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Abstract
We are concerned with a stochastic mean curvature flow of graphs over a periodic
domain of any space dimension. For the first time, we are able to construct martingale
solutions which satisfy the equation pointwise and not only in a generalized (distribu-
tional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis
is based on a viscous approximation and new global bounds, namely, an L∞

ω,x,t esti-
mate for the gradient and an L2

ω,x,t bound for the Hessian. The proof makes essential
use of the delicate interplay between the deterministic mean curvature part and the
stochastic perturbation, which permits to show that certain gradient-dependent ener-
gies are supermartingales.Our energy bounds in particular imply that solutions become
asymptotically spatially homogeneous and approach a Brownian motion perturbed by
a random constant.
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1 Introduction

The mean curvature flow (MCF) of hypersurfaces is one key example of a geometric
evolution law and is of major importance both for applications and for the mathemat-
ical theory of surface evolution equations, see for example [17,42,55] or [4] and the
references therein.

Given a family (�(t))t>0 of smooth n-dimensional hypersurfaces in R
n+1 mean

curvature motion is characterized by the evolution law

V (x, t) = H(x, t) for t > 0, x ∈ �(t)

where V describes the velocity in direction of a fixed smooth normal field ν and H
denotes the mean curvature with respect to the same normal field (in our notation H
is given by the sum of the principle curvatures).

The motion by mean curvature has attracted much attention. It is the simplest gra-
dient flow dynamic of the surface area energy, that is a relevant energy in numerous
applications. There are several analogies to the heat equation, as can be seen in the
distance function formulation of MCF (see for example [4]) or the approximation by
mean curvature flow for nearly flat graphs. One of the consequences is that a compar-
ison (or inclusion) principle holds and that convexity is conserved. On the other hand,
MCF is a nonlinear evolution, governed by a degenerate quasilinear elliptic operator.
This in particular leads to the possibility that singularities appear in finite time and that
the topology changes. For example, balls shrink in finite time to points and for cer-
tain dumbbell type initial shapes a pinch-off of components happens. Such challenges
have been the origin and motivation for several important developments in geomet-
ric analysis, starting with the pioneering work of Brakke [9] on geometric measure
theory approaches, level set methods as developed by Evans and Spruck [21–24] and
Chen et al. [13], De Giorgi’s barrier method [5,6] or time discrete approximations as
introduced by Luckhaus and Sturzenhecker [41] and Almgren et al. [1].

The formation of singularities on the other hand can be excluded in particular
situations such as the evolution of entire graphs, where solutions exist globally in
time [19] or for initial data given by compact, smooth and convex hypersurfaces [31].
In the latter case the surfaces become round and shrink to a point in finite time.
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Existence of martingale solutions and large-time… 409

Several of the techniques developed formean curvature flow have been successfully
applied to deterministic perturbations of the flow [2,3,12,13,43] that are present in a
number of applications. A random forcing was included tomean curvature flow in [34]
to account for thermal fluctuations. In this paper we study a particular stochastic
perturbation in the case of hypersurfaces given as graphs over the n-dimensional flat
torus. To motivate the equation let us start from the general case of a random evolution
(�(t))t>0 of surfaces in R

n+1 that are given by immersions φt : � → R
n+1 of a

fixed smooth manifold �. We then consider a real-valued Wiener process W defined
on some probability space (�,F ,P) and the stochastic differential equation

dφt (x) = ν(x, t)
(
H(x, t)dt + ◦dW (t)

)
, (1)

which is possibly the simplest stochastic perturbation, by a one dimensional white
noise acting uniformly in all points of the surface in normal direction.

If we further restrict ourselves to the case of graphs over the flat torus Tn (repre-
sented by the unit cube and periodic boundary conditions), that is,

�(ω, t) = graph u(ω, ·, t) = {(x, u(ω, x, t)) ∈ R
n+1 | x ∈ T

n}

for a (random) function u : � × T
n × (0,∞) → R, we are lead to the following

Stratonovich differential equation

du = Q(∇u)∇·(v(∇u)) dt + Q(∇u) ◦ dW (2)

where Q(∇u) denotes the area element and v(∇u) the horizontal projection of the
normal to the graph

Q(p) :=
√
1 + |p|2 (3)

v(p) := p
√
1 + |p|2 , p ∈ R

n . (4)

The choice of the Stratonovich instead of an Itô differential in (2) is necessary to
keep the geometric character of the equation, see the discussion in [40]. Despite its
origin from a rather simple stochastic forcing, the evolution equation for the graphs
presents severe difficulties. In particular, the presence of a multiplicative noise with
nonlinear gradient dependence in combination with the degeneracy in the quasilinear
elliptic term are challenges for a rigorous analysis and it is at first place not clear
whether or not solutions stay graphs.

The deterministic mean curvature flow for graphs was considered in [18], where an
a priori gradient bound was proved and the long-time behavior was analyzed, see [30]
for graphs over a given domain with vertical contact angle. Lions and Souganidis pre-
sented a general well-posedness theory and introduced a notion of stochastic viscosity
solutions [36–39] for geometric equations of mean curvature flow type (and beyond),
but no regularity properties other than continuity are obtained for the solutions. The
evolution (1) for the case n = 1 was investigated by Souganidis and Yip [51] and
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Dirr, Luckhaus and Novaga [16], where a stochastic selection principle was identified
in situations where non-uniqueness appears for the deterministic flow. In [16] also an
existence result was proved, but only for short time intervals determined by a random
variable that is not necessarily bounded from below. Other (formal) approximations
of stochastically perturbed mean curvature flow equations have been studied, such as
a time discrete scheme in [54] and stochastic Allen–Cahn equations in [7,8,25,48,53].

The Stratonovich differential equation (2) was already considered in the case n = 1
in [20] and, mainly for n = 2 in [28], by von Renesse and the second and third author.
The present paper continues and extends these results in several respects. The most
important new contribution is a uniform (i.e. L∞ with respect to all the three variables
ω, x, t) gradient bound for u and an L2-bound for the Hessian in arbitrary dimensions.
This is a major improvement compared to [28] where only H1-estimates for u and
an L2-estimate for the mean curvature were shown. Our gradient bound in particular
shows that a solution stays a graph for all times. More precisely, Lipschitz continuity
of the initial condition is preserved during the evolution. As a consequence of our
improved bounds we are able to prove the existence of martingale solutions that are
strong in the PDE sense for any space dimension. In contrast, in [28] the existence
result was restricted to two dimensions and the solutions were only weak in the PDE
sense.

Our proof of the gradient bound uses a Bernstein type argument [27, Section 14.1]
but in a context of energy methods, which seems to be new even for deterministic
mean curvature flow equations. In the deterministic case this argument reduces to an
argument which is similar to the way the gradient bounds in [18] are derived from
Huisken’s weighted monotonicity formula, but instead of the backward heat kernel a
constant kernel is used.

Especially the L∞-gradient bound and in particular its uniformity with respect to
the randomness variable ω may appear somewhat surprising in the field of SPDEs. It
is a consequence of the geometrical nature of the model and more precisely of the fact
that the structure of the noise respects the underlying deterministic evolution. This is
reflected through our energy-type estimates: by exploring the precise structure of all
the involved quantities we are able to group them in such a way that each term can
be shown to be non-positive and additionally yields a control of second derivatives.
The identification of the non-positive terms makes use of the interplay between the
deterministic mean curvature part of the equation and the stochastic perturbation.

Moreover, we are also able to study the large-time behavior of solutions and prove
that solutions become homogeneous in space and asymptotically only deviate from
a constant value by a Wiener process. This result improves the results of [20] by
obtaining a stronger convergence and extending it to arbitrary dimensions.

In contrast to [28] we will use the abstract theory of variational SPDEs [47] to
handle equation (2). Although (2) itself only has a variational structure for n = 1,
which was exploited in [20], the gradient of a solution will indeed solve a variational
SPDE for arbitrary dimensions. Since (2) lacks coercivity we will approximate it for
ε > 0 by

du = ε�u + Q(∇u)∇·(v(∇u)) dt + Q(∇u) ◦ dW , (5)
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which is coercive in an appropriate sense. We will call (5) the viscous equation.
Since the viscous equation is not covered by the classical theory for variational

SPDEs [26,47], we include an Itô formula and an abstract existence result for a
large class of equations in “Appendix A”. These results, which hold independent
interest themselves, are generalizations of the results from the pioneering works of
Pardoux [45] and Viot [52].

For a precise formulation of our main results and an overview over the main tech-
niques of the proofs see Sect. 3 below.

We note that under our assumptions on the initial condition the stochastic viscosity
theory à la Lions, Souganidis [36–39] yields the existence of a unique viscosity solu-
tion. Proving the coincidence of our solution with the viscosity solution seems a major
challenge and out of reach at the moment. Comparing the two notions, our solutions
have better regularity properties implying not only space-time Hölder continuity but
in addition L2-regularity of second order derivatives in space. In particular the mean
curvature operator is well-defined in a pointwise a.e. sense. Furthermore, we are able
to characterize the large-time behavior. On the other hand, proving uniqueness for our
solutions (which is necessary and most likely also a major tool to obtain the equiva-
lence of the concepts) remains open. For our solutions an energy based approach to
uniqueness seems most appropriate but to require even higher regularity of solutions
and a control of the evolution of quantities like the normal vectors or the surface area
measure.

This paper is organized as follows: After explaining the notation in Sect. 2 we
present our results in Sect. 3. Existence of solutions of the viscous equation will be
established in Sect. 4. In Sect. 5 we prove similarly to Huisken’s monotonicity formula
that certain energies are non-increasinguniformly in ε.Weapply this to deduceuniform
H2 and uniform L∞ gradient bounds for solutions of the viscous equation. In Sect. 6
we prove that solutions of (5) converge to a solution of (2), which in particular proves
that there exists a solution. The large-time behavior of a solution is analyzed in Sect. 7.

We present the theory of variational SPDEs in spaces with compact embedding in
“Appendix A”.

In his PhD thesis [15] the first author recently has obtained some extensions to
results of this paper, in particular generalizations to the case of space-dependent noise
and a weak-strong uniqueness result, see Remark 5.8 below.

2 Notation

In this section we introduce the basic notation used throughout the paper.

Hilbert–Schmidt operators

Let U , H be two separable Hilbert spaces and (gk)k an orthonormal basis of U . With
L2(U ; H) we will denote the space of all Hilbert–Schmidt operators T : U → H
with the norm ‖T ‖2L2(U ;H)

:= ∑
k ‖Tgk‖2H , which is independent of the choice of the

orthonormal basis.
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412 N. Dabrock et al.

Furthermore, for a Banach space E we will use the notation (E, w) resp. (E ′, w∗)
to denote the space E with the weak topology resp. the dual space E ′ with the weak-∗
topology.

Stochastic processes

For an interval I = [0, T ] with T > 0 or I = [0,∞), a stochastic basis
(�,F , (Ft )t∈I ,P) consists of a probability space (�;F ,P) together with a filtra-
tion (Ft )t∈I . According to [14] the filtration (Ft )t will be called a normal filtration,
if

• A ∈ F0 for all A ∈ F with P(A) = 0 and
• for all t ∈ I with t < sup I we have that

Ft =
⋂

s>t

Fs .

A Wiener process W = (Wt )t∈I with respect to the probability space (�,F ,P) is
called a (Ft )t∈I -Wiener process if

• Wt is Ft measurable for all t ∈ I and
• Wt − Ws is independent of Fs for all s, t ∈ I with s < t .

