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Abstract. Anticipating the intentions of others is a key ability for cog-
nitive interaction that is still not well understood and poorly replicated
in artificial systems, such as robots. In this contribution we explore a
neural model of Gestalt formation as a potential approach to intention
anticipation. The idea is to view the already recognizable part of an
ongoing action, together with the underlying intention, as a ”Gestalt”,
which has to be completed when only the recognizable action part is
given as an available fragment. To test this idea, we extend a previously
developed model of competing neural layers for Gestalt formation by a
”hallucination mechanism” that constructs the most likely completion
of a given action fragment. We show that the resulting model can suc-
cessfully anticipate cooperative moves of a human player in a two-person
interaction scenario.

1 Introduction

When humans try to solve a task cooperatively, they can adapt their behavior
to each other without explicit negotiation. This ability has many facets, one
of them being the intuitive anticipation of the intentions of their collaboration
partners. As an example, one can look at the task waiters perform when laying
out dishes for a dinner. If one waiter starts to lay out the dishes, another one
will most likely start to place the cutlery, because the dishes are taken care of
and the cutlery is needed to complete the task.

This ability of “seeing” what the other will do to complete my fragmen-
tary action has some resemblance to the completion of a fragmentary “Gestalt”,
viewing the fragmentary action as the incomplete pattern for which a ”good
continuation” is sought. This suggests to apply models for Gestalt formation to
map the given input into a dynamics that completes the fragmentary actions
towards a “good Gestalt”, such as, e.g. “cooperation”. The driving dynamics
itself would then be in the role of the “intention” that completes the action.

To explore this idea in a concrete fashion, we apply the Competitive Layer
Model [11]. The CLM has been proven feasible for a large set of segmentation
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Fig. 1. The left image shows the Competitive Layer Model. At the bottom are three
inputs v1···3 and their corresponding neurons x1···3 within each layer L = 1 . . . α. The
right image shows an example for a CLM with six layers and two different classes of
interaction functions. The layers L1, . . . , L3 respond to interaction function F1 and the
layers L4, . . . , L6 respond to interaction function F2.

and grouping problems in the image processing domain [9,14] and for automatic
task segmentation [10].

The CLM allows the grouping of features based on the Laws of Gestalt Theory
[6], a theory from the field of cognitive psychology, which tries to describe how
humans perceive complex scenes. As a result of a combination of excitatory
and inhibitory couplings of neurons, similar features form reinforcing groups of
attractors, while simultaneously suppressing other, less similar features.

However, a human can not only correctly group features, but also imagine
well fitting completions. Hence, we apply the approach presented in [7], with
which it is possible to evaluate the compatibility of previously unknown features
with respect to a CLM grouping result. The presented approach is extended with
a technique to automatically find well fitting completions.

The recognition of intentions is of particular interest in the field of human-
robot interaction and has been approached with a variety of techniques. In [5],
the recognition of intention was done based on Hidden Markov Models, whereas
[3] integrates Markov Models, Bayesian Networks and machine learning tech-
niques in a hierarchical model to achieve this goal. Encoding a set of possible
intentions in a Finite State Machine and learning of the transition probabilities
has been done in [1].

2 The Competitive Layer Model

The Competitive Layer Model (CLM) is a recurrent neural network which con-
sists of L×N linear threshold neurons. These neurons are arranged in α = 1 . . . L
layers, where each layer holds a total number of r = 1 . . . N neurons, as depicted
in Fig. 1(a). The activity of a neuron in a single layer is denoted as xrα. The dy-
namics is designed such, that compatible features induce high neuron activities
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Fig. 2. An exemplary interaction function for good continuation is shown on the left.
The central feature vr gets excitatory responses from the gray shaded features and
inhibitory responses from the white. The right image shows parameters for the com-
patibility of oriented edge elements. The used parameters are the distance between the
centers of the elements, given by pr and pr′ and the three angles θ1,2,3.

within individual layers α, indicating perceptual grouping of those features. All
neurons within a column r correspond to the same feature vr.

The neurons in each layer are coupled with lateral interaction weights frr′ ,
which are determined by the similarity between two features vr and vr′ , e.g.
positive values for compatible and negative values for dissimilar features. This
compatibility measure needs to be explicitly specified by a symmetric interaction
function

frr′ = f(vr, vr′) = f(vr′ , vr). (1)

Because the interaction weights need only be computed once, they can be stored
as a symmetric interaction matrix F = frr′ .

An example for an interaction function that models the Gestalt Law of good
continuation is given in Fig. 2(a). Features which form a smooth path with
respect to the central feature vr create excitatory responses while other features
which do not fit create inhibitory responses. To assure that an input feature vr is
only represented by an active neuron in a single layer, the corresponding neurons
in each layer are coupled with a columnar winner-takes-all (WTA) competition.

