the linked arcs are positive.
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Convergence

Similar to the Abelson’s model, the Altafini model is always convergent.

Proposition 2.2. ∀A, ∀x(0) ∈ Rn, ∃x̄i = limt→∞ xi(t).

Any structurally balanced network can be gauge transformed into a nonnegative matrix
with the same spectrum, then it reduces to the Abelson’s model. Indeed, opinions will
converge to a bipartite consensus defined below.

Definition 2.30. The model 2.27 admits a bipartite consensus if limt→∞ |xi(t)| = x∗ >

0,∀i ∈ 1, . . . , n.

Theorem 2.3. If G is strongly connected and structurally balanced, then the model 2.27
admits a bipartite consensus with solution given by x̄ = 1

n
(1′Dx(0))D1. If G is structurally

unbalanced, then limt→∞ x(t) = 0.

2.7.3 The opposing rule and the repelling rule along negative
links

In a recent paper coauthored by Altafini (Shi et al. (2019)), the authors defined two
rules for negative links in a signed graph: the opposing rule and the repelling rule. They
consider an undirected network G = (N,E) where N is the set of n nodes (agents) and E
can be partitioned into the set of positive links and that of negative links E = E+ ∪E−.
Denote the subgraphs G+ = (N,E+) and G− = (N,E−). The degree of each agent i
is denoted by di, ∀i ∈ N . The positive (resp., negative) neighborhood of each agent
i is denoted as N+

i := {j, {i, j} ∈ E+} (resp., N−i := {j, {i, j} ∈ E−}), with positive
(resp.,negative) degree d+

i = |N+
i | (resp., d−i = |N−i |). Throughout this section, it is

assumed that G is connected and there is at least one edge in G−.
Considering any link {i, j} ∈ E, the interaction between i and j (isolating all other
interactions) is decided by the following rules:

(1) If {i, j} ∈ E+, then they update opinions by the DeGroot rule:

xi(t+ 1) = xi(t) + α(xj(t)− xi(t)) = (1− α)xi(t) + αxj(t),

xj(t+ 1) = xj(t) + α(xi(t)− xj(t)) = (1− α)xj(t) + αxi(t),
(2.28)

with α ∈ (0, 1).
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(2) If {i, j} ∈ E−, then they update opinions either by the Opposing rule:

xi(t+ 1) = xi(t) + β(−xj(t)− xi(t)) = (1− β)xi(t)− βxj(t),

xj(t+ 1) = xj(t) + β(−xi(t)− xj(t)) = (1− β)xj(t)− βxi(t),
(2.29)

(2’) or by the Repelling rule:

xi(t+ 1) = xi(t)− β(xj(t)− xi(t)) = (1 + β)xi(t)− βxj(t),

xj(t+ 1) = xj(t)− β(xi(t)− xj(t)) = (1 + β)xj(t)− βxi(t),
(2.30)

with β ∈ (0, 1).

By following the opposing rule, the opinion of an agent is attracted by the opposite of the
opinion of her neighbor via negative links, as the updating rule for xi(t+1) can be rewritten
as the weighted average of xi(t) and xj(t), i.e.,xi(t+1) = (1−β)xi(t)+β(−xj(t)). In this
case, the opinion of xi is not necessarily farther from xj at t + 1, when {i, j} ∈ E−. For
example, when xi(t) < xj(t) < 0, xi(t) (resp., xj(t)) is attracted by −xj(t) (resp., −xi(t)),
both xi and xj will move to the right at time t + 1. However, by following the repelling
rule, the two agents with negative links repel each other instead of being attracted like in
the DeGroot model. So opinions of two agents with negative links always become farther
at the next time step. For example, when {i, j} ∈ E− and xi(t) < xj(t), xi will move to
the left and xj will move to the right at time t+ 1.

2.7.4 Opposing negative dynamics

With the Opposing negative dynamics defined by 2.28 and 2.29, xi(t) updates opinion
according to

xi(t+ 1) = (1− αd+
i − βd−i )xi(t) + α

∑
j∈N+

i

xj(t)− β
∑
j∈N−i

xj(t). (2.31)

Theorem 2.4. Shi et al. (2019)
For opposing negative dynamics with all agents following the updating rules 2.28 and
2.29, if 0 < α + β < 1

maxi∈N di
, then ∀x(0) ∈ Rn:
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(i) If G is structurally balanced with respect to the partition N = N1 ∪N2, then

lim
t→∞

xi(t) =

∑
j∈N1

xj(0)−
∑
j∈N2

xj(0)

n
,∀i ∈ N1;

lim
t→∞

xi(t) =

∑
j∈N2

xj(0)−
∑
j∈N1

xj(0)

n
,∀i ∈ N2.

(2.32)

(ii) Otherwise, limt→∞ xi(t) = 0,∀i ∈ N.

2.7.5 Repelling negative dynamics

With the Opposing negative dynamics defined by 2.28 and 2.30, xi(t) updates opinion
according to

xi(t+ 1) = (1− αd+
i + βd−i )xi(t) + α

∑
j∈N+

i

xj(t)− β
∑
j∈N−i

xj(t). (2.33)

Theorem 2.5. Shi et al. (2019)
For repelling negative dynamics with all agents following the updating rules 2.28 and
2.30, if G+ is connected, and 0 < α < 1/(max

i∈N
d+
i ), then ∃ a threshold value β∗ > 0 such

that:

(i) If β < β∗, then the average consensus is reached, i.e.,

lim
t→∞

xi(t) =

n∑
j=1

xj(0)

n
, ∀x(0) ∈ Rn.

(ii) If β > β∗, then lim
t→∞
||x(t)|| = ∞ for almost all initial values w.r.t. Lebesgue mea-

sure.

Remark 2.4. Theorems 2.4 and 2.5 also hold for the dynamic model of their continuous-
time counterparts.

2.7.6 Directed networks

Suppose now the network G = (N,E) is directed, with (i, j) ∈ E is a link starting from i

to j. The neighborhood of i is partitioned into the positive and negative neighborhoods,
respectively, i.e., Ni = N+

i ∪ N−i , where N+
i = {j : (j, i) ∈ E+} and N−i = {j : (j, i) ∈
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E−}, with positive (resp.,negative) degree d+
i = |N+

i | (resp., d−i = |N−i |). Then Theorems
2.4 and 2.5 can be generalized to the following theorems for directed networks.

Theorem 2.6. Shi et al. (2019)
For opposing negative dynamics in a directed network G, if 0 < α+ β < 1

maxi∈N di
, and G

is strongly connected, then ∀x(0) ∈ Rn:

(i) If G is structurally balanced with respect to the partition N = N1 ∪ N2, then

∃w1, . . . , wn > 0 with
n∑
i=1

wi = 1 such that

lim
t→∞

xi(t) =

∑
j∈N1

wjxj(0)−
∑
j∈N2

wjxj(0)

n
,∀i ∈ N1;

lim
t→∞

xi(t) =

∑
j∈N2

wjxj(0)−
∑
j∈N1

wjxj(0)

n
,∀i ∈ N2.

(2.34)

(ii) Otherwise, limt→∞ xi(t) = 0,∀i ∈ N.

Theorem 2.7. Shi et al. (2019)
For repelling negative dynamics in a directed network G, if G+ is strongly connected, and

0 < α < 1/(max
i∈N

d+
i ), then ∃ a threshold value β∗ > 0 such that ∀β < β∗, ∃m1(β), . . . ,mn(β) ∈

R+ with
n∑
i=1

mi(β) = 1 such that a consensus is reached at

lim
t→∞

xi(t) =
n∑
j=1

mj(β)xj(0),∀x(0) ∈ Rn.

For structurally balanced networks, we can think that there are two hostile camps. Agents
from the same camp are friends, and those from different camps are enemies. Remark that
in 2.28, α can be considered as the trust level of the agent to the opinion of his friends,
while in 2.29 and 2.30, β can be considered as the opposing or repelling level of the agent
to the opinion of his enemy. The opposing negative dynamics tells that under certain
conditions, the structurally balanced networks reach a within-group consensus, while the
structurally unbalanced networks reach a consensus on the origin value 0. The repelling
negative dynamics tells that if the friendship network G+ is (strongly) connected, and if
both the trust level (α) and the repelling level (β) are sufficiently small, then a consensus
will be reached. However, for undirected networks, if the repelling level is larger than the
threshold, opinions of agents will tend to (plus or minus) infinity almost everywhere. In
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models of continuous opinion dynamics, +∞ and −∞ can be referred to as two opposite
extreme opinions, such as the left-wing stance and right-wing stance in politics. Thus the
results imply that if the repelling level is too large, then every one will hold one of the
extreme opinion in the limit behavior, which is unrealistic. One reason leading to this
unrealistic result is that the repelling level β is assumed to be homogeneous (the same
for every agent) in this model, so one can generalize this model to have heterogeneous βs.
On the other hand, based on the assumption that agents hold opinions on R, agents try
to repel from enemies, and thus tend to hold the extreme opinion in the limit. One can
also generalize this model to different domains of opinions, such as [0, 1] or [−1, 1], where
the bounds are two extreme opinions.



Chapter 3

Summary of this thesis and
contributions

As described in Section 1.4, unlike the well-developed theory of opinion dynamics with
conformity behavior, the studies with anti-conformity behavior are taking their first steps.
The main aim of this Ph.D thesis is to study the models of opinion dynamics in a net-
work with both conformity behavior and anti-conformity behavior. More precisely, it
aims to answer the following questions: Given a society of agents in a (fixed or endoge-
nous) network, given a mechanism of influence for each agent, how the behavior/opinion
of the agents will evolve with time, and in particular can it be expected that it converges
to some stable situation, and in this case, which one? Moreover, what are the conditions
(both on the agent- and network-level) required to generate specific network level phenom-
ena, e.g., reaching a consensus/polarization? Moreover, what are the differences between
synchronous and asynchronous modelling?
In Chapter 4, a first study of the threshold model, where both conformist and anti-
conformist agents coexist, is provided. The study bears essentially on the convergence
of the opinion dynamics in the society of agents, i.e., finding absorbing classes, cycles,
etc. Also, we are interested in the existence of cascade effects, as this may constitute a
undesirable phenomenon in collective behavior. The study is divided into two parts. In
the first one, the threshold model is studied supposing a fixed complete network, where
every one is connected to every one, like in the seminal work of Granovetter (Granovetter
(1978)). We study the case of a uniform distribution of the threshold, of a Gaussian
distribution, and finally give a result for arbitrary distributions, supposing there is one
type of anti-conformist. In a second part, the graph is no more complete and we suppose
that the neighborhood of an agent is random, drawn at each time step from a distribution.
We distinguish the case where the degree (number of links) of an agent is fixed, and where

36
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there is an arbitrary degree distribution. We show the existence of cascades and that for
most societies, the opinion converges to a chaotic situation.
In the second chapter (5), we study the dynamics of continuous cultural traits (as a
specific type of continuous opinions) in an OLG (overlapping generation) structure and
in an endogenous social network, where the network changes are inherited. Children
learn their cultural trait from their parents and their social environment modelled by
network. Parents want their children to adopt a cultural trait that is similar to their own
and engage in the socialization process of their children by forming new links or deleting
connections. Changing links from the inherited network is costly, but having many links
is beneficial. We propose three ways to endogenize the process of network formation. In
the first one, the network is supposed to be directed and each dynasty can either form
or delete a directed link unilaterally with another dynasty. Therefore, at each period,
each family faces a utility opitimization problem where a trade-off between own utility
losses and the improvements of child’s cultural trait. We have shown that if the cost of
network changes is greater than the cost of child care, extremists will never add links,
and in the case of sufficiently low cost, extremists may cut all ties with the society. In
the second and third models, the network is supposed to be undirected. In the second
model, we assume that after each period, a pairwise stable network with transfers (PST
network for short) is reached. We have shown the existence of the PST network for each
period, however, it is not necessary to be unique. Moreover, a necessary and sufficient
condition is given such that a network is PST for given V (t) and G(t). The convergence
of cultural traits in this case is guaranteed. In the third model, we assume that after
each period, a pairwise stable network (PS network for short) is reached. In this case,
there always exist sufficiently small cost parameters such that the empty network is the
unique PS network. Regarding the efficiency of the network, we show that there always
exist sufficiently small cost parameters such that the empty network is the unique efficient
network, and sufficiently large costs of child care such that the complete network is the
unique efficient network. Moreover, more detailed dynamics of cultural traits are studied
when the costs of network changes and benefits from integration are low, intermediate,
and large, respectively.
In Chapter 6, an appropriate updating rule of continuous opinions for anti-conformity
behavior is proposed, defined according to the repelling function, which gives the shift of
the opinion based on the current opinion and the reference opinion for an agent. Two
models of continuous opinion dynamics are studied in undirected networks, by introducing
the heterogeneity in the sense of conformity and anti-conformity behavior either in nodes
or in links. The study is divided into two parts. In the first one, the society is composed
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of both conformist and anti-conformist agents. Conformist agents update their opinions
following the DeGroot rule with equal weights, however, anti-conformist agents would like
to repel from others, and the repelling level is negatively related to the opinion distance
between the anti-conformist and her reference point. No consensus will be reached for any
connected network in the presence of anti-conformist agent. Instead, opinions converge
to a disagreement or oscillate over time. In the second part, by supposing a signed graph
where agents have positive links (+1) with their friends and negative links (-1) with their
enemies, agents update their opinion as the sum of the averaged opinion of their friends
and repelling value from their enemies. When the network is balanced, i.e., there are two
communitarian groups, and each sub-network corresponding to each group is connected
and the initial opinion ranges of the two group are disjoint, the consensus within each
group is guaranteed. Both synchronous and asynchronous updating models are discussed
in these two parts.



Chapter 4

Anti-conformism in the threshold
model of collective behavior 1

4.1 Introduction

Human behavior is governed by many aspects, related to social context, culture, law
and other factors. Most of these aspects tend to indicate that our behavior is heavily
influenced by the behavior of the other people with whom we are in contact, either directly
or indirectly by means of communication devices, information media, etc. Behavior refers
here to any kind of action, decision to be taken, or opinion to be held on a given topic. As
our environment is constantly changing, behavior and opinion of people, including us, are
evolving with time, which makes central the following question: Given a society of agents
in a network, given a mechanism of influence for each agent, how the behavior/opinion
of the agents will evolve with time, and in particular can it be expected that it converges
to some stable situation, and in this case, which one?
Evidently the question has been studied by sociologists and psychologists, and a number of
pioneering models of "opinion dynamics’" have been proposed by them, e.g., Granovetter
(1978), Abelson and Conference (1964), French Jr (1956), Friedkin and Johnsen (1990),
Taylor (1968), but it has also attracted the attention of many physicists, assimilating
agents to particles (this field is usually called "sociophysics", after the work of Galam
(2004b); see a survey in Castellano et al. (2009a)), economists (see, e.g., the monograph
of Jackson (2010), and the survey by Acemoglu and Ozdaglar (2011)), computer scientists
and probabilists (by analogy with (probabilistic) cellular automata, see, e.g., Gravner and

1This chapter is a joint work with Michel Grabisch (University of Paris 1 Panthéon-Sorbornne), pub-
lished in the journal Dynamic Games and Applications.
Grabisch, M., Li, F. Anti-conformism in the Threshold Model of Collective Behavior.
Dyn Games Appl 10, 444-477 (2020). https://doi.org/10.1007/s13235-019-00332-0.
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Griffeath (1998) and the survey by Mossel and Tamuz (2017)), etc.
One of the simplest model of behavior/opinion dynamics when the opinion or behavior is
binary (yes/no, active/inactive, action 1 or 0, etc.) is the threshold model, also called the
majority rule model (Galam, 2002), proposed by Granovetter (1978), Schelling (2006),
among others. This model simply says that an agent takes action 1 if sufficiently enough
people in his neighborhood takes action 1. The simplicity of the model allows for a deep
analysis (see the surveys by Mossel and Tamuz (2017) and Castellano et al. (2009a)),
and one remarkable result already observed in the pioneering work of Granovetter (1978)
was that a cascade effect occurs, supposing that the population of agents starts from
an initial state where nobody is active, and that the distribution of the threshold value
is uniform over the population. Then, after a finite number of steps, all agents become
active. Interestingly, the latter study was done in the context of a mob, where the available
actions were "to riot" (action 1) or to be inactive (action 0). Then, agents with threshold
0 were called "instigators" as they start to riot alone, and this indeed forms the seed of
the cascade effect, ending in a mob rioting. This topic has been very much studied, as
demonstrated by a recent monograph on mob control (Breer et al., 2017), written by
researchers in control theory.
So far, most models make the basic assumption that agents tend to follow the trend (they
are conformist) and that nobody will have a kind of opposite behavior (anti-conformism),
choosing action 0 if too many people take action 1. Although the literature on opinion
dynamics is vast, very few studies consider that agents may be anti-conformist. In game
theory, such kind of opposite behavior has been studied however, in what is called anti-
coordination games (see, e.g., Bramoullé et al. (2004), López-Pintado (2009)), congestion
games Rosenthal (1973), and fashion games Cao et al. (2013). In sociophysics, the first
idea about anti-conformist agents seems to have been introduced by Galam (2004a) under
the name of contrarians. Later works include those of Sznajd-Weron and also Juul and
Porter. In Nyczka and Sznajd-Weron (2013b), the q-voter model is studied, where it is
supposed that agents may adopt with some probability an anticonformist attitude, while
the threshold model is considered under this assumption in Nowak and Sznajd-Weron
(2019). Close to this model is the recent study of Juul and Porter (2019) about the
spreading of two competing products, say A and B, where anticonformist agents are called
hipsters (see Touboul (2019) where this terminology has been introduced). In Juul and
Porter (2019), starting from a network with all nodes inactive, a single node is uniformly
chosen at random to adopt one product, say A, which buries the seed for the spreading
process. They assume the threshold of a player (which can be a conformist or a hipster)
as the minimum proportion of their active neighbors such that this player becomes active
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and the transition from active to inactive is a one-way process. Once the player becomes
active, they must adopt one product according to the following rules: if he is a conformist,
he will adopt the most popular product over his neighborhood; if he is a hipster, he will
adopt the less popular product over the whole population. Under this assumption, they
found that even a small proportion of hipsters can lead to a reversal of the popularity of
two competing products. The model is similar in Nowak and Sznajd-Weron (2019), in the
sense that agents are selected at random for updating and their threshold is the same for
all agents, however, an agent is not a priori conformist or anti-conformist, but is one or
the other with some probability.
The present paper also studies a threshold model where both conformist and anti-conformist
agents coexist, but in a rather different setting compared to Juul and Porter (2019) and
Nowak and Sznajd-Weron (2019). Firstly, we assume that updating is done at every pe-
riod for all agents. Secondly, in our setting the thresholds are drawn from a distribution
which means that they are random and different, in general. In addition, the two possible
states of an agent are not treated symmetrically. These are the assumptions of the seminal
paper of Granovetter (1978).
Our paper is in the line of a previous work by the first author Grabisch et al. (2019),
whose results will be used at some point in the present paper. Our study bears essentially
in answering the main question raised in the first paragraph, that is, on the convergence
of the process, analyzing if absorbing states exist (stable state of the society) or if a
cycle occurs, or even more chaotic situations. Also, we are interested by the existence of
cascade effects, as this may constitute a undesirable phenomenon in collective behavior.
We divide our study into two parts. In the first one, we basically study the threshold
model supposing a fixed complete network, where every one is connected to every one,
like in the work of Granovetter (1978) (Section 4.2). We begin by giving a game-theoretic
foundation to this model, which aims to give a rational explanation to human behavior,
by means of a mix of coordination and anti-coordination games. Then, we study the
case of a uniform distribution of the threshold, of a Gaussian distribution, and finally
give a result for arbitrary distributions, supposing there is one type of anti-conformist.
In a second part (Section 4.3), the graph is no more complete and we suppose that the
neighborhood of an agent is random, drawn at each time step from a distribution. We
distinguish the case where the degree (number of links) of an agent is fixed, and where
there is an arbitrary degree distribution. Most of the proofs can be found in the Appendix.
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4.2 The deterministic threshold model with anti-conformists

4.2.1 The model

Let N = {1, . . . , n} be the society of agents. We suppose the existence of an underlying
(exogenous) network G = (N,E) whose nodes are the agents and E is the set of (undi-
rected) edges or links. Each agent i has a set of neighbors Γi = {j ∈ N : {i, j} ∈ E},
and |Γi| =: di is the degree of agent i. We consider that i ∈ Γi for every agent i.
Two actions (or opinions, states) are available to each agent at every stage: 1 (agree,
adopt, join, be active, etc.) and 0 (disagree, refuse, disjoin, be inactive, etc.). The action
taken by agent i at stage t is denoted by ai(t). For short, we will often use the term
“active” for agents taking action 1, and “inactive” for agents taking action 0.
In the classical threshold model introduced by Granovetter (1978) and Schelling (2006)
among others, agent i will take action 1 at next stage if the proportion of his neighbors
taking action 1 exceeds some threshold µi ∈ [0, 1], otherwise action 0 is taken:

ai(t+ 1) =


1, if 1

|Γi|
∑
j∈Γi aj(t) ≥ µi

0, otherwise.
(4.1)

Note that unlike some threshold models, e.g., in Juul and Porter (2019), Watts (2002),
an agent having adopted action 1 may return to action 0, because not enough neighbors
take action 1.2

Such behavior exhibits a tendency to follow the trend, and we call this type of agent a
conformist. The tendency to do the opposite of the trend is called anti-conformism, and
can be modelled as follows:

ai(t+ 1) =


0, if 1

|Γi|
∑
j∈Γi aj(t) ≥ µi

1, otherwise.
(4.2)

When too many people take action 1, then an anti-conformist agent takes action 0, and
vice-versa. In the rest of the paper, we denote by Na the set of anti-conformist agents,
and by Nc := N \Na the set of conformist agents.
Observe that thresholds 0 and 1 play a particular role. For a conformist agent (respec-
tively, an anti-conformist agent), a threshold equal to 0 means that he takes always action
1 (respectively, 0), while a threshold strictly greater than 1 implies to always take action
0 (respectively, 1). We call these agents constant 0-player and constant 1-player.

2When adoption of action 1 stays for ever, one speaks of "switch".
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Our aim is to study the evolution of the dynamics of actions taken by the agents. To this
aim, we define the state of the society at stage t, as the set S (or S(t)) of agents taking
action 1 at stage t. Depending which one is more convenient, a state is either denoted as
a set S ⊆ N or as its characteristic vector 1S in {0, 1}N . The process is deterministic and
Markovian, i.e., transitions from S to T (denoted by S → T ) are with probability 1 and
do not depend on states before S.
We are interested in finding absorbing states, i.e., such that S(t) = S(t + 1) for some
value of t, and cycles, i.e., sequences of transitions S1 → S2 → · · · → Sk where Sk = S1.

4.2.2 A game-theoretic foundation of the threshold models

It is well-known that the classical threshold model can be explained by a local coordination
game (see, e.g., Morris (2000)). We show that the anti-conformist threshold model can
be explained in a similar way via a local anti-coordination game. We recall first the result
for the classical model.
Consider two players (row, column) whose set of strategies is {0, 1} with the following
payoff matrix:

0 1
0 q, q 0,0
1 0,0 1− q, 1− q

with 0 < q < 1. This is a coordination game since the two pure Nash equilibria arise
when the players choose the same action. It can be checked that the best response of one
player is 1 if he assigns a probability at least q that the other player chooses 1. Consider
now our network G = (N,E) and a given player i. Given that player j ∈ Γi takes action
aj, player’s i best response is to choose action a iff

∑
j∈Γi

uc(a, aj) ≥
∑
j∈Γi

uc(1− a, aj)

where the utility uc(a, aj) is given in the above table. Taking a = 1 we find, assuming
that m players in Γi choose action 1:

∑
j∈Γi

uc(1, aj) =
∑
j∈Γi
aj=1

uc(1, 1) +
∑
j∈Γi
aj=0

uc(1, 0) = m(1− q)

∑
j∈Γi

uc(0, aj) = q(di −m).

Therefore, player i’s best response is 1 iffm ≥ qdi, assuming that in case of tie, 1 is chosen.
This is exactly (4.1) with µi = q. This yields an interpretation for the threshold µi: it is
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the minimum probability that player i assigns to players in his neighborhood for choosing
action 1.
We consider now the 2-players anti-coordination game given by the following matrix defin-
ing the utility ua (2-dimensional with coordinates ua1, ua2 for row and column players,
respectively):

0 1
0 0, 0 1− q, q
1 q, 1− q 0, 0

The game is symmetric in the sense that ua1(a, b) = ua2(b, a) for all actions a, b, and there
are two pure Nash equilibria arising when the players take different actions. It can be
checked that the best response of one player is 1 if he assigns a probability at most q that
the other player chooses 1. Assuming that in case of tie, action 0 is taken, player i’s best
response is 1 iff

∑
j∈Γi
aj=1

ua1(1, 1) +
∑
j∈Γi
aj=0

ua1(1, 0) >
∑
j∈Γi
aj=1

ua1(0, 1) +
∑
j∈Γi
aj=0

ua1(0, 0)

which leads to the condition m < qdi. We recover the anticonformist model (4.2) with
the same threshold as above µi = q. Now, the threshold of player i is the maximum
probability that he assigns to players in his neighborhood for choosing action 1.
We now combine both types of players and consider the 2-players game with one con-
formist (row player) and one anti-conformist (column player) given by the following payoff
matrix defining utility um (um is 2-dimensional, with coordinates um1 and um2 for the row
and column players, respectively, but not symmetric):

0 1
0 q, 0 0, q
1 0, 1− q 1− q, 0

In this game, there is no pure Nash equilibria, but one can check that the best response
of the conformist player (respectively, the anti-conformist player) is 1 if he assigns a
probability at least q (respectively, at most q) that the other player chooses 1. Consider
now a given conformist player i in the network G = (N,E). Assuming that in case of a
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tie action 1 is taken, player i’s best response is 1 iff

∑
j∈Γi∩Nc
aj=1

uc(1, 1) +
∑

j∈Γi∩Na
aj=1

um1 (1, 1) +
∑

j∈Γi∩Nc
aj=0

uc(1, 0) +
∑

j∈Γi∩Na
aj=0

um1 (1, 0) ≥

∑
j∈Γi∩Nc
aj=1

uc(0, 1) +
∑

j∈Γi∩Na
aj=1

um1 (0, 1) +
∑

j∈Γi∩Nc
aj=0

uc(0, 0) +
∑

j∈Γi∩Na
aj=0

um1 (0, 0)

which leads to the condition m ≥ qdi, while if i is anti-conformist, best response is 1 iff

∑
j∈Γi∩Nc
aj=1

um2 (1, 1) +
∑

j∈Γi∩Na
aj=1

ua2(1, 1) +
∑

j∈Γi∩Nc
aj=0

um2 (0, 1) +
∑

j∈Γi∩Na
aj=0

ua2(0, 1) >

∑
j∈Γi∩Nc
aj=1

um2 (1, 0) +
∑

j∈Γi∩Na
aj=1

ua2(1, 0) +
∑

j∈Γi∩Nc
aj=0

um2 (0, 0) +
∑

j∈Γi∩Na
aj=0

ua2(0, 0)

assuming that action 0 is taken in case of tie. This leads to the condition m < qdi.
Therefore, we can recover the threshold model with the same thresholds as above µi = q for
both conformists and anti-conformists. For conformists (respectively, anti-conformists),
the threshold is the minimum (respectively, maximum) probability that player i assigns
to players in his neighborhood for choosing action 1.

4.2.3 A general result on cycles

There is a well-known result on the threshold model saying that the state converges to
either a fixed state (absorbing) or a cycle of length 2. The most general form of this result
is provided by Goles and Olivos (1980), where the process has the form

ai(t+ 1) =


1, if ∑j∈N αijaj(t) ≥ θi

0, otherwise,

with αij = αji ∈ IR, θi ∈ IR for all i, j. Then there exists t ∈ IN such that ai(t+ 2) = ai(t).
This general result applies to the case of a network of conformists, taking αij = 1 if
{i, j} ∈ E and 0 otherwise, and θi = µi|Γi|, but it also applies to the case of a network
where all agents are anti-conformist: just put αij = −1 if {i, j} ∈ E and 0 otherwise, and
θi = −µi|Γi|+ 1. Hence we have obtained:

Theorem 4.1. Suppose Nc = ∅ or Na = ∅. Then the process converges to either an
absorbing state or to a cycle of length 2.

The result is no more true if the network contains both conformists and anti-conformists,
as the following example shows:
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Example 4.1. Consider a graph with n = 4, where agents 1 and 3 are conformist, while 2
and 4 are anticonformist, situated as in the figure below, and take µi = 1/2 for all i ∈ N .
Then we have the following cycle of length 4:

(0, 0, 0, 0)→ (0, 1, 0, 1)→ (1, 1, 1, 1)→ (1, 0, 1, 0)→ (0, 0, 0, 0).

1 2

4 3

4.2.4 Study of the complete network

We suppose in this section that the graph G is complete, i.e., every agent is connected to
every other agent, so that the neighborhood Γi is N for every agent i.
We begin by recalling the classical result of Granovetter on absorbing states (Granovetter,
1978). Suppose N = Nc and consider the cumulative distribution function F of the
threshold of the agents:

F (x) = 1
n
|{i ∈ N : µi ≤ x}| = 1

n

∑
i∈N

1µi≤x.

This function is right-continuous, nondecreasing and has fixed points. It gives the propor-
tion of agents whose threshold is below or equal to some quantity x, or put otherwise, the
proportion of agents that will take action 1 when the current proportion of agents taking
action 1 is x. As a consequence, if x∗ is a fixed point of F , then S∗ := {i ∈ N : µi ≤ x∗}
is an absorbing state, and conversely as well.
We generalize this result by incorporating anti-conformism as follows. We express by G(x)
the proportion of agents that will take action 1 when the current proportion of agents
taking action 1 is x (hence G(x) = F (x) is the cumulative distribution function of the
threshold when there is no anti-conformists):

G(x) = 1
n

( ∑
i∈Nc

1µi≤x +
∑
i∈Na

1µi>x

)
, (4.3)

with x ∈ [0, 1]. This function, which we call the transition function, is still right-
continuous but is no more nondecreasing in general, and as a consequence, does not
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necessarily have fixed points (see Figure 4.3). Denote the list of all threshold val-
ues of conformist agents (respectively, anti-conformist agents) as µc1, µc2, . . . , µcα (respec-
tively, µa1, µa2, . . . , µaβ) in a strict increasing order with fractions qc1, qc2, . . . , qcα (respectively,
qa1 , q

a
2 , . . . , q

a
β ). The transition function G(x) (Eq. 4.3) can also be written as

G(x) =
∑
µci≤x

qci +
∑
µaj>x

qaj . (4.4)

The following is an immediate generalization of Granovetter (1978). It establishes that
the absorbing states of the process are the fixed points of G.

