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1 Introduction

Machine learning (ML) methods constitute core
technologies in the era of big data [2]: success-
ful applications range from everyday tasks such
as spam classification up to advanced biomed-
ical data analysis. Further, today’s most sig-
nificant machine learning models are supported
by strong theoretical guarantees such as their
universal approximation capability and gener-
alisation ability. Still, it is a long way to en-
able the direct use of advanced ML technol-
ogy in complex industrial applications or set-
tings where a human has to take responsibility
for the results. Most popular ML models act as
black boxes and do not reveal insight into why
a decision has been taken [3]. Hence the accu-
racy on the given data is the sole information

*Those authors contributed equally to this work.

based on which practitioners can decide to use
a model. Despite strong theoretical results un-
der idealised assumptions, this can be extremely
problematic, since these assumptions are usually
not met in practice. Further, black box mod-
els are restricted to a mere functional inference.
Auxiliary information is not extracted, albeit of-
ten aimed for e.g. in biomedical data analysis.
These facts have caused a strong interest in in-
terpretable ML models, with first promising re-
sults in specific domains such as biomedical data
analysis [4–10].

Linear (or locally linear) data transformations
constitute a particularly prominent element in
machine learning which seemingly combines effi-
cient and well founded training algorithms with
interpretable model components. Global linear
models such as ridge regression, linear discrim-
inant analysis, or principal component analysis
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constitute premier techniques in many applica-
tion domains in particular if high data dimen-
sionality is involved [11]. Besides, the very ac-
tive field of metric learning usually aims for an
adaptive quadratic form, which essentially cor-
responds to a linear transformation of the data.
Many different successful approaches have re-
cently been proposed in this context, see e.g.
[12, 13]. One of the striking properties of linear
models is that they seemingly allow an interpre-
tation of the relevance of input features by in-
specting their corresponding weighting; in a few
cases, such techniques have led to striking se-
mantic insights of the underlying process [14].
Thus, these models carry the promise of fast
and flexible learning algorithms, which directly
address a simultaneous, quantitative, and inter-
pretable weighting of the given features, pro-
vided linear data modelling is appropriate.

Recent results, however, have shown that
the interpretation of linear weights as relevance
terms can be extremely misleading in particular
for high-dimensional data [15]: those data likely
display correlations of the features, hence rele-
vance terms can be high due to purely statisti-
cal effects of the data. Conversely, highly corre-
lated but very important features can be ranked
low due to the fact that they share their impact.
In the contribution [15] a first cure to partially
avoid these effect by a L2 regularisation has been
proposed; in particular in the case of feature cor-
relations, the approach still fails to provide ef-
ficient bounds for the minimum and maximum
feature relevance, hence it offers a partial solu-
tion of the problem only. In this contribution we
propose a L1 regularisation instead, which allows
an efficient formalisation of the minimum and
maximum feature relevance as a linear program-
ming problem. Since many recent datasets are
characterised by their high dimensionality, this

constitutes a crucial step for feature relevance
interpretability in many modern domains.

Very high data dimensionality is becoming
more and more prominent. For example, in
omics studies, many genes are simultaneously
considered [16, 17]. Even if having more in-
formation may seem beneficial at first glance,
this wealth of features can also be problematic.
Indeed, machine learning in high-dimensional
space suffers from the curse of dimensionality
[18, 19], also known as the empty space phe-
nomenon. This is due to the fact that the
size of a dataset should scale exponentially with
its dimensionality, what cannot be achieved
in practice. Other counterintuitive phenom-
ena like the concentration of distances [20] oc-
cur, what causes distances to be less useful
in high-dimensional spaces. Eventually, high-
dimensional data are harder to analyse and to
visualise for human experts. As argued above,
direct feature ranking in linear maps can easily
loose its interpretability in this situation.

