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MULTIDIMENSIONAL SINGULAR CONTROL AND RELATED

SKOROKHOD PROBLEM: SUFFICIENT CONDITIONS FOR THE

CHARACTERIZATION OF OPTIMAL CONTROLS

JODI DIANETTI AND GIORGIO FERRARI

Abstract. We characterize the optimal control for a class of singular stochastic control
problems as the unique solution to a related Skorokhod reflection problem. The considered
optimization problems concern the minimization of a discounted cost functional over an in-
finite time-horizon through a process of bounded variation affecting an Itô-diffusion. The
setting is multidimensional, the dynamics of the state and the costs are convex, the volatility
matrix can be constant or linear in the state. We prove that the optimal control acts only
when the underlying diffusion attempts to exit the so-called waiting region, and that the
direction of this action is prescribed by the derivative of the value function. Our approach is
based on the study of a suitable monotonicity property of the derivative of the value function
through its interpretation as the value of an optimal stopping game. Such a monotonic-
ity allows to construct nearly optimal policies which reflect the underlying diffusion at the
boundary of approximating waiting regions. The limit of this approximation scheme then
provides the desired characterization. Our result applies to a relevant class of linear-quadratic
models, among others. Furthermore, it allows to construct the optimal control in degenerate
and non degenerate settings considered in the literature, where this important aspect was
only partially addressed.

Keywords: Dynkin games, reflected diffusion, singular stochastic control, Skorokhod prob-
lem, variational inequalities.

AMS subject classification: 93E20, 60G17, 91A55, 49J40.

1. Introduction

This paper considers the problem of characterizing optimal policies for singular stochastic
control problems in multidimensional settings. More precisely, we consider the problem of
controlling, through a one-dimensional càdlàg (i.e., right-continuous with left limits) process
v with locally bounded variation, the first component of a multidimensional diffusion with
initial condition x. Namely, the controller can affect a state process Xx;v which evolves
according to the equation

(1.1) dXx;v
t = b(Xx;v

t )dt+ σ(Xx;v
t )dWt + e1dvt, t ≥ 0, Xx;v

0− = x,

for a multidimensional Brownian motion W , a suitable convex Lipschitz function b, and a
volatility matrix σ, which is either constant or linear in the state. The aim of the controller
is to minimize the expected discounted cost

(1.2) J(x; v) := E
[ ∫ ∞

0
e−ρth(Xx;v

t )dt+

∫
[0,∞)

e−ρtd|v|t
]
,

for a given convex function h and a suitable discount factor ρ > 0. Here, |v| denotes the
total variation of the process v. The value function V of the problem is defined, at any given
initial condition x, as the minimum of J(x; v) over the choice of controls v. Also, a control
v̄ is said to be optimal for x if J(x; v̄) = V (x). Existence of optimal controls can be proved
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in very general frameworks using different probabilistic compactification methods (see, e.g.,
[11, 18, 34, 47, 52]).

Natural questions that immediately arise are whether it is possible to characterize V , and
how one should act on the system in order to obtain the minimal cost V . As a matter of fact,
the Markovian nature of the problem together with mild regularity and growth conditions on
b and h, allows to employ the dynamic-programming approach. This leads to the characteri-
zation of the value function as a solution (in a suitable sense) to the Hamilton-Jacobi-Bellman
equation

(1.3) max{ρV − bDV − tr(σσ>D2V )/2− h, |Vx1 | − 1} = 0.

This equation provides key insights on the way the controller should act on the system in order
to minimize the cost of her actions. Indeed, when V is sufficiently regular, an application of
Itô’s formula suggests that the controller should make the state process not leaving the set
W := {|Vx1 | < 1}, usually referred to as the waiting region. In fact, in many examples (see,
e.g., [23, 32, 44, 45, 50, 57, 62], among others) it is possible to construct the optimal control
as the solution to a related Skorokhod reflection problem; that is, the optimal control can be
characterized as that process v̄, with minimal total variation, which is able to keep the process
Xx;v̄ inside the closure of the waiting regionW, by reflecting it in a direction prescribed by the
gradient of the value function. However, in multidimensional settings, such a characterization
often remains a conjecture (see the discussion in Chapter 6 in [58], Remark 5.2 in [8], and also
[15, 16, 26, 27]), and many questions about the properties of optimal controls remain open,
representing a strong limitation to the theory.

We now discuss more in detail the problem of the characterization of optimal rules. When
the state process is one dimensional, optimal controls can be explicitly constructed as Sko-
rokhod reflections in a general class of models in [1, 22, 38, 39, 50, 61], among others. Also,
in the (non necessarily Markovian) one dimensional case, a similar characterization of op-
timal controls has been achieved in [2, 3, 4], without relying on the dynamic-programming
approach. When the dimension of the problem becomes larger than one, the difficulty of
characterizing optimal controls drastically increases. Indeed, classical results on the existence
of solutions to the Skorokhod reflection problem in the multidimensional domain W require
some regularity of the boundary of W and of the direction of reflection, which are, in most of
the cases, unknown. When the value function V is convex, this difficulty is overcome in some
specific settings. A celebrated example is presented in [57], where the problem of controlling
a two-dimensional Brownian motion with a two-dimensional process of bounded variation is
considered. There, the authors show that the boundary of the waiting region (the so-called
free boundary) is of class C2, and they are therefore able to construct the optimal policy as
a solution to the associated Skorokhod problem. The problem of the characterization is also
encountered in [15, 16, 26, 27], where the construction of the optimal control can be pro-
vided only by requiring additional properties on the boundary of the waiting region. Another
example is exhibited in [22], in which the case of controlling a multidimensional Brownian
motion with a multidimensional control is considered in the case of a radial running cost
h(x) = |x|2. We also refer to [44], where the construction of the optimal policy is provided
in a two-dimensional context in which the drift is non-zero. To the best of our knowledge, in
the case of a convex V , the most general multidimensional setting in which this characteri-
zation is shown is presented in [45], and in its finite time-horizon counterpart [9]. There, the
problem of controlling a multidimensional Brownian motion with a multidimensional control
is considered for a convex running cost. Remarkably, in [45] (and in [9]) the author presents
an approach which allows to construct the unique optimal policy as a solution to the related
Skorokhod problem bypassing the problems related to the regularity of the free boundary. In
non-convex settings, the number of contributions are even rarer. The suitable regularity of
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the boundary of W is shown, in two-dimensional settings, in [32] and in [23], while a multidi-
mensional case is considered in [62], via a connection with Dynkin games. We also mention
that the construction of multidimensional reflected diffusions in polyhedral domains has been
recently studied in [19, 31, 33], in the context of games with singular controls. To conclude,
despite many decades of research in the field, the nature of optimal controls is, in general, far
from being completely understood, and this motivates our study.

In this paper, we provide sufficient conditions for the characterization of the optimal policy
of the singular control problem specified by (1.1) and (1.2) as the solution to the related
Skorokhod reflection problem. Despite in our setting the control is one dimensional, the mul-
tidimensional nature of the problem arises from the fact that the components of the state
process are interconnected; in particular, the action of the controller on the first component
of the state process can affect all the other components. We will show the claimed charac-
terization under two main classes of assumptions in which the volatility matrix is constant
or linearly dependent on the state. In both cases additional monotonicity assumptions are
enforced to the running cost h and to the drift b. These structural conditions are satisfied
in a relevant class of linear-quadratic models, and in some specific settings considered in the
literature for which the problem of constructing the optimal control remained partially open
(see [15, 16, 26, 27]). The strategy of our proof is inspired by [45] and can be resumed in
three main steps.

(1) We first derive important monotonicity properties on Vx1 . This is done by identifying
Vx1 as the value of a related Dynkin game, through a variational formulation in the
spirit of [15].

(2) We construct solutions v̄ε to a family of Skorokhod problems in domains Wε approx-
imating W. Here the monotonicity of Vx1 plays a crucial role in order to show the
regularity of Wε. The controls v̄ε are ε-optimal for (1.2); i.e. J(x; v̄ε) ≤ V (x) + ε.

(3) We find a control v̄ such that v̄ε → v̄, as ε → 0. This implies that v̄ is optimal for
x, and, thanks to the properties of v̄ε, that v̄ solves the Skorokhod problem on the
original domain W. This then provides the desired characterization of the optimal
policy v̄.

As a consequence of our result, some works (in particular [15] and [62]) in the literature on
singular control can be revisited, and the characterization of optimal controls can provided
under slightly different assumptions. Also, our approach allows to treat the singular control
problems with degenerate diffusion matrix studied in [26, 27]. The results apply to problems
with monotone controls, and to the case in which increasing the underlying diffusion has a
different cost than decreasing it. The approach presented in this paper seems to be suitable
to treat also singular control problems in the finite time-horizon.

Clearly, our results relate to stochastic differential equations (SDEs, in short) with reflect-
ing boundary conditions, also known as Skorokhod reflection problems for SDEs. In this field,
existence and uniqueness of strong solutions to reflected SDEs in convex time-independent
domains with normal reflection was first shown in the seminal [60]. These results were then
generalized to non-convex smooth domains with smooth oblique reflection in [48], and sub-
sequently refined in [55]. Existence of strong solutions in a class of non-smooth domains
has been proved in [24], and therefore generalized to the time-dependent case in [49]. This
list is, however, far from being exhaustive, and we therefore refer the interested reader to
[12, 13, 20, 21, 53, 59] and to the references therein. From this point of view, our results
provide existence and uniqueness of a (strong) solution to a Skorokhod problem in which the
domain is given by the noncoincidence setW of the solution of the variational inequality with
gradient constraint (1.3), and in which the reflection direction is prescribed its gradient.

An essential tool for our analysis is the connection between optimal stopping and singular
stochastic control theory. This connection is known since the seminal [5], where the authors
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observed that the derivative of the value function of a singular control problem identifies with
the value of an optimal stopping problem. Since then, this connections has been elaborated
through different approaches (see [6, 8, 42], among others), until the more recent interpretation
given in [47]. When the control is assumed to be of locally bounded variation, and the system
has dynamics with independent components, with one of them being controlled, the space
derivative of the value function of the control problem coincides with the value of a zero-sum
game of stopping; i.e., a Dynkin game (cf. [7, 15, 16, 32, 43]). This connection was described
in a multi-dimensional setting with interconnected dynamics in [15] and [16] by employing a
variational formulation of the problem. In this paper, we employ essentially the formulation
and the techniques elaborated in [15], however extending their arguments to fit our convex
setting.

The rest of this paper is organised as follows. In Section 2 we formulate the problem, we
enforce some structural conditions, and we state the main result of this paper. The proof of
the main result for a constant volatility is presented in Section 3, while the proof for a linear
volatility is discussed in Section 4. Extensions and examples are provided in Section 5, while
Appendix A and Appendix B are devoted to some auxiliary technical results.

1.1. Notation. For d ∈ N with d ≥ 1, an open set B ⊂ Rd, α = (α1, ..., αd) ∈ Nd and
a funciton f : B → R, we denote by Dαf := Dα1

1 ...Dαd
d f the weak derivative of f , where

Dif := fxi := ∂f/∂xi, and we set |α| := α1 + ... + αd. For ` ∈ N, q ∈ [1,∞], and a measure
space (E, E ,m), we define the spaces:

• Lq(E) := {measurable f : E → R s.t. ‖f‖Lq(E) < ∞}, where ‖f‖Lq(E) :=
∫
E |f |

qdm
if q <∞, and ‖f‖L∞(E) := ess supE f for q =∞;

• C`(B) := {f : B → R with continuous `-order derivatives} and
C∞c (B) := {f : B → R with compact support, s.t. f ∈ C`(B) for each ` ∈ N};
• C`;1(B) := {f : B → R with ‖f‖C`;1(B) <∞}, where ‖f‖C0(B) := supx∈B |f(x)|,
‖f‖Lip (B) := supx,y∈B |f(y) − f(x)|/|y − x|, and ‖f‖C`;1(B) :=

∑
|α|≤` ‖Dαf‖C0(B) +∑

|α|=` ‖Dαf‖Lip (B);

• W `;q(B) := {f ∈ Lq(B) with ‖f‖W `;q(B) <∞},
W `;q
loc (B) := {f | f ∈W `;q(D) for each bounded open set D ⊂ B}, and W `;q

0 (B) as the
closure of C∞c (B) in the norm ‖ · ‖W `;q(B), where ‖f‖W `;q(B) :=

∑
|α|≤` ‖Dαf‖Lq(B).

For x ∈ Rd we denote by x> the transpose of x. The vector ei ∈ Rd indicates the i-th element
of the canonical basis of Rd and, for x ∈ R2 and R > 0, set BR(x) := {y ∈ Rd | |y − x| < R}.
Finally, in this paper C indicates a generic positive constant, which may change from line to
line.

2. Problem formulation and main result

2.1. Singular control and Skorokhod problem. Fix d ∈ N, d ≥ 2, and a d-dimensional
Brownian motion W = (W 1, ...,W d) on a filtered probability space (Ω,F ,F,P) satisfying the
usual conditions. For each x = (x1, ..., xd) ∈ Rd, let the process Xx = (X1,x, ..., Xd,x) denote
the solution to the stochastic differential equation (SDE, in short)

(2.1)

{
dX1,x

t = (a1 + b11X
1,x
t )dt+ σ̄(X1,x

t )dW 1
t , t ≥ 0, X1,x

0− = x1,

dXi,x
t = bi(X1,x

t , Xi,x
t )dt+ σ̄(Xi,x

t )dW i
t , t ≥ 0, Xi,x

0− = xi, i = 2, ..., d.

Here a1, b
1
1 are constants, while the coefficients bi ∈ C(R2) and σ̄ ∈ C(R) are deterministic

Lipschitz continuous functions. The drift b̄(x) := (a1 + b11x1, b
2(x1, x2), .., bd(x1, xd))

> and the
function σ̄ satisfy Assumption 2.1 below. Next, introduce the set of admissible controls as

V := {R-valued F-adapted and càdlàg processes with locally bounded variation} ,
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and, for each v ∈ V and x ∈ Rd, let the process Xx;v = (X1,x;v, ..., Xd,x;v) denote the unique
strong solution to the controlled stochastic differential equation

(2.2)

{
dX1,x;v

t = (a1 + b11X
1,x;v
t )dt+ σ̄(X1,x;v

t )dW 1
t + dvt, t ≥ 0, X1,x;v

0− = x1,

dXi,x;v
t = bi(X1,x;v

t , Xi,x;v
t )dt+ σ̄(Xi,x;v

t )dW i
t , t ≥ 0, Xi,x;v

0− = xi, i = 2, ..., d.

For any given initial condition x ∈ Rd, consider the problem of minimizing the expected
discounted cost

(2.3) J(x; v) := E
[ ∫ ∞

0
e−ρth(Xx;v

t )dt+

∫
[0,∞)

e−ρtd|v|t
]
, v ∈ V,

where |v| denotes the total variation of the process v, h : Rd → R is a continuous function,
and ρ > 0 is a constant discount factor. We will say that the control v̄ ∈ V is optimal if

(2.4) V (x) := inf
v∈V

J(x; v) = J(x; v̄),

and, in the following, we will refer to the function V as to the value function of the problem,
and to Xx;v̄ as to the optimal trajectory.

The second integral appearing in (2.3) has to be understood in the Lebesgue-Stieltjes sense,
and it is defined as ∫

[0,∞)
e−ρtd|v|t := |v|0 +

∫ ∞
0

e−ρtd|v|t,

in order to take into account possible jumps of the control at time zero. Moreover, for v ∈ V
we will often write dv = γd|v| to denote the disintegration

vt =

∫ t

0
γsd|v|s, for each t ≥ 0, P-a.s.,

where |v| denotes the total variation of the signed measure v, and the process γ is the Radon-
Nikodym derivative of the signed measure v with respect to |v|. Also, for a control v, the
nondecreasing càdlàg processes ξ+, ξ− will denote the minimal decomposition of the signed
measure v; that is, v = ξ+ − ξ−, and ξ+ ≤ ξ̄+ and ξ− ≤ ξ̄− for any other couple of nonde-
creasing càdlàg processes ξ̄+, ξ̄− which satisfy v = ξ̄+ − ξ̄−.

Finally, recall from [45] the following notion of solution to the Skorokhod problem, which
we adapt to our setting.

Definition 1. Let O be an open subset of Rd with closure O, x ∈ O, and set S := ∂O. Let
ν̄ be a continuous vector field on S, with ν̄ = e1ν and |ν(y)| = 1 for each y ∈ S.

