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Abstract
We study the higher Hölder regularity of local weak solutions to a class of nonlinear nonlo-
cal elliptic equations with kernels that satisfy a mild continuity assumption. An interesting
feature of our main result is that the obtained regularity is better than one might expect when
considering corresponding results for local elliptic equations in divergence form with con-
tinuous coefficients. Therefore, in some sense our result can be considered to be of purely
nonlocal type, following the trend of various such purely nonlocal phenomena observed in
recent years. Our approach can be summarized as follows. First, we use certain test func-
tions that involve discrete fractional derivatives in order to obtain higher Hölder regularity
for homogeneous equations driven by a locally translation invariant kernel, while the global
behaviour of the kernel is allowed to be more general. This enables us to deduce the desired
regularity in the general case by an approximation argument.

Mathematics Subject Classification 35R09 · 35B65 · 35D30 · 47G20

1 Introduction

1.1 Basic setting andmain result

In this work, we study the higher Hölder regularity of solutions to nonlinear nonlocal equa-
tions of the form

L�
Au = f in � ⊂ R

n (1)

driven by a kernel that potentially exhibits a very irregular behaviour. More precisely, by
modifying an approach introduced in [2], we prove that so-called local weak solutions to such
equations are locally Hölder continuous with some explicitly determined Hölder exponent.
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Here s ∈ (0, 1), � ⊂ R
n is a domain (= open set), f : Rn → R is a given function and

L�
Au(x) := 2 lim

ε→0

∫
Rn\Bε(x)

A(x, y)

|x − y|n+2s �(u(x) − u(y))dy, x ∈ �,

is a nonlocal operator. Throughout the paper, for simplicity we assume that n > 2s. Fur-
thermore, the function A : Rn × R

n → R is measurable and we assume that there exists a
constant λ ≥ 1 such that

λ−1 ≤ A(x, y) ≤ λ for almost all x, y ∈ R
n . (2)

Moreover, we require A to be symmetric, i.e.

A(x, y) = A(y, x) for almost all x, y ∈ R
n . (3)

We call such a function A a kernel coefficient. We define L0(λ) as the class of all such
measurable kernel coefficients A that satisfy the conditions (2) and (3). Moreover, in our
main results � : R → R is assumed to be a continuous function satisfying �(0) = 0 and
the following Lipschitz continuity and monotonicity assumptions, namely

|�(t) − �(t ′)| ≤ λ|t − t ′| for all t, t ′ ∈ R (4)

and (
�(t) − �(t ′)

)
(t − t ′) ≥ λ−1(t − t ′)2 for all t, t ′ ∈ R, (5)

where for simplicity we use the same constant λ ≥ 1 as in (2). In particular, if �(t) = t ,
then the operator L�

A reduces to a linear nonlocal operator which is widely considered in
the literature. The above conditions are for example satisfied by any C1 function � with
�(0) = 0 such that the image of the first derivative �′ of � is contained in [λ−1, λ].

Define the fractional Sobolev space

Ws,2(�) :=
{
u ∈ L2(�)

∣∣∣
∫

�

∫
�

|u(x) − u(y)|2
|x − y|n+2s dy < ∞

}

and denote by Ws,2
loc (�) the set of all functions u ∈ L2

loc(�) that belong to Ws,2(�′) for any
relatively compact open subset �′ of �. In addition, we define the tail space

L1
2s(R

n) :=
{
u ∈ L1

loc(R
n)

∣∣∣
∫
Rn

|u(y)|
1 + |y|n+2s dy < ∞

}
.

We remark that for any function u ∈ L1
2s(R

n), the quantity
∫
Rn\BR(x0)

|u(y)|
|x0 − y|n+2s dy

is finite for all R > 0, x0 ∈ R
n . For all measurable functions u, ϕ : Rn → R, we define

E�
A (u, ϕ) :=

∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s �(u(x) − u(y))(ϕ(x) − ϕ(y))dydx,

provided that the above expression is well-defined and finite. This is for example the case
if u ∈ Ws,2

loc (�) ∩ L1
2s(R

n) and ϕ ∈ Ws,2
c (�), where by Ws,2

c (�) we denote the set of all
functions that belong to Ws,2(�) and are compactly supported in �.

In the literature, various types of weak solutions with varying generality are considered.
In this paper, we adopt the following very general notion of local weak solutions which is
for example used in [1] and [2].
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Definition Let f ∈ L
2n

n+2s
loc (�). We say that u ∈ Ws,2

loc (�) ∩ L1
2s(R

n) is a local weak solution
of the equation L�

Au = f in �, if

E�
A (u, ϕ) = ( f , ϕ)L2(�) ∀ϕ ∈ Ws,2

c (�). (6)

We remark that the right-hand side of (6) is finite by the fractional Sobolev embedding (cf. [9,
Theorem 6.5]). It is noteworthy that the above notion of local weak solutions contains most
other notions of weak solutions considered in the literature, such as the ones considered in
e.g. [8] or [22].

In our first main result, we are going to impose an additional continuity assumption on A.
Namely, we assume that there exists some small ε > 0 such that

lim
h→0

sup
x,y∈K

|x−y|≤ε

|A(x + h, y + h) − A(x, y)| = 0 for any compact set K ⊂ �. (7)

In particular, the condition (7) is satisfied if A is either continuous close to the diagonal in
� × � or if A belongs to the following subclass of L0(λ) which plays an important role in
our proof of the desired regularity.

Definition Let � be a domain and λ ≥ 1. We say that a kernel coefficient A0 ∈ L0(λ)

belongs to the class L1(λ,�), if there exists a measurable function a : Rn → R such that
A0(x, y) = a(x − y) for all x, y ∈ �.

A kernel coefficient that belongs to the class L1(λ,�) can be thought of being translation
invariant, but only inside of �. We also call such a kernel coefficient locally translation
invariant. We note that the condition (7) is also satisfied by some more general choices of
kernel coefficients, for example if

A(x, y) = A′(x, y)A0(x, y),

where A′ ∈ L0(λ
1
2 ) is continuous near the diagonal in � × � and A0 belongs to the class

L1(λ
1
2 ,�), but is not required to satisfy any continuity or smoothness assumption.Moreover,

we stress that the condition given by (7) only restricts the behaviour of A close to the diagonal
in � × �, while away from the diagonal in � × � and outside of � × � a more general
behaviour is possible.

We are now in the position to state our main results.

Theorem 1.1 Let � ⊂ R
n be a domain, s ∈ (0, 1), λ ≥ 1 and f ∈ Lq

loc(�) for some
q > n

2s . Consider a kernel coefficient A ∈ L0(λ) that satisfies the condition (7) for some
ε > 0 and suppose that � satisfies (4) and (5) with respect to λ. Moreover, assume that
u ∈ Ws,2

loc (�) ∩ L1
2s(R

n) is a local weak solution of the equation L�
Au = f in �. Then for

any 0 < α < min
{
2s − n

q , 1
}
, we have u ∈ Cα

loc(�).
Furthermore, for all R > 0, x0 ∈ � such that BR(x0) � � and any σ ∈ (0, 1), we have

[u]Cα(Bσ R(x0)) ≤ C

Rα

(
R− n

2 ||u||L2(BR(x0)) + R2s
∫
Rn\BR(x0)

|u(y)|
|x0 − y|n+2s dy

+ R2s− n
q || f ||Lq (BR(x0))

)
,

(8)

where C = C(n, s, λ, α, q, σ, ε) > 0 and

[u]Cα(Bσ R(x0)) := sup
x,y∈Bσ R (x0)

x �=y

|u(x) − u(y)|
|x − y|α .
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If we focus on obtainingHölder regularity for some fixed exponent 0 < α < min
{
2s− n

q , 1
}
,

then we can slightly weaken the assumption on A as follows. Roughly speaking, in this case
it is enough to require that A is locally close enough to being translation invariant, while
the condition (7) essentially means that A is locally arbitrarily close to being translation
invariant. This slight “room for error” is typical when one uses approximation techniques in
order to obtain regularity results, see for example [5].

Theorem 1.2 Let � ⊂ R
n be a domain, s ∈ (0, 1), λ ≥ 1 and f ∈ Lq

loc(�) for some
q > n

2s . Consider a kernel coefficient A ∈ L0(λ) and suppose that � satisfies (4) and (5)
with respect to λ. Fix some 0 < α < min

{
2s − n

q , 1
}
. Then there exists some small enough

δ = δ(α, n, s, λ, q) > 0, such that if for any z ∈ �, there exists some small enough radius
rz > 0 and some Az ∈ L1(λ, Brz (z)) such that

||A − Az ||L∞(Brz (z)×Brz (z)) ≤ δ,

then for any local weak solution u ∈ Ws,2
loc (�) ∩ L1

2s(R
n) of the equation L�

Au = f in
�, we have u ∈ Cα

loc(�). Moreover, for all R > 0, x0 ∈ � such that BR(x0) � �

and any σ ∈ (0, 1), u satisfies the estimate (8) with respect to α and some constant
C = C(n, s, λ, α, q, σ, {rz}z∈�) > 0.

Remark 1.3 In order to provide some context, let us briefly consider the local elliptic equation
in divergence form of the type

div(B∇u) = 0 in �, (9)

where the matrix of coefficients B = {bi j }ni, j=1 is assumed to be uniformly elliptic and
bounded. The equation (9) can in some sense be thought of as a local analogue of the nonlocal
equation (1) corresponding to the limit case s = 1. A classical regularity result states that
if the coefficients bi j are continuous, then weak solutions u ∈ W 1,2

loc (�) of the equation (9)
are locally Hölder continuous for any exponent α ∈ (0, 1), see for example [13, Corollary
5.18]. Heuristically, one might therefore expect that the optimal regularity in the setting
of nonlocal equations with continuous kernel coefficient should not exceed Cs regularity.
Nevertheless, Theorem 1.1 in particular shows that weak solutions to nonlocal equations of
the type L�

Au = 0 in � are locally Cα for any 0 < α < min
{
2s, 1

}
whenever A ∈ L0(λ) is

continuous, exceedingCs regularity. In particular, in the casewhen s ≥ 1/2,weak solutions to
homogeneous nonlocal equations with continuous kernel coefficients enjoy the same amount
of Hölder regularity as weak solutions to corresponding local equations with continuous
coefficients, despite the fact that the order of such nonlocal equations is lower.

Such at first sight unexpected additional regularity is however not untypical in the context
of nonlocal equations and has been observed in various previous works in the context of
Sobolev regularity. For example, in [18] and [24] it is shown that already in the setting of a
general kernel coefficient A ∈ L0(λ), weak solutions to nonlocal equations of the type (1)
are slightly higher differentiable than initially assumed along the scale of Sobolev spaces,
which is a phenomenon not shared by local elliptic equations of the type (9) with coefficients
that are merely measurable.

Another result in this direction was recently proved in [21], where the authors in particular
show that if A ∈ L0(λ) is Hölder continuous with some arbitrary Hölder exponent and
�(t) = t , then weak solutions of the equation L�

Au = 0 in R
n belong to Wα,p

loc (Rn) for
any α < min

{
2s, 1

}
and any 2 ≤ p < ∞, while for local equations of the type (9)

with corresponding Hölder continuous coefficients no comparable gain in differentiability
is achievable. In particular, by the Sobolev embedding this result implies that such weak
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solutions belong to Cα
loc(R

n) for any 0 < α < min
{
2s, 1

}
, which is consistent with our

main result. Our main result shows that this amount of higher Hölder regularity is also
enjoyed by local weak solutions of possibly nonlinear equations driven by kernel coefficients
of class L0(λ) that satisfy the continuity assumption (7).

Remark 1.4 Besides being interesting for its own sake, one of our main motivations is that
Theorem 1.1 also has some interesting potential applications concerning the Sobolev regu-
larity of solutions to nonlocal equations. A first such application can briefly be summarized
as follows. In [22], in the main result it is assumed that A is globally translation invariant,
i.e. that A belongs to the class L1(λ,Rn). However, this assumption is only used in order to
ensure that the Hölder estimate (8) from Theorem 1.1 is valid, which up to this point was only
known for translation invariant kernels, cf. [22, Theorem 4.6]. Since otherwise the proofs
in [22] only rely on the properties (2) and (3) of A, from Theorem 1.1 above we conclude
that the statement of [22, Theorem 1.1] is also true for general kernel coefficients A of class
L0(λ) that satisfy the condition (7).