Feature selection [21] is a common preprocess-
ing for high-dimensional data, and we will com-
pare our modelling to classical feature selection.
Feature selection consists in selecting a few rele-
vant features which allow reaching good predic-
tion performances with easy-to-interpret mod-
els. For example, least angle regression (LARS)
[22, 23] obtains sparse feature subsets for lin-
ear regression. Many methods have been pro-
posed for non-linear models, based e.g. on mu-
tual information [24–30]. Such solutions improve
the performances of subsequently used machine
learning algorithms. In our setting, we are not
so much interested in a sparse linear represen-
tation, rather we address the question, given a
linear mapping, what is the relevance of features
for the given mapping, taking into account all
possible invariances inherent in the data. Con-
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cerning this question, classical feature selection,
though very powerful, is not entirely satisfying
when it comes to interpretability. Indeed, most
feature selection algorithms only provide either
a unique subset of features or a path of feature
subsets of increasing size. This leaves out an im-
portant part of the information. For example, if
two relevant features are linearly dependent, the
LARS algorithm may arbitrarily include any of
them in the feature subset, what may incorrectly
suggest that the other feature is irrelevant. Also,
most feature selection methods do not specify
which features are strictly necessary, what may
be interesting to understand the system under
study.

These limitations of feature selection can be
alleviated using the concept of strong and weak
relevance [31–33]. Strongly relevant features pro-
vide new information, even if all other features
are already used. Weakly relevant features may
provide new information, but only if certain fea-
tures (e.g. redundant ones) are not simultane-
ously considered. In general, the determination
of weakly relevant features requires exhaustive
search over all feature subsets [33]. In this pa-
per, we restrict to linear mappings only, ignoring
possible nonlinear effects. We are interested in
the relevance of the features for the given map-
ping, aiming at both, strong and weak feature
relevance. We do not strictly follow the formal
definition of strong and weak feature relevance
for linear settings, but we will use a different for-
malisation which is inspired by these terms but
allows efficient modelling. Essentially, we will
consider two weight vectors of a given mapping
as equivalent, if they have the same (or a similar)
classification behaviour and the same (or similar)
length of the weight vector, thus accounting for
a similar signal to noise ratio or generalisation
ability, respectively. Then we propose a mea-

surement similar to weak and strong feature rel-
evance by the minimum and maximum weight of
a feature in this equivalence class. These bounds
give an interpretable interval for the feature rel-
evance.

This paper is organised as follows. First,
Section 2 discusses the problem of weak and
strong relevance for linear relationships. The
concept of bounds for feature relevance is intro-
duced, as well as a simple, generic reference al-
gorithm. Section 3 proposes a new algorithm
to find strongly and weakly relevant features for
linear models (and the corresponding feature rel-
evance bounds). Experiments are performed in
Section 4 and Section 5 concludes this paper.

2 Definition and Measure of
Feature Relevance

This section defines the concept of feature rele-
vance and discusses a simple algorithm to quan-
tify it, aiming at approximations of the formal
concept of weak and strong feature relevance.
For linear mappings, a similar mathematical def-
inition is proposed in Section 3 which resembles
the underlying ideas but directly gives rise to an
efficient solution.

2.1 Feature Relevance

The question what means feature relevance has
been extensively discussed, see e.g. the sur-
vey [34] and the approaches [35,36]. The notion
of strong and weak feature relevance has been
defined in [31–33]. Assume the task is to pre-
dict a target Y based on d features X1 . . . Xd,
which can be either continuous (regression) or
discrete (classification). A variable Y is condi-
tionally independent of a variable Xj given a set
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of variables S, if P (Y |Xj , S) = P (Y |S). This is
denoted as Y⊥⊥Xj |S. A feature Xj is strongly
relevant to predict Y iff

Y /⊥⊥Xj |X(j) (1)

where X(j) is the set of all features except Xj .
Strongly relevant features are strictly necessary
to achieve good prediction, since they contain
some information which is not provided by any
other feature. Finding theses features is partic-
ularly interesting to understand the studied pro-
cess, since these features are likely to play a key
role.

A feature Xj is defined as weakly relevant to
predict Y iff it is not strongly relevant and

Y /⊥⊥Xj |S (2)

for some feature subset S ⊂ X(j). A weakly rel-
evant feature is not necessarily useful, since it
provides information which is also contained in
other features. Indeed, Y⊥⊥Xj |X(j) holds if the
feature Xj is not strongly relevant (first part of
the definition). This can occur if Xj is redun-
dant with other features, for example. Nonethe-
less, experts are often still interested in such fea-
tures: some weakly relevant features are often
necessary for a good model accuracy, albeit the
choice is not necessarily unique. Further, weakly
relevant features are often crucial to understand
the complex relationships between the features
and the target. One example is explained in [33]:
in gene expression analysis, experts ‘are primar-
ily interested in identifying all features (genes)
that are somehow related to the target variable,
which may be a biological state such as ”healthy”
vs. ”diseased”’ [37, 38].