We say that the process v ∈ V is a solution to the modified Skorokhod problem for the SDE
(2.2) in O starting at x with reflection direction ν̄ if

(1) P[Xx;v
t ∈ O, ∀t ≥ 0] = 1;

(2) P-a.s., for each t ≥ 0 one has dv = γd|v|, with

|v|t =

∫ t

0
1{Xx;v

s− ∈S, ν(Xx;v
s− )=γs}d|v|s;

(3) P-a.s., for each t ≥ 0, a possible jump of the process Xx;v at time t occurs on some
interval I ⊂ S parallel to the vector field ν̄; i.e., such that ν̄(y) is parallel to I for each
y ∈ I. If Xx;v encounters such an interval I, it instantaneously jumps to its endpoint
in the direction ν̄ on I.

Moreover, if v is continuous , then we say that v is a solution to the (classical) Skorokhod
problem for the SDE (2.2) in O starting at x with reflection direction ν̄.
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2.2. Assumptions and main result. The main objective of this paper is to characterize
optimal control policies for Problem (2.4) as solutions to related Skorokhod problems.

We will prove our main result under the following structural conditions, which we enforce
throughout the rest of this paper. We postpone the discussion of some generalizations to
Section 5.

Assumption 2.1. For p ≥ 2 we have:

(1) The running cost h is C2;1(Rd), convex, and, for suitable constants K,κ1, κ2 > 0, it
satisfies, for each x, y ∈ Rd and for all λ ∈ [0, 1], the conditions

κ1|x1|p − κ2 ≤ h(x) ≤ K(1 + |x|p),
|h(y)− h(x)| ≤ K(1 + |x|p−1 + |y|p−1)|y − x|,

λh(x) + (1− λ)h(x)− h(λx+ (1− λ)y) ≤ Kλ(1− λ)(1 + |x|p−2 + |y|p−2)|x− y|2,
0 < hx1x1(x).

(2) There exists a constant L̄ ≥ 0 such that, for each x, y ∈ Rd, we have

|b̄(x)| ≤ L̄(1 + |x|),
|b̄(y)− b̄(x)| ≤ L̄|y − x|.

The functions bi are convex of class C2;1(Rd). Furthermore, we assume that hxi ≥ 0
and bix1

, bix1xi , hx1xi ≤ 0 for each i = 2, ..., d, and that Db̄ is globally Lipschitz.
(3) For ρ∗ := p(2p− 1) and a constant σ > 0, either of the two conditions below is

satisfied:
(a) σ̄(y) = σ, y ∈ R, and the discount factor satisfies the relation ρ > 3ρ∗L̄.
(b) σ̄(y) = σy, y ∈ R, and the discount factor satisfies the relation ρ > 2ρ∗(L̄ +

σ2(ρ∗ − 1)). In this case, we also assume that there exists x∗1 > 0 such that
hx1(x) ≤ min{0,−b11} for each x with x1 < 2x∗1, that bi(x1, xi) ≥ 0 for x1, xi ≥ 0
for each i = 2, ..., d, and that a1 ≥ 0.

Natural examples in which the conditions above are satisfied are given –after discussing
generalizations of Assumption 2.1– in Section 5. These include a relevant class of linear-
quadratic singular stochastic control problems (see Example 1 and Subsection 5.4 below).
Notice that the nature of problem (2.4) is genuinely multidimensional, as the components of
the dynamics (2.2) are interconnected.

Remark 2.2 (On the role of Assumption 2.1). We underline that the particular choice of
p ≥ 2 is motivated by quadratic running costs (cf. Example 1 in Section 5). From Condition 2
one can see that quite strong requirements are needed in order to treat models with a general bi.
However, when bi has a simpler form, some conditions on the derivatives bix1

, bix1xi , hxi , hx1xi

can be weakened (see Subsections 5.1.1 and 5.1.2). Also, the assumption on hx1 in Condition
3b is to enforce that the optimal trajectories live in the set Rd+ := {x ∈ Rd|xi > 0, i = 1, ..., d},
whenever the initial condition x ∈ Rd+ (cf. Lemma 4.1 below). This condition is a natural
substitute, for minimization problems in dimension d ≥ 2, of the classical Inada condition at
0 (see, e.g., equation (2.5) in [30]). The latter, is typically assumed in profit maximization
problems, and it is satisfied by Cobb-Douglas production functions. Finally, the conditions on
the discount factor ρ are in place in order to ensure a suitable “integrability” of the optimal
trajectories, which allows to prove some semiconcavity estimates for the value function V (see
steps 2 and 3 in the proof of Theorem A.1 in Appendix A).

Observe that, when Condition 3a is in place, a generic controlled trajectory Xx;v, v ∈ V,
can reach the whole space with probability P > 0. On the other hand, under Condition 3b, as
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mentioned in Remark 2.2, the natural domain for a controlled trajectory is Rd+. This suggest
to define a domain D in the following way

(2.5) D := Rd if Condition 3a holds, D := Rd+ if Condition 3b holds.

Indeed, it is possible to show that the value function V is finite and it is a convex solution in
W 2;∞
loc (D) of the Hamilton-Jacobi-Bellman (HJB, in short) equation

(2.6) max{ρV − LV − h, |Vx1 | − 1} = 0, a.e. in D,

where LV (x) := b̄(x)DV (x) + 1
2

∑d
i=1 σ̄

2(xi)Vxixi(x), x ∈ D, is the generator of the uncon-
trolled SDE (2.1). For completeness, a proof of this result is provided in Appendix A (see
Theorem A.1). During the proof of Theorem A.1, the convergence of a certain penalization
method is studied: This convergence will be a useful tool in many of the proofs in this paper.

Define next the waiting region W as

(2.7) W := {x ∈ D | |Vx1(x)| < 1},

and notice that, by the W 2;∞
loc -regularity of V , W is an open subset of D. Also, for each

z ∈ Rd−1, we define the sets

D1(z) := {y ∈ R | (y, z) ∈ D} and W1(z) := {y ∈ R | (y, z) ∈ W}.

In the sequel, the closure of W (resp. W1(z)) in D (resp. D1(z)) will be denoted by W (resp.
W1(z)). We state here a technical lemma, whose proof is given in Appendix B.

Lemma 2.3. For any x = (x1, z) ∈ D, with z ∈ Rd−1, the set W1(z) is a nonempty open
interval; in particular, W is nonempty.

Remark 2.4 (Existence and uniqueness of optimal controls). For each x̄ ∈ D, it is possible
to show that, under Assumption 2.1, there exists a unique optimal control v̄ ∈ V. This is a
classical result when the drift is affine. In the case of a convex drift, it essentially follows
from the convexity of J w.r.t. (x, v). The latter in turn follows from the convexity of the drift,
the monotonicity of h, and a comparison principle for SDEs. The argument can be recovered
from the proof of Lemma 3.7 below, which works for any sequence of controls minimizing the
cost functional J . Finally, the uniqueness of the optimal control is a consequence of the strict
convexity of h in the variable x1.

The following is the main result of our paper, characterizing the optimal policies in terms
of the waiting region W and the derivative Vx1 in the sense of Definition 1.

Theorem 2.5. Let x̄ = (x̄1, z̄) ∈ D, with z̄ ∈ Rd−1. The following statements hold true:

(1) If x̄ ∈ W, then the optimal control v̄ is the unique solution to the modified Skorokhod
problem for the SDE (2.2) in W starting at x̄ with reflection direction −Vx1e1;

(2) If x̄ /∈ W, then the optimal control v̄ can be written as v̄ = ȳ1 − x̄1 + w̄, where ȳ1

is the metric projection of x̄1 into the set W1(z̄), and w̄ is the unique solution to
the modified Skorokhod problem for the SDE (2.2) in W starting at ȳ := (ȳ1, z̄) with
reflection direction −Vx1e1.

In Section 3 we provide a proof of Theorem 2.5 under Condition 3a in Assumption 2.1.
The strategy of the proof can be resumed in three main steps:

Step a. In Subsection 3.1 we study an important monotonicity property of Vx1 , through a
connection with Dynkin games.

Step b. In Subsection 3.2, this property will allow us to construct ε-optimal policies as solu-
tions to Skorokhod problems in domains Wε approximating W.
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Step c. Finally, in Subsection 3.3 we prove that the ε-optimal policies approximate the optimal
policy, and that the latter is a solution to the Skorokhod problem in the original
domain W.

The proof of Theorem 2.5 under Condition 3b in Assumption 2.1 follows similar rationales,
and it is discussed in Section 4. In particular, in Subsections 4.1 a preliminary lemma is
proved, while in Subsection 4.2 we show how to use this lemma in order to repeat (with minor
modifications) the arguments of Section 3.

3. Proof of Theorem 2.5 for constant volatility

In this section we assume that Condition 3a in Assumption 2.1 holds. To simplify the
notation, the proof is given for d = 2, so that D = R2. The generalization to the case d > 2
is straightforward.

3.1. Step a: A connection to Dynkin games and the monotonicity property. In
this subsection we adopt an approach based on the variational formulation of the problem in
order to show, in the spirit of [15], a connection between the singular control problem (2.4)
and a Dynkin game. This connection will enable us to prove a monotonicity property of Vx1 ,
which will be then fundamental in order to construct ε-optimal controls.

3.1.1. The related Dynkin game. We begin by characterizing Vx1 as a W 2;∞
loc -solution to a

two-obstacle problem. The proof of the next result borrows arguments from [15] (see in
particular Theorem 3.9, Proposition 3.10, and Theorem 3.11 therein). However, since in our
case b can be convex, the techniques used in [15] needs to be refined, and used along with
suitable estimates (described more in detail in the proof of Theorem A.1 in Appendix A) on
a penalization method. We provide a detailed proof for the sake of completeness.

Theorem 3.1. The function Vx1 is a W 2;∞
loc (R2)-solution to the equation

(3.1) max{(ρ− b11)Vx1 − LVx1 − ĥ, |Vx1 | − 1} = 0, a.e. in R2,

where ĥ := hx1 + b2x1
Vx2.

Proof. We organize the proof in two steps.

Step 1. In this step we show that the function Vx1 is a solution to a variational inequality

with a local operator, and that Vx1 ∈ W
2;∞
loc (R2). Fix B ⊂ R2 open bounded and consider a

nonnegative localizing function ψ ∈ C∞c (B). Define the sets

K :=
{
U ∈W 1;2

loc (R2) | |U | ≤ 1 a.e.
}

and Kψ := {ψU |U ∈ K}.

We show in the sequel that the function W := Vx1ψ is a solution in Kψ to the variational
inequality

(3.2) AB(W,U −W ) ≥ 〈Ĥ, U −W 〉B, for each U ∈ Kψ,

where Ĥ := ĥψ − Vx1Lψ −DVx1Dψ, the operator AB : W 1;2(B)×W 1;2(B)→ R is given by

AB(Ū , U) :=
σ2

2

2∑
i=1

〈Ūxi , Uxi〉B − 〈b̄DŪ , U〉B + (ρ− b11)〈Ū , U〉B for each Ū , U ∈W 1;2(B),

and 〈·, ·〉B denotes the scalar product in L2(B).
Let us begin by introducing a family of penalized versions of the HJB equation (2.6). Let

β ∈ C∞(R) be a convex nondecreasing function with β(r) = 0 if r ≤ 0 and β(r) = 2r − 1 if
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r ≥ 1. For each ε > 0, let V ε be defined as in (A.2). As in Step 1 in the proof of Theorem
A.1 in Appendix A, V ε is a C2-solution to the partial differential equation

(3.3) ρV ε − LV ε +
1

ε
β((V ε

x1
)2 − 1) = h, x ∈ R2.

It is possible to show (see Step 2 in the proof of Theorem A.1 in Appendix A) that, for each
R > 0, there exists a constant CR such that

(3.4) sup
ε∈(0,1)

‖V ε‖W 2;∞(BR) ≤ CR.

Moreover (as in (A.18) in the proof of Theorem A.1), as ε→ 0, on each subsequence we have:

(V ε, DV ε) converges to (V,DV ) uniformly in BR;(3.5)

D2V ε converges to D2V weakly in L2(BR).

We now show that Vx1 ∈ K. Since the W 1;2
loc -regularity of Vx1 is already known (cf. Theorem

A.1 in Appendix A), we only need to show that |Vx1 | ≤ 1 in R2. To this end, take R > 0 and
observe that, by (3.4) and (3.3), we have

(3.6) sup
ε∈(0,1)

‖β((V ε
x1

)2 − 1)‖L2(BR) ≤ CRε,

where the constant CR > 0 does not depend on ε. Moreover, unless to consider a larger CR,
by the estimate (3.4) and the definition of β, we also have the pointwise estimate

(3.7) |β((V ε
x1

)2 − 1)| ≤ 2((V ε
x1

)2 + 1) ≤ CR, on BR, for each ε ∈ (0, 1).

Therefore, the limits in (3.5) and the estimates (3.7) allow to invoke the dominated conver-
gence theorem to deduce, thanks to (3.6), that

‖β((Vx1)2 − 1)‖L2(BR) = lim
ε→0
‖β((V ε

x1
)2 − 1)‖L2(BR) = 0.

Since R is arbitrary, we conclude that |Vx1 | ≤ 1 a.e. in R2, and therefore that W ∈ Kψ.
We continue by proving (3.2). Since V ε is a solution to (3.3), a standard bootstrapping

argument (using Theorem 6.17 at p. 109 in [29]) allows to improve the regularity of V ε and
to prove that V ε ∈ C4. Therefore, we can differentiate equation (3.3) with respect to x1 in
order to get an equation for V ε

x1
. That is,

(3.8) [(ρ− b11)− L]V ε
x1

+
2

ε
β′((V ε

x1
)2 − 1)V ε

x1
V ε
x1x1

= ĥε, x ∈ R2,

where we have defined ĥε := hx1 + b2x1
V ε
x2

. Moreover, by (3.8), the localized function V ε
ψ :=

V ε
x1
ψ is a solution to the equation

(3.9) [(ρ− b11)− L]V ε
ψ +

2

ε
β′((V ε

x1
)2 − 1)V ε

ψV
ε
x1x1

= Ĥε, x ∈ R2,

where Ĥε := ĥεψ − V ε
x1
Lψ −DV ε

x1
Dψ.

Let now U ∈ Kψ. Taking the scalar product of (3.9) with U − V ε
ψ , an integration by parts

gives

(3.10) AB(V ε
ψ , U − V ε

ψ ) +
2

ε
〈β′((V ε

x1
)2 − 1)V ε

ψV
ε
x1x1

, U − V ε
ψ 〉B = 〈Ĥε, U − V ε

ψ 〉B.

Moreover, since σ > 0, the operator
(
σ2

2

∑2
i=1〈Uxi , Uxi〉B

)1/2
, U ∈ W 1;2(B), defines a norm

on W 1;2
0 (B), and it is therefore lower semi-continuous with respect to the weak convergence
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in W 1;2
0 (B). By the limits in (3.5), this implies that

(3.11) lim inf
ε→0

σ2

2

2∑
i=1

〈V ε
ψxi

, V ε
ψxi
〉B ≥

σ2

2

2∑
i=1

〈Wxi ,Wxi〉B.

Therefore exploiting the convergences in (3.5) and (3.11), taking the liminf as ε→ 0 in (3.10),
we obtain

(3.12) AB(W,U −W ) + lim inf
ε→0

2

ε
〈β′((V ε

x1
)2 − 1)V ε

ψV
ε
x1x1

, U − V ε
ψ 〉B ≥ 〈Ĥ, U −W 〉B.

In order to prove (3.2), it thus only remains to show that the scalar product in (3.12) involving
β′ is nonpositive. Write U as U = ψŪ , with Ū ∈ K. If x ∈ R2 is such that (V ε

x1
(x))2 ≤ (Ū(x))2,

then β′((V ε
x1

(x))2 − 1) = 0 since Ū ∈ K. On the other hand, if (V ε
x1

(x))2 > (Ū(x))2 then we

have 2V ε
ψ (U − V ε

ψ ) ≤ U2 − (V ε
ψ )2 < 0. Hence, since V ε is convex and β′ nonnegative, in both

cases we deduce that
2

ε
β′((V ε

x1
)2 − 1)V ε

ψV
ε
x1x1

(U − V ε
ψ ) ≤ 0.

Therefore, we conclude that W is a solution to the variational inequality (3.2).