1.2 Approach and previous results

As mentioned, our approach is strongly influenced by an approach introduced in [2], where
a similar result concerning higher Hölder regularity is proved for the fractional p-Laplacian
in the superquadratic case when p ≥ 2. Although for simplicity we restrict ourselves to
the quadratic case when p = 2, in contrast to [2] we deal with a nonlinearity already in
the quadratic setting and most importantly, we also treat equations driven by general kernel
coefficients A that satisfy the mild assumption (7), while in [2] only the case when A ≡ 1
is considered. Also, we stress that by combining our techniques with some more techniques
from [2], our approach could be modified in order to treat also nonlinearities with nonlinear
growth of the type �(t) ≈ t p−1. However, since the additional difficulties arising from such
a generalization were already dealt with in [2] and we instead want to focus on the difficulties
arising from considering equations with general coefficients, we decided not to pursue this
direction in this work.

Let us briefly summarize our approach, highlighting the differences to the one used in [2].
First, we prove the higher Hölder regularity for homogeneous equations driven by a locally
translation invariant kernel coefficient, see Sect. 3. As in [2], the main idea in this case is
to test the equation with certain monotone power functions of discrete fractional derivatives
leading to an incremental higher integrability and differentiability result on the scale of certain
Besov-type spaces. However, in our setting we also need to carefully use the local translation
invariance and the bounds imposed on A, and also the assumptions (4) and (5) imposed on�

in order to overcome the difficulties that arise due to the presence of the general kernel and
the general type of nonlinearity. Moreover, we remark that restricting ourselves to equations
with linear growth has the advantage that the proof of this incremental higher regularity
result simplifies quite substantially in some other respects. The obtained incremental gain in
regularity is then iterated, in order for the desired Hölder regularity to follow by embedding.

In Sect. 4, we then treat the general case of inhomogeneous equations driven by a kernel
coefficient satisfying the condition (7) by an approximation argument. In the corresponding
approximation argument applied in [2], the solution is approximated by a solution of a corre-
sponding equation with zero right-hand side, while the nonlocal operator driving the equation
is left unchanged. In order to be able to treat equations with a general kernel coefficient A
of class L0(λ) that satisfies only the continuity assumption (7), in addition to freezing the
right-hand side, we also need to locally replace A by a corresponding locally translation
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invariant kernel coefficient, which is possible in view of the assumption (7). Since by the
first part of the proof the desired Hölder regularity is already known for solutions to equa-
tions with locally translation invariant kernel coefficients, we can then transfer this regularity
from the approximate solution to the solution itself. In other words, in some sense we locally
freeze the coefficient, in order to transfer the regularity from an equation for which the higher
regularity can be proved directly to an equation driven by a less regular kernel. This strategy
can be thought of as a nonlocal counterpart of corresponding techniques widely used in the
study of higher regularity for local elliptic equations, although we stress that in our nonlocal
setting we have to overcome a number of additional difficulties which are not present in the
local setting in order to execute such an approximation argument successfully. Moreover,
we believe that just like in the local setting, the approximation techniques developed in this
paper are flexible enough in order to be adaptable to also proving other higher regularity
results for nonlocal equations similar to (1).

Regarding other related regularity results, in [12] a similar result is proved in the linear

case when �(t) = t , where A is required to be locally close enough to b
(

x−y
|x−y|

)
for some

even function b : Sn−1 → R that is bounded between two positive constants, which is
contained in our assumption on A in Theorem 1.2. More results concerning higher Hölder
regularity for various types of nonlocal equations are for instance contained in [5,6,11,23]
and [14]. Furthermore, results regarding basic Hölder regularity for nonlocal equations are
proved for example in [8,15,19,25], while results concerning Sobolev regularity can be found
for example in [1,7,10,18,21,22,24]. Finally, for some regularity results concerning nonlocal
equations similar to (1) in the more general setting of measure data, we refer to [17].

2 Preliminaries

2.1 Some notation

Let us fix some notation which we use throughout the paper. By C , c, Ci and ci , i ∈ N0, we
always denote positive constants, while dependences on parameters of the constants will be
shown in parentheses. As usual, by

Br (x0) := {x ∈ R
n | |x − x0| < r}, Br (x0) := {x ∈ R

n | |x − x0| ≤ r}

we denote the open and closed ball with center x0 ∈ R
n and radius r > 0, respectively.

Moreover, if E ⊂ R
n is measurable, then by |E | we denote the n-dimensional Lebesgue-

measure of E . If 0 < |E | < ∞, then for any u ∈ L1(E) we define

uE := −
∫
E
u(x)dx := 1

|E |
∫
E
u(x)dx .

Next, for any p ∈ (1,∞) we define the function Jp : R → R by

Jp(t) := |t |p−2t .

Moreover, for any measurable function ψ : Rn → R and any h ∈ R
n , we define
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ψh(x) := ψ(x + h), δhψ(x) := ψh(x) − ψ(x),

δ2h(x) := δh(δhψ(x)) = ψ2h(x) + ψ(x) − 2ψh(x).

2.2 The nonlocal tail

In this section, for conveniencewe state and proof the following two simple results concerning
the nonlocal tail of a function which we use frequently throughout the paper.

Lemma 2.1 Let s ∈ (0, 1) and 0 < r < R. Then for any x ∈ Br and any u ∈ L1
2s(R

n), we
have ∫

Rn\BR

|u(y)|
|x − y|n+2s dy ≤

(
R

R − r

)n+2s ∫
Rn\BR

|u(y)|
|y|n+2s dy.

Proof The claim follows directly from the observation that for any x ∈ Br and any y ∈
R
n \ BR , we have

|y| ≤ |x − y| + |x | = |x − y|
(
1 + |x |

|x − y|
)

≤ |x − y|
(
1 + r

R − r

)
= R

R − r
|x − y|.

��
Lemma 2.2 Let s ∈ (0, 1), r > 0 and x0 ∈ B1 such that Br (x0) ⊂ B1. Then for any
u ∈ L1

2s(R
n), we have

∫
Rn\Br (x0)

|u(y)|
|x0 − y|n+2s dy ≤ r−(n+2s)

(
||u||L1(B1) +

∫
Rn\B1

|u(y)|
|y|n+2s dy

)
.

Proof Since by assumption x0 ∈ B1−r , with the help of Lemma 2.1 we obtain∫
Rn\Br (x0)

|u(y)|
|x0 − y|n+2s dy =

∫
B1\Br (x0)

|u(y)|
|x0 − y|n+2s dy +

∫
Rn\B1

|u(y)|
|x0 − y|n+2s dy

≤r−(n+2s)||u||L1(B1) + r−(n+2s)
∫
Rn\B1

|u(y)|
|y|n+2s dy,

which finishes the proof. ��

2.3 The fractional Sobolev spaceWs,2

First of all, for notational convenience for any domain � ⊂ R
n we define the seminorm

associated to the space Ws,2(�) by

[u]Ws,2(�) :=
(∫

�

∫
�

|u(x) − u(y)|2
|x − y|n+2s dydx

)1/2

,

so that we have

Ws,2(�) = {
u ∈ L2(�) | [u]Ws,2(�) < ∞}

.

Moreover, we define the space

Ws,2
0 (�) := {

u ∈ Ws,2(Rn) | u ≡ 0 in R
n \ �

}
.

The following Poincaré-type inequality associated to the space Ws,2 will frequently be used
throughout the paper.
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Lemma 2.3 (fractional Friedrichs-Poincaré inequality)Let s ∈ (0, 1)and consider a bounded
domain � ⊂ R

n. For any u ∈ Ws,2
0 (�), we have

∫
�

|u(x)|2dx ≤ C |�| 2sn
∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s dydx, (10)

where C = C(n, s) > 0.

Proof Since u ∈ Ws,2
0 (�) ⊂ Ws,2(Rn) and n > 2s, applying Hölder’s inequality and then

the fractional Sobolev inequality (cf. [9, Theorem 6.5]) leads to

∫
�

|u(x)|2dx ≤ |�| 2sn
(∫

�

|u(x)| 2n
n−2s dx

) n−2s
n

≤ C |�| 2sn
∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s dydx,

where C = C(n, s) > 0. This finishes the proof. ��

2.4 Besov-type spaces

Next, let us introduce some function spaces of Besov-type. In order to do so, for q ∈ [1,∞)

and any function u ∈ Lq(Rn) we define the quantities

[u]N β,q∞ (Rn)
:= sup

|h|>0

∣∣∣∣
∣∣∣∣ δhu

|h|β
∣∣∣∣
∣∣∣∣
Lq (Rn)

, 0 < β ≤ 1

and

[u]Bβ,q∞ (Rn)
:= sup

|h|>0

∣∣∣∣∣
∣∣∣∣∣
δ2hu

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lq (Rn)

, 0 < β < 2.

This enables us to define the two Besov-type spaces

N β,q∞ (Rn) :=
{
u ∈ Lq(Rn) | [u]N β,q∞ (Rn)

< ∞
}

, 0 < β ≤ 1

and

Bβ,q∞ (Rn) :=
{
u ∈ Lq(Rn) | [u]Bβ,q∞ (Rn)

< ∞
}

, 0 < β < 2.

The following embedding result can be found in [4, Lemma 2.3].

Lemma 2.4 Let β ∈ (0, 1) and q ∈ [1,∞). Then we have the continuous embedding

Bβ,q∞ (Rn) ↪→ N β,q∞ (Rn).

More precisely, for every u ∈ Bβ,q∞ (Rn) we have

[u]N β,q∞ (Rn)
≤ C

1 − β
[u]Bβ,q∞ (Rn)

,

where C = C(n, q) > 0.

We also need the following embedding result, cf. [2, Theorem 2.8].
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Lemma 2.5 Let q ∈ [1,∞) and β ∈ (0, 1) such that βq > n. If u ∈ N β,q∞ (Rn), then for any
α ∈ (0, β − n/q) we have u ∈ Cα

loc(R
n). More precisely, for every u ∈ N β,q∞ (Rn) we have

sup
x,y∈Rn
x �=y

|u(x) − u(y)|
|x − y|α ≤ C

(
[u]N β,q∞ (Rn)

) αq+n
βq (||u||Lq (Rn)

)1− αq+n
βq ,

where C = C(n, q, α, β) > 0.

Finally, the following result can be found in [1, Proposition 2.6].

Proposition 2.6 Let s ∈ (0, 1).

• Let 0 < r < R. For any function ψ ∈ Ws,2
0 (Br ), we have

sup
|h|>0

∣∣∣∣
∣∣∣∣δhψ|h|s

∣∣∣∣
∣∣∣∣
2

L2(Rn)

≤ C

(
R

r

)n ( R

R − r

)3

[ψ]2Ws,2(BR)
,

where C = C(n, s) > 0.
• Let � ⊂ R

n be an open set and ψ ∈ Ws,2
loc (�). Then for any R > 0 such that BR � �

and any 0 < h0 ≤ dist(BR, ∂�)/2, we have

sup
|h|>0

∣∣∣∣
∣∣∣∣δhψ|h|s

∣∣∣∣
∣∣∣∣
2

L2(BR)

≤ C ||ψ ||2Ws,2(BR+h0 )
,

where C = C(n, s, R, h0) > 0.

2.5 Some elementary inequalities

The proof of the following elementary inequality can be found in [2, Lemma A.3].

Lemma 2.7 For all X , Y ∈ R and any p ≥ 1, we have

∣∣|X |p−1X − |Y |p−1Y
∣∣ ≥ 1

C
|X − Y |p,

where C = C(p) > 0.

Next, we prove two elementary inequalities which involve the function Jp defined in Sect. 2.1
and are based on the monotonicity property (5) of �.

Lemma 2.8 Let q ≥ 1 and a, b, c, d ∈ R
n. If � : R → R satisfies (5), then we have

(�(a − c) − �(b − d))
(
Jq+1(a − b) − Jq+1(c − d)

)

≥ 1

2
λ−1 |(a − b) − (c − d)|2 (|a − b|q−1 + |c − d|q−1).

Proof If a−c = b−d , then also a−b = c−d , so that in this case both sides of the inequality
vanish.Next,we consider the casewhena−c �= b−d . In viewof themonotonicity assumption
(5) imposed on �, we have

(�(a − c) − �(b − d)) ((a − b) − (c − d)) ≥ λ−1((a − b) − (c − d))2. (11)

Moreover, by [20, page 71], for all x, y ∈ R we have

(Jq+1(y) − Jq+1(x))(y − x) = 1

2

(|y|q−1 + |x |q−1) (y − x)2 + |y|q−1 − |x |q−1

2
(y2 − x2).
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Since the last term on the right-hand side is non-negative, by choosing y = a − b and
x = c − d we obtain

(Jq+1(a − b) − Jq+1(c − d))((a − b) − (c − d))

≥ 1

2

(|a − b|q−1 + |c − d|q−1) ((a − b) − (c − d))2.