2.2 Searching for Relevant Features

Under reasonable assumptions, generic (but po-
tentially time consuming) algorithms are pro-
posed in [33] to find strongly and weakly relevant
features. We recall this procedures for conve-
nience. Strongly relevant features can be found
by selecting all features whose removal lowers the
prediction performance. Assume there is given a
classifier with prediction error c(S) based on the
feature set S. Then these features corresponds to
the subset

{
Xj |c

(
X(j)

)
> c(X) + ε

}
where the

parameter ε > 0 controls the trade-off between
prediction and recall [33]. This backward proce-
dure is efficient, since this criterion must only be
estimated d times.

Weakly relevant feature are much harder to
find. When directly testing the definition, one
has to consider the O

(
2d
)

possible feature sub-
sets S ⊂ X(j) for the conditional dependence
Y /⊥⊥Xj |S. In practice, such an exhaustive search
is not affordable and one has to rely on heuris-
tics to find weakly relevant features. For exam-
ple, the recursive independence test (RIT) algo-
rithm [33] first finds the features Xj satisfying
Y /⊥⊥Xj . Then, it recursively adds all the other
features Xj′ which are pairwise dependent with
respect to those features, i.e. Xj /⊥⊥Xj′ . For each
step, a (specific) statistical independency test is
required.

2.3 Bounds for Feature Relevance

The algorithms described in Section 2.2 find sets
of relevant features, whereby weakly relevant fea-
tures can only approximately be determined ef-
ficiently. We are interested in a yet different
setting: on the one hand, we do not necessar-
ily consider a clear objective such as the classi-
fication error, rather our goal is to interpret the



Preprint of the publication [1], as provided by the authors. 5

relevance of features for a given linear mapping
and data set. In addition, we are not only inter-
ested in qualitative results, indicating a feature
as relevant or irrelevant, respectively. Rather,
we would like to identify an interval for every
feature which quantifies the minimum and max-
imum relevance the feature might have for the
given mapping. Thus, such bounds should not
only indicate whether features are strongly or
weakly relevant, but also how much they are rel-
evant. A non-zero lower bound indicates that a
feature is strongly relevant, whereas a large up-
per bound points out that the feature is at least
weakly relevant.

In the following, we will focus on linear re-
lationships, which are common in biomedicine
or social sciences, and particularly interesting
for the case of high data dimensionality, i.e. a
potentially large number of correlated features.
In this section, inspired by the formal notion of
strong and weak feature relevance, we propose a
generic approach which is suitable for low dimen-
sionalities and which can serve as a basic com-
parison. Afterwards, in Section 3, we propose
another efficient method to compute feature rel-
evance bounds. This is then tested in Section
4.

2.4 Generic Approach to Compute
Feature Relevance Bounds

Using the same idea as the algorithm in [33]
which finds strongly relevant features (see Sec-
tion 2.2), the following algorithm computes lower
bounds for the feature relevance.Here, DX(j)

is the dataset restricted to the fea-
tures X(j) and c measures the relevance of a fea-
ture subset to predict Y . Hence, the difference

c
(
DX(j)

)
− c (D) can be interpreted as the min-

imum contribution of Xj to the total relevance.

Algorithm 1 Compute lower bounds for feature
relevance
Input: criterion c and dataset D =
{(xi, yi)}i=1...n

Output: lower bound lj for each feature Xj

compute c (D)
for j = 1 . . . d do

lj ← c
(
DX(j)

)
− c (D)

end for

This quantity is used as a lower bound lj to the
relevance of feature Xj . It is non-zero if Xj is
strongly relevant.

For upper bounds, an exhaustive search would
be necessary, but intractable in practice. In-
stead, a greedy forward-backward search is used
in the following algorithm.