For such an (Ft )t -Wiener process W on a separable Hilbert space U with covariance
operator Q ∈ L(U ), that we always assume to be positive definite, one can define the

spaceU0 := Q
1
2 (U )with the induced scalar product 〈x, y〉U0

:=
〈
Q− 1

2 x, Q− 1
2 y

〉

U
. If

H is another separable Hilbert space and 	 is a predictable L0
2 := L2(U0; H)-valued

process with

P

(∫ T

0
‖	(t)‖2

L0
2
dt < ∞

)
= 1,

then the stochastic Itô integral

∫ t

0
	(s)dWs, t ∈ [0, T ]

is a well-defined local martingale with values in H .

Stratonovich integral

In the situation above, it is sometimes more natural to consider the stochastic
Stratonovich integral

∫ t

0
	(s) ◦ dWs, t ∈ [0, T ],
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which, however, might not be well-defined.
If at least formally one has the evolution law

d	 = μdt + σ ◦ dW ,

with an L0
2-valued process μ and an L2(U0; L0

2) = L2(U0 × U0; H)-valued process
σ , then formally one has

∫ t

0
	(s) ◦ dWs =

∫ t

0
	(s)dWs + 1

2

∫ t

0

[
∑

k

(
σ(s)Q

1
2 gk

)
Q

1
2 gk

]

ds (6)

for all t ∈ [0, T ], with (gk)k an orthonormal basis of U . The value on the right hand
side does not depend on the choice of (gk)k .

Whenever the right hand side of (6) is well-defined, we can think of it as the
definition for the Stratonovich integral on the left hand side of (6).

We will call

1

2

∑

k

(
σ(t)Q

1
2 gk

)
Q

1
2 gk

the Itô–Stratonovich correction term.

Periodic Sobolev spaces

For k ≥ 0, p ∈ [1,∞] we will denote with Wk,p(Tn) the space of periodic Sobolev
functions on the flat torus Tn , which for p < ∞ can be identified with the completion
of the space of [0, 1]n periodic C∞(Rn) functions with respect to the ‖ · ‖Wk,p([0,1]n)
norm;we further letWk,∞(Tn) := {u ∈ Wk,1 : |D j u| ∈ L∞(Tn) for all 0 ≤ j ≤ k}.

Matrix scalar product

For matrices A, B,C, D ∈ R
n×n we will write

A : B :=
n∑

i, j=1

Ai j Bi j .

We will use the convention that

AB : CD := (AB) : (CD) =
n∑

i, j,k,l=1

Ai j B jkCil Dlk .
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3 Results

In this section we will state the main results of this paper. The proofs are given in the
subsequent sections. We will first formulate our solution concept. We are concerned
with solutions that are strong in the PDE sense, that is, an integral formof (2) is satisfied
pointwise. In addition, they may be either strong or weak in the probabilistic sense,
depending on whether the underlying probabilistic elements are given in advance or
not.We define the Stratonovich integral thatwill be used in the formulation of solutions
by the formal equivalence to its Itô formulation, see Remark 3.2 below.

Definition 3.1 (i) Let I = [0,∞) or I = [0, T ] with T > 0, (�,F , (Ft )t∈I ,P) be
a stochastic basis with a normal filtration together with a real-valued (Ft )-Wiener
process W and u0 ∈ L2(�; H1(Tn)) be F0-measurable. A predictable H2(Tn)-
valued process u with u ∈ L2(�; L2(0, t; H2(Tn))) for all t ∈ I is a strong
solution of (2) with initial data u0, if

u(t) − u0 =
∫ t

0
Q(∇u(s))∇·(v(∇u(s))) ds

+
∫ t

0
Q(∇u(s)) ◦ dWs P-a.s. in L2(Tn) ∀t ∈ I .

(ii) Let � be a Borel probability measure on H1(Tn) with bounded second moments∫
H1(Tn)

‖z‖2
H1(Tn)

d�(z) < ∞. A martingale solution of (2) with initial data �

is given by (�,F , (Ft )t∈I ,P) together with W , u0 and u such that (i) is satisfied
and P ◦ u−1

0 = �.
In the same way we can define strong solutions and martingale solutions for (5).

In the following we will often just write that u is a strong solution instead of speci-
fying that u is a strong solution for a time interval I with respect to a stochastic basis
with a normal filtration and a real-valuedWiener process. If not otherwise specified the
stochastic basis will be denoted by (�,F , (Ft )t∈I ,P) and the Wiener process by W .
Similarly, if there is no danger of confusion, wewill often denote a martingale solution
(u, (�,F , (Ft )t∈I ,P),W , u0) just by u, omitting that (�,F , (Ft )t∈I ,P),W , u0 are
part of the solution concept. If we only use the term “solution” we refer to a martingale
solution.

Remark 3.2 Note that formally for a solution u of (2) one can use the chain rule, which
holds true for the Stratonovich integral, to deduce that

d (Q(∇u)) = v(∇u) · ∇ (Q(∇u)∇·(v(∇u))) dt + v(∇u) · ∇ (Q(∇u)) ◦ dW .

Hence, according to Sect. 2 the Itô–Stratonovich correction for the integral in Def-
inition 3.1 is given by

1

2
v(∇u) · ∇ (Q(∇u)) = 1

2
v(∇u) · D2uv(∇u)
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Existence of martingale solutions and large-time… 415

and the Stratonovich integral in Definition 3.1 has to be understood in the sense that

∫ t

0
Q(∇u(s)) ◦ dWs :=

∫ t

0
Q(∇u(s))dWs

+ 1

2

∫ t

0
v(∇u(s)) · D2u(s)v(∇u(s))ds,

such that the equation in Definition 3.1 becomes

u(t) − u0 =
∫ t

0

[
Q(∇u(s))∇·(v(∇u(s))) + 1

2
v(∇u(s)) · D2u(s)v(∇u(s))

]
ds

+
∫ t

0
Q(∇u(s))dWs

=
∫ t

0

[
�u(s) − 1

2
v(∇u(s)) · D2u(s)v(∇u(s))

]
ds

+
∫ t

0
Q(∇u(s))dWs .

Since we take the formal equivalence between Itô and Stratonovich integrals as the
definition of the latter, our use of Stratonovich differential is rather a shortcut for the
corresponding Itô formulation.

Remark 3.3 Note that for a strong solution the stochastic basis and theWiener process
are prescribed, whereas for a martingale solution, i.e. probabilistically weak solution,
the stochastic basis and theWiener process are part of the solution. Once this stochastic
basis and the corresponding Wiener process are found, the martingale solution is a
strong solution with respect to this particular choice of stochastic basis and Wiener
process.

Remark 3.4 FromCorollaryA.3we infer that a solution of (2) or (5) has amodification
with continuous paths in H1(Tn) and u ∈ L2(�;C([0, t]; H1(Tn))) for all t ∈
I . Furthermore, under suitable assumptions on the initial data we deduce that u ∈
C([0, t];C(Tn)) P-a.s. for all t ∈ I , see Remark 6.1 below.

We are now ready to state the main result of the present paper.

Theorem 3.5 (Existence ofmartingale solutions)Let� be aBorel probabilitymeasure
on H1(Tn) with bounded second moments and additionally

supp� ⊂ {z ∈ H1(Tn) | ‖∇z‖L∞(Tn) ≤ L}

for some constant L > 0.
Then for I = [0,∞) there is a martingale solution of (2) with initial data �. For

all such solutions it holds that D2u ∈ L2(�; L2(0,∞; L2(Tn))) and

‖∇u‖L∞(0,∞;L∞(Tn)) ≤ L a.s.
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Our next main result shows that solutions become spatially constant for t → ∞.

Theorem 3.6 (Large-time behavior) Let the assumptions from Theorem 3.5 hold and
u be a martingale solution of (2) for I = [0,∞).

Then there is a real-valued random variable α such that

E sup
t≥T

‖u(t) − W (t) − α‖H1(Tn) → 0 for T → ∞.

Remark 3.7 We will deduce existence of solutions (uε)ε>0 of the viscous equation (5)
using the abstract theory of variational SPDEs presented in “Appendix A”. The fact
that (5) can be treated as a coercive equation already yields estimates for the Dirichlet
energy of solutions.

In Sect. 5 we will extend these arguments to prove more general a priori estimates
for solutions which are uniform in ε > 0. For this we will make use of a general-
ization of the classical Itô formula to prove that certain gradient-dependent energies
are non-increasing for solutions in a stochastic sense, i.e. they are supermartingales.
In the deterministic case one can use Huisken’s monotonicity formula to get simi-
lar results. With the stochastic perturbation, Huisken’s monotonicity formula does not
hold because the time-derivative of these energies contains additional Itô–Stratonovich
correction terms that are difficult to control. For our gradient-dependent energies we
use integration by parts to prove that these correction terms together with terms stem-
ming from the deterministic motion have a good sign. We will apply this result to
deduce estimates for the Dirichlet energy in Proposition 5.1 and a maximum principle
for the gradient in Proposition 5.2.

With our uniform Lipschitz bounds at hand and Proposition 5.1 we deduce that (2)
is coercive and this yields H2 bounds for (uε). Furthermore we derive tightness of
their probability laws in appropriate spaces and with the Jakubowski–Skorokhod rep-
resentation we can deduce that the approximate solutions converge in a weak sense.
We then identify the limit in Sect. 6.

The a priori estimates derived for the solution are also one key to analyze the
large-time behavior of solutions.

4 Existence of viscous approximation

We will use the theory presented in “Appendix A” to prove existence for a viscous
approximation (5) of the stochastic mean curvature flow. The key observation is that
the variational framework shall be applied to the equation for ∇u, see (7) below,
rather than directly to (5). This is further made possible by the structure of (5) and in
particular by the fact that only the gradient of the solution appears on the right hand
side of (5).

Theorem 4.1 Let ε > 0, q > 2 and� be a Borel probability measure on H1(Tn) with

∫

H1(Tn)

‖z‖2H1(Tn)
d�(z) < ∞ and
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Existence of martingale solutions and large-time… 417

∫

H1(Tn)

‖∇z‖q
L2(Tn)

d�(z) < ∞.

Then there is a martingale solution u of (5) for I = [0,∞) with initial data �.

Proof of Theorem 4.1 We intend to apply Theorem A.5 in order to obtain a martingale
solution to the equation the gradient ∇u fulfills for u satisfying (5), which in turn
yields a martingale solution to (5) itself. To this end, we will work with the spaces

V := {∇u | u ∈ H2(Tn)} with ‖∇u‖V := ‖∇u‖H1(Tn;Rn),

H := {∇u | u ∈ H1(Tn)} with ‖∇u‖H := ‖∇u‖L2(Tn;Rn) and

U := R.

We have that V ⊂ H densely and compactly. Furthermore we can identify
L2(U ; H) = H .

We define the operators

Aε : V → V ′

〈Aε(∇u),∇w〉V ′,V

:= −
∫

T
n

(
ε�u + Q(∇u)∇·(v(∇u)) + 1

2
v(∇u) · D2uv(∇u)

)
�w

= −
∫

T
n

(
(1 + ε)�u − 1

2
v(∇u) · D2uv(∇u)

)
�w

and

B : V → H

B(∇u) := ∇ (Q(∇u)) = D2uv(∇u).