Multiplying the inequality (11) with the one in the previous display leads to

(�(a − c) − �(b − d)) (Jq+1(a − b) − Jq+1(c − d))((a − b) − (c − d))2

≥ 1

2
λ−1 (|a − b|q−1 + |c − d|q−1) ((a − b) − (c − d))4,

so that the claim follows by simplifying the factor ((a − b) − (c − d))2 from both sides. ��
Lemma 2.9 Let q ≥ 1 and a, b, c, d ∈ R

n. If � : R → R satisfies (5), then we have

(�(a − c) − �(b − d))
(
Jq+1(a − b) − Jq+1(c − d)

)

≥ 1

C

∣∣∣|a − b| q−1
2 (a − b) − |c − d| q−1

2 (c − d)

∣∣∣2 ,

where C = C(λ, q) > 0.

Proof If a − c = b − d , then both sides of the inequality vanish. Next, let us consider the
case when a − c �= b − d . In view of (5), we have

(�(a − c) − �(b − d))
(
Jq+1(a − b) − Jq+1(c − d)

)
= (�(a − c) − �(b − d))((a − c) − (b − d))

× (
Jq+1(a − b) − Jq+1(c − d)

)
((a − b) − (c − d))

× ((a − c) − (b − d))−2

≥ λ−1 (Jq+1(a − b) − Jq+1(c − d)
)
((a − b) − (c − d)).

The right-hand side of the above estimate can be further estimated by applying [2, Lemma
A.1] with p = q + 1 and q = 2, which yields

(
Jq+1(a − b) − Jq+1(c − d)

)
((a − b) − (c − d))

≥ q

(
2

q + 1

)2 ∣∣∣|a − b| q−1
2 (a − b) − |c − d| q−1

2 (c − d)

∣∣∣2 .

The claim now follows by combining the last two displays. ��

2.6 Some preliminary estimates

The following Caccioppoli-type inequality can be proved in essentially the same way as the
one in [18, Theorem 3.1].

Theorem 2.10 Let 0 < r < R, x0 ∈ R
n, λ ≥ 1 and f ∈ L

2n
n+2s (BR(x0)). Moreover, assume

that A ∈ L0(λ) and that the Borel function � : R → R satisfies

|�(t)| ≤ λt, �(t)t ≥ λ−1t2 ∀t ∈ R. (12)
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Then for any local weak solution u ∈ Ws,2(BR(x0)) ∩ L1
2s(R

n) of L�
Au = f in BR(x0), we

have
∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|2
|x − y|n+2s dydx

≤ C

(
R−2s

∫
BR(x0)

u(x)2dx +
∫
Rn\BR(x0)

|u(y)|
|x0 − y|n+2s dy

∫
BR(x0)

|u(x)|dx

+
(∫

BR(x0)
| f (x)| 2n

n+2s dx

) n+2s
n

)
,

where C = C(n, s, λ, r , R) > 0.

We remark that the assumptions in (12) are clearly implied by the assumptions �(0) = 0,
(4) and (5) which are used in our main results.

The following result on local boundedness is essentially given by [3, Theorem 3.8], where
the below result is stated under the stronger assumption that u ∈ Ws,2

0 (BR(x0)) and in setting
of the fractional p-Laplacian, which applied to our setting means that strictly speaking it only
contains the case when �(t) = t and A(x, y) ≡ 1. Nevertheless, an inspection of the proof
shows that it remains valid for local weak solutions, see also [2, Theorem 3.2]. Moreover, the
case of a general � and a general A can easily be treated by noting that the Caccioppoli-type
inequality from [3, Proposition 3.5] remains valid for such a general � and a general A by
simply applying the bounds imposed on � and A whenever appropriate in a similar fashion
as in [18, Theorem 3.1]. Therefore, we have the following result.

Theorem 2.11 Let R > 0, x0 ∈ R
n, λ ≥ 1, σ ∈ (0, 1) and f ∈ Lq(BR(x0)) for some

q > n
2s .Moreover, consider a kernel coefficient A ∈ L0(λ) and assume that theBorel function

� : R → R satisfies (12). Then for any local weak solution u ∈ Ws,2(BR(x0)) ∩ L1
2s(R

n)

of the equation

L�
Au = f in BR(x0),

we have the estimate

sup
x∈Bσ R(x0)

|u(x)| ≤C

((
−
∫
BR(x0)

u(x)2dx

) 1
2 + R2s

∫
Rn\Bσ R(x0)

|u(y)|
|x0 − y|n+2s dy

+ R2s− n
q || f ||Lq (BR(x0))

)
,

where C = C(n, s, λ, q, σ ) > 0.

In the case when f = 0 and�(t) = t , the following result concerning basic Hölder regularity
follows from [8, Theorem 1.2]. The case of a general � can again be treated by replacing the
Caccioppoli inequality given by [8, Theorem 1.4] with the one from [18, Theorem 3.1]. The
result with a general right-hand side can then be proved in essentially the same way as in [2,
section 3.2].

Theorem 2.12 Under the same assumptions and notation as in Theorem 2.11, there exists
some β = β(n, s, λ, q, σ ) ∈ (0, 1) such that u ∈ Cβ(Bσ R(x0)). Moreover, we have the
estimate
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   24 Page 12 of 37 S. Nowak

[u]Cβ (Bσ R(x0)) ≤ C

((
−
∫
BR(x0)

u(x)2dx

) 1
2 + R2s

∫
Rn\Bσ R(x0)

|u(y)|
|x0 − y|n+2s dy

+ R2s− n
q || f ||Lq (BR(x0))

)
,

where C = C(n, s, λ, q, σ, β) > 0.

3 Higher Hölder regularity for homogeneous equations with locally
translation invariant kernel

3.1 Incremental higher integrability and differentiability

Thekey ingredient to proving the desired higherHölder regularity for homogeneous equations
with locally translation invariant kernel is provided by the following incremental higher
integrability and differentiability result on the scale of Besov-type spaces. In the case of
the fractional p-Laplacian for p ≥ 2, the below result was proved in [2, Proposition 5.1].
Besides the fact that we treat equations with arbitrary locally translation invariant kernels, it
is also interesting that in our setting of equations with linear growth, we are able to directly
prove both higher integrability and differentiability, while for possibly degenerate equations
as in [2] it is necessary to first obtain a pure higher integrability result (cf. [2, Proposition
4.1]), which is then used in order to also obtain higher differentiability. We remark that this
additional higher differentiability does not seem to have a counterpart in the context of local
equations and is one of the main reasons why in our nonlocal setting we are able to exceed
Cs regularity.
Moreover, note that although at this point we work with solutions that are bounded, this
assumption will later be removed by using Theorem 2.11.

Proposition 3.1 Let u ∈ Ws,2(B1) ∩ L1
2s(R

n) ∩ L∞(B1) be a local weak solution of

L�
Au = 0 in B1, (13)

where A ∈ L1(λ, B1) and � satisfies (4) and (5). Suppose that

||u||L∞(B1) ≤ 1,
∫
Rn\B1

|u(y)|
|y|n+2s dy ≤ 1, (14)

and that for some q ≥ 2, ϑ ∈ R such that 0 < (1 + ϑq)/q < 1 and some 0 < h0 < 1, we
have

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (B1)

< +∞.

Then for any radius 4h0 < R ≤ 1 − 2h0, we have

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+2s+ϑq
q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(BR−4h0 )

≤ C

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (BR+4h0 )

+ 1

⎞
⎠ .

where C = C(n, s, q, λ, h0) > 0.
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Proof Step 1: Discrete differentiation of the equation. Set r := R − 4h0 > 0 and fix
some h ∈ R

n such that 0 < |h| < h0. Let η ∈ C∞
0 (BR) be a non-negative Lipschitz cutoff

function satisfying

η ≡ 1 in Br , η ≡ 0 in R
n \ B(R+r)/2, |∇η| ≤ C1

R − r
= C1

4h0
.

Let us show that the function

ϕ = Jq+1

(
δhu

|h|ϑ
)

η2 =
∣∣∣∣ δhu

|h|ϑ
∣∣∣∣
q−1

δhu

|h|ϑ η2

belongs toWs,2(BR). Since ||u||L∞(B1) ≤ 1 implies ||u||L∞(BR) ≤ 1 and also ||uh ||L∞(BR) ≤
1, we have ||ϕ||L∞(BR) ≤ 2q

|h|ϑ and therefore ϕ ∈ L∞(BR) ⊂ L2(BR). Moreover, note that
the function t �→ Jq+1(t) is Lipschitz continuous on the domain t ∈ [−2, 2] with Lipschitz
constant q2q−1. Therefore, since we have ||δhu||L∞(BR) ≤ 2, we obtain
∫
BR

∫
BR

|Jq+1(δhu(x)) − Jq+1(δhu(y))|2
|x − y|n+2s dydx ≤ C2

∫
BR

∫
BR

|δhu(x) − δhu(y)|2
|x − y|n+2s dydx

≤ 2C2([uh]2Ws,2(BR)
+ [u]2Ws,2(BR)

) < ∞,

whereC2 = C2(q) > 0, so that Jq+1(δhu) ∈ Ws,2(BR). Thus, since the product of a function
belonging to Ws,2(BR) and a Lipschitz function also belongs to Ws,2(BR) (cf. [9, Lemma

5.3]), ϕ = Jq+1(δhu)
η2

|h|ϑq also belongs to Ws,2(BR).

Next, consider the functionϕ−h(x) := ϕ(x−h). Since bothϕ andϕ−h belong toWs,2(BR−h0)

and are compactly supported in BR−h0 , in view of [2, Lemma 2.11] in particular both ϕ

and ϕ−h belong to Ws,2
c (B1), so that both ϕ and ϕ−h are admissible test functions in (13).

Therefore, using ϕ−h as a test function in (13) along with a change of variables yields

0 =
∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s �(u(x) − u(y))(ϕ−h(x) − ϕ−h(y))dydx

=
∫
Rn

∫
Rn

Ah(x, y)

|x − y|n+2s �(uh(x) − uh(y))(ϕ(x) − ϕ(y))dydx,
(15)

where we have set Ah(x, y) := A(x + h, y + h). Moreover, testing (13) with ϕ yields∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s �(u(x) − u(y))(ϕ(x) − ϕ(y))dydx = 0. (16)

By subtracting (16) from (15) and dividing by 0 < |h| < h0, we obtain∫
Rn

∫
Rn

Ah(x, y)�(uh(x) − uh(y)) − A(x, y)�(u(x) − u(y))

|h||x − y|n+2s (ϕ(x) − ϕ(y))dydx = 0.

(17)
Next, splitting the above integral and taking into account the choice of ϕ, we arrive at

I1 + I2 + I3 = 0,

where

I1 :=
∫
BR

∫
BR

Ah(x, y)�(uh(x) − uh(y)) − A(x, y)�(u(x) − u(y))

|h|1+ϑq |x − y|n+2s

× (
Jq+1(uh(x) − u(x))η(x)2 − Jq+1(uh(y) − u(y))η(y)2

)
dydx,
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I2 :=
∫
B R+r

2

∫
Rn\BR

Ah(x, y)�(uh(x) − uh(y)) − A(x, y)�(u(x) − u(y))

|h|1+ϑq |x − y|n+2s

× Jq+1(uh(x) − u(x))η(x)2dydx,

I3 := −
∫
Rn\BR

∫
B R+r

2

Ah(x, y)�(uh(x) − uh(y)) − A(x, y)�(u(x) − u(y))

|h|1+ϑq |x − y|n+2s

× Jq+1(uh(y) − u(y))η(y)2dydx,

where we used that η vanishes identically outside of B(R+r)/2.
Step 2: Preliminary estimation of the local term I1. Since A ∈ L1(λ, B1), we have
A(x, y) = a(x − y) for all x, y ∈ B1 and some measurable function a : Rn → R. Since for
x, y ∈ BR we have x + h, y + h ∈ B1, it follows that for all x, y ∈ BR we have

Ah(x, y) = A(x + h, y + h) = a((x + h) − (y + h))) = a(x − y) = A(x, y).

Therefore, we can rewrite I1 as follows

I1 =
∫
BR

∫
BR

A(x, y)(�(uh(x) − uh(y)) − �(u(x) − u(y)))

|h|1+ϑq |x − y|n+2s

× (
Jq+1(uh(x) − u(x))η(x)2 − Jq+1(uh(y) − u(y))η(y)2

)
dydx .

