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The Kuramoto Model [2] is a recurrent network composed of limit cycle
oscillators, whose dynamic is designed to facilitate phase synchronization among
populations of oscillators. A single oscillator On in a population of N oscillators
is described by it’s phase θn and frequency ωn. The recurrent update equation
of the model is

θ̇m = ωm +
K

N

N∑
n=1

sin(θn − θm). (1)

Hence, the oscillators are globally coupled with a coupling strength K. The fre-
quencies ωm are constant and drawn from a random distribution. These frequen-
cies introduce a separating force into the network model, which drives oscillators
away from each other. The K/N

∑
sin(θn − θm) term counteracts this separa-

tion, forcing the oscillators into a phase-synchronized state. This model can be
used to describe different kinds of natural phenomena, for example synchronous
flashing of fireflies or the synchronization of pacemaker cells in the heart. Please
see [4] for a review of synchronization effects in Kuramoto models.

In [3], a network based on a hierarchical model of coupled Kuramoto oscilla-
tors is introduced, which is able to solve a broad spectrum of perceptual grouping
tasks, for example texture based image segmentation and contour integration.
The key principle of this network is to represent features from an input space in
a one-to-one relation by Kuramoto oscillators. The coupling strength between
the oscillators is chosen based on the similarity of the features according to some
distance metric.

In contrast to the original Kuramoto model (1), the hierarchical model in-
cludes individual coupling strengths fmn between oscillators Om and On to fa-
cilitate feature-dependent synchronization of oscillators. It is described by the
recurrent update equation

θ̇m = ωm +
K

N

N∑
n=1

fmn sin(θn − θm). (2)

Using this equation, positively coupled oscillators, e.g. fmn = 1, will attract
each other and gather at a similar phase whilst negatively coupled oscillators
(fmn = −1) act repelling and spread in their phases.

In the original model, the frequencies ωn are drawn from a random distri-
bution and constant. We proposed to employ a set of discrete frequencies ω0α,



α = 1, . . . , L and update the frequency of each oscillator based on the support
they gain from all oscillators. The support is calculated based on cosine similarity
of oscillator phases, limited to the range [0, 1] and weighted by their local cou-
pling i.e. Sm(α) =

∑
n∈N (α) fmn · 1

2 (cos(θn − θm) + 1). The new frequency wm
is then chosen to maximize the support, thus boosting phase synchronization:

ωm = ω0 · argmax
α

(
Sm(α)

)
(3)

This adaptation allows an easy assignment of grouping results: Oscillators shar-
ing a common frequency index α represent the same group. Additionally, adapt-
ing oscillators to the same frequency reduces the phase spread compared to
randomly drawn, constant frequencies.

(a) fmn (b) Initialization. (c) 10 updates. (d) 20 updates.

Fig. 1: This figure displays an example of the dynamics for a network with 100
features, 10 discrete frequencies and 4 target groups. The leftmost panel shows
the coupling matrix fmn between features, where a black pixel indicates an
attracting coupling while white represents a repelling coupling. Fig. 1b to 1d
visualize the state of the oscillators in phase space (polar coordinates) at ini-
tialization, after 10 and 20 updates. The color and symbol of the oscillators
represents the desired target state.

The behavior of the network in an artificial grouping task is shown in Fig. 1.
The coupling matrix fmn for 100 features, divided into four groups with 10%
noise is shown in Fig. 1a, whilst the state of the oscillators in phase space is shown
in Fig. 1b–1d. After 10 updates the network achieves a perfect grouping result
in terms of frequency assignment. After 20 updates, oscillators representing the
same target group have a high phase synchrony as well.

Although the recurrent update (2) appears intriguingly simple, the model and
its’ variations opened a wide spectrum of research, e.g. see [1] for an overview.
By introducing a frequency adaption (3) in conjunction with discrete frequencies
and recalling the original update equation (1), where the frequencies ωn induce
phase spread while the sin() term drives the oscillators towards a mean phase,
the question arises whether the distribution of these frequencies has an impact
on the network dynamics. To get a first insight into this question, we employed
genetic algorithms (GA) to generate different sets of discrete frequencies and
analyzed if the GA was able to improve the target state of the network by
varying the discrete frequencies.



The initial grouping problem was similar to the settings in [3]. The compat-
ibility fmn was expressed as a matrix which encodes the couplings among 100
features, split into four target groups of 25 features. The matrices contained 25%
noise. The oscillator networks contained 10 discrete frequencies. The crossover
probability of the GA was set to 50% with a mutation probability of 3%. The
population consisted of 100 chromosomes, where each chromosome encoded the
discrete frequencies of an oscillator network. The fitness function was designed
in terms of the grouping quality q = [0, 1] and the oscillator order r = [0, 1].
A grouping quality q of one represents a perfect result compared to a given
target labeling, whilst the order r represents the phase coherence of the oscil-
lators. A value of one means that all oscillators share the same phase θ. For a
more comprehensive description of both evaluation measures please refer to [3].
For the initial trials, two fitness functions are evaluated. On the one hand the
product of quality and order q ∗ r and on the other hand the average of quality
and order q+r

2 . Additionally, two different ranges of frequencies are used, [π2 , 2π]
and [π2 , 20π]. The results are shown in table 1 for the different conditions. The
last column shows the product of quality and order without a GA optimization,
averaged over 1000 trials.

cond. avg, 2π avg, 20π mul, 2π mul, 20π no GA

µ and σ 0.986 ± 0.001 0.989 ± 0.01 0.971 ± 0.001 0.979 ± 0.001 0.963 ± 0.03

Table 1: Mean and standard deviation of the fitness function over 1000 evolution
steps for each condition. The leftmost column shows the result over 1000 trials
for a non-optimized oscillator network.

These results suggest, that the frequency distribution does not have a sig-
nificant impact on the grouping behavior of the oscillator network, at least for
the considered artificial grouping problem. In contrast to the hierarchical model
(2), the frequency adaption (3) reduces the phase spread induced by randomly
drawn, fixed ω values in oscillator groups, which could counteract possible im-
pacts of different ω distributions on the dynamics. Extending this investigation
towards a mean phase analysis of oscillator groups will be of future interest.
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