Combining both components, the lateral interaction function and the column-
wise WTA circuit, a linear threshold dynamics can be summarized with the
following update rule:

·
xrα = −xrα + σ(J(hr −

∑
β

xrβ) +
∑
r′

frr′xr′α) (2)

Here, σ(x) = max(0, x) is the linear threshold function, J(hr −
∑
β xrβ) repre-

sents the columnar WTA with a weighting constant J , and h specifies the overall
columnar activity and thus denotes the importance of a feature. Throughout this
article we assume that all features are equally important, therefore h = 1. The
lateral interaction between the features at position r and r′ is computed with∑
r′ frr′xr′α. For a conclusive analysis of the CLM dynamics please refer to [14].
The CLM architecture as described above can only hold one interaction func-

tion at a time and therefore only respond to a specific type of feature compat-
ibility. To circumvent this limitation, we apply the idea presented in [12] and
introduce different types of layer classes. As shown in the example in Fig. 1(b),



a set of layers is grouped in a layer class which responds to a class specific in-
teraction function. In the illustration in Fig. 1(b) the layers L1, . . . , L3 respond
to the interaction function F1 while the layers L4, . . . , L6 respond to F2.

In previous works, for example in [14], the interaction function had to be
hand crafted. To gain a better generalization capability and to simplify the task
of choosing a suitable interaction function, we apply the techniques presented in
[13] to learn an interaction function from labeled training data.

The approach presented in [13] relies on a set of labeled training data which
is used twofold. In the first step, for each feature pair (vr, vr′) a proximity
vector d(vr, vr′) is calculated. These proximity vectors are subsequently clus-
tered to yield a compact representation of the proximity space. In the simplest
case, the proximity vector may simply stack the original feature vectors, i.e.
drr′ = [vtr, v

t
r′ ]
t. However, if more insight into the task is available, more elabo-

rate distance vectors can be computed, expressing the similarity of two features
within a multi-dimensional vector. The objective is to capture properties of typ-
ical feature pairs within the given domain. For example, Fig. 2(b) shows the
proximity function employed for oriented edge features.

In a second step, the label information is used to assign positive or negative
interaction weights to each cluster prototype. Prototypes mainly corresponding
to feature pairs of the same group, i.e. being compatible, will get a positive
weight. Contrarily, pairs of features originating from different groups will gen-
erate negative interaction weights. Exploiting the frequency of the positive and
negative interaction labels, it is possible to create a set of basis interaction func-
tions. For a detailed derivation please refer to [13].

3 “Intention Field” for Anticipating new Features

To extend the capabilities of the CLM from grouping towards amending sparse
groups, we utilize an approach presented in [7]. Given a CLM which has already
converged to a grouping result, it is possible to use this result to find previously
unknown features which fit well to the already known features.

3.1 Quality Measurement

As presented in [7], it is possible to evaluate the quality Q of a new feature vnew
by calculating its compatibility to the achieved grouping result. To this end, first
an interaction vector m for the new feature value vnew has to be created

m = (f(vnew, v0), f(vnew, v1), · · · , f(vnew, vr))
T (3)

utilizing the previously learned interaction function frr′ . The support for the
new feature is calculated as

xvnewα = mT · xα (4)

for all layers L = 1 . . . α. We will view the mapping I : (v, vnew)→ xvnew from the
existing pattern v to the support as the “intention” I(v, .) that is associated with



(a) Training data. (b) Grouping result
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Fig. 3. The labeled training input to learn the interaction function is shown in 3(a).
The shapes are composed of edge features as depicted in Fig. 2(b). 3(b) presents the
grouping result from the CLM for two test shapes. Their “intended” completions are
displayed in 3(c), where the quality of the “intentions” produces a steep slope inside
and outside of the circular input shapes.

the existing pattern v. In this way, we obtain a computationally clear and concise
representation of “intention” as a mapping that tells how strongly the system
supports different possible completions vnew of a given partial input. To make
the computed activity for the “intended” completing feature vnew comparable,
we apply a normalization, which shall assure that the support for such a feature
is in the range from 0 to 1 in each layer.