Let us now concentrate on estimating I1. First of all, we observe that

Jq+1(uh(x) − u(x))η(x)2 − Jq+1(uh(y) − u(y))η(y)2

= (Jq+1(uh(x) − u(x)) − Jq+1(uh(y) − u(y)))

2
(η(x)2 + η(y)2)

+ (Jq+1(uh(x) − u(x)) + Jq+1(uh(y) − u(y)))

2
(η(x)2 − η(y)2).

Therefore, we obtain

(�(uh(x) − uh(y)) − �(u(x) − u(y)))(
Jq+1(uh(x) − u(x))η(x)2 − Jq+1(uh(y) − u(y))η(y)2

)
≥ (�(uh(x) − uh(y)) − �(u(x) − u(y)))

× (Jq+1(uh(x) − u(x)) − Jq+1(uh(y) − u(y)))
(η(x)2 + η(y)2)

2
− |�(uh(x) − uh(y)) − �(u(x) − u(y))|(|uh(x) − u(x)|q

+ |uh(y) − u(y)|q)
∣∣∣∣η(x)2 − η(y)2

2

∣∣∣∣ .
Next, using the Lipschitz bound (4), Young’s inequality and then Lemma 2.8, for the negative
term in the last display we deduce

|�(uh(x) − uh(y)) − �(u(x) − u(y))|(|uh(x) − u(x)|q

+ |uh(y) − u(y)|q)
∣∣∣∣η(x)2 − η(y)2

2

∣∣∣∣
≤ λ

2
|(uh(x) − uh(y)) − (u(x) − u(y))|

× (|uh(x) − u(x)| q−1
2 |uh(x) − u(x)| q+1

2 + |uh(y) − u(y)| q−1
2 |uh(y) − u(y)| q+1

2 )
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× (η(x) + η(y)) |η(x) − η(y)|
≤ λ

4ε

(|uh(x) − u(x)|q+1 + |uh(y) − u(y)|q+1) |η(x) − η(y)|2

+ λ

2
ε|(uh(x) − uh(y)) − (u(x) − u(y))|2 (|uh(x) − u(x)|q−1 + |uh(y) − u(y)|q−1)

× (η(x)2 + η(y)2)

≤ λ

4ε

(|uh(x) − u(x)|q+1 + |uh(y) − u(y)|q+1) |η(x) − η(y)|2

+ λ2ε(�(uh(x) − uh(y)) − �(u(x) − u(y)))

× (Jq+1(uh(x) − u(x)) − Jq+1(uh(y) − u(y)))(η(x)2 + η(y)2),

where ε > 0 is arbitrary. By choosing ε := 1
2λ2

, combining the last two displays yields

I1 ≥ 1

4

∫
BR

∫
BR

A(x, y)(�(uh(x) − uh(y)) − �(u(x) − u(y)))

|h|1+ϑq |x − y|n+2s

× (Jq+1(uh(x) − u(x)) − Jq+1(uh(y) − u(y)))(η(x)2 + η(y)2)dydx

− C3

∫
BR

∫
BR

A(x, y)
(|uh(x) − u(x)|q+1 + |uh(y) − u(y)|q+1

) |η(x) − η(y)|2
|h|1+ϑq |x − y|n+2s dydx,

where C3 = C3(λ) > 0. By using Lemma 2.9, we can further estimate the first term of the
previous display, which along with the bounds (2) of A leads to

I1 ≥ c
∫
BR

∫
BR

∣∣∣∣∣
|δhu(x)| q−1

2 δhu(x)

|h| 1+ϑq
2

− |δhu(y)| q−1
2 δhu(y)

|h| 1+ϑq
2

∣∣∣∣∣
2

η(x)2 + η(y)2

|x − y|n+2s dydx

− C4

∫
BR

∫
BR

(|δhu(x)|q+1 + |δhu(y)|q+1
) |η(x) − η(y)|2

|h|1+ϑq |x − y|n+2s dydx,

(18)

where c = c(λ, q) > 0 and C4 = C4(λ) > 0. Next, for simplicity we write

X := |δhu(x)| q−1
2 δhu(x)

|h| 1+ϑq
2

and Y := |δhu(y)| q−1
2 δhu(y)

|h| 1+ϑq
2

and observe that by using the convexity of the function t �→ t2, we obtain

|Xη(x) − Yη(y)|2 =
∣∣∣∣(X − Y )

η(x) + η(y)

2
+ (X + Y )

η(x) − η(y)

2

∣∣∣∣
2

≤1

2
|X − Y |2|η(x) + η(y)|2 + 1

2
|X + Y |2|η(x) − η(y)|2

≤|X − Y |2(η(x)2 + η(y)2) + (X2 + Y 2)|η(x) − η(y)|2.
Combining (18) with the last display yields

I1 ≥c
∫
BR

∫
BR

∣∣∣∣∣
|δhu(x)| q−1

2 δhu(x)

|h| 1+ϑq
2

η(x) − |δhu(y)| q−1
2 δhu(y)

|h| 1+ϑq
2

η(y)

∣∣∣∣∣
2

1

|x − y|n+2s dydx

− c
∫
BR

∫
BR

( |δhu(x)|q+1

|h|1+ϑq
+ |δhu(y)|q+1

|h|1+ϑq

) |η(x) − η(y)|2
|x − y|n+2s dydx
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− C4

∫
BR

∫
BR

(|δhu(x)|q+1 + |δhu(y)|q+1
) |η(x) − η(y)|2

|h|1+ϑq |x − y|n+2s dydx

=c

[
|δhu| q−1

2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

− C5

∫
BR

∫
BR

( |δhu(x)|q+1

|h|1+ϑq
+ |δhu(y)|q+1

|h|1+ϑq

) |η(x) − η(y)|2
|x − y|n+2s dydx,

where C5 = C5(λ, q) > 0. By combining the above estimate for I1 with the identity
I1 + I2 + I3 = 0, we arrive at

[
|δhu| q−1

2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

≤ C6(I1,1 + |I2| + |I3|), (19)

where C6 = C6(λ, q) > 0 and

I1,1 :=
∫
BR

∫
BR

( |δhu(x)|q+1

|h|1+ϑq
+ |δhu(y)|q+1

|h|1+ϑq

) |η(x) − η(y)|2
|x − y|n+2s dydx .

Our next goal is to estimate the terms I1,1, |I2| and |I3|.
Step 3: Estimating the local term I1,1. In order to estimate I1,1, observe that for any x ∈ BR

changing variables and integrating in polar coordinates yields
∫
BR

dy

|x − y|n+2s−2 ≤
∫
B2R

dz

|z|n+2s−2 = C7R
2−2s ≤ C7, (20)

where C7 = C7(n, s) > 0. Since by construction η is Lipschitz with Lipschitz constant C1
4h0

,
along with (20) we obtain

∫
BR

∫
BR

|δhu(x)|q+1

|h|1+ϑq

|η(x) − η(y)|2
|x − y|n+2s dydx

≤
(
C1

4h0

)2 ∫
BR

(∫
BR

dy

|x − y|n+2s−2

) |δhu(x)|q+1

|h|1+ϑq
dx

≤ C7

(
C1

4h0

)2 ∫
BR

|δhu(x)|q+1

|h|1+ϑq
dx

≤ C8||u||L∞(BR+h0 )

∫
BR

|δhu(x)|q
|h|1+ϑq

dx

≤ C8

∫
BR

|δhu(x)|q
|h|1+ϑq

dx,

where we used that R + h0 ≤ 1 and ||u||L∞(B1) ≤ 1 in order to obtain the last inequality and
C8 = C8(n, s, q, λ, h0) > 0. In the same way we have

∫
BR

∫
BR

|δhu(y)|q+1

|h|1+ϑq

|η(x) − η(y)|2
|x − y|n+2s dydx ≤ C8

∫
BR

|δhu(y)|q
|h|1+ϑq

dy,

so that we obtain

I1,1 ≤ 2C8

∫
BR

|δhu(x)|q
|h|1+ϑq

dx . (21)
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Step 4: Estimating the nonlocal terms I2 and I3. Next, let us estimate the nonlocal terms
I2 and I3, which can be treated in the sameway. Since ||u||L∞(B1) ≤ 1 and (R+r)/2+h0 ≤ 1,
by additionally using the bound (4) of � with t = uh(x) − uh(y) and t ′ = 0, for almost
every x ∈ B(R−r)/2 and any y ∈ R

n \ BR we have

∣∣�(uh(x) − uh(y))Jq+1(δhu(x))
∣∣ ≤λ

(
||u||L∞(B(R+r)/2+h0 ) + |uh(y)|

)
|δhu(x)|q

≤λ (1 + |uh(y)|) |δhu(x)|q

and similarly
∣∣�(u(x) − u(y))Jq+1(δhu(x))

∣∣ ≤ λ (1 + |u(y)|) |δhu(x)|q .
By using the upper bound in (2) of A (which trivially also holds for Ah) and the fact that
0 ≤ η ≤ 1 and then the last two displays, we deduce

|I2| ≤λ

∫
B R+r

2

∫
Rn\BR

(|�(uh(x) − uh(y))| + |�(u(x) − u(y))|) ∣∣Jq+1(δhu(x))
∣∣

|h|1+ϑq |x − y|n+2s dydx

≤2λ2
∫
B R+r

2

∫
Rn\BR

(1 + |uh(y)| + |u(y)|) |δhu(x)|q
|h|1+ϑq |x − y|n+2s dydx .

(22)
For any x ∈ B(R+r)/2), we have B(R−r)/2(x) ⊂ BR , which in view of integration in polar
coordinates along with the fact that R − r = 4h0 leads to

∫
Rn\BR

dy

|x − y|n+2s ≤
∫
Rn\B R−r

2
(x)

dy

|x − y|n+2s =
∫
Rn\B R−r

2

dz

|z|n+2s = C9

(
R − r

2

)−2s

= C10,

whereC9 = C9(n, s) > 0 andC10 = C9(2h0)−2s . Using Lemma 2.1, the change of variables
z = y + h and then Lemma 2.2, for any x ∈ B(R+r)/2 we obtain

∫
Rn\BR

|uh(y)|
|x − y|n+2s dy ≤

(
2R

R − r

)n+2s ∫
Rn\BR

|uh(y)|
|y|n+2s dy

≤(2h0)
−(n+2s)

∫
Rn\BR(h)

|u(z)|
|h − z|n+2s dz

≤(2h0R)−(n+2s)
(

||u||L1(B1) +
∫
Rn\B1

|u(z)|
|z|n+2s dz

)

≤(8h20)
−(n+2s)

(
||u||L∞(B1)|B1| +

∫
Rn\B1

|u(z)|
|z|n+2s dz

)
≤ C11,

where C11 = C11(n, s, h0) > 0. Here we also used the the fact that R > 4h0 and the bounds
imposed on u. The term involving u can be estimated similarly. In fact, by using Lemma 2.1
and Lemma 2.2, for any x ∈ B(R+r)/2 we obtain∫

Rn\BR

|u(y)|
|x − y|n+2s dy ≤(2h0)

−(n+2s)
∫
Rn\BR

|u(y)|
|y|n+2s dy

≤(8h20)
−(n+2s)

(
||u||L∞(B1)|B1| +

∫
Rn\B1

|u(y)|
|y|n+2s dy

)
≤ C12,
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where C12 = C12(n, s, h0) > 0. By combining the above estimates with (22) and the
observation that |I3| can be estimated in the same way, we arrive at

|I2| + |I3| ≤ C13

∫
B R+r

2

|δhu(x)|q
|h|1+ϑq

dx ≤ C13

∫
BR

|δhu(x)|q
|h|1+ϑq

dx,

where C13 = C13(n, s, λ, h0) > 0. By combining this estimate with (21) and (19), we find
the estimate [

|δhu| q−1
2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

≤ C14

∫
BR

|δhu(x)|q
|h|1+ϑq

dx, (23)

where C14 = C14(n, s, q, λ, h0) > 0.
Step 5: Conclusion. Let ξ ∈ R

n \ {0} to be chosen such that |ξ | < h0. Applying Lemma 2.7
with

X = u(x + h + ξ) − u(x + ξ), Y = u(x + h) − u(x), p = q + 1

2

leads to

∣∣∣∣∣
∣∣∣∣∣

δξ δhu

|ξ | 2s
q+1 |h| 1+ϑq

q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(Br )

≤ C15

∣∣∣∣∣∣

∣∣∣∣∣∣
δξ

(
|δhu| q−1

2 δhu
)

|ξ |s |h| 1+ϑq
2

∣∣∣∣∣∣

∣∣∣∣∣∣

2

L2(Br )

≤ C15

∣∣∣∣∣
∣∣∣∣∣η

δξ

|ξ |s
(

|δhu| q−1
2 δhu

|h| 1+ϑq
2

)∣∣∣∣∣
∣∣∣∣∣
2

L2(Rn)

,

where C15 = C15(q) > 0. Here we also used that η ≡ 1 in Br in order to obtain the last
inequality. Next, we observe that by the discrete Leibniz rule (cf. [2, Formula (2.1)]), we can
write

ηδξ

(
|δhu| q−1

2 δhu
)

= δξ

(
η|δhu| q−1

2 δhu
)

−
(
|δhu| q−1

2 δhu
)

ξ
δξ η.

