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Abstract
We prove that joint uniqueness in law and the existence of a strong solution imply
pathwise uniqueness for variational solutions to stochastic partial differential equations
of type

dXt = b(t, X)dt + σ(t, X)dWt , t ≥ 0,

and show that for such equations uniqueness in law is equivalent to joint uniqueness
in law for deterministic initial conditions. Here W is a cylindrical Wiener process
in a separable Hilbert space U and the equation is considered in a Gelfand triple
V ⊆ H ⊆ E , where H is some separable (infinite-dimensional) Hilbert space. This
generalizes the corresponding results of Cherny, who proved these statements for the
case of finite-dimensional equations.

Keywords Stochastic partial differential equations · Yamada–Watanabe theorem ·
Pathwise uniqueness · Uniqueness in law · Joint uniqueness in law · Variational
solutions

Mathematics Subject Classification 60H15 · 60H30 · 60H05 · 34F05

1 Introduction

The connection between existence and uniqueness of weak and strong solutions is
fundamental to the research area of stochastic differential equations. A starting point
was the celebrated paper [14] by Yamada and Watanabe in 1971, in which the authors
prove that weak existence and pathwise uniqueness yield the existence of a unique
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strong solution for finite-dimensional stochastic differential equations. Later, several
authors worked on a dual statement of this seminal result, i.e. on the implication

Joint uniqueness in law + existence of strong solution ⇒ pathwise uniqueness. (1)

A proof of (1) can be found in the works of Jacod ( [5]) and Engelbert ( [4]). Unfortu-
nately, verifying joint uniqueness in law turns out to be rather difficult in applications.
In 2001, Cherny contributed a substantial improvement to this dual result by showing
the equivalence of uniqueness in law and joint uniqueness in law for finite-dimensional
equations in [2]. This striking result provides further structural insight into the interplay
of the aforementioned notions of existence and uniqueness.

Recently the study of stochastic partial differential equations, which are necessar-
ily infinite-dimensional equations, attracted much attention and nurtured extensive
research activity in this direction. In [13], Röckner, Schmuland and Zhang extended
the classical Yamada–Watanabe theorem to the framework of variational solutions
for infinite-dimensional equations in Hilbert spaces. Naturally this brings up two
questions, namely “Does the dual result (1) also hold in this infinite-dimensional
framework?” and “Can Cherny’s result on the equivalence of uniqueness and joint
uniqueness in law be generalized to this setting?”.

In this paper we give affirmative answers to both questions: We prove (1) in the
framework of the variational approach for solutions to stochastic partial differential
equations of the form

dXt = b(t, X)dt + σ(t, X)dWt , t ≥ 0,

in a (infinite-dimensional) Gelfand triple V ⊆ H ⊆ E with a separable Hilbert
space H , where W is a cylindrical Wiener process in another separable Hilbert space
U . Further we prove the equivalence of uniqueness and joint uniqueness in law for
deterministic initial conditions to such equations.

We point out that both statements have also been stated in [12] by Qiao within the
same framework. Two rather short proofs are given, which mostly follow the same
arguments as in Cherny’s proofs in [2] for the finite-dimensional setting. In doing
so, central technical issues arising from the infinite-dimensional framework are not
properly adjusted to the proof of Theorem 1.6. in [12]. In particular this includes
(using the notation of [12]) the proof of the independence of V 1 and V 2 and the
calculation of the covariation of JV i , i ∈ {1, 2} (note that the reference Proposition
3.13. given for this argument does not apply to the situation on p.372 in [12], because
the stochastic integrals φ(·, X̃).W̃ and ψ(·, X̃).W̃ 1 are not necessarily independent
processes). Further the well-definedness of V 1 and V 2 is not discussed and there is no
justification for the computations of stochastic integrals on p. 373. The final conclusion
of the proof is rather imprecise. Furthermore, the important technical preparations in
[12], namely Lemmas 2.2. and 2.3., seem to rely heavily on arguments presented
in [13] (c.f. Lemmas 2.4, 2.5 and 2.6 and the arguments inbetween). However, the
situation there is, albeit quite similar in nature, technically a different one. Hence we
believe it is valuable to present detailed proofs for these technical preparations as well
for the main theorem.
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Westress that (1) and the equivalence of uniqueness and joint uniqueness in lawhave
also been discussed for other types of equations and notions of solutions: Ondrejat
provided affirmative answers to both questions in the setting of mild solutions for
Banach space-valued equations in [11]. SeeRemark 3.5 for amore detailed comparison
to his work. In [8], Kurtz deals with a more general type of stochastic equations and
in particular considers (1) in this more general framework. However, the equivalence
of uniqueness and joint uniqueness in law is not discussed in his setting.

This paper is organized as follows: In the Sect. 2 we clarify notation and introduce
the general framework, including the relevant notions of existence and uniqueness
of solutions. Section 3 contains both main theorems. We present an outline of both
proofs in order to render a better understanding of the detailed proofs later on. An
explanation on why we have to restrict the second main theorem to deterministic
initial conditions is also included. The final section contains the proofs of the main
results as well as necessary preparations. “Appendix A” contains further preparations
and, for the convenience of readers, who are not familiar with stochastic integration
in detail, “Appendix B” reviews stochastic integration with respect to Hilbert space-
valued martingales, since this will be of great importance within our proofs.

2 Preliminaries

2.1 Notation

The set of all probabilitymeasures on aσ -algebraAwill be denoted byM+
1 (A). Given

ameasure space (�,F , P), theσ -algebraF P
denotes the completion ofF with respect

to P. For I = [0, T ] with T > 0 or I = R+ we call (�,F , (Ft )t∈I , P) a stochastic
basis, if F is complete with respect to P and (Ft )t∈I is a right-continuous filtration
such that every zero set is contained in F0. In this case we denote the corresponding
predictable σ -algebra byPT (if I = [0, T ]) orP∞ (if I = R+). We say that a process
X = (Xt )t∈I on a stochastic basis is (Ft )-predictable, if X is predictable and we want
to stress the dependence on the underlying filtration (Ft )t∈I .

Given two separable Hilbert spaces U and H , Lin(U , H) denotes the set of linear
maps between U and H and L(U , H) is the subset of all such operators, which are
bounded and defined on the whole of U . For the adjoint of A ∈ L(U , H) we write
A∗. L2(U , H) is the set of all Hilbert-Schmidt-operators, i.e. the subset of elements

A of L(U , H) such that ||A||L2(U ,H) := ( ∑∞
k=1 ||Aek ||2H

) 1
2 < ∞ for some (hence

every) orthonormal basis (ek)k∈N of U . Equipped with the inner product (A, B) �→∑∞
k=1〈Aek, Bek〉H , L2(U , H) becomes a separable Hilbert space. The subset L1(U )

of L(U ) denotes the set of all nuclear operators onU and L+
1 (U ) is the set of all nuclear

operators, which are symmetric and non-negative. Every A ∈ L1(U ) has finite trace
(i.e. tr(A) := ∑∞

k=1〈Aek, ek〉U < +∞) and A ∈ L+
1 (U ) if and only if A is symmetric,

non-negative and of finite trace.
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2.2 Basic setting

Large parts of the framework presented in this subsection are as in “Appendix E” of [9].
Let (H , 〈· , ·〉H ) and (U , 〈·, ·〉U ) be real separable (infinite-dimensional)Hilbert spaces
with norms ||·||H and ||·||U , respectively. Further let V and E be real separable Banach
spaces with norms || · ||V , || · ||E , respectively, such that V ⊆ H ⊆ E continuously
and densely. Then Kuratowski’s theorem [7, p.487] implies

V ∈ B(H), B(V ) = B(H) ∩ V and H ∈ B(E), B(H) = B(E) ∩ H .

For x ∈ H the map

x �→ ||x ||V :=
{

||x ||V , x ∈ V

+∞, x ∈ H\V

is B(H)-measurable and lower semicontinuous on H . Thus the path space

B :=
{
ω ∈ C(R+; H)

∣∣
∫ T

0
||ω(s)||V ds < ∞ for all T ≥ 0

}

is well-defined. We define a filtration on B by Bt (B) := σ(πs |0 ≤ s ≤ t) for any
t ≥ 0. Further (B+

t (B))t≥0 denotes the corresponding right-continuous filtration. Here
πt : B → H is the canonical projection, i.e. πt (ω) = ω(t) for ω ∈ B. Note that (B, ρ)

is a complete separable metric space, with metric ρ defined through

ρ(ω1, ω2) :=
∞∑

k=1

2−k
[( ∫ k

0
||ω2(s)−ω1(s)||V ds+ sup

t∈[0,k]
||ω2(t)−ω1(t)||H

)
∧ 1

]
.

We denote the Borel σ -algebra of (B, ρ) by B(B).

The stochastic differential equation under investigation

We consider stochastic differential equations of the form

dXt = b(t, X)dt + σ(t, X)dWt , t ≥ 0, (1)

which is a formal notation for the integral equation Xt = X0 + ∫ t
0 b(s, X)ds +∫ t

0 σ(s, X)dWs, t ≥ 0, where the first integral is a pathwise E-valued Bochner-
integral and the second one is an H -valued stochastic Itô-integral. We assume that
b : R+ × B → E , σ : R+ × B → L2(U , H) and W = (Wt )t≥0 fulfill the following
properties.

Assumption 1 (i) b is B(R+) ⊗ B(B)/B(E)-measurable and b(t, ·) is Bt (B)/B(E)-
measurable for all t ≥ 0,
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(ii) σ is B(R+) ⊗ B(B)/B(L2(U , H))-measurable and σ(t, ·) is Bt (B)/

B(L2(U , H))-measurable for all t ≥ 0,
(iii) W is an (Ft )-R∞-Wiener process on U with covariance idU on a stochastic

basis (�,F , (Ft )t≥0, P), i.e. formally Wt = ∑∞
k=1 βk(t)ek, where (ek)k∈N is

an orthonormal basis of U and (βk)k∈N is a family of independent real-valued
(Ft )-Brownianmotions on�. We also writeW = (βk)k∈N and callW a standard
R

∞-Wiener process.

The stochastic integral in (1) is defined through
∫ t
0 σ(s, X)dWs := ∫ t

0 σ(s, X) ◦
J−1dW̄s . Here J : U → Ū is a one-to-one Hilbert-Schmidt-map with values in
a separable Hilbert space (Ū , 〈·, ·〉Ū ) and W̄t := ∑∞

k=1 βk(t)Jek, t ≥ 0, is the
cylindrical Wiener process associated to W . The orthonormal basis (ek)k∈N is the
same as in Assumption 1 above, which we fix from now on. Such J and Ū always
exist and the definition of the stochastic integral does not depend on the choice of J
or Ū . Further W̄ is a Q̄-Wiener process with Q̄ := J J ∗ ∈ L+

1 (Ū ). We fix such J , Ū
and Q̄ from now on. For technical details about stochastic integration with respect to
cylindrical Wiener processes we refer to [9, Section 2.5.].

The paths of W̄ are elements of the space W0 := {ω ∈ C(R+, Ū )
∣∣ω(0) = 0}.

Define a metric on W0 through

ζ(ω1, ω2) :=
∞∑

k=1

2−k(||ω1 − ω2||C([0,k];Ū ) ∧ 1
)

and observe that (W0, ζ ) is a complete separablemetric space.We define a filtration on
(W0,B(W0)) through Bt (W0) := σ(πs |0 ≤ s ≤ t), where as before πt denotes the
canonical projection. NoteB(W0) = σ(πt |t ≥ 0) and that this implies theF/B(W0)-
measurability of W̄ : � → W0, ω �→ (W̄ (ω)t )t≥0 due to the (Ft )-adaptedness of
(W̄t )t≥0.

Strong, weak solutions and notions of uniqueness

Wenowpresent the relevant notions of solutions and uniqueness for our considerations
and clarify the relations between them.

Definition 2.1 A pair (X ,W ) is called a weak solution to Eq. (1), if X = (Xt )t≥0 is an
(Ft )-adapted process with paths in B and W is a standard (Ft )-R∞-Wiener process
on some stochastic basis (�,F , (Ft )t≥0, P) such that the following holds:

(i)
∫ T
0 ||b(s, X)||E ds + ∫ T

0 ||σ(s, X)||2L2(U ,H)ds < +∞ P-a.s. for every T ≥ 0.

(ii) Xt = X0 + ∫ t
0 b(s, X)ds + ∫ t

0 σ(s, X)dWs for every t ≥ 0 P-a.s. as an equation
on E .

We call X a solution process of Eq. (1) or simply solution. Note that such X isF/B(B)-
measurable.

Definition 2.2 (i) Weak uniqueness (also uniqueness in law) holds for Eq. (1), if for
any two solutions (X ,W 1) and (Y ,W 2) on (possibly different) stochastic bases
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(�,F , (Ft )t≥0, P) and (�′,F ′, (F ′
t )t≥0, P

′), respectively,

P ◦ X−1
0 = P

′ ◦ Y−1
0 (2)

implies P ◦ X−1 = P
′ ◦ Y−1 as measures on (B,B(B)).

(ii) Weak uniqueness given μ ∈ M+
1 (B(H)) holds, if the implication in (i) is at least

valid for all weak solutions (X ,W 1), (Y ,W 2) with initial distribution μ.
(iii) Equation (1) has joint uniqueness in law (also joint weak uniqueness), if in the

setting of (i) (2) implies P ◦ (X , W̄ 1)−1 = P
′ ◦ (Y , W̄ 2)−1 as measures on

B(B)⊗B(W0). The definition of joint uniqueness in law given μ ∈ M+
1 (B(H))

is analogue to (ii).
(iv) δ-weak uniqueness and δ-joint weak uniqueness hold, if the respective implica-

tions in (i) and (iii) hold at least when (2) is restricted to

P ◦ X−1
0 = δx = P

′ ◦ Y−1
0

for every x ∈ H , i.e. to arbitrary deterministic initial conditions. δx denotes the
Dirac-measure in x .