We verify that the Assumptions A.4 are fulfilled:

• Coercivity:Using integration by parts and the fact that the boundary terms vanish
because of the periodic domain we obtain

2〈Aε(∇u),∇u〉V ′,V + ‖B(∇u)‖2H
=

∫

T
n
−

(
2ε�u + 2Q(∇u)∇·(v(∇u)) + v(∇u) · D2uv(∇u)

)
�u

+ |D2uv(∇u)|2

=
∫

T
n
−2ε(�u)2 − 1

2
|Q(∇u)∇·(v(∇u)) |2 − (�u)2 + |D2uv(∇u)|2

+ 1

2
∇·(v(∇u))

(
Q(∇u)2∇·(v(∇u)) − 2Q(∇u)�u

)

=
∫

T
n
−2ε(�u)2 − 1

2
|Q(∇u)∇·(v(∇u)) |2
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− 1

2
∇·(v(∇u)) ∇·(Q∇u) − |D2u|2 + |D2uv(∇u)|2

=
∫

T
n
−2ε(�u)2 − 1

2
|Q(∇u)∇·(v(∇u)) |2

− 3

2
|D2u|2 + |D2uv(∇u)|2 + 1

2
|v(∇u) · D2uv(∇u)|2

≤ −2ε‖�u‖2L2(Tn)

≤ −Cε‖∇u‖2H1(Tn;Rn)
.

Note that we have used the non-negativity of

3

2
|D2u|2 − |D2uv(∇u)|2 − 1

2
|v(∇u) · D2uv(∇u)|2

in the second to last inequality and the periodic boundary conditions as well as a
Poincaré inequality for mean-free vector fields in the last inequality.

• Growth bounds: We have

‖Aε(∇u)‖2V ′ ≤
∫

T
n

∣
∣∣∣ε�u + Q(∇u)∇·(v(∇u)) + 1

2
v(∇u) · D2uv(∇u)

∣
∣∣∣

2

=
∫

T
n

∣∣
∣∣(1 + ε)�u − 1

2
v(∇u) · D2uv(∇u)

∣∣
∣∣

2

≤ C‖∇u‖2H1(Tn;Rn)
,

‖B(∇u)‖2H = ‖∇(Q(∇u))‖2L2(Tn;Rn)
≤ C‖∇u‖2H1(Tn;Rn)

,

‖B(∇u)‖2V ′ ≤ C
(
1 + ‖∇u‖2L2(Tn;Rn)

)
.

• Continuity: When ∇uk⇀∇u in V , then ∇uk → ∇u in H and therefore

v(∇uk) · D2ukv(∇uk) = v(∇uk) ⊗ v(∇uk) : D2uk

⇀v(∇u) ⊗ v(∇u) : D2u

= v(∇u) · D2uv(∇u) in L1(Tn)

and since |v(∇uk)| ≤ 1 also

v(∇uk) · D2ukv(∇uk)⇀v(∇u) · D2uv(∇u) in L2(Tn).

The other terms in the definition of A(uk) are linear in uk , hence

A(uk)
∗
⇀A(u) in V ′.

Similarly

B(∇uk) = D2ukv(∇uk)⇀D2uv(∇u) in L2(Tn;Rn).
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Now, from Theorem A.5 we can conclude that there is a martingale solution ∇u of

d∇u = ∇
(

ε�u + Q(∇u)∇·(v(∇u)) + 1

2
v(∇u) · D2uv(∇u)

)
dt

+ ∇ (Q(∇u)) dW

= ∇ (ε�u + Q(∇u)∇·(v(∇u))) dt + ∇ (Q(∇u)) ◦ dW in V ′ (7)

with a real-valued Brownian motion W .
Next we will show that (7) is also fulfilled in H−1(Tn;Rn), hence weak in the

PDE sense. For an arbitrary ψ ∈ H1(Tn;Rn) we take the Helmholtz decomposition
ψ = ∇w + φ with w ∈ H2(Tn) and φ ∈ H1(Tn;Rn) with ∇·φ = 0 and since both
sides of the equation for ∇u are orthogonal to divergence-free vector fields, we have
for all t ∈ [0,∞)

∫

T
n
(∇u(t) − ∇u0) · ψ =

∫ t

0
〈∇ (Q(∇u(s))∇·(v(∇u(s)))), ψ〉H−1;H1ds

+
∫ t

0

∫

T
n
∇ (Q(∇u(s))) · ψ ◦ dW (s)

and therefore the equation for ∇u is also fulfilled in H−1(Tn;Rn).
Now, define for t ∈ [0,∞)

ũ(t) := u0 +
∫ t

0
Q(∇u(s))∇·(v(∇u(s))) ds +

∫ t

0
Q(∇u(s)) ◦ dW (s). (8)

Note that by assumption u0 ∈ L2(�; L2(Tn)) and also for T ∈ [0,∞)

t �→
∫ t

0
Q(∇u(s))∇·(v(∇u(s))) ds ∈ L2(�; L2(0, T ; L2(Tn))) and

t �→
∫ t

0
Q(∇u(s)) ◦ dW (s) ∈ L2(�; L2(0, T ; L2(Tn))).

Hence, ũ ∈ L2(�; L2(0, T ; L2(Tn))). Furthermore

∇ũ(t) = ∇u0 +
∫ t

0
∇ (Q(∇u(s))∇·(v(∇u(s)))) ds

+
∫ t

0
∇ (Q(∇u(s))) ◦ dW (s) = ∇u(t) ∀t ∈ [0,∞) P-a.s.

and by (8) ũ is a martingale solution of (5). ��
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5 A priori estimates

In this section we will prove a priori energy estimates for solutions of the viscous
equation (5) which are uniformly in ε > 0 and also hold true for solutions of the
SMCF equation (2). The first proposition basically says that the Dirichlet energy of
solutions is decreasing and extends the coercivity proven in Sect. 4.

Proposition 5.1 (Weak coercivity) Let ε ≥ 0 and u be a solution of (5). Then the
energy

∫
T
n |∇u|2 is a supermartingale.

Furthermore, we can quantify the decay by

E‖∇u(t)‖2L2(Tn)
+ 2εE

∫ t

0

∫

T
n
|D2u(s)|2ds

+ 1

2
E

∫ t

0

∫

T
n
Q(∇u(s))2|∇·(v(∇u(s))) |2ds

+ E

∫ t

0

∫

T
n

(
3

2
|D2u|2 − |D2uv(∇u)|2 − 1

2
|v(∇u) · D2uv(∇u)|2

)
(s)ds

≤ E‖∇u0‖2L2(Tn)
∀t ∈ I .

Note that 3
2 |D2u|2 − |D2uv(∇u)|2 − 1

2 |v(∇u) · D2uv(∇u)|2 ≥ 0.
We also have for q ∈ [1, 2) with a universal constant C, that

E sup
t∈I

‖∇u(t)‖2q
L2(Tn)

≤
(
2 + 2C2

2q − q2

)
E‖∇u0‖2qL2(Tn)

.

If in addition P- esssup ‖∇u‖L∞(I ;L∞(Tn)) = L < ∞, then we have

E‖∇u(t)‖2L2(Tn)
+ 3 + 4L2

2(1 + L2)2
E

∫ t

0

∫

T
n
|D2u(s)|2ds ≤ E‖∇u0‖2L2(Tn)

∀t ∈ I .

In the next proposition we prove that the additional assumptions from Proposi-
tion 5.1 can be verified if the Lipschitz constant of the initial condition is uniformly
bounded.

Proposition 5.2 (Maximum principle for the gradient of solutions) Let ε ≥ 0 and u
be a solution of (5). If P- esssup ‖∇u0‖L∞(Tn) < ∞ then ∇u ∈ L∞(I ; L∞(Tn)) a.s.
with

‖∇u‖L∞(I ;L∞(Tn)) ≤ P- esssup ‖∇u0‖L∞(Tn) a.s.

Proposition 5.1 and Proposition 5.2 are proved at the end of this section. Both are
based on an Itô formula for integrals of the gradient of solutions. We summarize this
calculation in the next lemma.

Lemma 5.3 Let ε ≥ 0 and u be a solution of (5). For a function f ∈ C2(Rn) with
bounded second order derivatives and

I(t) :=
∫

T
n
f (∇u(t)), t ∈ I
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we obtain

dI =
∫

T
n
−εD2 f (∇u)D2u : D2u +

∫

T
n
−1

2
f (∇u)|∇·(v(∇u)) |2

+
∫

T
n
D2u (Id−v(∇u) ⊗ v(∇u))

:
(

f (∇u)

2Q(∇u)2
(Id−v(∇u) ⊗ v(∇u)) − D2 f (∇u)

)
D2udt

−
∫

T
n
f (∇u)∇·(v(∇u)) dW .

Proof To abbreviate the calculations we will write Q := Q(∇u) and v := v(∇u).
With this notation we have ∇Q = ∇ (Q(∇u)) = D2uv(∇u) = D2uv. We can apply
Corollary A.3 to infer

dI =
∫

T
n
−D2 f (∇u) : D2u

(
ε�u + Q∇·v + 1

2
v · ∇Q

)
dt

+
∫

T
n

1

2
∇Q · D2 f (∇u)∇Qdt

+
∫

T
n
∇ f (∇u) · ∇QdW =: εμviscous + 1

2
μmcf + 1

2
μpertdt + σdW

(9)

with

μviscous =
∫

T
n
−D2 f (∇u) : D2u�u,

μmcf =
∫

T
n
−D2 f (∇u) : D2uQ∇·v,

μpert =
∫

T
n
−D2 f (∇u) : D2u�u + ∇Q · D2 f (∇u)∇Q,

σ =
∫

T
n
∇ f (∇u) · ∇Q.

The term μviscous corresponds to the time derivative of I along solutions of the heat
equation. It is weighted with ε because it appears due to the additional viscosity added
to the equation. The term μmcf corresponds to the time derivative of I along solutions
of the unperturbed mean curvature flow of graphs. It is weighted with the factor 1

2
because the other part has to be used in μpert to handle the additional terms coming
from the perturbation. We handle μviscous, μmcf and μpert separately using partial
integrations and the periodicity of the functions. For μviscous we calculate

μviscous =
∫

T
n
−∇·(∇ f (∇u))�u

=
∫

T
n
−D2 f (∇u)D2u : D2u.
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For μmcf we calculate

μmcf =
∫

T
n
− f (∇u)|∇·v|2 + ∇·v

(
f (∇u)∇·v − Q D2 f (∇u) : D2u

)

=
∫

T
n
− f (∇u)|∇·v|2 + ∇·v∇·( f (∇u)v − Q∇ f )

=
∫

T
n
− f (∇u)|∇·v|2 + DvT : D ( f (∇u)v − Q∇ f )

=
∫

T
n
− f (∇u)|∇·v|2

+
∫

T
n
DvT :

(
v ⊗ D2u∇ f (∇u) + f (∇u)Dv − ∇ f ⊗ D2uv − Q D2 f D2u

)

=
∫

T
n
− f (∇u)|∇·v|2 + DvT :

(
f (∇u)Dv − Q D2 f D2u

)

=
∫

T
n
− f (∇u)|∇·v|2

+
∫

T
n

(
D2u (Id−v ⊗ v)

)
:
(

f (∇u)

Q2 (Id−v ⊗ v) − D2 f

)
D2u.

For μpert we calculate

μpert =
∫

T
n
−∇·(∇ f (∇u))�u + ∇Q · D2 f (∇u)∇Q

=
∫

T
n
−D(∇ f (∇u)) : D2u + ∇Q · D2 f (∇u)∇Q

=
∫

T
n
−D2u(Id−v ⊗ v) : D2 f (∇u)D2u.

For σ we calculate

σ =
∫

T
n
∇( f (∇u)) · v = −

∫

T
n
f (∇u)∇·v.

Inserting these calculations into (9) yields the result. ��
We will next explore for which choices of f Lemma 5.3 yields a control on appro-

priate quantities. We therefore choose f as a function of Q(∇u), which gives more
geometric meaning to the estimates and is still sufficient to obtain the required esti-
mates, see the remarks below.