We arrive at

∣∣∣∣∣
∣∣∣∣∣

δξ δhu

|ξ | 2s
q+1 |h| 1+ϑq

q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(Br )

≤ C16

∣∣∣∣∣
∣∣∣∣∣

δξ

|ξ |s
(

|δhu| q−1
2 (δhu)η

|h| 1+ϑq
2

)∣∣∣∣∣
∣∣∣∣∣
2

L2(Rn)

+ C16

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
δξ η

|ξ |s

(
|δhu| q−1

2 δhu
)

ξ

|h| 1+ϑq
2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

L2(Rn)

,

(24)

where C16 = 2C15. By applying the first part of Proposition 2.6 with

ψ = |δhu| q−1
2 (δhu)η

|h| 1+ϑq
2

,

for the first term on the right-hand side of (24) we obtain
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sup
|ξ |>0

∣∣∣∣∣
∣∣∣∣∣

δξ

|ξ |s
(

|δhu| q−1
2 (δhu)η

|h| 1+ϑq
2

)∣∣∣∣∣
∣∣∣∣∣
2

L2(Rn)

≤C17

(
R

r

)n ( R

R − r

)3
[

|δhu| q−1
2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

≤C18

[
|δhu| q−1

2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

,

where C17 = C17(n, s) > 0 and C18 = C18(n, s, h0) > 0. By using that η is Lipschitz and
that ξ < h0, along with the assumption that ||u||L∞(B1) ≤ 1 we estimate the second term on
the right-hand side of (24) as follows
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
δξ η

|ξ |s

(
|δhu| q−1

2 δhu
)

ξ

|h| 1+ϑq
2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

L2(Rn)

≤C19

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

(
|δhu| q−1

2 δhu
)

ξ

|h| 1+ϑq
2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

L2(B R+r
2 +h0

)

≤C19

∫
B R+r

2 +2h0

|δhu(x)|q+1

|h|1+ϑq
dx ≤ C19

∫
BR

|δhu(x)|q
|h|1+ϑq

dx,

where C19 = C19(n, h0) > 0. Therefore, we arrive at
∣∣∣∣∣
∣∣∣∣∣

δ2hu

|ξ | 2s
q+1 |h| 1+ϑq

q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(Br )

≤ C20

[
|δhu| q−1

2 δhu

|h| 1+ϑq
2

η

]2

Ws,2(BR)

+ C20

∫
BR

|δhu(x)|q
|h|1+ϑq

dx,

where C20 = C20(n, s, q, h0) > 0. We now choose ξ = h and take the supremum over h for
0 < |h| < h0, so that together with (23) we obtain

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+2s+ϑq
q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(Br )

≤ C21 sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δhu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (BR)

, (25)

where C21 = C21(n, s, q, h0, λ) > 0. Next, we use the fact that by [2, Lemma 2.6] applied
with β = (1 + ϑq)/q < 1, on the right-hand side of (25) we can replace the first-order
difference quotient by a corresponding second-order difference quotient in the following
way

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δhu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (BR)

≤ C22

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (BR+h0 )

+ ||u||qLq (BR+h0 )

⎞
⎠ ,

where C22 = C22(n, q, ϑ, h0) > 0. By combining the last display with (25) and using that
||u||qLq (BR+h0 ) ≤ ||u||qL∞(B1)

|B1| ≤ |B1|, we conclude that

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+2s+ϑq
q+1

∣∣∣∣∣
∣∣∣∣∣
q+1

Lq+1(Br )

≤ C

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu

|h| 1+ϑq
q

∣∣∣∣∣
∣∣∣∣∣
q

Lq (BR+4h0 )

+ 1

⎞
⎠ ,

where C = C(n, s, q, ϑ, h0, λ) > 0. Since r = R − 4h0, the proof is finished. ��

3.2 An iteration argument

We now use an iteration argument based on Proposition 3.1 in order to obtain the following
higher Hölder regularity result.
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Theorem 3.2 Let R > 0, x0 ∈ R
n and λ ≥ 1. Consider a kernel coefficient A ∈

L1(λ, BR(x0)), suppose that � satisfies (4) and (5) with respect to λ and assume that
u ∈ Ws,2(BR(x0)) ∩ L1

2s(R
n) ∩ L∞(BR(x0)) is a local weak solution of the equation

L�
Au = 0 in BR(x0). Then for any 0 < α < min {2s, 1}, we have

[u]Cα(BR/2(x0)) ≤ C
Rα

(
||u||L∞(BR(x0)) + Rs− n

2 [u]Ws,2(BR(x0))

+R2s
∫
Rn\BR(x0)

|u(y)|
|x0−y|n+2s dy

)
, (26)

where C = C(n, s, λ, α) > 0.

Proof If u ≡ 0 a.e., then the assertion is trivially satisfied. Otherwise, set

MR,x0 := ||u||L∞(BR(x0)) + Rs− n
2 [u]Ws,2(BR(x0)) + R2s

∫
Rn\BR(x0)

|u(y)|
|x0 − y|n+2s dy > 0.

Consider the scaled function

u1(x) := 1

MR,x0
u(Rx + x0)

and also

A1(x, y) := A(Rx + x0, Ry + x0), �1(t) := 1

MR,x0
�(MR,x0 t).

Observe that u1 belongs toWs,2(B1)∩L1
2s(R

n)∩L∞(B1) and is a weak solution of L
�1
A1
u1 =

0 in B1. Moreover, it is easy to verify that A1 ∈ L1(λ, B1) and that �1 satisfies (4) and (5)
with respect to λ. Furthermore, by using changes of variables it is straightforward to verify
that u1 satisfies

||u1||L∞(B1) ≤ 1,
∫
Rn\B1

|u1(y)|
|y|n+2s dy ≤ 1, [u1]Ws,2(B1) ≤ 1. (27)

Therefore, the conclusion of Proposition 3.1 is valid with respect to u1. For i ∈ N0, we define
the sequences

qi := 2 + i, ϑi := 2si + 2s − 1

2 + i
.

In particular, we have
lim
i→∞ qi = ∞, lim

i→∞ ϑi = 2s. (28)

We split the further proof into two cases.
Case 1: s ≤ 1/2. Fix 0 < α < 2s. In view of (28), we can find some large enough i∞ ∈ N

such that

α <
1

qi∞
+ ϑi∞ − n

qi∞
. (29)

For i = 0, ..., i∞, define

h0 := 1

64i∞
, Ri := 7

8
− 4(2i + 1)h0 = 7

8
− 2i + 1

16i∞
.

We note that

R0 + 4h0 = 7

8
, Ri∞−1 − 4h0 = 3

4
, Ri − 4h0 = Ri+1 + 4h0 (i = 0, ..., i∞ − 2). (30)
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Since s ≤ 1/2, for i = 0, ..., i∞ − 1 we have 0 < (1 + ϑi qi )/qi < 1. Therefore, for
i = 0, ..., i∞ − 1 we can apply Proposition 3.1 to

R = Ri , ϑ = ϑi , q = qi ,

so that along with (30) and the observation that by construction

1 + 2s + ϑi qi
qi + 1

= 1 + ϑi+1qi+1

qi+1
,

we obtain the following estimates

sup
0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1+ϑ1q1

q1

∣∣∣∣∣∣

∣∣∣∣∣∣
Lq1 (BR1+4h0 )

≤ C0

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|s

∣∣∣∣∣
∣∣∣∣∣
L2(B7/8)

+ 1

⎞
⎠ ,

sup
0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1+ϑi+1qi+1

qi+1

∣∣∣∣∣∣

∣∣∣∣∣∣
Lqi+1 (BRi+1+4h0 )

≤ C0

⎛
⎜⎝ sup

0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1+ϑi qi

qi

∣∣∣∣∣∣

∣∣∣∣∣∣
Lqi (BRi+4h0 )

+ 1

⎞
⎟⎠ , i = 1, ..., i∞ − 2,

and

sup
0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1

qi∞ +ϑi∞

∣∣∣∣∣∣

∣∣∣∣∣∣
Lqi∞ (B3/4)

≤ C0

⎛
⎜⎜⎝ sup

0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1+ϑi∞−1qi∞−1

qi∞−1

∣∣∣∣∣∣

∣∣∣∣∣∣
Lqi∞−1 (BRi∞−1+4h0 )

+ 1

⎞
⎟⎟⎠ ,

where C0 = C0(n, s, λ, α). Combining the above estimates leads to the estimate

sup
0<|h|<h0

∣∣∣∣∣∣

∣∣∣∣∣∣
δ2hu1

|h|
1

qi∞ +ϑi∞

∣∣∣∣∣∣

∣∣∣∣∣∣
Lqi∞ (B3/4)

≤ C1

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|s

∣∣∣∣∣
∣∣∣∣∣
L2(B7/8)

+ 1

⎞
⎠ , (31)

where C1 = C1(n, s, λ, α) > 0. By taking into account the relation

δhu1 = 1

2
(δ2hu1 − δ2hu1)

and then using the second part of Proposition 2.6 and then (27), we deduce

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|s

∣∣∣∣∣
∣∣∣∣∣
L2(B7/8)

≤ 2 sup
0<|h|<h0

∣∣∣∣
∣∣∣∣δhu1|h|s

∣∣∣∣
∣∣∣∣
L2(B7/8)

≤ C2

(
[u1]Ws,2(B7/8+2h0 ) + [u1]L∞(B7/8+2h0 )

)

≤ C2
([u1]Ws,2(B1) + [u1]L∞(B1)

) ≤ C2(n, s, α).

(32)

By combining (31) with (32) and setting

β := 1

qi∞
+ ϑi∞ ∈ (0, 1),
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we arrive at

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|β

∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (B3/4)

≤ C3(n, s, λ, α). (33)

In order to proceed, we fix a cutoff function χ ∈ C∞
0 (B5/8) with the properties

0 ≤ χ ≤ 1, χ ≡ 1 in B1/2, |∇χ | ≤ C4, |∇2χ | ≤ C4,

where by ∇2χ we denote the Hessian of χ and C4 = C4(n) > 0. In particular, since
0 < β < 1, for any h ∈ R

n with |h| > 0 we have

|δhχ |
|h|β ≤ C5,

|δ2hχ |
|h|β ≤ C5,

where C5 = C5(n) > 0. Together with the identity

δ2h(u1χ)) = χ2hδ
2
hu1 + 2δhu1δhχh + u1δ

2
hχ, (34)

(33) and (27), for 0 < |h| < h0 we obtain∣∣∣∣∣
∣∣∣∣∣
δ2h(u1χ)

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (Rn)

≤ 2

⎛
⎝
∣∣∣∣∣
∣∣∣∣∣
χ2hδ

2
hu1

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (Rn)

+
∣∣∣∣
∣∣∣∣δhu1δhχh

|h|β
∣∣∣∣
∣∣∣∣
Lqi∞ (Rn)

+
∣∣∣∣∣
∣∣∣∣∣
u1δ2hχ

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (Rn)

⎞
⎠

≤ 2

⎛
⎝
∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|β

∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (B5/8+2h0 )

+ ||δhu1||Lqi∞ (B5/8+2h0 ) + ||u1||Lqi∞ (B5/8+2h0 )

⎞
⎠

≤ C6

⎛
⎝
∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|β

∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (B3/4)

+ ||u1||L∞(B3/4)

⎞
⎠ ≤ C7(n, s, λ, α).

Since moreover by (27), for |h| ≥ h0 we have∣∣∣∣∣
∣∣∣∣∣
δ2h(u1χ)

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (Rn)

≤ C8 ||u1||L∞(B3/4) ≤ C8(n, s, α).

by Lemma 2.4 it follows that

[u1χ]N β,qi∞∞ (Rn)
≤ C9[u1χ]Bβ,qi∞∞ (Rn)

= C9 sup
h>0

∣∣∣∣∣
∣∣∣∣∣
δ2h(u1χ)

|h|β
∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (Rn)

≤ C10(n, s, λ, α).