Definition 2.3 (i) Pathwise uniqueness holds for Eq. (1), if for any two weak
solutions (X ,W ), (Y ,W ) on a common stochastic basis (�,F , (Ft )t≥0, P)

with a common standard R
∞-Wiener process W , X0 = Y0 P-a.s. implies

Xt = Yt for all t ≥ 0 P-a.s.
(ii) For μ ∈ M+

1 (B(H)), pathwise uniqueness given μ means that the implication
in (i) holds at least for all weak solutions as in (i), which additionally satisfy
P ◦ X−1

0 = μ = P ◦ Y−1
0 .

(iii) δ-pathwise uniqueness holds, if the implication in (i) holds at least for all solutions
X and Y with X0 = x = Y0 for any x ∈ H .

In order to define the notion of a strong solution, let Ê denote the set of all
maps F : H × W0 → B such that for each μ ∈ M+

1 (B(H)) there is a

B(H) ⊗ B(W0)
μ⊗P

Q̄

/B(B)-measurable map Fμ such that for μ-a.a. h ∈ H

F(h, ω) = Fμ(h, ω) for P
Q̄-a.a. ω ∈ W0

holds. P
Q̄ denotes the distribution of the Q̄-Wiener process W̄ on (W0,B(W0)).

Obviously each Fμ is uniquely determined up to a μ ⊗ P
Q̄-zero set.

Definition 2.4 Equation (1) has a strong solution, if there exists F ∈ Ê such that for all

h ∈ H , ω �→ F(h, ω) is Bt (W0)
P
Q̄

/Bt (B)-measurable for every t ≥ 0 and for every
standard (Ft )-R∞-Wiener process W on any stochastic basis (�,F , (Ft )t≥0, P) and
anyF0/B(H)-measurablemap ξ : � → H , theB-valued process X := FP◦ξ−1(ξ, W̄ )

is such that (X ,W ) is a weak solution to Eq. (1) with X0 = ξ P-a.s. We will conven-
tionally call F the strong solution.
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3 Main results

We present the two main theorems of this paper. We give outlines of their proofs and
point out whywe have to restrict the second theorem to deterministic initial conditions.
The sketch of a simple proof for a very special case of the second theorem is included
as well in order to demonstrate the idea we follow for the general version. We assume
the framework of the previous section to be in force.

Theorem 3.1 Consider the stochastic evolution equation

Xt = X0 +
∫ t

0
b(s, X)ds +

∫ t

0
σ(s, X)dWs, t ≥ 0,

where we assume that b, σ and W fulfill Assumption 1. If this equation has a strong
solution and joint uniqueness in law given μ holds for some μ ∈ M+

1 (B(H)), then
pathwise uniqueness given μ holds as well. In particular, the existence of a strong
solution and joint uniqueness in law imply pathwise uniqueness.

Theorem 3.2 Consider the stochastic evolution equation

Xt = X0 +
∫ t

0
b(s, X)ds +

∫ t

0
σ(s, X)dWs, t ≥ 0, (3)

whereweassume that b,σ andW fulfill Assumption1.For any x ∈ H,weakuniqueness
given δx is equivalent to joint uniqueness in law given δx . In particular, δ-uniqueness
in law is equivalent to δ-joint uniqueness in law.

In particular, we obtain the following corollary, which we interpret as a dual state-
ment to the Yamada–Watanabe theorem.

Corollary 3.3 Assume b, σ and W fulfill Assumption 1. Then for the stochastic differ-
ential equation above the existence of a strong solution and δ-weak uniqueness imply
δ-pathwise uniqueness.

Scheme of proof of Theorem 3.1: The proof is similar to the one presented by Cherny
for the finite-dimensional case in [2, Thm. 3.2]. Assume there exists a strong solution
F and joint uniqueness in law given μ holds for some μ ∈ M+

1 (B(H)). We want to
prove that every weak solution is given by the strong solution F .

Themain idea is to consider the regular conditional distributionof Z with respect to a
suitable sub-σ -algebra ofF , namely theP-completion of σ(ξ0, W̄ ), which in the proof
will be called GW̄

0 . We will prove that the regular conditional distribution of X with
respect to the same σ -algebra coincides with that of Z . This step will heavily rely on
the assumption on joint uniqueness in law given μ. From here the definition of regular
conditional distributions will imply E[g(X)|GW̄

0 ] = g(Z) for any R-valued, bounded,
measurable g. By joint uniqueness in law given μ, we will easily derive g(X) = g(Z)

for all g as above and from there the result is immediate. The “in particular”-statement
of the theorem then follows directly, because joint uniqueness in law is, by definition,
equivalent to joint uniqueness in law given μ for all μ ∈ M+

1 (B(H).
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Scheme of proof of Theorem 3.2: First of all we would like to point out that the
proofwould be straightforward, ifwe assumed the operatorσ(t, y) to be one-to-one for
all (t, y) ∈ [0,+∞[×B. Indeed, in this case σ−1(t, y) is well-defined on Im σ(t, y)
and for a weak solution (X ,W ) we can, setting Nt := Xt − X0 − ∫ t

0 b(s, X)ds
(= ∫ t

0 σ(s, X)dWs P-a.s.) for t ≥ 0, consider the equation

∫ t

0
Jσ(s, X)−1dNs =

∫ t

0
Jσ(s, X)−1d

( ∫ s

0
σ(r , X)dWr

) =
∫ t

0
J J−1dW̄s = W̄t .

Here we used Proposition B.21 (ii) from “Appendix B” to obtain the well-definedness
of the second (hence also the first) term and to deduce the equality of the second and
third integral. Thus we have expressed the Wiener process as a measurable functional
of the solution X , which yields the desired statement. Although this simple reasoning
does not work in the general case we consider, one will recognize the same idea in our
proof below. For the general case we basically follow the ideas of Theorem 3.1. in [2]
and Theorem 1.6 in [12]. The majority of techniques used for the finite-dimensional
case has to be modified for our infinite-dimensional variational approach.

Fix a deterministic initial condition x ∈ H for which uniqueness in law given δx
holds and for which Eq. (3) has at least one weak solution.We prove that P◦(X , W̄ )−1

is uniquely determined by P ◦ X−1 for every weak solution (X , W̄ ) with X0 = x P-
a.s. Since we assume uniqueness in law given δx , this implies the desired statement.
Roughly speaking, we will express the Wiener process W̄ as a functional of X and a
process independent of X . We will arrange the proof in the following steps:

(i) Let (X ,W ) be a weak solution on a stochastic basis (�,F , (Ft )t≥0, P) such that
X0 = x P-a.s., let (�′,F ′, (F ′

t )t≥0, P
′) be a second stochastic basis and W 1,

W 2 two independent R
∞-Wiener processes on it. Consider the product space

�̃ := �×�′ with P̃ := P⊗P
′ and the obvious σ -algebra and filtration such that

we obtain a stochastic basis. We define the processes X̃ , W̃ , W̃ 1 and W̃ 2 on this
product space in an obvious way via projections and check that (X̃ , W̃ ) is also a
weak solution subject to the initial condition x .

(ii) For a linear subspace V ⊆ U , let prV denote the orthogonal projection onto
V . We define the processes φ and ψ : R+ × B → L(U ) via φ(t, y) :=
prkerσ(t,y)⊥ and ψ(t, y) := prkerσ(t,y), which we will use to split up the inte-

gral ¯̃Wt = ∫ t
0 J ◦ idU ◦ J−1d ¯̃Ws later on. We further introduce the processes

V̄ 1
t :=

∫ t

0
Jφ(s, X̃) dW̃s +

∫ t

0
Jψ(s, X̃) dW̃ 1

s and V̄ 2
t :=

∫ t

0
Jφ(s, X̃) dW̃ 2

s

+
∫ t

0
Jψ(s, X̃) dW̃s

and verify that these are independent Wiener processes on �̃, for which we will
need aHilbert space version of Lévy’s characterization of Brownianmotion. Next
we show that the pair (X̃ , V 1) is a weak solution to Eq. (3).
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(iii) In this crucial step we prove the independence of X̃ and V̄ 2. We will heavily
use Lemma 4.4 as well as the assumption on uniqueness in law given δx . More
precisely, we will even show that X̃ is independent of F̃0 ∨ σ(V̄ 2

t |t ≥ 0).
(iv) We introduce the pseudo inverse of the diffusion term σ , i.e. we define χ(t, y) :

Im σ(t, y) → ker σ(t, y)⊥ through χ(t, y) := σ(t, y)−1 for every (t, y) ∈
[0,+∞[×B. Now we can, as mentioned above, split up the Wiener process in
the following way:

¯̃Wt =
∫ t

0
Jχ(s, X̃)d

(
X̃s − x −

∫ s

0
b(r , X̃)dr

)
+

∫ t

0
Jψ(s, X̃)J−1dV̄ 2

s .

Due to Step (iii) we know that X̃ is independent of V̄ 2. The first summand is
a measurable functional of X̃ . This will imply the result. The “in particular”-
statement of the theorem is then obvious, because δ-(joint) uniqueness in law is
by definition equivalent to (joint) uniqueness in law given δx for all x ∈ H .

Remark 3.4 With our techniques, Theorem 3.2 cannot be generalized to non-
deterministic initial conditions. Why is this so? Within the proof of Theorem 3.2
we crucially use Lemma 4.4, as outlined in Step (iii) above. The main point is to
obtain — using the notation of Lemma 4.4 — that Pω ◦ �1(0)−1 = P ◦ X−1

0 = δx
holds for P-a.a. ω ∈ �. We achieve this through

{0, 1} � P(X0 ∈ A) = P
(
(X , W̄ ) ∈ {�1(0) ∈ A}) =

∫

�

Pω

({�1(0) ∈ A})P(dω),

(c.f. (17)), which implies Pω

({�1(0) ∈ A}) = P(X0 ∈ A) for P-a.a. ω ∈ � for every
A ∈ B(H). Unfortunately we cannot drop the condition P(X0 ∈ A) ∈ {0, 1} for each
A ∈ B(H), because else we could not conclude that the integrand ω �→ Pω

({�1(0) ∈
A}) is constant P-a.s. for every A ∈ B(H). Hence a necessary and sufficient condition
is that any weak solution X fulfills

P ◦ X−1
0 (A) ∈ {0, 1} for all A ∈ B(H).

Due to the separability of H , this is equivalent to P ◦ X−1
0 = δx for some x ∈ H .

Remark 3.5 In [11], M. Ondrejat considers, among other statements, the assertions of
both Theorems 3.1 and 3.2 in the setting of mild solutions to Banach space-valued
stochastic differential equations (c.f. Theorems 1 and 4 in [11], respectively). To
retrieve the type of equations we consider, X needs to be a separable Hilbert space.
Further, necessarily X = X1 in order to choose St = idX , which is requisite to
obtain our type of equations. This shows that the situation in [11] does not contain our
approach via a generalized Gelfand triple. Above that one notices that the drift and
diffusion term of his type of equations do not depend on entire solutions paths, but
only on its current time value.

Concerning the proof of Theorem 1.7. in [12], note that the situation considered there
is less general then our setting in terms of the definition of a strong solution. Below
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we give a proof considering this more general notion of a strong solution, which is
also more precise and detailed.

4 Proofs of themain results

The first subsection contains themain technical preparations for the proofs of our main
results, which are presented in the second subsection.

4.1 Preparations

As before, let H and U be separable, infinite-dimensional Hilbert spaces. We start by
recalling the definition and basic properties of regular conditional distributions, since
these will be a key tool within the main proofs below.

Definition 4.1 Let X be a randomvariable on (�,F , P) taking values in a Polish space
(E,B(E)) and G ⊆ F a sub-σ -algebra. A family of probability measures (Qω)ω∈�

on B(E) is called regular conditional distribution (often abbreviated r.c.d.) of X with
respect to G, if
(i) ω �→ Qω(A) is G-measurable for each A ∈ B(E),

(ii) E[1D · 1{X∈A}] = E[1D · Qω(A)] holds for all D ∈ G and A ∈ B(E).

The statements of the following remark are well-known results. Thus we omit their
proofs.

Remark 4.2 (i) By definition, for each A ∈ B(E), ω �→ Qω(A) is a version of
E[1{X∈A}|G] with exception set possibly depending on A.

(ii) For X , G and E as above a unique regular conditional distribution exists.
(iii) If X itself is G-measurable, then

(
δX(ω)(·)

)
ω∈�

is the (unique) r.c.d. of X with
respect to G.

(iv) Let h : E → R be B(E)-measurable. If h ≥ 0 or h(X) ∈ L1(�,F , P), then we
have EQω [h] = E[h(X)|G](ω) P-a.s., where EQω [·] denotes expectation with
respect to Qω for fixed ω ∈ �.