Lemma 5.4 Let ε ≥ 0 and u be a solution of (5). Let g ∈ C2([1,∞)) be a
non-negative, monotone increasing and convex function with bounded second order
derivative and g′(1) − g(1) ≥ 0 and

I(t) =
∫

T
n
g(Q(∇u(t))), t ∈ I .
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For q ∈ [1, 2] we have that

EI(t)q + εqE
∫ t

0
I(s)q−1

∫

T
n
g′′(Q(∇u(s)))|D2u(s)v(∇u(s))|2ds

+ εqE
∫ t

0
I(s)q−1

∫

T
n

g′(Q(∇u(s)))

Q(∇u(s))

(
|D2u(s)|2 − |D2u(s)v(∇u(s))|2

)
ds

+ 2q − q2

2
E

∫ t

0
I(s)q−1

∫

T
n
g(Q(∇u(s)))|∇·(v(∇u(s))) |2ds

+ qE
∫ t

0
I(s)q−1

∫

T
n

(
g′(Q(∇u(s)))

Q(∇u(s))
− g(Q(∇u(s)))

2Q(∇u(s))2

)

·
(
|D2u|2 − 2|D2uv(∇u)|2 + |v(∇u) · D2uv(∇u)|2

)
(s)ds

+ qE
∫ t

0
I(s)q−1

∫

T
n
g′′(Q(∇u(s)))

·
(
|D2uv(∇u)|2 − |v(∇u) · D2uv(∇u)|2

)
(s)ds

≤ EI(0)q ∀t ∈ I .

Furthermore, there is a constant C > 0 such that for q ∈ [1, 2)

E sup
t∈I

I(t)q ≤
(
2 + 2C2

2q − q2

)
EI(0)q .

Remark 5.5 (i) Note that all terms on the left hand side inLemma5.4 are non-negative.
Especially non-negativity of |D2u|2 −2|D2uv(∇u)|2 +|v(∇u) ·D2uv(∇u)|2 can
be deduced from

|D2u|2 − 2|D2uv(∇u)|2 + |v(∇u) · D2uv(∇u)|2
= Q2D (v(∇u)) : D (v(∇u))T

= (Id−v(∇u) ⊗ v(∇u))D2u : D2u (Id−v(∇u) ⊗ v(∇u))

and Lemma 5.6. The term D (v(∇u)) : D (v(∇u))T is the squared norm of the
second fundamental form of the graph of u. Hence Lemma 5.4 yields a bound for
this geometric quantity, see also Remark 5.7 below.

(ii) The condition g′(1)− g(1) ≥ 0 in Lemma 5.4 is not very restrictive since one can
subtract a constant from g and use the fact that dI = d (I − const).

Lemma 5.6 Let A, B,C ∈ R
n×n be symmetric matrices with B,C ≥ 0. Then

AB : CA = (AB)i, j (CA)i, j ≥ 0.

Proof Write B = DDT and C = EET . Then

AB : CA = ADDT : EET A = |ET AD|2 ≥ 0.

��
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Proof of Lemma 5.4 Let f (p) := g(Q(p)) for p ∈ R
n . Then

∇ f (p) = g′(Q(p))v(p),

D2 f (p) = g′′(Q(p))v(p) ⊗ v(p) + g′(Q(p))
Id−v(p) ⊗ v(p)

Q(p)
∀p ∈ R

n .

Since g′′ is bounded we infer that g′ grows at most linearly and therefore D2 f is
bounded. Furthermore, we calculate

D2 f (p) − f (p)

2Q(p)2
(Id−v(p) ⊗ v(p))

=
(
g′(Q(p))

Q(p)
− g(Q(p))

2Q(p)2

)
Id

+
(
g′′(Q(p)) − g′(Q(p))

Q(p)
+ g(Q(p))

2Q(p)2

)
v(p) ⊗ v(p).

(10)

Note that

d

dσ

(
g′(σ )σ − g(σ )

) = g′′(σ )σ ≥ 0 ∀σ ∈ (1,∞).

Thus σ �→ g′(σ )σ − g(σ ) is an increasing function with g′(1) − g(1) ≥ 0.
Now the eigenvalues of (10) are given by

g′(Q(p))

Q(p)
− g(Q(p))

2Q(p)2
≥ 0 and

g′(Q(p))

Q(p)3
− g(Q(p))

2Q(p)4
+ g′′(Q(p))

|p|2
Q(p)2

≥ 0

which shows the non-negativity of (10). We will again use the notation Q = Q(∇u)

and v = v(∇u). We can apply Lemma 5.3 to I(t) and deduce

dI =
∫

T
n
−ε

(
g′′(Q)|D2uv|2 + g′(Q)

Q

(
|D2u|2 − |D2uv|2

))

+
∫

T
n
−1

2
g(Q)|∇·v|2 −

∫

T
n
D2u (Id−v ⊗ v)

:
((

g′(Q)

Q
− g(Q)

2Q2

)
(Id−v ⊗ v) + g′′(Q)v ⊗ v

)
D2udt

−
∫

T
n
g(Q)∇·vdW .

Because of the non-negativity of (10) and Lemma 5.6, I is a non-negative local
supermartingale. We can apply Fatou’s Lemma to get rid of the locality and deduce
that
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E

∫

T
n
g(Q(t))

+ εE

∫ t

0

∫

T
n

(
g′′(Q(s))|D2uv|2(s) + g′(Q(s))

Q(s)

(
|D2u(s)|2 − |D2uv|2(s)

))
ds

+ 1

2
E

∫ t

0

∫

T
n
g(Q(s))|∇·v(s)|2ds

+ E

∫ t

0

∫

T
n

(
g′(Q(s))

Q(s)
− g(Q(s))

2Q(s)2

)(
|D2u|2 − 2|D2uv|2 + |v · D2uv|2

)
(s)ds

+ E

∫ t

0

∫

T
n
g′′(Q(s))

(
|D2uv|2 − |v · D2uv|2

)
(s)ds

≤ E

∫

T
n
g(Q(0)) ∀t ∈ I .

Now, for q ∈ [1, 2] we want to use the Itô formula for the function x �→ |x |q . This
function is not twice continuously differentiable for q < 2, so the classical Itô formula
does not apply directly. Nevertheless, we can first do the calculations for ϑ > 0 and
the function x �→ (ϑ + x)q which is twice continuously differentiable on [0,∞) and
then send ϑ → 0. We infer

dIq = −εqIq−1
∫

T
n

(
g′′(Q)|D2uv|2 + g′(Q)

Q

(
|D2u|2 − |D2uv|2

))

− q

2
Iq−1

∫

T
n
g(Q)|∇·v|2

− qIq−1
∫

T
n
D2u (Id−v ⊗ v)

:
((

g′(Q)

Q
− g(Q)

2Q2

)
(Id−v ⊗ v) + g′′(Q)v ⊗ v

)
D2udt

+ q(q − 1)

2
Iq−2

(∫

T
n
g(Q)∇·v

)2

dt

− qIq−1
∫

T
n
g(Q)∇·vdW

≤ −εqIq−1
∫

T
n

(
g′′(Q)|D2uv|2 + g′(Q)

Q

(
|D2u|2 − |D2uv|2

))

+
(

−q

2
+ q(q − 1)

2

)
Iq−1

∫

T
n
g(Q)|∇·v|2

− qIq−1
∫

T
n
D2u (Id−v ⊗ v)

:
((

g′(Q)

Q
− g(Q)

2Q2

)
(Id−v ⊗ v) + g′′(Q)v ⊗ v

)
D2udt

− qIq−1
∫

T
n
g(Q)∇·vdW .
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As before, since the stochastic integral defines a local martingale and using Fatou’s
lemma, we get

E
(I(t)q

)

+ εqE
∫ t

0
I(s)q−1

·
∫

T
n

(
g′′(Q(s))|D2uv|2(s) + g′(Q(s))

Q(s)

(
|D2u(s)|2 − |D2uv|2(s)

))
ds

+ 2q − q2

2
E

∫ t

0
I(s)q−1

∫

T
n
g(Q(s))|∇·v(s)|2ds

+ qE
∫ t

0
I(s)q−1

∫

T
n

(
g′(Q(s))

Q(s)
− g(Q(s))

2Q(s)2

)

·
(
|D2u|2 − 2|D2uv|2 + |v · D2uv|2

)
(s)ds

+ qE
∫ t

0
I(s)q−1

∫

T
n
g′′(Q(s))

(
|D2uv|2 − |v · D2uv|2

)
(s)ds

≤ E
(I(0)q

) ∀t ∈ I .

Note that all terms on the left-hand side are non-negative. We therefore obtain in
particular that E

∫ t
0 I(s)q−1

∫
T
n g(Q(s))|∇·v(s)|2ds remains uniformly bounded in t ,

which we use in the following calculation. For the stochastic integral we apply the
Burkholder–Davis–Gundy inequality and obtain

E sup
t∈I

[∫ t

0
I(s)q−1

∫

T
n
g(Q(s))∇·v(s)dW (s)

]

≤ CE

[∫ sup I

0

(
I(t)q−1

∫

T
n
g(Q(t))∇·v(t)

)2

dt

] 1
2

≤ CE

[∫ sup I

0

(
I(t)2q−1

∫

T
n
g(Q(t))|∇·v(t)|2

)
dt

] 1
2

≤ CE

[
sup
t∈I

Iq(t)
∫ sup I

0

(
I(t)q−1

∫

T
n
g(Q(t))|∇·v(t)|2

)
dt

] 1
2

≤ Cδ

2
E sup

t∈I
I(t)q + C

2δ
E

∫ sup I

0

(
I(t)q−1

∫

T
n
g(Q(t))|∇·v(t)|2

)
dt

≤ Cδ

2
E sup

t∈I
I(t)q + C

δ(2q − q2)
E

(I(0)q
)

for any δ > 0. Thus

E sup
t∈I

I(t)q ≤ EI(0)q + Cδ

2
E sup

t∈I
I(t)q + C

δ(2q − q2)
EI(0)q .
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Now choose δ = 1
C to infer

E sup
t∈I

I(t)q ≤
(
2 + 2C2

2q − q2

)
EI(0)q .

��
After Lemma 5.4 has been established we can apply it to prove Proposition 5.1 and

Proposition 5.2.

Proof of Proposition 5.1 In the situation of Lemma 5.4 we choose g(r) = r2, hence

g(Q(p)) = 1 + |p|2.

Note that d
∫
T
n |∇u|2 = d

∫
T
n g(Q(∇u)). Then by Lemma 5.4 for q = 1,

E‖∇u(t)‖2L2(Tn)
+ 2εE

∫ t

0

∫

T
n
|D2u(s)|2ds

+ 1

2
E

∫ t

0

∫

T
n
Q(∇u(s))2|∇·(v(∇u(s))) |2ds

+ E

∫ t

0

∫

T
n

(
3

2
|D2u|2 − |D2uv(∇u)|2 − 1

2
|v(∇u) · D2uv(∇u)|2

)
(s)ds

≤ E‖∇u0‖2L2(Tn)
∀t ∈ I .

Furthermore there is a constant C > 0 such that for q ∈ [1, 2)

E sup
t∈I

‖∇u(t)‖2q
L2(Tn)

≤
(
2 + 2C2

2q − q2

)
E‖∇u0‖2qL2(Tn)

.