Theorem 4.2. The process converges to either absorbing states or cycles. It has absorbing
state only when G has fixed point(s). The absorbing states of the dynamic process coincide
with the fixed points of G as follows: if x∗ is a fixed point of G, then

S∗ = {i ∈ Nc : µi ≤ x∗} ∪ {i ∈ Na : µi > x∗} (4.5)

is an absorbing state, and vice versa each absorbing state S∗ is associated with the fixed
point x∗ = |S∗|/n of G. Which absorbing state can be reached is dependent on the initial
state (when multiple absorbing states exist).

The theorem will be illustrated by several examples in the sequel. We begin our study by
supposing that the distribution of the threshold is uniform, then the Gaussian case and
the general case will be studied.

Uniform distribution

The case of a uniform distribution permits to get explicit results. It has been studied
by Granovetter (1978), in order to explain riot phenomena (action 1: take part to a
riot, action 0: be inactive). Supposing at the initial state that all agents are inactive,
the presence of agents with threshold 0 (called “instigators” as they start rioting alone)
initiates the phenomenon of rioting, which, by a domino or cascade effect, extends to the
whole population if the distribution is uniform.
Specifically, we consider the thresholds are uniformly distributed over the set
{0, 1/n, 2/n, . . . , n−1/n}, as in Granovetter (1978),3 and that w.l.o.g. we may consider that
agent 1 has threshold 0, agent 2 has threshold 1/n, etc., and agent n has threshold n−1/n.4

We denote by µ` = /̀n the threshold of agent `+ 1.
3We may adopt another definition where the thresholds value from 1/n to 1 (note that there is no

constant player then). As we will see below, there is no fundamental change in the results, except for the
case Na = ∅, where the domino effect would not start and ∅ would be the only absorbing state.

4We consider for ease of notation that only one agent has a given value of threshold. We may
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Consider first that Na = ∅. As expected, function G (which is in this case the cumulative
distribution function F ) has only one fixed point, which is x∗ = 1, corresponding to the
absorbing state S∗ = N (see Figure 4.1).

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x

G
(x

)

G(x)

Figure 4.1: The transition function G for uniform distributed threshold model of con-
formists (i.e. Na = ∅). In this example, n = 10. G has a unique fixed point, which is
x∗ = 1, corresponding to the absorbing state S∗ = N .

Introducing one anti-conformist agent Imagine now the conformist agent k+1 with
threshold k/n becoming anti-conformist with the same threshold, denoted by µa = k/n.
Suppose for example that n = 10 and k = 3, which makes agent 4 to be anti-conformist
(see Figure 4.2). According to Theorem 4.2, the absorbing states correspond to the fixed
points of G, which are, in set notation:

{1, 2, 3}, {1, 2, 3, 5}, {1, 2, 3, 5, 6}, . . . , {1, 2, 3, 5, 6, 7, 8, 9, 10}.

Which absorbing state is reached depends on the initial condition. For example, starting
from the state vector (0, . . . , 0), agent 1 and 4 become active, which makes agent 2 and 3
to become active in addition, then agent 4 becomes inactive and no more changes occurs:
the absorbing state {1, 2, 3} has been reached. If now we start from the state vector

consider a more general situation where several agents have the same threshold. This will be considered
in Section 4.2.4 with arbitrary distribution, however, in the case of a uniform distribution, this has no
interest as uniformity obliges to have for each value of the threshold the same number of agents, so that
everything goes exactly the same as the case of one agent per threshold value.
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(1, . . . , 1), agent 4 becomes inactive but all the other remain active, so that the absorbing
state {1, 2, 3, 5, 6, 7, 8, 9, 10} is reached.
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Figure 4.2: The transition function G for uniform distributed threshold model of con-
formists and anti-conformists when one anti-conformist agent is introduced. In this
example, k = 3 (i,e., agent 4 is anti-conformist) and n = 10. There are seven fixed
points of G, which is 3/10, 4/10, 5/10, . . . , 9/10, corresponding to the absorbing states, in set
notation:{1, 2, 3}, {1, 2, 3, 5}, {1, 2, 3, 5, 6}, . . . , {1, 2, 3, 5, 6, 7, 8, 9, 10}. Which absorbing
state is reached depends on the initial condition.

The following proposition summarizes the uniform case with one anti-conformist.

Proposition 4.1. Consider a group of agents whose thresholds follow a uniform distri-
bution as described above, and suppose that there is only one anti-conformist, say agent
k + 1, k ∈ {0, 1, . . . , n − 1}, with threshold µa := k/n. Then the opinion dynamic has
n(1 − µa) = n − k absorbing states corresponding to the fixed points k/n, . . . , n−1/n of G,
specifically:

{1, . . . , k}, {1, . . . , k, k + 2}, {1, . . . , k, k + 2, k + 3}, . . . , N \ {k + 1}.

Moreover, starting from any initial state with the group opinion x∗ = k∗/n, k∗ ∈ {0, 1, . . . , n},
if k∗ = n, the reachable fixed point is n−1/n; if k∗ ≥ k and k∗ 6= n, the reachable fixed point
is x∗; if k∗ < k, then the reachable fixed point is k/n or k+1/n depending on which has the
same parity as k∗.
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Introducing two anti-conformist agents Imagine now that two conformist agents,
say k1 + 1, k2 + 1 with thresholds µ1

a = k1/n, µ2
a = k2/n become anti-conformist with the

same thresholds. Assume w.l.o.g. that k1 < k2.
Suppose for example that n = 10 and k1 = 3 and k2 = 5, which makes agent 4 and
agent 6 to be anti-conformists (see Figure 4.3). According to Theorem 4.2, the dynamic
has no absorbing states since there is no fixed points of G. Instead, there will be a cycle
S1 → S2 → S1 with S1 = {1, 2, 3, 5}, S2 = {1, 2, 3, 5, 6}. For example, starting from
the state vector (0, . . . , 0), agent 1, 4 and 6 become active, which makes agent 2 and 3
to become active in addition, then agent 4 becomes inactive, which will again activate
agent 5 at the next stage i.e., the state S1 = {1, 2, 3, 5, 6} has reached with x = 5/10. Thus
agent 6 becomes inactive at the next stage with the state S2 = {1, 2, 3, 5} and the cycle
S1 → S2 → S1 has been reached.
The following proposition summarizes the uniform case with two anti-conformists.
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Figure 4.3: The transition function G for uniform distributed threshold model of con-
formists and anti-conformists when two anti-conformist agents are introduced. In this
example, n = 10, k1 = 3 and k2 = 5 (i.e., agent 4 and agent 6 are anti-conformists).
The dynamic has no absorbing states since there is no fixed points of G. Instead, there
will be a cycle materialized in green, which is S1 → S2 → S1 with S1 = {1, 2, 3, 5} and
S2 = {1, 2, 3, 5, 6}.

Proposition 4.2. Consider a group of agents whose thresholds follow a uniform distribu-
tion as described above, and suppose that there are only two anti-conformists, say agents



4.2. The deterministic threshold model with anti-conformists 51

k1 +1, k2 +1 with thresholds µ1
a = k1/n and µ2

a = k2/n, respectively5, and without loss of gen-
erality, assume that k1 < k2. Then there is no absorbing state but a cycle S1 → S2 → S1

with
S1 = {1, . . . , k1, k1 + 2, . . . , k2}, S2 = {1, . . . , k1, k1 + 2, . . . , k2 + 1},

corresponding to group opinion k2/n→ (k2−1)/n→ k2/n, regardless of the initial state.

The general case The previous results tend to indicate that with an odd number
of types of anti-conformists, there are absorbing states, while there is no with an even
number of types (only cycles occur). The main result of this section shows that this is
indeed the case.

Theorem 4.3. Consider a society N of agents whose thresholds follow a uniform distri-
bution on {0, 1/n, . . . , n−1/n} and suppose that some agents are anti-conformists (Na 6= ∅).
The following holds.

(i) Suppose that there are 2`+1 (` ≥ 1) anti-conformist agents with thresholds µ1
a, · · · , µ2`+1

a ,
respectively, with µia = ki/n, (i = 1, . . . , 2` + 1) and k1 < k2 < · · · < k2`+1.6 Then G
has fixed points k`+1/n, · · · , (k`+2−1)/n, whose corresponding absorbing states are given
by (4.5).

(ii) Suppose there are 2` (` ≥ 1) anti-conformist agents with thresholds µ1
a, · · · , µ2`

a ,
respectively, with µia = ki/n, (i = 1, . . . , 2`) and k1 < k2 < · · · < k2`.7 Then there is
no absorbing state, but there exist cycles of length 2, corresponding to the pairs of
points (x,G(x)), (y,G(y)) such that G(y) = x and y = G(x), i.e., x is a fixed point
of G(2) = G ◦G. Moreover, there is no cycle of length greater than 2.

When the uniform distribution is on {1/n, . . . , 1}, it is easy to see that the results are the
same as in Theorem 4.3, except that the cases of odd and even numbers of anti-conformists
are inverted: there are absorbing states when there is an even number of conformists, and
no absorbing states but cycles otherwise. This is because in that case, the function G is
shifted of 1/n to the right, and G(0) = p, the number of anti-conformists.
We illustrate the above result in the case of cycles with the following example.

Example 4.2. n = 10, ` = 2, k1 = 0, k2 = 1, k3 = 2, k4 = 3 (see Figure 4.4). There
is no absorbing state but cycles such as: {1, 2, 3} → ∅ → {1, 2, 3} with group opinion x:
3/10 → 0 → 3/10. Other cycles might also exist, e.g., {3, 4} → {4} → {3, 4} with group
opinion x: 1/10→ 2/10→ 1/10.

5k1, k2 ∈ {0, 1, . . . , n− 1}
6k1, k2, . . . , k2l+1 ∈ {0, 1, . . . , n− 1}
7k1, k2, . . . , k2l ∈ {0, 1, . . . , n− 1}
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Figure 4.4: The transition function G for uniform distributed threshold model of con-
formists and anti-conformists when even number of anti-conformist agents are introduced.
In this example 5.2, k1 = 0, k2 = 1, k3 = 2, k4 = 3 and n = 10. The cycles are mate-
rialized in red and green, which is {1, 2, 3} → ∅ → {1, 2, 3} and {3, 4} → {4} → {3, 4},
respectively.

Applying the results above, we get the case where the society is purely anti-conformist.

Corollary 4.1. Consider a group of agents whose thresholds follow a uniform distribution.
If all agents are anti-conformists, then there exist at most one absorbing state. The
existence of absorbing state is decided by the parity of n. If n is even, then there is no
absorbing state; if n is odd, then the absorbing state is the action profile associated to the
fixed point (n−1)/2.

Note that this is in accordance with the general result on cycles (Theorem 4.1).

Gaussian distribution

In this section we explore the dynamics of the process for a Gaussian distributed thresh-
old in a complete network. Assume that the thresholds of conformists (respectively,
anti-conformists), identically and independently distributed, follow the Gaussian distri-
butions N(mc, σc), N(ma, σa) respectively, with the corresponding cumulative distribution
functions Fc, Fa. Then

G(x) = qFc(x) + (1− q)(1− Fa(x))
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where q is the proportion of conformists, and

Fc(x) = 1
σc
√

2π

∫ x

−∞
exp

(
−(t−mc)2

2σ2
c

)
dt = 1

2 + 1
2erf

(
x−mc

σc
√

2

)

and similarly for Fa, with erf(x) the error function defined by erf(x) = 2√
π

∫ x
0 e
−u2du.

Letting mc = ma =: m and σc = σa =: σ permit to derive some properties. We obtain for
the transition function

G(x) =
(
q − 1

2

)
erf

(
x−m
σ
√

2

)
+ 1

2 , (4.6)

from which we deduce that we always have G(m) = 1/2. Hence 1/2 is a fixed point and
therefore an absorbing state whenm = 1/2. We also notice that when x−m

σ
√

2 tends to infinity
(that is, when x tends to 1 and σ tends to 0), G(x) tends to q (all conformists take action
1). Similarly, when x−m

σ
√

2 tends to −∞ (i.e., x and σ tend to 0), G(x) tends to 1− q.
Let us examine if other absorbing states exist. First and second derivatives of the transi-
tion function are

G′(x) = 2q − 1
2σ
√

2
exp

(
−(x−m)2

2σ2

)

G′′(x) = −(2q − 1)(x−m)
2σ3
√

2
exp

(
−(x−m)2

2σ2

)
.

The function has an inflection point at x = m. If q < 1/2, it is decreasing, concave when
x ≤ m, and convex when x ≥ m. If q = 1/2, G(x) is constant and equal to 1/2, while if
q > 1/2, it is increasing, convex when x ≤ m, and concave when x ≥ m.

Let us first consider the case q < 1/2 (majority of anti-conformists). G being decreasing
and passing through the value 1/2, it has a single fixed point x∗ solution of the equation

erf
(
x−m
σ
√

2

)
= 1− 2x

1− 2q . (4.7)

We have m < x∗ < 1/2 when m < 1/2, and 1/2 < x∗ < m when m > 1/2. If the magnitude of
the slope of G at x∗ is greater than 1, x∗ is an unstable fixed point, otherwise it is stable
(this is a general observation). When it is unstable, the process reaches a limit cycle of
length 2 formed by the points (x0, G(x0)), (G(x0), G(G(x0))), where x0 is a fixed point of
G ◦G.

We consider now that q > 1/2 (majority of conformists). G being increasing makes the
study more complex as several intersections with the diagonal may occur. As erf(x) ∈
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]−1, 1[, we have in general

1− q < G(0) < G(m) = 1
2 < G(1) < q.

Therefore, if m < 1/2, there is a fixed point x∗ > 1/2 solution of (4.7), and possibly two
other ones (only one when G is tangent to the diagonal) smaller than 1/2 solution of the
same equation. If m > 1/2, the situation is symmetric: there is a fixed point x∗ < 1/2 and
possibly two other ones greater than 1/2, both solutions of (4.7). As a general observation,
if there is a single fixed point, it is stable, while in case of three fixed points, the one
in the middle is unstable, as a small negative (respectively, positive) variation makes it
converge to the left one (respectively, the right one).
The case m = 1/2 is particular, because 1/2 is a fixed point, and depending whether the
tangent at 1/2 is above or below the diagonal, there are two other fixed points, one greater
than 1/2 and the other one smaller, or no other fixed point. Observe that when 1/2 is not
the unique fixed point, it is unstable, as starting from state x < 1/2 (respectively, > 1/2)
makes the process converge to the lower fixed point (respectively, the upper one). The
condition for the tangent reads

G′(m) ≥ 1⇔ σ ≤ 1√
2

(
q − 1

2

)
. (4.8)

We summarize our findings in the next proposition.

Proposition 4.3. Suppose that ma = mc =: m, σa = σc =: σ. Then

• If there are more conformists than anti-conformists (q > 1/2), there always exists a
stable fixed point x∗ (and possibly two other unstable fixed points) such that x∗ ≥ m

if m ≤ 1/2 and x∗ ≤ m if m ≥ 1/2, being solution of (4.7). When m = 1/2, 1/2 is
a fixed point and two other fixed points exist, also solutions of (4.7), provided the
variance is not greater than 1√

2

(
q − 1

2

)
. The fixed point 1

2 , when it is not unique, is
unstable. No cycle can occur.

• If there are more anti-conformists than conformists (q < 1/2), there is a unique fixed
point x∗ given by solving (4.7). It is stable if |G′(x∗)| ≤ 1, otherwise there exists a
limit cycle of length 2.

• If there are exactly as many conformists as anti-conformists, then there is conver-
gence in one shot from any state S to the absorbing state S∗corresponding to the
fixed point 1/2 by 4.5.

Interestingly, cycles (always of length 2) occur only when there are more anti-conformists
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than conformists, and under the condition that the variance of the threshold distribution
is small enough. Otherwise, there is always a stable absorbing state, and there is no
cascade effect leading to Nc or Na.

The following examples illustrate the above results.

Example 4.3. q = 0.9; m = 0.5; σ = 0.1, 0.2, . . . , 0.9, 1 (see Figure 4.5). This is the
case of a majority of conformists and m = 1/2. One can observe the fixed point 1/2 and
the possible existence of 2 others. The limit value of σ for the tangent condition (4.8) is
0.283. Also, one can observe the asymptotic values q and 1− q for G(x).

Figure 4.5: The transition functions for Gaussian distributed threshold model with a
small proportion of anti-conformist agents (q = 0.9). In this example 4.3, m = 0.5,
σ = 0.1, 0.2, . . . , 0.9, 1.

Example 4.4. q = 0.95; m = 0.3; σ = 0.1, 0.2, . . . , 0.9, 1 (see Figure 4.6). This is the
case of a majority of conformists and m < 1/2. There is fixed point greater than 1/2, whose
value is negatively related to the variance, and two other possible ones smaller than 1/2.

Example 4.5. q = 0.9; m = 0.8; σ = 0.1, 0.2, . . . , 0.9, 1 (see Figure 4.7): majority of
conformists and m > 1/2. There is fixed point smaller than 1/2, whose value is positively
related to the value of the variance.
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Figure 4.6: The transition functions for Gaussian distributed threshold model with a
small proportion of anti-conformist agents (q = 0.95). In this example 4.4, m = 0.3,
σ = 0.1, 0.2, . . . , 0.9, 1.

Example 4.6. q = 0.1; m = 0.2; σ = 0.1, 0.2, . . . , 0.9, 1 (see Figure 4.8). This is the
case of a majority of anti-conformists and m < 1/2. There is fixed point x∗ smaller than
1/2. Its value is positively related to the value of the variance. For σ = 0.1 and σ = 0.2,
the slope at x∗ begin greater than 1, the fixed point is unstable and there is a limit cycle
corresponding to the fixed points of G ◦G. The plot of G ◦G is shown on Figure 4.9. One
can see that G ◦G has 1 or 3 fixed points, one of them being the fixed point of G. When
there are 3 fixed points (for σ = 0.1, 0.15 and 0.2), the extreme ones give the coordinates
for the limit cycle. For σ = 0.1 the coordinates are (0.1, 0.7731) and (0.7731, 0.1), while
for σ = 0.2 they are (0.1116, 0.6366) and (0.6366,0.1116). The cycles are materialized
on Figure 4.8.
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Figure 4.7: The transition functions for Gaussian distributed threshold model with a
small proportion of anti-conformist agents (q = 0.9). In this example 6.11, m = 0.8,
σ = 0.1, 0.2, . . . , 0.9, 1.

Figure 4.8: The transition functions for Gaussian distributed threshold model with a
large proportion of anti-conformist agents (q = 0.1). In this example 4.6, m = 0.2,
σ = 0.1, 0.2, . . . , 0.9, 1.
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Figure 4.9: Plot of G◦G for Gaussian distributed threshold model with a large proportion
of anti-conformist agents (q = 0.1). In this example 4.6, m = 0.2, σ = 0.1, 0.2, . . . , 0.9, 1.

General distribution

Recall that if Na 6= ∅, the function G may not have fixed points because the presence of
anticonformists makes it nonmonotonic. It is therefore difficult to get precise results in
the general case. The next proposition elucidates the situation when there is only one
type of anti-conformist agent.
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Proposition 4.4. Consider the following case where there is only one type of anti-
conformists with threshold µa and assume its fraction among all players is δa. The list
of all threshold values of conformists are µ1, µ2, . . . , µp (in a strict increasing order) with
fractions q1, q2, . . . , qp respectively. Denote by k the largest number such that µk ≤ µa (see
Table 4.1). The following holds.

(i) If there is no agent i such that µi = µa, there exist absorbing states if and only if
the thresholds and corresponding fractions violate one of the following inequalities:8



δa ≥ µ1

δa +
i0∑
i=1

qi ≥ µi0+1 (i0 = 1, 2, . . . , k − 1)

δa +
k∑
i=1

qi ≥ µa

k∑
i=1

qi < µa

i0∑
i=1

qi < µi0 (io = k + 1, k + 2, . . . , p)

(4.9)

(ii) Otherwise, there exist absorbing states if and only if the thresholds and corresponding
fractions violate one of the following inequalities:9



δa ≥ µ1

δa +
i0∑
i=1

qi ≥ µi0+1 (i0 = 1, 2, . . . , k − 1)

i0∑
i=1

qi < µi0 (io = k, k + 1, . . . , p)

(4.10)

Proposition 4.4 gives the necessary and sufficient conditions by a system of inequalities for
the existence of absorbing states for general distributions when there is only one type of

8Note that if µa < µ1, we can think it as k = 0 and delete all the terms related to non positive indices.
Thus inequalities (4.9) become 

δa ≥ µa

i0∑
i=1

qi < µi0 (i0 = 1, 2, . . . , p)

9Note that if µa = µ1, we can think it as k = 1 and delete all the terms related to non positive indices.
Thus inequalities (4.10) will be 

δa ≥ µ1
i0∑

i=1
qi < µi0 (i0 = 1, 2, . . . , p)
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Table 4.1: Distribution of agents’ thresholds with conformists and one type of anti-
conformists

Proportion Threshold Behavior characteristics
q1 µ1 Conformism
· · · · · · · · ·
qk µk Conformism
δa µa Anti-conformism
qk+1 µk+1 Conformism
· · · · · · · · ·
qp µp Conformism

anti-conformist agent. Figure 4.10 gives the possible absorbing states for different ranges
of µa and δa based on Proposition 4.4 and its proofs. In the left area filled with only
north west lines, i.e. µa ≤

∑k
i=1 qi, the process has only one absorbing state where only

conformists with thresholds µ1, . . . , µk saying yes, i.e., x = ∑k
i=1 qi. In the right area filled

with only north east lines, i.e., δa < µa −
∑k
i=1 qi, the process has only one absorbing

state where the anti-conformists and conformists with thresholds µ1, . . . , µk saying yes,
i.e., x = δa +∑k

i=1 qi. In the bottom area filled with only horizontal lines, there are three
possible absorbing states. The overlapped area means that absorbing states of both cases
are possible. All the details can be found in Proof of Proposition 4.4.
The following example illustrates the case where there is no absorbing state.

Example 4.7. We consider n = 10, with Nc = {1, 2, 3, 4, 5, 6} and 4 anti-conformists.
The parameters are µa = δa = 4/10, µ1 = q1 = q2 = q3 = q4 = q5 = q6 = 1/10, µ2 = 2/10,
µ3 = 3/10, µ4 = 5/10, µ5 = 6/10, µ6 = 7/10 (see Figure 4.11). There is no absorbing state
but a cycle: {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5} → {1, 2, 3, 4} → {1, 2, 3} → {1, 2, 3} ∪ Na →
{1, 2, 3, 4, 5, 6} with group opinion x: 6/10→ 5/10→ 4/10→ 3/10→ 7/10→ 6/10.

The previous example has shown the existence of cycles. The next theorem establishes
that there could be at most one cycle, whose length has an upper bound.

Theorem 4.4. Consider the same assumptions and notation as in Proposition 4.4. Then
the process has either absorbing states or a unique cycle of length at most m + 2, where
m is the number of values µi in the interval

]∑k
i=1 qi,

∑k
i=1 qi + δa

]
. The upper bound of

the length of the cycle, considering any possible values for the thresholds and fractions, is
na + 1, where na = nδa is the number of anti-conformists.

The next example illustrates the theorem and shows that the cycle can be shorter than
m + 2 and that its length can be far below the upper bound na + 1. Note that in
Example 4.7, this bound is attained.
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µa

δa

no absorbing state

cycles of length ≤ na + 1

δa, δa +
i∗0∑
i=1

qi,
i∗∗0∑
i=1

qi

k
∑i=

1
q
i

δ a
+

k∑
i=

1
q i

max{µ1, max
i0=1,...,k−1

{µi0+1 −
i0∑
i=1

qi},

max
i0=k+1,...,p

{1− µi0 −
p∑

i=i0+1
qi}}

0
k∑
i=1

qi

δa = µa −
k∑
i=1

qi

Figure 4.10: Existence of absorbing states for general distributions when there is only
one type of anti-conformist agent with threshold µa and proportion δa (the variables in
each area filled with lines indicates the values of the possible fixed points corresponding
to each case.)
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Figure 4.11: G(x) of Example 4.7, with a cycle of length 5: {1, 2, 3, 4, 5, 6} →
{1, 2, 3, 4, 5} → {1, 2, 3, 4} → {1, 2, 3} → {1, 2, 3} ∪Na → {1, 2, 3, 4, 5, 6}, which is mate-
rialized in green.

Example 4.8. We consider n = 100, with the following parameters: δa = 0.4 (40 anti-
conformists), µa = 0.5, µ1 = 0.2, q1 = 0.1, µ2 = 0.3, q2 = 0.15, µ3 = 0.7, q3 = 0.3,
µ4 = 0.8, q4 = 0.05. Then k = 2, and by the theorem, the cycle should be of length at
most 3, while the upper bound na + 1 yields 41. One sees on Figure 4.12 that the cycle
(in green) has in fact length 2 and is formed of the two points (0.25, 0.5), (0.5, 0.25).

4.3 Random sampling models

The previous section considered a mechanism of diffusion with a complete and undirected
network, where each agent was permanently in contact with all other agents. As this
assumption may be unrealistic in some situations, we consider here a different mechanism
where agents meet other agents at random (random neighborhood), with a certain size of
the neighborhood to be either fixed or drawn from a distribution. When the size is fixed
and identical for all agents, we speak of a homogeneous network. Note that in this model
we implicitly assume that the network is directed, as if i selects j in its neighborhood, this
does not necessarily imply that j has i in its neighborhood. Also, note that this model
amounts to considering that at each time step a random graph on N realizes, where
each agent has a random neighborhood (and therefore a random degree). We denote by
P (k) the distribution of the degree of each agent, who are supposed to have the same
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Figure 4.12: G(x) of Example 4.8, with a cycle of length 2: (0.25, 0.5) → (0.5, 0.25) →
(0.25, 0.5), which is materialized in green.

distribution.
This can be interpreted in two ways. In the first one, at each time step, a random graph
on N realizes, where directed links are picked at random so as to follow the specified
degree distribution. In the second one, we consider the network to be the complete graph
on N , meaning that any agent may potentially meet any other agent. Then, at each time
step, for each agent a subset of agents is chosen randomly (i.e., links are drawn from the
uniform distribution), so as to obey the specified degree distribution. We follow in the
sequel the latter interpretation.
This model is a good approximation of many real situations, especially communication
via online social media like Twitter, Sina weibo, etc. Take Twitter as an example, an in-
dividual receives at some time several tweets not only from his/her friends but also from
strangers by checking the latest or hottest tweets. Moreover, he/she also can accessing
information proactively on a certain topic by searching keywords or hashtags. At a dif-
ferent time, different users post some new tweets that attract this individual’s attention,
which can be seen as a random sample (neighborhood) whose size obeys some distribu-
tion. Another example is that we meet different people everyday and obtain information
either by communicating directly with each other or observing their behavior.
To avoid intricacies, it is convenient to consider that the random neighborhood of agent i,
knowing that its degree is d, is taken as a random subset of N , of size d. This means that
sometimes i is in its neighborhood, sometimes it is not. Still, the agents are considered
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to have a threshold, which can be drawn from a distribution or is fixed.
An important consequence of the model is that the process of updating of the opinion is
no more deterministic, but still obeys a Markov chain. Its analysis is therefore much more
complex, as not only absorbing states and cycles can exist but also aperiodic and periodic
absorbing classes, where a class is a set of states such that a chain of transitions exists
from any state to any other state in the set, and which is maximal for this property. It is
easy to see that a state T different from ∅ and N cannot be absorbing anymore: this is
because the neighborhood being random and smaller than N , it is not guaranteed that it
will contain T at each period. However, ∅ and N can still be absorbing. The next lemma
clarifies this point.

Lemma 4.1. ∅ is absorbing (resp., N is absorbing) iff all anti-conformists are constant
0-players (resp., constant 1-players), while there is no constant conformist player (i.e.,
0 < µi ≤ 1 for all i ∈ Nc).

Proof. Suppose T = ∅. By assumption, every conformist will take action 0 with certainty.
Now, i ∈ Na takes action 0 iff µi = 0. Hence, any anti-conformist must be a constant
0-player.
The argument for T = N is much the same.

The existence of non trivial absorbing classes will be shown in Section 4.3.1, where a
complete analysis is done in a simple case (only two different thresholds, one for con-
formists and one for anti-conformists). The complexity of the results shows that it seems
out of reach to get a complete study in more general cases. Nevertheless, general results,
although not exhaustive, can be obtained (see Section 4.3.1).

We start by focusing on the case of fixed degree (homogeneous networks).

4.3.1 Homogeneous networks

We suppose in this section that the neighborhood of every agent has a fixed size d. A
complete study of this case is possible when all conformist agents have the same threshold
µc, and all the anti-conformist agents have threshold µa. Then we give a result in the
general case. We begin by some general considerations.
Let us express the probability of transition P(S → T ) from one state S to another state T .
We have by the independence assumption that P(S → T ) = ∏

i∈T p
1
i (S)∏i 6∈T p

0
i (S), where

pei (S) is the probability for agent i to take action e ∈ {0, 1} knowing that the current state
is S. To compute these probabilities, it is necessary to compute the distribution of the
average opinion ai in the neighborhood of i knowing the current state S. It is easy to



4.3. Random sampling models 65

check that

P(ai = k

d
| S) =



(
s
k

)(
n−s
d−x

)
(
n
d

) , if d− n+ s ≤ k ≤ s

0, otherwise,

(4.11)

for k = 0, 1, . . . , d. Observe that these probabilities do not depend on i, therefore we can
omit the subscript i and write a, the average opinion in a neighborhood. Then,

If i ∈ Nc, p
1
i (S) = P(a ≥ µi | S) and p0

i (S) = 1− p1
i (S) (4.12)

If i ∈ Na, p
1
i (S) = P(a < µi | S) and p0

i (S) = 1− p1
i (S). (4.13)

As these probabilities depend only on the cardinality of S, we may write p1
i (s) for sim-

plicity.

