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Novel Arylindigoids by Late-Stage Derivatization of
Biocatalytically Synthesized Dibromoindigo
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Abstract: Indigoids represent natural product-based com-

pounds applicable as organic semiconductors and photo-
responsive materials. Yet modified indigo derivatives are

difficult to access by chemical synthesis. A biocatalytic ap-
proach applying several consecutive selective C�H func-

tionalizations was developed that selectively provides

access to various indigoids: Enzymatic halogenation of l-
tryptophan followed by indole generation with

tryptophanase yields 5-, 6- and 7-bromoindoles. Subse-
quent hydroxylation using a flavin monooxygenase fur-

nishes dibromoindigo that is derivatized by acylation. This
four-step one-pot cascade gives dibromoindigo in good

isolated yields. Moreover, the halogen substituent allows

for late-stage diversification by cross-coupling directly per-
formed in the crude mixture, thus enabling synthesis of a

small set of 6,6’-diarylindigo derivatives. This chemoenzy-
matic approach provides a modular platform towards

novel indigoids with attractive spectral properties.

Indole is a widespread heterocycle found in many natural

products.[1] For instance, indigo dyes derived from indole have
been applied in textile dyeing for thousands of years due to
their outstanding spectral properties.[2,3] Indigo (1) developed
to a bulk chemical in the last century whereas its C6-brominat-

ed analogue, 6,6’-dibromoindigo (6,6’-2), the major component
of the high-value pigment Tyrian purple, still remains a rarity

(Scheme 1A). Thanks to tremendous efforts by several research
groups traditional indigoids recently turned into focus as natu-

ral product-based, non-toxic materials for sustainable organic

electronics.[4–6] Topical studies examining the photoswitching

abilities of N,N’-aryl-substituted indigos pointed to a useful

strategy to tailor their photochemical properties.[7–9] Synthetic
routes towards 1 were developed by Baeyer and by Heumann

and paved the way to multi-ton production, yet its dibrominat-
ed counterpart 2 has never entered an industrial scale produc-

tion.[10]

Today biocatalysis offers a versatile methodology to address
selectivity issues, e.g. , arising from similarly reactive C�H moi-

eties.[11] Recent advancements on enzyme discovery, engineer-
ing as well as tremendous efforts on process development

open up elaborate transformations that can be carried out
under mild conditions, often with excellent selectivities.[12–14]

Immense progress has been achieved in enzyme-catalyzed C�
H functionalization.[15] Especially oxyfunctionalization is a para-
mount approach to activate C�H bonds by using biocatalysts

that are capable of utilizing molecular oxygen. Manifold
biocatalytic approaches in this rapidly evolving field, especially

on the use of P450 enzymes, were extensively reviewed, giving
a wide overview on the current state of the art.[16–19] The first

fermentative synthesis of indigo was reported by Ensley and

later by Lee et al. using a dioxygenase for indole hydroxylation.
Tryptophanase that originated from endogenous tryptophan

catabolism was exploited to obtain indole.[20,21] Heme-depen-
dent monooxygenases (MOs) were later evolved towards C3-

hydroxylation of indole.[22–24] Flitsch et al. used formation of
indigo-derived pigments for detecting activity of MO mu-
tants.[25, 26] Biocatalytic functionalization of unprotected indole

was achieved using engineered myoglobin variants which cata-
lyze non-native carbene transfer in whole cells.[27] Besides

using heme-dependent enzymes, also flavin-dependent MOs
play a key role in oxyfunctionalization. Accordingly a flavin

monooxygenase from Methylophaga sp. (mFMO) was estab-
lished for the biotechnological production of indigo and indi-

rubin.[28,29] Nevertheless, the synthesis of valuable halogenated
indigos has remained on analytical or small preparative scale,
particularly due to the low efficiency of halogenases as a

severe bottleneck. In more recent studies, Tischler and co-au-
thors reported on the conversion of haloindoles using a small

array of styrene MOs.[30] One-pot synthesis of indigoids either
in bacteria or plant as the hosts was recently achieved: By in-

troducing a tryptophan halogenase into the host strain along

with a hydroxylase, production of indigoids from tryptophan
was feasible, omitting the need for costly substituted indole

substrates through exploiting the cellular metabolism.[31,32]

However, product titers remained low and the isolation of the

pigment from the cultivation broth can become a tedious pro-
cedure. Moreover, structural modifications that can be, for ex-
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