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Abstract

We map out the QCD crossover line Tc(μB)
Tc(0) = 1 − κ2

(
μB

Tc(0)

)2 − κ4 ( μB
Tc(0)

)4
+ O(μ6

B) for the first time up to O(μ4
B) for

a strangeness neutral system by performing a Taylor expansion of chiral observables in temperature T and chemical
potentials μ. At vanishing chemical potential, we report a crossover temperature Tc(0) = (156.5 ± 1.5) MeV defined by
the average of several second-order chiral susceptibilities. For a system with thermal conditions appropriate for a heavy-
ion collision, we determined a curvature from the subtracted condensate as κ2 = 0.0120(20) and from the disconnected
susceptibility as κ2 = 0.0123(30). The next order κ4 is significantly smaller. We also report the crossover temperature
as a function of the chemical potentials for: baryon-number, electric charge, strangeness and isospin. Additionally, we
find that Tc(μB) is in agreement with lines of constant energy density and constant entropy density. Along this crossover
line, we study net baryon-number fluctuations and show that their increase is substantially smaller compared to that
obtained in HRG model calculations. Similarly, we analyze chiral susceptibility fluctuations along the crossover line
and show that these are constant. We conclude that no signs for a narrowing of the crossover region can be found for
baryon chemical potential μB < 250 MeV.
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1. Introduction

We present results from our study of the crossover of quantum chromodynamics (QCD) in (2+1)-flavor
QCD as a function of the baryon chemical potential μB. We base this analysis on findings [1, 2] that at
vanishing chemical potentials strong interaction matter does not have a genuine phase transition from a gas
of hadrons and their resonances (HRG) to a quark-gluon plasma (QGP). Our goal is to understand up to
which baryon chemical potential the crossover is still analytic. In other words, we are searching for signs of
a second order QCD critical point which would be the start of a genuine first order phase transition line. In
the following, we consider chiral observables as the crossover and a possible phase transition are supposed to
be closely related to chiral symmetry restoration. Particularly important are the subtracted chiral condensate

Σsub ≡ ms(Σu + Σd) − (mu + md)Σs with Σ f =
T
V
∂

∂mf
ln Z , (1)
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Fig. 1: The subtracted chiral susceptibility (left) as a function of the temperature for different Nτ. The data is plotted in two-flavor
formulation and normalized using the kaon decay constant fK . The colored bands are given by AIC weighted Padé approximations
which include statistical and systematic errors. In the right plot, we show the obtained chiral crossover temperatures Tc(μB = 0) as a
function of 1/N2

τ for the subtracted condensate Σsub (Tc defined by inflection point), the subtracted susceptibility χsub (Tc defined by
maximum), the disconnected susceptibility χdisc (Tc defined by maximum), the second μ̂B derivative of Σsub (Tc defined by minimum)
and the second μ̂B derivative of χdisc (Tc defined by zero). All chiral observables define pseudo-critical temperatures. The combined
continuum value (156.5 ± 1.5) MeV in the gray box is an unweighted average of all observables which includes a 1 MeV error for
setting the scale. This combined value resembles systematic effects (ambiguity in defining a pseudo-critical temperature), statistical
and scale setting errors.

the subtracted chiral susceptibility

χsub ≡ T
V

ms

(
∂

∂mu
+
∂

∂md

)
Σsub (2)

as shown in Fig. 1, and the related disconnected contribution χdisc to the total light quark chiral susceptibility.
Their Taylor expansions in chemical potentials have been described in [3]. If a critical point exists, we
should be able to observe scaling with the critical exponents of a three-dimensional Ising model at finite
baryon chemical potential. When approaching a critical point, a significant increase of chiral susceptibility
fluctuations along the crossover must be observed. We have generated gauge field ensembles using a RHMC
for 4 lattice volumes with Nτ = 6, 8, 12 and 16 in a temperature range from 135 MeV to 175 MeV. The
simulations have been performed using the tree-level improved HISQ formulation with two degenerate
light quarks and a heavier strange quark set to their physical values corresponding to a pion mass of about
138 MeV. The scale has been set using the kaon decay constant [4].

2. The QCD crossover line

The crossover line can be parameterized as

Tc(μB)
T0

= 1 − κ2
(
μB

T0

)2
− κ4
(
μB

T0

)4
+ O(μ6

B) , (3)

where T0 is the crossover temperature at zero chemical potential given by so-called pseudo-critical tem-
peratures. Their continuum extrapolations are shown in Fig. 1 (right). In the continuum, all consid-
ered pseudo-critical temperatures converge to similar values. This is why we quote a combined value of
T0 = (156.5 ± 1.5) MeV. This average is in agreement with previous results [5, 6] obtained with different
lattice formulations. The curvature coefficients κn can be obtained by requiring that e.g. each order μn

B in
d2/dT 2(Σsub(T, μ̂B)/ f 4

K) ≡ 0 vanishes [3]. In Fig. 2, we compare the parameterization of the crossover line
with results on chemical freeze-out temperatures extracted from heavy-ion collision experiments such as
ALICE [8] and STAR [9]. The mean of the ALICE freeze-out temperature of 156(2) MeV agrees with our
crossover line at almost vanishing baryon chemical potential. The STAR data seems to extrapolate to a sig-
nificantly higher freeze-out temperature resulting in values well above our crossover line which suggests that
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Fig. 2: The crossover temperature Tc(μB) (left) as a function of the baryon chemical potential μB for a strangeness neutral system
with nQ/nB = 0.4 including continuum extrapolated corrections (yellow band) up to O(μ4