Case with two thresholds µa, µc

We assume here that there are two types of agents: anti-conformist agents with threshold
µa and conformist agents with threshold µc, where 0 < µa, µc ≤ 1.
Observe that p1

i (s) depends only on whether i belongs to Na or Nc. Specifically, for a
conformist agent i, p1

i (S) = P(a ≥ µc | S) is a nondecreasing function of s = |S| ∈
{0, 1, . . . , n} to [0, 1], depending only on µc, n and d. In addition, we have p1

i (0) = 0 and
p1
i (n) = 1. Similarly, if i is anti-conformist, p1

i (s) is a nonincreasing function of s, starting
at 1 with s = 0 and finishing at 0 with s = n. Thus, we fall into the framework studied
in Grabisch et al. (2019) on an anonymous model of anti-conformism where each agent i
has the probability pi(s) to take action 1 at next step knowing that the current state is S,
with s = |S|, and pi(s) is a nondecreasing (respectively, nonincreasing) function reaching
values 0 and 1 when i is conformist (respectively, anti-conformist).
In the model of Grabisch et al. (2019), all functions pi can be different among the agents,
but it is required that for all conformists, the functions pi have the same domain where they
take value 0 and 1, and similarly for the anti-conformists. These domains are characterized
for the conformists by the quantities lc (firing threshold) and n−rc (saturation threshold)
which are the rightmost and leftmost values of s for which p1

i (s) is 0 and 1, respectively,
given by

lc := min{s : pi(s) > 0} − 1, n− rc = min{s : pi(s) = 1},

and similarly for the anti-conformists:

la := min{s : pi(s) < 1} − 1, n− ra = min{s : pi(s) = 0}.
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Our case satisfies these requirements as p1
i (s) depends only on µa, µc and d. We easily

obtain:

lc = max
i∈Nc
{s | a < µc} = ddµce − 1

n− rc = min
i∈Nc
{s | a ≥ µc} = n− d+ ddµce

la = max
i∈Na
{s | a < µa} = ddµae − 1

n− ra = max
i∈Na
{s | a ≥ µa} = n− d+ ddµae.

From Grabisch et al. (2019), we know that in full generality 20 possible absorbing classes
can occur, depending on the values of lc, rc, la, ra. Since it holds that in our case lc + rc =
la + ra = d− 1 < n− 1, 5 among the 20 are not possible. Denoting by nc the number of
conformist agents, we give below the list of the remaining 15 absorbing classes, put into
categories.

Polarization: the society of agents is divided in two groups, one taking action 1, the
other taking action 0.
(1) Na if and only if nc ≥ max{n− lc, n− la};
(2) Nc if and only if nc ≥ max{n− rc, n− ra};
Cycles: sequence of states made of the infinite repetition of a pattern.
(3) Na

1−→ ∅ 1−→ Na if and only if n− lc ≤ nc ≤ ra;
(4) Nc

1−→ N
1−→ Nc if and only if n− rc ≤ nc ≤ la;

(5) Na
1−→ Nc

1−→ Na if and only if nc ≤ min{lc, la, rc, ra};
(6) ∅ 1−→ Na

1−→ Nc
1−→ ∅ if and only if nc ≤ min{rc, ra, lc} and nc ≥ n− ra;

(7) Na
1−→ N

1−→ Nc
1−→ Na if and only if nc ≤ min{lc, la, rc} and nc ≥ n− la;

Fuzzy cycles: the pattern contains states but also intervals of states. This means that
there is no exact repetition of the same pattern, but at each repetition a state is picked
at random in the interval.
(8) Na

1−→ [∅, Nc] 1−→ Na if and only if nc ≤ min{lc, la, ra} and rc < nc < n− lc;
(9) Nc

1−→ [Na, N ] 1−→ Nc if and only if nc ≤ min{rc, ra, la} and lc < nc < n− rc;
(10) [∅, Nc] 1−→ [Na, N ] 1−→ [∅, Nc] if and only if max{rc, lc} < nc ≤ min{ra, la, n− lc−1, n−
rc − 1};
Fuzzy polarization: the polarization is defined by an interval, which means that at
each time step, a state is picked at random in the interval, representing the set of active
agents.
(11) [∅, Na] if and only if max{n− lc, ra + 1} ≤ nc < n− la;
(12) [Nc, N ] if and only if max{n− rc, la + 1} ≤ nc < n− ra;
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Chaotic polarization: similar to the previous case but more complex as several intervals
are involved.
(13) [∅, Na]∪ [∅, Nc] if and only if lc ≥ n− ra and nc ∈ (]rc, n− lc[∩]la, n− rc[)∪ ((]la, n−
ra[∪]lc, n− rc[)∩]0, rc[);
(14) [Na, N ]∪ [Nc, N ] if and only if la ≥ n−rc and nc ∈ (]lc, n−rc[∩]ra, n− lc[)∪((]ra, n−
la[∪]rc, n− lc[)∩]0, lc[);
Chaos: at each time step a state is picked at random among all possible states.
(15) 2N otherwise.
These results are exhaustive and exact (no approximation), however it is difficult to get
an intuitive idea of the behavior. More concrete results can be obtained by making the
number of agents tend to infinity and by choosing special cases of parameters.

When n tends to infinity Assume that the number of agents tends to infinity. For
simplicity, divide the previous parameters na, nc, la, lc, ra, rc, d by n, keeping the same
notation so that these parameters now take value in [0, 1]. Thus lc = dµc and rc =
d(1− µc), and smilarly for la, ra.
We examine different typical situations for the value of the parameters, taking advantage
of the study made in Grabisch et al. (2019) (full detail can be found in this reference).

• Situation 1: la = lc =: l and ra = rc =: r. This implies µc = µa =: µ, i.e., all
agents have the same threshold. Only the following four absorbing classes remain
possible in this situation:

– Na iff na ≤ l

– N c iff na ≤ d− l = d(1− µ)

– cycle Na 1−→ N c 1−→ Na iff na ≥ 1− dµ and na ≥ 1− d(1− µ)

– 2N otherwise

The general tendency is that as the proportion of anti-conformist agents increases,
the society goes from consensus, to polarization or cascade, then to a chaos, finally
to a cycle. A cascade effect (i.e., a convergence with probability 1 to Nc or with
probability 1 to Na, whatever the inital state) is likely to occur, all the more l+ r is
close to 1 (i.e., the functions p1

i are close to threshold function). When l is smaller
than 1/2 and na is greater than l but sufficiently below 1− l, it will lead to a cascade
with all conformist agents saying yes. When l is greater than 1/2 and na between
1− l and l, it will lead to a cascade with all anti-conformist agents saying yes.
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• Situation 2: la = lc = ra = rc = d
2 . This implies µc = µa = 1/2. The three possible

absorbing classes in this situation are:

– Na, N c iff na ≤ d/2 ("polarization")

– cycle Na 1−→ N c 1−→ Na iff na ≥ 1− d/2 ("cycle")

– 2N otherwise ("chaos")

The possible absorbing classes of "fuzzy cycle" and "fuzzy polarization" mentioned in
Grabisch et al. (2019) become impossible since there is a constraint la + ra = lc + rc

in this special context. Note that polarizations N c and Na always appear together,
implying that there is no cascade effect.

• Situation 3: na tends to 0. Assume that na = ε > 0 arbitrarily small, therefore
nc = 1− ε.

Among the initial 15 possible absorbing classes, only 7 of them remain possible:

– (1) Na iff min(la, lc) ≥ ε;

– (2) N c iff min(rc, ra) ≥ ε’

– (3) Na 1−→ ∅ 1−→ Na iff lc ≥ ε and ra ≥ 1− ε;

– (4) N c 1−→ N
1−→ N c iff rc ≥ ε and la ≥ 1− ε;

– (11) [∅, Na] iff la < ε, lc ≥ ε and ra < 1− ε;

– (12) [N c, N ] iff ra < ε, rc ≥ ε and la < 1− ε;

– (15) 2N otherwise.

Again there is no cascade effect in this situation since two possible polarizations
always appear together. When lc, rc < ε, which means that d is very small, only
chaos (2N) appears.

General case

With more than two thresholds, the complexity of the previous study indicates that it
seems to be hopeless to get exact and complete results. This negative conclusion is
tempered by our next result, established with an arbitrary distribution of thresholds. It
shows that in most cases, only chaos can occur, i.e., the only absorbing class is 2N .

Theorem 4.5. Suppose na ≥ d, nc ≥ d and suppose that there is no constant player (i.e.,
0 < µi ≤ 1 for every player i). Then 2N is the only absorbing class, i.e., the transition
matrix is irreducible.
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For example, if the distribution of thresholds has support {1/d, . . . , 1} for the conformists
and the anti-conformists. Then 2N is the only absorbing class. Indeed, the assumption
implies that there are at least d members in Na, Nc.
This result is in accordance with those found in the previous section with two thresholds
µa, µc. Indeed, one can check that under the condition na, nc ≥ d, none of the absorbing
classes from (1) to (14) is possible. This is because we always have all four quantities
lc, la, rc, ra strictly smaller than d. Therefore na ≥ d implies that n − na = nc ≥ n − lc

and nc ≥ n− rc are impossible (and similarly with nc ≥ d).

4.3.2 Arbitrary degree distribution

We suppose now that the degree of the neighborhood is not fixed but follows a distribution
P (d). We try to generalize the results of the homogeneous case.
The probabilities of taking action 1 or 0 for the conformist and anti-conformist agents
given in (4.12) and (4.13) become:

If i ∈ Nc, p
1
i (S) =

∑
d

P(ai ≥ µi | S; d)P (d) and p0
i (S) = 1− p1

i (S) (4.14)

If i ∈ Na, p
1
i (S) =

∑
d

P(ai < µi | S; d)P (d) and p0
i (S) = 1− p1

i (S), (4.15)

where the summation over d is taken over the support of P (d), and P(ai ≥ µi | S; d) is
given by (4.11).

Case with two thresholds µa, µc

The introduction of a distribution over the degree does not change the behavior of p1
i (S):

there are still nonincreasing or nondecreasing functions of s taking boundary values 0 and
1. The identification of the absorbing classes depends only on the width of the domain
where these functions take values 0 and 1, hence their exact form is unimportant for this
purpose.
By (4.14) we see that p1

i (S) = 0 for conformist agents iff every term in the summation is
equal to 0. We have established in Section 4.3.1 that P(ai ≥ µi | S; d) = 0 iff s ≤ lc(di) :=
ddiµce − 1 and P(ai ≥ µi | S; d) = 1 iff s ≥ n− rc(di) := n− di + ddiµce. Introducing

lc := min{lc(d) : d ∈ support of P (d)}, rc = min{rc(d) : d ∈ support of P (d)}

la := min{la(d) : d ∈ support of P (d)}, ra = min{ra(d) : d ∈ support of P (d)},

the results of Section 4.3.1 can be readily extended to the general case by using the above
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quantities lc, rc in all the conditions of existence of the 15 absorbing classes.
An important consequence is the following: suppose that the distribution of d gives a
positive probability to d = 1. Then we find lc = rc = la = ra = 0. By inspection of
the conditions of existence of the 15 absorbing classes, it follows that only the case of
the chaos (2N) remains possible. Note that this assumption is often satisfied (e.g., for
the Poisson distribution, which arises when any pair of vertices is connected with a fixed
probability).

General case

We suppose now that each agent has a fixed threshold but possibly different among agents.
A generalization of Theorem 4.5 is possible: under mild assumptions, only chaos can occur.
Let us denote by d, d the lowest and greatest values of d with a positive probability, and
by µ, µ the lowest and highest threshold values among the agents.

Theorem 4.6. Suppose that µ > 0 (no constant player) and that the number of conformist
and anti-conformist agents satisfy

µd ≤ na, nc < n− d(1− µ)

Then 2N is the only absorbing class, i.e., the transition matrix is irreducible.

Note that the conditions on na, nc can be written equivalently as na ≥ µd and na > d(1−µ)
(same for nc). Again, observe that if d = 1, these conditions are always satisfied.

4.4 Concluding remarks

We have performed in this paper a detailed study of convergence of the threshold model
incorporating anti-conformist agents. Two models were considered: a deterministic model
supposing a complete graph, and a random neighborhood model, both corresponding to
useful real situations. The first one represents a connected society where every agent is
informed about the number of agents being in state 1 or 0 (active or inactive) at the
present time, through media, etc. It is to be noted that no other information about
the society is possessed by an agent, e.g., if there are anti-conformists and how many.
The second model represents a society communicating via social networks like Facebook
or Twitter, receiving randomly messages from other agents indicating their states. Here
also, a given agent has no information on the type of his neighbor (conformist or anti-
conformist). We have given a game-theoretic foundation of the threshold mechanism with
anti-conformists, using coordination and anti-coordination games.
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For the deterministic model, we have found that, generally speaking, the presence of anti-
conformists causes the appearance of much more absorbing states, and cycles of length
greater than 2 (when only (anti-)conformist agents are present cycles can only be of length
2). We have performed a complete and exact study when the distribution of threshold is
uniform, generalizing the results of Granovetter (1978). We have also studied the case of
a Gaussian distribution, where we showed the existence of unstable fixed points and limit
cycles of length 2, and the case of an arbitrary distribution, where it is possible to find
cycles of length greater than 2.
Based on a previous study, we have performed a complete and exact analysis of the random
model when there are only two thresholds, one for the conformists, and another for the
anti-conformists. The introduction of randomness causes a variety of absorbing classes to
appear: polarization, periodic classes of more or less complex structure, and chaos, i.e.,
any state of the society can be reached. When thresholds are randomly distributed, such
an analysis is no more possible, however, we have shown that in most cases, only chaos
occurs.
The initial aim of the paper was to analyze the effect of the presence of anti-conformists
in a society regarding the convergence of the state or opinion of the agents in the long
run. The most remarkable findings in this respect are:

• The presence of anti-conformists introduces instability in the process, causing a
multiplicity of absorbing states and a variety of cycles, periodic classes and chaos.
Also, small variations in the parameters defining the society may induce important
changes in the convergence: the model is highly sensitive, e.g., in the number of
anti-conformists, the threshold values, etc. For example, it has been seen in the
case of a uniform threshold distribution that introducing or deleting only one anti-
conformist agent changes the convergence from a stable state to a cyclic behavior
or vice versa.

• In the case of a random neighborhood, the process converges to chaos (every state
is possible) for most values of the parameters defining the society (it suffices that
there are more conformists and more anti-conformists than the size of a smallest
neighborhood). Otherwise, cascades may occur: we have proved their existence in
the case of fixed thresholds for conformists and anti-conformists. This shows that
introducing a small proportion of anti-conformists in a society may lead, not only
to chaotic situations, but also to permanent opinion reversal.
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4.5 Appendix

4.5.1 Proof of Theorem 4.2

The opinion dynamic in a complete network is deterministic since the probability of a
transition from one state to another is either 1 or 0. Note also that the state space is
finite, which means that the elements of absorbing states can only be absorbing states or
cycles. It remains to prove the correspondence between fixed points of G(x) and absorbing
states.
⇒) If x∗ is a fixed point of G(x), then assign actions to players according to the following
rule: assign to the conformists whose tipping values are smaller than x∗ the action 1
while to those whose tipping values are greater than x∗ the action 0; assign to the anti-
conformists whose tipping values are smaller than x∗ the action 0 while to those whose
tipping values are greater than x∗ the action 1. Obviously this action profile corresponds
to one absorbing state since nobody would like to change actions next period.

⇐) If x∗ = (x1, x2, . . . , xn) is an absorbing state, then x = 1/n
p∑
i=1

xi is a fixed point of

G(x). By contradiction, if x > G(x), there will be some players playing action 0 at the
present period who would like to play action 1 in the next period ( e.g. conformists i ∈ Nc

with µi < x or anticonformists j ∈ Na with µj > x). It is similar for the case x < G(x).
Thus x = G(x).

4.5.2 Proof of Proposition 4.1

Note that x ∈ {0, 1/n, . . . , n−1/n, 1}.
Fix x ≥ µa. All conformist agents with threshold less than or equal to x would like to
take action "1" when observing x (with proportion x). The anticonformist agents with
threshold µa as well as all conformist agents with threshold strictly greater than x would
like to take action "0" when observing x. Thus G(x) = x.
Fix x < µa. All conformist agents with threshold less than or equal to x as well as the
anticonformist agents with threshold µa > x would like to take action "1" when observing
x (with proportion x + 2/n). All conformist agents with threshold strictly greater than x
would like to take action "0" when observing x. Thus G(x) = x+2/n > x. As a conclusion,
F = {k/n, . . . , n−1/n} is the set of fixed points of the function G. By Theorem 4.2, it is also
the set of absorbing states of the opinion dynamics. Obviously, |F| = n(1− µa) = n− k.
Starting from any initial state with the group opinion x∗ = k∗/n, if xk∗ ≥ k and k∗ 6= n,
then k∗ ∈ F . Thus x∗ is a reachable absorbing state. If k∗ < k, then G(x) = x + 2/n. It
means that two more conformist agents will be activated at the next stage. This "domino"
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effect stops till x ≥ µa with x = k/n or x = k+1/n depending on which one has the same
parity as k∗.

4.5.3 Proof of Proposition 4.2

Fix x ∈ {0, 1/n, . . . , n−1/n, 1}. If x < µ1
a, only the conformist agents with threshold less

than or equal to x as well as the two anticonformist agents would take action "1" at the
next stage (with proportion x + 3/n in total). Thus G(x) = x + 3/n > x. Similarly, if
x ∈ [µ1

a, µ
2
a[, G(x) = x+ 1/n > x; if x ∈ [µ2

a, 1[, G(x) = x− 1/n < x.
Obviously, G(1) = n−2/n < 1 . Therefore, ∀x ∈ S, G(x) 6= x. By Theorem 4.2, there is no
absorbing state.
To show that this dynamic end up with a cycle regardless of the initial state, let us
distinguish the following cases.
Assume that the dynamic start with the state x = k2/n. Then all conformist agents with
threshold less than x (with proportion k2−1/n) would take action "1". All conformist agents
with threshold greater than x as well as the two anticonformist agents would take action
"0" at the next stage (v2 with x = k2−1/n). Then, observing x < µ2

a, the anticonformist
agents with threshold µ2

a would change her action into "1" at the following stage (v1 with
x = k2/n). Similar analysis is applied to the initial state x = k2−1/n.
Assume the initial state satisfies x < k2−1/n. If x < µ1

a, then G(x) = x + 3/n. After every
stage, there will be 3 more types of conformist agents would like to take action "1". This
activation process stops till x ∈ [µ1

a, µ
2
a], then G(x) = x + 1/n. After every stage, there

will be one more types of conformist agents would like to take action "1". This activation
process stops till x = µ2

a = k2/n. Then it goes back to the first case and forms a cycle
v2 → v1 → v2.
Assume the initial state satisfies x ∈ [k2/n, 1[, then G(x) = x − 1/n. This desactivation
process stops till x = k2/n. Then it goes back to the first case and forms a cycle v2 →
v1 → v2.

4.5.4 Proof of Theorem 4.3

Fix x ∈ {0, 1/n, . . . , n−1/n, 1}.
(i) If k1 6= 0, and if s ∈ [0, k1/n[, G(x) = x+ 2`+2/n > s. If x ∈ [k2`+1/n, 1[, G(x) = x− 2 /̀n <

x.
In general, if x ∈ [ki/n, ki+1/n[ (i = 1, . . . , 2`), only the anti-conformist agents with thresh-
old strictly greater than ki/n (with proportion 2`+1−i/n) and the conformist agents with
threshold less than or equal to x (with proportion x+ 1/n− i/n) would like to take action
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1. That is, G(x) = x+ 2`+2−2i/n.
By G(x) = x, we get i = k + 1. Therefore, ∀x ∈ [kk+1/n, kk+2/n[, G(x) = x. Thus the set of
fixed points of G(x) is F = {kk+1/n, . . . , kk+2−1/n}. By Theorem 4.2, the absorbing states
are the action profiles associated to F .
(ii) If k1 6= 0, and if x ∈ [0, k1/n[, G(x) = x+2`+1/n > s. If x ∈ [k2`/n, 1[, G(x) = x−2`−1/n <

x.
In general, if x ∈ [ki/n, ki+1/n[ (i = 1, . . . , 2` − 1), only the anti-conformist agents with
threshold strictly greater than ki/n (with proportion 2`−i/n) and the conformist agents
with threshold less than or equal to x (with proportion x + 1/n − i/n) would like to take
action 1. That is, G(x) = x+ 2`+1−2i/n.
By G(x) = x, we get i = k + 1/2. But i should be an integer. Thus G(x) has no fixed
point (i.e., F = ∅). By Theorem 4.2, there is no absorbing state but cycles.
It remains to prove the statement on cycles. For this, we observe the following property
of the function G(x): when x changes from i/n to (i+1)/n, the value of G is increased or
decreased by one unit, depending whether agent i is conformist or anti-conformist. Hence
for G the variation in ordinate cannot be greater than the variation in abscissa. We
proceed in three steps.
1. The sequence of points (x, (Gx)), (y,G(y)), (x,G(x)) is a cycle iff it corresponds to a
sequence of transitions, i.e., y = G(x), x = G(y) = G(2)(x).
2. We show that a cycle of length 3 cannot exist. Let (x,G(x)) → (G(x), G(2)(x)) →
(G(2)(x), G(3)(x)) → (x,G(x)) be a cycle. This implies G(3)(x) = x. As the origin
of the cycle is unimportant, suppose that (x,G(x)) is the leftmost point, i.e., x <

min(G(x), G(2)(x)). Observe that this entails that this point is above the diagonal (x <
G(x)). We may suppose that the second point (G(x), G(2)(x)) is also above the diago-
nal, so that we have x < G(x) < G(2)(x), which entails that the 3d point is below the
diagonal since its ordinate is x. By the above observation on the function G, the jump in
ordinate cannot exceed the jump in abscissa. In particular, concerning the jump between
the 2nd and 3d point, we obtain G(2)(x) − x ≤ G(2)(x) − G(x), which cannot be true as
x < G(x). Suppose now that the second point is below the diagonal. As the 1st point is
the leftmost point, we necessarily have x < G(2)(x) < G(x). The condition on the jump
between the 1st point and the 3d point yields G(x) − x ≤ G(2)(x) − x, a contradiction
with G(2)(x) < G(x). The case where the first point is under the diagonal works similarly.
3. We show that no cycle of length greater than 3 can exist. Simply observe that selecting
the leftmost point and 2 other points in a sequence of more than 3 points amounts to the
case of a cycle of length 3 as the jump conditions will impose the same contradictions.
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4.5.5 Proof of Proposition 4.4

(1) Consider the case that @i ∈ N s.t. µi = µa.
This is equivalent to show that there is no absorbing state if and only if all the inequalities
in 4.9 are satisfied.
⇐ (Sufficiency) Fix x ∈ {0, 1/n, · · · , n−1/n, 1}.
If x ∈ [0, µ1[, only anti-conformist agents would like to take action 1. That is, G(x) = δa.
But by the first inequality of 4.9, G(x) > x.
If x ∈ [µi0 , µi0+1[, (i0 = 1, . . . , k − 1), only anti-conformist agents and the conformists
agents with threshold less than or equal to µi0 would like to take action 1. That is,

G(x) = δa +
i0∑
i=1

qi. By the second inequality of 4.9, G(x) > x.

Similarly, if x ∈ [µk, µa[, G(x) = δa +
k∑
i=1

qi > x; if x ∈ [µa, µk+1[, G(x) =
k∑
i=1

qi < x; if

x ∈ [µi0 , µi0+1[, (i0 = k+ 1, . . . , p− 1), G(x) =
i0∑
i=1

qi < x; if x ∈ [µp, 1[, G(x) =
p∑
i=1

qi < x.

As a conclusion, there is no absorbing state.
⇒ (Necessity) We provide a reductio ad absurdum proof. Suppose the thresholds and
corresponding fractions do not satisfy inequalities 4.9. Then distinguish the following
cases.

• δa < µ1

In this case, x = δa is a fixed point of G(x) since given the group opinion δa, only
the anti-conformist agent with threshold strictly greater than µ1 would take action
1 (with proportion δa). Then the group opinion at the next stage is still δa.

• ∃ some i0 ∈ {1, 2, · · · , k − 1}, such that δa +
i0∑
i=1

qi < µi0+1.

Assume that i∗0 is the smallest number satisfying this condition. That is, δa+
i∗0∑
i=1

qi <

µi∗0+1 and ∀i0 < i∗0, δa +
i0∑
i=1

qi ≥ µi0+1. Thus δa +
i∗0∑
i=1

qi < µi∗0+1 < µa < µk+1 <

· · · < µp and µ1 < · · · < µi∗o < δa +
i∗0∑
i=1

qi. In this case, given the group opinion

s = δa +
i∗0∑
i=1

qi, only the conformist agent i ≤ i∗0 as well as the anti-conformist

agent will take action "1" (with proportion
i∗0∑
i=1

qi + δa in total) at the next stage. So

δa +
i∗0∑
i=1

qi is a fixed point of G(x).
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• δa +
k∑
i=1

qi < µa

Then δa +
k∑
i=1

qi < µa < µk+1 < · · · < µp. On the other hand, ∀i0 = 1, . . . , k − 1,

δa +
i0∑
i=1

qi ≥ µi0+1 (Otherwise it coincides with the previous case), then ∀i0 =

1, . . . , k − 1, µi0+1 ≤ δa +
i0∑
i=1

qi < δa +
k∑
i=1

qi (since i0 < k). In this case, given the

group opinion x = δa +
k∑
i=1

qi, only the anti-conformist agent and the conformist

agent i = 1, . . . , k will take action 1 at the next stage with proportion δa +
k∑
i=1

qi in

total. Thus δa +
k∑
i=1

qi is a fixed point of G(x).

• ∃ some i0 ∈ {k + 1, k + 2, · · · , p}, such that
i0∑
i=1

qi ≥ µi0 .

Assume that i∗∗0 is the largest number satisfying this condition. That is,
i∗∗0∑
i=1

qi ≥ µi∗∗0

and ∀i0 > i∗∗0 ,
i0∑
i=1

qi < µi0 . Thus
i∗∗0∑
i=1

qi ≥ µi∗∗0 > µi∗∗0 −1 > · · · > µa > · · · > µ1 and

∀i0 > i∗∗0 ,
i∗∗0∑
i=1

qi <
i0∑
i=1

qi < µi0 . In this case, given the group opinion x =
i∗∗0∑
i=1

qi, only

the conformist agent i < i∗∗0 will take the action 1 at the next stage with proportion
i∗∗0∑
i=1

qi in total. So
i∗∗0∑
i=1

qi is a fixed point of G(x).

•
k∑
i=1

qi ≥ µa

Then
k∑
i=1

qi ≥ µa > µk > µk−1 > · · · , µ1. On the other hand, ∀i0 ∈ {k + 1, k +

2, · · · , p}, µi0 >
i0∑
i=1

qi >
k∑
i=1

qi. In this case, given the group opinion x =
k∑
i=1

qi, only

the conformist agent i = 1, . . . , k will take action 1 at the next stage with proportion
k∑
i=1

qi. Thus s =
k∑
i=1

qi is a fixed point of G(x).

As a conclusion, the fixed point of G(x) always exists. By Theorem 4.2, the absorbing
state always exists which leads to a contradiction.
(2) It is analogous for the case that ∃i ∈ N s.t. µi = µa.
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4.5.6 Proof of Theorem 4.4

Suppose that there is no absorbing state, hence we are under the conditions of the system
of inequalities (4.9) or (4.10). It remains to prove the statement on the cycle. The
transition function G has the following behavior: considering that x grows from 0 to 1,
it starts from the value G(0) = δa, then increases at each point x = µi by the quantity
qi, and decreases by the quantity δa at point µa. Therefore, G(µk) = δa + ∑k

i=1 qi and
G(µa) = ∑k

i=1 qi. Then G(x) continues to increase at each value µi when x goes from µa

to 1. It follows that the inequalities (4.9) (or (4.10)) imply the following properties of the
transition function:

(i) The three first inequalities imply that G(x) > x for all x < µa. Hence the part of the
transition function to the left of µa is strictly above the diagonal and nondecreasing;

(ii) The 4th inequality implies that G(µa) < µa;

(iii) The last inequality implies that G(x) < x for all x > µa, hence the part of the tran-
sition function to the right of µa including this point is strictly below the diagonal
and nondecreasing.

We consider the square delimited by the diagonal points (∑k
i=1 qi,

∑k
i=1 qi) and (∑k

i=1 qi +
δa,
∑k
i=1 qi + δa). We claim that if any point (x,G(x)) is chosen inside this square, the

“next” point (G(x), G(G(x))) is still inside the square. First observe that ∑k
i=1 qi and∑k

i=1 qi + δa are respectively the minimum value and the maximum value achieved by G
in the interval [∑k

i=1 qi,
∑k
i=1 qi + δa], hence if x lies in this interval, (x,G(x)) is in the

square. Now, taking x to the right of µa, we have that
∑k
i=1 qi ≤ G(x) < x ≤ ∑k

i=1 qi + δa,
so by the previous observation (G(x), G(G(x))) lies in the square. Similarly, if x is on the
left of µa, then

∑k
i=1 qi ≤ x < G(x) ≤ ∑k

i=1 qi + δa, so that again the image of the point
by G is still in the square.
The number of different values (levels) of G in the square is the number of values µi
in the interval

]∑k
i=1 qi,

∑k
i=1 qi + δa

]
plus one (taking into account right-continuity) and

plus one corresponding to µa. As this number is finite, the successive points (x,G(x)),
(G(x), G(G(x))), . . . must from some step form a cycle.
We prove the claim on the upper bound. The number of levels of G is maximal when the
gap qi at each µi is minimal. The minimal value of qi is 1/n, which yields a total number
of levels to be nδa + 1 because the total gap is δa.
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4.5.7 Proof of Theorem 4.5

1. Suppose that the state is T with t ≥ d and n − t ≥ d. This is possible because by
the assumptions na ≥ d, nc ≥ d, we have d ≤ n/2. We claim that a transition to any
Q ∈ 2N is possible. Indeed, we can have any type of neighborhood, so that the average
opinion a(T ) in a neighborhood can be any value in {0, 1/d, . . . , 1}. It follows that p0

i (T )
and p1

i (T ) can be positive for all conformists and all anti-conformists.
2. Consider that either t < d or n− t < d. It suffices to prove that a transition to some
set Q such that q ≥ d and n − q ≥ d is possible to conclude the proof. Suppose t < d

(the other case is similar). Then n − t > d, so that the 0-neighborhood has a positive
probability. Supposing that all players take the 0-neighborhood, the next action will be
0 for the conformists and 1 for the anti-conformists. Hence Q = Na, which does the job
as |Na| ≥ d and |N \Na| = |Nc| ≥ d.