For the next two lemmas we fix the following framework. Let (X ,W ) be a weak
solution of Eq. (1) on a stochastic basis (�,F , (Ft )t≥0, P) with initial condition
X0 = x P-a.s. for some x ∈ H and let (Pω)ω∈� be the regular conditional distribution
of the random variable (X , W̄ ) : � → (

B × W0,B(B) ⊗ B(W0)
)
with respect to F0

(by the remark above such a r.c.d. exists, because B × W0 is a complete separable
metric space when equipped with the product metric of ρ and ζ as introduced in
Sect. 1.2). For ω ∈ � define a stochastic basis through

�̄ := B×W0, F̄ω := B(B) ⊗ B(W0)
Pω

, F̄ω
t :=

⋂

ε>0

σ
(Bt+ε(B) ⊗ Bt+ε(W0),Nω

)
,

where Nω := {N ∈ F̄ω|Pω(N ) = 0}. Further �1 : �̄ → B, �2 : �̄ → W0 denote
the canonical projections on the first and second variable, respectively. The following
two statements are in spirit of Lemma 2.4, 2.5 and 2.6 in [13].
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Lemma 4.3 Let Q̄ and Ū be as in Sect. 1.2. Then �2 is a Ū -valued (F̄ω
t )-Q̄-Wiener

process on (�̄, F̄ω, (F̄ω
t )t≥0, Pω) for P-a.a. ω ∈ �.

Proof Since �2 : B × W0 → W0 and due to the definition of W0, the paths of
�2 trivially start in zero and are continuous. The (F̄ω

t )-adaptedness of (�2(t))t≥0
is obvious for every ω ∈ �, so it remains to verify that there exists N0 ∈ F with
P(N0) = 0 such that for ω ∈ Nc

0 we have

�2(t) − �2(s) is Pω -independent of F̄ω
s and

P ◦ (W̄t − W̄s)
−1 = Pω ◦ (�2(t) − �2(s))

−1 (4)

for all s, t ∈ Qwith 0 ≤ s < t , because then the assertion follows by an approximation
of arbitrary s, t ∈ R through suitable sn, tn ∈ Q. To prove (4) we fix 0 ≤ s < t with
s, t ∈ Q, choose A1 ∈ Bs(B), A2 ∈ Bs(W0), A0 ∈ F arbitrary and obtain for y ∈ Ū :

∫

A0

EPω

[
exp(i〈y,�2(t) − �2(s)〉Ū )1A1×A2

]
P(dω)

=
∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )1A1(X)1A2(W̄ )|F0

]
P(dω)

=
∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
EP

[
1A1(X)1A2(W̄ )|F0

]
P(dω)

=
∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
Pω(A1 × A2)P(dω).

Above we used Remark 4.2 (iv) for the first and last equality and the independence of
W̄t − W̄s and Fs in the second equation. By varying A0 in F , we obtain P-a.s.:

EPω

[
exp(i〈y,�2(t) − �2(s)〉Ū )1A1×A2

] = EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
Pω(A1 × A2)

= EPω
[exp(i〈y,�2(t) − �2(s)〉Ū )]Pω(A1 × A2). (5)

The last equality follows by the independence of W̄t − W̄s from F0 and again
Remark 4.2 (iv). In particular, choosing A1 = B and A2 = W0, we obtain for all
y in a countable, dense subset of Ū :

EPω

[
exp(i〈y,�2(t) − �2(s)〉Ū )

] = EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
for P -a.a. ω ∈ �,

which by the uniqueness of the Fourier-transform implies that for P-a.a. ω ∈ �

Pω ◦ (�2(t) − �2(s))
−1 = P ◦ (W̄t − W̄s)

−1 for all s, t ∈ Q as above.

Further note that the exception set in (5) can, for fixed 0 ≤ s < t , be chosen indepen-
dently of A1, A2, because both Bs(B) and Bs(W0) are countably generated. Then the
usual monotone class argument, together with Lemma A.1, shows that �2(t)−�2(s)
is Pω-independent of F̄ω

s for P-a.a. ω ∈ � for all s, t as above.

123



44 Stoch PDE: Anal Comp (2021) 9:33–70

The following statement will be crucial for the proof of Theorem 3.2. A similar
result for the finite-dimensional setting is a main tool for Cherny’s result in [2] (c.f.
Lemma 3.3. therein). Due to its importance for our main proof below, we decide to
give a detailed proof for this lemma in our infinite-dimensional framework. Below �̂2
denotes the formal standard R

∞-Wiener process associated to �2.

Lemma 4.4 (�1, �̂2) is a weak solution to Eq. (1) on (�̄, F̄ω, (F̄ω
t )t≥0, Pω) with

Pω ◦ �1(0)−1 = δx = P ◦ X−1
0 for P-a.a. ω ∈ �.

The proof is split into two steps. We work with a sequence of elementary processes
(pn)n∈N, which approximates σ in L2(L2(U , H); P

X ), because only for elementary
integrands we have a pathwise definition of the stochastic integral. This pathwise
definition is necessary in order to allow us to “put ω in the integrand as well as in
the integrator” and thereby “put �1 and �2 in the right places”. This step becomes
apparent in (12) and in the definition of the set B̄t .

Proof Of course �1 is B-valued and (F̄ω
t )-adapted for every ω ∈ �. By the previous

lemma, �2 is an (F̄ω
t )-Q̄-Wiener process on (�̄, F̄ω, (F̄ω

t )t≥0, Pω) for P-a.a. ω ∈ �.
Let �̂2 be the associated standard R

∞-Wiener process. Concerning integrability, fix
t ≥ 0 and note that

Āt :=
{
(y, w) ∈ B × W0

∣∣∣∣

∫ t

0
||b(s, y)||E ds +

∫ t

0
||σ(s, y)||2L2(U ,H)ds < +∞

}

is contained in B(B) ⊗ B(W0) and that 1 = P
(
(X , W̄ ) ∈ Āt

) = ∫
�

Pω( Āt ) P(d�)

holds, because (X ,W ) is a weak solution to (1). Consequently Pω( Āt ) = 1 for P-a.a.
ω ∈ �, which implies

∫ t

0
||b(s,�1)||E ds +

∫ t

0
||σ(s,�1)||2L2(U ,H)ds < +∞ Pω-a.s.

for P-a.a. ω ∈ � and all zero sets can obviously be chosen independently of t . Hence
we only need to verify the following: For T > 0 there exists a P-zero-set N2 ∈ F
such that for all ω ∈ Nc

2 :

(I) �1(t) = �1(0)+ ∫ t
0 b(s,�1)ds+ ∫ t

0 σ(s,�1)d�̂2(s) Pω-a.s. for all t ∈ [0, T ]
on E ;

(II) Pω ◦ �1(0)−1 = δx .

We prove assertion (I) in two steps.

(i) Here we assume

EPX

[ ∫ T

0
||σ(s, ·)||2L2(U ,H)ds

]
< +∞ for all T ≥ 0, (6)

where P
X denotes the distribution of X : � → B. Now fix T > 0. Since

L2(U , H) is a separable Hilbert space and σ : R+ × B → L2(U , H) is mea-
surable and (B+

t (B))-adapted, by [13, Lemma 2.5.] we obtain the existence of
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a sequence (pn)n∈N of L2(U , H)-valued (B+
t (B))-predictable, elementary pro-

cesses on [0, T ] × B such that

EPX

[ ∫ T

0
||σ(s, y) − pn(s, y)||2L2(U ,H)ds

]
→

n→∞ 0,

i.e. in particular each pn is of the form pn(s, y) = ∑ jn−1
m=0 �n

m(y)1]tnm ,tnm+1](s),
(s, y) ∈ [0, T ] × B, where �n

m : B → L2(U , H) is strongly B+
tm (B)-measurable

for every m ∈ {0, . . . , jn − 1}, has finite image and 0 = tn0 < · · · < tnjn = T is a
finite partition of [0, T ]. We immediately observe

E

[ ∫ T

0
||σ(s, X) − pn(s, X)||2L2(U ,H)ds

]
→

n→∞ 0 (7)

and that pn(·, X) is still elementary and (Ft )-predictable. Thus pn(·, X) ◦ J−1 ∈
�2

T (W̄ , Ū , H ,PT ) and by the isometry stated in Proposition B.16, (7) yields∫ ·
0 pn(s, X)dWs →

n→∞
∫ ·
0 σ(s, X)dWs inM2

c(T ; H), thus in particular

E

[
sup

t∈[0,T ]
∣∣∣∣

∫ t

0
pn(s, X)dWs −

∫ t

0
σ(s, X)dWs

∣∣∣∣2
H

]
→

n→∞ 0. (8)

Since conditional expectation is an L p-contraction for p ≥ 1, we obtain

∣∣∣∣

∣∣∣∣E
[ ∫ T

0
||σ(s, X) − pn(s, X)||2L2(U ,H)ds

∣∣F0

]∣∣∣∣

∣∣∣∣
L1(�)

≤ E

[ ∫ T

0
||σ(s, X) − pn(s, X)||2L2(U ,H)ds

]
.

Hence, by (7), there exists a subsequence (nk)k∈N such that

E

[ ∫ T

0
||σ(s, X) − pnk (s, X)||2L2(U ,H)ds

∣
∣F0

]
→

k→∞ 0 P-a.s.

and thereby even E

[ ∫ t
0 ||σ(s, X) − pnk (s, X)||2L2(U ,H)ds

∣
∣F0

]
→

k→∞ 0 P

-a.s. for all t ∈ [0, T ]. As a consequence, by Remark 4.2 (iv), we obtain that for
every t ∈ [0, T ] we have

EPω

[ ∫ t

0
||σ(s,�1) − pnk (s,�1)||2L2(U ,H)ds

]
→

k→∞ 0 P-a.s. (9)

Applying the isometry for stochastic integrals once more (this time for theWiener
process �̂2 and the admissible integrands pnk (·,�1) and σ(s,�1)) we conclude
by (9): For every t ∈ [0, T ], for P-a.a. ω ∈ � we have

123



46 Stoch PDE: Anal Comp (2021) 9:33–70

∫ t

0
pnk (s,�1)d�̂2(s) →

k→∞

∫ t

0
σ(s,�1)d�̂2(s) in L2(�̄, Pω; H). (10)

Now we consider (8) only along the same subsequence (nk)k∈N. Then there is a
further subsequence (nkl )l∈N, for which for every t ∈ [0, T ]

∫ t

0
pnkl (s, X)dWs →

l→∞

∫ t

0
σ(s, X)dWs = Xt − X0 −

∫ t

0
b(s, X)ds (11)

P-a.s.Note that since (pn)n∈N is a sequence of elementary processes, the stochastic
integral on the left hand side in (11) is defined pathwise, i.e.

(∫ t

0
pnkl (s, X)dWs

)
(ω) =

jnkl
−1

∑

m=0

�
nkl
m (X(ω))J−1(W̄

t
nkl
m+1∧t

(w) − W̄
t
nkl
m ∧t (w)

)
.

For t ∈ [0, T ] the set

B̄t :=
{
(y, w) ∈ B × W0|

jnkl
−1

∑

m=0

�
nkl
m (y) ◦ J−1(w

t
nkl
m+1∧t

− w
t
nkl
m ∧t ) →

l→∞ yt − y0

−
∫ t

0
b(s, y)ds

}
,

is obviously contained inB(B)⊗B(W0) and (11) impliesP
({(X , W̄ ) ∈ B̄c

t }
) = 0.

For every t ∈ [0, T ], we conclude 0 = P
(
(X , W̄ ) ∈ B̄c

t

) = ∫
�

Pω(B̄c
t ) P(dω),

which gives Pω(B̄c
t ) = 0 P-a.s. and thus in turn for P-a.a. ω ∈ �:

∫ t

0
pnkl (s,�1)d�̂2 →

l→∞ �1(t) − �1(0) −
∫ t

0
b(s,�1)ds Pω-a.s. (12)

But now (10) especially holds along the same subsequence (nkl )l∈N. Choosing a
further subsequence (possibly depending on ω and t) for which the convergence
in (10) holds Pω-a.s., we conclude together with (12): For every t ∈ [0, T ] there
is Nt ∈ F with P(Nt ) = 0 such that for all ω ∈ Nc

t

�1(t) = �1(0) +
∫ t

0
b(s,�1)ds +

∫ t

0
σ(s,�1)d�̂2(s) Pω-a.s.

By the continuity in E of all terms, the zero set Nt can be chosen independently
of t ∈ [0, T ]. Hence this case is settled.

(ii) In the second step we only assume

∫ T

0
||σ(s, y)||2L2(U ,H)ds < +∞ P

X -a.s. for all T ≥ 0, (13)
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which is automatically true, since
∫ T
0 ||σ(s, X)||2L2(U ,H)ds < +∞ P-a.s. by

assumption for all T ≥ 0. Fix T > 0. We work with the following maps for
k ∈ N.

τ T
k : B → R+, τ T

k (y) := inf

{
s ≥ 0

∣∣
∫ s

0
||σ(r , y)||2L2(U ,H)dr > k

}
∧ T ,

which, by Fubini’s theorem, is an (B+
t (B))-stopping time for every k ∈ N. We

continue with the following observations.

(a) For every k ∈ N and T > 0, (6) is fulfilled when one replaces σ by 1]0,τ Tk ]σ
and 1]0,τ Tk ]σ : R+ × B → L2(U , H) is measurable and (B+

t (B))-adapted.

(b) Due to the continuity of t �→ ∫ t
0 ||σ(s, y)||2L2(U ,H)ds and (13), we have

τ T
k (X) ↗ T P−a.s. for k → ∞ and hence, since

{
y ∈ B|τ T

k (y) →
k→∞

T
} ∈ B(B) ⊗ B(W0) :

P({τ T
k (X)) →

k→∞ T }) =
∫

�

Pω({(y, w) ∈ B × W0|τ T
k (y) →

k→∞ T }) dP(ω),

which yields τ T
k (�1) →

k→∞ T Pω-a.s. for P-a.a. ω ∈ �.