(35)
Along with Lemma 2.5 with our choice of β and q = qi∞ (which is applicable in view of
(29)), we obtain

[u1]Cα(B1/2) = [u1χ]Cα(B1/2) ≤C11

(
[u1χ]N β,qi∞∞ (Rn)

) αqi∞ +n
βqi∞ (||u1χ ||Lqi∞ (Rn)

)1− αqi∞ +n
βqi∞

≤C12
(||u1||L∞(B5/8)

)1− αqi∞ +n
βqi∞ ≤ C(n, s, λ, α).

(36)
Finally, rescaling yields the desired estimate, namely (26). This finishes the proof in the case
when s ≤ 1/2.
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Case 2: s > 1/2. Fix 0 < α < 1. Since in view of (28) we have

lim
i→∞

1 + ϑi qi
qi

= 2s > 1

and the expression 1+ϑi qi
qi

is increasing in i , there exists some i∞ ∈ N such that

1 + ϑi qi
qi

< 1 for any i = 0, ..., i∞ − 1 and
1 + ϑi∞qi∞

qi∞
≥ 1. (37)

Next, we choose j∞ ∈ N large enough such that

α < 1 − n

i∞ + j∞
.

Moreover, we choose some ε ∈ (0, 1) such that

α < 1 − ε − n

i∞ + j∞
(38)

and let γ := 1 − ε. Furthermore, similar to the previous case, for i = 0, ..., i∞ + j∞ we
define

h0 := 1

64(i∞ + j∞)
, Ri := 7

8
− 4(2i + 1)h0 = 7

8
− 2i + 1

16(i∞ + j∞)

and note that

R0+4h0 = 7

8
, Ri∞+ j∞−1−4h0 = 3

4
, Ri −4h0 = Ri+1+4h0 (i = 0, ..., i∞ + j∞ −2).

(39)
In view of (37), for i = 0, ..., i∞ − 1 we can apply Proposition 3.1 to

R = Ri , ϑ = ϑi , q = qi ,

which in almost exactly the same way as in Case 1 (cf. (33)) leads to the estimate

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|γ

∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (BRi∞ +4h0 )

≤ sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|β

∣∣∣∣∣
∣∣∣∣∣
Lqi∞ (BRi∞ +4h0 )

≤ C13(n, s, λ, α),

(40)
where we used that by (37) we have γ < 1 ≤ β = 1

qi∞
+ ϑi∞ . Next, we set ϑ̃i := γ − 1

qi
and observe that

1 + ϑ̃i qi
qi

= γ ∈ (0, 1).

Therefore, for i = i∞, ..., i∞ + j∞ − 1 we can apply Proposition 3.1 to

R = Ri , ϑ = ϑ̃i , q = qi ,

so that along with (39) and the observation that s > 1/2 implies

1 + 2s + ϑ̃i qi
qi + 1

>
2 + ϑ̃i qi
qi + 1

= 1 + qi (γ − 1)

qi + 1
> γ,

we obtain the estimates

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|γ

∣∣∣∣∣
∣∣∣∣∣
Lqi+1 (BRi+1+4h0 )
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≤ C14

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|γ

∣∣∣∣∣
∣∣∣∣∣
Lqi (BRi+4h0 )

+ 1

⎞
⎠ , i = i∞, ..., i∞ + j∞ − 1,

and

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|γ

∣∣∣∣∣
∣∣∣∣∣
Lqi∞+ j∞ (B3/4)

≤ C14

⎛
⎝ sup

0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣
δ2hu1
|h|γ

∣∣∣∣∣
∣∣∣∣∣
Lqi∞+ j∞−1 (BRi∞+ j∞−1+4h0 )

+ 1

⎞
⎠ ,

where C14 = C14(n, s, λ, α). Combining these estimates with (40) and recalling that γ =
1 − ε, we arrive at

sup
0<|h|<h0

∣∣∣∣∣
∣∣∣∣∣

δ2hu1
|h|1−ε

∣∣∣∣∣
∣∣∣∣∣
Lqi∞+ j∞ (B3/4)

≤ C15(n, s, λ, α).

By imitating the arguments used to conclude in case 1 (cf. (35) and (36)), which in particular
involves applying Lemma 2.5 with β = 1− ε and q = qi∞+ j∞ (which is applicable in view
of (38)), we conclude that

[u1]Cα(B1/2) ≤ C = C(n, s, λ, α)

for a different constantC as the one in (36). The desired estimate (26) now once again simply
follows by rescaling, which finishes the proof. ��

4 Higher Hölder regularity by approximation

We now use an approximation argument inspired by [2, section 6] and [5] in order to prove
Theorem 1.1 and Theorem 1.2 under full generality. In order to do so, we need the following
definition.

Definition Let 0 < r < R and let u ∈ Ws,2(BR) ∩ L1
2s(R

n). We say that v ∈ Ws,2(BR) ∩
L1
2s(R

n) is a weak solution of the problem
{
L�
Av = 0 in Br

v = u a.e. in R
n \ Br ,

if we have E�
A (u, ϕ) = 0 for any ϕ ∈ Ws,2

0 (Br ) and v = u a.e. in R
n \ Br .

Lemma 4.1 Let s ∈ (0, 1), λ ≥ 1, q > n
2s and M ≥ 1. Then for any τ > 0, there exists

some small enough δ = δ(τ, n, s, λ, q, M) > 0 such that the following is true. Assume that
� satisfies (4) and (5) with respect to λ, that A ∈ L0(λ) and that we have f ∈ Lq(B1).
Moreover, suppose that Ã is another kernel coefficient of class L0(λ) such that

||A − Ã||L∞(Rn×Rn) ≤ δ, || f ||Lq (B1) ≤ δ, (41)

and let u ∈ Ws,2(B1) ∩ L1
2s(R

n) be a local weak solution of

L�
Au = f in B1 (42)

that satisfies

sup
x∈B1

|u(x)| +
∫
Rn\B1

|u(y)|
|y|n+2s dy ≤ M . (43)
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Then the unique weak solution v ∈ Ws,2(B1) ∩ L1
2s(R

n) of the problem
{
L�
Ã
v = 0 in B7/8

v = u a.e. in R
n \ B7/8

(44)

satisfies
||u − v||L∞(B3/4) ≤ τ. (45)

Proof First of all, we remark that the existence of a unique weak solution of the problem (44)
belonging to Ws,2(B1) ∩ L1

2s(R
n) can be shown almost exactly as in [16, Theroem 1 and

Remark 3] by using the theory of monotone operators and additionally taking into account
the bounds (4) and (5) imposed on �.
We now prove by contradiction. Assume that the conclusion is not true. Then there exist some
τ > 0, sequences of kernel coefficients {Am}∞m=1 and { Ãm}∞m=1 of class L0(λ), a sequence of
functions {�m}∞m=1 satisfying (4) and (5), and sequences {um}∞k=1 ⊂ Ws,2(B1) ∩ L1

2s(R
n),

{ fm}∞m=1 ⊂ Lq(B1), such that for any m the function um is a local weak solution of the
problem

L�m
Am

um = fm in B1, (46)

sup
x∈B1

|um(x)| +
∫
Rn\B1

|um(y)|
|y|n+2s dy ≤ M, (47)

||Am − Ãm ||L∞(Rn×Rn) ≤ 1

m
, || fm ||Lq (B1) ≤ 1

m
, (48)

but for any m the unique weak solution vm ∈ Ws,2(B1) ∩ L1
2s(R

n) of
{
L�m

Ãm
vm = 0 in B7/8

vm = um a.e. in R
n \ B7/8

(49)

satisfies
||um − vm ||L∞(B3/4) > τ. (50)

In view of (2), (5) and using wm := um − vm ∈ Ws,2
0 (B7/8) as a test function in (49) and

also in (46), we obtain
∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

≤ λ

∫
Rn

∫
Rn

Ãm(x, y)
((um(x) − um(y)) − (vm(x) − vm(y)))2

|x − y|n+2s dydx

≤ λ2
(∫

Rn

∫
Rn

Ãm(x, y)
�m(um(x) − um(y))(wm(x) − wm(y))

|x − y|n+2s dydx

−
∫
Rn

∫
Rn

Ãm(x, y)
�m(vm(x) − vm(y))(wm(x) − wm(y))

|x − y|n+2s dydx
︸ ︷︷ ︸

=0

)

= λ2
(∫

Rn

∫
Rn

( Ãm(x, y) − Am(x, y))
�m(um(x) − um(y))(wm(x) − wm(y))

|x − y|n+2s dydx

+
∫
Rn

∫
Rn

Am(x, y)
�m(um(x) − um(y))(wm(x) − wm(y))

|x − y|n+2s dydx

)
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= λ2
∫
Rn

∫
Rn

( Ãm(x, y) − Am(x, y))
�m(um(x) − um(y))(wm(x) − wm(y))

|x − y|n+2s dydx
︸ ︷︷ ︸

=:I1

+ λ2
∫
B1

fm(x)wm(x)dx

︸ ︷︷ ︸
:=I2

.

By using (4) and (48), we further estimate I1 as follows

I1 ≤λ3
∫
Rn

∫
Rn

| Ãm(x, y) − Am(x, y)| |um(x) − um(y)||wm(x) − wm(y)|
|x − y|n+2s dydx

≤λ3||Am − Ãm ||L∞(Rn×Rn)

∫
Rn

∫
Rn

|um(x) − um(y)||wm(x) − wm(y)|
|x − y|n+2s dydx

≤λ3
1

m

∫
B15/16

∫
B15/16

|um(x) − um(y)||wm(x) − wm(y)|
|x − y|n+2s dydx

︸ ︷︷ ︸
=:I1,1

+ 2λ3
1

m

∫
B7/8

∫
Rn\B15/16

|um(x)||wm(x)|
|x − y|n+2s dydx

︸ ︷︷ ︸
=:I1,2

+ 2λ3
1

m

∫
B7/8

∫
Rn\B15/16

|um(y)||wm(x)|
|x − y|n+2s dydx

︸ ︷︷ ︸
=:I1,3

.

In order to proceed, we observe that since n > 2s, we have q > n
2s > 2n

n+2s , so that Hölder’s
inequality and (48) yield

(∫
B1

| fm(x)| 2n
n+2s dx

) n+2s
2n ≤ C1|| fm ||Lq (B1) ≤ C1

m
, (51)

where C1 = C1(n, s, q) > 0. By using the Cauchy-Schwarz inequality, Theorem 2.10, (47)
and (51), for I1,1 we obtain

I1,1 ≤
(∫

B15/16

∫
B15/16

(um(x) − um(y))2

|x − y|n+2s dydx

) 1
2 (∫

Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

≤C2

(
||um ||2L2(B1)

+ ||um ||L1(B1)

∫
Rn\B1

|um(y)|
|y|n+2s dy +

(∫
B1

| fm(x)| 2n
n+2s dx

) n+2s
n

) 1
2

×
(∫

Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

≤C3

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

,

whereC2 andC3 depend only on n, s, λ, q andM . For I1,2, by using Lemma 2.1, the Cauchy-
Schwarz-inequality, the fractional Friedrichs-Poincaré inequality (Lemma 2.3) and (47), we
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have

I1,2 ≤ C4

∫
B7/8

∫
Rn\B15/16

|um(x)||wm(x)|
|y|n+2s dydx

= C5

∫
B7/8

|um(x)||wm(x)|dx

≤ C5||wm ||L2(B7/8)||um ||L2(B7/8) ≤ C6

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

,

where C4 = 15n+2s , C5 = C5(n, s) > 0 and C6 = C6(n, s, M) > 0. Similarly, by using
Lemma 2.1, the Cauchy-Schwarz-inequality, Lemma 2.2, Lemma 2.3 and (47), for I1,3 we
obtain

I1,3 ≤ C4

∫
B7/8

∫
Rn\B15/16

|um(y)||wm(x)|
|y|n+2s dydx

≤ C7||wm ||L2(B7/8)

∫
Rn\B15/16

|um(y)|
|y|n+2s dy

≤ C8

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2
(

||um ||L1(B1) +
∫
Rn\B1

|um(y)|
|y|n+2s dy

)

≤ C9

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

,

where again all the constants depend only on n, s and M . Next, by using Hölder’s inequality,
the fractional Sobolev inequality (cf. [9, Theorem 6.5]) and (51), we estimate I2 in the
following way

I2 ≤
(∫

B1
| fm(x)| 2n

n+2s dx

) n+2s
2n

(∫
B1

|wm(x)| 2n
n−2s dx

) n−2s
2n

≤C10
1

m

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

,

where C10 = C10(n, s, q) > 0. Putting the above estimates together, we arrive at

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

≤ C11

m

for some C11 = C11(n, s, λ, q, M) > 0. Combining this estimate with the fractional
Friedrichs-Poincaré inequality (Lemma 2.3) leads to

||wm ||L2(B7/8) ≤ C12

(∫
Rn

∫
Rn

(wm(x) − wm(y))2

|x − y|n+2s dydx

) 1
2

≤ C12
C11

m
m→∞−−−−→ 0. (52)