4.5.8 Proof of Theorem 4.6

Recall that at each time step, a random neighborhood of random size is drawn, for each
agent. Each agent has a different threshold but it is fixed (distribution is known)
1. Consider a state T . In order to have for every conformist and anti-conformist a
possibility of choosing action 1 and 0, we must have for conformist choosing action 1
P (ai ≥ µi : S; d) > 0 for at least one d and choosing action 0 P (ai ≥ µi : S; d) < 1 for
at least one d in the support. For action 1 we must have T with t ≥ µd (must work for
all agents) and for action 0 we must have N \ T with n − t > d(1 − µ). The conditions
are inverted for anti-conformists. Then a transition to any Q is possible at next step.
2. Suppose now that T is such that t < µd. Suppose na ≥ µd and na < n − d(1 − µ).
(same conditions for nc)(hence equivalently, na > d(1 − µ) and idem for nc). It follows
that µd ≤ n/2 and d(1− µ) < n/2. Observe that we have then

t < µd ≤ n/2 < n− d(1− µ).

Therefore every conformist can choose action 0 and every anti-conformist can choose
action 1, so that a transition to Na is possible. As by assumption na ≥ µd and na <

n− d(1− µ), we are back to Step 1 and a transition to any state Q is possible.
The case where t ≥ n− d(1− µ) works similarly as we have

t ≥ n− d(1− µ) ≥ n/2 ≥ µd.

Then a transition to Nc is possible, which allows then a transition to any state Q.
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4.5.9 Further discussion

In this paper, we assume that agents update their opinions synchronously in discrete
time and we adopt the basic assumption that agents are memoryless. The model can
not include all situations in real world which is much more complicated. However, the
current paper gives a baseline study of the threshold model with anti-conformist agent
and possible future directions of research are discussed below.
Firstly, the model is in a synchronous framework and we show that in the presence of anti-
conformist agents cycles could be reached. However, in case of asynchronous updating,
even if it is rare, such cycles are also possible to be reached, as the following simple
example shows.

Example 4.9. Consider a graph with n = 4, where agents 1 and 3 are conformist, while 2
and 4 are anticonformist, situated as in the figure below, and take µi = 1/2 for all i ∈ N .
Agents update opinions asynchronously in the order of agent 1, agent 2, agent 3, agent 4,
agent 1, . . . . Assume the initial opinion is S(0) = (0, 0, 0, 0). At time 1, conformist agent
1 will look at the opinions of her neighbor and update her opinion, thus we denote S(0)
as (0∗, 0, 0, 0), where the location of ∗ refers to the agent that will update her opinion at
next time period.
Then we have the following cycle of length 9:

(0, 0∗, 0, 0)→ (0, 1, 0∗, 0)→ (0, 1, 0, 0∗)→ (0∗, 1, 0, 1)→ (1, 1∗, 0, 1)→ (1, 0, 0∗, 1)

→ (1, 0, 0, 1∗)→ (1∗, 0, 0, 0)→ (0, 0∗, 0, 0).

1 2

4 3

Therefore, the synchrony is not the main reason of the presence of cycles, instead, the
introduction of anti-conformist agents play an important role.
In the current paper we compared the threshold model with and without anti-conformist
agents, and we adopted the basic assumption that agents are completely memoryless such
that they can switch between the two states. Indeed, the situation in real life is much
more complicated. Agents can be memoryless or have a limited or unlimited memory.
Introducing memory of agents is certainly one of the future directions we intend to explore.
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In the first part of the paper, we studied the fixed complete graph. However, the findings
also hold for fixed regular networks where the neighborhood of each agent is of the fixed
size d < N , i.e., the proportion of anti-conformist agents and the values of threshold will
together determine whether there is an equilibrium point or a cycle. The explicit study
of this point is also among our future directions of research.
In the second part of the paper, we showed that for the random sampling model with
two thresholds, 15 possible absorbing classes could appear for different conditions on the
number of different types of agents and different values of threshold. One can relate
these classes with real-life situations. For example, in a market with competitions, Na

1−→
∅ 1−→ Na can explain the situation where Na are the companies that adopt some special
techniques, and Nc are the companies for which the special techniques are not available.
With the special techniques, companies in Na are able to produce some special products
A and benefit. But once all companies in Na are producing A such that there is no room
for benefiting and thus all companies in Na will stop producing A. Note here that we
model it in a synchronous way, of course in real life, companies often are taking decisions
asynchronously. More concretely, we studied the presence of cascade effect when the
population of the society tends to infinity. When all agents have the same threshold, a
cascade effect is likely to occur, which means that starting from a state of the society where
a large majority of agents has the correct opinion (supposing that a ground truth exists),
as misinformation spread, society converges to the wrong opinion. On the contrary, when
all agents have the same threshold 1/2, or when the proportion of anti-conformist agents
is sufficiently small, there is no cascade effect.



Chapter 5

The Dynamics of Cultural Traits in
Inherited Endogenous Social
Networks1

5.1 Introduction

Together with opinions and beliefs, cultural traits are part of factors that govern human
behavior and are transmitted through generations. Transmission of cultural traits, such
as trust, altruism, morality, risk aversion, persistence, etc., play an important role in
shaping economic and social outcomes(Tabellini (2008), Bisin and Verdier (2011)). For
instance, trust and risk preferences are important determinants of economic development.
Hence, how the cultural traits are formed and evolved are of central interest.
The first theoretical model of cultural transmission was provided by Cavalli-Sforza and
Feldman (1981) and Rindos et al. (1985), who also proposed a clear terminology that was
widely-adopted by subsequent literature (Bisin and Verdier (2011)). Cavalli-Sforza and
Feldman (1981) explained how the custom spread, and showed that if cultural traits were
passed down solely from one generation to next generation, some demographic change
could not exist, i.e., purely vertical transmission is not enough. It required also the con-
sideration of the influence by parents’ peers and social environment, i.e., some mixture of
horizontal and oblique transmission (Sober (1992)). Evidently, a large amount of empiri-
cal research has also shown that cultural traits of children are shaped by the observable
cultural traits of both their parents and social environment (e.g. Dohmen et al. (2012),
Tabellini (2008)). Moreover, cultural traits are observed to be persistent among gener-
ations (see, e.g., Guiso et al. (2008), Nunn and Wantchekon (2011), Algan and Cahuc

1This chapter is a joint work with Tim Hellmann (University of Southampton).

81



82 Chapter 5. The Dynamics of Cultural Traits

(2010), Voigtländer and Voth (2012)). Thus, social networks play a central role in the
process of the formation and evolution of cultural traits.
The seminal work by Bisin and Verdier (2001) provided a model of intergenerational
cultural transmission for binary cultural traits and explain its global persistence theoreti-
cally, based on the assumption of imperfect empathy that parents are willing to use costly
controls to increase the probability that their children adopt the same cultural trait as
them. In case that a different cultural trait from their parents is adopted, children would
learn the trait from a random individual among the population (i.e., oblique socializa-
tion). Imperfect empathy implies a cultural substitution effect which drives persistence
of heterogeneous traits in the long run.
Buechel et al. (2014) and Panebianco (2014) extended this approach by modeling cultural
traits as continuous variables and by introducing local interactions represented by a social
network, considering the network as exogenously given. The role of endogenous networks is
introduced in a recent research by Hellmann and Panebianco (2018), but network changes
are not inherited by supposing a fixed underlying network. The aim of this paper is to
study the dynamic of continuous cultural traits in an endogenous network where network
changes are inherited. Parents are able to influence their children’s networks to prevent
undesirable peer effects or encourage desirable peer effects, by means of school choice,
sports clubs, intervene in children’s friendships, etc. This makes central the following
questions: How do parents bias children’s network optimally? How do cultural traits evolve
under this presumption on optimal networks? Under which conditions do heterogeneous
and homogeneous societies emerge?
These questions are closely related to whether the network is directed or not. Directed
networks are good approximation to the situation where parents can guide (resp., pre-
vent) their children to learn from some role families from public resources. For undirected
networks, Pairwise stability is a simple stability concept proposed by Jackson and Wolin-
sky (1996) to capture the mutual consent required for forming a link between two agents,
while Nash equilibrium based solutions fail to capture this point. It supposes that any
individual can delete a link unilaterally, while adding a link requires the agreement of
both involved individuals. Motivated by this idea of pairwise stability, some other notions
of stability in network formation were proposed, e.g., pairwise Nash stability (Bloch and
Jackson (2006)), pairwise stability with transfers (PST) where the transfers among indi-
viduals are allowed (Bloch and Jackson (2007)), strong stability (Dutta and Mutuswami
(1997)), bilateral stability (Goyal and Vega-Redondo (2007)) and so on.
We endogenize the network formation process in the following three different frameworks:
1) the network is directed, and at each time, any adult can form or delete any link
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unilaterally with the other adults, by maximizing his or her own utility; 2) the network is
undirected, and at each stage t+1, a PS network is reached based on V (t) and G(t); 3) the
network is undirected, and at each stage t+1, a PST network is reached based on V (t) and
G(t), i.e., the cultural traits and network of the previous stage. The first framework applies
to the situations where cultural traits can be learnt by observing the behavior of others.
In this case, parents can reduce or prevent their children from learning the undesirable
traits. The second and third framework apply to those situations where cultural traits are
influenced through bilateral contact, e.g., trust, altruism, etc. The difference is whether
transfers among dynasties are allowed in the process of network formation. PS is a
very standard concept for modeling formation of undirected networks, while visible and
invisible transfers are also very common when people build their connections in real life.
So both notions are adopted here to study the dynamics of cultural traits.
We emphasize the role of two degrees of imperfect empathy relative to (i) cost of network
changes and (ii) a desire to be integrated in the society. Moreover, we consider that
a dynasty always weights more on own cultural trait than that of any other neighbor’s
due to the consideration that cultural traits of children are more likely to be influenced
vertically by their parents than by their neighbors (peer effects) horizontally.
This paper is structured as follows. In Section 5.2, we introduced the model with no-
tions, assumptions on the networks and the utility function. How the process of network
formation is endogenized (in three ways as mentioned previously) is explained in detail
in Section 5.3, together with some remarkable results on network changes for one period.
In Section 5.4, the dynamics (convergence, limit behavior) of these three models are dis-
cussed in detail, in both theory and simulations. In Section 5.5, we discuss the efficiency
of networks and Section 5.6 concludes this paper.

5.2 The model

We employ the model by Buechel et al. (2014) and Panebianco (2014) for the transmission
of continuous cultural traits on social networks. Consider an overlapping generations
society populated by the adults of a finite set of dynasties N = {1, . . . , n}. At the
beginning of any period t ∈ N, each adult has one offspring. Adults of period t ∈ N are
characterized by a cultural trait Vi(t) ∈ I. As we consider continuous traits, I ⊆ R is
assumed to be compact and convex. Following empirical evidence, children learn their
cultural trait from their parents and their social environment which is determined by a
social network represented by a n× n row-stochastic matrix G = (gij)i,j∈N (i.e., gij ≥ 0,
such that ∑j∈N gij = 1).
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We assume that there is a network G(t) (either directed or undirected) in each period
t ∈ N . Let Ni(t) = {j ∈ N : (i, j) ∈ G(t)} be the neighbors of dynasty i in period t, i.e.
the dynasties to whom dynasty i has links in period t and denote by ηi(t) = |Ni(t)| the
(out-) degree of dynasty i in period t.
We then get the influence network by

gij(t) =



1
n
, if j ∈ Ni(t);

n−ηi(t)
n

, if i = j;

0, otherwise.

In each period dynasty i can form new links or delete current links. The changes then carry
over to the next generation. Obviously, G(t) is always row stochastic for any t. For dynasty
i, parents can invest into peer socialization by adding set of links l+i ⊂ N − (Ni(t) + {i})
as well as vertical socialization by deleting any set of existing links l−i ⊂ Ni(t). We denote
the total investment as Xi = l+i ∪ l−i . This results in a new neighborhood of children
denoted by Ni(t+ 1) := (Ni(t) \ l−i )∪ l+i . The detailed network formation process will be
explained in Section 5.3).
Children then adopt the cultural trait according to

Vi(t+ 1) =
∑

j∈Ni(t+1)
gij(t+ 1)Vj(t), (5.1)

which is formed according to the influences they are exposed to:

gij(t+ 1) =



1
n
, if j ∈ (Ni(t) \ l−i ) ∪ l+i ;

n−ηi(t)−λ+
i +λ−i

n
, if j = i;

0, otherwise.

where λ+
i := |l+i | and λ−i := |l−i |. At the end of any period t ∈ N, the adults die, the

children become adults in period t + 1, and carry over the adopted trait into their adult
period.
Utility of each dynasty
We assume imperfect empathy: parents want their children to adopt the same cultural
trait as they carry themselves (see for a motivation e.g. Bisin and Verdier, 2010). More-
over, as both parental socialization and network changes are costly, we assume the fol-
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lowing functional form of utility

Ui(t+ 1) = −[Vi(t+ 1)− Vi(t)]2−c∆
i (λ+

i + λ−i )2 − cηi (n− ηi(t+ 1)), (5.2)

where c∆
i , c

η
i > 0 for all i ∈ N .

The first term −[Vi(t + 1) − Vi(t)]2 is the intergenerational utility component which is
decreasing in the distance between parent’s and child’s trait and therefore reflects imper-
fect empathy. The remaining term is composed of the cost of network intervention and
the cost of parental socialization. Cost of network intervention depends on the number of
altered links between Gi(t+ 1) and the previous original influence Gi(t) weighted by the
dynasty dependent cost factor c∆. Cost of parental socialization is created by the amount
of time parents spend with the children n−ηi(t+1)

n
weighted with a cost term ncη. This cost

term can also be interpreted as a (positive) benefit term from interaction with others.

5.3 Endogenize network formation (G(t)→ G(t + 1))

In this section, we propose three ways to endogenize the network formation process,
based on whether the network is directed or not and stability of the network dynamics.
In Section 5.3.1, the network is supposed to be directed and thus dynasty can form or
delete any link unilaterally. In Section 5.3.3 and Section 5.3.2, the network is supposed to
be undirected. We endogenize the undirected network formation by adopting the notions
of PST and PS networks in Section 5.3.3 and Section 5.3.2, respectively.

5.3.1 Directed network with optimal network changes

Optimization problem of purposeful socialization

Suppose that G(t) is directed and thus dynasties face a trade-off between own utility losses
(due to costs of child care and network changes) and eventual improvements in locations
of child’s trait relative to peak. Thus the optimization problem of adult i in period t+ 1
is:

max
l+i ,l
−
i

− (Vi(t+ 1)− Vi(t))2 − c∆
i (λ+

i + λ−i )2 − cηi (n− ηi(t)− λ+
i + λ−i )

s.t. Vi(t+ 1) =
∑
j∈N

gij(t+ 1)Vj(t)

= Vi(t) + 1
n

∑
j∈(Ni(t)\l−i )∪l+i

(Vj(t)− Vi(t)) .
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Optimal network changes in each period

Consider the change of network for dynasty i ∈ N . Adult i’s utility then changes according
to

[
Ui(g(t+ 1))− c∆

i (g(t+ 1) | g(t))− cηi (g(t+ 1))
]
− [Ui(g(t))− cηi (g(t))]

=− 1
n2

[
d
l+i
i − d

l−i
i

] [
d

(Ni+l+i −l
−
i )

i + dNii

]
− (λ−i − λ+

i )cηi − (λ+
i + λ−i )2c∆

i ,

where for L ⊆ N \ {i} we have set dLi := ∑
j∈L (Vi(t)− Vj(t)), and the set operations

union and subtraction are denoted as + and − among sets.
Denote by V <

i (t) := {j ∈ N : Vj(t) < Vi(t)} and by V >
i (t) := {j ∈ N : Vj(t) > Vi(t)}. A

necessary condition for optimal links is given by the following Proposition.

Proposition 5.1. Suppose cη ≤ c∆. The necessary conditions for a set of links L+
i added

to network g(t) and a set of links L−i deleted from network g(t) by player i ∈ N to be
optimal are that:

A) for all j ∈ L+
i ∪ V <

i (t) it holds that dN+L+
i −L

−
i −j

i (t) < 0,

B) for all j ∈ L+
i ∪ V >

i (t) it holds that dN+L+
i −L

−
i −j

i (t) > 0,

C) for all j ∈ L−i ∪ V <
i (t) it holds that dN+L+

i −L
−
i

i (t) > 0,

D) for all j ∈ L−i ∪ V >
i (t) it holds that dN+L+

i −L
−
i

i (t) < 0.

Proof. We only show the first point, the remainder is completely analogous. Suppose
that contrarily to the assertion we have j ∈ L+

i ∪ V <
i (t) but dN+L+

i −L
−
i −j

i (t) > 0. Since
j ∈ V <

i (t) we have dji (t) = (Vi(t)− Vj(t)) > 0. We get that

d
N+L+

i −L
−
i

i (t) =
∑

k∈N+L+
i −L

−
i

(Vi(t)− Vk(t))

=
∑

k∈N+L+
i −L

−
i −j

(Vi(t)− Vk(t)) + (Vi(t)− Vk(t))

= d
N+L+

i −L
−
i −j

i (t) + dji (t) > 0.

For the marginal utility of the link ij we then get:

ui(g(t) + L+
i − L−i )− ui(g(t) + L+

i − L−i − j)

= − 1
n2

(
dji (t)

)(
d
Ni(t)+L+

i −L
−
i

i (t) + d
Ni(t)+L+

i −L
−
i −j

i (t)
)

+ cη − c∆(2(l+i + l−i ) + 1)

< cη − c∆(2(l+i + l−i ) + 1) ≤ 0.
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The last inequality is due to the fact that cη ≤ c∆.

Note that condition C and condition D are mutually exclusive. Thus either L−i (t) ⊂ V <
i (t)

or L−i (t) ⊂ V >
i (t). From equation (5.1), we get that

Vi(t+ 1) = Vi(t)−
1
n
d
Ni(t+1)
i . (5.3)

Then it is obvious that if condition C holds, Vi(t + 1) < Vi(t); if condition D (thus D’)
holds, Vi(t+1) > Vi(t). It means that if agent cuts a link to an agent with greater cultural
trait in period t, her cultural trait in period t+ 1 will become greater; vice versa.

Single link changes The following corollary shows that link changes are only optimal
if these countervail the peer infuence.

Corollary 5.1. Suppose cη ≤ c∆ and let |l+i ∪ l−i | ≤ 1 for some i ∈ N . Then this can be
optimal only if:

(i) If Vi(t) < 1
ηi(t)

∑
j∈Ni(t) Vj(t), then l

+
i ⊂ V <

i (t) and l−i ⊂ V >
i (t).

(ii) If Vi(t) > 1
ηi(t)

∑
j∈Ni(t) Vj(t), then l

−
i ⊂ V <

i (t) and l+i ⊂ V >
i (t).

(iii) If Vi(t) = 1
ηi(t)

∑
j∈Ni(t) Vj(t), then l

−
i = l+i = ∅.

Extremists’ behavior We call the adults who hold the lowest or the greatest cultural
traits as the extremists. The following corollaries show that extremists never add links
and in the case of sufficiently low cost, extremists may cut all ties with the society.

Corollary 5.2. Suppose cη ≤ c∆ and let i ∈ arg mink∈N Vk(t) and j ∈ arg maxk∈N Vk(t).
Then, l+i = l+j = ∅.

Proof. For all i ∈ mink∈N Vk(t) it is dNi(t) ≤ 0 for all Ni ⊂ N \ {i} and V <
i (t) = ∅. Thus

the first two conditions of Proposition 5.1 cannot be satisfied implying that L+
i = ∅.

Similarly for all j ∈ maxk∈N Vk(t) it is dNj(t) ≥ 0 for all Nj ⊂ N \ {j} and V >
j (t) = ∅.

Thus, again, the first two conditions of Proposition 5.1 cannot be satisfied implying that
L+
j = ∅.

Corollary 5.3. Let i ∈ arg mink∈N Vk(t) and j ∈ arg maxk∈N Vk(t). There exists ε > 0
such that for all 0 ≤ cη ≤ c∆ < ε, we get l−i = V >

i ∩Ni(t) and l−j = V <
i ∩Nj(t).

The following example illustrates the network changes in one period.
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Example 5.1. Consider 10 dynasties situated in an initial network given by Figure 5.1
with its incidence matrix being

1 2 3 4 5 6 7 8 9 10



1 0 0 1 0 1 1 0 1 0 1

1 1 1 0 1 1 1 0 1 0 2

0 1 1 0 1 0 1 0 1 0 3

1 0 0 1 0 1 1 0 1 0 4

0 1 1 0 1 1 1 0 1 0 5

1 1 0 1 0 1 1 0 1 1 6

1 1 1 0 1 0 1 0 1 0 7

0 1 0 0 1 1 1 1 1 0 8

1 0 0 0 0 0 0 0 1 1 9

0 1 1 0 0 0 0 0 1 1 10,

and the costs of child care and network changes are cη = 0 and c∆ = 0.0045, respectively.
The initial state of cultural traits is V(0) = (1, 2, 3, 3, 4, 4, 5, 7, 9, 11). To illustrate the
differences of network changes between extremists and integrated families, take n = 1, 7, 10
as an example. See Figure 5.2 for the network structure, restricted to dynasties 1, 7 and
10. By solving the corresponding optimization problems, dynasty 1 will delete links with 7
and 9, dynasty 10 will delete links with 2 and 3, and dynasty 7 would rather add links to
dynasty10 (see Figure 5.3). The resulting network at time 1 is shown in Figure 5.4 with
its incidence matrix to be

1 2 3 4 5 6 7 8 9 10



1 0 0 1 0 1 0 0 0 0 1

1 1 1 0 1 1 0 0 0 0 2

0 1 1 0 1 0 1 0 0 0 3

1 0 0 1 0 1 1 0 0 0 4

1 1 1 0 1 1 1 0 1 0 5

1 1 0 1 0 0 1 0 1 0 6

1 1 1 0 1 0 1 0 1 1 7

0 0 0 0 1 1 1 1 1 1 8

0 0 0 0 0 0 0 0 1 1 9

0 0 0 0 0 0 0 0 1 1 10.
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Figure 5.1: Initial network.
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Figure 5.2: Initial network, restricted to dynasties 1,7 and 10.

5.3.2 Undirected network with PS (Pairwise Stable) networks

Suppose that G(t) is undirected. The PS network is defined as follows.

Definition 5.1 (Pairwise Stable). For all V (t), g(t), a network g∗ is Pairwise Stable (PS
for short) if

(i) ∀ij ∈ g∗,
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Figure 5.3: Network changes of 1,7 and 10, with deleted links colored in blue and added
links colored in green.
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Figure 5.4: Resulting network at time 1.

ui(g∗ − ij|g(t), V (t))− ui(g∗|g(t), V (t)) ≤ 0, 2

and uj(g∗ − ij|g(t), V (t))− uj(g∗|g(t), V (t)) ≤ 0;

(ii) ∀ij /∈ g∗,

ui(g∗+ij|g(t), V (t)) > ui(g∗|g(t), V (t)) =⇒ uj(g∗+ij|g(t), V (t)) ≤ uj(g∗|g(t), V (t)).

Pairwise stable network requires that no adult wants to delete a link unilaterally and
no two unconnected adults both want to form a link, considering one link at a time. It
requires the mutual agreement to form a link between two adults.
The following proposition gives the sufficient condition such that the empty network is
Pairwise Stable.

2ui(g∗ − ij|g(t), V (t)) refers to the utility of agent i of deleting the link ij from g∗ given the current
network g(t) and current cultural trait vector V (t). It is analogous for ui(g∗ + ij|g(t), V (t)).
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Proposition 5.2. For any V (t) and g(t), a sufficient condition such that the empty
network is Pairwise Stable for given V (t), g(t) is that cη

c∆
≤ mini∈N{2xi+1}, where xi and

xj are the numbers of links agent i and j have in g(t), respectively.

Proof. Suppose that in g(t), agent i has xi links, ∀i ∈ N . Then

mui(g∅ + ij, ij|V (t), g(t))

=− 1
n2 (Vi − Vj)2 − c∆(2xi + 1) + cη.

Thus cη

c∆
≤ 2xi + 1 =⇒ mui(g∅ + ij, ij|V (t), g(t)) ≤ 0.

So

cη

c∆ ≤ min
i∈N
{2xi + 1}

=⇒ mui(g∅ + ij, ij|V (t), g(t)) ≤ 0,∀i ∈ N

=⇒ g∅ is PS.

Remark 5.1. When cη = c∆ = 0, g∅ is PS.

Proposition 5.2 says that if cη

c∆
is sufficiently small, the empty network will be pairwise

stable. Furthermore, if the two cost parameters are sufficiently small, the empty network
will be the unique pairwise stable network.

Proposition 5.3. There always exist sufficiently small cη and c∆ such that the empty
network is the unique PS network for given g(t) and V (t).

Proof. Given g(t) and V (t), Proposition 5.2 guarantees the existence of c∆ and cη such
that the empty network is PS. It suffices to prove that ∀g 6= g∅, ∃c∆ > 0 and cη > 0 such
that g is not PS.
We will show that for any nonempty network is not PS. Fix any g 6= g∅, among all the
agents having at least one link in g, we can always find the agent holding either the largest
or the smallest cultural trait, say i, and i wants to delete the links. Suppose w.l.o.g. i
is connected to those holding larger culture traits, i.e., Vj > Vi, ∀j ∈ Ni, where Ni is
the neighborhood of agent i in g. Denote yi as the number of links that agent i need to
change from g(t) to g. Depending on whether ij ∈ G(t) or not, the number of links that
agent i need to change from G(t) to g − ij can be computed as yi + 1 (for the case of
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ij ∈ G(t)) or yi− 1 (for the case of ij /∈ G(t)). Denote Ni as the neighborhood of agent i
in g. The marginal utility of deleting any link ij from g for agent i is

mui(g, ij|V (t), G(t)) = 1
n2 [(dNi−{j}i )2 − (dNii )2] + c∆(1± 2yi) + cη.

When
c∆(1± 2yi) + cη <

1
n2 [(dNii )2 − (dNi−{j}i )2], (5.4)

mui(g, ij|V (t), G(t)) < 0, i.e., agent i would like to delete the link ij. Since ∀j ∈ Ni,
Vj > Vi, (dNi−{j}i )2 − (dNii )2 > 0. Thus we can always find small enough c∆ and cη such
that inequality 5.4 holds, so g is not PS.
Above all, g∅ is the unique PS network.

5.3.3 Undirected network with PST (Pairwise Stable with Trans-
fers) networks

In this section and the next section, we suppose that G(t) is undirected. The PST network
is defined as follows.

Definition 5.2 (Pairwise Stable with Transfers). For all V (t), g(t), a network g∗ is Pair-
wise Stable with Transfers (PST) if

(i) ∀ij ∈ g∗,

Ui(g∗ | g(t), V (t)) + uj(g∗ | g(t), V (t)) ≥ Ui(g∗ − ij | g(t), V (t)) + uj(g∗ − ij |
g(t), V (t));

(ii) ∀ij /∈ g∗,

Ui(g∗ | g(t), V (t)) + uj(g∗ | g(t), V (t)) ≥ Ui(g∗ + ij | g(t), V (t)) + uj(g∗ + ij |
g(t), V (t)).

Pairwise Stable network with Transfers requires that no pair of agents can jointly benefit
by forming or deleting a link. In other words, it allows the utility exchange between two
agents.

Existence of PST networks at each period

Jackson and Watts (2002) showed that there exist at least one pairwise stable network or
closed cycle of networks. Following the same reasoning, it also holds for PST networks.
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Lemma 5.1. For any network society, there exists at least one PST network or a closed
cycle of networks.

Theorem 5.1. For all V (t) and g(t), there exist at least one PST network.

Proof. We show here there is no closed cycle. For any given g(t), assume there is a closed
cycle g1, g2, . . . , gm, where g1 = gm = g(t). Note here that ui(g) = ui(g′) if Ni(g) = Ni(g′).
Therefore the sum of the utilities is strictly increasing along the improving path, i.e.,∑n
i=1 ui(gk) <

∑n
i=1 ui(gk+1),∀k ∈ {1, 2, . . . ,m − 1}. Thus ∑n

i=1 ui(g1) <
∑n
i=1 ui(gm)

leading to a contradiction to ∑n
i=1 ui(g1) = ∑n

i=1 ui(gm) = ∑n
i=1 ui(g(t))). So there is no

closed improving cycle but at lease one pairwise stable network with transfers by Lemma
5.1.

Network changes in one period

We suppose that in each period, a PST network G(t+ 1) is reached given V (t) and G(t)3.
The following example illustrates the network changes in one period.

Example 5.2. Consider 10 dynasties situated in an initial network given by Figure 5.5
with its incidence matrix being

1 2 3 4 5 6 7 8 9 10



1 0 0 1 0 1 1 0 1 0 1

0 1 1 0 1 1 1 0 1 0 2

0 1 1 0 1 0 1 0 1 0 3

1 0 0 1 0 1 1 0 1 0 4

0 1 1 0 1 1 1 0 1 0 5

1 1 0 1 1 1 1 0 1 1 6

1 1 1 1 1 1 1 1 1 0 7

0 0 0 0 0 0 1 1 1 0 8

1 1 1 1 1 1 1 1 1 1 9

0 0 0 0 0 1 0 0 1 1 10,

and the costs of child care and network changes are cη = 0.01 and c∆ = 0.002, respectively.
The initial state of cultural traits is V(0) = (1, 2, 3, 3, 4, 4, 5, 7, 9, 11). To illustrate the
differences of network changes between extremists and integrated families, take n = 1, 3, 10

3In case of the existence of multiple PST networks, a random PST network will be reached.
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as an example. See Figure 5.6 for the network structure, restricted to dynasties 1, 6 and
10. By solving the corresponding optimization problems, dynasty 1 will delete links with
6, 7 and 9, dynasty 10 will delete links with 6, and dynasty 3 would delete link with 9,
and at the same time add link with 4 (see Figure 5.7). The resulting network at time 1 is
shown in Figure 5.8 with its incidence matrix to be

1 2 3 4 5 6 7 8 9 10



1 0 0 1 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0 0 0 2

0 1 1 1 1 0 1 0 0 0 3

1 0 1 1 0 1 1 0 0 0 4

0 0 1 0 1 1 1 0 0 0 5

0 0 0 1 1 1 1 0 0 0 6

0 0 1 1 1 1 1 1 1 0 7

0 0 0 0 0 0 1 1 0 0 8

0 0 0 0 0 0 1 0 1 1 9

0 0 0 0 0 0 0 0 1 1 10.
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Figure 5.5: Initial network.