Finally, since σ > 0, the W 2;∞
loc -regularity of Vx1 follows from Theorem 4.1 at p. 31 in

[28], slightly modified in order to fit problem (3.2) (see Problem 1 at p. 44, combined with
Problems 2 and 5 at p. 29 in [28]).

Step 2. We now prove that Vx1 is a pointwise solution to (3.1). For B ⊂ R2 open bounded
and ψ ∈ C∞c (B), by Step 1 we have that Vx1ψ is a solution to the variational inequality (3.2).
Moreover, thanks to the regularity of Vx1 , an integration by parts in (3.2) reveals that

(3.13) 〈L̂ψ, (U − Vx1)ψ〉B ≥ 0, for each U ∈ K,

where L̂ := [(ρ − b11) − L]Vx1 − ĥ. For every ε > 0, define the sets Ŵε := {|Vx1 | < 1 − ε}
and, for N > 0 and 0 < η < ε/N , set ψ̂ := −ηL̂1Ŵε

1{L̂<N}. Define next U := Vx1 + ψ̂, and

observe that U ∈ K. With this choice of U , the inequality (3.13) rewrites as

0 ≤
∫
B
L̂(U − Vx1)ψ2dx = −η

∫
R2

L̂2ψ21Ŵε
1{|L̂|<N}dx,

which in turn implies that
∫
R2 L̂

2ψ21Ŵε
1{|L̂|<N}dx = 0. Taking limits as N →∞ and ε→ 0,

by monotone convergence theorem, we conclude that
∫
W L̂2ψ2dx = 0; that is, L̂ = 0 a.e. in

W.
Finally, defining the two regions

(3.14) I− := {x ∈ R2 |Vx1(x) = −1} and I+ := {x ∈ R2 |Vx1(x) = 1},

we can repeat the arguments above with ψ̂ := −ηL̂+1I+1{|L̂|<N} and ψ̂ := −ηL̂−1I−1{|L̂|<N},
in order to deduce that L̂ ≤ 0 a.e. in I+∪I−, and thus completing the proof of the theorem. �

Theorem 3.1 allows to provide a probabilistic representation of Vx1 in terms of a Dynkin
game. Let T be the set of F-stopping times, and, for τ1, τ2 ∈ T , define the functional

G(x; τ1, τ2) := E
[ ∫ τ1∧τ2

0
e−ρ̂tĥ(Xx

t )dt− e−ρ̂τ11{τ1≤τ2, τ1<∞} + e−ρ̂τ21{τ2<τ1}

]
,

where ĥ = hx1 + b2x1
Vx2 (cf. Theorem 3.1), the process Xx denotes the solution to the un-

controlled SDE (2.1), and ρ̂ := ρ − b11. Consider the 2-player stochastic differential game of
optimal stopping in which Player 1 (resp. Player 2) is allowed to choose a stopping time τ1

(resp. τ2) in order to maximize (resp. minimize) the functional G.
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Recalling the definitions of I− and I+ given in (3.14), from Theorem 3.1 we obtain the
following verification theorem. Its proof is based on a generalized version of Itô’s formula (see
Theorem 1 at p. 122 in [46]) which can be applied to the process (e−ρ̂tVx1(Xx

t ))t≥0 because

Vx1 ∈W
2;∞
loc (R2) by Theorem 3.1. Since these arguments are standard, we omit the details in

the interest of length.

Theorem 3.2. For each x ∈ R2, the profile strategy (τ̄1, τ̄2) given by the stopping times

τ̄1 := inf{t ≥ 0 |Xx
t ∈ I−} and τ̄2 := inf{t ≥ 0 |Xx

t ∈ I+}

is a saddle point of the Dynkin game, and its corresponding value equals Vx1(x); that is,

G(x; τ1, τ̄2) ≤ Vx1(x) = G(x; τ̄1, τ̄2) ≤ G(x; τ̄1, τ2), for each τ1, τ2 ∈ T .

Moreover, we have

(3.15) Vx1(x) = sup
τ1

inf
τ2
G(x; τ1, τ2) = inf

τ2
sup
τ1
G(x; τ1, τ2).

3.1.2. The monotonicity property. We now show how Condition 2 in Assumption 2.1 together
with Theorems 3.1 and 3.2 lead to an important monotonicity of Vx1 .

Proposition 3.3. We have b2x1
Vx1x2 ≥ 0 in R2.

Proof. Since b2x1
≤ 0 by Condition 2 in Assumption 2.1, it is enough to show that Vx1x2 ≤ 0.

Fix an initial condition x ∈ R2, take r > 0, and define a new initial condition xr ∈ R2 by
setting xr := x+ re2. Let Xxr = (X1,xr , X2,xr) be the solution to the uncontrolled dynamics
(2.1), with initial condition xr. By the structure we assumed on the drift, this perturbation
of the initial condition will affect only the second component of Xxr . Indeed, since xr2 ≥ x2, a

standard comparison principle for SDE (see [37]) gives X2,xr

t −X2,x
t ≥ 0 for each t ≥ 0, P-a.s.,

while X1,xr = X1,x. Hence, since hx1x2 ≤ 0, we have

(3.16) hx1(Xxr

t ) ≤ hx1(Xx
t ), for each t ≥ 0, P-a.s.

Moreover, since b2x1
≤ 0, we can exploit the convexity of V to obtain

b2x1
(Xxr

t )(Vx2(Xxr

t )− Vx2(Xx
t ))(3.17)

= b2x1
(Xxr

t )(X2,xr

t −X2,x
r )

∫ 1

0
Vx2x2(Xx

t + s(Xxr

t −Xx
r ))ds

≤ 0, for each t ≥ 0, P-a.s.

Let us now prove that Vx2(y) ≥ 0, for each y ∈ R2. Fix y ∈ R2 and let v be an optimal control
for y. Observe that, for each δ > 0 we can still employ a comparison principle to deduce that

X1,y;v
t −X1,y−δe2;v

t = 0, and X2,y;v
t −X2,y−δe2;v

t ≥ 0, for each t ≥ 0, P-a.s. This, since hx2 ≥ 0
and V ∈ C1(R2), in turn implies that

Vx2(y) = lim
δ→0

V (y)− V (y − δe2)

δ
(3.18)

≥ lim
δ→0

J(y; v)− J(y − δe2; v)

δ

≥ lim
δ→0

1

δ
E
[ ∫ ∞

0
e−ρt(h(Xy;v

t )− h(Xy−δe2;v
t ))dt

]
≥ 0,

where we have used that the control v is suboptimal for the initial condition y − δe2. Hence,
since b2x1x2

≤ 0, we obtain that

(3.19) (b2x1
(Xxr

t )− b2x1
(Xx

t ))Vx2(Xx
t ) ≤ 0, for each t ≥ 0, P-a.s.
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Summing now the inequalities (3.16), (3.17) and (3.19), we find

(3.20) hx1(Xxr

t ) + b2x1
(Xxr

t )Vx2(Xxr

t ) ≤ hx1(Xx
t ) + b2x1

(Xx
t )Vx2(Xx

t ), for each t ≥ 0, P-a.s.;

that is, ĥ(Xxr) ≤ ĥ(Xx). Therefore, for each stopping time τ1, τ2 ∈ T , we deduce that

G(xr; τ1, τ2) ≤ G(x; τ1, τ2).

Taking the supremum over τ1 ∈ T and the infimum over τ2 ∈ T in the latter inequality, we
deduce, in light of (3.15) in Theorem 3.2, that Vx1(xr) ≤ Vx1(x). Hence, we conclude that
Vx1x2 ≤ 0 in R2, which completes the proof of the proposition. �

3.2. Step b: Construction of ε-optimal policies. For every ε > 0 define the sets

Wε := {x ∈ R2 |V 2
x1

(x) < 1− ε}, Sε := ∂Wε.

The proof of the following lemma is obtained combining arguments from [45] together with
the monotonicity property shown in Proposition 3.3.

Lemma 3.4. For each ε > 0 such that x̄ ∈ Wε, there exists a solution vε ∈ V to the
(classical) Skorokhod problem for the SDE (2.2) in Wε starting at x̄ with reflection direction
−Vx1/|Vx1 |e1.

Proof. Fix ε > 0 such that x̄ ∈ Wε. In order to employ the results of [48] to construct vε as
the solution of the Skorokhod problem with reflection along Sε, we first show that Sε is a C3

hypersurface.
To this end, we begin the proof by showing that

(3.21) Vx1x1(x) > 0, for each x ∈ W.

Take indeed x ∈ W and δ > 0 such that Bδ(x) ⊂ W. Since V solves the linear equation
ρV − LV = h in W, from Theorem 6.17 at p. 109 in [29] it follows that V ∈ C4(W).
Therefore, we can differentiate two times with respect to x1 the HJB equation (2.6), and
obtain an equation for Vx1x1

(3.22) (ρ− 2b11)Vx1x1 − LVx1x1 = hx1x1 + 2b2x1
Vx1x2 + b2x1x1

Vx2 , in Bδ(x).

Since by assumption hx1x1 > 0, thanks to Proposition 3.3 we have that hx1x1 + 2b2x1
Vx1x2 > 0.

By the inequality (3.18) in the proof of Proposition 3.3, and the fact that b2 is convex, we
deduce that b2x1x1

Vx2 ≥ 0. Therefore, the right hand side of (3.22) is positive. Next, by
the strong maximum principle (see Theorem 3.5 at p. 35 in [29]), Vx1x1 cannot achieve a
nonpositive local minimum in Bδ(x), unless it is constant. If Vx1x1 is constant in Bδ(x), then
by (3.22) we obtain Vx1x1 > 0 as desired. If Vx1x1 attains its minimum at the boundary
∂Bδ(x), then by convexity of V we still have

Vx1x1(y) > min
∂Bδ(x)

Vx1x1 ≥ 0, for each y ∈ Bδ(x),

which also proves (3.21)
Next, define ν̄(x) := Vx1(x)/|Vx1(x)|e1 for each x ∈ Sε, and w(y) := |Vx1(y)|2 for each

y ∈ W. Notice that
√
w(y) = |∂ν̄V (y)|. For R > 0, by compactness of WR

ε/2 := Wε/2 ∩ BR,

in light of (3.21) we can find a constant cRε > 0 such that

(3.23) inf
x∈WR

ε/2

Vx1x1(x) ≥ cRε > 0.

Therefore, for x ∈ Sε and R large enough, by (3.23), we have√
w(x+ λν̄) = ∂ν̄V (x+ λν̄) ≥ ∂ν̄V (x) + λcRε /2 =

√
w(x) + λcRε /2,
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and hence

(3.24) ∂ν̄
√
w(x) ≥ cRε /2.

It thus follows that ∂ν̄w 6= 0 on Sε. This implies, by the implicit function theorem, that Sε is
a C3-hypersurface.

Now, by (3.24), arguing as in Lemma 2.7 in [45] it is possible to show that the vector −ν̄ is
not tangential to Sε, and, by definition of Wε and of ν̄, we observe that the vector −ν̄ points
insideWε. Therefore, we can employ a version of Theorem 4.4 in [48] for unbounded domains
in order to find a solution vε ∈ V to the Skorokhod problem for the SDE (2.2) in Wε starting
at x̄, with reflection direction −Vx1/|Vx1 |e1. �

We conclude this section with the following lemma. We omit its proof since this can be
established as in the proof of Lemma 2.8 in [45].

Lemma 3.5. For each x̄ ∈ W and ε > 0 such that x̄ ∈ Wε, let the control vε be as in Lemma
3.4. Then J(x̄; vε)→ V (x̄) as ε→ 0.

3.3. Step c: Characterization of the optimal control. Thanks to the results of Subsec-
tions 3.1 and 3.2 we can now prove Theorem 2.5. We provide a separate proof for each of the
two claims.

3.3.1. Proof of Claim 1. We will first prove Claim 1 for x̄ ∈ W, and then, at the end of this
subsection, we will give a proof for a general x̄ ∈ W. Fix x̄ ∈ W and a sequence (εn)n∈N
converging to zero. To simplify the notation, according to Lemma 3.4 we define the processes

Xn := X x̄;vεn , vn := vεn , ξn := |vεn |, for each n ∈ N.

Bear in mind that the processes vn, γn and ξn depend on the initial condition x̄, and that,
according to Lemma 3.5, the sequence of controls (vn)n∈N is a minimizing sequence; that is,
J(x̄; vn)→ V (x̄) as n→∞.

We begin with the following estimate.

Lemma 3.6. Let p′ := (2p− 1)/2. We have

(3.25) sup
n

∫ ∞
0

e−ρt(E[|X1,n
t |p] + E[|Xn

t |p
′
])dt ≤ C(1 + |x̄|p).

Proof. Denoting by X x̄ the solution to (2.1), a standard use of Grönwall’s inequality and of
Burkhölder-Davis-Gundy’s inequality leads to the classical estimate

E[|X x̄
t |p] ≤ Cep L̄t(1 + |x̄|p) for each t ≥ 0,

where L̄ is the Lipschitz constant of b̄ and C > 0 is a generic constant. Therefore, since the
control constantly equal to zero is not necessarily optimal for x̄, from the latter estimate and
the growth rate of h we obtain

V (x̄) ≤ E
[ ∫ ∞

0
e−ρth(X x̄

t )dt

]
≤ C

∫ ∞
0

e−ρt(1 + E[|X x̄
t |p])dt

≤ C
∫ ∞

0
e−(ρ−pL̄)t(1 + |x̄|p)dt ≤ C(1 + |x̄|p),

where we have used that, by Condition 3a in Assumption 2.1, ρ > p L̄. Therefore, since vn is
a minimizing sequence, for all n big enough we find the estimate

κ1

∫ ∞
0

e−ρtE[|X1,n
t |p]dt− κ2 ≤ J(x̄; vn) ≤ C(1 + |x̄|p),
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from which

(3.26)

∫ ∞
0

e−ρtE[|X1,n
t |p]dt ≤ C(1 + |x̄|p).

Next, using again Grönwall’s inequality and Burkhölder-Davis-Gundy’s inequality, we find

E[|X2,n
t |p

′
] ≤ Cep′ L̄t

(
1 + |x̄|p′ + pt + pt

∫ t

0
E[|X1,n

s |p
′
]ds

)
, for each t ≥ 0,

where pt is a suitable (deterministic) polynomial in t, not depending on n. Therefore∫ ∞
0

e−ρtE[|X2,n
t |p

′
]dt ≤ C

∫ ∞
0

e(p′L̄−ρ)t(1 + |x̄|p′ + pt)dt(3.27)

+ C

∫ ∞
0

e[p′L̄−ρ(1−p′/p)]tpt

∫ t

0
e−ρ(p′/p)sE[|X1,n

s |p
′
]dsdt

≤ C
∫ ∞

0
e(p′L̄−ρ)t(1 + |x̄|p′ + pt)dt

+ C

∫ ∞
0

e[p′L̄−ρ(1−p′/p)]tpt

(∫ ∞
0

e−ρsE[|X1,n
s |p]ds

) p′
p

dt.

After noticing that Condition 3a in Assumption 2.1 implies p′L̄−ρ < 0 and p′L̄−ρ(1−p′/p) <
0, using (3.26) in (3.27), we conclude that

sup
n

∫ ∞
0

e−ρtE[|X2,n
t |p

′
]dt ≤ C(1 + |x̄|p),

which, together with (3.26), completes the proof of the lemma. �

Lemma 3.7. Let v̄ ∈ V be the unique optimal control for x̄. We have that

Xn
t → X x̄;v̄

t and vn → v̄, P⊗ dt-a.e. in Ω× [0,∞), as n→∞.

Proof. The proof employs arguments as those in the proof of Theorem 8 in [52], that however
need to be suitably adapted in order to accommodate our more general convex setting.

We organize the proof in two steps.

Step 1. Arguing by contradiction, in this step we prove that the sequence Xn is Cauchy w.r.t.
the convergence in the measure P⊗ e−ρtdt; that is, for each δ > 0 we have

(3.28) E
[ ∫ ∞

0
e−ρt1{|Xn

t −Xm
t |>δ}dt

]
→ 0, as n,m→∞.

Indeed, suppose that for a subsequence (not relabelled), one has

(3.29) E
[ ∫ ∞

0
e−ρt1{|Xn

t −Xm
t |>δ}dt

]
≥ δ0 > 0, for each n,m ∈ N,

for a certain constant δ0 > 0.
Fix λ ∈ (0, 1). We begin by defining the processes

Y n,m := X x̄;λvn+(1−λ)vm and Zn,m := λXn + (1− λ)Xm, for each n,m ∈ N.