Now let P- esssup ‖∇u‖L∞(I ;L∞(Tn)) = L < ∞. Then we can estimate

|v(∇u)| = |∇u|
Q(∇u)

≤ L√
1 + L2

< 1

and

3|D2u|2 − 2|D2uv(∇u)|2 − |v(∇u) · D2uv(∇u)|2

≥
(
3 − 2|v(∇u)|2 − |v(∇u)|4

)
|D2u|2

≥ 3(1 + L2)2 − 2L2(1 + L2) − L4

(1 + L2)2
|D2u|2

= 3 + 4L2

(1 + L2)2
|D2u|2.
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Hence

E‖∇u(t)‖2L2(Tn)
+ 3 + 4L2

2(1 + L2)2
E

∫ t

0

∫

T
n
|D2u(s)|2ds

≤ E‖∇u0‖2L2(Tn)
∀t ∈ I .

��

As the next step, we establish the maximum principle.

Proof of Proposition 5.2 For M > 0 let gM ∈ C2([1,∞)) be a modification of σ �→
(σ − M)+ with the following properties:

• gM ≥ 0,
• gM monotone increasing and convex,
• g′′

M bounded,
• g′

M (1) − gM (1) ≥ 0 and
• gM (σ ) > 0 ⇔ σ > M .

For example, one could choose

gM (σ ) :=
⎧
⎨

⎩

0 σ ≤ M,

(σ − M)2 σ ∈ (M, M + 1),
2σ − 2M − 1 σ ∈ [M + 1,∞).

From Lemma 5.4 we deduce that

E

∫

T
n
gM (Q(∇u(t))) ≤ E

∫

T
n
gM (Q(∇u(0))) ∀t ∈ I .

Now, if ‖∇u0‖L∞(Tn) ≤ L P-a.s. then we can conclude that

‖Q(∇u(0))‖L∞(Tn) ≤
√
1 + L2 P-a.s.

Hence

E

∫

T
n
g√

1+L2(Q(∇u(t))) = 0 ∀t ∈ I ,

which implies ‖Q(∇u(t))‖L∞(Tn) ≤ √
1 + L2 P-a.s. for all t ∈ I . Therefore

‖∇u‖L∞(I ;L∞(Tn)) ≤ L.

��
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Remark 5.7 We can also use Lemma 5.4 for g(r) = r to deduce bounds for the qth
moment of the area. In particular for q = 1 and ε = 0 we get

E

∫

T
n
Q(∇u(t)) + 1

2
E

∫ t

0

∫

T
n
Q(∇u(s)) |∇·(v(∇u(s)))|2 ds

+ 1

2
E

∫ t

0

∫

T
n
Q(∇u(s))Dv(∇u(s)) : Dv(∇u(s))T ds

≤ E

∫

T
n
Q(∇u(0)).

(11)

In geometrical terms (11) becomes

EHn (�(t)) + 1

2
E

∫ t

0

∫

�(t)

(
H2(s) + |A(s)|2

)
dHnds ≤ EHn (�(0)) ,

where �(t) = graph u(t), H(t) is the mean curvature and |A(t)| is the length of the
second fundamental form of �(t) for t ∈ I . Compare this with the deterministic MCF,
where for a solution (�(t))t≥0 the natural energy identity is

Hn (�(t)) +
∫ t

0

∫

�(t)
H2(s) dHnds = Hn (�(0)) .

However, we will not use this estimate since an L∞ bound for the gradient and an L2

bound for the Hessian are available via Proposition 5.2 and Proposition 5.1.

Remark 5.8 The first author has recently proved some generalizations in his PhD the-
sis [15]: Consider colored noise in the form

∑

l∈N
Q(∇u)ϕl ◦ dβl

with ϕl ∈ C∞(Tn) satisfying appropriate summability conditions. Then modified
a priori estimates corresponding to Lemma 5.3, Lemma 5.4 hold. Under additional
assumptions on the initial data there exists a martingale solution. On the other hand
the gradient bound as stated in Theorem 3.5 is not valid any more.

Furthermore a weak-strong uniqueness result is proved in [15, Theorem 6.1]. Here
for the more regular solution in particular a uniform bound in L∞(� × T

n × (0, T ))

for the Hessian is required.

6 Vanishing viscosity limit

With the above uniform estimates at hand, we are in position to pass to the limit as
ε → 0 and establish the existence of a martingale solution to the stochastic mean
curvature flow (2).
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Proof of Theorem 3.5 From Theorem 4.1 we deduce that for ε > 0 we can find
a martingale solutions uε of (5) with initial data �. Since the solutions uε are
constructed with [33, Theorem 2] we can fix one probability space (�,F ,P) =
([0, 1],B([0, 1]),L) such that for each ε > 0 we can find

• a normal filtration (Fε
t )t∈[0,∞),

• a real-valued (Fε
t )-Wiener process W ε and

• a (Fε
t )-predictable process uε with uε ∈ L2(�; L2(0, T ; H2(Tn))) for all T ∈

[0,∞)

such that

uε(t) − uε(0) =
∫ t

0
ε�uε(s) + Q(∇uε(s))∇·(v(∇uε(s))

)
ds

+
∫ t

0
Q(∇uε(s)) ◦ dW ε

s in L2(Tn) ∀t ∈ [0,∞)

(12)

and P ◦ (uε(0))−1 = �. Because of the assumption on the support of � we have
‖∇uε(0)‖L∞(Tn) ≤ L P-a.s. From Proposition 5.2 we deduce

‖∇uε‖L∞(0,∞;L∞(Tn)) ≤ L P-a.s.

and from Proposition 5.1 we deduce for all q ∈ [1, 2)

‖∇uε‖2q
L2q (�;C([0,∞);L2(Tn)))

≤
(
2 + 2C2

2q − q2

)
E‖∇uε(0)‖2q

L2(Tn)
≤ Cq,L and

‖D2uε‖L2(�;L2(0,∞;L2(Tn))) ≤ CL‖uε(0)‖L2(�;H1(Tn)).

(13)

Using Corollary A.3 we infer that

d‖uε‖2L2(Tn)
=

∫

T
n
2uε

·
(

ε�uε + Q(∇uε)∇·(v(∇uε)
) + 1

2
v(∇uε) · D2uεv(∇uε)

)
dt

+
∫

T
n
Q(∇uε)2dt + 2

∫

T
n
uεQ(∇uε)dW

≤ C‖uε‖2L2(Tn)
+ C‖D2uε‖2L2(Tn)

dt + 2
∫

T
n
uεQ(∇uε)dW ,

with a constant C that does not depend on ε. We can estimate the supremum with the
Burkholder–Davis–Gundy inequality and get

123



Existence of martingale solutions and large-time… 431

E sup
s∈[0,t]

‖uε(s)‖2L2(Tn)
− E‖uε(0)‖2L2(Tn)

≤ CE

∫ t

0
‖uε(s)‖2L2(Tn)

ds + CE

∫ t

0
‖D2uε(s)‖2L2(Tn)

+ CE

[∫ t

0
‖uε(s)‖2L2(Tn)

‖Q(∇uε(s))‖2L2(Tn)
ds

] 1
2

≤ CE

∫ t

0
‖uε(s)‖2L2(Tn)

ds + CE

∫ t

0
‖D2uε(s)‖2L2(Tn)

+ 1

2
E sup

s∈[0,t]
‖uε(s)‖2L2(Tn)

+ CE

∫ t

0
‖Q(∇uε(s))‖2L2(Tn)

ds.

From (13) we infer for all T > 0 and t ∈ [0, T ] that

E sup
s∈[0,t]

‖uε(s)‖2L2(Tn)
≤ CE

∫ t

0
‖uε(s)‖2L2(Tn)

ds + C,

with a constant that only depend on the initial condition � and T . Using the Gronwall
lemma we conclude that there is a constant C which only depends on � and T such
that

E sup
t∈[0,T ]

‖uε(s)‖2L2(Tn)
≤ C .

Because of (13)weknow that the deterministic integral in (12) is uniformly bounded

in L2(�;C0, 12 ([0, T ]; L2(Tn))). With the factorization method [49, Theorem 1.1]
and (13) we infer that there is a λ > 0 such that the stochastic integral in (12) is
uniformly bounded in L2(�;C0,λ([0, T ]; L2(Tn))). Hence, for some λ ∈ (0, 1

2 )

E‖uε‖2C0,λ([0,T ];L2(Tn))
≤ C�,T

uniformly in ε. We conclude that (uε)ε>0 is uniformly bounded in

L2
(
�; L2(0, T ; H2(Tn)) ∩ C([0, T ]; H1(Tn)) ∩ C0,λ([0, T ]; L2(Tn))

)

and (W ε)ε>0 is uniformly bounded in L2
(
�;C0,λ([0, T ];R)

)
.

In the remaining part of the proofwewill show that these bounds imply the existence
of a convergent subsequence in a weak sense and we will identify the limit with a
solution of (2). We will follow the same strategy in the proof of Theorem A.5, where
we pass from the finite-dimensional approximations to a solution. Since the line of
arguments is very similar but slightly more involved in the case of Theorem A.5 we
give a detailed proof only for the latter Theorem and here just comment on the main
ideas and on differences between both proofs.
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Using the compactness of the embeddings, the joint laws of (uε,Wε) are tight in

X T
u × X T

W

with

X T
u := C([0, T ]; (H1(Tn), w)) ∩ L2(0, T ; H1(Tn)) ∩

(
L2(0, T ; H2(Tn)), w

)
,

X T
W := C([0, T ];R).

Since T > 0 is arbitrary this also implies the tightness in Xu × XW with

Xu := Cloc([0,∞); (H1(Tn), w)) ∩ L2
loc(0,∞; H1(Tn))

∩
(
L2
loc(0,∞; H2(Tn)), w

)
,

XW := Cloc([0,∞);R).

Now we can argue via the Jakubowski–Skorokhod representation theorem for tight
sequences in nonmetric spaces [33, Theorem 2] to deduce the existence of a subse-
quence εk ↘ 0, a probability space (�̃, F̃ , P̃) and Xu ×XW -valued random variables
(ũk, W̃ k) for k ∈ N and (ũ, W̃ ) such that ũk → ũ a.s. inXu , W̃ k → W̃ a.s. inXW and
the joint laws of (ũk, W̃ k) agree with the joint laws of (uεk ,W εk ) for k ∈ N.

Let

F̃k
t :=

⋂

s>t

σ
(
ũk |[0,s], W̃ k |[0,s], {A ∈ F̃ | P̃(A) = 0}

)
, t ∈ [0,∞), k ∈ N

F̃t :=
⋂

s>t

σ
(
ũ|[0,s], W̃ |[0,s], {A ∈ F̃ | P̃(A) = 0}

)
, t ∈ [0,∞).

One can prove that W̃ k is a real-valued (F̃k
t )t -Wiener process and ũk is a solution

of (5) for εk and the Wiener process W̃ k .
With the a.s. convergences in XW resp. Xu and the uniform bounds derived before

one can pass to the limit in the equations and infer that W̃ is a real-valued (F̃t )t -
Wiener process and ũ is a solution of (2). In opposite to the proof of Theorem A.5 the
operator in the deterministic part of the equation changes, but the convergence uε⇀u
in H2(Tn)) implies

ε�uε + Q(∇uε)∇·(v(∇uε)
) + 1

2
v(∇uε) · D2uεv(∇uε)

⇀Q(∇u)∇·(v(∇u)) + 1

2
v(∇u) · D2uv(∇u) in L2(Tn),

which is enough to pass to the limit in the equation. Because of the uniform bounds
of (uε) in L2(�; L2(0, T ; H2(Tn))) for all T > 0 we know that the limit ũ is already
a martingale solution. ��
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Remark 6.1 Note that under the assumptions of Theorem 3.5 for a martingale solution
u of (2) we have u ∈ C([0, t]; H1(Tn)) and ∇u ∈ L∞(0,∞; L∞(Tn)) P-a.s. for all
t ∈ I .