In case that a PST network is reached in each period, extremists tend to cut links and
intermediate agents tend to add links.
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Figure 5.6: Initial network, restricted to dynasties 1, 3 and 10.
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Figure 5.7: Network changes of 1,3 and 10, with deleted links colored in blue and added
links colored in green.

Necessary and sufficient conditions for a network to be PST

Given V (t) and G(t), we define the sum of marginal utilities of i and j for adding a link
to g∗ or cutting the link ij from g∗ as follows.

Definition 5.3 (Sum of marginal utilities of i and j).

The sum of marginal utilities of i and j for adding a link to g∗ is defined as

mui+j(g∗ + ij, ij|g(t), V (t))

:=ui(g∗ + ij|g(t), V (t))− ui(g∗|g(t), V (t)) + uj(g∗ + ij|g(t), V (t))− uj(g∗|g(t), V (t)).
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Figure 5.8: Resulting network at time 1

The sum of marginal utilities of i and j for cutting the link ij from g∗ is defined as

mui+j(g∗, ij|g(t), V (t))

:=ui(g∗|g(t), V (t))− ui(g∗ − ij|g(t), V (t)) + uj(g∗|g(t), V (t))− uj(g∗ − ij|g(t), V (t)).

The following proposition provides the necessary and sufficient condition such that the
empty network is PST network.

Proposition 5.4. ∀i, j ∈ N , suppose that in g(t), i has xi links and j has xj links. For
any V (t), g(t), the necessary and sufficient condition such that the empty network is PST
network is that

− (vi − vj)2

n2 ≤ c∆ − cη − c∆(xi + xj), ∀ij ∈ g(t), and

− (vi − vj)2

n2 ≤ c∆ − cη + c∆(xi + xj),∀ij /∈ g(t)

Note that when cη = c∆ = 0, g∅ is always a PST network.

Proof. The sum of the marginal utilities of adding any link ij to g∅ is
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ui(g∅ + ij|g(t), V (t)) + uj(g∅ + ij|g(t), V (t))− ui(g∅|g(t), V (t))− uj(g∅|g(t), V (t)

=− 2(vi − vj)2

n2 − c∆[(xi − 1)2 − x2
i + (xj − 1)2 − x2

j ]− 2cη(n− 1− n)

=− 2(vi − vj)2

n2 − 2c∆ + 2cη + 2c∆(xi + xj), if ij ∈ g(t);

=− 2(vi − vj)2

n2 − c∆[(xi + 1)2 − x2
i + (xj + 1)2 − x2

j ]− cη(n− 1− n)

=− 2(vi − vj)2

n2 − 2c∆ + 2cη − 2c∆(xi + xj), if ij /∈ g(t).

When ij ∈ g(t), a sufficient condition such that (mui + muj)(g∅ + ij, ij) < 0 is that
2c∆− 2cη− 2c∆(xi +xj) > 0, i.e. cη

c∆
< 1− (xi +xj); (So there could be the case that the.

empty network is not PST).
When ij /∈ g(t), a sufficient condition such that (mui + muj)(g∅ + ij, ij) < 0 is that
2c∆ − 2cη + 2c∆(xi + xj) > 0, i.e. cη

c∆
< 1 + (xi + xj).

g∅ is PST ⇔ (mui +muj)(g∅ + ij, ij) ≤ 0

⇔ −(vi − vj)2

n2 ≤ c∆ − cη − c∆(xi + xj),∀ij ∈ g(t)

and − (vi − vj)2

n2 ≤ c∆ − cη + c∆(xi + xj),∀ij /∈ g(t).

More generally, the following proposition gives the necessary and sufficient condition such
that any g∗ is PST network.

Proposition 5.5. For any V (t), g(t), g∗, suppose that ∀i ∈ N , i has xi links changed
from g(t) to g∗. The neighbourhood of player i in networks g(t), g∗, g∗+ ij are denoted as
Ni, N

∗
i , N

∗
i + {j}, with |Ni| = ηi, |N∗i | = η∗i and |N∗i + {j}| = η∗i + 1 respectively. For any

V (t), g(t), the necessary and sufficient condition such that g∗ is PST network is that
∀ij /∈ g∗, 1

n2 [(Vi − Vj)(d
N∗i
i − d

N∗j
j + Vi − Vj)] + c∆(xi + xj − 1) + cη ≤ 0, if ij ∈ g(t),

1
n2 [(Vi − Vj)(d

N∗i
i − d

N∗j
j + Vi − Vj)]− c∆(xi + xj − 1) + cη ≤ 0, if ij /∈ g(t);

∀ij ∈ g∗, 1
n2 [(Vi − Vj)(d

N∗j
j − d

N∗i
i + Vi − Vj)] − c∆(xi + xj − 1) + cη ≤ 0, if ij ∈ g(t),

1
n2 [(Vi − Vj)(d

N∗j
j − d

N∗i
i + Vi − Vj)] + c∆(xi + xj − 1) + cη ≤ 0, if ij /∈ g(t).
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Proof.

g∗ is a PST network given V (t) and g(t)

⇔ mui+j(g∗ + ij, g∗|V (t), g(t)) ≤ 0,∀ij /∈ g∗;

and mui+j(g,g∗ − ij|V (t), g(t)) ≥ 0,∀ij ∈ g∗.

We distinguish the following cases:

• ij /∈ g∗

– ij ∈ g(t)

mui+j(g∗ + ij, g∗|V (t), g(t))

=− (− 1
n
d
N∗i +{j}
i )2 − c∆(xi − 1)2 − cη(n− η∗i − 1)

− (− 1
n
d
N∗j +{i}
j )2 − c∆(xj − 1)2 − cη(n− η∗j − 1)

+ (− 1
n
d
N∗i
i )2 − c∆(xi)2 − cη(n− η∗i )

+ (− 1
n
d
N∗j
j )2 − c∆(xj)2 − cη(n− η∗j )

= 2
n2 [(Vi − Vj)(d

N∗i
i − d

N∗j
j + Vi − Vj)] + 2c∆(xi + xj − 1) + 2cη;

– ij /∈ g(t)

mui+j(g∗ + ij, g∗|V (t), g(t))

=− (− 1
n
d
N∗i +{j}
i )2 − c∆(xi + 1)2 − cη(n− η∗i − 1)

− (− 1
n
d
N∗j +{i}
j )2 − c∆(xj + 1)2 − cη(n− η∗j − 1)

+ (− 1
n
d
N∗i
i )2 − c∆(xi)2 − cη(n− η∗i )

+ (− 1
n
d
N∗j
j )2 − c∆(xj)2 − cη(n− η∗j )

= 2
n2 [(Vi − Vj)(d

N∗i
i − d

N∗j
j + Vi − Vj)]− 2c∆(xi + xj − 1) + 2cη;

• ij ∈ g∗
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– ij ∈ g(t)

−mui+j(g∗, ij|V (t), g(t))

=− (− 1
n
d
N∗i −{j}
i )2 − c∆(xi + 1)2 − cη(n− η∗i − 1)

− (− 1
n
d
N∗j −{i}
j )2 − c∆(xj + 1)2 − cη(n− η∗j − 1)

+ (− 1
n
d
N∗i
i )2 − c∆(xi)2 − cη(n− η∗i )

+ (− 1
n
d
N∗j
j )2 − c∆(xj)2 − cη(n− η∗j )

= 2
n2 [(Vi − Vj)(d

N∗j
j − d

N∗i
i + Vi − Vj)]− 2c∆(xi + xj − 1) + 2cη;

– ij /∈ g(t)

−mui+j(g∗, ij|V (t), g(t))

=− (− 1
n
d
N∗i −{j}
i )2 − c∆(xi − 1)2 − cη(n− η∗i − 1)

− (− 1
n
d
N∗j −{i}
j )2 − c∆(xj − 1)2 − cη(n− η∗j − 1)

+ (− 1
n
d
N∗i
i )2 − c∆(xi)2 − cη(n− η∗i )

+ (− 1
n
d
N∗j
j )2 − c∆(xj)2 − cη(n− η∗j )

= 2
n2 [(Vi − Vj)(d

N∗j
j − d

N∗i
i + Vi − Vj)] + 2c∆(xi + xj − 1) + 2cη.

5.4 Dynamics

For simplicity, we denote the dynamic model of cultural traits in directed networks (de-
scribed in Section 5.3.1), in undirected PST networks (described in Section 5.3.3) and in
undirected PS networks (described in Section 5.3.2) as the DN model, the UPST model
and the UPS model, respectively.
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5.4.1 The DN model

The optimization Problem for adult i ∈ N at time t is:

max
l+i ,l
−
i

−(Vi(t+ 1)− Vi(t))2 − c∆(λ+
i + λ−i )2 − cη(n− η(t)− λ+

i + λ−i )

= max
l+i ,l
−
i

− 1
n2 (dNi(t+1)

i )2 − c∆(λ+
i + λ−i )2 − cη(n− η(t)− λ+

i + λ−i ).

A steady state is such that either all traits are homogenous or the extremists are discon-
nected from all others.

Definition 5.4. A state V (t) is called a steady state if for all t′ > t, Vi(t′) = Vi(t), for
all i ∈ N .

General results

Assume that each dynasty applies optimal network changes in each period. If at some
time t, a dynasty i deleted all the links with the others, i..e, Ni(t) = ∅, then the dynasty
will never add links.

Proposition 5.6. Assume that cη < c∆. ∀i ∈ N , if ∃t, such that Ni(t) = ∅, then
Ni(t′) = ∅,∀t′ > t. As a result, Vi(t′) = Vi(t),∀t′ > t.

Proof. The utility of adding any number of links is decreasing for every dynasty since the
intergenerational utility would be non-increasing by linking to other dynasties and the
sum of the cost of network intervention and the cost of parental socialization would be
decreasing due to the assumption that cη < c∆.

The following proposition gives the necessary conditions for agents with only one link to
add one more link, or to add one more link and to delete the existing link at the same
time, respectively.

Proposition 5.7. For any n ∈ N, assume adult i has one link to adult j at time t, i.e.,
Ni(t) = {j}. Then Ni(t+ 1) 6= {k} if

c∆ >
1

4n2 ((dji (t))2 − (dki (t))2);

Ni(t+ 1) 6= {j, k} if

c∆ − cη > − 1
n2 ((d{j,k}i (t))2 − (d{j}i (t))2).
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Proof.
Ui(Ni(t+ 1) = {j}|Ni(t) = {j}) = − 1

n2 ((dji (t))2 − (n− 1)cη.

Ui(Ni(t+ 1) = {j, k}|Ni(t) = {j}) = − 1
n2 (d{j,k}i )2 − cη − (n− 2)c∆.

Ui(Ni(t+ 1) = {k}|Ni(t) = {j}) = − 1
n2 (dki (t))2 − (n− 1)cη − 4c∆.

Adult i will keep the link with adult j and form a link with adult k only if Ui(Ni(t +
1) = {j, k}|Ni(t) = {j}) > Ui(Ni(t + 1) = {j}|Ni(t) = {j}) which leads to c∆ − cη <

− 1
n2 ((d{j,k}i (t))2 − (d{j}i (t))2).

Adult i will deltete the link with adult j and form a link with adult k only if Ui(Ni(t+1) =
{k}|Ni(t) = {j}) > Ui(Ni(t + 1) = {j}|Ni(t) = {j}) which leads to c∆ < 1

4n2 ((dji (t))2 −
(dki (t))2).

Proposition 5.7 tells that adult would not form other links if the current cultural distance
with the neighbourhood is sufficiently small.

Corollary 5.4. Assume n = 3 and adult i has one link to adult j at time t, i.e., Ni(t) =
{j}. Then Ni(t+ 1) = {j, k} only if

c∆ − cη < −1
9((Vj(t) + Vk(t)− 2Vi(t))2)− (Vj(t)− Vi(t))2

which also can be written as

c∆ − cη < −1
9((d{j,k}i (t))2 − (d{j}i (t))2);

Ni(t+ 1) = {k} only if
c∆ <

1
36((dji (t))2 − (dki (t))2).

This is equivalent to say that Ni(t+ 1) 6= {j, k} if

c∆ − cη > −1
9((d{j,k}i (t))2 − (d{j}i (t))2);

Ni(t+ 1) 6= {k} if
c∆ >

1
36((dji (t))2 − (dki (t))2).

Proof.
Ui(Ni(t+ 1) = {j}|Ni(t) = {j}) = −1

9(Vj(t)− Vi(t))2 − 2cη.
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Ui(Ni(t+ 1) = {j, k}|Ni(t) = {j}) = −1
9(Vj(t) + Vk(t)− 2Vi(t))2 − cη − c∆.

Ui(Ni(t+ 1) = {k}|Ni(t) = {j}) = −1
9(Vk(t)− Vi(t))2 − 2cη − 4c∆.

Adult i will keep the link with adult j and form a link with adult k only if Ui(Ni(t +
1) = {j, k}|Ni(t) = {j}) > Ui(Ni(t + 1) = {j}|Ni(t) = {j}) which leads to c∆ − cη <

−1
9((Vj(t) + Vk − 2Vi(t))2)− (Vj(t)− Vi)(t)2.

Adult i will deltete the link with adult j and form a link with adult k only if Ui(Ni(t+1) =
{k}|Ni(t) = {j}) > Ui(Ni(t + 1) = {j}|Ni(t) = {j}) which leads to c∆ < 1

36((dji )(t)2 −
(dki (t))2).

Small costs

Assume the initial state is heterogeneous, i.e., there exist i and j such that Vi(0) 6= Vj(0).
If both costs of changing the network and cost of child care are small (relative to the
degree of imperfect empathy), then the extremists (possibly groups) will disconnect and
there will be long term heterogeneity.

Proposition 5.8. Let cη < c∆ small enough such that

c∆ < min
i∈N

min
j∈N

(Vi(0)− Vj(0))2

n2((n− 1)2 + ηi(0) + 1) .

Then, for any ε > 0 there exists t0 ∈ N such that for V (t) := mink∈N Vk(t) and V̄ (t) :=
maxk∈N Vk(t) we get that there exists V , V̄ ∈ R such that |V −V (t)| < ε and |V̄ −V̄ (t)| < ε

for all t ≥ t0 and V̄ − V > 0.

Proof. We will show that if c∆ <
min
i,j∈N

(Vi(0)− Vj(0))2

n2((n−1)2+ηi(0)+1) , the optimal network at time 1 will
be the empty network and stay empty after time 1.
For any i ∈ N , if he deletes all his links to others, his utility of deleting all links will be
ug
∅

i (1) = −c∆(n − 1)2 − cη(ηi + 1). The utility of any other network changes ug
′

i (1) <
− 1
n2 min

j∈N
(Vi(0) − Vj(0))2, for any g′ 6= g∅. Thus ug

∅

i (1) > ug
′

i (1),∀g′ 6= g∅. This holds for

any i ∈ N , so the network will be g∅ after time 1.

Example 5.3. Consider the same initial network structure and cultural traits with Ex-
ample 5.1 and cη = 0.001, c∆ = 0.003. The dynamic of cultural traits is shown in Figure
5.9. The extremists disconnect and it leads to a long term heterogeneity.
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Figure 5.9: Dynamic of Cultural Traits for cη = 0.001, c∆ = 0.003.

Intermediate costs

We can almost always find (intermediate) cost values (relative to degree of imperfect
empathy) such that the traits of the whole society converge to that of an extremist
subgroup.

Conjecture 5.1. Suppose the initial traits are randomly distributed according to the uni-
form distribution on some interval I ⊂ R and suppose the initial network is a Bernoulli
random network. Then, for almost all initial cultural traits V(0) and for all initial net-
works g(0), there exists costs 0 ≤ cη ≤ c∆ and a (strict) subset of players E ⊂ N such
that for all ε > 0 there exists a t0 ∈ N:

gij(t) = 0 ∀i ∈ E, j ∈ N \ E and |Vi(t)− Vj(t)| < ε.

Example 5.4. Consider the same initial network structure and cultural traits with Ex-
ample 5.1 and cη = 0.009, c∆ = 0.023. The dynamic of cultural traits is shown in Figure
5.10. The traits of the whole society converge to the lowest extremist.
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Figure 5.10: Dynamic of Cultural Traits for cη = 0.009, c∆ = 0.023.

Large costs

Large costs of either child care or cost of network change (relative to the degree of imper-
fect empathy) imply convergence to a homogenous society.

Proposition 5.9. Let cη or c∆ be large enough and suppose for all i, j ∈ N there exists
a directed path from i to j in g(0). Then, for all ε > 0 there exists t0 ∈ N such that for
all i, j ∈ N : |Vi(t)− Vj(t)| < ε for all t ≥ t0 and g(t) is connected.

Example 5.5. Consider the same initial network structure and cultural traits with Ex-
ample 5.1 and cη = 0.001, c∆ = 0.5. The dynamic of cultural traits is shown in Figure
5.11.

Indeed, assume the cost of network changes c∆ is sufficiently large, then no agent wants
to change links. So the network stays unchanged and cultural traits form a consensus in
the limit.

Example 5.6. Consider the same initial network structure and cultural traits with Ex-
ample 5.1 and cη = 0.5, c∆ = 0.001. The dynamic of cultural traits is shown in Figure
5.12.

Instead, assume the cost of child care c∆ is sufficiently large, it means that dynasties
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Figure 5.11: Dynamic of Cultural Traits for cη = 0.001, c∆ = 0.5.

Figure 5.12: Dynamic of Cultural Traits for cη = 0.5, c∆ = 0.001.
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will benefit a lot from integration, then all dynasties want to add more links. So it will
converge to a complete network and cultural traits also form a consensus quickly.

5.4.2 The UPST model

Assume that a pairwise stable network with transfers (PST) is reached in each period,
i.e., g(t+ 1) is a PST network with respect to g(t) and V (t) by definition 5.2 4.

General results on convergence

Theorem 5.2. (Convergence) For any given V (0) and g(0), for all i ∈ N , all ε > 0 there
exists t0 ∈ N such that |Vi(t)− Vi(t′)| < ε for all t, t′ ≥ t0.

Proof. Note here the series of the network matrices g(0), g(1), . . . . satisfies the following
properties:

(i) gii(t) = n−ηi(t)
n

> 0,∀i ∈ N ;

(ii) g(t) is symmetric for all t;

(iii) min+
i,j∈N{gij(t)} ≥ 1

n
, where min+

i,j∈N{gij(t)} stands for the minimum that is taken
over all positive entries among gij(t).

Then by the Stabilisation Theorem proposed in Lorenz (2005a), ∃t0 and pairwise disjoint
classes of agents I1 ∪ I2 ∪ . . . ∪ Ip = N such that

A(∞) · · ·A(1)A(0) =


K1 · · · 0
... . . . ...
0 · · · Kp


A(t0) · · ·A(1)A(0),

where K1, · · · , Kp are quadratic consensus matrices in the sizes of I1, · · · , Ip. Thus

V (∞) = A(∞) · · ·A(1)A(0)V (0) =


K1 · · · 0
... . . . ...
0 · · · Kp


A(t0) · · ·A(1)A(0)V (0).

The convergence of the cultural traits for all agents is guaranteed.

4In case of the existence of multiple PST networks, a random PST network will be reached.
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Simulation results on the dynamics with PST networks

The following example shows that the PST network is not unique in each period.

Example 5.7. Consider the same initial network structure and cultural traits with Ex-
ample 5.2 and cη = 0, c∆ = 0. The dynamic of cultural traits is shown at Figure 5.13.
As time goes by, dynasty 1 disconnect with all other dynasties. The steady-state cultural
traits are V̄1 = 1, V̄i = 5.3, i = 2, . . . , 10. V(0) = (1, 2, 3, 3, 4, 4, 5, 7, 9, 11).

g(0) =

1 2 3 4 5 6 7 8 9 10



1 0 0 1 0 1 1 0 1 0 1

0 1 1 0 1 1 1 0 1 0 2

0 1 1 0 1 0 1 0 1 0 3

1 0 0 1 0 1 1 0 1 0 4

0 1 1 0 1 1 1 0 1 0 5

1 1 0 1 1 1 1 0 1 1 6

1 1 1 1 1 1 1 1 1 0 7

0 0 0 0 0 0 1 1 1 0 8

1 1 1 1 1 1 1 1 1 1 9

0 0 0 0 0 1 0 0 1 1 10,

g(1) =

1 2 3 4 5 6 7 8 9 10



1 0 0 0 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0 0 0 2

0 1 1 0 0 0 1 0 0 0 3

0 0 0 1 0 0 1 0 0 0 4

0 0 0 0 1 1 1 0 0 0 5

0 0 0 0 1 1 1 0 0 0 6

0 0 1 1 1 1 1 1 1 0 7

0 0 0 0 0 0 1 1 1 0 8

0 0 0 0 0 0 1 0 1 1 9

0 0 0 0 0 0 0 0 1 1 10.

Given V (0) and g(0), both g∅ and g(1) are PST networks.
Let us check for 23 ∈ g(1), would 2 and 3 delete the link. The sum of the marginal utilities
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of deleting the link 23 of g(1) is

(mu2+3)(g(1), 23|V (0), g(0))

=− (V2 − V3)2

n2 − (2V3 − V2 − V7)2

n2 + (V3 − V7)2

n2

= 1
50 > 0.

Therefore 2 and 3 would not delete the link 23. All the links can be checked likewise to
show that g(1) is a PST network.

Remark 5.2. When cη = c∆ = 0, g(1) only depends on V (0).

Remark 5.3. PST network exists but is not unique at each period.

Figure 5.13: Dynamic of Cultural Traits for cη = 0, c∆ = 0.

As either cη or c∆ increases enough, the network will converge to a connected (but may
be not complete) network, thus all dynasties reach a consensus on cultural traits.

Example 5.8. Consider the same initial network structure and cultural traits with Ex-
ample 5.2 and cη = 0.1, c∆ = 0.5. The dynamic of cultural traits is shown at Figure 5.14.
The network converges to a connected network, and all dynasties reach a consensus on
cultural traits with the steady-state cultural traits being V̄i = 4.9, i = 1, . . . , 10.



5.4. Dynamics 109

Figure 5.14: Dynamic of Cultural Traits for cη = 0.1, c∆ = 0.5.

Let cη be large enough, the network will converge to a connected network, thus all dynas-
ties reach a consensus on cultural traits. Let c∆ be large enough, the network will stay
unchanged as time goes on.

Example 5.9. Consider the same initial network structure and cultural traits with Exam-
ple 5.2 and cη = 1, c∆ = 0.5. The dynamic of cultural traits is shown at Figure 5.15. The
network converges to a complete network, and all dynasties reach a consensus on cultural
traits with the steady-state cultural traits being V̄i = 4.9, i = 1, . . . , 10.

Example 5.10. Consider the same initial network structure and cultural traits with Ex-
ample 5.2 and cη = 0.01, c∆ = 5. The dynamic of cultural traits is shown at Figure
5.16. The network stays unchanged and connected, and all dynasties reach a consensus
on cultural traits with the steady-state cultural traits being V̄i = 4.9, i = 1, . . . , 10.

5.4.3 The UPS model

Assume the initial state is heterogeneous, i.e., there exist i and j such that Vi(0) 6= Vj(0).
If both costs of changing the network and cost of child care are small (relative to the
degree of imperfect empathy), then there will be long term heterogeneity.



110 Chapter 5. The Dynamics of Cultural Traits

Figure 5.15: Dynamic of Cultural Traits for cη = 1, c∆ = 0.5.

Figure 5.16: cη = 0.01, c∆ = 5.
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Proposition 5.10. There exist sufficiently small c∆ and cη such that for any ε > 0 there
exists t0 ∈ N such that for V (t) := mink∈N Vk(t) and V̄ (t) := maxk∈N Vk(t), there exists
V , V̄ ∈ R such that |V − V (t)| < ε and |V̄ − V̄ (t)| < ε for all t ≥ t0 and V̄ − V > 0.

Proof. Denote xi and xj as the number of links agent i and j have in g(0), respectively.
By Proposition 5.3, there exist sufficiently small c∆ and cη such that the empty network
is the unique PS network. Thus Vi(t) = Vi(0), ∀i ∈ N .

As both cη and c∆ increases, more and more dynasties reach a consensus, as shown in
Figure 5.19. Once cη or c∆ increases over a threshold, the network will converge to
a connected (but may not complete) network, thus all dynasties reach a consensus on
cultural traits.

Example 5.11. Consider the same initial network structure with Example 5.2. The
initial cultural traits are V (0) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
Small costs
When cη = 0.001, c∆ = 0.001, the dynamic of cultural traits is shown at Figure 5.17.
The network converges to the empty network, and the steady-state cultural traits are V̄i =
Vi(0), i = 1, . . . , 10.

Figure 5.17: Dynamic of Cultural Traits for cη = 0.001, c∆ = 0.001.
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Intermediate costs
When cη = 0.004, c∆ = 0.005, the dynamic of cultural traits is shown at Figure 5.18.
Dynasties 1, 2, 3, 4, 10 are disconnected with the others, and the steady-state cultural
traits are V̄1 = 1, V̄2 = 2.1, V̄3 = 3.1, V̄4 = 4, V̄10 = 9.9, V̄i = 349/50, i = 5, . . . , 9.

Figure 5.18: Dynamic of Cultural Traits for cη = 0.004, c∆ = 0.005.

When cη = 0.005, c∆ = 0.006, the dynamic of cultural traits is shown at Figure 5.19.
Dynasties 1, 4, 10 are disconnected with the others, and the steady-state cultural traits
are V̄1 = 1, V̄4 = 4.2, V̄10 = 9.9, V̄2 = V̄3 = V̄i = 5.7, i = 5, . . . , 9.
When cη = 0.01, c∆ = 0.02, the dynamic of cultural traits is shown at Figure 5.20.
Dynasty 1 is disconnected with the others, and the steady-state cultural traits are V̄1 =
13/10, V̄i = 179/30, i = 2, . . . , 10.
Large costs
When cη = 0.04, c∆ = 0.05, the dynamic of cultural traits is shown at Figure 5.21.
The network converges to the connected network, and the steady-state cultural traits are
V̄i = 11/2, i = 1, . . . , 10.
Large c∆

When cη = 0.07, c∆ = 4.9, the dynamic of cultural traits is shown at Figure 5.22. The net-
work remains unchanged, and the steady-state cultural traits are V̄i = 11/2, i = 1, . . . , 10.
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Figure 5.19: Dynamic of Cultural Traits for cη = 0.005, c∆ = 0.006.

Figure 5.20: Dynamic of Cultural Traits for cη = 0.01, c∆ = 0.02.
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Figure 5.21: Dynamic of Cultural Traits for cη = 0.04, c∆ = 0.05.

Figure 5.22: Dynamic of Cultural Traits for cη = 0.07, c∆ = 4.9.
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Large cη

When cη = 0.1, c∆ = 0.05, the dynamic of cultural traits is shown at Figure 5.23. The
network converges to the complete network, and the steady-state cultural traits are V̄i =
11/2, i = 1, . . . , 10.

Figure 5.23: Dynamic of Cultural Traits for cη = 0.1, c∆ = 0.05.
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5.5 Efficiency of networks

All the simulation results of these models showed that for sufficiently small cost parame-
ters, it converges to a heterogeneous society, while for large cost parameters, it converges
to a homogeneous society. In this section, we consider the efficiency of networks such that
all dynasties would not benefit from deviating to the other networks.

Definition 5.5. A network g is efficient, if ∀g′ ∈ G, ∑n
i=1 Ui(g | V (t), g(t)) ≥ ∑n

i=1 Ui(g′ |
V (t), g(t)).

Definition 5.6. A network g is strongly efficient, if ∀g′ ∈ G and ∀i ∈ N , Ui(g |
V (t), g(t)) ≥ Ui(g′ | V (t), g(t)).

The following proposition further shows that the empty network g∅ is the only (strongly)
efficient network for small costs and the complete network gN is the only (strongly) efficient
network for large costs.

Proposition 5.11. Assume that the initial cultural traits are heterogenous, i.e., Vi 6= Vj,
∀i 6= j and i, j ∈ N . There exist sufficiently small cη and c∆ such that the empty network
g∅ is the only (strongly) efficient network, and sufficiently large cη such that the complete
network gN is the only (strongly) efficient network.

Proof. Remark that any strongly efficient network is also efficient, thus it suffices to show
the argument on strong efficiency. First to show that there exist sufficiently small cη and
c∆ such that the empty network g∅ is the only strongly efficient network. Fix any g(t),
V (t) and g 6= g∅. It suffices to show that ∃cη, c∆, such that Ui(g∅ | V (t), g(t)) − Ui(g |
V (t), g(t)) ≥ 0, ∀i ∈ N . Denote xi as the number of links that agent i need to change
from g(t) to g∅ and yi the number of links that agent i need to change from g(t) to g.
Denote the neighborhood of agent i in g as Ni and the degree of i as ηi. Then

Ui(g∅ | V (t), g(t))− Ui(g | V (t), g(t))

=− c∆(xi)2 − ncη + 1
n2 (dNii )2 + c∆(yi)2 + cη(n− ηi)

=c∆(yi − xi)2 − cηηi + 1
n2 (dNii )2 ≥ 0

⇐⇒ cηηi + c∆(xi − yi)2 ≤ 1
n2 (dNii )2.

Due to the assumption that Vi 6= Vj, ∀i 6= j and i, j ∈ N , dNii 6= 0. Thus such cost
parameters always exist to guarantee the empty network g∅ is the only strongly efficient
network.
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Then to show that there exist sufficiently large cη such that the complete network gN is
the only (strongly) efficient network. Denote zi as the number of links that agent i need
to change from g(t) to gN . Then

Ui(gN | V (t), g(t))− Ui(g | V (t), g(t))

=− 1
n2 (dNi )2 − c∆(zi)2 + 1

n2 (dNii )2 + c∆(yi)2 + cη(n− ηi)

=c∆(yi − zi)2 + 1
n2 [(dNii )2 − (dNi )2] + cη(n− ηi) ≥ 0

⇐⇒ cη ≥ 1
n− ηi

[
c∆(zi − yi)2 + 1

n2 [(dNi )2 − (dNii )2]
]
.