Here, C and S are the subsets of candidate and
selected features, respectively. If c is the mean
square error, the quantity c(D∅) is defined as
the target variance. Also, NB FB STEPS is the
number of backward and forward steps which
are performed. Using greedy algorithms like the
above forward-backward search is a standard ap-
proach in feature selection. Even if it is not op-
timal, it often gives good results. The partic-
ularity of the above greedy search is that the
search criterion is the upper bound itself. In
other words, the algorithm searches for the fea-
ture subset which allows a given feature to be
as useful as possible. The number of steps is
deliberately limited because (i) weakly relevant
features are unlikely to be highly relevant when
a lot of other features are simultaneously consid-
ered and (ii) the estimation of c is often less re-
liable when the dimensionality increases. Also,
computing the upper bounds with Alg. 2 re-
quires to evalute O(d2 × NB FB STEPS) times
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Algorithm 2 Compute upper bounds for fea-
ture relevance
Input: criterion c, dataset D = {(xi, yi)}i=1...n

lower bounds lj for every feature Xj

Output: upper bound uj for each feature Xj

compute c (D∅)
for j = 1 . . . d do

// initialise upper bound
uj ← max

(
lj , c (D∅)− c

(
DXj

))
C ← {1 . . . d} \ {j}
S ← ∅

// forward search steps
for s = 2 . . . NB FB STEPS do

// find next feature to add to S
for k ∈ C do

∆ck = c
(
DXS∪{k}

)
− c

(
DXS∪{j,k}

)
end for
k∗ ← arg maxk∈C ∆ck
uj ← max (uj ,∆ck∗)

C = C \ {k∗}
S = S ∪ {k∗}

end for

// backward search steps
for s = NB FB STEPS . . . 2 do

// find next feature to remove from S
for k ∈ S do

∆ck = c
(
DXS\{k}

)
− c

(
DXS\{k}∪{j}

)
end for
k∗ ← arg maxk∈C ∆ck
uj ← max (uj ,∆ck∗)

S = S \ {k∗}
end for

end for

Figure 1: Lower and upper bounds of feature
relevance given by Alg. 1 and Alg. 2 for the
diabetes dataset. c is the mean square error of a
linear regression.

the criterion c. It is therefore necessary to use
a small value for NB FB STEPS. Here, we use
NB FB STEPS = 6 as a compromise between
accuracy and efficiency.

Fig. 1 shows the lower and upper bounds ob-
tained for the diabetes dataset used in the origi-
nal LARS paper [22]. The 10 features for the 442
patients are the age, the sex, the body mass in-
dex (BMI), the blood pressure (BP) and 6 blood
serum measurements X5 . . . X10. The goal is to
predict a measure Y of diabetes progression one
year after feature acquisition. Fig. 1 shows that
the BMI X3, the BP X4 and the serum mea-
surement X9 are particularly informative; this is
confirmed by the results of LARS obtained by
Efron et al. [22].

2.5 Notes on the Error Criterion and
the Proposed Algorithms

In this paper, c is the mean square error, since
we focus on linear regression. However, the
above discussion and the two proposed algo-
rithms remain valid for non-linear regression us-
ing e.g. a kNN like in [33]. Also, other cri-
teria can be used, like the (estimated) condi-
tional entropy c (D) = Ĥ(Y |X). The differ-

ence c
(
DX(j)

)
− c (D) becomes the (estimated)

conditional mutual information Î
(
Xj ;Y |X(j)

)
=
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Î
(
X(j) ∪ {Xj} ;Y

)
− Î

(
X(j);Y

)
, i.e. the addi-

tional information in Xj about Y . Entropies can
be estimated with the Kozachenko-Leonenko es-
timator [26, 27, 39, 40]. Similar approaches exist
in feature selection [41, 42], but they do not de-
rive bounds.

The above algorithms have several drawback.
First, the criterion c has to be computed for
each feature subsets. Second, when the num-
ber of feature d increases, the lower bounds tend
to zero because of overfitting. Third, the used
algorithm for the upper bounds is a heuristic,
since forward-backward search is not exhaus-
tive. Eventually, the overall computational cost
is quadratic w.r.t. the dimensionality d. How-
ever, these two algorithms can still provide ex-
cellent points of comparison in Section 4 due to
their strong resemblance of the weak and strong
relevance of features.