Hence, as in the previous step, we find elementary, (B+
t (B))-predictable functions

(qT ,k
n )n∈N with

E

[ ∫ T

0
||1]0,τ Tk (X)]σ(s, X) − qT ,k

n (s, X)||2L2(U ,H)ds

]
→

n→∞ 0

and therefore, by the isometry for stochastic integrals, also

E

[
sup

t∈[0,T ]
∣∣∣∣

∫ t

0
qT ,k
n (s, X)dWs −

∫ t

0
1]0,τ Tk (X)]σ(s, X)dWs

∣∣∣∣2
H

]
→

n→∞ 0. (14)

As in (9), we find a subsequence (nm)m∈N such that

EPω

[ ∫ T

0
||1]0,τ Tk (�1)]σ(s,�1) − qT ,k

nm (s,�1)||2L2(U ,H)ds

]
→

m→∞ 0 P-a.s.

Similarly to (10) we obtain for P-a.a. ω ∈ � :
∫ T

0
qT ,k
nm (s,�1)d�̂2(s) →

m→∞

∫ T

0
1]0,τ Tk (�1)]σ(s,�1)d�̂2(s)

=
∫ τ Tk (�1)

0
σ(s,�1)d�̂2(s)

(15)
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in L2(�̄, Pω; H). Considering (14) along the same subsequence (nm)m∈N yields
a further subsequence (nml )l∈N with

∫ T

0
qT ,k
nml

(s, X)dWs →
l→∞

∫ τ Tk (X)

0
σ(s, X)dWs

= Xτ Tk (X) − X0 −
∫ τ Tk (X)

0
b(s, X)ds P-a.s.

Proceeding along the same steps as in part (i) up to (12) with the necessary
technical adjustments, we arrive at

∫ T

0
qT ,k
nml

(s,�1)d�̂2 →
l→∞ �1(τ

T
k (�1)) − �1(0) −

∫ τ Tk (�1)

0
b(s,�1)ds Pω-a.s.

for P-a.a. ω ∈ �. Comparing with (15), we observe Pω-a.s.

�1(τ
T
k (�1)) = �1(0) +

∫ τ Tk (�1)

0
b(s,�1)ds +

∫ τ Tk (�1)

0
σ(s,�1)d�̂2(s)(16)

for P-a.a. ω ∈ �. Now consider (16) for all k ∈ N simultaneously and pass to the
limit of τ T

k (�1) for k → ∞, which, as we stated above, is Pω-a.s. equal to T for
P-a.a. ω ∈ �. By the continuity of all terms involved, for P-a.a. ω ∈ �

�1(T ) = �1(0) +
∫ T

0
b(s,�1)ds +

∫ T

0
σ(s,�1)d�̂2(s) Pω-a.s.

Repeating this procedure for every T > 0 and using the continuity of both sides
of the equation as E-valued processes, we obtain the statement.

Finally consider (II). Due to X0 ≡ x , we have for each A ∈ B(H):

{0, 1} � P(X0 ∈ A) = P
(
(X , W̄ ) ∈ {�1(0) ∈ A}) =

∫

�

Pω

({�1(0) ∈ A})P(dω)

(17)

and thereby Pω

({�1(0) ∈ A}) = P(X0 ∈ A) for P-a.a. ω ∈ �. Since H is a separable
Hilbert space, we can choose a∩-stable, countable generator ofB(H). Then the above
equality holds for all elements A of this generating set outside one common P-zero set
and from there we conclude Pω ◦ �1(0)−1 = P ◦ X−1

0 for P-a.a. ω ∈ � as measures
on B(H), which finishes the proof.

Throughout the proof of our main results we will work with stochastic integrals,
which involve certain projection-valued operators as integrands. The next lemma states
that these integrals are well-defined.
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Lemma 4.5 Let (X ,W ) be a weak solution to Eq. (1) on a stochastic basis
(�,F , (Ft )t≥0, P). For (t, y) ∈ R+ ×B define the operators φ(t, y), ψ(t, y) ∈ L(U )

through

φ(t, y)(u) := prker σ(t,y)⊥(u) and ψ(t, y)(u) := prker σ(t,y)(u),

where prV (·) denotes the orthogonal projection onto a closed linear subspace V ⊆ U.
Then the following holds:

(i) As processes in (t, y) ∈ R+ × B, φ and ψ are L2(U , H)-valued, measurable and
(Bt (B))-adapted with respect to the strong Borel σ -algebra on L2(U , H).

(ii) For any R
∞-Wiener process W ′ on (�,F , (Ft )t≥0, P), the stochastic integrals∫ t

0 J ◦φ(s, X)dW ′
s and

∫ t
0 J ◦ψ(s, X)dW ′

s are well-defined, Ū -valued continuous
processes for t ≥ 0. Further for every T > 0, both processes are square-
integrable on [0, T ] in the sense that J ◦ φ(·, X) ◦ J−1, J ◦ ψ(·, X) ◦ J−1 ∈
�2

T (W̄ ′, Ū , Ū ,PT ) for every T > 0.

Proof. (i) Due to the obvious identity φ(t, y) = idU − ψ(t, y), it suffices to prove
the assertion for (t, y) �→ ψ(t, y). Hence we fix u ∈ U and must prove that
ψ(u) : R+ × B → H , ψ(u)(t, y) := ψ(t, y)(u) is measurable and (Bt (B))-
adapted. But this can be done as in [11, Lemma 9.2].

(ii) By (i) and because J ∈ L(U , Ū ), both J ◦ φ(·, X) and J ◦ ψ(·, X) are strongly
measurable, (Bt (B))-adapted and L2(U , Ū )-valued. Now fix (t, y) ∈ R+ × B.

For A ∈ L2(U , Ū ) the value ||A||L2(U ,Ū ) = ( ∑∞
k=1 ||A fk ||2Ū

) 1
2 is independent

of the orthonormal basis { fk}k∈N. Hence we may choose { fk}k∈N such that either
fk ∈ ker σ(t, y) or fk ∈ ker σ(t, y)⊥ for every k ∈ N. Then we obtain

||Jφ(t, y)||2
L2(U ,Ū )

=
∑

fk∈ ker σ(t,y)⊥
||J fk ||2Ū ≤ ||J ||2

L2(U ,Ū )
< +∞

for all (t, y) ∈ R+ × B since J is Hilbert-Schmidt. Hence for each t ≥ 0

E

[ ∫ t

0
||Jφ(s, X)||2

L2(U ,Ū )
ds

]
≤ E

[ ∫ t

0
||J ||2

L2(U ,Ū )
ds

]
= t ||J ||2

L2(U ,Ū )
< ∞,

which completes the proof of (ii), because the ψ-integral can be treated similarly.

Our next goal is to prove that the quadratic cross variation of two stochastic integrals
is additive, if the integrators are independent Wiener processes (c.f. (18) below). We
will need this result along the proof of our second main theorem. We start with a
technical lemma. Its proof is postponed to the appendix.

Lemma 4.6 Let (�,F , (Ft )t≥0, P) be a stochastic basis, Q ∈ L+
1 (U ) and W 1,W 2

two independent U-valued (Ft )-Q-Wiener processes on �. Then for every φ1, φ2 :
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R+ ×� → Lin(U , R) with φk ∈ �2
T (Wk,U , R,PT ) for every T > 0 and k ∈ {1, 2},

the following holds:

E

[ ∫ τ

0
φ1(s)dW

1(s) ·
∫ τ

0
φ2(s)dW

2(s)

]
= 0

for every bounded (Ft )-stopping time τ : � → R+. In particular the covariation
process of the two stochastic integrals above is constantly zero P-a.s.

Now we can straight forward prove the desired result:

Proposition 4.7 Let φk ∈ �2
T (Wk,U , H ,PT ) for every T > 0 for k ∈ {1, 2} and W 1,

W 2 as above. Then we have P-a.s.:

�
∫ ·

0
φ1(s)dW

1(s) +
∫ ·

0
φ2(s)dW

2(s) �t =�
∫ ·

0
φ1(s)dW

1(s) �t

+ �
∫ ·

0
φ2(s)dW

2(s) �t

(18)

for every t ≥ 0.

Proof Let ( fk)k∈N be an orthonormal basis of H . Lemma 4.6 and the fact that bounded
linear operators interchange with stochastic integrals imply for every i, j ∈ N :

〈〈 〈
∫ ·

0
φ1(s)dW

1(s), fi 〉H , 〈
∫ ·

0
〈φ2(s)dW

2(s), f j 〉H 〉〉t = 0 for all t ≥ 0 P-a.s.,

because by assumption on φk , the integrands 〈φk(·), fi 〉H obviously fulfill the assump-
tion of the previous lemma for every k ∈ {1, 2} and i ∈ N. Hence the assertion follows
by Corollary B.7.

Finallywepresent a definition,whichwill be usefulwithin the proof ofTheorem3.2.

Definition 4.8 Let H be a separable Hilbert space with inner product 〈·, ·〉H . The
Hilbert space (H ⊕ H , 〈·, ·〉H⊕H ) is defined as the Cartesian product H × H with the
inner product 〈(h1, h2), (h3, h4)〉H⊕H := 〈h1, h3〉H +〈h2, h4〉H . When no confusion
is possible, we abbreviate 〈·, ·〉H⊕H by 〈·, ·〉⊕.
Remark 4.9 It is obvious that the Hilbert space (H ⊕ H , 〈·, ·〉H⊕H ) is separable and
that B(H ⊕ H) = B(H) ⊗ B(H). The latter holds, because the metric induced by
〈·, ·〉⊕ induces the product topology on H ⊕ H .

4.2 Proofs of themain results

Now we give proofs for the two main results of this paper.
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Proof of Theorem 3.1: Fix a measure μ ∈ M+
1 (B(H)) for which joint uniqueness

in law given μ holds, a stochastic basis (�,F , (Ft )t≥0, P), an (Ft )-R∞-Wiener
process W and an F0-measurable map ξ0 : � → H with P ◦ ξ−1

0 = μ. Let
Z := F

P◦ξ0
−1(ξ0, W̄ ) be a strong solution with respect to this data. We prove

Zt = Xt for all t ≥ 0 P-a.s. (19)

for every weak solution X with respect to the same data. To do so, let F , Z and X be as

above and set GW̄
0 := σ(ξ0, W̄ )

P

. As before, W̄ denotes the Ū -valued (Ft )-Q̄-Wiener
process associated to W . We make the following observations:

(i) E W̄
0 := {(ξ−1

0 (G) ∩ W̄−1(B)
) ∪ N |G ∈ B(H), B ∈ B(W0), P(M) = 0} is a

∩-stable generator of GW̄
0 .

(ii) Since by definition of the strong solution F , (h, y) �→ F
P◦ξ−1

0
(h, y) is

B(H) ⊗ B(W0)
μ⊗P

Q̄

/B(B)-measurable, the map ω �→ F
P◦ξ−1

0
(ξ0(ω), W̄ (ω))

= Z(w) is GW̄
0 /B(B)-measurable. Indeed, as ξ0 is F0-measurable and hence

P-independent of W̄ , we obtainP◦(ξ0, W̄ )−1 = μ⊗P
Q̄ and thereby the claim fol-

lows by theGW̄
0 /B(H) ⊗ B(W0)

μ⊗P
Q̄

- measurability of (ξ0, W̄ ) : � → H×W0.

Here P
Q̄ denotes the measure P ◦ W̄−1 on B(W0).

Since (B,B(B)) is Polish there exists a unique regular conditional distribution of
Z : � → B with respect to GW̄

0 , which we denote by (QZ
ω)ω∈�. Since Z is GW̄

0 -
measurable, Remark 4.2 implies QZ

ω = δZ(w) P-a.s.
As we assume joint uniqueness in law given μ and we have X0 = ξ0 = Z0 P-a.s.

and P ◦ ξ−1
0 = μ, we obtain

P ◦ (X , W̄ )−1 = P ◦ (Z , W̄ )−1. (20)

By the same arguments as above there exists a unique regular conditional distribution
of X : � → B with respect to GW̄

0 , which we denote by (QX
ω )ω∈�. Clearly ω �→

δZ(w)(A) is GW̄
0 -measurable for every A ∈ B(B). Further, due to (20), we have P({X ∈

A} ∩ {W̄ ∈ B}) = P({Z ∈ A} ∩ {W̄ ∈ B}) for all A ∈ B(B), B ∈ B(W0). Since
{π0 ∈ G} ∈ B(B) for G ∈ B(H) and X0 = ξ0 = Z0 P-a.s., we obtain

P({ξ0 ∈ G} ∩ {X ∈ A} ∩ {W̄ ∈ B}) = P({ξ0 ∈ G} ∩ {Z ∈ A} ∩ {W̄ ∈ B}) (21)

for arbitrary G ∈ B(H), A ∈ B(B), B ∈ B(W0). For fixed A ∈ B(B) set P
X
A(·) :=

P({X ∈ A} ∩ ·) and P
Z
A(·) := P({Z ∈ A} ∩ ·) on GW̄

0 . Then (21) yields P
X
A(E) =

P
Z
A(E) for all E ∈ E W̄

0 ,whence we conclude P
X
A = P

Z
A for all A ∈ B(B) as measures

on GW̄
0 , i.e. P({X ∈ A} ∩ C) = P({Z ∈ A} ∩ C) for all C ∈ GW̄

0 . We conclude
QX

ω = δZ(w) P-a.s. Hence for every A ∈ B(B)

E[1{X∈A}|GW̄
0 ](ω) = δZ(ω)(A) = 1{Z∈A}(ω) P-a.s.,
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where the exception set may depend on A. Thus E[g(X)|GW̄
0 ] = g(Z) P-a.s. for

every bounded and B(B)/B(R)-measurable g : B → R by a simple monotone
class argument. For each such g we note E[(g(X) − g(Z))2] = 2E[g(Z)2] −
2E

[
E[g(X)g(Z)|GW̄

0 ]] = 2E[g(Z)2] − 2E[g(Z)g(Z)] = 0. The first equality fol-
lows by the equality in law of X and Z . Thus we obtain

g(X) = g(Z) P-a.s. (22)

for each bounded, measurable g : B → R. Now we can finally verify (19): Fix an
orthonormal basis { fi }i∈N of H and set σ j : H → R, σ j = 〈·, f j 〉H . For q ∈ Q+ and

j, n ∈ N, define g j,n
q : B → R through

g j,n
q (y) := (

σ j (πq(y)) ∧ n
) ∨ −n, y ∈ B

and note that these functions are clearly bounded and B(B)/B(R)-measurable. As
above, πq : B → H denotes the canonical projection from B to H at time q. We have

lim
n→∞g j,n

q (X(ω)) = 〈Xq(w), f j 〉H for every ω ∈ �. Applying (22) to g j,n
q for every

q, j, n, we obtain Xq = Zq for all q ∈ Q+ P-a.s. and the path-continuity of X and Z
in H completes the proof.