Thus such cost parameters always exist to guarantee the complete network gN is the only
strongly efficient network.

5.6 Conclusion

We studied the dynamics of intergenerational cultural transmission in endogenous net-
works where the network changes are inherited. We proposed three ways to endogenize
the process of network formation. In the first one, the network is supposed to be directed
and each dynasty can either form or delete a directed link unilaterally with another dy-
nasty. Therefore, at each period, each family faces a utility optimization problem where
a trade-off between own utility losses and the improvements of child’s cultural trait. We
have shown that if the cost of network changes is greater than the cost of child care,
extremists will never add links, and in the case of sufficiently low cost, extremists may
cut all ties with the society. In the second and third models, the network is supposed to
be undirected. In the second model, we assume that after each period, a pairwise stable
network with transfers (PST network for short) is reached, i.e., ∀t ∈ N, G(t+ 1) is a PST
network for G(t) and V (t). We have shown the existence of the PST network for each
period, however, it is not necessary to be unique, evidenced by a counter example. More-
over, a necessary and sufficient condition is given such that a network is PST for given
V (t) and G(t). The convergence of cultural traits is guaranteed. In the third model,
we assume that after each period, a pairwise stable network (PS network for short) is
reached, i.e., ∀t ∈ N, G(t + 1) is a PS network for G(t) and V (t). In this case, there
always exist sufficiently small cost parameters such that the empty network is the unique
PS network.
There always exist sufficiently small cost parameters such that the empty network is the
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unique efficient network, and sufficiently large costs of child care such that the complete
network is the unique efficient network.
The dynamics of these three models are studied by both analytics and simulations. For
sufficiently small costs of network changes and child care, extremists will disconnect from
the other dynasties and there will be a long term heterogeneity of the society. Specially,
in the first and the third model, we show that the network will converge to the empty
network. While in the second model, the network might or might not converge to the
empty network, since the PST network is not unique in each period. As costs of net-
work changes and child care increase, more and more dynasties reach a consensus even
though there are still some other dynasties disagree with this consensus. For large costs
of network changes and child care, it converges to a homogeneous society such that all
dynasties have the same cultural trait in the limit. This give us some insights on how to
reduce extremism in our real life. For example, one can consider to foster the interaction
of children with different cultural backgrounds such that the cost of network change is
increased (extremists will less probably disconnect with others). Some work can also be
done to increase value of integration (i.e., increase the benefits from relations). Extrem-
ists play an important role in the dynamical process, policy makers should take it into
account and provide more opportunities for extremists to connect with others.



Chapter 6

Continuous opinion dynamics with
anti-conformity behavior

6.1 Introduction

We form our opinions on every aspect of our life, from personal interests (e.g., favorite
songs/foods), to social norms (e.g., the acceptable behavior in certain circumstances), to
economic decisions (e.g., consumption budget, tax rate), and even to political attitudes,
etc. Social networks play a crucial role in modeling opinion dynamics as people are
constantly interacting and influencing each other. Experimental evidences provided by
Galton (1907), Lorge et al. (1958), Hommes et al. (2005) and Yaniv and Milyavsky (2007)
demonstrate that the aggregate (such as median and averaged) estimates of a group are
very close to the true value.
Even though the amount of models of opinion dynamics is huge, they can be classified
into continuous opinion models and discrete opinion models. The group of models of
discrete opinion dynamics is mainly applied to cases when there is no compromises in
between any two opinions, actions or decisions, while the group of models of continuous
opinion dynamics deals with problems in which the opinion of people can be expressed as
real numbers (e.g., tax rates, prices, quantitative predictions). The classical and widely
used agent-based model of continuous opinion dynamics is the DeGroot model (French Jr
(1956), Harary (1959), Harary et al. (1965), DeGroot (1974)), assuming agents update
their opinions iteratively as the weighted average of the opinions of their neighbors. The
typical behavior of the DeGroot model is the presence of consensus due to the implicit as-
sumption of conformity, while in real life disagreement is also ubiquitous (Abelson (1964)).
Out of this consideration, different kinds of variations of the DeGroot model have been
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proposed. For example, some variations introduce the stubborn agent1 whose opinion re-
mains unchanged during the iterative pooling process (see Friedkin and Johnsen (1990),
Friedkin and Johnsen (1999), Hegselmann and Krause (2015), Masuda (2015)), by intro-
ducing an attachment of each agent to its initial opinion; some other variations consider
time-varying weight matrices (Lorenz (2005b)); some variations considered that agents
are only interacting with those who hold opinions close enough to them by introducing
confidence bounds (Hegselmann et al. (2002), Weisbuch (2004), Krause (2000), Deffuant
et al. (2000), see also the survey on continuous opinion dynamics with bounded confidence
Lorenz (2007)); some other variations introduce negative influences, i.e., the element wij
of the weight matrix W can be positive or negative, thus W is no more row-stochastic
(Altafini (2012a), Altafini (2012b)). The DeGroot model implies the assumption of con-
formity since opinions of agents are attracting each other. Introducing negative influences
provides a way to model the anti-conformity behavior.

Conformity V.S. Anti-conformity Before the 21st century, most of the models of
opinion dynamics made the basic assumption that agents tend to follow the trend (i.e.,
they are conformist), and the existence of opposite behavior (anti-conformity or counter-
conformity) was neglected. Even in the field of psychology, as Jahoda (1959) criticized,
conformity was over-emphasized in the psychological literature, and the emphasis ob-
scured the reality of non-conformity or anti-conformity (Hornsey et al. (2003)). The
famous experimental study by Asch (1955) showed that agents tend to conform to the
wrong judgement of their predecessors even if some of them know already that the judge-
ment was wrong. A follow-up study (Deutsch and Gerard (1955)) distinguished two forms
of social influence that lead to the wrong judgement. While normative social influence
drives some agents to behave like majority in order to avoid "social censure", informational
social influence explains the conformity behavior in the sense that agents are uncertain
about the answer, so they might rely on the judgement of the majority of the society
(Hornsey et al. (2003)). This was later supported by Frideres et al. (1971), Terry et al.
(2000), Zafar (2011). Motivated by this idea, Buechel et al. (2015) modeled the contin-
uous opinion dynamics by allowing agents to misrepresent opinions in a conforming or
anti-conforming way, and furthermore showed that agents’ social power is decreasing in
the degree of conformity.
The other branch of study on continuous opinion dynamics with anti-conformity behavior
(or negative social influence) is based on the notion of coopetition, which was introduced
by Carfì and Schilirò (2012) in the study of the Green Economy and then applied to

1Stubborn agents are also called by physicists as independent agents (Sznajd-Weron et al. (2011),
Sznajd-Weron et al. (2014)), inflexibles (Galam and Jacobs (2007)), zealots (Mobilia (2003)).
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opinion dynamics with negative influences for a better understanding and explaining
the disagreement of opinions. In "coopetitive" networks agents can both cooperate and
compete, corresponding to the positive and negative influences among agents, respectively
(Proskurnikov and Tempo (2018)), i.e., agents are situated in a signed graph where each
edge of the graph is assigned a positive sign or a negative sign. Altafini proposed a model
of influence with antagonistic interactions based on the theory of structurally balanced
network (Altafini (2012b), Altafini (2012a), Harary et al. (1953)). The idea of structural
balancedness can be interpreted as the ancient proverb the friend of my enemy is my
enemy, the enemy of my enemy is my friend (Schwartz (2010)). The original Altafini
model is coincident with the Abelson model2 with an influence matrix that can have
both positive and negative elements. By doing gauge transformation, the structurally
balanced network can be transformed into the corresponding nonnegative network sharing
the same convergence properties. It was shown that in case of a structurally balanced
network (without self-loops), the bipartite consensus can be achieved. However, for a
structurally unbalanced and strongly connected network, the consensus value is always
the origin, regardless of the initial conditions (Altafini (2012a), Meng et al. (2016) ). In a
recent paper coauthored by Altafini (Shi et al. (2019)), the authors defined two rules for
negative influences: the opposing rule where the opinion of an agent is attracted by the
opposite of the opinion of her neighbor via negative links, and the repelling rule where
the two agents repel each other instead of being attracted via negative links. However,
none of these two rules is appropriate for modeling the anti-conformity behavior for the
following reasons. By adopting the opposing rule, the agent is attracted by the opposite of
the reference opinion, so whether the agent is conforming or anti-conforming depends on
the relative position of the reference opinion to the origin. By adopting the repelling rule,
the deviation of the opinion of one agent is decreasing as the opinion distance with her
neighbor decreases, i.e., the opinion of an anti-conformist agent will stay unchanged if she
has the same opinion value of her reference opinion which is counterintuitive. Moreover,
since opinions are defined in R, as the force of repelling increases, the norm of the opinions
tends to infinity as t goes to infinity. If +∞ and −∞ are considered as the two extreme
opinions in real life, it implies that the extreme opinions are never reached, which is
also counterintuitive. Thus an appropriate updating rule of continuous opinions for anti-
conformity behavior still needs to be developed, which is one of the aims of the current
paper.
Social behavior is described by sociologists in the following three dimensions: (ir-)relevance,
(in-)dependence and (anti-)conformity (Willis (1965)). The current paper focuses on the

2The Abelson model is the continuous counterpart of the DeGroot model.
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third dimension, and aims to study the continuous opinion dynamics in undirected net-
works, considering both conformity and anti-conformity behaviors. As defined by Willis
(1965), "conformity is behavior intended to fulfill normative group expectations as these
expectations are perceived by the individual", while "anti-conformity behavior is directly
antithetical to the norm prescription", in other words, anti-conformity behavior intends
to get away from normative group expectations. Starting from these two definitions, we
propose a new opinion updating rule for anti-conformity behavior which is defined by the
repelling function, meanwhile we adopt the DeGroot updating for conformity behavior.
The (anti-)conformity behavior is introduced either in nodes or in links, respectively. On
the one hand, each agent is given a fixed behavioral characteristic, i.e., either conformist
or anti-conformist, and they will treat all of their neighbors equally, i.e., the nodes are
heterogenous and the links are all the same. On the other hand, all agents adopt the same
opinion updating rules, but they divide their neighborhood into friends and enemies, i.e.,
the nodes are all the same and each link is associated with either a positive or a negative
weight. Based on this idea, two models of continuous opinion dynamics are proposed.
Opinions are assumed to be a real number in the interval [0, 1]. 0 and 1 can be considered
as the two extreme opinions. The repelling function of an agent is a real-valued function
of the current opinion and the reference opinion of the agent, which gives the deviation of
the opinion for anti-conformity behavior. The reference opinion of an agent is a baseline
that one agent would like to repel. It can be the average opinions of all her neighbors or
the average opinions of all her enemies.
The paper is structured as follows. In section 6.2, two models of continuous opinion
dynamics are introduced based on the repelling function, together with a description of
synchronous setting and asynchronous setting for opinions updates. The model of opinion
dynamics with conformist and anti-conformists is studied in Section 6.3, while the model
of opinion dynamics over signed graphs is studied in Section 6.4. Both synchronous and
asynchronous updating are studied for the two models. Section 6.5 concludes the paper
with some remarks.

6.2 The model

6.2.1 Notation

Let N = {1, 2, . . . , n} be the society of agents situated in a fixed and undirected network
G = (N,E) whose nodes are the agents and E is the set of edges or links. The neighbor-
hood of agent i is denoted as Ni = {j ∈ N : {i, j} ∈ E} with its cardinality |Ni| =: ηi
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being the degree of agent i. We consider that i ∈ Ni always holds for each agent i ∈ N .
Opinion of agent i at time t is denoted by xi(t) which is a real number in [0,1]. In case
that opinions converge, the steady state opinion vector is denoted as x̄ = [x̄1, . . . , x̄n].
Opinions are bounded between 0 and 1, thus we introduce the notation [x]10 to denote the
truncated value of x, i.e.,

[x]10 =


0, if x < 0

x, if 0 ≤ x ≤ 1

1, otherwise.

(6.1)

The (anti-)conformity behavior is introduced into either nodes or links, respectively, based
on the repelling function. In the first model, the society is supposed to contain agents
of two different types, i.e., conformist agents and anti-conformist agents. Conformists
would like to hold opinions closer to the averaged social opinion, while anti-conformist
would like to do the opposite (see detailed explanation in Section 6.2.3). In the second
model, we suppose that homogeneous agents are situated in an undirected signed network
G = (N,E) where links are associated with a positive or negative sign. Agents linked by
an edge with positive sign have opinions which are attracting each other (i.e., conforming
influence), while agents linked by an edge with negative sign have opinions which are
repelling each other (i.e., anti-conformity influence, see detailed explanation in Section
6.2.4). In the remaining part of the paper, CODA refers to continuous opinion dynamics
with anti-conformity, and these two models will be called the CODA-node model and the
CODA-link model for short, respectively.

6.2.2 The repelling function fi(xi, ri)

To depict the anti-conformity behavior, for a given agent i ∈ N , the repelling function fi
is defined as a real-valued function of the current opinion xi and the reference opinion ri
in [0, 1] × [0, 1]. As described in Section 6.1, anti-conformity is behavior intended to get
away from normative group expectations Willis (1965). Here, fi is a deviation function
referring to the shift of the opinion due to anti-conformity behavior, and the reference
opinion ri can be seen as the normative group expectations. The reference opinion of
agent i gives the benchmark opinion that agent i would like to repel. For example, ri can
be the average opinion of neighbors of anti-conformist agent i in the CODA-node model
(Section 6.2.3), while ri can also be the average opinion of agents from different groups
in the CODA-link model (Section 6.2.4).
We do not give an explicit form of the repelling function fi, instead, a set of properties are
provided as the requirements of fi according to the definition of anti-conformity behavior.
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If we position xi(t) and ri(t) on the [0,1] axis, and w.l.o.g. assume that xi(t) < ri(t), as
shown in Figure 6.1, the first intuition is that anti-conformity causes xi to move to the
left, i.e., fi and xi − ri have the same sign (property (c)). The second intuition is that
as ri(t) becomes closer to xi(t), the force of anti-conformity is getting stronger, so |fi| is
decreasing in |xi − ri| (property (a)). The case of xi(t) > ri(t) is symmetric (property
(b)).

0 xi(t) ri(t)xi(t+ 1) 1

|fi(xi, ri)|

Figure 6.1: The repelling function fi(xi, ri)

Denoting di := xi − ri, the opinion distance between agent i and the reference point is
|di|. When |di| ≥ ε, fi is a function of di, where ε > 0 is a small number. Above all, the
repelling function fi should satisfy the following properties:

• When di ∈]− 1,−ε[∪]ε, 1[, fi can be written as fi(di), and the following holds:

(a) |fi(di)| is a decreasing function with respect to |di|;

(b) fi(di) is symmetric with respect to the origin, i.e., fi(−di) = −fi(di);

(c) fi(di) and di have the same sign, i.e., fi(di) · di ≥ 0;

(d) fi is piecewise continuous in the intervals [−1,−ε[ and ]ε, 1].

• When di ∈ [−ε, ε], i.e., |xi − ri| ≤ ε, the following cases are distinguished:

(e)

fi =


δi, if 0 ≤ xi < 0.5− ε,

α, if 0.5− ε ≤ xi ≤ 0.5 + ε,

−δi, otherwise 0.5 + ε < xi ≤ 1,

where α is a random variable taking values δ and −δ with equal probabilities
1
2 ;

3

When di is not very small, i.e., xi is not very close to ri: property (a) says that the
magnitude of the deviation of agent i decays as the magnitude of di increases, and agent
would deviate more as the reference opinion becomes closer; property (c) implies that
fi has the same sign as di. That is, opinion of agent i will move further away from ri.
Property (e) says that if xi is very close to ri, then the sign of fi, i.e., the direction of the

3 α can also take value δi or −δi to avoid the randomness.
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deviation, will depend on the location of xi, and xi always moves in the direction such
that there is more room for the deviation. Here, ε is introduced as an approximation
parameter to avoid the unreachable consensus. Take a simple example of the CODA-
node model where anti-conformist agent 1 and conformist agent 2 are connected. f1

gives the shift of opinion for anti-conformist agent 1, i.e., x1(t + 1) = x1(t) + f1(x1, r1).
Assume that x1(0) < x2(0), and they consider the opinion of each other as the referenced
opinion, i.e., r1(t) = x2(t), and r2(t) = x1(t). Agents update opinions according to
x1(t+ 1) = x1(t) + f1(x1(t), r1(t)) and x2(t+ 1) = 1

2(x1(t) +x2(t)). As time goes by, x2(t)
would approach x1(t) (i.e., shift to the left) gradually while x1(t) would deviate from x2(t)
(i.e., also shift to the left). Without introducing this approximation parameter, one would
obtain lim

t→∞
x1(t) = lim

t→∞
x2(t) = 0 which is counterintuitive.

(−σi, 0), (σi, 0) are the x-intercepts of fi(di), i.e., where fi crosses x-axis (di-axis), with
σi > 0 capturing the maximal opinion distance from the referenced point such that agent i
is influenced. [−σi, σi] is called the repelling interval of agent i. If fi does not cross x-axis
or σi ≥ 1, we will adopt the convention that σi = 1. δi captures the maximum repelling
level, i.e., how much is agent i influenced at most. Even though results in the current
paper hold for all forms of fi fulfilling the previous properties, fi(d) can be convex, linear
or concave on [ε, σi] with respect to di(t), depending on the context. Some corresponding
examples are given below.

Example 6.1 (Linear fi(di) when ε < di < σi).
Consider the following piecewise linear form of fi(di):

fi =


max(0, δi − δi

σi
di), if di > ε;

min(0,−δi − δi
σi
di), if di < −ε.

(6.2)

When ε ≤ di < σi, fi is linear in di, i.e., the ratio of the changes in fi and in di is fixed.

Example 6.2 (Convex fi(di) when ε < di < σi).
Consider the following convex form of fi(di) when ε < di < σi:

fi = 1
10di

, di ∈ [−1,−ε[∪]ε, 1]. (6.3)

When ε < di < σi, fi is convex in di, i.e., the derivative of fi w.r.t. di is increasing with
di.

Example 6.3 (Concave fi(di) when ε < di < σi).
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−1 −σi −ε σi 1

−1

−δi

δi

1

ε
di

fi

(a) Graph of fi when |di| > ε.

0.5− ε

−δi

δi

0.5 + ε

xi

fi

(b) Graph of fi when |di| ≤ ε. Remark
that when |xi − 0.5| < ε, fi is a random
variable taking values δ and −δ with equal
probabilities (dotted in blue).

Figure 6.2: An example of linear fi when ε < di < σi

−1 −ε 1

−1

1

ε
di

fi

(a) Graph of fi when |di| > ε. In case that
fi does not cross x-axis (resp., y-axis), we
adopt the convention that σi = 1 (resp.,
δi = 1).

0.5− ε

−δi

δi

0.5 + ε

xi

fi

(b) Graph of fi when |di| ≤ ε. Remark
that when |xi − 0.5| < ε, fi is a random
variable taking values 1 and −1 with equal
probabilities (dotted in blue).

Figure 6.3: An example of convex fi when ε < di < σi

Consider the following concave form of fi(di) when ε < di < σi:

fi =


δi
σi

√
σ2
i − d2

i , if di ∈]ε, 1],

− δi
σi

√
σ2 − d2

i , if di ∈ [−1,−ε[.
(6.4)

When ε < di < σi, fi is concave in di, i.e., the derivative of fi w.r.t. di is decreasing with
di.
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−1 −ε σi 1

−1

δi

−σi ε

−δi

1

di

fi

(a) Graph of fi when |di| > ε.

0.5− ε

−δi

δi

0.5 + ε

xi

fi

(b) Graph of fi when |di| ≤ ε. Remark
that when |xi − 0.5| < ε, fi is a random
variable taking values −δi and δi with equal
probabilities (dotted in blue).

Figure 6.4: An example of concave fi when ε < di < σi

6.2.3 Heterogeneous nodes (conformists and anti-conformists)

In this section, we consider the model of opinion dynamics with heterogeneous nodes
(agents), i.e., with both conformist and anti-conformist agents. Thus, the society N is
partitioned into the set of conformist agents C and that of anti-conformist agents A, i.e.,
N = C ∪ A. Opinion of agent i at time t is denoted by xi(t) which is a real number
in [0,1]. Conformist agents update their opinions following the DeGroot rule with equal
weights, i.e.,

xi(t+ 1) = 1
ηi

∑
j∈Ni

xj(t),∀i ∈ C. (6.5)

However, anti-conformist agents would like to deviate from others, i.e., from their reference
opinions. The reference opinion of anti-conformist agent i can take different forms. For
example, when considering only the synchronous updating of opinions, ri(t) is defined as
the weighted average of opinions of agent i’s neighbors, i.e.,

ri(t) = rSi (t) := 1
ηi − 1

∑
j∈Ni\{i}

xj(t),∀i ∈ A. (6.6)

The shift of opinion for anti-conformist agent i is measured by the repelling function fi
defined in Section 6.2.2. Thus the updating rule followed by anti-conformist agents reads:

xi(t+ 1) =
[
xi(t) + fi

(
xi(t), ri(t)

)]1

0
,∀i ∈ A. (6.7)

Example 6.4. Consider three agents situated in the following network (Figure 6.5) with
agent 1 being conformist and agents 2, 3 being anti-conformists. The initial opinion vector
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is xa(0) = [0.6, 0.4, 0.9], σi = δi = 1/2, i = 2, 3, and ε = 0.001.

1

2 3

0 0.4
x2(0)

0.6
x1(0)

0.9
x3(0)

1

Figure 6.5: Network Structure with agent 1 being conformist and agent 2, 3 being anti-
conformists. The real line at bottom refers to the value of initial opinions of agents.

Conformist agent 1 updates opinion following the DeGroot rule:

x1(t+ 1) = 1
3(x1(t) + x2(t) + x3(t)).

For anti-conformist agents 2 and 3, rS2 (t) = rS3 (t) = x1(t), resulting in d2(t) = x2(t)−x1(t)
and d3(t) = x3(t)− x1(t). Agents 2 and 3 update opinions according to

xi(t+ 1) = [xi(t) + fi(t)]10,

where fi(t) is taking the linear form of the repelling function defined in Example 6.1 when
i = 2, 3.
Take agent 2 for example. At time 0, d2(0) = x2(0)−x1(0) = −0.2. f2(0) = min(0,−0.5+
0.2) = −0.3. Hence x2(1) = x2(0) + f2(0) = 0.1 (see Figure 6.6). However, assuming a
different initial opinion of agent 2, say x′2(0) = 0.5 which is still lower than x1(0), this
leads to the same opinion of agent 2 at time 1: x2(1) = x2(0) + min(0,−0.5 − (x2(0) −
x1(0))) = 0.1. Indeed x2(t+ 1) only depends on the relative position of x2(t) with respect
to x1(t) and on the value of x1(t) since x2(t+1) = x2(t)+min(0,−0.5−(x2(t)−x1(t))) =
min(x2(t), x1(t)− 0.5).
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1

2

0 0.4
x2(0)

0.5
x′2(0)

0.6
x1(0)

1 At time 0

0 0.1
x2(1) = x′2(1)

0.6
x1(0)

1 At time 1

Figure 6.6: Evolution of x2 for one period

In general, ∀i ∈ A,

xi(t+1) =



[max(xi(t), xi(t) + δi − δi
σi

(xi(t)− ri(t)|))]10 if xi(t)− ri(t) > ε,

[min(xi(t), xi(t)− δi − δi
σi

(xi(t)− ri(t)))]10 if xi(t)− ri(t) < −ε,

[xi(t) + δi]10 if 0 ≤ xi(t) < 0.5− ε, xi(t) ≈ ri(t),

[xi(t) + α]10 if 0.5− ε ≤ xi(t) ≤ 0.5 + ε, xi(t) ≈ ri(t),

[xi(t)− δi]10 otherwise.
(6.8)

When δi = σi, it reduces to

xi(t+ 1) =



[max(xi(t), ri(t) + δi)]10 if xi(t)− ri(t) > ε,

[min(xi(t), ri(t)− δi)]10 if xi(t)− ri(t) < −ε,

[xi(t) + δi]10 if 0 ≤ xi(t) < 0.5− ε, xi(t) ≈ ri(t),

[xi(t) + α]10 if 0.5− ε ≤ xi(t) ≤ 0.5 + ε, xi(t) ≈ ri(t),

[xi(t)− δi]10 otherwise.

(6.9)

The opinion value of an anti-conformist agent, say i, at time t+1 only depends on the sign
of the difference of the current opinion and the reference opinion (i.e., sgn(xi(t)− ri(t)))
and on the value of the reference opinion (i.e., ri(t)) rather than the value of its own
current opinion (i.e., xi(t)) in case of δi = σi. This is because σi = δi leads to the fact
that the slope of fi is −1, so each unit increase in di causes one unit decrease in fi.
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The opinions converge to [0, 0.5, 1] as shown in Figure 6.7a, corresponding to the ini-
tial opinion xa(0). However, taking a different initial opinion vector equal to xb(0) =
[0.4, 0.6, 0.9], the opinions oscillate as shown in Figure 6.7b. In this case, from time 1 on,
anti-conformist agent 2 and agent 3 want to be away from agent 2, so they move to the
right till reaching value 1; conformist agent 1 also moves to the right due to the conformity
behavior. When x1 becomes close enough to 1, i.e., 1−x1 < ε, x2 and x3 will jump to the
value of 1/2, as shown in Figure 6.8a. Again x1 will also gradually move to 1/2. As x1

becomes close enough to 1/2, x2 and x3 will move to the left till reaching value 0. Under
the same reasoning, x1 will also gradually move to 0 and at some time, x2 and x3 will
jump to 1/2, as shown in Figure 6.8b.
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(a) Opinion dynamics when δi = σi = 1
2 , ε = 0.001, x1(0) = 0.6, x2(0) = 0.4 and x3(0) = 0.9.

(b) Opinion dynamics when δi = σi = 1
2 , ε = 0.001, x1(0) = 0.4, x2(0) = 0.6 and x3(0) = 0.9.

Figure 6.7: Opinion dynamics with anti-conformism in Example 6.4.
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(a) Opinion dynamics in 50 time steps.

(b) Opinion dynamics between time steps 700 and 800.

Figure 6.8: Opinion dynamics with anti-conformism in Example 6.4 when δi = σi = 1
2 ,

ε = 0.001, x1(0) = 0.4, x2(0) = 0.6 and x3(0) = 0.9.
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6.2.4 Heterogeneous links (signed graph)

In this section, we consider the model of opinion dynamics with heterogeneous links
(relations), i.e., with both positive and negative links. Thus, G = (N,E) is a signed
graph, and the set of edges E is partitioned into the set of positive edges E+ and the
set of negative edges E−, i.e., E = E+ ∪ E−. Then the network G is decomposed into
two subnetworks G+ = (N,E+) and G− = (N,E−). The neighborhood of agent i is
partitioned into the set of her friends and the set of her enemies, i.e., Ni = N+

i ∪N−i , with
N+
i := {j ∈ Ni : gij > 0} and N−i := {j ∈ Ni : gij < 0}. The opinion of a given agent

is updated as the truncated sum of the average opinion of her friends and the deviation
from her enemies, i.e.,

xi(t+ 1) =
[ 1
η+
i

∑
j∈N+

i

xj(t) + f
(
xi(t),

1
η−i

∑
j∈N−i

xj(t)
)]1

0
(6.10)

where f
(
xi(t), 1

η−i

∑
j∈N−i

xj(t)
)

is the repelling function defined in section 6.2.2 with

di(t) = xi(t)− 1
η−i

∑
j∈N−i

xj(t)). We adopt the convention that f
(
xi(t), 1

η−i

∑
j∈N−i

xj(t)
)

:=
0 when η−i = 0.

Example 6.5. Consider 3 agents situated in the following network (see Figure 6.9).
Agent 2 and agent 3 are friends and they are enemies to agent 1.

G =

1 2 3


1 −1 −1 1

−1 1 1 2

−1 1 1 3.

1

2 3

Figure 6.9: A signed graph. Blue edge represents positive influence and red edges represent
negative influences.
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Agents update opinions according to the following rules:
Agent 1:

x1(t+ 1) = x1(t) + f
(
x1(t), 1

2(x2(t) + x3(t)
)

;

Agent 2:
x2(t+ 1) = 1

2(x2(t) + x3(t)) + f
(
x2(t), x1(t)

)
;

Agent 3:
x3(t+ 1) = 1

2(x2(t) + x3(t)) + f
(
x3(t), x1(t)

)
.

Taking the linear form of the repelling function as in Example 6.1, and supposing two
different initial opinions xa(0) = [0.4, 0.6, 0.9] and xb(0) = [0.6, 0.4, 0.9], the opinions
converge as shown in figure 6.10a and figure 6.10b.
Let us compare our model to the model of Shi et al. (2019), presented in Section 2.7.3.
The formulas for the opposing and repelling rules are as follows.
Opposing rule:
Agent 1:

x1(t+ 1) = x1(t)− β(x2(t) + x3(t))− 2βx1(t);

Agent 2:
x2(t+ 1) = x2(t) + α(x3(t)− x2(t))− β(x1(t) + x2(t));

Agent 3:
x3(t+ 1) = x3(t) + α(x2(t)− x3(t)− β(x1(t) + x3(t))).

Repelling rule:
Agent 1:

x1(t+ 1) = x1(t)− β(x2(t) + x3(t)) + 2βx1(t);

Agent 2:
x2(t+ 1) = x2(t) + α(x3(t)− x2(t))− β(x1(t)− x2(t));

Agent 3:
x3(t+ 1) = x3(t) + α(x2(t)− x3(t)− β(x1(t)− x3(t))).

The corresponding graphs of opinion dynamics are shown in Figure 6.11a and Figure
6.11b. By following the opposing rule, agents are attracted by the opinions of their friends
and the opposite opinions of their enemies. However, during the second period of Example
6.5, agent 1 seems to be attracted by her enemies since x1(1) < −x2(1) and x1(1) < −x3(1)
(see Figure 6.11a). Indeed, ∀i, j ∈ N , agent i will be attracted by xj as long as xj−xi and
−xj−xi have the same sign, which is counterintuitive. On the other hand, by following the
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repelling rule, agents are attracted by the opinions of their friends and repel the opinions
of their enemies. As a result, opinion of agent 1 tends to −∞ and opinions of agent 2
and agent 3 tend to ∞ as t → ∞(see Figure 6.11b). None of these rules are applicable
for modelling anti-conformity behavior. However, our updating rule based on the repelling
functions is able to capture anti-conformity behavior via negative links, in the sense that
agents are attracted by opinions of their friends and repel the opinions of their enemies,
and the repelling level is related to the distance between her own opinion and her reference
opinion (the average opinion of her neighbors). The repelling level is decreasing as the
distance increases. In Example 6.5, agents form consensus within each group (see Figure
6.10).
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(a) δi = σi = 1
2 , ε = 0.001, x1(0) = 0.4, x2(0) = 0.6 and x3(0) = 0.9.