3 Linear Bounds

We are interested in the interpretation of a given
linear mapping f(x) = ω>x ∈ R with ω ∈ Rd,
which we assume to map to a one-dimensional
space, for simplicity. Generalisations to higher
dimensions such as present in metric transforma-
tion, for example, are immediate (i.e. treat each
one-dimensional mapping independently and ag-
gregate the results). We assume that this map-
ping either comes from a regression or classi-
fication task such as ridge regression, LARS,
LASSO, or it arises from a quadratic metric
adaptation method which corresponds to a lin-
ear transformation of the data space. For a given
linear mapping, the value |ωj | is often taken as
a direct indicator of the relevance of feature Xj

provided the input features have the same scal-
ing, i.e. the values delivered by a linear mapping

are directly interpreted. As pointed out in [15],
this is highly problematic: for high-dimensional
data and hence high feature correlation, the ab-
solute value ωj can be very misleading. The ap-
proach [15] bases this observation on the formali-
sation of mapping invariances for the given data.

First, we define the central notion of invari-
ance, which will substitute the role of a criterion
c. Given a mapping f(x) = ω>x and data X
consisting of a matrix with data vectors xi we
define that ω is equivalent to ω′ iff

ω>X = (ω′)>X (3)

i.e. the mapping of the data is not changed when
substituting ω by ω′. Unlike a pre specified cri-
terion c such as the accuracy, this notion directly
relates to the behaviour of the mapping on the
given data only. The approach [15] exactly char-
acterises under which condition ω is equivalent
to ω′: two vectors ω and ω′ are equivalent iff the
difference vector ω − ω′ is contained in the null
space of the data covariance matrix XX>. The
covariance matrix has eigenvectors vi with eigen-
values λ1 ≥ . . . ≥ λI > λI+1 = . . . = λd = 0
sorted according to their size, whereby I denotes
the number of non zero eigenvalues.

In [15] it is proposed to choose one canonic
representation ω′ of the equivalence class in-
duced by a given ω before interpreting the val-
ues: one considers the vector ω′ which results
by dividing the null space; ω becomes ω′ = Ψω
where

Ψ = Id−
d∑

i=I+1

viv
>
i

denotes the matrix which corresponds to the pro-
jection of ω to the eigenvectors with non zero
eigenvalues only induced by the eigenvectors vi

of the matrix XX>. Hence the eigenvectors with
eigenvalue zero are divided out. It has been
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shown in the approach [15] that this choice of
a representative corresponds to the vector in the
equivalence class with smallest L2 norm.

This has the result, that it is no longer possible
to assign a high value ωj to an irrelevant feature
based on random effects of the data, i.e. strongly
relevant features are identified. While provid-
ing a unique representative of every equivalence
class, this choice is problematic as concerns the
direct interpretability of the values: Weakly rele-
vant features share the total relevance of the fea-
tures uniformly. Hence a feature which is highly
correlated to a large number of others is always
weighted low, independent of the fact that the in-
formation provided by this feature (or any equiv-
alent one) might be of high relevance for the
linear mapping prescription. In the following,
we propose an alternative to choose representa-
tives which are equivalent to ω but which allow
a direct interpretation of the weight vector. Es-
sentially, we will not consider the representative
with smallest L2 norm, but use the L1 norm in-
stead. Unlike the former, the latter induces a
set of equivalent weights which have minimal L1

norm. We can infer the minimum and maximum
relevance of a feature by looking at the minimum
and maximum weighting of the feature within
this set. Now we formalise this intuition.

3.1 Formalising the Objective

Given a parameter vector ω of a linear mapping,
we are interested in equivalent vectors, i.e. vec-
tors of the form

ω′ = ω +
d∑

i=I+1

αivi (4)

for real valued parameters αi which add the null
space of the mapping to the vector ω. We want

to avoid random scaling effects of the null space,
therefore we choose minimum vectors only, sim-
ilar to the approach [15] . Unlike the L2 norm,
however, we use the L1 norm:

µ← min
α

∥∥∥∥∥ω +

d∑
i=I+1

αivi

∥∥∥∥∥
1

. (5)

The value of the minimum µ is unique per def-
inition. This is not the case for the corre-
sponding vector ω +

∑d
i=I+1 αivi. A very sim-

ple case illustrates this fact: assume identical
features Xi = Xj and a weighting ωi and ωj .
Then any weighting ω′i = t · ωi + (1 − t)ωj and
ω′j = (1 − t)ωi + tωj yields an equivalent vector
with the same L1 norm.