Remark 4.10 The theorem and its proof remain valid if one replaces the assumption
on the existence of a strong solution by the following

Generalized assumption
For every triple

(
(�,F , (Ft )t≥0, P),W , ξ0

)
for which at least one weak solution X

exists (i.e. the pair (X ,W ) is a weak solution on this stochastic basis with X0 = ξ0

P-a.s.), there also exists a solution Z : � → B subject to this triple,which isGW̄
0 /B(B)-

measurable.

We now turn to the proof of Theorem 3.2. We will heavily need several properties
and computation rules of stochastic integrals with respect to arbitrary square-
integrable, continuous martingales. These properties are well-known to experts on
stochastic integration in infinite dimensions. Nevertheless, for the convenience of
the reader, we review the construction and properties of such stochastic integrals in
“Appendix B”.

Proof of Theorem 3.2 Fix x ∈ H and assume uniqueness in law given δx holds. We
prove the following: For any weak solution (X ,W ) to

Xt = x +
∫ t

0
b(s, X)ds +

∫ t

0
σ(s, X)dWs, t ≥ 0 (23)

on a stochastic basis (�,F , (Ft )t≥0, P), the joint distributionP◦(X , W̄ )−1 is uniquely
determined by P ◦ X−1. Here and for the rest of the proof, for a R

∞-Wiener process
W we denote by W̄ the Ū -valued Q̄-Wiener process associated to W . As we pointed
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out in the recap on cylindrical Wiener processes in the Sect. 2, we have Q̄ = J J ∗.
Let us fix a weak solution (X ,W ) to Eq. (23).

Let (�′,F ′, (F ′
t )t≥0, P

′) be another stochastic basis and W̄ 1, W̄ 2 two independent
Ū -valued (F ′

t )-Q̄-Wiener processes on this basis, i.e.

W̄ 1 =
∞∑

k=1

β1
k Jek, W̄ 2 =

∞∑

k=1

β2
k Jek,

where (β i
k){k∈N, i∈{1,2}} is an independent family of R-valued (F ′

t )-Brownian motions
on�′ and (ek)k∈N is the orthonormal basis ofU we fixed in Sect. 1.2. TheR

∞-Wiener
processes associated to W̄ 1 and W̄ 2, i.e. the families (β1

k )k∈N and (β2
k )k∈N, will be

denoted by W 1 and W 2, respectively.

Define (�̃, F̃ , (F̃t )t≥0, P̃) := (�×�′,F ⊗ F ′ P⊗P
′
, (F̃t )t≥0, P⊗P

′), (where F̃t :=⋂
ε>0 σ(Ft+ε ⊗ F ′

t+ε, Ñ )), which is a stochastic basis. Here we set Ñ := {A ∈
F̃ |P̃(A) = 0}. Define the processes X̃ , ˜̄W , ˜̄W 1, ˜̄W 2 on (�̃, F̃ , (F̃t )t≥0, P̃) through

X̃((ω1, ω2)) := X(ω1),
˜̄W ((ω1, ω2)) := W̄ (ω1),

˜̄Wi ((ω1, ω2)) := W̄ i (ω2), i ∈
{1, 2}, for (ω1, ω2) ∈ �̃ and analogously for the R

∞-Wiener processes W ,W 1 and

W 2. Clearly ˜̄W , ˜̄Wi are independent Ū -valued (F̃t )-Q̄-Wiener processes on �̃ and
W̃ , W̃ 1, W̃ 2 are independent R

∞-Wiener processes. Note that we also have

˜̄W = ¯̃W =
∞∑

k=1

β̃k Jek . (24)

We obtain that (X̃ , W̃ ) is a weak solution to Eq. (23) on (�̃, F̃ , (F̃t )t≥0, P̃) with
X̃0 ≡ x P̃-a.s., because the (F̃t )-adaptedness of (X̃t )t≥0 is trivial and all properties,
which hold P-a.s. for X also hold P̃-a.s. for X̃ .

For t ≥ 0 and y ∈ B, let φ(t, y) ∈ L(U ) be the orthogonal projection onto
ker σ(t, y)⊥ ⊆ U and ψ(t, y) ∈ L(U ) the orthogonal projection onto ker σ(t, y). By
Lemma 4.5 the stochastic integrals of J ◦ φ(s, X̃) and J ◦ ψ(s, X̃) with respect to
W̃ , W̃ 1, W̃ 2 are well-defined. For t ≥ 0 we define the processes

V̄ 1
t :=

∫ t

0
Jφ(s, X̃)dW̃s +

∫ t

0
Jψ(s, X̃)dW̃ 1

s ,

V̄ 2
t :=

∫ t

0
Jφ(s, X̃)dW̃ 2

s +
∫ t

0
Jψ(s, X̃)dW̃s,

which are clearly continuous, Ū -valued local (F̃t )-martingales on (�̃, F̃ , (F̃t )t≥0, P̃).
We collect the following properties of φ and ψ : For each (t, y) ∈ R+ × B we have

φ(t, y) = φ(t, y)∗ and ψ(t, y) = ψ(t, y)∗, (25)

φ(t, y)2 = φ(t, y) and ψ(t, y)2 = ψ(t, y), (26)

φ(t, y) + ψ(t, y) = idU , (27)
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σ(t, y) = σ(t, y) ◦ φ(t, y) and σ(t, y) ◦ ψ(t, y) = 0U , (28)

φ(t, y) ◦ ψ(t, y) = 0U = ψ(t, y) ◦ φ(t, y). (29)

We will now verify that V̄ 1 and V̄ 2 are P̃-independent Ū -valued (F̃t )-Q̄-Wiener
processes on �̃.

1. V̄ 1, V̄ 2 are (F̃t )-Q̄-Wiener processes on (�̃, F̃ , (F̃t )t≥0, P̃):
For every T > 0, both processes are clearly square-integrable, continuous martin-
gales on [0, T ] and thus V̄ 1, V̄ 2 ∈ M2

c(T ; Ū ). Hence by theLévy-characterization
(c.f. Proposition B.8), applied to arbitrarily large T > 0, it suffices to prove
� V̄ i �t= t Q̄ P̃-a.s. for all t ≥ 0 for i ∈ {1, 2}. We calculate:

� V̄ 1 �t =
∫ t

0
(Jφ(s, X̃)J−1 Q̄

1
2 )(Jφ(s, X̃)J−1 Q̄

1
2 )∗ds

∫ t

0
(Jψ(s, X̃)J−1 Q̄

1
2 )(Jψ(s, X̃)J−1 Q̄

1
2 )∗ds

=
∫ t

0
Jφ(s, X̃)J−1 Q̄(Jφ(s, X̃)J−1)∗ds

+
∫ t

0
Jψ(s, X̃)J−1 Q̄(Jψ(s, X̃)J−1)∗ds

=
∫ t

0
Jφ(s, X̃)φ(s, X̃)∗ J ∗ + Jψ(s, X̃)ψ(s, X̃)∗ J ∗ds

=
∫ t

0
J
(
φ(s, X̃) + ψ(s, X̃)

)
J ∗ds = t Q̄, t ≥ 0 P̃-a.s.

In the above calculation we used Proposition 4.7 together with Proposition B.18
in the first, Q̄ = J J ∗ and elementary computation rules for adjoint operators in
the second and third, (25) and (26) in the fourth and (27) in the fifth equation.
Likewise we obtain � V̄ 2 �t= t Q̄, t ≥ 0 P̃-a.s. and therefore V̄ 1 and V̄ 2 are
(F̃t )-Q̄-Wiener processes.

2. V̄ 1 and V̄ 2 are P̃-independent:
Define Q̄⊕ ∈ L+

1 (Ū ⊕ Ū ) through Q̄⊕(
(ū1, ū2)

) := (Q̄ū1, Q̄ū2). Note that

(V̄ 1, V̄ 2) is clearly a continuous local Ū ⊕ Ū -valued (F̃t )-martingale. We want
to prove � (V̄ 1, V̄ 2) �t= t Q̄⊕

P̃-a.s. for all t ∈ [0, T ] for every T ≥ 0. By
Proposition B.4 this is equivalent to

〈(V̄ 1
t , V̄ 2

t ), (a1, b1)〉⊕ · 〈(V̄ 1
t , V̄ 2

t ), (a2, b2)〉⊕ − 〈t Q̄⊕(a1, b1), (a2, b2)〉⊕

being an (F̃t )-martingale for all a1, a2, b1, b2 ∈ Ū and on every [0, T ]. By defi-
nition of 〈·, ·〉⊕ and since both

〈V̄ 1
t , a1〉Ū · 〈V̄ 1

t , a2〉Ū − 〈t Q̄a1, a2〉Ū and 〈V̄ 2
t , b1〉Ū · 〈V̄ 2

t , b2〉Ū − 〈t Q̄b1, b2〉Ū
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are martingales for all a1, a2, b1, b2 ∈ Ū , this holds if and only if

〈V̄ 1
t , a1〉Ū · 〈V̄ 2

t , b2〉Ū + 〈V̄ 2
t , b1〉Ū · 〈V̄ 1

t , a2〉Ū
is an (F̃t )-martingale for all a1, a2, b1, b2 ∈ Ū on [0, T ] for all T > 0. Hence
fix T > 0, a, b ∈ Ū and consider

(〈V̄ 1
t , a〉Ū · 〈V̄ 2

t , b〉Ū
)
t∈[0,T ]. After multiplying

out and interchanging the linear functionals 〈·, a〉Ū and 〈·, b〉Ū with the stochastic
integrals, it is clear by definition of V̄ 1 and V̄ 2 and due to Lemma 4.6 that every
summand but

∫ t

0
〈Jφ(s, X̃)J−1(·), a〉Ū d ¯̃Ws ·

∫ t

0
〈Jψ(s, X̃)J−1(·), b〉Ū d ¯̃Ws (30)

is an (F̃t )-martingale on [0, T ]. Using Lemma 2.4.5 in [9] we further express the
stochastic integrals in (30) through

∫ t

0
〈J ◦ φ(s, X̃) ◦ J−1(·), a〉Ū d ¯̃Ws =

∞∑

k=1

∫ t

0
〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s),

(31)

t ∈ [0, T ] P̃-a.s., where the limit is taken in L2
(
�̃, F̃ , P̃;C([0, T ], R)

)
and anal-

ogously for the second integral. Here β̃k and ek are as in (24). We calculate as
follows.