(b) δi = σi = 1
2 , ε = 0.001, x1(0) = 0.6, x2(0) = 0.4 and x3(0) = 0.9.

Figure 6.10: Opinion dynamics of Example 6.5 over signed graphs.
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(a) Opinion dynamics with opposing rule when α = β = 1
2 , x1(0) = 0.6, x2(0) = 0.4 and

x3(0) = 0.9.

(b) Opinion dynamics with repelling rule when α = β = 1
2 , x1(0) = 0.6, x2(0) = 0.4 and

x3(0) = 0.9.

Figure 6.11: Opinion dynamics of Example 6.5 over signed graphs with opposing rule and
repelling rule.
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6.2.5 Synchronous updating and Asynchronous updating

Different activation regimes (such as synchronization or synchronization of agents’ ac-
tivation, different interaction size at each time step and so on) can produce different
results in opinion dynamic models (Alizadeh et al. (2015)). It may happen that some
interesting phenomena exhibited in the synchronous updating model disappear in the
asynchronous setting, and therein stability appears instead of striking spatial chaos (Hu-
berman and Glance (1993), Nowak and May (1992)). By describing the order of updates
as a sequence of subsets of the population N , Bredereck and Elkind (2017) defined the
synchronous updating accordingly, as the updating sequence (N,N, . . . , N) and defined
the asynchronous updating as that with each subset being a singleton. This captures the
idea that only one agent is active at each time. The active agent can either meet another
agent with a certain probability to exchange opinions or observe the opinions of all her
neighbors, and thereafter has her own opinion updated.
Acemoglu and Ozdaglar (2011) modeled an asynchronous updating process by supposing
that at each time, agent i is chosen to be active with probability 1/n,∀i ∈ N and in case
of agent i being active, agent i will meet agent j and exchange opinions with probability
pij ≥ 0, where ∑n

j=1 pij = 1,∀i ∈ N . Moreover, for a better approximation of many real
situations, some researchers also consider the opinion dynamics in a random neighborhood
setting. For example, Grabisch and Li (2020) studied the synchronous opinion dynamics
for binary opinions in a random neighborhood setting in which a random neighborhood
is realized in each period. Nyczka and Sznajd-Weron (2013a) studied the asynchronous
q-voter model and assumed that both the voter and the group that can influence the
voter are randomly chosen (random active agent and random neighborhood). Ramazi
et al. (2016) showed that for threshold-based dynamics, the equilibrium can be reached in
both the synchronous and asynchronous setting, and it can also be almost surely reached
in partial synchronous setting 4. These results reveal that the asynchrony does not lead
to cycles or non-convergence, neither does the irregular network topology. Instead, the
coexistence of heterogenous behavior (such as conformity and anti-conformity behavior)
play a role in the presence of cycles or non-convergence (Ramazi et al. (2016), Grabisch
and Li (2020)).
For a given network structure G = (N,E), it is natural to think the following ways to
modeling asynchronous updating process. One is to choose an agent at random to be
active with probability 1/n and the active agent will meet one of her neighbor at random
with probability 1/ηi. Then the pair of agents ij will exchange their opinions. This is
also called randomised gossip model in Boyd et al. (2006), used by Shi et al. (2019) to

4In partial synchronous updating setting, a random number of agents update opinions simultaneously
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describe asynchronous random interactions. An alternative way is to choose an agent at
random (with probability 1/n) to be active and the active agent will update her opinion.
Take the CODA-node model for example, and assume that agent i is active at time t. If
i is conformist she will update her opinion as the average opinion of her neighbors, i.e.,
according to 6.5, while if she is anti-conformist, she will update her opinion according to
6.7, taking the average opinion of her neighbors as the referenced opinion, i.e.,

rAi (t) := 1
ηi − 1

∑
j∈Ni\{i}

xj(t), ∀i ∈ A.5 (6.11)

This paper aims to study the anti-conformity behavior, which is related to the response
to the average behavior of the society or a group. Therefore, we adopt the latter form of
asynchrony where the active agent is able to observe the behavior of the local neighbor-
hood, based on which she will update opinions.

6.3 Opinion dynamics with conformists and anti-conformists

6.3.1 Synchronous updating model

In this section, we consider the synchronous updating where agents update opinions si-
multaneously following rules 6.5 and 6.7. We are interested in whether opinions converge,
and if so, whether agents will form a consensus in the long run. Define convergence and
consensus as follows.

Definition 6.1 (Opinion convergence). Opinions of agents in set N are convergent if
∀i ∈ N, ∃x∗i ∈ [0, 1], such that lim

t→∞
xi(t) = x∗i .

Definition 6.2 (Consensus). The society is said to reach a consensus if there exists
x∗ ∈ [0, 1], such that lim

t→∞
xi(t) = x∗,∀i ∈ N .

Different from the classic model of opinion dynamics with only conformist agents, intro-
ducing anti-conformist agents into any connected network of conformist agents makes the
consensus impossible.

Fact 6.1. There is no consensus for any connected network with A 6= ∅.

Proof. By contradiction, suppose the society will reach a consensus, then ∃t ∈ N, such
that xi(t) = x∗,∀i ∈ N . Then for any anti-conformist agent i, ri(t) = x∗.

5Remark here that rA
i (t) = rS

i (t). Other forms of the reference opinion can be adopted, depending on
the context.
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By property (e) of the repelling function, xi(t+1) is either x∗+δ or x∗−δ which contradicts
the definition of consensus.

Consider two connected conformist agents with any initial opinions in [0, 1]2, they will
form a consensus on the average of their initial opinions since time 2. However, for the
society of two connected anti-conformist agents, the existence of the steady state depends
on the value of initial opinions, and the opinions may form a disagreement or oscillations.

Proposition 6.1. Assume that σi = σ,∀i ∈ N. Consider two connected anti-conformist
agents with initial opinions x1(0) and x2(0). Recall that the steady state opinion vector
is denoted as x̄.

(i) If |x1(0)− x2(0)| ≥ σ, then x̄ = [x1(0), x2(0)] (independence and disagreement);

(ii) If ε < |x1(0)− x2(0)| < σ, then x̄ = [x∗, x∗∗] and x∗ 6= x∗∗ (disagreement);

(iii) If |x1(0) − x2(0)| < ε, |x1(0) − 0.5| ≥ ε and |x2(0) − 0.5| ≥ ε, then there is no
steady state but an oscillation with period 2, i.e., ∃t∗ ∈ N, such that ∀t > t∗,
x1(t) = x2(t) = x1(t+ 2);

(iv) Otherwise, opinions will almost surely converge to a disagreement.

Proof. (σi, 0) is the x-intercept of fi, and by properties (a) and (c) of fi, we have fi(di) =
0,∀di ≥ σi. (It is analogous for di ≤ −σi.) Then it is easy to check case by case according
to the updating rule 6.7 and the properties of fi.

Example 6.6. Consider two connected anti-conformist agents with two different initial
opinion vectors xa(0) = [0.4, 0.4] and xb(0) = [0.3, 0.5]. Taking the linear form of the re-
pelling function as in Example 6.1, the opinions oscillate for the former case and converge
to different values for the latter case, as shown in Figure 6.12 and 6.13.

If there is one anti-conformist agent connected with one conformist agent, then for any
initial opinions in [0, 1]2, the opinions do not converge but oscillate.

Proposition 6.2.
Consider the society consisting of two connected agents, with agent 1 conformist and agent
2 anti-conformist. Then there will be oscillations instead of a convergence of opinions.
And for x2, the oscillations are between 0 and 1.
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Figure 6.12: Opinion dynamics with two anti-conformists in Example 6.6. x1(0) = x2(0) =
0.4, ε = 0.001 and δ = σ = 0.5.

Figure 6.13: Opinion dynamics with two anti-conformists in Example 6.6. x1(0) =
0.3, x2(0) = 0.5, ε = 0.001 and δ = σ = 0.5.
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Proof. We show first there is no convergence by contradiction. Suppose the opinions
converge, i.e., ∃x̄ = [x̄1, x̄2] where x̄1, x̄2 ∈ [0, 1] and a time t0, such that for each t′ > t0,
x1(t′) = x̄1 and x2(t′) = x̄2. Fix a t′ > t0, then:
1) if x̄1 = x̄2 < 1/2, then x2(t′ + 1) = min{1, x2 + δ2} contradicting x2(t′ + 1) = x2(t′);
2) if x̄1 = x̄2 > 1/2, then x2(t′ + 1) = max{0, x2 − δ2} contradicting x2(t′ + 1) = x2(t′);
3) if x̄1 6= x̄2, then x1(t′ + 1) = (x̄1+x̄2)

2 contradicting x1(t′ + 1) = x1(t′).
By contradiction, there is no convergence. Then it suffices to show opinions oscillate.
Supposing that at some time t, x1(t) ≤ x2(t), distinguish the following cases:
1) x2(t) − x1(t) < ε and x2 ≤ 1/2 − ε, then x2 will move to the right, and x1 will also
move to the right due to its conformity, till x2 = 1;
2) x2(t)− x1(t) < ε and x2 ≥ 1/2 + ε, then x2 will move to the left, and x1 will also move
to the left due to its conformity, till x2 = 0. As x1 becomes close enough to 0, x2 will
jump to the right, followed by x1 moving to the right, till x2 = 1;
3) x2(t)−x1(t) < ε and |x2− 1/2| < ε, then x2 will move either to the right or to the left,
and for both cases x2 will eventually reach the value 1;
4) ε ≤ x2(t) − x1(t) < σ2, then x2 will move to the right, and x1 will also move to the
right due to its conformity, till x2 = 1;
5) x2(t)−x1(t) ≥ σ2, then x2(t+ 1) = x2(t). However, x1 will be closer to x2 as time goes
on. Thus there must be a time such that it reduces to case 4).
Above all, there exists a time, such that x2 reaches value 1. As x1 will move closer to x2,
there must be a time, such that the difference between x1 and x2 is less than ε. Denote
by t1 the smallest time such that x2(t1) = 1 and x2(t1)− x1(t1) < ε.
Analogously, assuming that at some time t, x1(t) ≥ x2(t), distinguish the following cases:
1’) x1(t)−x2(t) < ε and x2 ≥ 1/2 + ε, then x2 will move to the left, and x1 will also move
to the left due to its conformity, till x2 = 0;
2’) x1(t) − x2(t) < ε and x2 ≤ 1/2 − ε, then x2 will move to the right, and x1 will also
move to the right due to its conformity, till x2 = 1. As x1 becomes close enough to 1, x2

will jump to the left, followed by x1 moving to the left, till x2 = 0;
3’) x1(t) − x2(t) < ε and |x2 − 1/2| < ε, then x2 will move either to the right or to the
left, and for both cases x2 will reach the value 0;
4’) ε ≤ x1(t)− x2(t) < σ2, then x2 will move to the left, and x1 will also move to the left
due to its conformity, till x2 = 0;
5’) x1(t) − x2(t) ≥ σ2, then x2(t + 1) = x2(t). However, x1 will be closer to x2 as time
goes on. Thus there must be a time such that it reduces to case 4).
Above all, there exists a time, such that x2 reaches value 0. As x1 will move closer to x2,
there must be a time, such that the difference between x1 and x2 is less than ε. Denote
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by t′1 the smallest time such that x2(t′1) = 0 and x1(t′1)− x2(t′1) < ε.
Let us take the assumption again that x1(t) ≤ x2(t). x2(t1 + 1) = 1 − δ2, x1(t1 + 1) =
x1(t1)

2 +1/2. x1 will move to the left, again trying to be closer to x2. This is back to the case
that x1 ≥ x2. Denote by t2 the smallest time such that x2(t2) = 0 and x1(t1)−x2(t2) < ε.
Then x2(t2 + 1) = δ2 and x1(t2 + 1) = x2(t)

2 + 1/2. This is back to the case that x1 ≤ x2,
so ∃t3, such that x2(t3) = 1 and x2(t3) − x1(t3) < ε. This process will be repeated over
time. Thus opinions oscillate and there are oscillations between 0 and 1 for x2. It also
holds for the case of x1(t) ≥ x2(t) by the same reasoning.

Example 6.7. Consider two connected agents with agent 1 being anti-conformist and
agent 2 being conformist. The initial opinion vector is x(0) = [0.4, 0.8]. Taking the linear
form of the repelling function as in Example 6.1, opinions oscillate as shown in Figure
6.15.

1 2

Figure 6.14: Network structure of Example 6.7

Figure 6.15: Opinion dynamics with one conformist agent and one anti-conformist agent
of Example 6.7. x1(0) = 0.4, x2(0) = 0.8, δ = σ = 0.5 and ε = 0.001.

As a consequence, if ∃i ∈ C and j ∈ A such that Ni = Nj = {i, j}, then there will be
oscillations instead of a convergence of opinions.

Fact 6.2. Any connected component of conformist agents will form a consensus. 6

6 Remark that the notion of a strongly connected component is equivalent to a class (see Definition
2.4.
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Now let us consider the case where one anti-conformist agent is connected to a set of
connected conformist agents. The following proposition shows that the opinion dynamics
do not converge but oscillate.

Proposition 6.3. If there is only one anti-conformist agent, and this agent has at least
one link to a set of connected conformist agents, i.e., A = {i}, and Ni ∩ C 6= ∅, then
opinions do not converge.

Proof. W.l.o.g., assume that i = 1, so A = {1} and C = {2, . . . , n}.
We show first there is no convergence by contradiction. Suppose the opinions converge,
i.e., ∃x̄ = [x̄1, . . . , x̄n] where x̄1, . . . , x̄n ∈ [0, 1] and a time t0, such that for each t′ > t0,
xi(t′) = x̄i,∀i ∈ N . Since Ni ∩ C 6= ∅, we can assume w.l.o.g. that 2 ∈ Ni ∩ C, while
Ni ∩ C may also contain other agents. Fix t′ > t0, then distinguish the following cases.
1) If x̄1 = x̄2 < 1/2, then x1(t′ + 1) = min{1, x1 + δ1} contradicting x1(t′ + 1) = x1(t′).
2) If x̄1 = x̄2 > 1/2, then x1(t′ + 1) = max{0, x1 − δ1} contradicting x1(t′ + 1) = x1(t′).
3) If x̄1 < x̄2, then

x2(t′ + 1) =
∑
j∈N2(x̄j)
η2

= x2(t′) = x̄2.

There must exist a j1 ∈ N2 and j1 6= 1, such that x̄2 < x̄j1 due to the fact that agent 1
is linked to agent 2 and x1 < x2. Again,

xj1(t′ + 1) =
∑
j∈Nj1

(x̄j)
ηj1

= xj1(t′) = x̄j1 .

There must exist a j2 ∈ Nj1 , such that x̄j1 < x̄j2 . So there is a infinite series of j1, j2, . . .

such that x̄j1 < x̄j2 < . . ., contradicting the assumption of a finite number of agents.
4) if x̄1 > x̄2, it is analogous to case 3) to get the contradiction. 7

By contradiction, there is no convergence.

For a society of connected conformist agents, introducing only one anti-conformist agent
will break the consensus. Furthermore, if the society is fully connected, there will be
oscillations between 0 and 1.

Proposition 6.4. If the network is complete and there is only one anti-conformist agent,
say, agent 1, then there will be oscillations instead of a convergence of opinions. And for
x1, the oscillations are between 0 and 1.

Proof. By Proposition 6.3, opinions do not converge. Then it suffices to show opinions
oscillate. W.l.o.g., assume that A = {1} and C = {2, . . . , n}. Since the network is

7Indeed, 3) and 4) imply that in the presence of only one anti-conformist agent, if the opinions
converge, then the set of connected conformist agents form a consensus. Otherwise, a contradiction will
happen in the same way.
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complete, xi(1) =
n∑
j=1

xj(0), ∀i ∈ C, i.e., from time 1, all conformist agents form a

consensus. Then all conformist agents will have the same behavior after time 1, so we
can treat them as one conformist agent. Thus by Proposition 6.2, there is no convergence
but oscillations of opinions. And for x1, i.e., the opinion of the anti-conformist agent, the
oscillations are between 0 and 1.

Example 6.8. Consider one anti-conformist agent 1 and a set of connected conformist
agents 2, . . . , 6, situated in the society with correponding network structure as shown in
Figure 6.16. The initial opinion vector is x(0) = [0.4, 0.7, 0.1, 0.16, 0.9, 0.4]. Take the
linear form of the repelling function as in Example 6.1. As shown in Figure 6.17, along

1

2

3

4

5

6

Figure 6.16: Network structure of Example 6.8

the dynamics, anti-conformist agent 1 reaches value 0 during first several steps. And this
causes agent 2 and agent 4 who are neighbors of agent 1 to decrease their opinion, which
will again influence the other conformist agents to decrease their opinions. As opinions
of agent 2 and agent 4 become close enough to 0 so that (x2+x4)

2 ≤ ε, x1 will jump to δ1,
which will again cause the other conformist agents to increase their opinions. Opinions
oscillate instead of converging, and oscillations are between 0 and 1 for anti-conformist
agent 1.

However, if more than one anti-conformist agents are introduced into the model, even
though the consensus is impossible, the convergence of opinion can still be reached un-
der certain conditions. Consider a common situation where anti-conformist agents hold
relatively extreme opinions and conformist agents hold relatively mild opinions, Theorem
6.1 gives the convergence conditions on the initial opinions and the number of neighbours
from each group.
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Figure 6.17: Opinion dynamics with one conformist agent and one anti-conformist agent
of Example 6.8. x(0) = [0.4, 0.7, 0.1, 0.16, 0.9, 0.4], δ = σ = 0.5 and ε = 0.001.

Definition 6.3 (connected sets). Two disjoint sets of agents B and D are said to be
connected if each node of one set has at least one neighbor in the other group.

Theorem 6.1 (anti-conformists being extremist and conformists being moderate).
Suppose that A = A1 ∪ A2, where A1, A2, C are non-empty and pairwise connected. Fur-
thermore, xi(0) < x′ ≤ xj(0) ≤ x′′ < xk(0) holds for ∀i ∈ A1,∀j ∈ C and ∀k ∈ A2. Let
ηi,A1 , ηi,A2 and ηi,C be the number of neighbors of agent i that belong to sets A1, A2 and
C, respectively, and assume that ηi,A1 > 0, ηi,A2 > 0, ηi,C > 0,∀i ∈ N . If the following
inequalities are satisfied for all i ∈ N :

x′

x′′
≤ ηi,A2

ηi,A1 + ηi,A2

(6.12)

1− x′
1− x′′ ≥

ηi,A2

ηi,A1

+ 1, (6.13)

the following will hold:

Ordering consistency ∀t,∀i ∈ A1, ∀j ∈ C, ∀k ∈ A2, xi(t) ≤ xj(t) ≤ xk(t).

Opinion convergence ∀i ∈ N, ∃x∗i ∈ [0, 1], such that lim
t→∞

xi(t) = x∗i .

Steady-state opinions Denote by x̄ = [x̄A1 , x̄A2 , x̄C ] ∈ [0, 1]N the steady-state opinion
vector. If σi = 1,∀i ∈ N , then x̄A1 = (0, . . . , 0), x̄A2 = (1, . . . , 1), x̄C = [I −
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Q]−1RA2. The matrix Q and RA2 can be obtained as follows: define a weight matrix
as W = (wij) where

wij =


1, if i, j ∈ A1 ∪ A2 and i = j

1
ηi
, if i ∈ C and gij = 1

0, otherwise,

and put W into the canonical form as

W =


I|A1| 0 0

0 I|A2| 0
RA1 RA2 Q

 ,

where Ik is the identity matrix of size k.

Proof. We will show first the ordering consistency, i.e., under conditions 6.12 and 6.13,
xi(t) < x′ ≤ xj(t) ≤ x′′ < xk(t) holds for ∀i ∈ A1,∀j ∈ C, ∀k ∈ A2, and for all t. It
suffices to show this inequality holds for t = 1 under the given condition. For any con-
formist agent i, on one hand, xi(1) = 1

ηi

∑
j∈Ni xj(0) = 1

ηi
(∑j∈Ni,A1

xj(0) +∑
j∈Ni,C xj(0) +∑

j∈Ni,A2
xj(0)) ≥ 1

ηi
(ηi,Cx′ + ηi,A2x

′′) ≥ x′ by inequality 6.12 and the fact that ηi =
ηi,C + ηi,A1 + ηi,A2 . On the other hand, xi(1) ≤ 1

ηi
(ηi,Cx′′ + ηi,A1x

′ + ηi,A2) ≤ x′′. The last
inequality is guaranteed by inequality 6.13 and the fact that ηi = ηi,C + ηi,A1 + ηi,A2 .
For any anti-conformist agent i in A1, the reference opinion is

ri(0) = 1
ηi − 1

∑
j 6=i;j∈Ni

xj(0) = 1
ηi − 1(

∑
j∈Ni,A1

xj(0) +
∑

j∈Ni,C
xj(0) +

∑
j∈Ni,A2

xj(0))

>
1

ηi − 1(ηi,Cx′ + ηi,A2x
′′) > x′ > xi(0)

by inequality 6.12. In case of ri(0) − xi(0) < σi, it will lead to xi(1) < xi(0) < x′, and
otherwise xi(1) = xi(0) < x′.
For any anti-conformist agent i in A2, the referenced opinion

ri(0) = 1
ηi − 1

∑
j 6=i;j∈Ni

xj(0) = 1
ηi − 1(

∑
j∈Ni,A1

xj(0) +
∑

j∈Ni,C
xj(0) +

∑
j∈Ni,A2

xj(0))

<
1

ηi − 1(ηi,A1x
′ + ηi,Cx

′′ + ηi,A2 − 1) < x′′

by inequality 6.13. In case of xi(0) − ri(0) < σi, it will lead to xi(1) > xi(0) > x′′, and
otherwise xi(1) = xi(0) > x′′.
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Above all, inequalities 6.12 and 6.13 are sufficient conditions such that xi(t) ≤ xj(t) ≤
xk(t) holds for ∀i ∈ A1,∀j ∈ C, ∀k ∈ A2,∀t.
The opinion values of agents in set A1 (resp., A2) is decreasing (resp., increasing) as time
goes to infinity, thus the opinion convergence of anti-conformist agents is guaranteed due
to the boundness of opinions.
σi = 1,∀i ∈ A means that the repelling area is [0, 1) for all anti-conformist agents in A1

and A2. ∀i ∈ A1, xi(t) is strictly decreasing until it reaches 0 and ∀k ∈ A2, xk(t) is strictly
increasing until it reaches 1. So lim

t→∞
xi(t) = 0, and lim

t→∞
xk(t) = 1. Then this model is

equivalent to the DeGroot model with anti-conformist agents being stubborn agents, and
the weight matrix is W = (wij) where

wij =


1, i, j ∈ A1 ∪ A2 and i = j,

1
ηi
, i ∈ C and gij = 1,

0, otherwise.

The weight matrix W can be written into the canonical form (see Section 2.2) with two
set A1 and A2 being two essential classes and the set C being inessential classes as

W =


I|A1| 0 0

0 I|A2| 0
RA1 RA2 Q

 .

By Fact2.1 and Lemma 2.1 in Section 2.1, we have [I−Q]−1 exists and [I−Q]−1 =
∞∑
k=0

Qk

with Q0 = I.
So the steady-state opinion vector of conformist agents x̄C must satisfy that x̄C =
RA1x̄A1 +RA2x̄A2 +Qx̄C . By x̄A1 = 0 and x̄A2 = 1, we have x̄C = [I −Q]−1RA2

Example 6.9. Let x′ = 1/3 and x′′ = 2/3, then inequalities 6.12 and 6.13 imply that
ηi,A1 = ηi,A2. Every agent has exactly the same number of neighbors in A1 and A2.

Example 6.10. More generally, take x′ = 1
q
with q ∈ N \ {1, 2} and x′′ = 1 − x′. The

conditions being
x′

x′′
≤ ηi,A2

ηi,A1 + ηi,A2

,
1− x′
1− x′′ ≥

ηi,A2

ηi,A1

+ 1,

they become
ηi,A1 ≥

ηi,A2

q − 2 , ηi,A2 ≥
ηi,A1

q − 2 .
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Supposing ηi,A1 = k, we must have (q − 2)k ≥ ηi,A2, i.e., ηi,A2 has the form

ηi,A2 = (q − 2)k − `, ` = 0, . . . , (q − 2)k.

However, the second condition implies (q − 2)k − ` ≥ k
q−2 , which yields to:

` ≤
⌊
k(q − 3)(q − 1)

q − 2

⌋
.

Remarking that
(q − 2)k − k(q − 3)(q − 1)

q − 2 = k

q − 2 ,

the final result is: For any node i, its numbers of neighbors in A1, A2 must be of the form

ηi,A1 ∈ N, ηi,A2 =
⌈
ηi,A1

q − 2

⌉
, . . . , (q − 2)ηi,A1 .

Example with q = 4: possible couples (ηi,A1 , ηi,A2) are

(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), . . . , (2n, n), . . . , (2n, 4n), . . .

In words, the number of neighbors in one group is at most twice and at least half the number
of neighbors in the other group. As q increases, there are more and more possibilities.

Example 6.10 illustrates that as long as the influence from two extreme anti-conformist
groups remain balanced, the ordering consistency will hold, such that extreme anti-
conformist agents stay extreme and conformist agents remain moderate.

Example 6.11. A1 = {1, 2}, A2 = {3, 4}, C = {5, 6}, δi = 0.5, σi = 1, ∀i ∈ A and
ε = 0.001. Consider 6 agents situated in the following network (see Figure 6.18) with the
corresponding matrix equal to

G =

1 2 3 4 5 6



1 1 1 1 1 1 1

1 1 1 0 1 0 2

1 1 1 1 1 0 3

1 0 1 1 0 1 4

1 1 1 0 1 1 5

1 0 0 1 1 1 6.

The opinion dynamics are shown in Figure 6.19 with the limit opinion equal to x(∞) =
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(0, 0, 1, 1, 4/11, 5/11). The weight matrix of the equivalent DeGroot model is

W =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

1/5 1/5 1/5 0 1/5 1/5
1/4 0 0 1/4 1/4 1/4

Thus 
x5 = 1/5 + 1/5x5 + 1/5x6

x6 = 1/4 + 1/4x5 + 1/4x6

which yields 
x5 = 4/11

x6 = 5/11.

1
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45 6

0 0.1
1

0.2
2

0.3
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0.5
6

0.8
3

0.9
4

Figure 6.18: Network structure of Example 6.11

As one can see on Figure 6.19, the simulation confirms the theoretical result.



6.3. Opinion dynamics with conformists and anti-conformists 151

Figure 6.19: Opinion dynamics with anti-conformists of Example 6.11

6.3.2 Asynchronous updating model

In this section, at each time, one agent is chosen at random (with probability 1/n) to
update her opinion. Assume that agent i is active at time t. If i is conformist she will
update her opinion as the average opinion of her neighbors, i.e., according to 6.5, while
if she is anti-conformist, she will update her opinion according to 6.7, taking the average
opinion of her neighbors as the referenced opinion, i.e.,

rAi (t) := 1
ηi − 1

∑
j∈Ni\{i}

xj(t),∀i ∈ A. (6.14)

Similar to the synchronous updating model, if there exist at least one anti-conformist
agents in a connected network, then there is almost surely no consensus.

Fact 6.3. There is almost surely no consensus for any connected network with A 6= ∅.

Proof. By contradiction, suppose the society will reach a consensus, then ∃t ∈ N, such
that xi(t) = x∗,∀i ∈ N . Then for any anti-conformist agent i, ri(t) = x∗.
Since each agent is chosen with probability 1/n > 0, so almost surely there exist a time
t′ > t, such that an anti-conformist agent i ∈ A is chosen to be active. By property (e) of
the repelling function, xi(t+ 1) is either x∗ + δ or x∗ − δ which contradicts the definition
of consensus.
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Recall that in the synchronous updating model, if there are two connected anti-conformist
agents N = A = {i, j} holding similar opinions which are not around 0.5, then their
opinions will oscillate with period 2; otherwise, they will form a disagreement. However,
in the asynchronous updating model, the oscillation will not happen, and the two anti-
conformist agents will for sure form a disagreement. Indeed, the oscillation in Proposition
6.5 is due to the synchronization of the opinions updates.

Proposition 6.5. Assume that σi = σ,∀i ∈ N. Consider two connected anti-conformist
agents with initial opinions x1(0) and x2(0). Regardless of their initial opinions, they will
form a disagreement in the end.

Proof. It suffices to illustrate the case when |x1(0) − x2(0)| < ε, |x1(0) − 0.5| ≥ ε and
|x2(0) − 0.5| ≥ ε, since for the other cases it will for sure go to a disagreement as in
Proposition 6.1. Suppose agent i, i = 1, 2 is active at time 1, then xi(1) will jump with
length δ, and x2(1) = x2(0). Then |x1(1)− x2(1)| > ε falling into one of the other cases,
and eventually a disagreement is reached.

If there is one anti-conformist agent connected with one conformist agent, then for any
initial opinions in [0, 1]2, the opinions do not converge but oscillate, which is in accordance
with the synchronous model. Indeed, the asynchronization does not change the presence
but the speed of the oscillations. Indeed, the oscillation in Proposition 6.2 is not caused
by the synchronization of the opinions updates, but by the presence of both conformist
and anti-conformist agents.

Proposition 6.6. Consider the society consisting of two connected agents, with agent
1 conformist and agent 2 anti-conformist. Then there will be oscillations instead of a
convergence of opinions. And for x2, the oscillations are between 0 and 1.

Proposition 6.7. If there is only one anti-conformist agent, and this agent has at least
one link to a set of connected conformist agents, i.e., A = {i}, and Ni ∩ C 6= ∅, then
opinions do not converge.

Consider the case of anti-conformists being extremist and conformists being moderate,
the same results will be obtained as in the synchronous model. The asynchronization does
not change the limit behavior but makes the speed of the convergence slower.