We first need to show that

(3.30) Y n,m
t ≤ Zn,mt , for each t ≥ 0, P-a.s.
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Since the drift b̄1 is affine, we have Y 1;n,m = Z1;n,m. Moreover, since b2 is convex, we find

Z2;n,m
t = x̄2 +

∫ t

0
(λb2(Xn

s ) + (1− λ)b2(Xm
s ))dt+ σW 2

t(3.31)

≥ x̄2 +

∫ t

0
b2(Z1;n,m

s , Z2;n,m
s )dt+ σW 2

t

= x̄2 +

∫ t

0
b2(Y 1;n,m

s , Z2;n,m
s )dt+ σW 2

t ,

while Y 2;n,m
t = x̄2 +

∫ t
0 b

2(Y 1;n,m
s , Y 2;n,m

s )ds + σW 2
t . This, by the comparison principle for

SDE (see [37]), implies that Y 2;n,m
t ≤ Z2;n,m

t , for each t ≥ 0, P-a.s., and (3.30) follows.
Next, in light of (3.30), by the monotonicity of h in x2 we find

λJ(x̄; vn) + (1− λ)J(x̄; vm)− J(x̄;λvn + (1− λ)vm)(3.32)

= E
[ ∫ ∞

0
e−ρt(λh(Xn

t ) + (1− λ)h(Xm
t )− h(Y n,m

t ))dt

+

∫
[0,∞)

e−ρt(λdξnt + (1− λ)dξmt − d|λvn + (1− λ)vm|t)
]

≥ E
[ ∫ ∞

0
e−ρt(λh(Xn

t ) + (1− λ)h(Xm
t )− h(Zn,mt ))dt

]
,

as we have that |λvn+(1−λ)vm|t ≤ λξnt +(1−λ)ξmt , and that e−ρt is positive and decreasing.
Then, using (3.29), for M > 0 we observe that

E
[ ∫ ∞

0
e−ρt1{|Xn

t −Xm
t |>δ}1{|Xn

t |≤M, |Xm
t |≤M}dt

]
≥ δ0 − E

[ ∫ ∞
0

e−ρt1{|Xn
t |>M}dt

]
− E

[ ∫ ∞
0

e−ρt1{|Xm
t |>M}dt

]
.

Moreover, the estimate in Lemma 3.6 and an application of Chebyshev’s inequality yield

E
[ ∫ ∞

0
e−ρt1{|Xn

t |>M}dt

]
≤ C(1 + |x̄|p)

Mp′
, for each n ∈ N,

so that we can find M big enough such that

E
[ ∫ ∞

0
e−ρt1{|Xn

t −Xm
t |>δ}1{|Xn

t |≤M, |Xm
t |≤M}dt

]
≥ δ0

2
, for each n,m ∈ N.

Combining the latter inequality with (3.32), we obtain

λJ(x̄; vn) + (1− λ)J(x̄; vm)− J(x̄;λvn + (1− λ)vm)(3.33)

≥ δ(δ0,M)E
[ ∫ ∞

0
e−ρt1{|Xn

t −Xm
t |>δ}1{|Xn

t |≤M, |Xm
t |≤M}dt

]
≥ δ(δ0,M)

δ0

2
,

where, by strict convexity of h in the variable x1, we have

δ(δ0,M) := inf
{
λh(x) + (1− λ)h(y)− h(λx+ (1− λ)y)

∣∣ |x− y| > δ0, |x|, |y| ≤M
}
> 0.

On the other hand, by Lemma 3.5, J(x̄; vn) converges to V (x̄) as n → ∞. Therefore, from
(3.33), we can find n̄ ∈ N such that

V (x̄) ≥ δ(δ0,M)
δ0

4
+ J(x̄;λvn + (1− λ)vm), for each n,m ≥ n̄,

which contradicts the definition of V , completing the proof of (3.28).
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Step 2. By the previous step, there exists a limit process X̂ and, unless to consider a subse-
quence, we can assume that

(3.34) Xn
t → X̂t P⊗ dt-a.e. in Ω× [0,∞), as n→∞.

Next, defining the process vt := X̂1
t −x̄1−

∫ t
0 b̄

1(X̂1
s )ds−σW 1

t , using the estimate from Lemma
3.6 and (3.34) we find

|vnt − vt| ≤ |X
1,n
t − X̂1

t |+ L̄

∫ t

0
|X1,n

s − X̂1
s |ds→ 0 P⊗ dt-a.e. in Ω× [0,∞),

which implies that

(3.35) vnt → vt P⊗ dt-a.e. in Ω× [0,∞), as n→∞.

We also observe that, by using Lemma 3.5 in [40], we can assume the processes X̂1 and v to
be right-continuous. Also, denoting with ξ the total variation of v, from (3.35) we easily find

(3.36) ξt ≤ lim inf
n

ξnt for each t ≥ 0.

Next, exploiting the limits in (3.34), the Lipschitz continuity of b2 and the estimate from

Lemma 3.6, we can see that the process X̂2 is continuous and it solves the SDE dX̂2
t =

b2(X̂1
t , X̂

2
t )dt+ σdW 2

t , t ≥ 0, X̂2
0− = x̄2. This, together with the definition of v, implies that

(3.37) X̂ = X x̄;v.

Finally, thanks to the limits in (3.34), (3.35) and (3.36), to the identity (3.37), and to
the continuity of h, we invoke Fatou’s lemma and, with an integration by parts (see, e.g.,
Corollary 2 at p. 68 in [54]), we find

J(x̄; v) = E
[ ∫ ∞

0
e−ρth(X x̄;v

t )dt+ ρ

∫ ∞
0

e−ρtξtdt

]
(3.38)

≤ lim inf
n

E
[ ∫ ∞

0
e−ρth(Xn

t )dt+ ρ

∫ ∞
0

e−ρtξnt dt

]
= lim inf

n
J(x̄; vn) = V (x̄),

where we have used that the sequence (vn)n∈N is minimizing for x̄, according to Lemma 3.5.
Thus, the process v has locally bounded variation, and v ∈ V. Also, from (3.38) we deduce
that the control v is optimal for x̄, and, by uniqueness of optimal controls (see Remark 2.4),

we conclude that v = v̄ and X̂ = X x̄;v̄, completing the proof of the lemma. �

The proofs of the next two propositions follow by employing arguments similar to those
employed in Sections 2.3 and 2.4 in [45] (we provide details here in order to recall these
arguments in the sequel).

Proposition 3.8. We have that P[X x̄;v̄
t ∈ W, ∀t ≥ 0] = 1.

Proof. By Lemma 3.7, Xn
t → X x̄;v̄

t , P ⊗ dt-a.e. in Ω × [0,∞), and, by Lemma 3.4, P[Xn
t ∈

W, t ≥ 0] = 1, as Wεn ⊂ W for each n ∈ N. Therefore, it is clear that X x̄;v̄
t ∈ W, P⊗ dt-a.e.

in Ω× [0,∞), which, by right-continuity, implies that P[X x̄;v̄
t ∈ W, t ≥ 0] = 1. �

Proposition 3.9. We have dv̄ = γ̄d|v̄| with

|v̄|t =

∫ t

0
1{Xx̄;v̄

s− ∈S,−Vx1 (Xx̄;v̄
s− )=γ̄s}d|v̄|s, for each t ≥ 0, P-a.s.

Proof. Take R > 0 such that x̄ ∈ BR and define τR := inf{t ∈ [0,∞)|X x̄;v̄
s /∈ BR}. For each

ε > 0, let V ε be as in (A.2). As in the Step 1 in the proof of Theorem A.1 in Appendix A,
V ε is a convex C2-solution to (A.3). By Itô’s formula for semimartingales (see, e.g., Theorem
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33 at p. 81 in [54]), applied on the process (e−ρtV ε(X x̄;v̄
t ))t≥0 on the time interval [0, τR], we

find

E[e−ρτRV ε(X x̄;v̄
τR

)] = V ε(x̄)+E
[ ∫ τR

0
e−ρt(LV ε − ρV ε)(X x̄;v̄

t )dt+

∫
[0,τR)

e−ρtV ε
x1

(X x̄;v̄
t− )γ̄td|v̄|t

+
∑

0≤t≤τR

e−ρt(V ε(X x̄;v̄
t )− V ε(X x̄;v̄

t− )− V ε
x1

(X x̄;v̄
t− )γ̄t(|v̄|t − |v̄|t−))

]
.

By the convexity of V ε, the last sum above is nonnegative. Also, since the function β in (A.3)
in nonnegative, we have ρV ε − LV ε ≤ h a.e. in R2. Hence from the latter equality we

(3.39) V ε(x̄) ≤ E
[ ∫ τR

0
e−ρth(X x̄;v̄

t )dt−
∫

[0,τR)
e−ρtV ε

x1
(X x̄;v̄

t− )γ̄td|v̄|t
]
.

Therefore, taking first limits in (3.39) as ε → 0 (using (A.18) and the dominated conver-
gence theorem), and then letting R→∞ (using the monotone convergence theorem and the
dominated convergence theorem), we obtain

(3.40) V (x̄) ≤ E
[ ∫ ∞

0
e−ρth(X x̄;v̄

t )dt−
∫

[0,∞)
e−ρtVx1(X x̄;v̄

t− )γ̄td|v̄|t
]
.

Next, by the optimality of v̄, we have that V (x̄) = J(x̄; v̄), and, from (3.40), it follows that

(3.41) E
[ ∫

[0,∞)
e−ρt(1 + Vx1(X x̄;v̄

t− )γ̄t)d|v̄|t
]
≤ 0.

This in turn implies, using 0 ≤ 1− |Vx1 | ≤ 1 + Vx1γ for all γ ∈ R with |γ| = 1, that

0 ≤ E
[ ∫

[0,∞)
e−ρt(1− |Vx1(X x̄;v̄

t− )|)d|v̄|t
]
≤ E

[ ∫
[0,∞)

e−ρt(1 + Vx1(X x̄;v̄
t− )γ̄t)d|v̄|t

]
≤ 0.

From the latter chain of inequalities we deduce that the support of the random measure d|v̄|
is P-a.s. contained in the set {(ω, t) ∈ Ω × [0,∞) |X x̄;v̄

t− (ω) ∈ ∂W, γ̄t(ω) = −Vx1(X x̄;v̄
t− (ω))},

which completes the proof of the proposition. �

The proof of the next proposition also follows by employing the arguments in [45]. Details
are provided in Appendix B for the sake of completeness.

Proposition 3.10. We have that, P-a.s., a possible jump of the process X x̄;v̄ at time t ≥ 0
occurs on some interval I ⊂ ∂W parallel to the vector field −Vx1e1, i.e., such that −Vx1(x)e1

is parallel to I for each x ∈ I. If X x̄;v̄ encounters such an interval I, it instantaneously jumps
to its endpoint in the direction −Vx1e1 on I.

Combining then the Propositions 3.8, 3.9 and 3.10, we see that, for x̄ ∈ W, the optimal
control v̄ ∈ V is a solution to the modified Skorokhod problem for the SDE (2.2) inW starting
at x̄ with reflection direction −Vx1e1.

Take next x̄ ∈ W. By definition, there exists a sequence (xk)k∈N ⊂ W such that xk → x̄ as
k →∞. For each k, let wk be the optimal control for xk, and consider the controls xk−x̄+wk,
which consist in following the policy wk after an initial jump from x̄ to xk. Using the fact that

xk ∈ W, from Proposition 3.8 we have that P[Xxk;wk

t ∈ W, t ≥ 0] = 1. Observe, moreover,

that Xxk;wk = X x̄;xk−x̄+wk , and that |J(x̄;xk − x̄ + wk) − J(xk;wk)| = |x̄ − xk|. By the
continuity of V , we now see that

V (x̄) = lim
k
V (xk) = lim

k
J(xk;wk) = lim

k
J(x̄;xk − x̄+ wk).

Therefore, the sequence of controls (xk − x̄+ wk)k∈N is a minimizing sequence for the initial
condition x̄. Repeating the proof of Lemma 3.7 with the sequence of controls (xk−x̄+wk)k∈N,
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we see that Xxk;wk

t → X x̄;v̄
t , P ⊗ dt-a.e. in Ω × [0,∞). This allows to repeat the arguments

in the proofs of Propositions 3.8, 3.9 and 3.10 in order to conclude that, also for x̄ ∈ W, the
optimal control v̄ ∈ V is a solution to the modified Skorokhod problem for the SDE (2.2) in
W starting at x̄ with reflection direction −Vx1e1.

Finally, through a verification theorem (which can be proved by using Itô’s formula as in
the proof of Proposition 3.9), it is easy to show that any solution to the modified Skorokhod
problem for the SDE (2.2) in W starting at x̄ with reflection direction −Vx1e1 is an optimal
control. This, by uniqueness of the optimal control (see Remark 2.4) implies that such a
solution is unique, completing the proof of Claim 1 of Theorem 2.5.

3.3.2. Proof of Claim 2. Fix x̄ = (x̄1, z̄) /∈ W and denote again by v̄ the optimal control for
x̄. Let ȳ1 ∈ R be the metric projection of x̄1 into the set W1(z̄). The set W1(z̄) is a closed
interval (cf. Lemma 2.3), hence the point ȳ1 is uniquely determined. Set then ȳ := (ȳ1, z̄) and
observe that ȳ ∈ ∂W. Let w̄ be the optimal control for ȳ. Notice that, since Vx1 is pointing
outside W1(z̄), we have Vx1(ȳ)(x̄1− ȳ1) = |x̄1− ȳ1|. Therefore, since (ȳ1 + λ(x̄1− ȳ1), z̄) /∈ W
for each λ ∈ (0, 1), we get

V (x̄) = V (ȳ1, z̄) +

∫ 1

0
Vx1(ȳ1 + λ(x̄1 − ȳ1), z̄)(x̄1 − ȳ1)dλ = V (ȳ) + |x̄1 − ȳ1|.

This means that V (x̄) = J(ȳ; w̄) + |x̄1 − ȳ1| = J(x̄; x̄1 − ȳ1 + w̄), which, by uniqueness of the
optimal control, implies that v̄ = x̄1 − z̄1 + w̄. Moreover, since ȳ ∈ W and w̄ is optimal for
ȳ, by Claim 1 we have that w̄ is the unique solution to the modified Skorokhod problem for
the SDE (2.2) in W starting at ȳ with reflection direction −Vx1e1. This completes the proof
of Claim 2 and therefore also of Theorem 2.5.

4. On the proof of Theorem 2.5 for linear volatility

In this section we assume that Condition 3b in Assumption 2.1 holds. To simplify the
notation, also this proof is given for d = 2, so that D = R2

+ = {x ∈ R2 |x1, x2 > 0}. The
generalization to the case d > 2 is straightforward.

4.1. A preliminary lemma. We first state the following technical result. Define the set

Vx+ := {v ∈ V |X1,x;v
t , X2,x;v

t > 0 for each t ≥ 0, P-a.s.}.

Lemma 4.1. We have V (x) = minv∈Vx+ J(x; v), for each x ∈ R2
+.

Proof. Let v ∈ V be an optimal control for x ∈ R2
+, and denote by (ξ+, ξ−) its minimal

decomposition. In order to simplify the notation, set X := Xx;v. Assuming that vs = 0 for
each s < 0, define the family of random variables

τk := inf{t ≥ 0 | (X1
t , ξ
−
t+1/k − ξ

−
t−1/k) ∈ (−∞, x∗1)× (0,∞)}, k ∈ N.

Define the filtration Fk := (Ft+1/k)t≥0 and notice that, for each k ≥ 1, τk is an Fk-stopping

time. Set τ := supk τk, and observe that, for k ≤ k̄, we have τk ≤ τk̄. This implies that, for

each k̄ ≥ 1, τ = supk≥k̄ τk, so that τ is an Fk̄-stopping time, and, by right-continuity of the
filtration F, we deduce that τ is an F-stopping time. Also, such a definition of τ is such that
the negative part ξ− of v acts at time τ ; that is, τ is in the support of the measure ξ−.

If P[τ < ∞] = 0, then the control ξ− never acts when the state process X1 lies in the

region (−∞, x∗1). Since a1 ≥ 0 and b2 ≥ 0, this is enough to ensure that X1,x;v
t , X2,x;v

t >
0 for each t ≥ 0, P-a.s., which in turn implies that v ∈ Vx+.