For a function w ∈ L1(Tn) with ∇w ∈ L∞(Tn) we have w ∈ W 1,∞(Tn) with

‖w‖W 1,∞(Tn) ≤ C
(‖w‖L1(Tn) + ‖∇w‖L∞(Tn)

)
.

Hence, u ∈ L∞(0, t;W 1,∞(Tn)) P-a.s. for all t ∈ I .
From the proof of Theorem 3.5we deduce that u ∈ L2(�;C0,λ([0, t]; L2(Tn))) for

all t ∈ I and some λ > 0. In combination with the previous result and [50, Theorem
5] this yields u ∈ C([0, t];C(Tn)) P-a.s. for all t ∈ I . Using sharper interpolation
results one can prove that the solution is pathwise Hölder continuous in space and
time.

7 Large-time behavior

In this section, we study the large-time behavior of solutions to (2).

Proof of Theorem 3.6 The uniform estimates in Proposition 5.1 and Proposition 5.2
imply that

D2u ∈ L2(�; L2(0,∞; L2(Tn)))

and

‖∇u‖L∞(0,∞;L∞(Tn)) ≤ L a.s.

For the convergence as T → ∞ we note that by Corollary A.3

d
∫

T
n
(u − W ) =

∫

T
n
Q(∇u)∇·(v(∇u)) dt +

∫

T
n
(Q(∇u) − 1) ◦ dW

= −1

2

∫

T
n
v(∇u) · D2uv(∇u)dt +

∫

T
n
(Q(∇u) − 1) dW .

Let

α := 1

|Tn|
(∫

T
n
u0 − 1

2

∫ ∞

0

∫

T
n
v(∇u(t)) · D2u(t)v(∇u(t))dt

+
∫ ∞

0

∫

T
n
(Q(∇u(t)) − 1) dW (t)

)
.

To bound the drift we estimate
∣∣
∣∣

∫

T
n
v(∇u) · D2uv(∇u)

∣∣
∣∣ ≤

∫

T
n

∣
∣∣D2u

∣
∣∣ |∇u| ≤ ‖∇u‖2H1(Tn)

≤ C‖D2u‖2L2(Tn)
,

123



434 N. Dabrock et al.

where we have used |v(p)| ≤ min{|p|, 1} and a Poincaré inequality, and infer

E

∣∣∣∣

∫ ∞

0

∫

T
n
v(∇u(t)) · D2u(t)v(∇u(t))dt

∣∣∣∣ ≤ C‖D2u‖2L2(�;L2(0,∞;L2(Tn)))
< ∞.

Furthermore we have Q(p) − 1 ≤ |p| and therefore for the martingale part of α the
bound

E

∣∣∣∣

∫ ∞

0

∫

T
n
(Q(∇u(t)) − 1) dW (t)

∣∣∣∣

2

≤ E

∫ ∞

0
‖∇u(t)‖2H1(Tn)

dt

≤ CE

∫ ∞

0
‖D2u(t)‖2L2(Tn)

dt < ∞,

hence α ∈ L1(�) is a well-defined random variable.
Wefinda sequence (tk)k∈N of increasing times tk → ∞ such thatE‖D2u(tk)‖2L2(Tn)

→
0 for k → ∞.

Now, we apply a Poincaré inequality to obtain

‖u(t) − W (t) − α‖H1(Tn) ≤ C

(
‖∇u(t)‖L2(Tn) +

∣
∣∣∣

∫

T
n
(u(t) − W (t) − α)

∣
∣∣∣

)
.

(14)

From Proposition 5.1 we infer that ‖∇u‖2
L2(Tn)

is a non-negative supermartingale and

E sup
t≥T

‖∇u(t)‖2L2(Tn)
≤ CE‖∇u(T )‖2L2(Tn)

≤ CE‖∇u(tk)‖2L2(Tn)

for tk < T . Hence

lim
T→∞

(

E sup
t≥T

‖∇u(t)‖L2(Tn)

)2

≤ lim
T→∞E sup

t≥T
‖∇u(t)‖2L2(Tn)

≤ C lim
k→∞E‖∇u(tk)‖2L2(Tn)

≤ C lim
k→∞E‖D2u(tk)‖2L2(Tn)

= 0.

For the second term in (14) we have with the Burkholder–Davis–Gundy inequality
and the estimates from above

E sup
t≥T

∣
∣∣∣

∫

T
n
(u(t) − W (t) − α)

∣
∣∣∣

≤ E sup
t≥T

∣∣∣∣−
1

2

∫ ∞

t

∫

T
n
v(∇u(s)) · D2u(s)v(∇u(s))ds

∣∣∣∣

+ E sup
t≥T

∣∣∣
∣

∫ ∞

t

∫

T
n
(Q(∇u(s)) − 1) dW (s)

∣∣∣
∣
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≤ CE

∫ ∞

T
‖D2u(t)‖2L2(Tn)

dt + C

(
E

∫ ∞

T
‖∇u(t)‖2L2(Tn)

dt

) 1
2

→ 0 for T → ∞. ��
From Theorem 3.6 we can deduce the next corollary which extends the one-

dimensional result from [20, Theorem 4.2] to higher dimensions. Furthermore it
improves the convergence in distribution in Cloc([0,∞); L2(Tn)) to convergence in
L1(�;Cb([0,∞), H1(Tn))).

Corollary 7.1 Let u be a solution of (2) with

P- esssup ‖∇u0‖L∞(Tn) < ∞.

Then for T → ∞ we have

(u(T + t) − u(T ))t≥0 − (W (T + t) − W (T ))t≥0 → 0

in L1(�;Cb([0,∞); H1(Tn))).

Proof We estimate

E sup
t≥0

‖u(T + t) − u(T ) − (W (T + t) − W (T ))‖H1(Tn)

≤ 2E sup
t≥T

‖u(t) − W (t) − α‖H1(Tn) → 0.

��
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Appendix A. Variational SPDE under a compactness assumption

In this section we will consider infinite-dimensional stochastic differential equations
with a variational structure. In “Appendix A.1” we will present an Itô formula for
this kind of equation, which will be used in “Appendix A.2” to show existence for
variational SPDEs.

During the whole section we will work with the following assumptions.
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Assumption A.1 Let V and H be separable Hilbert spaces with V ⊂ H � H ′ ⊂ V ′
and V densely and compactly embedded in H. Furthermore we will consider another
separable Hilbert space U, which will be the space where a Wiener process is defined.

With L1(H) we will denote the space of all nuclear operators T : H → H with
the norm

‖T ‖L1(H) := inf

{ ∞∑

k=1

‖ak‖H‖ϕk‖H | (ak)k ⊂ H , (ϕk)k ⊂ H ′, T =
∞∑

k=1

akϕk

}

.

It is well known that (L1(H))∗ = L(H) and that the weak-∗ topology on L(H)

coincides on norm bounded subsets with the weak operator topology on L(H), which
is theweakest topology such that for all x, y ∈ H themap L(H) → R, T �→ 〈T x, y〉H
is continuous.

For notational convenience we will restrict the presentation to the case of infinite-
dimensional spaces, although finite-dimensional spaces could be treated as well.

Then we can find an orthonormal basis (ek)k∈N of H which is an orthogonal basis
of V and we will use the abbreviation λk := ‖ek‖2V for k ∈ N. We will assume that
the (ek)k are arranged such that (λk)k is a non-decreasing sequence. Furthermore we
will denote by (gl)l∈N an orthonormal basis of U.

If not otherwise specified then a cylindrical Wiener process W on U with respect to
a filtration (Ft )t will always be assumed to have the representation W = ∑

l∈N glβl
with (βl)l∈N mutually independent real-valued (Ft )-Brownian motions.

A. 1. Itô formula

The following result states a generalized Itô formula for variational SPDEs, cf. [47,
Theorem 4.2.5], [45, II.II.§4] and [52, I.§1 Theorem 1.3].

Proposition A.2 (Itô formula and continuity)Assume that T > 0, (�,F , (Ft )t∈[0,T ],P)

is a stochastic basis with a normal filtration and W a cylindrical Wiener process on
U. Furthermore let u0 ∈ L2(�; H) be F0-measurable and u, v, B be predictable
processes with values in V , V ′ and L2(U ; H), respectively, such that

u ∈ L2(�; L2(0, T ; V )), v ∈ L2(�; L2(0, T ; V ′)), B ∈ L2(�; L2(0, T ; L2(U ; H))),

and

u(t) − u0 =
∫ t

0
v(s)ds +

∫ t

0
B(s)dW (s) in V ′

P-a.s. ∀t ∈ [0, T ]. (15)

Then u has a version with continuous paths in H and for this version it holds that
u ∈ L2(�;C([0, T ]; H)) with

‖u(t)‖2H − ‖u0‖2H =
∫ t

0
2〈v(s), u(s)〉V ′,V + ‖B(s)‖2L2(U ;H)ds
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+ 2
∫ t

0
〈u(s), B(s)dW (s)〉H ∀t ∈ [0, T ].

Furthermore, if F ∈ C1(H) and the second Gâteaux derivative D2F : H → L(H)

exists with

• F, DF and D2F bounded on bounded subsets of H,
• D2F : H → L(H) continuous from the strong topology on H to the weak-∗
topology on L(H) = (L1(H))∗ and

• (DF)|V : V → V continuous from the strong topology on V to the weak topology
on V and growing only linearly

‖DF(x)‖V ≤ C (1 + ‖x‖V ) ∀x ∈ V ,

then P-a.s. for all t ∈ [0, T ]

F(u(t)) − F(u0) =
∫ t

0
〈v(s),DF(u(s))〉V ′,V + 1

2
tr

[
D2F(u(s))B(s)(B(s))∗

]
ds

+
∫ t

0
〈DF(u(s)), B(s)dW (s)〉H .

Proof For the first part we refer to [47, Theorem 4.2.5]. For the second part one follows
the arguments in [52, I.§1 Theorem 1.3]. ��

We will apply Proposition A.2 to the appropriate spaces for (2).

Corollary A.3 Let T > 0, (�,F , (Ft )t∈[0,T ],P) be a stochastic basis with a
normal filtration and W a cylindrical Wiener process on U. Furthermore let
u0 ∈ L2(�; H1(Tn)) be F0-measurable and u, v, B be predictable processes
with u ∈ L2(�; L2(0, T ; H2(Tn))), v ∈ L2(�; L2(0, T ; L2(Tn))) and B ∈
L2(�; L2(0, T ; L2(U ; H1(Tn)))) such that

du = vdt + BdW in L2(Tn). (16)

Then u has a version with continuous paths in H1(Tn) and for this version it holds
that u ∈ L2(�;C([0, T ]; H1(Tn))). If F = F(z, p) ∈ C2(R×R

n)with ∂2z F, ∂z∇pF
and D2

p F bounded then we have

∫

T
n
F(u(t),∇u(t))dx −

∫

T
n
F(u0,∇u0)dx

=
∫ t

0

∫

T
n

[ (
∂z F − ∇·(∇pF

))
v(s) + 1

2

∑

l∈N
∂zz F |Bl(s)|2

+ 1

2

∑

l∈N
∂z∇pF · ∇

(
|Bl(s)|2

)
ds + 1

2

∑

l∈N
∇Bl(s) · D2

p F∇Bl(s)

]
ds

+
∑

l∈N

∫ t

0

∫

T
n

[
∂z FBl(s) + ∇pF · ∇Bl(s)

]
dβl(s)

(17)
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a.s. for all t ∈ [0, T ], where Bl := Bgl , l ∈ N. Note that we have omitted the
arguments (u(s),∇u(s)) of F on the right hand side in favor of readability.