In other words, we have
lim

m→∞ ||um − vm ||L2(B7/8) = 0. (53)
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In view of Theorem 2.11, Theorem 2.12, the fact that um = vm a.e. in Rn \ B7/8 and Lemma
2.2, we have

sup
x∈B3/4

|vm(x)| + [vm]Cβ (B3/4) ≤C13

(
||vm ||L2(B7/8) +

∫
Rn\B7/8

|vm(y)|
|y|n+2s dy

)

≤C13

(
||wm ||L2(B7/8) + ||um ||L2(B7/8) +

∫
Rn\B7/8

|um(y)|
|y|n+2s dy

)

≤C14

(
||wm ||L2(B7/8) + ||um ||L∞(B1) +

∫
Rn\B1

|um(y)|
|y|n+2s dy

)
,

so that in view of (52) and (47) the sequence {vm}∞m=1 is uniformly bounded in B3/4 and
has uniformly bounded Cβ seminorms in B3/4, where β = β(n, s, λ, q) > 0. Moreover,
in view of (47) and Theorem 2.12, the sequence {um}∞m=1 is also uniformly bounded in
B3/4 and has uniformly bounded Cβ seminorms in B3/4. In particular, the same is also true
for the sequence {um − vm}∞m=1. Therefore, by the Arzelà-Ascoli theorem, by passing to a
subsequence if necessary, we obtain that the sequence {um − vm}∞m=1 converges uniformly
in B3/4 to some function h. Since by (53) up to passing to another subsequence we have

um − vm
m→∞−−−−→ 0 a.e. in B7/8,

which by uniqueness of the limit implies that h = 0 a.e. in B3/4, we arrive at

lim
m→∞ ||um − vm ||L∞(B3/4) = 0. (54)

In particular, for m large enough we have

||um − vm ||L∞(B3/4) ≤ τ,

which contradicts (50). This finishes the proof. ��
Next, we use the above Lemma and Theorem 3.2 in order to prove the desired higher Hölder
regularity in the case when A is close enough to a locally translation invariant kernel coeffi-
cient.

Proposition 4.2 Let s ∈ (0, 1), λ ≥ 1, q > n
2s and let � = min

{
2s − n

q , 1
}
. Then for any

0 < ε < �, there exists some small enough δ = δ(ε, n, s, λ, q) > 0 such that the following
is true. Assume that � satisfies (4) and (5) with respect to λ, that A ∈ L0(λ) and that we
have f ∈ Lq(B1). Moreover, suppose that there exists a kernel coefficient Ã ∈ L1(B1, λ)

such that
||A − Ã||L∞(Rn×Rn) ≤ δ, || f ||Lq (B1) ≤ δ. (55)

Then for any local weak solution u ∈ Ws,2(B1) ∩ L1
2s(R

n) of

L�
Au = f in B1 (56)

that satisfies

sup
x∈B1

|u(x)| ≤ 1,
∫
Rn\B1

|u(y)|
|y|n+2s dy ≤ 1, (57)

we have u ∈ C�−ε(B1/2) and

[u]Cα(B1/2) ≤ C(n, s, λ, q).
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Proof We divide the proof into two parts.
Step 1: Regularity at the origin. In this step, our aim is to prove that for any 0 < ε < �

and any 0 < r < 1, there exists some small enough δ > 0 such that if A, Ã, f and u are as
above, then

sup
x∈Br

|u(x) − u(0)| ≤ C1r
�−ε (58)

for some constant C1 = C1(n, s, λ, ε) > 0. In order to accomplish this, we fix some 0 <

ε < � and observe that it suffices to prove that there exist 0 < ρ < 1
3 and δ > 0 such that if

A, Ã, f and u are as above, then for any k ∈ N0 we have

sup
x∈B

ρk

|u(x) − u(0)| ≤ 2ρk(�−ε),

∫
Rn\B1

|u(ρk y) − u(0)|
ρk(�−ε)|y|n+2s

dy ≤ M0, (59)

where M0 := 1 + ∫
Rn\B1

dy
|y|n+2s < ∞. Indeed, assume that (59) were true. Since for any

0 < r < 1 there exists some k ∈ N0 such that ρk+1 < r ≤ ρk , by the first inequality in (59)
we would arrive at

sup
x∈Br

|u(x) − u(0)| ≤ sup
x∈B

ρk

|u(x) − u(0)| ≤ 2ρk(�−ε) = 2

ρ�−ε
ρ(k+1)(�−ε) ≤ 2

ρ�−ε
r�−ε,

which would prove (58) with C1 = 2
ρ�−ε .

In order to prove (59), we proceed by induction. In the case when k = 0, (59) is true by the
assumptions (57).
Next, suppose that (59) holds up to k and let us prove that it is also true for k + 1. Let τ > 0
to be chosen small enough and consider the corresponding δ = δ(τ, n, s, λ, q, M) > 0 given
by Lemma 4.1, where M := 2 + M0. Assume that (55) is satisfied with respect to this δ.
Furthermore, define

wk(x) := u(ρk x) − u(0)

ρk(�−ε)
, fk(x) := ρk(2s−(�−ε)) f (ρk x)

and

Ak(x, y) := A(ρk x, ρk y), Ãk(x, y) := Ã(ρk x, ρk y), �k(t) := 1

ρk(�−ε)
�(ρk(�−ε)t).

We note that Ak ∈ L0(λ), Ãk ∈ L1

(
λ, B 1

ρk

)
⊂ L1(λ, B1) and that �k satisfies (4) and (5)

with respect to λ. Moreover, wk belongs toWs,2(B1)∩ L1
2s(R

n) and is a local weak solution

of L�k
Ak

wk = fk in B1, while by (55) we have

||Ak − Ãk ||L∞(Rn×Rn) = ||A − Ã||L∞(Rn×Rn) ≤ δ

and

|| fk ||Lq (B1) = ρk(2s−(�−ε))ρ
−k n

q || f ||Lq (B
ρk ) ≤ || f ||Lq (B1) ≤ δ,

where we have also used that � ≤ 2s − n
q and thus k

(
2s − (� − ε) − n

q

)
≥ kε ≥ 0.

Moreover, by the induction hypothesis we have

||wk ||L∞(B1) ≤ 2,
∫
Rn\B1

|wk(y)|
|y|n+2s dy ≤ M0. (60)
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Therefore, by Lemma 4.1 the unique weak solution vk ∈ Ws,2(B1) ∩ L1
2s(R

n) of
{
L�k

Ãk
vk = 0 in B7/8

vk = wk a.e. in R
n \ B7/8

satisfies
||wk − vk ||L∞(B3/4) ≤ τ. (61)

Together with the fact that wk(0) = 0, we obtain that for any x ∈ B1/3 we have

|wk(x)| ≤|wk(x) − vk(x)| + |vk(0) − wk(0)| + |vk(x) − vk(0)|
≤2τ + [vk]C�−ε/2(B1/3)|x |�−ε/2.

(62)

Our next goal is to prove that the right-hand side of the previous estimate is uniformly
bounded by a constant that does not depend on k. In order to do so, we observe that since
Ãk ∈ L1(λ, B1) ⊂ L1(λ, B2/3), by Theorem 3.2 we have

[vk]C�−ε/2(B1/3) ≤ C2

(
||vk ||L∞(B2/3) + [vk]Ws,2(B2/3) +

∫
Rn\B2/3

|vk(y)|
|y|n+2s dy

)
, (63)

where C2 = C2(n, s, λ,�, ε) > 0. For the first term of the right-hand side, in view of (61)
and (60) we have

||vk ||L∞(B2/3) ≤ ||vk ||L∞(B3/4) ≤ ||vk − wk ||L∞(B3/4) + ||wk ||L∞(B3/4) ≤ τ + 2.

In order to estimate the tail term, we observe that by the same argument used in order to
obtain (52), we have

||vk − wk ||L2(B7/8) ≤ C3δ,

where C3 = C3(n, s, λ, q) > 0. Together with the fact that vk = wk in R
n \ B7/8, Lemma

2.2 and (60), we deduce∫
Rn\B2/3

|vk(y)|
|y|n+2s dy ≤

∫
Rn\B2/3

|wk(y)|
|y|n+2s dy +

∫
B7/8\B2/3

|vk(y) − wk(y)|
|y|n+2s dy

≤C4

(
||wk ||L1(B1) +

∫
Rn\B1

|wk(y)|
|y|n+2s dy +

∫
B7/8

|vk(y) − wk(y)|dy
)

≤C5

(
||wk ||L∞(B1) +

∫
Rn\B1

|wk(y)|
|y|n+2s dy + ||vk − wk ||L2(B7/8)

)
≤ C6,

where C6 = C6(n, s, λ, q, δ) > 0. Finally, for the Sobolev seminorm by Theorem 2.10 and
the above estimates we have

[vk]Ws,2(B2/3) ≤ C7

(
||vk ||2L∞(B3/4) + ||vk ||L∞(B3/4)

∫
Rn\B3/4

|vk(y)|
|y|n+2s dy

)
≤ C8,

where C7 and C8 do not depend on k. By combining the above estimates with (62) and (63),
we obtain that for any x ∈ B1/3 we have

|wk(x)| ≤ 2τ + C9|x |�−ε/2, (64)

where again C9 does not depend on k. Next, define

wk+1(x) := u(ρk+1x) − u(0)

ρk+1(�−ε)
= wk(ρx)

ρ�−ε
.
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By choosing τ small enough such that 2τ < ρ�, in view of (64), we obtain

|wk+1(x)| ≤ 2τρε−� + C9ρ
ε−�|ρx |�−ε/2 ≤ (1 + C9|x |�−ε/2)ρε/2 ∀x ∈ B 1

3ρ
. (65)

In particular, by choosing ρ small enough such that ρ ≤ (1 + C9)
− 2

ε and recalling that
ρ < 1/3, we arrive at ||wk+1||L∞(B1) ≤ 1. By definition of wk+1 this is equivalent to

sup
x∈B

ρk+1

|u(x) − u(0)| ≤ ρ(k+1)(�−ε),

which proves the first estimate in (59) for k + 1.
In order to prove the second estimate in (59) for k + 1, we observe that (65) implies

∫
B 1
3ρ

\B1
|wk+1(y)|
|y|n+2s dy ≤ρε/2

∫
B 1
3ρ

\B1
1 + C9|y|�−ε/2

|y|n+2s dy

≤(1 + C9)ρ
ε/2

∫
B 1
3ρ

\B1
dy

|y|n+2s+ε/2−�
≤ C10ρ

ε/2,

where C10 := (1+C9)
∫
Rn\B1

dy
|y|n+2s+ε/2−� < ∞ does not depend on k and is finite because

2s + ε/2 − � ≥ n
q + ε/2 > 0. Furthermore, by using a change of variables and the first

bound in (60), we obtain∫
B 1

ρ
\B 1

3ρ

|wk+1(y)|
|y|n+2s dy=ρε−�+2s

∫
B1\B1/3

|wk(y)|
|y|n+2s dy≤2ρε/2

∫
B1\B1/3

dy

|y|n+2s ≤ C11ρ
ε/2,

where C11 := 3n+2s2|B1| < ∞. Moreover, again by a change of variables and the second
bound in (60), we deduce∫

Rn\B 1
ρ

|wk+1(y)|
|y|n+2s dy = ρε−�+2s

∫
Rn\B1

|wk(y)|
|y|n+2s dy ≤ M0ρ

ε/2.

Note that in the last two estimates we also used that ρ < 1 and that ε − � + 2s ≥ ε/2. By
combining the last three displays and choosing ρ small enough such that

(C10 + C11 + M0)ρ
ε/2 ≤ M0,

we arrive at ∫
Rn\B1

|wk+1(y)|
|y|n+2s dy ≤ (C10 + C11 + M0)ρ

ε/2 ≤ M0,

which proves the second estimate in (59) for k + 1. Therefore, for

ρ < min

{
1

3
, (1 + C9)

− 2
ε , M

2
ε

0 (C10 + C11 + M0)
− 2

ε

}
, τ <

ρ�

2

(59) is true for any k ∈ N0, which in particular also proves (58) under the assumptions (55)
and (57), where δ is chosen as above.
Step 2: Regularity in a ball.Next, we show the desired higher Hölder regularity in the whole
ball B1/2. We fix some 0 < ε < � and take the corresponding small enough δ from step 1.
Fix z ∈ B1/2, set L := 2n+1(1 + |B1|) and define

uz(x) := u
( x
2

+ z
)

/L, fz(x) := 2−2s

L
f
( x
2

+ z
)
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and

Az(x, y) := A
( x
2

+ z,
y

2
+ z

)
, Ãz(x, y) := Ã

( x
2

+ z,
y

2
+ z

)
, �L(t) := 1

L
�(Lt).