B). Here, nQ is the mean electric charge
density and nB the mean net baryon-number density. All required expansion coefficients κn have been determined from the subtracted
condensate Σsub. On top of it, we show lines of constant physics for energy density ε and entropy density s taken from [7]. The
data points represent chemical freeze-out parameters extracted from the ALICE [8] and STAR [9] experiments. The right figure
compares the crossover curvature coefficients κ2 and κ4 for systems with different constrains. Here, the crossover line is defined as
Tc(μX)/T0 = 1 − κX2 (μX/T0)2 − κX4 (μX/T0)4 + O(μ6

X) where T0 is the crossover temperature at zero chemical potentials and X is a
placeholder for baryon-number B, electric charge Q, strangeness S and isospin I. We also show results of the curvature along μB with
the constrains nS = 0 and nQ/nB = 0.4. The coefficients have been determined from a Taylor expansion of χdisc. Extracting these
coefficients from Σsub gives similar results. The values are listed in [3].

both cannot hold simultaneously. However, previous results [5, 6] report curvatures which are in agreement
with our crossover line. Additionally, we compare the crossover line to lines of constant physics (LCPs)
from lattice QCD simulations [7]. The LCP curvatures from energy density and entropy density agree with
the crossover curvature within errors. Furthermore, we explored the crossover along several directions and
for different constrains in the QCD phase diagram. We found that the QCD phase diagram has very similar
curvatures κ2 in all directions except along directions of non-zero electric charge chemical potential μQ and
isospin chemical potential μI . In these cases, the curvature κ2 is two times larger (see Fig. 2).

3. Fluctuations along the QCD crossover

In the following, we study fluctuations of net baryon-number given by

σ2
B =
∂ ln Z
∂μ̂2

B

. (4)

It has been shown successfully [10] that net baryon-number fluctuations couple to the condensate and thus
would reveal critical behavior when approaching a critical point. Particularly interesting is to study their
deviations from the HRG model. Even for a finite volume, as given in heavy-ion collisions, these fluctua-
tions should resemble some critical behavior in the vicinity of a critical point, i.e. show substantially larger
fluctuations compared to a HRG. The relative change of σ2

B can be expressed in a Taylor series

σ2
B(Tc(μB), μB) − σ2

B(T0, 0)

σ2
B(T0, 0)

= λ2

(
μB

T0

)2
+ λ4

(
μB

T0

)4
+ O(μ6

B) , (5)

where the expansion coefficients λn can be determined using lattice QCD. We have continuum extrapolated
these coefficients up to O(μ4

B) which are used in Fig. 3 to visualize the relative change along Tc(μB). For the
strangeness neutral case, the fluctuations are at least a factor two smaller compared to a HRG. Given that
Taylor expansions for baryon-number fluctuations in the HRG model have an infinite radius of convergence
and substantially larger fluctuations compared to our lattice results, we conclude that it is unlikely that a
QCD critical point can be found for μB < 250 MeV along the crossover line. Similarly, we have studied
chiral susceptibility fluctuations along the crossover line. As can be seen from Fig. 4, this analysis shows
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Fig. 3: The relative change of net baryon-number fluctuations σ2
B (left) along the crossover line Tc(μB) as a function of μB for a system

with strangeness neutrality and nQ/nB = 0.4. Here, the curvature of Tc(μB) has been determined from the subtracted chiral condensate
Σsub. The blue band includes continuum extrapolated corrections up to O(μ2

B) and the yellow band up to O(μ4
B). The corresponding

mean is visualized using a dashed line. Also shown are HRG results using a solid black line evaluated on along a curvature defined by
the mean of Tc(μB). In the right figure, we show σ2

B as function of the temperature at three values of baryon chemical potential μB for
a finite lattice with Nτ = 8 including corrections up to O(μ4

B). For vanishing baryon chemical potential, we compare QCD results to
the HRG as shown by a solid black line.
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Fig. 4: The relative change of the disconnected chiral susceptibility χdisc (left) along the crossover line Tc(μB) as a function of μB for
a system with strangeness neutrality and nQ/nB = 0.4. Here, the curvature of Tc(μB) has been determined from χdisc. The blue band
includes continuum extrapolated corrections up to O(μ2

B) and the yellow band up to O(μ4
B). In the right figure, we show χdisc as function

of the temperature at three values of baryon chemical potential μB for a finite lattice with Nτ = 8 including corrections up to O(μ6
B).

a constant peak height for χdisc, i.e. no significant change along the crossover line. This suggests that for
μB < 250 MeV no signs for a narrowing of the crossover region or increasing correlation length have
been observed. In addition, we also measured 6th order expansion coefficients for a fixed lattice spacing
and found that these higher order corrections are negligible for μB < 250 MeV for χdisc and σ2

B along the
crossover line.
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