Arguing by contradiction, suppose that P[τ <∞] > 0. Define the control ṽt := 1{t<τ}vt +

1{t≥τ}(ξ
+
t +min{x∗1−X1

τ−, 0}1{∆ξ−τ >0}), and the process X̃ := Xx;ṽ. Define next the stopping
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time τ̄ := inf{t ≥ τ | X̃1
t ≥ 2x∗1}, the control v̄t := 1{t<τ̄}ṽ + 1{t≥τ̄}(X

1
τ̄ − X̃1

τ̄− + vt − vτ̄ ) and

the process X̄ := Xx;v̄. Since at time τ only the negative part ξ− of v acts, on {τ < ∞} we
have τ < τ̄ . Also, by the definition of v̄, for k such that τ + 1/k < τ̄ , on {τ <∞} we have

vτ+1/k − v̄τ+1/k ≥ ξ−τ+1/k ≥ ξ
−
τk+1/k > ξ−τk−1/k ≥ 0,

so that the processes v and v̄ are not indistinguishable. Moreover, v and v̄ are such that, on
{τ <∞}, we have

(4.1)

{
Xt = X̄t for t ∈ [0, τ) ∪ [τ̄ ,∞),

Xt ≤ X̄t for t ∈ [τ, τ̄).

After some manipulations, from (4.1) we deduce that

J(x; v) = J(x; v̄) + E
[ ∫

(τ,τ̄)
e−ρtdξ−t +

∫ τ̄

τ
e−ρtDh(X̂t)(Xt − X̄t)dt

]
(4.2)

+ E[e−ρτ (|X1
τ −X1

τ−| − |X̄1
τ − X̄1

τ−|) + e−ρτ̄ (|X1
τ̄ −X1

τ̄−| − |X̄1
τ̄ − X̄1

τ̄−|)],

for X̂t = λtX̄t + (1− λt)Xx;v
t ∈ (−∞, 2x∗1)×R, and suitable choice of λt(ω) ∈ [0, 1]. Since ξ−

acts at time τ , we have X1
τ −X1

τ− ≤ 0. Also, at time τ the control v̄ can only jump to the
left, giving X̄1

τ − X̄1
τ− ≤ 0. Hence, using X̄1

τ −X1
τ ≥ 0, we obtain

(4.3) e−ρτ (|X1
τ −X1

τ−| − |X̄1
τ − X̄1

τ−|) = e−ρτ̄ (X̄1
τ −X1

τ ) ≥ 0.

Now, if X̄1
τ̄ ≥ X̄1

τ̄−, then using (4.1) we find

|X1
τ̄ −X1

τ̄−| − |X̄1
τ̄ − X̄1

τ̄−| ≥ X̄1
τ̄− −X1

τ̄− ≥ 0.(4.4)

Therefore, plugging (4.3) and (4.4) into (4.2), we obtain the inequality

(4.5) J(x; v)− J(x; v̄) ≥ E
[ ∫ τ̄

τ
e−ρt[hx1(X̂t)(X

1
t − X̄1

t ) + hx2(X̂t)(X
2
t − X̄2

t )]dt

]
≥ 0,

where we have also used (4.1), Condition 3b in Assumption 2.1, and that, due to the mono-
tonicity of b2 in the variable x1, via a comparison principle we have X2

t −X̄2
t ≤ 0 for t ∈ (τ, τ̄).

On the other hand, if X̄1
τ̄ ≤ X̄1

τ̄−, from (4.1) we obtain

|X1
τ̄ −X1

τ̄−| − |X̄1
τ̄ − X̄1

τ̄−| ≥ X1
τ̄− − X̄1

τ̄−(4.6)

= X1
τ − X̄1

τ +

∫ τ̄−

τ
b11(X1

t − X̄1
t )dt+

∫ τ̄−

τ
σ(X1

t − X̄1
t )dW 1

t −
∫

(τ,τ̄)
dξ−t .

If b11 ≤ 0 substituting (4.3) and (4.6) into (4.2), we obtain again (4.5). Similarly, for b11 ≥ 0
we find

J(x; v)− J(x; v̄) ≥ E
[ ∫ τ̄

τ
[(hx1(X̂t)− b11)(X1

t − X̄1
t ) + hx2(X̂t)(X

2
t − X̄2

t )]dt

]
≥ 0.(4.7)

However, both (4.5) and (4.7) contradict the uniqueness of the optimal control v, completing
the proof of the lemma. �

4.2. Sketch of the proof of Theorem 2.5. Since we are interested in characterizing the
optimal control for any given x̄ ∈ R2

+, thanks to Lemma 4.1 we can restrict the domain of the
HJB equation to the set R2

+. We observe that, upon exploiting the ellipticity of the operator
L in the domain R2

+ (and, in particular, the uniform ellipticity of L on each ball B ⊂ R2
+),

all the results from Sections 3.1 and 3.2 can be recovered, with minimal adjustments of the
arguments therein.
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For x̄ ∈ W we can consider the processes Xn := X x̄;vn , vn for n ∈ N, with (vn)n∈N
minimizing sequence of solutions to the Skorkokhod problems on domains Wn, according to
Lemma 3.5 (here Wn denotes the closure of Wn in R2

+).
Estimates as those of Lemma 3.6 can now be proved as follows. Denoting by X x̄ the solution

to (2.1), by standard results (see, e.g., Theorem 4.1 at p. 59 in [51]) we have E[|X x̄
t |p] ≤

Cep (2L̄+σ2(p−1))t(1 + |x̄|p) for each t ≥ 0. Hence, arguing as in the proof of Lemma 3.6 and
using the requirement on ρ from Condition 3b in Assumption 2.1, we find

(4.8) sup
n

∫ ∞
0

e−ρtE[|X1,n
t |p]dt ≤ C(1 + |x̄|p).

Next, for p′ := (2p−1)/2, we use (4.8) to estimate |X2,n|p′ . We underline that, sinceWn ⊂ W,
we have Xn

t > 0 P⊗dt-a.e. in Ω×[0,∞). For each n ∈ N, define the process Λn as the solution
to the SDE

dΛnt = L̄(1 + |X1,n
t |+ Λnt )dt+ σΛnt dW

2
t , t ≥ 0, Λn0 = x̄2.

Since X2,n
t ≤ x̄2 +

∫ t
0 L̄(1 + |X1,n

s | + |X2,n
s |)ds + σ

∫ t
0 X

2,n
s dW 2

s , by a comparison principle

we obtain X2,n ≤ Λn. Therefore, using that Λnt = Êt[x̄2 +
∫ t

0 L̄(1 + |X1,n
s |)Ê−1

s ds], with

Êt := exp[(L̄− σ2/2)t+ σWt], we find

∫ ∞
0

e−ρtE[|X2,n
t |p

′
]dt ≤

∫ ∞
0

e−ρtE[|Λnt |p
′
]dt

(4.9)

≤ C
∫ ∞

0
e−ρtE

[
Êp
′

t x̄
p′

2 + pt

∫ t

0
Êp
′

t Ê
−p′
s ds

]
+ C

∫ ∞
0

(∫ t

0
e−ρsE[|X1,n

s |p]ds
) 1
q

e
−ρ(1− 1

q
)t
(∫ t

0
E[(Êt/Ês)

p′q∗ ]ds

) 1
q∗

dt,

where we have also used Hölder’s inequality with exponent q = p/p′, q∗ denoting the conju-
gate of q. Exploiting the requirement on ρ made in Condition 3b in Assumption 2.1, after
elementary computations one can see that

(4.10)

∫ ∞
0

e
−ρ(1− 1

q
)t
(∫ t

0
E[(Êt/Ês)

p′q∗ ]ds

) 1
q∗

dt <∞.

Finally, substituting (4.8) and (4.10) in (4.9), we conclude that

sup
n

∫ ∞
0

e−ρtE[|X2,n
t |p

′
]dt ≤ C(1 + |x̄|p),

which, combined with (4.8), gives

(4.11) sup
n

∫ ∞
0

e−ρt(E[|X1,n
t |p] + E[|Xn

t |p
′
])dt ≤ C(1 + |x̄|p).

Thanks to the estimate (4.11), the arguments of Step 1 in the proof of Lemma 3.7 can be
recovered, so that (up to a subsequence)

(4.12) Xn
t → X̂t P⊗ dt-a.e. in Ω× [0,∞), as n→∞,

for an adapted process X̂. Using again (4.11) and the assumption p ≥ 2, a standard use of
Banach-Saks’ theorem allows to find a subsequence of indexes (nj)j∈N such that the Cesàro

means of (X1,nj )j∈N converge in L2 to the process X̂1; that is,

(4.13) X̄1,m :=
1

m

m∑
j=1

X1,nj → X̂1, as m→∞, in L2(Ω× [0, T ];P⊗ dt), for each T > 0.
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Next, defining the process vt := X̂1
t − x̄1 −

∫ t
0 X̂

1
sds −

∫ t
0 X̂

1
sdWs, and exploiting the L2

convergence in (4.13) and the linearity of the dynamics for the first component, we deduce
that

(4.14) v̄m :=
1

m

m∑
j=1

vnj → v, as m→∞, in L2(Ω× [0, T ];P⊗ dt), for each T > 0.

Again, by using Lemma 3.5 in [40], we can assume the processes X̂1 and v to be right-
continuous. Next, observe that the processes X2,n can be expressed as

X2,n
t = Et

[
x̄2 +

∫ t
0 b

2(Xn
s )/Esds

]
, with Et := exp

(
σW 2

t − σ2

2 t
)
, t ≥ 0.

Hence, taking limits as n → ∞ in the latter equality (exploiting (4.12) and the uniform
integrability deriving from (4.11)), we deduce that

X̂2
t = Et

[
x̄2 +

∫ t
0 b

2(X̂s)/Esds
]
, t ≥ 0,

so that, thanks also to the very definition of v, we have X̂ = X x̄;v. Overall, from (4.12), (4.14)
and the latter equality, we have

(4.15) X̄m :=
1

m

m∑
j=1

Xnj → X x̄;v, and v̄m → v, P⊗ dt-a.e. in Ω× [0,∞), as m→∞.

It is however worth noticing that X̄m is not the solution of the SDE controlled by v̄m, unless
b2 is affine. Similarly to (3.36), using the fact that the sequence of controls vn is minimizing,
and exploiting the limits in (4.15) and the convexity of h, we find

J(x̄; v) = E
[ ∫ ∞

0
e−ρth(X x̄;v

t )dt+ ρ

∫ ∞
0

e−ρt|v|tdt
]

≤ lim inf
m

E
[ ∫ ∞

0
e−ρth(X̄m

t )dt+ ρ

∫ ∞
0

e−ρt|v̄m|tdt
]

≤ lim inf
m

1

m

m∑
j=1

E
[ ∫ ∞

0
e−ρth(X

nj
t )dt+ ρ

∫ ∞
0

e−ρt|vnj |tdt
]

= V (x̄),

so that the control v has locally bounded variation and it is optimal. By uniqueness of the
optimal control, we deduce that v̄ = v and X̂ = X x̄;v̄.

Finally, thanks to the properties of (Xn, vn), by repeating the arguments leading to Proposi-
tions 3.8, 3.9 and 3.10 (see Appendix B), the optimal control v̄ for x̄ ∈ W can be characterized
as the unique solution to the modified Skorokhod problem for the SDE (2.2) in W starting at
x̄ with reflection direction −Vx1e1. On the other hand, for x̄ ∈ W, we can repeat the rationale
at the end of Subsection 3.3.1, which yields that the optimal control can be characterized also
for x̄ ∈ W, completing the proof of Claim 1 of Theorem 2.5.

When x̄ /∈ W, following the arguments of Subsection 3.3.2, one can characterize the initial
jump of v̄. This completes the proof of Theorem 2.5 under Condition 3b in Assumption 2.1.

5. Comments, extensions and examples

5.1. Refinements of Assumption 2.1. Assumption 2.1 can be improved as follows.

5.1.1. Affine drift. If σ̄ is constant, Theorem 2.5 holds also for a drift b̄(x) := a + bx, for
a vector a ∈ Rd and a matrix b ∈ Rd×d such that the vector β := (0, b21, ..., b

d
1)> ∈ Rd is

an eigenvector of b and hx1β ≥ 0. Here the vector (0, b21, ..., b
d
1)> is the first column of b,

with b11 replaced by 0, while hx1β denotes the β-directional derivative of hx1 . In this case,

for x ∈ Rd, r > 0 and xr := x + rβ, the solution Xxr of (2.1) writes (see, e.g., p. 99 in
[51]) as Xxr

t = ebtxr + Pt, where Pt does not depend on xr. Hence, since the vector β is by
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assumption an eigenvector of the matrix b with eigenvalue λ, we find Xxr
t − Xx

t = r etbβ =
retλβ, for each t ≥ 0, P-a.s. This easily allows to repeat the arguments in the proof of
Proposition 3.3, so that Vx1β ≥ 0, while all of the other results in this paper still hold (often
with less technical proofs). Also, in this case, for p = 2 it is sufficient to require that

ρ > 2Λ(b), Λ(b) := max{Re(λ) |λ eigenvalue of b}.

We refer to Lemma 2.2 and Theorem 2.3 in [15] for more details. Finally, all the results in this
paper apply for a constant volatility matrix σ̄ such that σ̄σ̄> is positive definite, σ̄> denoting
the transpose of σ̄.

5.1.2. On Condition 2. A careful look into the proofs of Proposition 3.3 and of Lemma 3.7
reveals that the results in this paper remain valid if the drift coefficients bi in Condition 2 in
Assumption 2.1 satisfy one of the following more general requirements.

(1) Under Condition 3a, for i = 2, ..., d, either of the following is satisfied:
(a) bi is convex, hxi ≥ 0, and either bix1

, bix1xi , hx1xi ≤ 0 or bix1
, bix1xi , hx1xi ≥ 0;

(b) bi is concave, hxi ≤ 0, and either bix1
, −bix1xi , hx1xi ≤ 0 or bix1

, −bix1xi , hx1xi ≥ 0.
(2) Under Condition 3b, for i = 2, ..., d, either of the following is satisfied:

(a) bi is convex, hxi ≥ 0, and bix1
, bix1xi , hx1xi ≤ 0;

(b) bi is concave, hxi ≤ 0, and bix1
, −bix1xi , hx1xi ≤ 0.

We point out that the conditions to deal with a linear volatility need to be compatible with
the arguments in the proof of Lemma 4.1 and are, for this reason, more restrictive.

5.1.3. On the lower-growth of h. We underline that the lower-growth requirement on h in
Condition 1 can be improved in some particular settings: If the drift is affine and the volatility
is constant, for p ≤ 2 it is sufficient to assume h ≥ −κ2. Indeed, in this case, the proof of the
estimate (A.5) in Step 2 in the proof of Theorem A.1 in Appendix A simplifies (in particular,
in (A.6), M2 = 0) and it can be provided without relying on Lemma 3.6. Also, for any x ∈ Rd
and any sequence of minimizing controls (vn)n∈N, we have the estimate

sup
n

E
[ ∫

[0,∞) e
−ρtd|vn|t

]
≤ C(1 + |x|p),

which, combined with E[|Xx;vn

t |] ≤ C(1 + |x|p + E[|vn|t])eL̄t, gives

sup
n

E
[ ∫

[0,∞) e
−(ρ+L̄)t|Xx;vn

t |dt
]
≤ sup

n
C
(

1 + |x|p + E
[ ∫∞

0 e−ρt|vn|tdt
])
≤ C(1 + |x|p).

Therefore, a limit process X̂ such that Xx;vn

t → X̂t P ⊗ dt-a.e. as n → ∞ can be found, by
adapting the reasoning in Step 1 in the proof of Lemma 3.7. Also, using Lemma 3.5 in [40],
in the spirit of what has been done in Subsection 4.2, we can exploit the convexity of h and
the fact that b̄ is affine in order to prove that X̂ = Xx;v, with v optimal control for the given
x. This allows to recover Lemma 3.7 and to characterize the optimal control v.

5.2. Some remarks. We provide here some extensions to the results contained in this paper.

Remark 5.1 (Asymmetric costs of action). Unless to slightly modify some of the arguments
in this paper, Theorem 2.5 extends to the case in which increasing the first component of the
state process has a different cost than decreasing it; that is, to the cost functional

Jκ1,κ2(x; v) := E
[ ∫ ∞

0
e−ρth(Xx;v

t )dt+ κ1

∫
[0,∞)

e−ρtdξ+
t + κ2

∫
[0,∞)

e−ρtdξ−t

]
, κ1, κ2 > 0.