Proof We consider the spaces V = H2(Tn) and H = H1(Tn). To work in the
framework from above we have to do the rather unusual identification ofw ∈ H1(Tn)

with JHw := −�w + w ∈ H ′ where

〈JHw, ϕ〉H ′,H = 〈w, ϕ〉H1(Tn) =
∫

T
n
∇w · ∇ϕ + wϕ, ϕ ∈ H1(Tn).

Then for all w ∈ H2(Tn)

d〈JHu, w〉H ′,H = d〈u,−�w + w〉L2(Tn)

= 〈v,−�w + w〉L2(Tn)dt + 〈BdW ,−�w + w〉L2(Tn),
(18)

which is an equation for JHu in V ′. We consider the function G : H1(Tn) → R with

G(w) :=
∫

T
n
F(w(x),∇w(x))dx, w ∈ H1(Tn).

Since F ∈ C2 it easy to check that G ∈ C1(H1(Tn)) and that the second Gâteaux
derivative D2G exists. We calculate for w, ϕ,ψ ∈ H1(Tn)

〈DG(w), ϕ〉H ′,H =
∫

T
n
∂z F(w,∇w)ϕ + ∇pF(w,∇w) · ∇ϕ,

〈
D2G(w)ϕ,ψ

〉

H ′,H
=

∫

T
n
∂zz F(w,∇w)ϕψ + ∂z∇pF(w,∇w) · (ϕ∇ψ + ψ∇ϕ)

+
∫

T
n
∇ϕ · D2

p F(w,∇w)∇ψ.

By standard arguments one can prove that G satisfies the assumptions from Proposi-
tion A.2.

Note that for the application of Proposition A.2 we shall have an equation for du
in V ′, whereas (16) is an equation for du in L2(Tn). Therefore we have to use (18) to
infer that a.s. for all t ∈ [0, T ]

G(u(t)) − G(u0) =
∫ t

0

〈
JHv(s), J−1

H ◦ 	(u(s))
〉

V ′,V
ds

+ 1

2

∫ t

0
tr

[
D2G(u(s))B(s)(B(s))∗

]
ds +

∫ t

0
〈DG(u(s)), B(s)dW (s)〉H ′,H ,

which implies (17). ��
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A. 2. Existence for variational SPDEs

We will adapt the approach of [46, Section 2.3.3], which goes back to [52], to prove
existence of weak solutions for variational SPDEs

du = A(u)dt + B(u)dW

u(0) = u0.
(19)

In addition to Assumption A.1 we will make the following assumptions.

Assumption A.4 Let A : V → V ′ and B : V → L2(U ; H). We will write B∗ : V →
L2(H ;U ) for the adjoint operator B∗(u) := (B(u))∗. We assume:

• Coercivity: There are constants α,C > 0 such that

2〈A(u), u〉V ′,V + ‖B(u)‖2L2(U ;H) ≤ −α‖u‖2V + C
(
1 + ‖u‖2H

)
∀u ∈ V . (20)

• Growth bounds: There is a constant C > 0 and δ ∈ (0, 2] such that

‖A(u)‖2V ′ ≤ C
(
1 + ‖u‖2V

)
∀u ∈ V , (21)

‖B(u)‖2L2(U ;H) ≤ C
(
1 + ‖u‖2V

)
∀u ∈ V , (22)

‖B(u)‖2L(U ;V ′) ≤ C
(
1 + ‖u‖2−δ

V + ‖u‖2H
)

. (23)

• Continuity: A : V → V ′ is weak-weak-∗ sequentially continuous, that means

uk⇀u in V ⇒ A(uk)
∗
⇀A(u) in V ′ (24)

and B∗ : V → L2(H ;U ) is sequentially continuous from the weak topology on
V to the strong operator topology on L(H ;U ), that means

uk⇀u in V ⇒ B∗(uk)h → B∗(u)h in U ∀h ∈ H . (25)

The assumptions (20), (21) and (24) are the same as in [46], whereas (25) is weaker.
Furthermore we have replaced the sublinear growth bound from [46] for B(u) by the
weaker assumptions (22) and (23). These weaker assumptions are necessary to apply
the theory to the viscous equation (5). To prove this generalization we have to prove
bounds for higher moments of the ‖ · ‖H norm of the approximations, whereas in the
proof in [46] only the second moment of the ‖ · ‖H norm needed to bounded. This will
be done in Proposition A.7 under the additional assumption that the corresponding
higher moment of the ‖ · ‖H norm is bounded for the initial data. Similarly to the
ideas of [28], we will use the Jakubowski–Skorokhod representation theorem [33]
for tight sequences in non-metric spaces to prove that our approximations converge
on a different probability space. We will make use of similar arguments as in [10] to
handle the unbounded time interval. Finally, wewill show that this limit is amartingale
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solution of (19) using a general method of constructing martingale solutions without
relying on any kind ofmartingale representation theorem,whichwas introduced in [11]
and already used in [44] and [28], among others.

We will use a standard Galerkin scheme (compare with [46, Chapter 2.3]) to prove
that there is a martingale solution of (19) if the initial condition has bounded qth
moment in H for some q > 2. With the (ek)k∈N as in Assumption A.1 we will write

VN := span
(
{e1, . . . c, eN }

)
, N ∈ N.

Our main result is:

Theorem A.5 Let q > 2 and � be a Borel probability measure on H with finite qth
moment

∫

H
‖z‖qHd�(z) < ∞.

Then there is a martingale solution of (19) with initial data �. That means, that there
is a stochastic basis (�,F , (Ft )t∈[0,∞),P) with a normal filtration, a cylindrical
(Ft )-Wiener process W on U and a predictable u with u ∈ L2(�; L2(0, T ; V )) ∩
L2(�;C([0, T ]; H)) for all T > 0 and

〈u(t), v〉H − 〈u(0), v〉H =
∫ t

0
〈A(u(s)), v〉V ′,V ds +

∫ t

0
〈B(u(s))dW (s), v〉H

=
∫ t

0
〈A(u(s)), v〉V ′,V ds +

∑

l∈N

∫ t

0
〈B(u(s))gl , v〉Hdβl(s)

P-a.s. for all t ∈ [0,∞) and v ∈ V , and P ◦ u(0)−1 = �.

To prove Theorem A.5, we will consider (19) on the finite-dimensional space VN .
Due to Assumption A.4 one can apply a classical theorem for finite dimensional
stochastic differential equations with continuous coefficients, that grow at most lin-
early, cf. [29, Theorem 0.1] and [32, Theorem IV.2.4], to conclude the following
theorem.

Theorem A.6 Let N ∈ N and � be a Borel probability measure on H. Then there is
a weak solution of the finite-dimensional approximation of (19).

That means, that there is a stochastic basis (�,F , (Ft )t∈[0,∞),P) with a normal
filtration, β1, . . . c, βN mutually independent real-valued (Ft )-Brownian motions and
a predictable VN -valued process u with u ∈ L2(�;C([0, T ]; VN )) for all T > 0 such
that

〈u(t), v〉H − 〈u(0), v〉H =
∫ t

0
〈A(u(s)), v〉V ′,V ds +

N∑

l=1

∫ t

0
〈B(u(s))gl , v〉Hdβl(s)
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P-a.s. for all t ∈ [0,∞) and v ∈ VN , and

P ◦ u(0)−1 = �N := � ◦ P−1
N ,

where PN : H → VN is the orthogonal projection with respect to H.

It is a standard application of Proposition A.2 and a Gronwall argument to deduce
bounds for the second moments of ‖u(t)‖H for a solution u. Under Assumption A.4
it is even possible to bound higher moments, as we will state in the next proposition.
One can argue similarly to the proof of Lemma 5.4, we omit the details here.

Proposition A.7 (Estimates for the norm)Assume that T > 0and (�,F , (Ft )t∈[0,T ],P)

is a stochastic basis with a normal filtration. Then there is a constant C > 0 that only
depends on the constants from AssumptionA.4, such that for all mutually independent
real-valued (Ft )-Brownian motions (βl)l∈N, N ∈ N and all VN -valued predictable
processes u ∈ L2(�;C([0, T ]; VN )) with

〈u(t), v〉H − 〈u(0), v〉H =
∫ t

0
〈A(u(s)), v〉V ′,V ds +

N∑

l=1

∫ t

0
〈B(u(s))gl , v〉Hdβl(s)

P-a.s. for all t ∈ [0, T ] and v ∈ VN , we have

E sup
t∈[0,T ]

‖u(t)‖2H + E

∫ T

0
‖u(t)‖2V dt ≤ CeCT

(
1 + E‖u(0)‖2H

)
.

Additionally, there is a q0 > 2 such that u(0) ∈ Lq(�; H) for some q ∈ (2, q0)
implies u ∈ L∞(0, T ; Lq(�; H)) with

E‖u(t)‖qH ≤ eCt (1 + E‖u(0)‖qH
) ∀t ∈ [0, T ].

Lemma A.8 Let T > 0 and

Xu := (L2(0, T ; V ), w) ∩ L2(0, T ; H) ∩ C([0, T ]; (H , w))

withC([0, T ]; (H , w)) endowedwith the compact-open topology. Then for eachv ∈ V
the mappings A : Xu → L p(0, T ) for p < 2 and B∗ : Xu → L2(0, T ;U ) with

(A(u))(t) := 〈A(u(t)), v〉V ′,V and (B∗(u))(t) := B∗(u(t))v, t ∈ [0, T ]

are sequentially continuous.

Proof Let (uk)k ⊂ Xu be a sequence with uk → u in Xu . For M > 0 we consider the
functions

uM
k (t) :=

{
uk(t) if ‖uk(t)‖V ≤ M,

u(t) otherwise
, t ∈ [0, T ], k ∈ N.
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Note that

‖uM
k (t)‖V ≤ ‖uk(t)‖V + ‖u(t)‖V and ‖uM

k (t)‖H ≤ ‖uk(t)‖H + ‖u(t)‖H (26)

hold. Since u ∈ L2(0, T ; V )we conclude that for almost every t ∈ [0, T ] the sequence
(uM

k (t))k∈N is uniformly bounded in V . Furthermore we know for every t ∈ [0, T ]
that uM

k (t)⇀u(t) in H , because uk → u in Xu implies

∣∣∣
〈
uM
k (t) − u(t), h

〉

H

∣∣∣ ≤ |〈uk(t) − u(t), h〉H | → 0 as k → ∞ ∀h ∈ H .

The weak precompactness of bounded sequences in L2(0, T ; V ) and an identification
argument then yields that uM

k (t)⇀u(t) in V for k → ∞ for almost every t ∈ [0, T ].
The continuity assumptions (24) on A and (25) on B imply

(A(uM
k ))(t) → (A(u))(t), (B∗(uM

k ))(t) → (B∗(u))(t)

for almost every t ∈ (0, T ). Furthermore, using (21) we get

∣
∣∣(A(uM

k ))(t)
∣
∣∣
2 ≤ C

(
1 + ‖uk(t)‖2V

)
‖v‖2V .

Now, with Vitali’s convergence theorem we infer that A(uM
k ) → A(u) in L p(0, T )

for all p < 2.
For B∗ we have with the growth bound (23) and (26)

∥∥∥(B∗(uM
k ))(t) − (B∗(u))(t)

∥∥∥
2

U
≤

(
‖B(uM

k (t))‖2L(U ;V ′) + ‖B(u(t))‖2L(U ;V ′)

)
‖v‖2V

≤ C
(
1 + ‖uk(t)‖2−δ

V + ‖u(t)‖2−δ
V + ‖uk(t)‖2H + ‖u(t)‖2H

)
‖v‖2V .