This observation enables us to formalise a no-
tion of minimum and maximum feature relevance
for a given linear mapping: the minimum feature
relevance of feature Xj is the smallest value of a
weight |ω′j | such that ω′ is equivalent to ω and
|ω′|1 = µ. The maximum feature relevance of
feature Xj is the largest value of a weight |ω′j |
such that ω′ is equivalent to ω and |ω′|1 = µ.
In mathematical terms, this corresponds to the
following optimisation problems:

ωj ← min
α

∣∣∣∣∣ωj +

d∑
i=I+1

αi(vi)j

∣∣∣∣∣ (6)

s.t.

∥∥∥∥∥ω +

d∑
i=I+1

αivi

∥∥∥∥∥
1

= µ

and

ωj ← max
α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ (7)

s.t.

∥∥∥∥∥ω +

d∑
i=I+1

αivi

∥∥∥∥∥
1

= µ.
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where (vi)j refers to component j of vi. This
framework yields a pair (ωj , ωj) for each fea-
ture Xj indicating the minimum and maximum
weight of this feature for all equivalent mappings
with the same L1 norm. This strongly resembles
the notion of strong and weak feature relevance
in the special case of linear mappings and the
mapping invariance as objective.

Note that this framework does not realise the
notion of strong and weak feature relevance in
a strict sense due to the following reason: we
aim for scaling terms as observed in the linear
mapping, which are subject to L1 regularisa-
tion. This has the consequence that two fea-
tures which have the same information content
but which are scaled differently are not treated
as identical by this formalisation. Rather, the
feature with the better signal to noise ratio which
corresponds to a smaller scaling of the corre-
sponding weight is preferred. Qualitative feature
selection would treat such variables identically.

There exist natural relaxations of this problem
as follows: In Eq. (4), we can incorporate eigen-
vectors which correspond to small eigenvalues,
thus enabling an only approximate preservation
of mapping equivalence. Further, we can relax
the equality in Eq. (5) to allow values which do
not exceed µ+ε instead of µ for some small ε > 0.
Such relaxations with small values ε are strongly
advisable for practical applications to take into
account noise in the data. We will use these
straight-forward approximations in experiments.

3.2 Reformalisation as Linear Pro-
gramming Problem

For an algorithmic solution, we rephrase these
problems as linear optimisation problems (LP).
We reformulate problem (6) as the following
equivalent LP where we introduce a new vari-

able ω̃k for every k which takes the role of
|ωk +

∑d
i=I+1 αi(vi)k|:

ωj ← min
ω̃,α

ω̃j , (8)

s.t.

d∑
i=1

ω̃i ≤ µ

ω̃k ≥ ωk +
d∑

i=I+1

αi(vi)k,∀k

ω̃k ≥ −

(
ωk +

d∑
i=I+1

αi(vi)k

)
,∀k,

where µ is computed in (5) and the variables ω̃i

must be non negative due to the constraints. For
the optimum solution, we can assume that equal-
ity holds for one of the two constraints for every
k; otherwise, the solution could be improved due
to the weaker constraints and the minimisation
of the objective. For problem (7), we use the
equivalent formulation

max
ω̃,α

∣∣∣∣∣ωj +

d∑
i=I+1

αi(vi)j

∣∣∣∣∣ , (9)

s.t.
d∑

i=1

ω̃i ≤ µ

ω̃k ≥ ωk +

d∑
i=I+1

αi(vi)k,∀k

ω̃k ≥ −

(
ωk +

d∑
i=I+1

αi(vi)k

)
,∀k,

where, again, new variables ω̃k are introduced.
Again, these take the role of the absolute value
|ωk +

∑d
i=I+1 αi(vi)k|: any solution for which

equality does not hold for one of the constraints
can be improved due to the weaker constraints
and maximisation as the objective. This is not
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Figure 2: Lower and upper bounds of feature rel-
evance given by the linear programming method
for the diabetes dataset.

yet a LP since an absolute value is optimised.
For its solution, we can simply solve two LPs
where we consider the positive and negative
value of the objective:

ω±j ← max
ω̃,α
±

(
ωj +

d∑
i=I+1

αi(vi)j

)
,

and we add the corresponding non negativity
constraint

±

(
ωj +

d∑
i=I+1

αi(vi)j

)
≥ 0

At least one of these LPs has a feasible solution,
and the final upper bound can be derived thereof
as the maximum value

ωj = max{ω+
j , ω

−
j }

This approach requires to solve LP problems
containing 2d constraints and I + 1 variables.
Standard solver can be applied.