In this case, the value function V solves the HJB equation

max{ρV − LV − h,−Vx1 − κ1, Vx1 − κ2} = 0, a.e. in R2.
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This can be shown by employing arguments similar to those in the proof of Theorem A.1 in
Appendix A, by replacing the penalizing term in (A.3) with an “asymmetric” penalization
[β(−Vx1 − κ1) + β(Vx1 − κ2)]/ε. Most of the arguments in this paper remains essentially
unchanged, and the optimal control can be characterized as the solution to a Skorokhod problem
on the domain Wκ1,κ2 := {y ∈ Rd |κ1 < Vx1(y) < κ2}.

Remark 5.2 (Monotone controls). The approach in this paper allows also to characterize
optimal controls for stochastic singular control problems where the minimization problem is
formulated over the set of monotone controls; that is, when

V (x) := inf
ξ∈V↑

J(x; ξ) with V↑ := {ξ ∈ V, ξ nondecreasing}.

In this case, V solves the HJB equation max{ρV − LV − h,−Vx1 − 1} = 0, a.e. in D, and
its derivative Vx1 is the value function of an optimal stopping problem (rather than a Dynkin
game). The arguments in this paper can be easily adapted, and the optimal control can be
characterized as the solution to a Skorokhod problem on the domain W+ := {y ∈ Rd | 1 <
Vx1(y)}. We stress that, in this case, the additional requirements on h and b̄ in Condition 3b
in Assumption 2.1 are not anymore needed (see Remark 2.2).

Remark 5.3 (Finite time horizon). A characterization result analogous to Theorem 2.5 could
also be investigated for an optimal control problem over a finite time-horizon. For example,
when d = 2 and b is affine, a connection with Dynkin games is known from [16]. Therefore, it
seems possible to use this connection in order to investigate the monotonicity of the value of
the game (as in Proposition 3.3), and to use this monotonicity in order to construct ε-optimal
controls vε. In this case, building on the results in [9], one can try to study the limit as ε→ 0
of (vε)ε>0, in order to provide a characterization of the optimal control.

5.3. Examples. For the sake of illustration, we begin with the following:

Example 1. For d = 2, ρ large enough, a convex nonincreasing function φ and a convex
nondecreasing function f , in light of the discussion in Section 5.1 the optimal control can be
characterized in the following settings:

(1) σ̄ as in Condition 3a and
(a) b2(x) = a2 + b21x1 + b22x2, h(x) = |x|2, h(x) = (x1 − x2)2 with b21 ≤ 0, h(x) =

(x1 + x2)2 with b21 ≥ 0;
(b) b2(x) = φ(x1) + b22x2, h(x) = |x1|2 + f(x2);

(2) σ̄ as in Condition 3b, x∗1 > 0 and
(a) b2(x) = a2 + b21x1 + b22x2, h(x) = |x1 − x∗1|2 + f(x2);
(b) b2(x) = φ(x1) + b22x2, h(x) = |x1 − x∗1|2 + f(x2), h(x) = |x1 − x∗1|2 + f(x2 − x1).

In particular, Example 1a represents a relevant class of linear-quadratic stochastic singular
control problems, and it is the main example of this paper.

Example 2. Here we discuss a model of pollution control. In the sequel, x ∈ R2
+ is the given

and fixed initial condition of the state variable. Consider a company that can increase via an
irreversible investment plan ξ ∈ V↑ (cf. Remark 5.2) its production capacity X1,x;ξ. The latter
depreciates at constant rate δ > 0 and is randomly fluctuating, e.g. because of technological
uncertainty. Production leads to emissions of pollutants and thus impacts the level of a state
process X2,x;ξ which summarizes one or more stocks of environmental pollutants (such as the
average concentration of CO2 in the atmosphere). We assume that such an externality of
production on the stock of pollutants is measured by a positive, convex, increasing, Lipschitz
continuous function φ that has bounded second order derivative. Overall, the dynamics of
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Xx;ξ is given by {
dX1,x;ξ

t = −δX1,x;ξ
t dt+ σ1X

1,x;ξ
t dW 1

t + dξt,

dX2,x;ξ
t = (φ(X1,x;ξ

t )−X2,x;ξ
2 )dt+ σ2X

2,x;ξ
t dW 2

t .

The company aims at choosing a production plan that minimizes the sum of different costs:
the cost of not meeting a given production level θ; the penalty of leading to a level of pollution
that exceeds some environmental target ϑ; the proportional costs of investment. That is,

V (x) = inf
ξ∈V↑

E
[ ∫ ∞

0
e−ρt

(
(X1,x;ξ

t − θ)2 + c(X2,x;ξ
t − ϑ)

)
dt+

∫
[0,∞)

e−ρtdξt

]
.

Here, c ∈ C2;1(R) is a nonnegative, nondecreasing, convex, Lipschitz continuous function such
that c(y) = 0 for y ≤ 0, and with bounded second order derivative. In light of the discussion
in Subsections 5.1 and 5.2, the optimal control for V can be characterized as the solution to
its related Skorokhod problem.

We next turn our focus to examples of bounded-variation problems treated in the literature
and for which our results apply.

Example 3. We discuss the model studied in [15]. For d = 2, consider the singular control
problem with running cost h(x1, x2) = νx2

1 + x2
2, for ν > 0, and drift b̄(x) = a + bx, for a

constant vector a ∈ R2 and a matrix

b =

(
b11 b12
b21 b22

)
∈ R2×2,

Observe that the requirements discussed in Subsection 5.1.1, are satisfied by assuming b12 = 0
and ρ > 2Λ(b). Therefore, Theorem 2.5 gives the optimal control as the solution of the related
Skorokhod problem. The same result was obtained in [15] only under the additional assumption
of a global Lipschitz-continuous free boundary.

Example 4. Another example of set up similar to ours has been studied in [62], where a
multidimesional singular control problem with d ≥ 2 and constant drift and volatility is con-
sidered. There, the author shows the C2-regularity of the value function, allowing for the
characterization of the optimal policy as a solution to the related Skorokhod problem (even
in the case of a state dependent cost of intervention). It is easy to see that, when the drift
b̄ is assumed to be constant, no monotonicity of the running cost h is required in order to
obtain our Theorem 2.5. In comparison with [62], our main result (cf. Theorem 2.5) allows
to characterize the optimal policy even in cases in which the dynamics are interconnected (at
the cost of additional structural conditions on the running cost h).

5.4. An example with degenerate dynamics. A more involved discussion is required to
treat the degenerate singular control problem studied in [27] (see also [26]).

In this subsection, we take d = 2, h satisfying Condition 1 in Assumption 2.1, b̄(x) =
(b̄1(x), b̄2(x))> = a+ bx, and

(5.1) a =

(
0
a2

)
, b =

(
0 0
b21 b22

)
, σ =

(
0 0
0 η

)
, b21, η, ρ > 0, b22 ≤ 0, hx1x2 ≥ 0.

In order to simplify the analysis of this example, assume p = 2 and b22 < 0 and observe that,
in this case, λ(b) = 0 (see the discussion in Subsection 5.1.1). The analysis of this subsection
can be repeated also for b22 = 0 and for a general p ≥ 1.

Despite in this example the matrix σσ> is degenerate, the arguments in this paper can be
employed in order to characterize the optimal control. However, some extra care is needed
in order to prove the regularity of the value function inside the waiting region, which in fact
follows from the properties of the free boundary proved in [27] and [26].
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We begin the discussion by observing that results analogous to the ones contained in Ap-
pendix A hold. In particular, Theorem A.1 can be shown by using a suitable perturbation
of the matrix σ (see the Appendix A in [27], for more details). The connection with Dynkin
games holds as well (see Theorem 3.1 in [27]), so that the arguments leading to Proposition
3.3 (which make no use of the non-degeneracy of σσ>) can be recovered.

5.4.1. Regularity of V inW. We enforce an additional hypothesis, which is satisfied by h(x) =
|x|2 or h(x) = (x1 + x2)2.

Assumption 5.4.

(1) limx2→±∞ hx2(x1, x2) = ±∞ for any x1 ∈ R;
(2) One of the following hold true:

(a) hx1(x1, ·) is strictly increasing for any x1 ∈ R;
(b) hx1x2 = 0 and h(x1, ·) is strictly convex for any x1 ∈ R.

As in Proposition 5.8 in [26] (see otherwise Proposition 4.25 at p. 92 in [56]), under the ad-
ditional Assumption 5.4, there exist two nonincreasing locally Lipschitz continuous functions
g1, g2 : R→ R such that

(5.2) I− = {x ∈ R2 |x2 ≤ g1(x1)} and I+ = {x ∈ R2 |x2 ≥ g2(x1)}.

For each x ∈ R2, recall the definition of τ̄1, τ̄2 given in Theorem 3.2 and define the stopping
times

(5.3) τ̄ δ1 := inf{t ≥ 0 |Xx+δe1
t ∈ I−}, τ̄ δ2 := inf{t ≥ 0 |Xx+δe1

t ∈ I+}, δ ∈ R.

The Lipschitz continuity of g1 and of g2 allows to prove the following lemma.

Lemma 5.5. Under the additional Assumption 5.4, for x ∈ R2, we have

lim
δ→0

τ̄ δ1 = τ̄1, and lim
δ→0

τ̄ δ2 = τ̄2, P-a.s.

Proof. We only prove the first of the two limits for δ → 0+, since the same limit for δ → 0−

follows by identical arguments, and the second limit can be proved in the same way. We first
observe that, since g1 is finite, we have P[τ̄1 <∞] = 1. Also, when δ > 0, we have, by convexity

of V and by Proposition 3.3, that Vx1(x1 + δ,X2,x+δe1
t ) ≥ Vx1(x1, X

2,x+δe1
t ) ≥ Vx1(x1, X

2,x
t ),

from which we deduce that

(5.4) τ̄ δ1 ≥ τ̄1, P-a.s.

We continue the proof arguing by contradiction. In light of (5.4), suppose that there exists
E ∈ F , with P[E] > 0, such that for each ω ∈ E there exists ε(ω) > 0 and a sequence

(δj(ω))j∈N with δj > 0 and δj → 0 as j →∞, for which τ̄
δj
1 (ω) > τ̄1(ω) + ε(ω) for each j ∈ N.

Using the representation in (5.2), (dropping the dependence on ω to simplify the notation)
this is equivalent to

(5.5) X2,x
τ̄1 ≤ g1(x1) and X

2,x+δje1
τ̄1+s > g1(x1 + δj), for each s ∈ [0, ε], j ∈ N.

Notice that, due to the particular structure of the dynamics, we have

(5.6) X
2,x+δje1
s = X2,x

s + δjb
2
1

(
eb

2
2s − 1

)
/b22, s ≥ 0, j ∈ N,

from which we can write

X2,x
τ̄1 = (X2,x

τ̄1 −X
2,x
τ̄1+s) +X2,x

τ̄1+s

= −
∫ s

0
(a2 + b21x1 + b22X

2,x
τ̄1+r)dr − η(Wτ̄1+s −Wτ̄1) +X

2,x+δje1
τ̄1+s − δjb21

(
eb

2
2(τ̄1+s) − 1

)
/b22,



26 DIANETTI AND FERRARI

From the latter equality, using (5.5), by Lipschitz continuity of g1, and pathwise boundedness
of X2,x and of τ̄1, we obtain

(5.7) X2,x
τ̄1 ≥ −δjC − sC + η(Wτ̄1+s −Wτ̄1) + g1(x1)− δj , for each s ∈ [0, ε], j ∈ N,

where the constant C depends on τ̄1 (which is finite, by assumption) and on supr∈[0,ε]X
2,x
τ̄1+r,

but it is independent from s and j. Next, by the law of iterated logarithm (see, e.g., Theorem
9.23 at p. 112 in [41]) we find a sequence (sk)k∈N converging to zero and k̄ ∈ N (depending
on ω) such that

(5.8) (Wτ̄1+sk −Wτ̄1) ≥
√
sk
√

log log(1/sk) ≥
√
sk, for each k ≥ k̄.

Finally, from (5.7) and (5.8), for suitable choice of δj and sk, we conclude that

X2,x
τ̄1 ≥ −δj(C + 1) +

√
sk(η − C

√
sk) + g1(x1) > g1(x1),

which contradicts (5.5), and therefore completes the proof of the lemma. �

Lemma 5.6. Under the additional Assumption 5.4, we have V ∈ C2(W).

Proof. We split the proof in two steps.

Step 1. Take z ∈ W and ε > 0 such that B1
ε (z) × B2

ε (z) ⊂ W, where B1
ε (z) := {x1 ∈

R | |z1 − x1| < ε} and B2
ε (z) := {x2 ∈ R | |z2 − x2| < ε}. We prove that Vx2x2 , Vx1x2 are

locally Lipschitz in B1
ε (z)× B2

ε (z) and that Vx1x1(x1, ·) is locally Lipschitz in B2
ε (z) for each

x1 ∈ B1
ε (z).

We begin by observing that, under (5.1), the HJB equation can be regarded a second
order ordinary differential equation (ODE, in short) in the variable x2 ∈ R depending on the
parameter x1 ∈ R. In particular, V solves the equation

(5.9) ρV − b̄2Vx2 − (η2/2)Vx2x2 = h, for a.a. x2 ∈ B2
ε (z), for each fixed x1 ∈ B1

ε (z).

Therefore we have V (x1, ·) ∈ C4;1(B2
ε (z)), for each x1 ∈ B1

ε (z). Next, for any y1, x1 ∈ B1
ε (z)

we define the function W (x2) := V (y1, x2)− V (x1, x2), x2 ∈ B2
ε (z), which satisfies the ODE

ρW − b̄2(y1, ·)Wx2 − (η2/2)Wx2x2 = F, x2 ∈ B2
ε (z),

where F = h(y1, ·)−h(x1, ·)+b21Vx2(x1, ·)(y1−x1). Therefore, by employing Schauder interior
estimates (see Theorem 6.2 at p. 90 in [29]), we obtain

‖W‖C2;1(B2
ε/2

(z)) ≤ C(‖W‖C0(B2
ε (z)) + ‖F‖C0;1(B2

ε (z))).

Moreover, by the W 2;∞
loc -regularity of V (cf. Theorem A.1 in Appendix A), the function F is

Lipschitz in B1
ε (z)×B2

ε (z). Thus, the latter estimate implies that

‖V (y1, ·)− V (x1, ·)‖C2;1(B2
ε/2

(z)) ≤ C|y1 − x1|,

for a constant C which is independent from y1 and x1, as long as they are elements of B1
ε (z).

Hence, the functions V, Vx2 , Vx2x2 are Lipschitz continuous in B1
ε (z)×B2

ε/2(z).

We can therefore compute the weak derivative of (5.9) with respect to x1, obtaining, for
each fixed x1 ∈ B1

ε (z), the ODE

(5.10) ρVx1 − b2Vx1x2 − (η2/2)Vx1x2x2 = hx1 + b21Vx2 , for a.a. x2 ∈ B2
ε/2(z).

Since Vx2x2 is Lipschitz, we have Vx1(x1, ·) ∈ C3;1(B2
ε/2(z)), for each x1 ∈ B1

ε (z). Also, we

can again define a function function W 1(x2) := Vx1(y1, x2)−Vx1(x1, x2), x2 ∈ B2
ε/2(z), which

satisfies the elliptic equation

ρW 1 − b2(y1, ·)W 1
x2
− (η2/2)W 1

x2x2
= F 1, x2 ∈ B2

ε/2(z),
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where F 1 = hx1(y1, ·) − hx1(x1, ·) + b21(Vx2(y1, ·) − Vx2(x1, ·)) + b21Vx1x2(x1, ·)(y1 − x1). By
employing again Schauder interior estimates, we obtain

‖W 1‖C2;1(B2
ε/3

(z)) ≤ C(‖W 1‖C0(B2
ε/2

(z)) + ‖F 1‖C0;1(B2
ε/2

(z))).

This, by the local Lipschitz continuity of Vx2 and Vx1x2 (since we have shown that Vx1x2x2

exists bounded) in the variable x2, implies that

‖Vx1(y1, ·)− Vx1(x1, ·)‖C2;1(B2
ε/2

(z)) ≤ C|y1 − x1|;

that is, the functions Vx1 , Vx1x2 , Vx1x2x2 are Lipschitz continuous in B1
ε ×B2

ε/3(z).