〈〈 ∞∑

k=1

∫ ·

0
〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s),

∞∑

l=1

∫ ·

0
〈Jψ(s, X̃)J−1(Jel ), b〉Ū dβ̃l(s)

〉〉

t

=
( ∞∑

k=1

∞∑

l=1

〈〈∫ ·

0
〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s),

∫ ·

0
〈Jψ(s, X̃)J−1(Jel ), b〉Ū dβ̃l(s)

〉〉 )

t

=
( ∞∑

k=1

∫ ·

0
〈Jφ(s, X̃)ek , a〉Ū · 〈Jψ(s, X̃)ek , b〉Ū ds

)

t

=
∫ t

0

∞∑

k=1

〈Jφ(s, X̃)ek , a〉Ū · 〈Jψ(s, X̃)ek , b〉Ū ds

=
∫ t

0

∞∑

k=1

〈ek , φ(s, X̃)J ∗(a)〉U · 〈ek , ψ(s, X̃)J ∗(b)〉U ds

=
∫ t

0
〈φ(s, X̃)J ∗(a), ψ(s, X̃)J ∗(b)〉U ds

=
∫ t

0
〈J ∗(a), φ(s, X̃)ψ(s, X̃)J ∗(b)〉U ds = 0 P̃-a.s. (32)

The first equality is due to the convergence on the right-hand side in (31) in
L2

(
�,F , P;C([0, T ], R)

)
and due to the uniqueness of the covariation process of

continuous martingales. For the third equality, consider (32) along a subsequence
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(Nl)l∈N for which
∑Nl

k=1

∫ ·
0〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds converges

uniformly to

(
∑∞

k=1

∫ ·
0〈Jφ(s, X̃)ek, a〉Ū ·〈Jψ(s, X̃)ek, b〉Ū ds

)

t∈[0,T ]
on [0, T ]

P-a.s. for l → +∞. Then we clearly have for all t ∈ [0, T ]
( ∞∑

k=1

∫ ·

0
〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

)

t

= lim
l→∞

Nl∑

k=1

∫ t

0
〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

=
∫ t

0
lim
l→∞

Nl∑

k=1

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ūds

=
∫ t

0

∞∑

k=1

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ūds

P-a.s., since we can interchange the limit with the integral, because for fixed
ω ∈ � the function t �→ ||φ(t, X̃(ω))J ∗a||U · ||ψ(t, X̃(ω))J ∗b||U is, by Cauchy-
Schwarz-inequality, a dominating L1([0, T ], dt; R)-function of the sequence

( Nl∑

k=1

〈Jφ(s, X̃(ω))ek, a〉Ū · 〈Jψ(s, X̃(ω))ek, b〉Ū
)

l∈N
,

so that Lebesgue’s dominated convergence theorem applies. The last expression
equals zero because of (29). Hence (V̄ 1, V̄ 2) is an (F̃t )-Q̄⊕-Wiener process.
Consequently we have the following expression P̃-a.s. independently of t ≥ 0:

(V̄ 1
t , V̄ 2

t ) =
∞∑

i=1

√
λ̄iβ

′
i (t) f̄i , (33)

where f̄i is defined through f̄i := ( f i+1
2

, 0) for i ∈ 2N0 +1 and f̄i := (0, f i
2
) for

i ∈ 2N and the series converges in L2(�,F , P;C([0, T ], Ū ⊕Ū )) for every T >

0. Here { fn|n ∈ N} denotes an orthonormal basis of Ū consisting of eigenvectors
of Q̄. It is obvious that { f̄n|n ∈ N} is an orthonormal basis of Ū ⊕ Ū consisting
of eigenvectors of Q̄⊕. Further λ̄n is the corresponding eigenvalue of f̄n and
{β ′

n|n ∈ N} is an independent family of real-valued (F̃t )-Brownian motions on
�̃. From the definition of f̄n and (33) we immediately obtain P-a.s.:

V̄ 1
t =

∑

i∈N

√
λ̄2i−1β

′
2i−1(t) fi and V̄ 2

t =
∑

i∈N

√
λ̄2iβ

′
2i (t) fi , t ≥ 0.
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Since the σ -algebras σ(β ′
n(t)|t ≥ 0, n ∈ 2N0 + 1) and σ(β ′

n(t)|t ≥ 0, n ∈ 2N)

are P̃-independent and clearly σ(V̄ 1
t |t ≥ 0) ⊆ σ(β ′

n(t)|t ≥ 0, n ∈ 2N0 +
1), σ (V̄ 2

t |t ≥ 0) ⊆ σ(β ′
n(t)|t ≥ 0, n ∈ 2N), we have proved the independence

of (V̄ 1
t )t≥0 and (V̄ 2

t )t≥0.

In the sequel we will use the notation V i for the formal R
∞-Wiener process asso-

ciated to V̄ i . The next step is to prove that (X̃ , V 1) is a weak solution to (23) on
(�̃, F̃ , (F̃t )t≥0, P̃) (in fact even with respect to the bigger filtration (G+

t )t≥0 as we
shall see below) and that X̃ and V̄ 2 are P̃-independent.

1. (X̃ , V 1) is a weak solution to (23) on (�̃, F̃ , (F̃t )t≥0, P̃):
We prove

∫ t
0 σ(s, X̃)dW̃s = ∫ t

0 σ(s, X̃)dV 1
s , t ≥ 0 P̃-a.s. Applying (28), (29)

and for the second equality Proposition B.21 (i), we get
∫ t

0
σ(s, X̃)dW̃s =

∫ t

0
σ(s, X̃)J−1 Jφ(s, X̃)J−1d ˜̄Ws

=
∫ t

0
σ(s, X̃)J−1d

(∫ s

0
Jφ(r , X̃)J−1d ˜̄Wr

)

=
∫ t

0
σ(s, X̃)J−1d

(∫ s

0
Jφ(r , X̃)J−1d ˜̄Wr +

∫ s

0
Jφ(r , X̃)ψ(r , X̃)J−1d ˜̄W 1

r

)

=
∫ t

0
σ(s, X̃)J−1d

(∫ s

0
Jφ(r , X̃)J−1 Jφ(r , X̃)J−1d ˜̄Wr

+
∫ s

0
Jφ(r , X̃)J−1 Jψ(r , X̃)J−1d ˜̄W 1

r

)
.

Note that we can indeed apply Proposition B.21 due to Lemma 4.5. Applying
Proposition B.20, we can further rewrite the integrator of the last term in the
upper chain of equations as follows:

∫ s

0
Jφ(r , X̃)J−1 Jφ(r , X̃)J−1d ˜̄Wr +

∫ s

0
Jφ(r , X̃)J−1 Jψ(r , X̃)J−1d ˜̄W 1

r

=
∫ s

0
Jφ(r , X̃)J−1d

( ∫ r

0
Jφ(α, X̃)J−1d ˜̄Wα

)

+
∫ s

0
Jφ(r , X̃)J−1d

( ∫ r

0
Jψ(α, X̃)J−1d ˜̄W 1

α

)

=
∫ s

0
Jφ(r , X̃)J−1dV̄ 1

r .

Finally, let us again apply Proposition B.21 (i) and the two chains of equations
above to obtain the following:

∫ t

0
σ(s, X̃)dW̃s =

∫ t

0
σ(s, X̃)J−1d

( ∫ s

0
Jφ(r , X̃)J−1dV̄ 1

r

)

=
∫ t

0
σ(s, X̃)φ(s, X̃)J−1dV̄ 1

s =
∫ t

0
σ(s, X̃)dV 1

s ,

which holds P̃-a.s. for each t ≥ 0 with zero set independent of t ≥ 0.
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2. X̃ and V̄ 2 are independent on �̃ with respect to P̃ :
We first show that (X̃ , V̄ 1) remains a weak solution when replacing the filtration
(F̃t )t≥0 by (G+

t )t≥0, which is the right-continuous filtration associated to Gt :=
F̃t ∨ σ(V̄ 2

s |s ≥ 0), t ≥ 0. By Lemma A.1 we only need to show that V̄ 1 is a
(Gt )-Q̄-Wiener process. Obviously

Gt = F̃t ∨ σ(V̄ 2
s |s > t) = F̃t ∨ σ(V̄ 2

s − V̄ 2
t |s ≥ t).

Since (V̄ 1, V̄ 2) is an (F̃t )t≥0-Q̄⊕-Wiener process on (�̃, F̃ , (F̃t )t≥0, P̃),
Lemma A.2 implies the independence of F̃t and σ(V̄ 1

s − V̄ 1
t |s ≥ t) ∨ σ(V̄ 2

s −
V̄ 2
t |s ≥ t) for t ≥ 0. Therefore for At ∈ F̃t , D ∈ σ(V̄ 2

s − V̄ 2
t |s ≥ t), B ∈

σ(V̄ 1
s − V̄ 1

t |s ≥ t) we have

P̃(B ∩ D ∩ At ) = P̃(B ∩ D) · P̃(At ) = P̃(B) · P̃(D) · P̃(At ) = P̃(B) · P̃(D ∩ At ).

Since sets of the form At ∩ D for At and D as above form a ∩-stable generator of
Gt , we obtain the independence of σ(V̄ 1

s − V̄ 1
t |s ≥ t) and Gt , which yields that

V̄ 1 is a (Gt )-Q̄-Wiener process on �̃.
To obtain the desired independence of X̃ and V̄ 2, we now apply Lemma 4.4
to the weak solution (X̃ , V̄ 1) on (�̃, F̃ , (G+

t )t≥0, P̃) and obtain that for P̃-a.a.
ω̃ ∈ �̃ the pair (�1, �̂2) is a weak solution on (�̄, F̄ ω̃, (Ḡ+ω̃

t )t≥0, Pω̃) with Pω̃ ◦
�1(0)−1 = δx = P̃ ◦ X̃−1

0 . Here (Pω̃)ω̃∈�̃ is the regular conditional distribution
of (X̃ , V̄ 1) : � → B × W0 with respect to G+

0 . All other notations are as in
Lemma 4.4. By assumption, uniqueness in law given δx holds for the stochastic
equation. Hence the measures Pω̃ ◦ �−1

1 on B(B) are the same for P̃-a.a. ω̃ ∈ �̃.

Therefore we have for all D ∈ G+
0 and A ∈ B(B):

P̃(D ∩ {X̃ ∈ A}) =
∫

D
1{(X̃ ,V̄ 1) ∈�−1

1 (A)}dP̃(ω̃)

=
∫

D
Pω̃(�−1

1 (A))dP̃(ω̃) = Pω̃(�−1
1 (A)) · P̃(D)

=
∫

�̃

Pω̃(�−1
1 (A))dP̃(ω̃) · P̃(D) = P̃

(
(X̃ , V̄ 1)−1(�−1

1 (A))
)·

P̃(D) = P̃(X̃ ∈ A) · P̃(D).

The third equality holds because the map ω̃ �→ Pω̃(�−1
1 (A)) is P̃-a.s. constant for

every A ∈ B(B). But this shows that X̃ and G+
0 are P̃-independent. By definition

of the filtration (G+
t )t≥0, then also X̃ and V̄ 2 are P̃-independent.

For the final step of the proof define χ : R+ × B → Lin(H ,U ) with domain
D(χ(t, y)) := Im σ(t, y) for every (t, y) ∈ [0, T ]×B throughχ(t, y) := σ(t, y)−1

ker⊥ .

Here σ(t, y)−1
ker⊥ denotes the inverse of σ(t, y) from Im σ(t, y) to ker σ(t, y)⊥. We

note χ(t, y) ◦ σ(t, y) = φ(t, y) for all (t, y) ∈ R+ × B. Using Proposition B.21 (ii)
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for the second equality below, we obtain

∫ t

0
Jφ(s, X̃)dW̃s =

∫ t

0
Jχ(s, X̃)σ (s, X̃)dW̃s =

∫ t

0
Jχ(s, X̃)dNs, t ≥ 0

(34)

P̃-a.s., where Nt := X̃t − X̃0 − ∫ t
0 b(s, X̃)ds. We continue with

¯̃Wt =
∫ t

0
J idU J−1d ¯̃Ws =

∫ t

0
J (φ(s, X̃) + ψ(s, X̃))J−1d ¯̃Ws

=
∫ t

0
Jχ(s, X̃)dNs +

∫ t

0
Jψ(s, X̃)J−1 Jφ(s, X̃)dW̃ 2

s

+
∫ t

0
Jψ(s, X̃)J−1 Jψ(s, X̃)dW̃s

=
∫ t

0
Jχ(s, X̃)dNs +

∫ t

0
Jψ(s, X̃)J−1dV̄ 2

s , t ≥ 0 P̃-a.s. (35)

For the third equality, (34) and the identities (29) and (26) are applied. The last one
holds due to the linearity in the integrator and Proposition B.20. As the first summand
of (35) is a measurable functional of X̃ and V̄ 2 is independent of X̃ , we conclude that

P̃ ◦ (X̃ ,
¯̃W ) is uniquely determined by P̃ ◦ X̃ . We elaborate this step in more detail at

the end of “Appendix A”. Since X̃ = X ◦ π1 and
˜̄W = W̄ ◦ π1 we obtain

P(X ∈ A, W̄ ∈ B) = P̃(X̃ ∈ A, ˜̄W ∈ B) for all A ∈ B(B), B ∈ B(W0),

where π̃1 : �̃ → �, π̃1((ω, ω′)) := ω for (ω, ω′) ∈ �̃. Therefore also P ◦ (X , W̄ )−1

is uniquely determined byP◦X−1, because clearly P̃◦ X̃−1 = P◦X−1. Hencewe have
proved joint uniqueness in law given δx . The “in particular”-assertion of the statement
is now a trivial consequence of what we just proved.
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A Auxiliary lemmas and proofs

Again, let H be a separable, (infinite-dimensional) real Hilbert space.

Lemma A.1 Let M be a continuous H-valued stochastic process on a probability space
(�,F , P), which is adapted to a not necessarily right-continuous filtration (Ft )t≥0.
If Mt − Ms is independent of Fs for all 0 ≤ s < t , then Mt − Ms is also independent
of F+

s for all 0 ≤ s < t , where (F+
t )t≥0 denotes the right-continuous filtration

associated to (Ft )t≥0.

Proof It suffices to prove the following claim: For 0 ≤ s < t , X := Mt −Ms ,O ⊆ H
open and As ∈ F+

s we have E[1X∈O · 1As ] = E[1X∈O] · E[1As ]. For such O ⊆ H
there exist continuous functions ( fn)n∈N such that fn(H) ⊆ [0, 1] for every n ∈ N

and fn ↗ 1O pointwise. Hence, by Lebesgue’s dominated convergence theorem it
suffices to verify

E[ f (X) · 1As ] = E[ f (X)] · E[1As ] (36)

for every continuous f : H → [0, 1]. By assumption, f ◦(Mt −Ms+ 1
n
) is independent

of Fs+ 1
n
for any n ∈ N. Hence we get

E[ f ◦ (Mt − Ms+ 1
n
) · 1As ] = E[ f ◦ (Mt − Ms+ 1

n
)] · E[1As ] (37)

and the continuity of M implies f ◦ (Mt −Ms+ 1
n
) →
n→∞ f ◦ X P-a.s. Hence, and since

every f ◦ (Mt − Ms+ 1
n
) is bounded by 1 allows to apply Lebesgue on both sides of

(37). Hence taking limits on both sides in this equation, we obtain (36), which proves
the assertion.