4 Experiments

In this section, results accomplished by the lin-
ear bounds method and the generic approach
are compared. For both methods, data are nor-
malised beforehand to have zero expectation and

unit variance. Further, we consider a relaxed LP,
allowing a bound of 1.1·µ instead of µ, and incor-
porating eigenvectors also with eigenvalues close
to zero. We report the used number of eigenvec-
tors for every data set.

Note that the methods investigated in this ex-
periment do not reveal the strong and weak rel-
evance, but they rely on the quantitative scaling
instead. Still, upper and lower bounds allow us
to distinguish three settings:

1. A feature is irrelevant: this corresponds to
a small upper bound.

2. A feature is relevant for the mapping but
can be substituted by others: this corre-
sponds to a small lower bound and large
upper bound.

3. A feature is relevant and cannot be sub-
stituted: this corresponds to a large lower
bound.

Albeit cases 2) and 3) are not equivalent to weak
and strong feature relevance in the strict sense,
we will refer to these setting by these terms in
the following.

As a first illustration, we display the feature
relevances of the LP approach generated on the
diabetes dataset as discussed in Section 2.4 in
Fig. 2. Here, we utilize the smallest 3 eigen-
values. The features X3 and X9 are indicated
as strongly relevant. Otherwise, features display
similar upper bounds as predicted before, with
small differences: the strongly relevant features
X2 and X4, as detected by the baseline, are not
highlighted by the LP technique. This is due
to the fact that the resulting map can slightly
be changed since noise due to small eigenvectors
is accepted. Under these conditions, the features
are no longer mandatory to explain the mapping.
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Further, X1 vanishes for the LP method, which
can be attributed to the fact that the same ef-
fect to the mapping can be achieved with another
feature which has a better signal to noise ratio,
i.e. L1 norm would increase when incorporating
X1.

4.1 Difference between methods

To show a major advantage of the LP method, a
toy dataset was generated: unlike iterative fea-
ture selection, the LP technique simultaneously
judges the relevance of all features. Hence it can
better handle settings where a large number of
noisy features masks weakly relevant informa-
tion. In this example, the first twelve dimen-
sions are noisy and only slightly correlated with
the target, features X13 and X14 are useful but
redundant, and the last two dimensions are nec-
essary and independent. The objective for the
task is to predict the sum of the last three di-
mensions. We choose the dimensionality 1 for
the approximated null space.

Results for both methods are displayed in Fig.
3. The generic method finds the two necessary
and independent dimensions. It does not sin-
gle out the weak relevance of the previous two
features. Better results can be obtained with
the linear programming approach which disre-
gards the first dimensions completely, shows a
full lower bound for the last two features, and
correctly indicates the potential relevance of the
other two dimensions.

4.2 Benchmarks

We utilize several benchmark data sets from [43,
44].

Figure 3: Lower and upper bounds of feature
relevance for a toy dataset. The top figure shows
the results of the generic approach, the lower one
for the LP method.

Boston Housing The Boston Housing
dataset [45] concerns housing values in suburbs
of Boston with the median value of owner-
occupied homes as target. The dimensionality
of the null space is picked as 3. Like displayed in
Fig. 4, features X6 and X13 which correspond to
the average number of rooms per dwelling and
the percentage of lower status of the population
are identified as most relevant. The same holds
for X4, X11 and X12 but to a lesser degree.
Interestingly, the relevance of features like X9

(index of accessibility to radial highways) can
play an important role, but this information can
also be gathered from other features.