Assume we have a CLM which holds N features and is already converged.
Because of the linear threshold σ(x) from (2), every feature has an activity
greater or equal to zero. Therefore, we calculate the normalization constant Mα

for each layer as:

Mα =

N∑
r=1

xrα (5)

With N being the number of features in the original input and their corre-
sponding neural activity xrα in the layer α. Consequently, the quality Q of an
“intended” completion can be determined using (4) and (5) as

Qα(vnew) =
1

Mα
·mT · xα (6)

An example of this process is shown in Fig. 3. An interaction function is
learned from the training set in Fig. 3(a), where the labels are indicated by
different colors. These shapes are composed of oriented edge features as shown
in Fig. 2(b). The grouping result of the CLM is shown in Fig. 3(b). Here the
assignment of features to the same layer is expressed by the same color. To closer
examine the approach, the best fitting “intended” completions for the incomplete
shape are generated. Fig. 3(c) shows the maximal quality of “intended” comple-
tions for each pixel of the image. Please note that for visualization purposes
the feature space was discretized. At each pixel position the maximal activity
for a total number of 36 different orientations, reaching from 0◦ to 175◦, was
calculated and is shown in Fig. 3(c).



3.2 Finding good Features

The method used to display the quality of an “intended” completion in Fig. 3(c)
is not suitable for real world problems. It discretizes the feature space and is
computational intractable because of the brute force data generation over the
whole space.

We therefore propose to use a sampling technique which has been proven
feasible for path planning and protein folding, the transition based rapidly ex-
ploring random tree (T-RRT) [4]. T-RRT extends classical RRT to find good,
cost-efficient paths in the presence of a cost function defined on the configura-
tion space, e.g. finding paths along a valley in a mountainous region. Thus it
applies a transition test supplementary to the state validity checking of RRT.
The transition test, as presented in [4], needs a cost function c which evaluates
the cost of a newly sampled configuration q. The probability of a transition from
state qt to a new state qt+1 is then determined by the Boltzmann distribution:

pt,t+1 =

{
e−

∆ct,t+1
K·T if ∆ct,t+1 > 0

1 else
(7)

where ∆ct,t+1 = ct+1−ct
dist(ct,ct+1)

, which determines the slope of the cost along the

path. K is a constant which normalizes the costs. As proposed in [4], we set K =
cstart+cgoal

2 . The parameter T is a temperature to allow a simulated annealing
behavior. If the transition test is successful, the temperature is decreased by
a factor T = 1

a · T . If the test fails for a given number of steps nFail, the
temperature is increased by T = a · T . Here we also use the same values as in
[4], namely a = 2 and nFail = 100.

3.3 Integration

With the given T-RRT algorithm and the quality measurement from (6), it is
easily possible to create a cost function:

c(vnew) = 1−Q(vnew) (8)

which prefers paths along high quality features, thus exploring the “intention
field” towards well fitting completions. We can consider the known features of
the CLM as points on a trajectory through this space. The task of the T-RRT
algorithm is to connect these points and fill in the sparse regions by finding good
amendments, for example to complete the shape from Fig. 3(c).

4 Evaluation

To evaluate the proposed approach, we will first test our technique in an interac-
tion game, where the task for our system is to anticipate which figure a user has
in mind and complete it accordingly. The second part of the evaluation uses ar-
tificially generated shapes and introduces an error margin to gain a quantitative
measure how good the generated features of our system are.



Fig. 4. Color labeled training patterns for the completion task. The rightmost part of
the image shows the result of the used feature extraction. For each colored block an
oriented rectangle is fitted and the longest axis of this rectangle is used as input for
the CLM.

4.1 Interaction Game

The experimental evaluation consists of a cooperative figure completion task. At
first we present some color labeled example figures to our system from which the
interaction functions are learned. Each of the four images from Fig. 4 is used to
learn the interaction function for a layer class. Each colored rectangle has the
size of a wooden block from the Jenga game, as shown in Fig. 4. From these
images the features are extracted using a simple color threshold and by applying
a box fitting algorithm from OpenCV 1 to the filtered images. The longest axis
of these boxes is used as an individual input feature for the CLM. The goal of
the system is to anticipate which figure the human player has in mind and to
complete it accordingly by suggesting a well-fitting location to place the next
Jenga block using the presented approach. The actual placement of the wooden
blocks was not yet realized by a robotic pick-and-place program, due to minor
technical issues. Occasionally the human player may place a block by himself.

Fig. 5. Results from the cooperative shape completion task. Each of the four rows
shows a sequence of the task. The color coding at the bottom of the figure indicates if
it is the user’s or the system’s turn. A blue bar represents an action performed by the
user and no bar stands for an action executed by the system. The green bars in each
frame denote the anticipation of the system for the following frame. After the sixth
frame the system is completing the shape autonomously.

1 Open Source Computer Vision - http://opencv.org



(a) Original (b) Sparse (c) “Intentions” (d) Comparison

Fig. 6. Illustration of the generation and evaluation of artificial shapes. The shape in
the leftmost image serves as reference, which is used to generate a sparse shape as
shown in Fig. 6(b) and as ground truth data for the error calculation. In Fig. 6(c) the
completing features generated by our approach are shown in red. The rightmost image
compares the completing features from Fig. 6(c) to the ground truth data. The mean
mutual distance between these features is used as error margin.