This allows to compute once more the weak derivative w.r.t. x1 in equation (5.10), obtaining
for each fixed x1 ∈ B1

ε (z), the ODE

(5.11) ρVx1x1 − b2Vx1x1x2 − (η2/2)Vx1x1x2x2 = hx1x1 + 2b21Vx1x2 , for a.a. x2 ∈ B2
ε/3(z).

Therefore, since we have shown that Vx1x2 is Lipschitz, after employing one more time
Schauder interior estimates, we obtain

‖Vx1x1‖C2;1(B2
ε/4

(z)) ≤ C(‖Vx1x1‖C0(B2
ε/3

(z))+‖hx1x1 +2b21Vx1x2‖C0;1(B2
ε/3

(z))) ≤ C, x1 ∈ B1
ε (z),

for C large enough, not depending on x1. In particular we deduce that Vx1x1(x1, ·) is Lipschitz
in B2

ε/4(z), with Lipschitz constant uniformly bounded for x1 ∈ B1
ε (z).

Step 2. We now prove that Vx1x1(·, x2) is continuous in W1(x2) (see Lemma 2.3), for each
x2 ∈ R. This is done by employing a direct computation to find an expression for Vx1x1 .

Fix x ∈ W and let ĥ be as in Theorem 3.1. For δ > 0, from (5.4) in the proof of Lemma
5.5, we have τ̄ δ1 ≥ τ̄1. Then, from (5.6) and Theorem 3.2, we write

Vx1(x+ δe1)− Vx1(x)

δ
≤ G(x+ δe1; τ̄ δ1 , τ̄2)−G(x; τ̄ δ1 , τ̄2)

δ
(5.12)

= E
[ ∫ τ̄δ1∧τ̄2

0
e−ρt

(
ĥ(Xx+δe1

t )− ĥ(Xx
t )

δ

)
dt

]
= E

[ ∫ τ̄1∧τ̄2

0

∫ 1

0
e−ρt

(
ĥx1(Zδ,rt ) + ĥx2(Zδ,rt )b21(eb

2
2t − 1)/b22

)
drdt

]
+ E

[ ∫ τ̄δ1∧τ̄2

τ̄1∧τ̄2

∫ 1

0
e−ρt

(
ĥx1(Zδ,rt ) + ĥx2(Zδ,rt )b21(eb

2
2t − 1)/b22

)
drdt

]
=: M δ

1 +M δ
2 ,

where Zδ,rt := Xx
t + r(Xx+δe1

t −Xx
t ). Next, in order to study M δ

1 and M δ
2 , define

(5.13) H(t, y) := ĥx1(y) + ĥx2(y)b21(eb
2
2t − 1)/b22, y ∈ R2.

Notice that, by (5.1), Proposition 3.3 (see the discussion in Subsection 5.1.1) and the convexity
of V we have hx1x1 , b

2
1hx1x2 , b

2
1Vx1x2 , Vx2x2 ≥ 0, and hence

(5.14) H ≥ 0.

Moreover, since p = 2, from Proposition 2.4 in [27], for each ȳ, y ∈ R2, and λ ∈ [0, 1], we have

(5.15) λV (ȳ) + (1− λ)V (y)− V (λȳ + (1− λ)y) ≤ Kλ(1− λ)|ȳ − y|2,

for some K > 0. Hence, (5.14) and (5.15) together with Condition 1 in Assumption 2.1 give

(5.16) 0 ≤ H(t, y) ≤ C.
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By Step 1, the function H(t, ·) is continuous inW. Moreover, since Zδ,r → Xx for P⊗dt⊗dr-
a.a. (ω, t, r) ∈ Ω× [0,∞)×(0, 1), as δ → 0, we deduce that H(t, Zδ,rt )→ H(t,Xx

t ), P⊗dt⊗dr-
a.e. as δ → 0. Therefore, thanks to (5.16), by the dominated convergence theorem we have

(5.17) lim
δ→0+

M δ
1 = E

[ ∫ τ̄1∧τ̄2

0
e−ρt

(
ĥx1(Xx

t ) + ĥx2(Xx
t )b21(eb

2
2t − 1)/b22

)
dt

]
.

Also, by Lemma 5.5 we have 1(τ̄1∧τ̄2,τ̄δ1∧τ̄2) → 0, P-a.s. as δ → 0. Therefore we can again

employ (5.16) and the dominated convergence theorem to conclude that

(5.18) lim
δ→0

M δ
2 = 0.

Hence, since we already know that Vx1x1 exists a.e., (5.12), (5.17) and (5.18) implies that

(5.19) Vx1x1(x) ≤ E
[ ∫ τ̄1∧τ̄2

0
e−ρt

(
ĥx1(Xx

t ) + ĥx2(Xx
t )b21(eb

2
2t − 1)/b22

)
dt

]
, a.e. in W.

Also, arguments similar to the one leading to (5.19), allow to estimate Vx1x1 from below,
obtaining

Vx1x1(x) ≥ E
[ ∫ τ̄1∧τ̄2

0
e−ρt

(
ĥx1(Xx

t ) + ĥx2(Xx
t )b21(eb

2
2t − 1)/b22

)
dt

]
, a.e. in W,

which, together with (5.19), implies that

(5.20) Vx1x1(x) = E
[ ∫ τ̄1∧τ̄2

0
e−ρt

(
ĥx1(Xx

t ) + ĥx2(Xx
t )b21(eb

2
2t − 1)/b22

)
dt

]
, a.e. in W.

We can finally study the continuity of Vx1x1 in the variable x1. From (5.20) we have

|Vx1x1(x+ δe1)− Vx1x1(x)| ≤
∣∣∣∣E[ ∫ τ̄1∧τ̄2

0
e−ρt(H(t,Xx+δe1

t )−H(t,Xx
t ))dt

]∣∣∣∣(5.21)

+

∣∣∣∣E[ ∫ τ̄δ1∧τ̄δ2

τ̄1∧τ̄2
e−ρtH(t,Xx+δe1

t )dt

]∣∣∣∣ =: N δ
1 +N δ

2 ,

with H defined in (5.13). Following arguments similar to the ones leading to (5.17) and (5.18),
we can show that limδ→0N

δ
1 = 0 and that limδ→0N

δ
2 = 0. Therefore, taking limits as δ → 0

in (5.21), we deduce that Vx1x1 is a.e. equal to a function which is continuous the variable x1.
By Step 1, the functions Vx1x1(x1, ·) are locally Lipschitz continuous, uniformly in x1. Thus,

by the continuity of Vx1x1(·, x2), we conclude that the function Vx1x1 is jointly continuous in
both variables in W. This completes the proof of the lemma. �

5.4.2. Characterization of the optimal control. In light of Lemma 5.6, under the additional
Assumption 5.4, we can construct the ε-optimal policies. Indeed, by employing the compar-
ison principle to the second order ODE (5.11) (regarded as an equation in the variable x2,
depending on the parameter x1), one still obtains that Vx1x1 > 0 in W. This, together with
the fact that Vx1 ∈ C1(W) (by Lemma 5.6), allows to show that Sε is a C1 curve in R2 and
that the vector field −e1Vx1/|Vx1 | is C1 on Sε, and nontangential to Sε. All the assumptions
in CASE 2 at p. 557 in [24] (up to the boundedness of W) are then satisfied, and we can
therefore employ (a suitable extension to unbounded domains of) Theorem 5.1 at p. 572 in
[24] in order to find the ε-optimal controls as in Lemma 3.4. Finally, all the arguments in
Section 3.3 can be repeated in the case in which σσ> is degenerate. Overall, we have proved
the following result.

Theorem 5.7. Consider the degenerate singular control problem described in (5.1), with h
satisfying Condition 1 in Assumption 2.1 and Assumption 5.4. Then, the thesis of Theorem
2.5 holds.
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Concluding, with respect to [27], we require in addition that hx1x1 > 0 and that Assumption
5.4 is satisfied. In this case, Theorem 5.7 applies, and the construction of the optimal control
discussed in Section 7 in [27] can be provided. We underline that in [27] a construction of an
optimal control is given in weak formulation, under a quite strong requirement on the running
cost h. We refer to Proposition 7.3 in [27] for more details.

Appendix A. On the HJB equation

In this subsection we prove that V is a solution (in the a.e. sense) to the related HJB
equation. The argument of the proof exploits the penalization method introduced in [25] for
bounded domains (see also [36] and the references therein), which we extend to D thanks
to suitable semiconcavity estimates, in the spirit of [10]. Although this result is somehow
classical, we have not been able to find versions that exactly fit our setting, and we therefore
provide its proofs in the following.

Theorem A.1. The value function V is a W 2;∞
loc (D)-solution to the equation

(A.1) max{ρV − LV − h, |Vx1 | − 1} = 0, a.e. in D.

Proof. We divide the proof in four steps.

Step 1. Let us start by introducing a family of penalized versions of the HJB equation (A.1).
Let β ∈ C∞(R) be a convex nondecreasing function with β(r) = 0 if r ≤ 0 and β(r) = 2r− 1
if r ≥ 1. For each ε > 0, let V ε be the the value function of the penalized control problem

(A.2) V ε(x) := inf
α∈Uε

Jε(x;α) := inf
α∈Uε

E
[ ∫ ∞

0
e−ρt(h(Xx;α

t ) + |α1
t |+ α2

t )dt

]
, x ∈ D,

where Uε is the set of Eε-valued F-progressively measurable processes, wtih Eε := {α =
(α1, α2) ∈ R × [0,∞) | |α1|r − 1

εβ(r(r + 2)) ≤ α2 ≤ 1
ε , ∀r > 0}. Here, with a slight abuse of

notation, Xx;α denotes the solution to dXx;α
t = (b(Xx;α

t ) + e1α
1
t )dt+ σdWt, t ≥ 0, Xx:α

0 = x.
We point out that, under Condition 3b in Assumption 2.1, a result analogus to Lemma 4.1
holds. Arguing as in [36] (throught a localization argument), it is possible to show that V ε is
a C2(D) solution to the partial differential equation

(A.3) ρV ε − LV ε +
1

ε
β((V ε

x1
)2 − 1) = h, in D.

Moreover, the family (V ε)ε∈(0,1) provides an approximation of V ; that is,

(A.4) lim
ε→0

V ε(x) = V (x), for each x ∈ D.

Take indeed x ∈ D. Observe that, for each ε > 0, we have V ε(x) ≥ V (x), as α2 ≥ 0. Moreover,
as in Theorem 2.2. in [17], one can show that for each δ > 0 there exists a Lipschitz admissible
process w ∈ V such that J(x;w) ≤ V (x) + δ. Since w is Lipschitz, we have dwt = α1

t dt, for
some bounded progressively measurable process α1. Then, defining α2

t = ρδ/2, we can find
ε̄ > 0 such that α := (α1, α2) ∈ Uε for each ε ∈ (0, ε̄). Moreover, with this choice of α, we
have that Jε(x;α) ≤ J(x;w) + δ/2 ≤ V (x) + δ, for each ε ∈ (0, ε̄), completing the proof of
(A.4).

Step 2. In this step we show that, under Condition 3a in Assumption 2.1, for each R > 0,
there exists a constant CR such that

(A.5) 0 ≤ λV ε(x̄) + (1− λ)V ε(x)− V ε(λx̄+ (1− λ)x) ≤ CRλ(1− λ)|x̄− x|2,
for each λ ∈ [0, 1], x̄, x ∈ BR and ε > 0. By the same arguments leading the convexity of
V (cf. Remark 2.4), it is possible to show that, for each ε > 0, the function V ε is convex.
Therefore, we only need to prove the last inequality in (A.5). Take x̄, x ∈ BR, λ ∈ [0, 1] and
set xλ := λx̄+ (1− λ)x. Fix ε > 0, an arbitrary δ > 0, and let α ∈ Uε be a δ-optimal control
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for the problem (A.2) with initial condition xλ; that is, Jε(x
λ;α) ≤ V ε(xλ) + δ. Since α is

not necessarily optimal for x or x̄, we have

λV ε(x̄) + (1− λ)V ε(x)− V ε(xλ)− δ

≤ λJε(x̄;α) + (1− λ)Jε(x;α)− Jε(xλ;α)

≤ E
[ ∫ ∞

0
e−ρt

(
λh(X x̄;α

t ) + (1− λ)h(Xx;α
t )− h(Xxλ;α

t )
)
dt

]
.

Setting Zt := λX x̄;α
t + (1 − λ)Xx;α

t , using Condition 1 in Assumption 2.1 , we continue the
latter chain of estimates to find

λV ε(x̄) + (1− λ)V ε(x)− V ε(xλ)− δ(A.6)

≤ E
[ ∫ ∞

0
e−ρt

(
λh(X x̄;α

t ) + (1− λ)h(Xx;α
t )− h(Zt)

)
dt

]
+ E

[ ∫ ∞
0

e−ρt
(
h(Zt)− h(Xxλ;α

t )
)
dt

]
≤ Cλ(1− λ)E

[ ∫ ∞
0

e−ρt
(
1 +

∣∣Xx;α
t

∣∣p−2
+
∣∣X x̄;α

t

∣∣p−2)∣∣X x̄;α
t −Xx;α

t

∣∣2dt]
+ CE

[ ∫ ∞
0

e−ρt
(
1 +

∣∣Zt∣∣p−1
+
∣∣Xxλ;α

t

∣∣p−1)∣∣Zt −Xxλ;α
t

∣∣dt]
=: M1 +M2.

We will now estimate M1 and M2 separately.
First of all, by a standard use of Grönwall’s inequality, we find

(A.7)
∣∣X x̄;α

t −Xx;α
t

∣∣ ≤ CeL̄t|x̄− x|.
When p = 2, from (A.7) and our assumptions on ρ, we immediately deduce that

(A.8) M1 ≤ CRλ(1− λ)|x̄− x|2,

as desired. On the other hand, if p > 2, set p′ := (2p − 1)/2. Defining q := p′/(p − 2) and
denoting by q∗ its conjugate, we can employ Hölder’s inequality and obtain

M1 ≤ Cλ(1− λ)|x̄− x|2
(
E
[ ∫ ∞

0
e

(2L̄−ρ(1− 1
q

))q∗t
dt

]) 1
q∗
(
E
[ ∫ ∞

0
e−ρt

(∣∣Xx;α
t

∣∣p′ + ∣∣X x̄;α
t

∣∣p′)dt]) 1
q

≤ Cλ(1− λ)(1 + |x|p + |x̄|p)
1
q |x̄− x|2 ≤ CRλ(1− λ)|x̄− x|2,

where we have used the requirements on ρ in Condition 3a in Assumption 2.1, and the estimate
(3.26), which holds also for the penalized problem.

We next estimate M2. Since the gradient Db is Lipschitz we have the estimate (see, e.g.,
Proposition 1.1.3 at p. 2 in [14])

|λb(ȳ) + (1− λ)b(y)− b(λȳ + (1− λ)y)| ≤ Cλ(1− λ)|ȳ − y|2, for each ȳ, y ∈ R2.
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This, together with the Lipschitz proprerty of b, allows to obtain

∣∣Xxλ;α
t − Zt

∣∣ ≤∫ t

0

∣∣b(Xxλ;α
s )− λb(X x̄;α

s )− (1− λ)b(Xx;α
s )

∣∣ds(A.9)

≤ L̄
∫ t

0

(∣∣Xxλ;α
s − Zs

∣∣+ λ(1− λ)
∣∣X x̄;α

s −Xx;α
s

∣∣2)ds,
≤ L̄

∫ t

0

(∣∣Xxλ;α
s − Zs

∣∣+ λ(1− λ)|x̄− x|2e2L̄s
)
ds,

≤ Cλ(1− λ)|x̄− x|2e2L̄t + L̄

∫ t

0

∣∣Xxλ;α
s − Zs

∣∣ds.
The latter estimate, after employing Grönwall’s inequality, leads to

(A.10)
∣∣Xxλ;α

t − Zt
∣∣ ≤ Cλ(1− λ)e3L̄t|x̄− x|2.