We note that Az ∈ L0(λ), Ãz ∈ L1 (λ, B1) and that �L satisfies (4) and (5) with respect to
λ. Moreover, uz is a local weak solution of L�L

Az
uz = fz in B1 and by (55) we have

||Az − Ãz ||L∞(Rn×Rn) = ||A − Ã||L∞(Rn×Rn) ≤ δ

and

|| fz ||Lq (B1) = 2n/q−2s

L
|| f ||Lq (B1/2(z)) ≤ || f ||Lq (B1) ≤ δ.

Additionally, by (57) we have

sup
x∈B1

|uz(x)| ≤ sup
x∈B1/2(z)

|u(x)| ≤ sup
x∈B1

|u(x)| ≤ 1

and together with Lemma 2.2
∫
Rn\B1

|uz(y)|
|y|n+2s dy =2−2s

L

∫
Rn\B1/2(z)

|u(y)|
|y − z|n+2s dy

≤2n

L

∫
Rn\B1

|u(y)|
|y|n+2s dy + 2n

L
||u||L1(B1)

≤2n

L

∫
Rn\B1

|u(y)|
|y|n+2s dy + 2n |B1|

L
||u||L∞(B1) ≤ 1.

Therefore, we are in the position to apply step 1 to uz , which yields

sup
x∈Br

|uz(x) − uz(0)| ≤ C1r
�−ε, 0 < r < 1.

By rewriting this estimate in terms of u, for any z ∈ B1/2 we obtain

sup
x∈Br (z)

|u(x) − u(z)| ≤ C1Lr
�−ε, 0 < r <

1

2
. (66)

Now fix two points x, y ∈ B1/2. Then applying (66) with r = |x−y|
2 < 1/2 and z = (x+ y)/2

yields

|u(x) − u(y)| ≤ |u(x) − u(z)| + |u(y) − u(z)| ≤2 sup
ω∈Br (z)

|u(w) − u(z)|

≤2C1Lr
�−ε ≤ 2C1L|x − y|�−ε,

which proves the desired Hölder regularity of u. ��
In order to obtain the estimate (8) in our main results with its precise scaling, we now first
prove Theorem 1.2 at scale 1 by using scaling and covering arguments. The general case will
then follow by another scaling argument.

Theorem 4.3 Let λ ≥ 1 and f ∈ Lq(B1) for some q > n
2s . Consider a kernel coefficient

A ∈ L0(λ) and suppose that � satisfies (4) and (5) with respect to λ. Fix some 0 < α <

min
{
2s − n

q , 1
}
. Then there exists some small enough δ = δ(α, n, s, λ, q) > 0, such that if
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for any z ∈ B1, there exists some small enough radius rz > 0 and some Az ∈ L1(λ, Brz (z))
such that

||A − Az ||L∞(Brz (z)×Brz (z)) ≤ δ,

then for any local weak solution u ∈ Ws,2(B1) ∩ L1
2s(R

n) of the equation L�
Au = f in B1,

we have u ∈ Cα(Bσ ) and

[u]Cα(Bσ ) ≤ C

(
||u||L2(B1) +

∫
Rn\B1

|u(y)|
|y|n+2s dy + || f ||Lq (B1)

)
, (67)

where C = C(n, s, λ, α, σ, q, {rz}z∈B1) > 0.

Proof Fix α ∈ (0,�), where as before � = min
{
2s − n

q , 1
}
, set ε = � − α and let

δ = δ(ε, n, s, λ, q) > 0 be given by Proposition 4.2. We need to prove that u ∈ C�−ε
loc (Bσ ).

Let δ = δ(ε, n, s, λ, q) > 0 be the corresponding δ given by Proposition 4.2 and fix some
σ ∈ (0, 1). Fix some z ∈ Bσ . Then by assumption, there exists some small enough radius
rz ∈ (0, 1) with B2rz (z) ⊂ B1 and some kernel coefficient Az ∈ L1(λ, Brz (z)) such that

||A − Az ||L∞(Brz (z)×Brz (z)) ≤ δ.

Then the kernel coefficient

Ã(x, y) :=
{
Az(x, y) if (x, y) ∈ Brz (z) × Brz (z)

A(x, y) if (x, y) /∈ Brz (z) × Brz (z)

also belongs to L1(λ, Brz (z)) and satisfies

||A − Ã||L∞(Rn×Rn) ≤ δ. (68)

In the case when u ≡ 0, the desired Hölder regularity trivially holds. Otherwise, set

Mz := sup
x∈Brz (z)

|u(x)| + r2sz

∫
Rn\Brz (z)

|u(y)|
|z − y|n+2s dy + r2s−n/q

z

δ
|| f ||Lq (Brz (z)) > 0.

Consider the scaled functions u1 ∈ Ws,2(B1) ∩ L1
2s(R

n) and f1 ∈ Lq(B1) given by

u1(x) := 1

Mz
u(rzx + z), f1(x) := r2s

Mz
f (rzx + z)

and also

A1(x, y) := A(rzx + z, rz y + z), Ã1(x, y) := Ã(rzx + z, rz y + z),

�1(t) := 1

Mz
�(Mzt).

We note that u1 is a local weak solution of L�1
A1
u1 = f1 in B1. Moreover, observe that

A1 ∈ L0(λ) and Ã1 ∈ L1(λ, B1),while�1 satisfies (4) and (5)with respect toλ. Furthermore,
by using changes of variables it is easy to verify that u1 and f1 satisfy

sup
x∈B1

|u1(x)| ≤ 1,
∫
Rn\B1

|u1(y)|
|y|n+2s dy ≤ 1, || f1||Lq (B1) ≤ δ, (69)

while (68) implies that
||A1 − Ã1||L∞(Rn×Rn) ≤ δ. (70)
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Therefore, in view of (69) and (70) the assumptions (55) and (57) from Proposition 4.2 are
verified with respect to u1, f1, A1 and Ã1, so that by Proposition 4.2 we obtain

[u1]C�−ε(B1/2) ≤ C1(n, s, λ, q).

By rescaling and then using Theorem 2.11, we arrive at the estimate

[u]C�−ε(Brz/2(z))
≤ C1

r�−ε
z

(
sup

x∈Brz (z)
|u(x)| + r2sz

∫
Rn\Brz (z)

|u(y)|
|z − y|n+2s dy

+ r2s−n/q
z

δ
|| f ||Lq (Brz (z))

)

≤ C2

r�−ε
z

(
r−n/2
z ||u||L2(B2rz (z))

+ r2sz

∫
Rn\Brz (z)

|u(y)|
|z − y|n+2s dy

+ r2s−n/q
z || f ||Lq (B2rz (z))

)
,

(71)

where C2 = C2(n, s, λ, q,�, ε) > 0. Since
{
Brz/4(z)

}
z∈Bσ

is an open covering of Bσ and

Bσ is compact, there exists a finite subcover
{
Brzi /4(zi )

}N

i=1
of Bσ and hence of Bσ . Set

rmin := min
i=1,...,N

rzi > 0.

Fix x, y ∈ Bσ with x �= y. Then x ∈ Brzi /4(zi ) for some i = 1, ..., N . If |x − y| < rmin/4,
then in particular y ∈ Brzi /2(zi ), so that by (71) and Lemma 2.2 we have

|u(x) − u(y)|
|x − y|�−ε

≤[u]C�−ε(Brzi /2(z))

≤C3

(
||u||L2(B2rzi (zi ))

+
∫
Rn\Brzi (zi )

|u(y)|
|zi − y|n+2s dy + || f ||Lq (B2rzi (zi ))

)

≤C4

(
||u||L2(B1) +

∫
Rn\B1

|u(y)|
|y|n+2s dy + || f ||Lq (B1)

)
,

where C3 and C4 depend only on n, s, λ, q,�, ε and rmin. If |x − y| ≥ rmin/4, then in view
of Theorem 2.11 and Lemma 2.2, we have

|u(x) − u(y)|
|x − y|�−ε

≤2

(
4

rmin

)�−ε

sup
x∈Bσ

|u(x)|

≤C5

(
||u||L2(B1) +

∫
Rn\Bσ

|u(y)|
|y|n+2s dy + || f ||Lq (B1)

)

≤C6

(
||u||L2(B1) +

∫
Rn\B1

|u(y)|
|y|n+2s dy + || f ||Lq (B1)

)
,

where C5 and C6 depend only on n, s, λ, q,�, ε, σ and rmin. Recalling that α = � − ε,
combining the above estimates now proves the estimate (67) and in particular u ∈ Cα(Bσ ).

��

Proof of Theorem 1.2 Fix some 0 < α < min
{
2s − n

q , 1
}
and let δ = δ(α, n, s, λ, q) > 0 be

given byTheorem4.3. Fix x0 ∈ � and R > 0 such that BR(x0) � �, so that by assumption for
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any z′ ∈ BR(x0), there is some small enough radius rz′ > 0 and some Az′ ∈ L1(λ, Brz′ (z
′))

such that

||A − Az′ ||L∞(Brz′ (z
′)×Brz′ (z

′)) ≤ δ.

Consider the functions u1 ∈ Ws,2(B1) ∩ L1
2s(R

n) and f1 ∈ Lq(B1) given by

u1(x) := u(Rx + x0), f1(x) := R2s f (Rx + x0)

and also

A1(x, y) := A(Rx + x0, Ry + x0), (A1)z(x, y) := ARz+x0(Rx + x0, Ry + x0), z ∈ B1,

where ARz+x0 exists for any z ∈ B1 since in this case we have Rz + x0 ∈ BR(x0). We note
that for any z ∈ B1 and rz := rRz+x0/R > 0, we have (A1)z ∈ L1(λ, Brz (z)) and

||A1 − (A1)z ||L∞(Brz (z)×Brz (z)) ≤ δ.

In addition, u1 is a local weak solution of L�
A1
u1 = f1 in B1. Therefore, by Theorem 4.3

along with some changes of variables, for any σ ∈ (0, 1) we obtain the estimate

Rα[u]Cα(Bσ R(x0)) =[u1]Cα(Bσ )

≤C

(
||u1||L2(B1) +

∫
Rn\B1

|u1(y)|
|y|n+2s dy + || f1||Lq (B1)

)

=C

(
R− n

2 ||u||L2(BR(x0)) + R2s
∫
Rn\BR(x0)

|u(y)|
|x0 − y|n+2s dy

+ R2s− n
q || f ||Lq (BR(x0))

)
,

which proves the estimate (8). Furthermore, since x0 ∈ � is arbitrary, we in particular obtain
that u ∈ Cα

loc(�). ��
Proof of Theorem 1.1 Fix some 0 < α < min

{
2s − n

q , 1
}
and let δ = δ(α, n, s, λ, q) > 0

be given by Theorem 1.2. Fix some R > 0 and some x0 ∈ � with BR(x0) � �. Since A
satisfies (7) in � with respect to some ε > 0, there exists some small enough rδ > 0 such
that

sup
x,y∈BR (x0)

|x−y|≤ε

|A(x + h, y + h) − A(x, y)| ≤ δ ∀h ∈ Brδ . (72)

Now fix some z ∈ BR(x0) and some small enough radius rz ∈ (0, 1) such that rz ≤
min{ε/2, rδ} and Brz (z) ⊂ BR(x0). Then for all x, y ∈ Brz (z) we have z − y ∈ Brδ and
z − x ∈ Brδ , so that (72) implies

sup
x,y∈Brz (z)

|A(x − y + z, z) − A(x, y)| ≤ δ, sup
x,y∈Brz (z)

|A(z, y − x + z) − A(x, y)| ≤ δ.

Therefore, by additionally taking into account the symmetry of A, we see that the kernel
coefficient defined by

Az(x, y) := 1

2
(A(x − y + z, z) + A(y − x + z, z))

satisfies

||A − Az ||L∞(Brz (z)×Brz (z)) ≤ δ
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and clearly belongs to the class L1(λ, Brz (z)). Since z ∈ BR(x0) is arbitrary, all assumptions
from Theorem 1.2 are satisfied with � replaced by BR(x0). Therefore, by Theorem 1.2 we
see that the estimate (8) holds in any ball BR(x0) � �. In addition, since x0 ∈ � is arbitrary,
we obtain that u ∈ Cα

loc(�). ��
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