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Abstract

In this paper we present an approach towards cognitive reasonable fig-
ure amendments utilizing the Gestalt-based dynamics of the Competitive
Layer Model.

1 Introduction

When a human perceives incomplete shapes, for example the ones from Fig. 1, no
effort is needed to recognize the meant geometric primitives, although they are
far from being complete. In this paper, we propose an human-like approach to fill
these “gaps”. Based on Gestalt Theory (e.g. see [1] for an overview), especially
the law of continuity, we strive to amend these sparse informations through
modelling missing parts utilizing the neural dynamics of the Competitive Layer
Model (CLM).

The CLM [3] has been proven feasible in a wide spectrum of recognition
tasks. Previous works successfully applied the CLM to simulate various grouping
tasks based on Gestalt Laws like contour grouping in noisy settings [5] or action
segmentation [2].

Based on the approaches for contour grouping, we make use of the internal
binding dynamics of the CLM to evaluate the quality of hallucinated features
with respect to previously grouped contours.

Figure 1: Gestalt Law of continuity: Although the shapes are not complete,
they are easily recognized as a rectangle, triangle and circle.



2 The Competitive Layer Model

The CLM uses an internal recurrent dynamics to group similar features. To this
end, a set of L×N linear threshold units are arranged in L neuron layers. We
denote the activity of a neuron with xrα, where r = 1..N denotes the feature
index and α = 1..L the layer index. Hence, for each feature r exists a column
of neurons across all L layers. The significance of a feature r is determined by
the external input hr (cf. Fig. 2(a)).

Within each layer a lateral interaction frr′ is defined according to the com-
patibility or similarity of features vr and vr′ . If both features are considered
similar, a positive connection weight between xrα and xr′α is used, realizing
a positive feedback loop. This compatibility measurement is domain specific
for the type of used features v and must therefore be explicitly specified in a
symmetric interaction function:

frr′ = f(vr, vr′) = f(vr′ , vr) (1)

This mutually reinforces activity of neurons representing similar features. All
layers employ the same lateral interaction weights.

Grouping of features is realized by collecting positive neuronal activity within
layers. To enforce activation of a neuron related to a particular feature vr within
a single layer only, the lateral layer-wise interaction is augmented by a column-
wise winner-takes-all (WTA) interaction. The combination of the vertical WTA
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Figure 2: (a) The Competitive Layer Model with three inputs h1...3 and the
corresponding neurons xrα in each layer. (b) Compatibility for oriented edges.
Emanating from the centered feature vr, dark filled edges indicate a high com-
patibility whereas unfilled edges indicate low compatibility.



dynamics and the lateral interactions leads to a linear threshold dynamics of

·
xrα = −xrα + σ(J(hr −

∑
β

xrβ) +
∑
r′

frr′xr′α) (2)

with σ(x) = max(0, x), where hr−
∑
β xrβ represents the vertical WTA interac-

tion, weighted by a (usually small) constant J and
∑
r′ frr′xr′α represents the

lateral interaction.
Since the lateral interactions frr′ are identical in each layer, they can be

calculated once and stored in a symmetric interaction matrix

Mrr′ = f(vr, vr′) (3)

An exemplary interaction function is shown in Fig. 2(b), displaying the inter-
action of oriented edges. Starting from the centered feature vr, features with
a similar orientation w.r.t. to their distance have a higher compatibility than
nearly perpendicular features in close proximity.

3 Hallucinating Features

We strive to use the CLM binding dynamics to “imagine” well matching amend-
ments for sparse geometric shapes. In order to achieve this goal, we apply the
CLM to a set of geometric shapes, let it converge and then induce hallucinated
features to evaluate their compatibility using the binding dynamics.

The induction of hallucinated features is currently done without a priori
knowledge about the distribution of known features from the CLM grouping.
Therefore the search space is narrowed to a finite set and the search for well
matching hallucinated features is currently done with a “brute force” approach.
For each possible element the compatibility to the existing groups is evaluated.

To evaluate the compatibility of a new feature vector vnew, an interaction
vector

m = (f(vnew, v0), f(vnew, v1), . . . , f(vnew, vr))
T (4)

is created to extend the interaction matrix Mrr′ :

Mnew =

(
Mrr′ m

mT 1

)
(5)

The support for the hallucinated feature from the existing neurons is then cal-
culated as:

xvnewα = mT · ~xα (6)

4 Preliminary Results

To evaluate the proposed approach, we applied a CLM with ten layers to a set
of sparse circles composed of oriented edges, as depicted in Fig. 3(a), with an
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Figure 3: (a) CLM grouping of three sparse circles. (b) Activity of hallucinated
features merged over all layers. (c) Activation from hallucinated features for a
single layer after applying a threshold of 0.5. (d) Local maximum in a 5 × 5
neighbourhood with known features from group 1. (e) Known features sub-
tracted from previous maxima. (f) Best matching features in unoccupied areas
for all layers with known features from (a).

oriented edge defined by a 2D position (x, y) and orientation θ. Different layers
are represented with different colors. For each position in the 100 × 100 input
space 36 features with different orientations in a range from 0◦ to 175◦ were
imagined and evaluated for their compatibility with existing groups.

Fig. 3(b) shows the maximal activity at each position (x, y) over all possible
orientations θ. Please note that Fig. 3(b) is furthermore a combination of all
layers.

To reduce the noise from not well matching hallucinated features, a single
layer is selected in Fig. 3(c) and a threshold is applied, which sets every activity
smaller than 0.5 to zero.

To narrow down the result of the thresholding, a filter which selects the
maximum in a 5 × 5 neighbourhood is utilized. This new local maximum is
then used as point of origin for a new filtering step in which already visited
positions are omitted. This enables the filter to “follow” local maxima. Of
course hallucinated features in close proximity to already known features are
selected by this filter, too. This is shown in Fig. 3(d), where the result of the
filtering process is overlaid with group 1 from Fig. 3(a).

In an additional step depicted in Fig. 3(e), hallucinated features in close prox-
imity to existing groups are removed, leaving only good amendments. Fig. 3(f)



shows the above mentioned steps for all groups, including the original CLM
grouping results of from Fig. 3(a). In the interests of clarity, all groups are
displayed with the same symbols.

These results show the feasibility of using the CLM dynamics in conjunction
with hallucinated features to amend sparse informations.

5 Conclusion

Inducing hallucinated features into the CLM opens an interesting foundation
to amend sparse informations, which is not only limited to the completion of
geometric shapes but can also be generalized to much more complex scenarios.
For example given the action segmentation from [2], it is imaginable to use the
CLM for action generation, given a set of incomplete action segments.

It also introduces a lot of new questions for research, e.g. how to overcome
the current “brute force” approach to initially generate hallucinated features,
as well as a more general technique to finally find good amendments in contrast
to the feature specific method presented here.

Also of interest will be a combination of learning the lateral interactions as
presented in [4] with amendment through hallucinated features to gain a better
generalization.
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