Defining q := p′/(p − 1) and denoting by q∗ is conjugate, we can again employ Hölder’s
inequality and (A.10) in order to obtain

M2 ≤ Cλ(1− λ)|x̄− x|2E
[ ∫ ∞

0
e(3L̄−ρ)t

(
1 +

∣∣Zt∣∣p−1
+
∣∣Xxλ;α

t

∣∣p−1)
dt

]
≤ Cλ(1− λ)|x̄− x|2

(
E
[ ∫ ∞

0
e

(3L̄−ρ(1− 1
q

))q∗t
dt

]) 1
q∗
(
E
[ ∫ ∞

0
e−ρt

(∣∣Xxλ;α
t

∣∣p′ + ∣∣Zt∣∣p′)dt]) 1
q

≤ Cλ(1− λ)(1 + |x|p + |x̄|p)
1
q |x̄− x|2 ≤ CRλ(1− λ)|x̄− x|2,

where we have used the estimate (3.26) and the requirements on ρ in Condition 3a in As-
sumption 2.1. This, together with (A.8) and (A.6), thanks again to the arbitrariness of δ,
completes the proof of (A.5).

Step 3. We now prove the estimate (A.5) under Condition 3b in Assumption 2.1. To simplify
the notation, we assume d = 2, the generalization to d > 2 being straightforward. We proceed
from (A.6), and we estimate M1 and M2 from above. To this end, define the processes

Et := exp[(b11 − σ2/2)t+W 1
t ] and Êt := exp[(L̄− σ2/2)t+ σW 2

t ].

We first estimate M1. Observe that

(A.11) |X1,x̄;α
t −X1,x;α

t | = |x̄1 − x1|Et,

which we will use to estimate |X2,x̄;α
t −X2,x;α

t |. Define the process ∆ as the solution to the
SDE

d∆t = L̄(|X1,x̄;α
t −X1,x;α

t |+ ∆t)dt+ σ∆tdW
2
t , t ≥ 0, ∆0 = |x̄2 − x2|.

Through a comparison principle, it is easy to check that |X2,x̄;α
t −X2,x;α

t | ≤ ∆t, so that, using
(A.11) and the explicit expression for ∆, we get

(A.12) |X2,x̄;α
t −X2,x;α

t | ≤ C|x̄− x|Êt
[
1 +

∫ t
0
Es/Êsds

]
=: C|x̄− x|Pt.
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When p = 2, the estimate of M1 can be easily deduced from (A.11) and (A.12). For p > 2,
by employing Hölder’s inequality with exponent q = p′/(p− 2), we find

E
[ ∫ ∞

0
e−ρt

(
1 +

∣∣Xx;α
t

∣∣p−2
+
∣∣X x̄;α

t

∣∣p−2)
(E2

t + P 2
t )dt

](A.13)

≤ C
(∫ ∞

0
e−ρtE

[
1 +

∣∣Xx;α
t

∣∣p′ + ∣∣X x̄;α
t

∣∣p′]dt) 1
q
(∫ ∞

0
e
−ρ(1− 1

q
)q∗tE

[
E2q∗
t + P 2q∗

t

]
dt

) 1
q∗

≤ C(1 + |x|p)
1
q

(∫ ∞
0

e
−ρ(1− 1

q
)q∗tE

[
E2q∗
t + P 2q∗

t

]
dt

) 1
q∗

≤ CR <∞.

Here, we have also used (4.11), while the finiteness of the latter integral follows, after some
elementary computations, from the requirements on ρ in Condition 3b in Assumption 2.1.
Finally, by (A.11), (A.12) and (A.13), we obtain

(A.14) M1 ≤ CRλ(1− λ)|x̄− x|2.

We next estimate M2. Since b̄1 is affine, we have Z1 −X1,xλ;α. Similarly to (A.9), one has

Z2
t −X

2,xλ;α
t ≤

∫ t

0
(Cλ(1− λ)|X2,x̄;α

s −X2,x;α
s |2 + L̄

∣∣Xxλ;α
s −Zs

∣∣)ds+ σ

∫ t

0
(Zs −Xxλ;α

s )dW 2
s .

Therefore, employing again a comparison principle and using (A.12), we see that

(A.15) |Z2
t −X

2,xλ;α
t | ≤ Cλ(1−λ)Êt

∫ t

0

|X2,x̄;α
s −X2,x;α

s |2

Ês
ds ≤ Cλ(1−λ)|x̄−x|2

∫ t

0

Êt

Ês
P 2
s ds.

Also, Hölder’s inequality with exponent q = p′/(p− 1) yields

E
[ ∫ ∞

0
e−ρt

(
1 +

∣∣Zt∣∣p−1
+
∣∣Xxλ;α

t

∣∣p−1) ∫ t

0

Êt

Ês
P 2
s ds dt

](A.16)

≤ C
(∫ ∞

0
e−ρtE

[
1 +

∣∣Xx;α
t

∣∣p′ + ∣∣X x̄;α
t

∣∣p′]dt) 1
q
(
E
[ ∫ ∞

0
e
−ρ(1− 1

q
)q∗t
(∫ t

0

Êt

Ês
P 2
s ds

)q∗
dt

]) 1
q∗

≤ C(1 + |x|p)
1
q

(
E
[ ∫ ∞

0
e
−ρ(1− 1

q
)q∗t
(∫ t

0

Êt

Ês
P 2
s ds

)q∗
dt

]) 1
q∗

≤ CR <∞,

Again, here we have also employed (4.11), while the finiteness of the latter integral follows,
after some elementary computations, from the requirements on ρ in Condition 3b in Assump-
tion 2.1. Finally, combining (A.15) and (A.16), we obtain M2 ≤ CRλ(1 − λ)|x̄ − x|2, which,
together with (A.14) and (A.6), implies (A.5).

Step 4. From (A.5) we deduce that, for each bounded open set B ⊂ D, there exists a constant
CB > 0 such that

(A.17) sup
ε∈(0,1)

‖V ε‖W 2;∞(B) ≤ CB.

This estimate allows, by mean of classical arguments (exploiting Sobolev compact embedding
theorem of W 2;q(B) into C1(B) for q > 2 + d and the weak compactness of the closed unit
ball in W 2;2(B)) to improve the convergence in (A.4). Indeed (on each subsequence) we now
have:

(V ε, DV ε) converges to (V,DV ) uniformly in B;(A.18)

D2V ε converges to D2V weakly in L2(B).
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Let us now prove that V solves the HJB equation (A.1). First of all observe that, from (A.3)
and (A.17), (unless to take a larger CB) we have

(A.19)
1

ε
β((V ε

x1
)2 − 1) ≤ CB, in B.

Hence, taking pointwise limits in (A.3) and (A.19), we obtain

ρV − LV − h ≤ 0, and |Vx1 | − 1 ≤ 0 a.e. in D.

Suppose now that the inequality |Vx1 | − 1 ≤ 0 is strict in x̄ ∈ D. By continuity of Vx1 , there
exist η > 0 and a neighborhod N of x̄ such that |Vx1(x)| − 1 ≤ −η for each x ∈ N . Therefore,
by uniform convergence in N , for each ε small enough we have |V ε

x1
(x)| − 1 ≤ −η/2, and

therefore, by (A.3), that V ε − LV ε − h = 0 in N . Passing again to the limit, this in turn
implies that ρV − LV − h = 0 in N , completing the proof of the theorem.

�

Appendix B. Proof of Lemma 2.3 and of Proposition 3.10

B.1. Proof of Lemma 2.3. We give a proof for d = 2, the case d > 2 is analogous. The set
W1(z) is an open interval, since, by convexity of V , the function Vx1(·, z) is nondecreasing.
We therefore show that the setW1(z) is nonempty. Suppose that Condition 3a in Assumption
2.1 is in place. Arguing by contradiction, ifW1(z) = ∅, then, by the continuity of Vx1 , we have
Vx1(·, z) = 1 or Vx1(·, z) = −1. If Vx1(·, z) = 1, we have V (x1, z) + κ2 ≥ V (x1, z)− V (y, z) =∫ x1

y Vx1(r, z)dr = x1 − y → ∞ as y → −∞. Therefore V (x1, z) = ∞, contradicting the

finiteness of V (see Theorem A.1 in Appendix A). In the same way, we can not have that
Vx1(·, z) = −1, which implies W1(z) 6= ∅.

On the other hand, suppose that Condition 3b in Assumption 2.1. Arguing by contradiction,
we assume thatW1(z) is empty. From the continuity of Vx1 , we have Vx1(·, z) = 1 or Vx1(·, z) =
−1. If Vx1(·, z) = −1, then we have V (x1, z) + κ2 ≥ V (x1, z) − V (y, z) = −

∫ y
x1
Vx1(r, z)dr =

y − x1 → ∞ as y → ∞. Therefore V (x1, z) = ∞, contradicting the finiteness of V . We
therefore assume that Vx1(·, z) = 1 and we show that this leads anyway to a contradiction.

For a generic x1 ∈ R with 0 < x1 < x∗1, let v ∈ V be optimal for the initial condition
x := (x1, z), with dv = γd|v|. By repeating the arguments leading to (3.41) in the proof of
Proposition 3.9, an application of Itô’s formula leads to

E
[ ∫

[0,∞)
e−ρt(1 + Vx1(Xx;v

t− )γt)d|v|t
]
≤ 0.

This in turn implies, using 0 ≤ 1− |Vx1 | ≤ 1 + Vx1u for all u ∈ R with |u| = 1, that

E[|v|0(1 + γ0)] = E[|v|0(1 + γ0Vx1(Xx;v
0− )] ≤ E

[ ∫
[0,∞)

e−ρt(1 + Vx1(Xx;v
t− )γt)d|v|t

]
≤ 0,

where the first equality follows from the assumption Vx1(·, z) = 1. Also, since |γ0| = 1,
E[|v|0(1 + γ0)] ≥ 0, which combined with the latter inequality gives E[|v|0(1 + γ0)] = 0. In
other words, a possible jump a time zero must be of negative size. Therefore, since x1 < x∗1,
as in the proof of Lemma 4.1, we deduce that v has no jumps at time zero; that is,

(B.1) P[|v|0 > 0] = 0.

Next, fix 0 < x1 < y1 < x∗1 and set x = (x1, z) and y = (y1, z). Since we are assuming that
Vx1(·, z) = 1, we have

(B.2) V (y)− V (x) =

∫ y1

x1

Vx1(r, z)dr = y1 − x1.
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Next, denote by v and w the optimal control for the initial conditions x and y, respectively.
By (B.1), neither v or w has a jump a time zero, so that, using (B.2), we find

J(y; v + x1 − y1) = J(x; v) + |x1 − y1| = V (x) + y1 − x1 = V (y).

This, by uniqueness of the optimal control implies that w = v+x1−y1, so that, since x1 < y1,
the control w has a negative jump at time zero, contradicting (B.1).

Therefore also the assumption Vx1(·, z) = 1 leads to a contradiction, completing the proof
of Lemma 2.3 under Condition 3b in Assumption 2.1.

B.2. Proof of Proposition 3.10. We split the proof in three steps.

Step 1. Let x ∈ ∂W be such that x ∈ I for some interval I ⊂ R2, with I ⊂ ∂W and of the
form

I = Ia,c := {a+ rη | r ∈ [0, c]},

for some a ∈ R2, with η = Vx1(y)e1, for each y ∈ I \ {a}. Denote by H the set of all such x.
Furthermore, assume that I in the above definition is maximal, in the sense that a−rη /∈ ∂W,
for every r > 0.

Observe that, since ∂ηV (·) = ηDV = |Vx1(·)|2 = 1, then

(B.3) V (a+ rη) = V (a) + r, for each r ∈ [0, c].

We have that

H =
∞⋃
i=1

{
y ∈ ∂W |V (y)− V (y − Vx1(y)/i) = 1/i

}
.

Suppose now that x̄ ∈ H. Then there exists a ∈ R2 and c > 0 such that x ∈ Ia,c. Let
va ∈ V be an optimal control for a. By (B.3), we find

J(x̄; a− x̄+ va) = J(a; va) + |a− x| = V (a) + |a− x| = V (x),

which, by the uniqueness of the optimal control, implies that v̄t = a− x̄+ vat , for any t ≥ 0.
This means exactly that the optimally controlled state starting from x̄ jumps immediately to
a.

Step 2. Let now x̄ ∈ W be generic. We want to prove that X x̄;v̄ jumps only at those times t
for which X x̄;v̄

t− ∈ H. We argue by contradiction, and suppose that

P[ω ∈ Ω s.t. there exists t ≥ 0 s.t. X x̄;v̄
t− (ω) /∈ H and |X x̄;v̄

t (ω)−X x̄;v̄
t− (ω)| > 0] > 0.

For each ε > 0, let

(B.4) τε := inf{t ≥ 0 |X x̄;v̄
t− /∈ H, |X x̄;v̄

t −X x̄;v̄
t− | ≥ ε}.

Take ε > 0 small enough such that P[τε < ∞] > 0. Consider a sequence (τ̄k)k∈N of stop-
ping times exhausting the jumps of X x̄;v̄ (see, e.g., Proposition 2.26 at p. 10 in [41], for a
construction of such a sequence), so that

(B.5) τε := inf{τ̄k | k ∈ N, X x̄;v̄
τ̄k− /∈ H, |X x̄;v̄

τ̄k −X
x̄;v̄
τ̄k−| ≥ ε}.

Since the jumps of v̄ coincides with the jumps of X x̄;v̄, if X x̄;v̄ would have an infinite number
of jumps of size grater than ε on some interval [0, T ] with T ∈ (0,∞), then v̄ would not be of
bounded variation on the interval [0, T ]. Thus X x̄;v̄ has only a finite number of jumps of size
grater than ε on each interval [0, T ]. This reveals that τε in (B.5) is actually the minimum of
a finite number of stopping times, which implies that τε is itself a stopping time.
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Next, on {τε <∞}, we find

V (X x̄;v̄
τε )− V (X x̄;v̄

τε−) =

∫ 1

0
DV (τε, X

x̄;v̄
τε− + λ(X x̄;v̄

τε −X
x̄;v̄
τε−))(X x̄;v̄

τε −X
x̄;v̄
τε−)dλ(B.6)

=

∫ 1

0
Vx1(τε, X

x̄;v̄
τε− + λ(X x̄;v̄

τε −X
x̄;v̄
τε−))γ̄τε(|v̄|τε − |v̄|τε−)dλ

> −|X x̄;v̄
τε −X

x̄;v̄
τε−|,

where the strict inequality follows from the fact that, by Proposition 3.8, X x̄;v̄
τε ∈ W but τε

is such that X x̄;v̄
τε− /∈ H. Recalling that τε is a stopping time, define the sequence of stopping

times τk := (τε + 1
k )∧ T . By the dynamic programming principle (see, e.g., [35]) we have, for

each k

(B.7) V (x̄) = E
[ ∫ τk

0
e−ρth(X x̄;v̄

t )dt+

∫
[0,τk)

e−ρtd|v̄|t + e−ρτkV (X x̄;v̄
τk−)

]
.

Therefore, taking limits as k →∞ in (B.7), using (B.6) we find

V (x̄) = E
[ ∫ τε

0
e−ρth(X x̄;v̄

t )dt+

∫
[0,τε]

e−ρtd|v̄|t + e−ρτεV (X x̄;v̄
τε )

]
= E

[ ∫ τε

0
e−ρth(X x̄;v̄

t )dt+

∫
[0,τε)

e−ρtd|v̄|t + e−ρτε |X x̄;v̄
τε −X

x̄;v̄
τε−|+ e−ρτεV (X x̄;v̄

τε−)

]
> E

[ ∫ τε

0
e−ρth(X x̄;v̄

t )dt+

∫
[0,τε)

e−ρtd|v̄|t + e−ρτεV (X x̄;v̄
τε−)

]
= V (x̄),

which is a contradiction, hence X x̄;v̄ jumps only at times t such that X x̄;v̄
t− ∈ H.

Step 3. Suppose now that X x̄;v̄
t− ∈ H for some t > 0. It remains to prove that, also in this

case, P-a.s. the process X x̄;v̄ jumps at time t to the endpoint of the interval I. Now, for any
F-stopping time τ , for P ◦ (X x̄;v̄

τ )−1-a.a. x ∈ R2, we have that the control

(B.8) v̄τt := v̄τ+t − v̄τ−, t ≥ 0,

is optimal for the initial condition X x̄;v̄
τ− (see Lemma 2.11 and the discussion at p. 1616 in

[45]). Let now τ1 be the first time at which the optimally controlled process X x̄;v̄ enters the
set H. Combining (B.8) together with Step 1, we obtain that X x̄;v̄ jumps to the endpoint of
I. By constructing an increasing sequence τk of hitting times of the set H, which exhausts
the set in which X x̄;v̄ ∈ H, we conclude that P-a.s. the process X x̄;v̄ jumps at time t to the
endpoint of the interval I.
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