Proposition 6.8. Theorem 6.1 holds for asynchronous updating model with active agents
observing opinion of all neighbors.
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Proof. The techniques used in the proof of Theorem 6.1 can also be applied to the case
of the asynchronous model, since in both synchronous and asynchronous updating model,
agents are following the same updating rules, and all the inequalities in the proof of
Theorem 6.1 also hold here.

6.4 Opinion dynamics over signed graphs

6.4.1 Synchronous updating model

In this section, we consider the synchronous updating where agents update opinions si-
multaneously following rules 6.10.
One widely-studied signed graph is the structurally balanced graph (see its general defini-
tion in Section 2.7). For any structurally balanced graphs, the agents can be partitioned
into two groups, where agents connect to agents in the same group with positive links and
connect to agents in the different group with negative links. So it can also be considered as
two communitarian groups. We study first the opinion dynamics for two communitarian
groups with disjoint initial opinions.

Definition 6.4. We say that an undirected network G = (N,E) is connected, if ∀i, j ∈ N ,
there is a path from i to j, i.e., i↔ j.8

We are interested in under which conditions would opinions of agents converge if there are
two communitarian groups with disjoint initial opinions, and will the order of the initial
opinions between the two group be consistent over time.

Proposition 6.9 (Two communitarian groups with disjoint initial opinions).
Consider a society G = (N,E) composed of two communitarian groups N = G1 ∪ G2,
that is, gij ∈ {1, 0} if i and j are from the same group; gij ∈ {−1, 0} otherwise. The
sub-network (Gk, Ek) is a connected network where Ek = {{i, j} ∈ E | i ∈ Gk, j ∈
Gk}, k = 1, 2, i.e., ∀i, j ∈ Gk, i ↔ j, k = 1, 2. 9 Assume that σi = σ ∈ (0, 1),∀i ∈ N . If
xi(0) + ε < x∗ < xj(0)− ε,∀i ∈ G1,∀j ∈ G2, then the following will hold:

Ordering consistency
∀t,∀i ∈ G1,∀j ∈ G2, it holds that xi(t) < xj(t).

Opinion convergence and consensus
∀i ∈ G1,∀j ∈ G2, ∃x′, x′′ ∈ [0, 1] and x′ < x′′, such that lim

t→∞
xi(t) = x′, lim

t→∞
xj(t) =

x′′.
8Indeed, this is equivalent to the notion of strongly connectedness defined in Section 2.1 (see Definition

2.4).
9Note that we do not exclude the case where there is no link between G1 and G2.
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Steady-state opinion
Moreover, if G1 and G2 are connected sets, then at least one of the following cases
holds true:

(i) x′′ − x′ ≥ σ;

(ii) x′ = 0;

(iii) x′′ = 1.

Proof. ∀i ∈ N , denote the neighborhood of agent i in Gk as Ni,k and its cardinality as
ηi,k, where k = 1, 2.
Fix any i ∈ G1, then

xi(1) =
 1
ηi,1

∑
j∈Ni,1

xj(0) + f
(
xi(0), 1

ηi,2

∑
j∈Ni,2

xj(0)
)1

0

.

Remark here that in case of ηi,2 = 0, we adopt the convention that f
(
xi(0), 1

ηi,2

∑
j∈Ni,2 xj(0)

)
=

0, and that ηi,1 ≥ 1 since (G1, E1) is connected.
By xi(0) + ε < x∗ < xj(0) − ε,∀i ∈ G1,∀j ∈ G2, 1

ηi,2

∑
j∈Ni,2 xj(0) > xi(0) + ε, thus

f
(
xi(0), 1

|g2|
∑
j∈G2 xj(0)

)
≤ 0. Moreover, 1

ηi,1

∑
j∈Ni,1 xj(0) < x∗ − ε. Therefore, xi(1) <

x∗ − ε,∀i ∈ G1.
Analogously, xj(1) > x∗ + ε,∀j ∈ G2. So xi(t) + ε < x∗ < xj(t) − ε holds for any t, i.e.,
the ordering consistency is satisfied.

∀i ∈ G1, ∀t, ri(t) = 1
ηi,2

∑
j∈Ni,2

xj(t) > x∗ + ε > xi(t) + ε,

so f(xi(t), 1
ηi,2

∑
j∈Ni,2 xj(t) ≤ 0 always holds. Thus

xi(t+ 1) ≤ 1
ηi,1

∑
j∈Ni,1

xj(t),∀i ∈ G1.

This implies 1
ηi,1

∑
j∈Ni,1 xj(t + 1) ≤ 1

ηi,1

∑
j∈Ni,1 xj(t). Therefore the limit of the series

{ 1
ηi,1

∑
j∈Ni,1 xj(t)}t exists (i.e., ∃x′i, such that lim

t→∞

1
ηi,1

∑
j∈Ni,1

xj(t) = x′i) due to the weak

monotonicity and boundedness. By xi(t + 1) ≤ 1
ηi,1

∑
j∈Ni,1 xj(t),∀i ∈ G1, it must hold

that lim
t→∞

xi(t) = x′i,∀i ∈ G1. Analogously, for all i ∈ G2, ∃x′′i such that lim
t→∞

xi(t) = x′′i and
x′i < x′′j ,∀i ∈ G1,∀j ∈ G2. Till now, the convergence of the opinion vector is guaranteed.
Denote the steady state opinions as x′i and x′′j , ∀i ∈ G1, j ∈ G2, i.e., ∃t∗, such that ∀t > t∗,
x′i(t) = x′i and x′′j (t) = x′′j .
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Then let us show the consensus is reached within each group. Due to the connectedness
of each sub-network (Gk, Ek), k = 1, 2, it suffices to show that if any two agents i, j of
the same group are directly connected, i.e., i, j ∈ Gk, gij = 1, k = 1, 2, then x′i = x′j. By
contradiction, suppose that x′i 6= x′j, and w.l.o.g., assume that x′i < x′j, then x′j(t∗ + 1) <
x′j(t∗) which leads to a contradiction. Hence the consensus is reached within each group.
To complete the proof, it suffices to show that if G1 and G2 are connected, x′ 6= 0 and
x′′ 6= 1, then x′′−x′ ≥ σ. By contradiction, suppose that x′′−x′ < σ, then for any i ∈ G1,
∃j ∈ G2 such that i and j are connected, thus xi(t∗ + 1) will be strictly less than x′i(t∗)
which leads to a contradiction.

Example 6.12 (Signed graph with two communitarian groups).
Consider two communitarian groups G1 = {1, 2, 9, 10} and G2 = {3, 4, 5, 6, 7, 8} situated
in the following network (see Figure 6.20) with the corresponding matrix equal to

G =

1 2 3 4 5 6 7 8 9 10



1 1 −1 −1 −1 −1 −1 −1 1 1 1

1 1 −1 −1 −1 −1 −1 −1 1 1 2

−1 −1 1 1 1 1 1 1 −1 −1 3

−1 −1 1 1 1 1 1 1 −1 −1 4

−1 −1 1 1 1 1 1 1 −1 −1 5

−1 −1 1 1 1 1 1 1 −1 −1 6

−1 −1 1 1 1 1 1 1 −1 −1 7

−1 −1 1 1 1 1 1 1 −1 −1 8

1 1 −1 −1 −1 −1 −1 −1 1 1 9

1 1 −1 −1 −1 −1 −1 −1 1 1 10.

(6.15)

δ = σ = 0.5 and ε = 0.001. The opinion dynamics are shown in Figure 6.21. Opinions
within each group form a consensus very quickly and there is opinion ordering consistency
in the group level. The steady state opinions are 11/80 and 3/4 for agents of G1 and G2,
respectively.

However, all the properties that hold in Proposition 6.9 may fail when it is generalized to
several communitarian groups with disjoint opinions. Let us consider a society G = (N,E)
composed of several communitarian groups N = G1 ∪ . . .∪Gk, where k > 2 is an integer,
that is, gij ∈ {1, 0} if i and j are from the same group; gij ∈ {−1, 0} otherwise. Let us
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Figure 6.20: Network structure for two communitarian groups of Example 6.12

Figure 6.21: Opinion dynamics for two communitarian groups of Example 6.12
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suppose that opinions of agents from distinct groups belong to disjoint opinion ranges,
i.e., ∀i ∈ Gp,∀j ∈ Gp+1, xi(0)+ε < x∗p < xj(0)−ε, p = 1, . . . , k−1. The following example
will give some counter-evidence showing that the ordering consistency for all groups is no
more true, and opinions of agents who belong to groups in the middle may oscillate or
converge, depending on the values of σ and δ. A detailed study of all possible cases seems
to be out of reach.

Example 6.13 (Signed graph with four communitarian groups).
Consider four communitarian groups G1 = {1, 2}, G2 = {3, 4}, G3 = {5, 6} and G4 =
{7, 8, 9, 10} situated in the following network (see Figure 6.22) with the corresponding
matrix equal to

G =

1 2 3 4 5 6 7 8 9 10



1 1 −1 0 −1 0 −1 0 −1 0 1

1 1 0 −1 0 −1 −1 −1 0 −1 2

−1 0 1 1 −1 0 0 −1 −1 −1 3

−1 −1 1 1 0 0 −1 0 −1 −1 4

−1 0 −1 0 1 1 0 0 −1 −1 5

0 −1 0 0 1 1 −1 −1 0 −1 6

−1 −1 0 −1 −1 −1 1 0 1 1 7

0 −1 −1 0 0 −1 0 1 1 0 8

−1 0 −1 −1 −1 0 1 1 1 1 9

0 −1 −1 −1 −1 −1 1 0 1 1 10.

(6.16)
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Figure 6.22: Network structure for two communitarian groups of Example 6.13

When δ = σ = 0.5, the opinion dynamics are shown in Figure 6.23. Opinions of agents
within groups G1, G2 and G4 form a consensus very quickly, while opinions of agents in
group G3 oscillate.
If we fix δ = 0.5, and decrease the value of σ to σ = 0.2, then opinions of agents within
every group form a consensus, but the ordering consistency is no more true in this case
since x′i > x′j, ∀i ∈ G3, ∀j ∈ G2 (see Figure 6.24). If we fix δ = 0.5, and increase the
value of σ to σ = 0.7, then opinions of agents within every group form a consensus, and
the ordering consistency holds in this case (see Figure 6.25).
Instead, if we fix σ = 0.5, and increase the value of δ to δ = 0.9, then similar to the case
of δ = σ = 0.5, opinions of agents within groups G1, G2 and G4 form a consensus very
quickly, but opinions of agents in group G3 oscillate with a larger extent (see Figure 6.26).
If we fix σ = 0.5, and decrease the value of δ to δ = 0.3, then again opinions of agents
within every group form a consensus, but the ordering consistency fails in this case since
x′i > x′j, ∀i ∈ G1, ∀j ∈ G2 (see Figure 6.27).
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Figure 6.23: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = σ = 0.5.

Figure 6.24: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = 0.5 and σ = 0.2.
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Figure 6.25: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = 0.5 and σ = 0.7.

Figure 6.26: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = 0.9 and σ = 0.5.

6.4.2 Asynchronous updating model

In this section, at each time, one agent is chosen at random (with probability 1/n) to update
her opinion according to equation 6.10, taking the average opinion of her neighbors as the
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Figure 6.27: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = 0.3 and σ = 0.5.

referenced opinion, i.e.,
rAi (t) := 1

η−i

∑
j∈N−i

xj(t),∀i ∈ A. (6.17)

Consider the case of two communitarian groups with disjoint initial opinions.

Proposition 6.10. Proposition 6.9 holds for asynchronous updating model with active
agents observing opinion of all neighbors.

Proof. The techniques used in the proof of Proposition 6.9 can also be applied to the
case of the asynchronous model, since in both synchronous and asynchronous updating
model, agents are following the same updating rules, and all the inequalities in the proof
of Proposition 6.9 also hold here.

Example 6.14.
Consider two communitarian groups G1 = {1, 2, 9, 10} and G2 = {3, 4, 5, 6, 7, 8} situated
in the same network as in Example 6.12. δ = σ = 0.5 and ε = 0.001. Figures 6.28
and 6.29 are two realizations of the asynchronous opinion dynamics. Opinions within
each group form a consensus very quickly and there is opinion ordering consistency in
the group level. However, it is path-dependent and the value of the steady state opinion
depends on the activation order of agents. The steady state opinions of agents in G1 and
G2 are [0.05, 0.61] (corresponding to Figures 6.28) and 0.2, 0.8 (corresponding to Figures
6.29), respectively.
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Figure 6.28: Realization 1 of the asynchronous opinion dynamics for two communitarian
groups of Example 6.14. δ = σ = 0.5 and ε = 0.001.

Example 6.15. Consider four communitarian groups G1 = {1, 2}, G2 = {3, 4}, G3 =
{5, 6} and G4 = {7, 8, 9, 10} situated in the same network as in Example 6.13. Then
the phenomenon of oscillations disappear in the asynchronous updating model. Instead,
opinions always converge, regardless of the values of initial opinions and the values of δ
and σ. The dynamic is path-dependent and the value of the steady state opinion depends
on the activation order of agents.
When δ = σ = 0.5, Figure 6.30 shows one realization of the opinion dynamics with the
steady state opinion equal to [0.119, 0.119, 0.039, 0.039, 0.802, 0.411, 0.915, 0.915, 0.915, 0.915].
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Figure 6.29: Realization 2 of the asynchronous opinion dynamics for two communitarian
groups of Example 6.14. δ = σ = 0.5 and ε = 0.001.

Figure 6.30: Opinion dynamics for two communitarian groups of Example 6.13, with
δ = σ = 0.5.

6.5 Concluding remarks

This paper proposes two models of continuous opinion dynamics in undirected networks,
by introducing the heterogeneity either into nodes or into links in the sense of conformity
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and anti-conformity behavior. We propose an appropriate updating rule of continuous
opinions for anti-conformity behavior, defined according to the repelling function, which
gives the shift of the opinion based on the current opinion and the reference opinion
for an agent. Both synchronous and asynchronous opinion updates are studied in these
two models. In synchronous models, all agents are assumed to have the opinion updates
simultaneously, while in asynchronous models, an agent is chosen at random to be active
following the same updating rule as in synchronous models, and the opinions of other
inactive agents stay unchanged.
In the first part of the paper, the model of opinion dynamics is studied with both con-
formist and anti-conformist agents. Conformist agents update opinions according to the
DeGroot rule with equal weights on her neighbors, while anti-conformist agents deviate
from the average opinions of her neighbors. For any connected network, consensus will
never be reached as long as the set of anti-conformist agents is nonempty in both syn-
chronous and asynchronous models. Instead, opinions of agents oscillate or converge to
a disagreement, which is more common in real life. When one anti-conformist agent is
connected to a set of connected conformist agents, then opinions do not converge regard-
less of the value of initial opinion. Instead, we see from the simulations that opinions
are periodically oscillating between 0 and 1 for the anti-conformist agent, and between ε′

and 1− ε′ (where ε′ < ε) for the conformist agents symmetrically in synchronous models,
in the sense that the increasing process from 0 (resp., ε′) to 1 (resp., 1 − ε′) of opinions
is symmetric to the decreasing process from 1 (resp., 1 − ε′) to 0 (resp., ε′). Although
the non-convergence and oscillations also hold for asynchronous models, the periodicity
and symmetry disappear, since the dynamics of the asynchronous updates become path-
dependent on the activation order of the agents. For the case of anti-conformist agents
being extremist and conformist agents being moderate, under mild conditions on the ini-
tial opinions and the number of neighbors in each group (such that the influence from two
extreme groups are balanced), the ordering consistency and opinion convergence hold, so
anti-conformist agents remain extremist and conformist agents continue to be moderate.
The exact value of the steady-state opinion is given when σ = 1, i.e., when the repelling
interval is maximal. This result holds for both synchronous and asynchronous opinion
updates.

In the second part of the paper, the model of opinion dynamics is studied over signed
graphs with both positive and negative influence. We show that for two communitar-
ian groups (i.e., structurally balanced graphs) with disjoint initial opinions, if each sub-
network (i.e., each communitarian group) is connected, then the ordering consistency and
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opinion convergence holds, and opinions of agents from the same group form a consensus,
for both synchronous and asynchronous opinion updates. In addition, the steady-state
opinion is characterized for the case that two groups are connected. However, when consid-
ering more than two communitarian groups and synchronous updating, all the properties
such as ordering consistency, opinions convergence may fail, and oscillation can sometimes
happen, depending on the values of δ and σ. In the asynchronous updating model, order-
ing consistency may fail, but opinions always converge, regardless of the values of initial
opinions and the values of δ and σ. But the steady-state opinion is not pre-determined,
since the dynamics are also path-dependent and the activation order of agents matters.
If we exclude the case when the oscillations are only caused by the synchronization like
in the example of two anti-conformist agents with the same opinions, in general, the
asynchronization of opinions updates do not change the convergence behavior of the opin-
ions but the speed of the dynamics. This is also in accordance with the results of Ramazi
et al. (2016), emphasizing that the asynchrony does not lead to cycles or non-convergence.
In other words, the asynchrony preserves the convergence property of the corresponding
synchronous models, and sometimes even turns the oscillation behavior shown in the
synchronous model into convergence.
The updating rule of continuous opinions proposed in this paper is flexible and appropriate
for modeling anti-conformity behavior for the following reasons. First of all, the driving
force of anti-conformity urges agents (anti-conformist agents or agents with negative in-
fluences) to repel from the reference opinion, which can take various forms depending on
the context. For example, it is the average opinion of agents in one’s neighborhood in the
CODA-node model and the average opinion of one’s enemies in the CODA-link model. It
can also be the average opinion of agents from the entire society in the fashion context
since everyone including the anti-conformist agent can easily obtain relevant information
about fashion trend due to the popularity of the Internet. When modeling from a game-
theoretic point of view, it can also take value of the average opinion of agents from a
certain group. Secondly, the results presented in the current paper apply to different
forms of the repelling functions such as, but not limited to, convex, concave or linear
functions as shown in the examples. Thirdly, the deviation of the opinion for an agent is
increasing as the reference opinion becomes closer to her current opinion, it implies the
idea of always distancing the others. This sometimes causes oscillations such as in the
very simple case of one anti-conformist agent linked to one (or a set of connected) con-
formist agent(s) in the CODA-node model, the anti-conformist agent playing the role of a
leader (e.g., of a certain fashion), always followed by the conformist agent(s). Recall that
opinions are defined in the close interval [0, 1] where the two boundaries are referred to as
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the two extreme opinions. Once the anti-conformist agent reached some extreme opinion,
she would lead the others back to some mild opinions, which can explain well the fashion
fluctuations. Opinions can also reach equilibria. For example, in the case of two groups of
anti-conformist agents holding relatively extreme opinions and conformist agents holding
relatively moderate opinions, opinions converge when the influences from two different
groups of anti-conformist agents are balanced. Moreover, as each anti-conformist agent
has her own repelling interval [−σi, σi] within which she is influenced, her new neighbor-
hood at t+1 would be {j ∈ N : |xj(t+1)−xi(t+1)| < σi}. Thus the CODA-node model
can also be seen as a coevolution model of networks and opinions.
Even though models of opinion dynamics with anti-conformity behavior is drawing at-
tention in recent years, mainly on binary opinions, the study of continuous opinions
with anti-conformity behavior still requires to be developed. To the best of the author’s
knowledge, there are two related works on continuous opinion dynamics. As mentioned
in Section 6.1, Buechel et al. (2015) assumed that each agent is assigned with a level
of conformity, measured by a parameter taking value in [−1, 1], where −1 and 1 refer
to full anti-conformity and full conformity, respectively. By contrast, in the current pa-
per, we suppose no continuum in between conformity and anti-conformity. Another work
is given by Altafini in several papers, who focused on the opinion dynamics with nega-
tive influences. As shown by Example 6.5, this model is not appropriate for describing
anti-conformity behavior. Moreover, the study of opinion dynamics with anti-conformity
behavior also requires the empirical and experimental support. Future studies include
testing the new updating rule with some actual data, introducing strategic network for-
mation into the model, and considering directed networks instead of a fixed undirected
network supposed in the current paper.



Chapter 7

Conclusions and Future Work

7.1 Thesis Summary and Contributions

This thesis studied different models of opinion dynamics in networks, especially empha-
sizing the influence of introducing the role of anti-conformity behavior.
In Chapter 4, a detailed study of convergence of the threshold model is provided, in
which both conformist and anti-conformist agents are included. Firstly, a deterministic
threshold model is studied supposing a fixed complete graph, where every one is connected
to every one, like in the seminal work of Granovetter (Granovetter (1978)). It represents
a connected society where every agent is informed about the number of agents being in
state 1 or 0 (active or inactive) at the present time, through media, etc. It is to be noted
that no other information about the society is possessed by an agent, e.g., if there are anti-
conformists and how many. A game-theoretic foundation has been given for the threshold
mechanism with anti-conformists, using coordination and anti-coordination games. The
remarkable result is that the presence of anti-conformists causes the appearance of much
more absorbing states, and cycles of length greater than 2 (when only (anti-)conformist
agents are present cycles can only be of length 2). In detail, a complete and exact study
is performed when the distribution of threshold is uniform, generalizing the results of
Granovetter (1978). The case of a Gaussian distribution has also been studied, in which
we showed the existence of unstable fixed points and limit cycles of length 2. However,
for the case of an arbitrary distribution, it is possible to find cycles of length greater than
2. Secondly, the graph is no more complete and we suppose that the neighborhood of
an agent is random, drawn at each time step from a distribution. It represents a society
communicating via social networks like Facebook or Twitter, receiving randomly messages
from other agents indicating their states. Here also, a given agent has no information on
the type of her neighbor (conformist or anti-conformist). The introduction of randomness
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causes a variety of absorbing classes to appear: polarization, periodic classes of more or
less complex structure, and chaos, i.e., any state of the society can be reached. When
thresholds are randomly distributed, we have shown that for most societies, the opinion
converges to a chaotic situation (every state is possible).
One most remarkable finding of Chapter 4 is that the presence of anti-conformists intro-
duces instability in the process, causing a multiplicity of absorbing states and a variety of
cycles, periodic classes and chaos. Also, the model is highly sensitive, e.g., in the number
of anti-conformists, the threshold values, etc. For example, it has been seen in the case
of a uniform threshold distribution that introducing or deleting only one anti-conformist
agent changes the convergence from a stable state to a cyclic behavior or vice versa. An-
other most remarkable finding is that in the case of a random neighborhood, the process
converges to chaos for most values of the parameters defining the society (e.g., if there are
more conformists and more anti-conformists than the size of a smallest neighborhood).
Otherwise, cascades may occur, e.g., in the case of fixed thresholds for conformists and
anti-conformists. This shows that introducing a small proportion of anti-conformists in a
society may lead, not only to chaotic situations, but also to permanent opinion reversal.

In Chapter 5, we study the dynamics of continuous cultural traits (as a specific type of
continuous opinions) in an OLG (overlapping generation) structure and in an endogenous
social network, where the network changes are inherited. Children learn their cultural trait
from their parents and their social environment modelled by network. Parents want their
children to adopt a cultural trait that is similar to their own and engage in the socialization
process of their children by forming new links or deleting connections. However, changing
links from the inherited network is costly, but having many links is beneficial. We proposed
three ways to endogenize the process of network formation. In the first one, the network
is supposed to be directed and each dynasty can either form or delete a directed link
unilaterally with another dynasty. Therefore, at each period, each family faces a utility
opitimization problem where a trade-off between own utility losses and the improvements
of child’s cultural trait. We have shown that if the cost of network changes is greater than
the cost of child care, extremists will never add links, and in the case of sufficiently low
cost, extremists may cut all ties with the society. In the second and third models, the
network is supposed to be undirected. In the second model, we assume that after each
period, a pairwise stable network with transfers (PST network for short) is reached, i.e.,
∀t ∈ N, G(t + 1) is a PST network for G(t) and V (t). We have shown the existence of
the PST network for each period, however, it is not necessary to be unique, evidenced
by a counterexample. Moreover, a necessary and sufficient condition is given such that a
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network is PST for given V (t) and G(t). The convergence of cultural traits is guaranteed.
In the third model, we assume that after each period, a pairwise stable network (PS
network for short) is reached, i.e., ∀t ∈ N, G(t + 1) is a PS network for G(t) and V (t).
In this case, there always exist sufficiently small cost parameters such that the empty
network is the unique PS network. Regarding the efficiency of the network, we show that
there always exist sufficiently small cost parameters such that the empty network is the
unique efficient network, and sufficiently large costs of child care such that the complete
network is the unique efficient network.
The dynamics of these three models are studied by both analytics and simulations. For
sufficiently small costs of network changes and child care, extremists will disconnect from
the other dynasties and there will be a long term heterogeneity of the society. Specially,
in the first and the third model, we show that the network will converge to the empty
network. While in the second model, the network might or might not converge to the
empty network, since the PST network is not unique in each period. For large costs
of network changes and child care, it converges to a homogeneous society such that all
dynasties have the same cultural trait in the limit. This give us some insights on how to
reduce extremism in our real life. For example, one can consider to foster the interaction
of children with different cultural backgrounds such that the cost of network change is
increased (extremists will less probably disconnect with others). Some work can also be
done to increase value of integration (i.e., increase the benefits from relations). Extremists
play an important role in the dynamical process, policy makers should take it into account
and provide more opportunities for extremists to connect with others.
In Chapter 6, an appropriate updating rule of continuous opinions for anti-conformity
behavior is proposed, defined according to the repelling function, which gives the shift of
the opinion based on the current opinion and the reference opinion for an agent. Two
models of continuous opinion dynamics are studied in undirected networks, by introducing
the heterogeneity in the sense of conformity and anti-conformity behavior either in nodes
or in links. Both synchronous and asynchronous opinion updates are studied in these
two models. In synchronous models, all agents are assumed to have the opinion updates
simultaneously, while in asynchronous models, an agent is chosen at random to be active
following the same updating rule as in synchronous models, and the opinions of other
inactive agents stay unchanged.
In the first part of the paper, the model of opinion dynamics is studied with both con-
formist and anti-conformist agents. Conformist agents update opinions according to the
DeGroot rule with equal weights on her neighbors, while anti-conformist agents deviate
from the average opinions of her neighbors, and the repelling level is negatively related to
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the opinion distance between the anti-conformist and her reference point. For any con-
nected networks, the consensus will never be reached as long as the set of anti-conformist
agents is nonempty in both synchronous and asynchronous models. Instead, opinions of
agents oscillate or converge to a disagreement, which is more common in real life. For
the case of anti-conformist agents being extremist and conformist agents being moderate,
under mild conditions on the initial opinions and the number of neighbors in each group
(such that the influence from two extreme groups are balanced), the ordering consistency
and opinion convergence hold, so anti-conformist agents remain extremist and conformist
agents continue to be moderate. The exact value of the steady-state opinion is given
when σ = 1, i.e., when the repelling interval is maximal. This result holds for both
synchronous and asynchronous opinion updates. In the second part of the paper, the
model of opinion dynamics is studied over signed graphs where agents have positive links
(+1) with their friends and negative links (-1) with their enemies. Agents update their
opinion as the sum of the averaged opinion of their friends and repelling value from their
enemies. When the network is balanced, i.e., there are two communitarian groups, and
each sub-network corresponding to each group is connected and the initial opinion ranges
of the two group are disjoint, the ordering consistency and opinion convergence holds,
and opinions of agents from the same group form a consensus, for both synchronous and
asynchronous opinion updates. In addition, the steady-state opinion is characterized for
the case that two groups are connected.
The new updating rule of continuous opinions proposed in this paper is flexible and ap-
propriate for modeling anti-conformity behavior due to the flexibility of choosing the
reference opinion and the flexibility of the forms of the repelling function, and the good
approximation of the anti-conformity behavior of distancing the aggregate opinions. Re-
garding the comparison of synchronization and asynchronization, if we exclude the case
when the oscillations are only caused by the synchronization like in the example of two
anti-conformist agents with the same opinions, in general, the asynchronization of opin-
ions updates do not change the convergence behavior of the opinions but the speed of the
dynamics. This is also in accordance with the results of Ramazi et al. (2016), emphasiz-
ing that the asynchrony does not lead to cycles or non-convergence. In other words, the
asynchrony preserves the convergence property of the corresponding synchronous models,
and sometimes even turns the oscillation behavior shown in the synchronous model into
convergence. However, even though the behaviors of non-convergence and oscillations
may be preserved for asynchronous models, the periodicity and symmetry may disappear,
e.g., in the example where one anti-conformist agent is connected to a set of connected
conformist agents, due to the path-dependence on the activation order of the agents in
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the asynchronous model. Moreover, although the behavior of convergence is preserved for
asynchronous models, the value of the steady-state opinion might be unique (e.g., Theo-
rem 6.1) or not (Proposition 6.9), also due to the the path-dependence on the activation
order of the agents.

7.2 Future work

Future work on modeling opinion dynamics includes a number of different paths. Al-
though studies on opinion dynamics are drawing more and more attention in recent years,
research on modelling opinion dynamics with anti-conformity behavior is still taking the
first step, and it requires very much the empirical and experimental support. Thus the
first important future direction is to carry out some experiments to figure out what are
the social response due to anti-conformity behavior and how it functions, excluding the
influence of all the other factors.
The second is to study the opinion dynamics with anti-conformity behavior in directed
networks, as in the current thesis (i.e., in Chapter 4 and Chapter 6) we study mainly on
undirected networks. Some special networks such as star network, small-world network
are also of great interest.
The third one is considering time-varying networks, as most of networks are changing over
time in real life. We have studied convergence of cultural traits in the model with pairwise
stable networks with transfers in Chapter 5, while for the other two models, it is quite
challenging. What are the convergence conditions with time-varying networks is also an
important question to be figured out in the field of opinion dynamics modelling. Future
work is to find some general conditions on the networks to guarantee the convergence of
opinions.
Introducing memory into the models of opinion dynamics is also of great interest. Mem-
ories influence agent’s opinion and decisions (Kahneman (2003)). Recently, some re-
searchers incorporated the notion of memory into binary opinion dynamics, mostly, into
the voter model and its extensions, e.g., Stark et al. (2008), Xiong and Liu (2011), Wool-
cock et al. (2017). Jędrzejewski and Sznajd-Weron (2018) studied the impact of memory
on the q-voter models of opinion dynamics, where agents can be conforming or indepen-
dent, based on past awards memories. One possible generalization of the two models
in Chapter 4 and Chapter 6 is assuming that agents are flexible to change their char-
acteristics, between conforming and anti-conforming, and introducing memory on this
basis.
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