The right hand side is uniformly integrable, because ‖uk(t)‖2−δ
V is bounded in

L
2

2−δ (0, T ) and ‖uk(t)‖2H is convergent in L1(0, T ). Therefore by Vitali’s conver-
gence theorem B∗(uM

k ) → B∗(u) in L2(0, T ;U ).
Let EM

k := {t ∈ [0, T ] | ‖uk(t)‖V > M} for k ∈ N. For the measure of Em
k we

estimate

∣∣Em
k

∣∣ ≤
∫ T

0

‖uk(t)‖2V
M2 dt ≤ C

M2 ,

because (uk)k∈N is uniformly bounded in L2(0, T ; V ).
As above one can conclude from the growth assumptions (21), (23) and by (26)

that

∣∣
∣A(uk) − A(uM

k )

∣∣
∣
p
and

∥∥
∥B∗(uk) − B∗(uM

k )

∥∥
∥
2

U
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are uniformly integrable with respect to k and M . Hence,

‖A(uk) − A(u)‖L p(0,T ) ≤
∥∥∥A(uk) − A(uM

k )

∥∥∥
L p(EM

k )
+

∥∥∥A(uM
k ) − A(u)

∥∥∥
L p(0,T )

and

∥∥B∗(uk) − B∗(u)
∥∥
L2(0,T ;U )

≤
∥∥∥B∗(uk) − B∗(uM

k )

∥∥∥
L2(EM

k ;U )
+

∥∥∥B∗(uM
k ) − B∗(u)

∥∥∥
L2(0,T ;U )

converge to 0 by first choosing M large such that the first terms on the right hand side
become small and then choosing k large and using the convergences derived above.

Proof of TheoremA.5 For N ∈ N let VN := span({e1, . . . c, eN }) and consider the VN -
valued process uN from Theorem A.6. The process uN is a weak solution of the finite-
dimensional approximation of (19) for a Wiener process WN on U with covariance
operator QN : U → span ({g1, . . . c, gN }), which is the orthogonal projection. We
can assume that the processes (uN )N∈N are defined on one common probability space
(�,F ,P) = ([0, 1],B([0, 1]),L), because the proof of [29, Theorem 0.1] could be
adapted to yield existence of weak solutions for the finite-dimensional approximation
on this particular space. (cf. [32, Theorem IV.2.3 and Theorem IV.2.4])

Furthermore, we can always assume that q > 2 is sufficiently small such that the
following arguments hold. We can apply Proposition A.7 to infer that for all T > 0
the sequence (uN )N∈N is in N ∈ N uniformly bounded in

L2(�;C([0, T ]; H)) ∩ L2(�; L2(0, T ; V )) ∩ L∞(0, T ; Lq(�; H)).

With (23) and a factorization argument one canprove thatuN ∈ L2(�;C0,λ([0, T ]; Z))

is uniformly bounded for a sufficiently weak space Z ⊃ V ′ and a λ > 0. Furthermore
one can find a spaceU1 ⊃ U such that the covariance operators of WN are uniformly
bounded in L1(U1) and the WN are uniformly bounded in L2(�;C0,λ([0, T ];U1)).

For λ > 0 the embeddings

C0,λ([0, T ]; Z) ∩ C([0, T ]; H) → C([0, T ]; (H , w)) and

C0,λ([0, T ]; Z) ∩ L2(0, T ; V ) → L2(0, T ; H)

are compact because of [50, Theorem 5] and the Ascoli theorem [35, Theorem 7.17].
Also the embedding

C0,λ([0, T ];U1) → C([0, T ]; (U1, w))

is compact because of the Ascoli theorem [35, Theorem 7.17]. Thus, the joint laws of
(uN ,WN ) are tight in X T

u × X T
W with

X T
u := C([0, T ]; (H , w)) ∩ L2(0, T ; H) ∩

(
L2(0, T ; V ), w

)
and
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X T
W := C ([0, T ]; (U1, w)) .

Since this holds for all T > 0 and since a set is compact in Xu × XW with

Xu := Cloc([0,∞); (H , w)) ∩ L2
loc(0,∞; H) ∩

(
L2
loc(0,∞; V ), w

)
and

XW := Cloc ([0,∞); (U1, w)) ,

whereCloc([0,∞); (H , w)) andCloc([0,∞); (U1, w)) are endowedwith the compact-
open topology, if and only if for all T > 0 the set (with all of its elements restricted to
[0, T ]) is compact in X T

u × X T
W , we conclude similarly to [10, Proof of Proposition

4.3] that the joint laws of (uN ,WN ) are tight in Xu × XW .
We can apply the Jakubowski–Skorokhod representation theorem for tight

sequences in nonmetric spaces [33, Theorem 2] to deduce the existence of a prob-
ability space (�̃, F̃ , P̃), an strictly increasing sequence (Nm)m∈N ⊂ N, Xu-valued
random variables ũm , ũ andXW -valued random variables W̃m , W̃ form ∈ N such that

ũm → ũ P̃-a.s. in Xu, W̃m → W̃ P̃-a.s. in XW

and the joint law of (ũm, W̃m) coincides with the joint law of (uNm ,WNm ) for all
m ∈ N. To simplify the notation, we will assume that Nm = m for m ∈ N.

Let (Gt )t∈[0,∞) be the natural filtration of the process (ũ, W̃ ). Furthermore, let
N := {M ∈ F̃ | P̃(M) = 0}. We will consider the augmented filtration (F̃t )t∈[0,∞)

which is defined by

F̃t :=
⋂

s>t

σ (Gs ∪ N ) , t ∈ [0,∞).

The augmented filtration (F̃t )t is a normal filtration. For m ∈ N we can do the same
construction to define the natural filtration (Gm

t )t and the augmented filtration (F̃m
t )t

of (ũm, W̃m).
We fix k ∈ N and define for t ∈ [0,∞)

M̃(t) :=
〈
ũ(t), ek

〉

H
−

〈
ũ(0), ek

〉

H
−

∫ t

0

〈
A(ũ(s)), ek

〉

V ′,V
ds

M̃m(t) :=
〈
ũm(t), ek

〉

H
−

〈
ũm(0), ek

〉

H
−

∫ t

0

〈
A(ũm(s)), ek

〉

V ′,V
ds

Mm(t) :=
〈
um(t), ek

〉

H
−

〈
um(0), ek

〉

H
−

∫ t

0

〈
A(um(s)), ek

〉

V ′,V
ds.

(27)

For t ∈ [0,∞) we have

Mm(t) =
∫ t

0

〈
B(um(s))dWm(s), ek

〉

H
.
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For s ∈ [0, t] let γ : C([0, s]; (H , w)) × C([0, s]; (U1, w)) → R be a bounded and
continuous function. We will use the abbreviations

γm := γ
(
um |[0,s],Wm |[0,s]

)
, γ̃m := γ

(
ũm |[0,s], W̃m |[0,s]

)
, γ̃ := γ

(
ũ|[0,s], W̃ |[0,s]

)
.

Since the joint law of (ũm, W̃m) coincides with the joint law of (um,Wm), we infer
for l1, l2 ∈ N and m large enough that

0 = Ẽ

(
γ̃m

(
W̃m(t) − W̃m(s)

))
,

(t − s) δl1,l2a
2
l1 = Ẽ

(
γ̃m

〈
W̃m(t), gl1

〉

U1

〈
W̃m(t), gl2

〉

U1

)

− Ẽ

(
γ̃m

〈
W̃m(s), gl1

〉

U1

〈
W̃m(s), gl2

〉

U1

)
(28)

and

0 = Ẽ

(
γ̃m

(
M̃m(t) − M̃m(s)

))
,

0 = Ẽ

(
γ̃m

(
(M̃m)2(t) − (M̃m)2(s) −

∫ t

s

∥
∥∥QmB

∗(ũm(σ ))ek
∥
∥∥
2

U
dσ

))
,

0 = Ẽ

(
γ̃m

(
M̃m(t)

〈
W̃m(t), gl1

〉

U
− M̃m(s)

〈
W̃m(s), gl1

〉

U

))

− Ẽ

(
γ̃m

∫ t

s

〈
B(ũm(σ ))gl1, e

k
〉

H
dσ

)
. (29)

The Burkholder–Davis–Gundy inequality for Wm yields the uniform bound

Ẽ‖W̃m(t)‖3U1
= E‖Wm(t)‖U1 ≤ Ct

3
2 .

Now,with the Vitali convergence theoremwe can pass to the limit in the equations (28)
and infer

0 = Ẽ

(
γ̃

(
W̃ (t) − W̃ (s)

))
,

(t − s) δl1,l2a
2
l1 = Ẽ

(
γ̃
〈
W̃ (t), gl1

〉

U1

〈
W̃ (t), gl2

〉

U1

)

− Ẽ

(
γ̃
〈
W̃ (s), gl1

〉

U1

〈
W̃ (s), gl2

〉

U1

)
.

(30)

Similarly, because of Lemma A.8 and the convergence Qm → Id in L(U ), we
conclude that in each of the above equations in (29)we have the pointwise convergence
of the variables for m → ∞. Furthermore, the Burkholder–Davis–Gundy inequality
for Mm , the growth bound (23) and the estimates in Proposition A.7 imply for some
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q > 2

Ẽ|M̃m(t)|q = E|Mm(t)|q ≤ CE

[∫ t

0

∥∥
∥B∗(um(s))ek

∥∥
∥
2

U
ds

] q
2

≤ Ck

(

1 + E

∫ T

0
‖um(s)‖2V ds + sup

s∈[0,T ]
E‖um(s)‖qH

)

≤ Ck,t
(
1 + E‖um(0)‖qH

) ≤ Ck,t

(
1 +

∫

H
‖z‖qHd�(z)

)
.

Again with the Vitali convergence theorem, we can pass to the limit in the Eqs. (29)
and infer

0 = Ẽ

(
γ̃

(
M̃(t) − M̃(s)

))
,

0 = Ẽ

(
γ̃

(
(M̃)2(t) − (M̃)2(s) −

∫ t

s

∥∥∥QmB
∗(ũ(σ ))ek

∥∥∥
2

U
dσ

))
,

0 = Ẽ

(
γ̃

(
M̃(t)

〈
W̃ (t), gl1

〉

U
− M̃(s)

〈
W̃ (s), gl1

〉

U

))

− Ẽ

(
γ̃

∫ t

s

〈
B(ũ(σ ))gl1, e

k
〉

H
dσ

)
.

(31)

Since the equations in (30) hold for all γ , we conclude that W̃ is a square-integrable
(Gt )t -martingale with (Gt )t -quadratic variation in U given by

〈〈
W̃ (t)

〉〉
= t I . (32)

Since W̃ is continuous, we infer that W̃ is also a square-integrable (F̃t )t -martingale
and (32) also holds for the quadratic variation with respect to (F̃t )t . By the Lévy
martingale characterization [14, Theorem 4.6] we conclude that W̃ is a cylindrical
(F̃t )t -Wiener process on U . Similarly, as (31) holds for all γ , we conclude that M̃ is
a square-integrable (Gt )t -martingale. Since M̃ is continuous by definition (27), it is
also a square-integrable (F̃t )t -martingale. From (31) we also infer

〈〈
M̃ −

∫ ·

0

〈
B(ũ(s))dW̃ (s), ek

〉

H

〉〉
= 0. (33)

Thus

M̃(t) − M̃(s) =
∫ t

s

〈
B(ũ(σ ))dW (σ ), ek

〉

H
P̃-a.s.

for all 0 ≤ s ≤ t < ∞ and k ∈ N. Furthermore we have

�
∗
↼P ◦ um(0)−1 = P̃ ◦ ũm(0)−1 ∗

⇀P̃ ◦ ũ(0)−1.
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Continuity of ũ follows from Proposition A.2. ��
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