When a new block is placed on the table, our system explores the neural
potential in the vicinity of this block towards unoccupied regions. Because the
geometry of a Jenga block is known and the task is to place one block at a time,
the exploration radius is limited to the length of one block.

Four game sequences are shown in Fig. 5 corresponding to different geometric
shapes to be laid out. Each row depicts a single trial which shows the sequence
from left to right. The bottommost row indicates when our system or the user
performed the shown action in that column. A blue label indicates that the action
was performed by the user whilst no label represents that our system decided
where to place the next block. Additionally, a green block in the sequence of
images shows the anticipation of our system for the following frame.

The procedure was similar for all trials. The first two Jenga blocks were
placed by the user. From block three to six the system and the user were taking
turns. Eventually, the system should complete the figure autonomously.

The evaluation shows overall good results. Especially the circular shape in the
topmost row is rapidly recognized, which can be seen by the first first anticipation
of the system in the second frame. The other shapes were recognized in the fourth
frame, because the lines in the previous three frames are too ambiguous. After
getting a hint in the fourth frame through the user’s action, the system detects
the rectangular respective triangular shape. Also the autonomous completion
after the sixth frame works well in three of four shown trials. Only the rectangle
in the last trial is not completed as expected. This may have the cause that the
training pattern from Fig. 4 contains a shape with an edge length of two blocks,
which corresponds to the anticipation of our system. Although the used learning
technique generalizes over different sizes and rotations of the presented shapes,
which can also be seen by the figure created in the second sequence, which is
not present in the training image, the presented training shapes may have not
been variant enough to fully exploit the generalization ability of the learning
approach.



4.2 Artificial Data

To gain a quantitative error margin for the proposed approach, we evaluate the
process with artificially generated shapes. To this end, a shape with varying size
and rotation is generated and stored as ground truth data for later comparison.
We will denote this complete shape as C. From this shape C, features are ran-
domly removed to create a sparse shape, hereafter named S. Our approach is
then used to close these gaps by generating completing features. The set of these
features will further be denoted as H. The used error margin (9) is the mean
mutual distance of generated features from H to their closest corresponding fea-
ture in the original set C. An exemplary overview of this procedure is shown
in Fig. 6. The first image shows the complete shape which is used as reference.
In the second image a number of features is removed to create shape C. The
result of the “intention” completion can be seen in Fig. 6(c). An overlay of the
“intended” completions and the original shape is illustrated in Fig. 6(d). From
the features of Fig. 6(d) the error is calculated as:

E(C,H) =
1

|H|
∑
h∈H

min
c∈C
||d(c, h)|| (9)

We generated four different kinds of shapes, namely a triangle, a rectangle, a
pentagon and a circle with varying sizes and orientations. From these shapes up
to 40% of the feature were removed randomly in steps of 10%. For each shape and
percentage of removed feature, 50 shapes are randomly generated. The generated
shapes have an average of 2.8 distance between two features. In table 1 the
average mutual distance over the 50 trials per shape and removed percentage
is shown. There are no significant outliers in the data and given the distance

Table 1. Distance between “intended” completions and original shape.

Shape percent removed Shape percent removed

10% 20% 30% 40% 10% 20% 30% 40%

Triangle 4.77 4.99 4.64 4.62 Rectangle 3.39 4.71 4.83 4.70

Pentagon 3.18 4.65 3.95 4.84 Circle 2.93 3.59 3.88 3.75

between the generated features of 2.8, the mutual distance is small enough to
say that our approach can create reasonable amendments in the absence of data.
Since the mutual distance in case of the circle is overall smaller than the mutual
distances of the other shapes, this suggests that our approach slightly prefers
smooth continuations to corners.

5 Conclusion

We presented an approach which exploits the perceptual grouping capabilities
of the Competitive Layer Model and introduces a technique which extends these



grouping capabilities towards the automatic generation of new data. The ap-
proach shows reasonable error margins in the evaluation with artificial data,
which indicates good completion abilities. It is further evaluated in an interac-
tion scenario which utilizes the generative aspect of this technique to anticipate
the intentions of the human partner. Although the scenario is rather simple, the
results are convincing that this extension of the CLM capabilities can be useful
in a broader domain and more complex scenarios, because the only part which
has to be supplied by a user is a compatibility function in the feature domain.
This property also eases the adaption of the presented approach in comparison
to more specialized data generation techniques like, for example, [2,8]. Given the
findings from [10] and the presented compatibility measurement for actions, we
strive to extend the CLM based segmentation of actions towards anticipating
good completing actions for cooperative human-robot tasks.
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