Lemma A.2 Let Q ∈ L+
1 (H) and Q′ ∈ L+

1 (H ⊕ H). Let W 1 and W 2 be two H-
valued (Ft )-Q-Wiener processes on a stochastic basis (�,F , (Ft )t≥0, P) such that
(W 1,W 2) is an H ⊕ H-valued (Ft )-Q′-Wiener process on (�,F , (Ft )t≥0, P). Then
Fs is independent of σ(W 1

t − W 1
s |t ≥ s) ∨ σ(W 2

t − W 2
s |t ≥ s) for all s ≥ 0.

Proof Since by assumption (W 1,W 2) is a Wiener process with respect to (Ft )t≥0,
the independence of Fs and σ

(
(W 1

t ,W 2
t ) − (W 1

s ,W 2
s )|t ≥ s

)
for all s ≥ 0 follows.

Hence it suffices to show

σ
(
(W 1

t ,W 2
t ) − (W 1

s ,W 2
s )|t ≥ s

) ⊇ σ(W 1
t − W 1

s |t ≥ s) ∨ σ(W 2
t − W 2

s |t ≥ s).

Indeed, for t ≥ s: (W 1
t − W 1

s )−1(A) = (
(W 1

t ,W 2
t ) − (W 1

s ,W 2
s )

)−1
(A × H) ∈

σ
(
(W 1

t ,W 2
t ) − (W 1

s ,W 2
s )|t ≥ s

)
for all A ∈ B(H). Proceeding in the same way for

W 2, we obtain the assertion.

Proof of Lemma 4.6: Fix φ1 and φ2 as above and let τ : � → R+ be an (Ft )-stopping
time such that P(τ ≤ T ) = 1 for some T > 0. By [9, Lemma 2.3.9], we obtain

E

[ ∫ τ

0
φ1(s)dW

1(s) ·
∫ τ

0
φ2(s)dW

2(s)

]
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= E

[ ∫ T

0
1]0,τ ]φ1(s)dW

1(s) ·
∫ T

0
1]0,τ ]φ2(s)dW

2(s)

]

and clearly 1]0,τ ]φk ∈ �2
T (Wk,U , R,PT ) for k ∈ {1, 2}. By the construction of the

stochastic integral (see Proposition B.16), it is sufficient to prove

E

[ ∫ T

0
�1(s)dW

1(s) ·
∫ T

0
�2(s)dW

2(s)

]
= 0 (38)

for all �k ∈ ET (U , R). To this end let 0 = t0 < · · · < tN = T be a finite partition
of [0, T ] and set �k := ∑N−1

l=0 Bk
l 1]tl ,tl+1] for k ∈ {1, 2}. Recall that each Bk

l is
a map from � to L(U , R), which takes finitely many values {βk

l1
, . . . , βk

lKk
} and is

Ftl -measurable. We may assume that �1 and �2 have the same partition. Then

E

[ ∫ T

0
�1(s)dW

1(s) ·
∫ T

0
�2(s)dW

2(s)

]

=
N−1∑

l,m=0

E

[
B1
l (W 1

tl+1∧T − W 1
tl∧T ) · B2

m(W 2
tm+1∧T − W 2

tm∧T )

]

=
N−1∑

l,m=0

K1∑

i=1

K2∑

j=1

E

[
E

[
1B1

l =β1
li
1B2

m=β2
m j

β1
li (W

1
tl+1∧T − W 1

tl∧T )

· β2
m j

(W 2
tm+1∧T − W 2

tm∧T )
∣∣Ftl∨tm

]]

=
N−1∑

l,m=0,l �=m

K1∑

i=1

K2∑

j=1

E

[
E[β1

li (W
1
tl+1∧T − W 1

tl∧T )]
︸ ︷︷ ︸
=β1

li
(E[W 1

tl+1∧T −W 1
tl∧T ])=0

E
[
1B1

l =β1
li
1B2

m=β2
m j

· β2
m j

(W 2
tm+1∧T − W 2

tm∧T )
∣∣Ftl∨tm

]]

+
N−1∑

l=0

K1∑

i=1

K2∑

j=1

E

[
E

[
1B1

l =β1
li
1B2

l =β2
l j

β1
li (W

1
tl+1∧T − W 1

tl∧T )] · β2
l j (W

2
tl+1∧T − W 2

tl∧T )
∣∣Ftl

]
]

=
N−1∑

l=0

K1∑

i=1

K2∑

j=1

E

[
E[β1

li (W
1
tl+1∧T − W 1

tl∧T ) · β2
l j (W

2
tl+1∧T − W 2

tl∧T )]
︸ ︷︷ ︸

=E[β1
li

(W 1
tl+1∧T −W 1

tl∧T )]·E[β2
l j

(W 2
tl+1∧T −W 2

tl∧T )]=0

· E
[
1B1

l =β1
li
1B2

l =β2
l j

∣
∣Ftl

]] = 0.

For the third equality we used that W 1 and W 2 are (Ft )-Wiener processes and the
Ftl∨tm -measurability of 1B1

l =β1
li
and 1B2

m=β2
m j

and assumed (w.l.o.g.; else reverse the

roles) tl > tm . In the fourth equality we once more used {B1
l = β1

li
}, {B2

l = β2
l j
} ∈ Ftl

and the independence of β1
li
(W 1

tl+1∧T −W 1
tl∧T ) ·β2

l j
(W 2

tl+1∧T −W 2
tl∧T ) fromFtl , which

follows from the independence of W 1 and W 2. This gives (38).
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Finally, we elaborate the conclusion of the proof of Theorem 3.2 in detail. Consider
the situation of the final step of the proof.

Conclusion of proof of Theorem 3.2: Consider a bounded B(B) ⊗ B(W0)-
measurable function F : B × W0 → R, which is continuous with respect to the
topology of pointwise convergence in W0. We show that for every such F the integral
∫
�̃
F(X̃ ,

¯̃W )dP̃(ω̃) only depends on the distribution of X̃ under P̃. Indeed, we can
calculate as follows:

∫

�̃

F(X̃ ,
¯̃W )dP̃(ω̃) =

∫

�̃

F
(
X̃ ,G(X̃) +

∫ ·

0
Jψ(s, X̃)J−1dV̄ 2

s

)
dP̃(ω̃)

=
∫

�̃

F

(
X̃ ,G(X̃) +

∞∑

l=1

∞∑

k=1

∫ ·

0
〈Jψ(s, X̃)J−1(Jek), ūl 〉Ūdβk(s) · ūl

)
dP̃(ω̃)

= lim
n→∞ lim

m→∞

∫

�̃

F

(
X̃ ,G(X̃) +

n∑

l=1

m∑

k=1

[
lim
j→∞

N j−1∑

i=0

〈Jψ(ti , X̃)ek , ūl 〉Ū
(
βk(ti+1 ∧ ·)

− βk(ti ∧ ·))
]
ūl

)
dP̃(ω̃)

= lim
n→∞ lim

m→∞ lim
j→∞

∫

�̃

F

(
X̃ ,G(X̃) +

n∑

l=1

m∑

k=1

N j−1∑

i=0

〈Jψ(ti , X̃)ek , ūl 〉Ū
(
βk(ti+1 ∧ ·) − βk(ti ∧ ·))ūl

)
dP̃(ω̃)

︸ ︷︷ ︸
=:F(n,m, j)

.

All limits are understood in the sense of pointwise convergence in t ≥ 0 for fixed ω̃ ∈ �̃

taken out of a set of full P̃-measure. For an orthonormal basis (ūl)l∈N of Ū , the second
equality follows directly from Proposition 2.4.5. in [9] and V̄ 2 = ∑∞

k=1 Jekβk P̃-a.s.
(where (ek)k∈N denotes the fixed orthonormal basis of U and (βk)k∈N is a family of
independent, real-valued (F̃t )-Brownian motions on �̃). The third equality holds due
to [6, Remark 2.8.7] for suitable (N j ) j∈N and an increasing sequence (ti )i∈N ⊆ R+.
All limits can be interchanged with F due to the continuity of F in the aforementioned
sense and can be taken out of the integral, since F is bounded. For (n,m, j) ∈ N

3

we continue, using Proposition 2.2.2. of [9] for the second equality (note βk(t) =
〈V̄ 2(t), Jek〉Ū and recall the independence of X̃ and V̄ 2):

F(n,m, j) =
∫

�̃

E

[
F

(
X̃ ,G(X̃) +

n∑

l=1

m∑

k=1

N j−1∑

i=0

〈Jψ(ti , X̃)ek , ūl 〉Ū
(
βk(ti+1 ∧ ·)

− βk(ti ∧ ·))ūl
)∣∣

∣∣σ(X̃)

]
dP̃(ω̃)

=
∫

�̃

E

[
F

(
X̃(ω̃),G(X̃(ω̃)) +

n∑

l=1

m∑

k=1

N j−1∑

i=0

〈Jψ(ti , X̃(ω̃))ek , ūl 〉Ū
(
βk(ti+1 ∧ ·)

− βk(ti ∧ ·))ūl
)]

dP̃(ω̃)
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=
∫

B

E

[
F

(
y,G(y) +

n∑

l=1

m∑

k=1

N j−1∑

i=0

〈Jψ(ti , y)ek , ūl 〉Ū
(
βk(ti+1 ∧ ·) − βk(ti ∧ ·))ūl

)]

dP̃ ◦ X̃−1(y).

Finally, we rewrite the last term on the right-hand side as

∫

B

∫

W0

F

(
y,G(y) +

n∑

l=1

m∑

k=1

N j−1∑

i=0

〈Jψ(ti , y)ek , ūl 〉Ū
(〈wti+1∧·, Jek〉Ū − 〈wti∧·, Jek〉Ū

)
ūl

)

dP̃V̄ 2 (w)dP̃X̃ (y).

Since V̄ 2 is a Q̄-Wiener process, each F(n,m, j) only depends on the distribution of

X̃ under P̃, which yields this also for
∫
�̃
F(y, w)dP̃ ◦ (X̃ ,

¯̃W )−1(y, w). Since the set
of all integrals over such F determines a measure on B(B) ⊗ B(W0) uniquely, the

joint distribution of X̃ and ¯̃W under P̃ only depends on P̃ ◦ X̃−1.

B The stochastic integral for Hilbert space-valuedmartingales

In this section we briefly recall the construction of the stochastic integral with respect
to continuous, square-integrable Hilbert space-valued martingales as integrators and
state its most important properties. Most parts of this section are standard and can be
found in Sect. 3.4 of [3] and Sect. 14 in [10].

Let (�,F , (Ft )t∈[0,T ], P) be a stochastic basis and U a separable Hilbert space
with an orthonormal basis {en}n∈N. We introduce the Banach space

M2
c(T ;U ) := {M : � → C([0, T ];U )

∣
∣M continuous (Ft )-martingale, ||M ||M2

T
< ∞},

where the norm || · ||M2
T
on M2

c(T ;U ) is defined by ||M ||M2
T

:= (E[||MT ||2U ]) 1
2 =

sup
t∈[0,T ]

(E[||Mt ||2U ]) 1
2 . By Doob’s maximal inequality, || · ||M2

T
is equivalent to the

L2(�,F , P;C([0, T ];U ))-norm on M2
c(T ;U ).

The quadratic variation of a Hilbert space-valued, square-integrable continuous
martingale

It is well-known that for M ∈ M2
c(T ;U ) (with M0 = 0) there exists a unique real-

valued, increasing, (Ft )-adapted, continuous process (〈M〉t )t∈[0,T ] (with 〈M〉0 ≡
0) such that ||Mt ||2 − 〈M〉t is a continuous (Ft )-martingale. Let αM := P(dω) ⊗
〈M〉(ω, dt) as a measure on B([0, T ]) ⊗ F . Now we define the quadratic variation
of M .
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Definition B.1 The L1(U )-valued process (� M �t )t∈[0,T ], defined through

� M �t =
∞∑

i, j=1

〈〈Mi , Mj 〉〉t ei ⊗ e j

in L1(U ) is the quadratic variation (process) of M . Here Mi denotes the real-valued
martingale 〈M, ei 〉U , t ∈ [0, T ] and we set ei ⊗ e j (u) := ei 〈e j , u〉U , where 〈〈·, ·〉〉
denotes quadratic covariation for real-valued martingales.

Proposition B.2 There exists a (up to an αM-zero set) unique predictable process
QM : [0, T ] × � → L+

1 (U ) such that

� M �t =
∫

[0,t]
QM (s)d〈M〉s .

The integral above is a pathwise Bochner-integral, taking values in the separable
Banach space L1(U ).

Definition B.3 An L(U )-valued process (Bt )t∈[0,T ] with Bt non-negative for every t is
called increasing, if for every 0 ≤ s ≤ t ≤ T and ω ∈ � the operator Bt (ω) − Bs(ω)

is non-negative.

Proposition B.4 An L1(U )-valued process V is the quadratic variation of M ∈
M2

c(T ;U ) with M0 = 0 if and only if it is increasing, continuous, (Ft )-adapted
with V0 = 0 and such that the process

〈Mt , a〉U 〈Mt , b〉U − 〈Vta, b〉U , t ∈ [0, T ]

is an R-valued (Ft )-martingale for all a, b ∈ U .

Next we define the notion of the quadratic cross variation for two Hilbert space-
valued martingales and draw a connection to the quadratic variation reminiscent to the
real-valued case.

Definition B.5 Let M, N ∈ M2
c(T ;U ). The quadratic cross variation of M and N is

defined through � M, N �t := ∑∞
i, j=1〈〈Mi , N j 〉〉t ei ⊗ e j , t ∈ [0, T ].