Poland Electricity Consumption This
dataset [46, 47] is a time series monitoring the
electricity consumption in Poland based on
time windows of size 30. We choose the zero
space dimensionality as 3 corresponding to the
extremely high correlation observed in this
time series data. Fig. 5 shows that the last
feature is identified by LP as the most relevant
one. This is expected due to the smoothness
of the time series. For the LP technique, the
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Figure 4: Lower and upper bounds of feature
relevance for a Boston Housing dataset. The top
figure shows the results of the generic approach,
the lower one for the LP method.

feature is marked as strongly relevant since its
substitution would require a too large weighting.
Further, for both methods, the cyclicity of the
time series is clearly observable, whereby the
basic method does not identify any feature as
strongly relevant but the last one. Interestingly,
the LP technique identifies two consecutive
features as relevant for every cycle, since two
values allow the estimation of the first-order
derivative for better time series prognosis [48].

Santa Fe laser This dataset [49, 50] is a time
series monitoring the physical process related to
a laser with time windows of size 12; the dimen-
sionality of the null space is chosen as 2. In-
terestingly, a result which is very similar to the
previous one can be obtained. The features X6

and X12 as well as their immediate predecessors
are picked by the LP technique as strongly rel-
evant. As can be seen in Fig. 6 both methods
identify the last two features as relevant, but the
LP method shows a clearer profile as concerns
the past values, which coincides with findings
from [48].

5 Conclusion

We have addressed the question in how far
weights which arise from a linear transforma-
tion such as a linear classification, regression,
or metric scaling, allow a direct interpretation
of the weighting terms as relevances. We have
discussed that this is usually not the case in par-
ticular for high-dimensional data, a setting with
particular importance e.g. for the biomedical do-
main. Inspired by previous work which addresses
the null space of the observed data, and the no-
tion of weak and strong feature relevance, we
have developed a framework which yields to an
efficient quantitative evaluation of the minimum
and maximum feature relevance for a given lin-
ear mapping. This framework is based on the
hypothesis that the objective is the output of
the given mapping for the given data, and only
weights which are minimum in L1 norm are of
interest. Then, linear programming enables a
polynomial technique to estimate these relevance
intervals.

We have compared the techniques to a cor-
responding baseline which is directly based on
forward-backward feature selection. It becomes
apparent that the techniques closely resembles
the notion of weak and strong feature relevance;
unlike iterative methods, it does not face prob-
lems when dealing with high-dimensional data
and many irrelevant features, still being capa-
ble of distinguishing this information from mere
noise.

So far, we have demonstrated the techniques
for various benchmarks with very promising re-
sults. It will be the subject of future work to
test the suitability of this technique for biomedi-
cal applications where relevance intervals will be
checked by medical experts. In addition, we are
in the process of testing and improving the tech-
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nique for higher dimensionality in the range of
several hundred or thousand features. For these
settings, efficient optimisation techniques will be
needed for a feasible LP solution.

Acknowledgment

Funding by DFG under grant number HA
2719/7-1 and by the CITEC centre of excellence
are gratefully acknowledged.

References

[1] B. Fránay, D. Hofmann, A. Schulz,
M. Biehl, and B. Hammer, “Valid interpre-
tation of feature relevance for linear data
mappings,” in 2014 IEEE Symposium on
Computational Intelligence and Data Min-
ing (CIDM), 2014, pp. 149–156.

[2] Committee on the Analysis of Massive
Data; Committee on Applied and Theo-
retical Statistics; Board on Mathematical
Sciences and Their Applications; Divi-
sion on Engineering and Physical Sciences;
National Research Council, Frontiers in
Massive Data Analysis. The National
Academies Press, 2013. [Online]. Avail-
able: http://www.nap.edu/openbook.php?
record id=18374

[3] C. Rudin and K. L. Wagstaff, “Machine
learning for science and society,” Machine
Learning, vol. 95, no. 1, pp. 1–9, 2014.

[4] V. V. Belle and P. Lisboa, “White box ra-
dial basis function classifiers with compo-
nent selection for clinical prediction mod-
els,” Artificial Intelligence in Medicine,
vol. 60, no. 1, pp. 53–64, 2014.

[5] S. Briesemeister, “Interpretable machine
learning approaches in computational bi-
ology,” Ph.D. dissertation, University of
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[40] A. Kraskov, H. Stögbauer, and P. Grass-
berger, “Estimating mutual information,”
Phys. Rev. E, vol. 69, p. 066138, 2004.

[41] P. Pudil, J. Novovicová, and J. Kittler,
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