Lemma B.6 For M, N ∈ M2
c(T ;U ) the following formula holds P-a.s. for every

t ∈ [0, T ]:

� M + N �t =� M �t + � N �t + � M, N �t + � N , M �t .

Proof The claim follows immediately by Definitions B.1, B.5 and the bilinearity of
the cross variation.
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Corollary B.7 (i) Let M, N ∈ M2
c(T ;U ) be such that the real-valued continuous

martingales 〈M, ei 〉U and 〈N , e j 〉U have covariation zero for every i, j ∈ N.

Then we have for every t ∈ [0, T ]

� M + N �t =� M �t + � N �t P-a.s. (39)

(ii) In particular (39) holds, if M and N are independent.

Finally, we state the Hilbert space-version of Lévy’s characterization of Brownian
motion, which is used in the proof of Theorem 3.2. The statement with its proof is
taken from Chapter 4 in [3].

Proposition B.8 (Generalized Lévy-Characterization) Let M ∈ M2
c(T ;U ) be such

that M0 = 0 P-a.s and let Q ∈ L+
1 (U ). Then the following are equivalent.

(i) (Mt )t∈[0,T ] is an (Ft )-Q-Wiener process on (�,F , (Ft )t∈[0,T ], P) (in particular
Mt − Ms is independent of Fs for all 0 ≤ s < t ≤ T ).

(ii) � M �t = t Q P-a.s. for t ∈ [0, T ].

The construction of the stochastic integral

We continue with the construction of the stochastic integral.

Remark B.9 (c.f. [9, Prop. 2.3.4.]) If Q : [0, T ] × � → L+
1 (U ), then there exists a

unique, operator-valued process Q
1
2 : [0, T ] × � → L2(U ) such that Q

1
2 (t, ω) ◦

Q
1
2 (t, ω) = Q(t, ω) for all (t, ω) ∈ [0, T ] × �.

The following construction and results are standard.One startswith the construction
of stochastic integral with respect to elementary integrands and then extends this
definition through a suitable isometry. In the sequel H denotes another separable,
(infinite-dimensional) Hilbert space.

Definition B.10 A process A : [0, T ] × � → L(U , H) is elementary, if it is of the
form

A(t, ω) =
N−1∑

k=0

φk(ω)1]tk ,tk+1](t),

where φk : � → L(U , H) has finite image in L(U , H) and is Ftk -measurable with
respect to the strong Borel σ -algebra for every k ∈ {0, . . . , N − 1} and 0 = t0 < t1 <

· · · < tN = T is a finite partition of [0, T ]. The set of all such processes is denoted
by ET (U , H).

Definition B.11 For A = ∑N−1
k=0 φk1]tk ,tk+1] ∈ ET (U , H) and M ∈ M2

c(T ;U ) the
stochastic integral of A with respect to M is defined through

∫ t

0
A(s)dMs :=

N−1∑

k=0

φk
(
Mtk+1∧t − Mtk∧t

)
, t ∈ [0, T ].
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Proposition B.12 Let A ∈ ET (U , H). Then the stochastic integral process( ∫ t
0 A(s)dMs

)
t∈[0,T ] is an element ofM2

c(T ; H).

Now we want to extend this definition through a suitable isometry. We need the
following space of operator-valued processes. In the sequel we abbreviate the Hilbert-
Schmidt norm by || · ||2 when no confusion is possible.

Definition B.13 Let M ∈ M2
c(T ;U ) and QM as in Proposition B.2. The vector space

�2
T (M,U , H ,PT ) is defined by containing processes X : [0, T ]×� → Lin(U , H),

which fulfill

(i) D(X(t, ω)) ⊇ Q
1
2
M (t, ω)(U ) for all (t, ω) ∈ [0, T ] × �.

(ii) For every u ∈ U the process X ◦ Q
1
2
M (u) : [0, T ] × � → H is (Ft )-predictable.

(iii)
∫
[0,T ]×�

||X ◦ Q
1
2
M ||22dαM < +∞.

Proposition B.14 The bilinear form (X ,Y ) �→ ∫
[0,T ]×�

tr
[
(X ◦Q

1
2
M )(Y ◦Q

1
2
M )∗

]
dαM

is a scalar product on �2
T (M,U , H ,PT ). Equipped with this scalar product,

�2
T (M,U , H ,PT ) is a Hilbert space. In particular, denoting the corresponding norm

by || · ||�2
T
, we have ||X ||�2

T
= ∫

[0,T ]×�
||X ◦Q

1
2
M ||22dαM for X ∈ �2

T (M,U , H ,PT ).

For every element of �2
T (M,U , H ,PT ) the stochastic integral with respect to M

can be defined. This is contained in the following two statements.

Proposition B.15 �2
T (M,U , H ,PT ) is the closure of ET (U , H) with respect to the

norm || · ||�2
T
.

Proposition B.16 Let M ∈ M2
c(T ;U ). There exists a unique linear isometric map

from (�2
T (M,U , H ,PT ), || · ||�2

T
) to (M2

c(T ; H), || · ||M2
T
), which extends the linear

map �M : ET (U , H) → M2
c(T ; H), defined through

�M (A) :=
( N−1∑

k=0

φk
(
Mtk+1∧t − Mtk∧t

))

t∈[0,T ]

for A := ∑N−1
k=0 φk1]tk ,tk+1] ∈ ET (U , H). For A ∈ �2

T (M,U , H ,P) the continu-
ous, (Ft )-adapted, square-integrable H-valued process �M (A) is called stochastic
integral (of A with respect to M) and is denoted by (

∫ t
0 A(s)dMs)t∈[0,T ] or simply by

A.M .

The final step of the construction consists of a localization in order to enlarge the
class of admissible integrands. Let M be as before and consider an operator-valued
process A, which fulfills (i) and (ii) of Definition B.13, but instead of (iii) we now
only require A to fulfill

P

( ∫ T

0
||X ◦ Q

1
2
M (s)||22d〈M〉(s)

)
< +∞.
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We denote the set of all such A by �T (M,U , H ,PT ). Clearly �2
T (M,U , H ,PT ) ⊆

�T (M,U , H ,PT ). Reminiscent to Step 4 of Sect. 2.3.2 in [9], one defines

∫ t

0
A(s)dMs := lim

n→+∞

∫ t

0
1]0,τn ]A(s)dMs P-a.s. (40)

for any sequence of (Ft )-stopping times (τn)n∈N, which fulfills

(i) (τn)n∈N is non-decreasing and converges to T P-a.s.,
(ii) 1]0,τn ]A ∈ �2

T (M,U , H ,PT ) for every n ∈ N.

For example, onemaychoose τn(ω) := inf
{
t ∈ [0, T ]∣∣ ∫ t

0 ||A◦Q
1
2
M (s, ω)||22d〈M〉(s) >

n
} ∧ T and one verifies that (40) does not depend on the particular sequence (τn)n∈N.

Clearly for A ∈ �T (M,U , H ,PT ) the stochastic integral A.M is a continuous, local
H -valued martingale.

Finally, we introduce the definition of stochastic integrals with respect to continu-
ous local martingales.

Definition B.17 Let (Mt )t∈[0,T ] be a continuous, (Ft )-adaptedU -valued local martin-
gale such that for every element τn of its localizing sequence (τn)n∈N, the martingale
(Mt∧τn )t∈[0,T ] belongs toM2

c(T ;U ). Define

�2
T ,loc(M,U , H ,PT ) :=

⋂

n∈N
�2

T (M·∧τn ,U , H ,PT )

and for A ∈ �2
T ,loc(M,U , H ,PT ) set

∫ t
0 A(s)dMs := lim

n→+∞
∫ t
0 A(s)dMs∧τn , t ∈

[0, T ]. This definition does not depend on the sequence (τn)n∈N.

Properties of the stochastic integral

The following proposition and its proof can be found in Sect. 4.3 of [3].

Proposition B.18 Let Q ∈ L+
1 (U ), W ∈ M2

c(T ;U ) be a (Ft )-Q-Wiener process and
A ∈ �2

T (W ,U , H ,P). Then

� A.W �t=
∫ t

0
(A(s) ◦ Q

1
2 )(A(s) ◦ Q

1
2 )∗ds, t ∈ [0, T ] P-a.s.

It is well known that H1.(H2.M) = (H1 · H2).M holds in the case of finite-
dimensional stochastic integration. We use the Hilbert space-analogue of this result,
stated in Proposition B.20 below, multiple times within our main proofs. This proposi-
tion and Lemma B.19 are taken from [1] (c.f. Lemma 3.6. and Theorem 3.7. therein).
We also need two slight generalizations of this result, which we both state and prove
in Proposition B.21 at the end of this appendix. Let G denote another separable,
infinite-dimensional Hilbert space.
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Lemma B.19 Let M ∈ M2
c(T ;U ), A ∈ �2

T (M,U , H ,PT ) and B : [0, T ] × � →
Lin(H ,G). The following are equivalent:

(i) B ◦ A ∈ �2
T (M,U ,G,PT ) (ii) B ∈ �2

T (A.M, H ,G,PT ).

In this case B.(A.M) and B ◦ A.M are equal in norm inM2
c(T ;G).

From here we can readily obtain the following important statement:

Proposition B.20 Let M, A and B be as in the previous lemma such that the
equivalent properties therein are fulfilled. Then

( ∫ t
0 B ◦ (A)(s)dMs

)
t∈[0,T ] and

( ∫ t
0 B(s)d(

∫ s
0 A(r)dMr )

)
t∈[0,T ] are equal inM2

c(T ;G). In particular we have

∫ t

0
B ◦ (A)(s)dMs =

∫ t

0
B(s)d

( ∫ s

0
A(r)dMr

)
, t ∈ [0, T ] P-a.s.

Finally, we generalize the above proposition to elements A ∈ �T (M,U , H ,PT )

and B ∈ �T (A.M, H ,G,PT ).

Proposition B.21 Let W be an (Ft )-Q-Wiener process for Q ∈ L+
1 (U ).

(i) Let A ∈ �2
T (W ,U , H ,PT ) and B : [0, T ] × � → Lin(H,G) such that B ◦ A ∈

�T (W ,U ,G,PT ). Then B ∈ �T (A.W , H ,G,PT ) and

∫ t

0
B(s)d

( ∫ s

0
A(r)dWr

)
=

∫ t

0
B ◦ A(s)dWs, t ∈ [0, T ] P-a.s.

(ii) Let A ∈ �T (W ,U , H ,PT ) and B : [0, T ] × � → Lin(H ,G) such that B ◦ A ∈
�2

T (W ,U ,G,PT ). Then B ∈ �2
T ,loc(A.W , H ,G,PT ) and

∫ t

0
B(s)d

( ∫ s

0
A(r)dWr

)
=

∫ t

0
B ◦ A(s)dWs, t ∈ [0, T ] P-a.s.

Proof. (i) Since B◦A ∈ �T (W ,U ,G,PT ), there exists a sequence of (Ft )-stopping
times (τn)n∈N with properties (i) and (ii), mentioned in the localization step of the
construction on the previous pages, such that

∫ t

0
B ◦ A(s)dWs = lim

n→+∞

∫ t

0
1]0,τn ]B ◦ A(s)dWs, t ∈ [0, T ] P-a.s.

Using Lemma B.19 and Proposition B.20 we obtain B ∈ �T (A.W , H ,G,PT )

and that (τn)n∈N is also a proper localizing sequence for B. Therefore

∫ t

0
1]0,τn ]B ◦ A(s)dWs =

∫ t

0
1]0,τn ]B(s)d

( ∫ s

0
A(r)dWr

)
, t ∈ [0, T ] P-a.s.
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for every n ∈ N. But since by definition

lim
n→+∞

∫ t

0
1]0,τn ]B(s)d

(∫ s

0
A(r)dWr

)
=

∫ t

0
B(s)d

( ∫ s

0
A(r)dWr

)

for every t ∈ [0, T ] P-a.s., the assertion follows.
(ii) Since A ∈ �T (M,U , H ,PT ), there exists a sequence (σn)n∈N of (Ft )-stopping

times with properties (i) and (ii) as above such that

∫ t

0
A(s)dWs = lim

n→+∞

∫ t

0
1]0,σn ]A(s)dWs, t ∈ [0, T ] P-a.s.

and1]0,σn ]A ∈ �2
T (W ,U , H ,PT ) for alln ∈ N. Since B◦A∈�2

T (W ,U ,G,PT ),
we also have

B ◦ 1]0,σn ]A = 1]0,σn ]B ◦ A ∈ �2
T (W ,U ,G,PT ).

Consequentlywe conclude that all terms in the following equation arewell-defined
and fulfill, for every n ∈ N,

∫ t

0
B(s)d

( ∫ s

0
1]0,σn ]A(r)dWr

) =
∫ t

0
1]0,σn ]B ◦ A(s)dWs, t ∈ [0, T ] P-a.s.(41)

For n → +∞, the right-hand side of (41) clearly converges P-a.s. to
∫ t
0 B ◦

A(s)dWs with P-zero set independent of t ∈ [0, T ], while the limit of the left-
hand side is by definition equal to

∫ t
0 B(s)d

( ∫ s
0 A(r)dWr

)
, again with zero set

independent of t ∈ [0, T ]. This concludes the proof.
Finally, we mention that the entire construction and all properties presented in this

section immediately carry over to the case T = +∞.Wewould like to stress, however,
that these extended stochastic integrals on�×R+ are in general only continuous local
martingales.
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