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Summary

This thesis is motivated by stochastic particle systems arising in self-organized criticality, which are also
known as “sandpile models”. As observed by Bak, Tang and Wiesenfeld [5], these systems stand out due
to the fact that they converge without specific external tuning to a state in which power-law distributed
intermittent events occur.
The present thesis aims to contribute to the mathematical understanding of this behaviour and of the
underlying models in general by making them accessible to analytical tools. To this end, it is rigorously
shown that under a suitable rescaling, modified sandpile models on finer and finer one-dimensional grids
converge to the solutions of a stochastic partial differential equation (SPDE) with a singular-degenerate
drift, driven by space-time white noise. Furthermore, the well-posedness of more general SPDEs of
similar type is proved. Finally, the long time behaviour of solutions to the continuum limit SPDE is
addressed by proving that the corresponding Markov process possesses a unique invariant measure.

Zusammenfassung

Diese Dissertation ist durch stochastische Teilchensysteme (sogenannte
”
Sandhaufenmodelle“) motiviert,

die in Zusammenhang mit dem physikalischen Phänomen der selbstorganisierten Kritikalität prominent
auftauchen. Wie von Bak, Tang und Wiesenfeld [5] beobachtet, konvergieren diese Modelle ohne spezi-
fische externe Einflussnahme gegen einen Zustand, in dem stoßweise Ereignisse auftreten, deren Größe
nach einem Potenzgesetz verteilt ist.
Diese Arbeit zielt darauf ab, zum mathematischen Verständnis dieses statistischen Verhaltens und all-
gemein der zugrundeliegenden Prozesse beizutragen, indem diese analytischen Methoden zugänglich ge-
macht werden. Dazu wird gezeigt, dass Sandhaufenmodelle auf feiner werdenden eindimensionalen Git-
tern unter Verwendung einer geeigneten Skalierung in einem bestimmten Sinne gegen die Lösung einer
stochastischen partiellen Differentialgleichung (SPDG) mit singulär-degeneriertem Drift konvergieren.
Anschließend werden allgemeinere SPDGs ähnlichen Typs auf ihre Wohlgestelltheit untersucht. Schließ-
lich wird das Langzeitverhalten der Lösungen der Grenzgleichung untersucht, indem gezeigt wird, dass
der entsprechende Markowprozess ein eindeutiges invariantes Maß besitzt.
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Chapter 1

Introduction

The concept of self-organised criticality (SOC) has been introduced by Bak, Tang and Wiesenfeld in the
seminal article [5]. In a very general formulation, it describes the behaviour of randomly driven processes
which possess a “critical” non-equilibrium statistical invariant state, but the precise definition of SOC is
still disputed (see e. g. [122, Section 7]). In the following, we will introduce the concept of SOC, which
provides the physical motivation of the present thesis, based on the particle model which Bak, Tang and
Wiesenfeld used in [5]. Led by heuristics (see e. g. the presentation in [6]), this type of model is referred
to as “sandpile model”, and has become paradigmatic for the illustration of SOC, which is why we begin
by briefly describing its setting.

We consider a rectangular spatial grid Λ of size Z ∈ N in d dimensions, i. e. Λ = {0, . . . , Z}d, on which
grid functions evolve in time steps {0, 1, . . . , N}, N ∈ N. The resulting process will be denoted by
(Xi,j)i=0,...,N ;j∈Λ ⊂ R, where j is a d-dimensional multi-index. Since we are going to prescribe zero-
Dirichlet boundary conditions, we will from now on only take care of the bulk part

(Xi,j)i=0,...,N ;j∈Λ′

where Λ′ = {1, . . . , Z − 1}d. As a convenient notation, we will also use for i ∈ {0, . . . , N}

Xi := Xi,· := (Xi,j)j∈Λ′ .

Next, we introduce two related classical SOC models, where we gently amended the model in a way that
it is easy to simulate and still displays the interesting effects explained below. The first one, which we
will call BTW model, goes back to [5] and obeys the following dynamics for d = 2. It starts with the
zero configuration, i. e. X0,j = 0 for all j ∈ Λ′. As long as the process is subcritical, e. g. Xi,j ≤ K for
all j ∈ Λ′, a particle of value 1 is added to a randomly chosen site j ∈ Λ′. Formally, this corresponds to
the transition

Xi+1 = Xi + (δj,si)j∈Λ′ , (1.0.1)

where (si)
N−1
i=0 , si ∼ Uni(Λ′), are independent identically distributed random variables. As soon as the

process becomes supercritical, i. e. Xi,j > K for some j ∈ Λ′, the site j becomes unstable, which means
that it distributes one particle to each of its 2d direct neighbours. We will refer to this effect as toppling.
Particles moved on a boundary site will just leave the system. This leads to the transition

Xi+1,j = Xi,j +D
∑
j′∼j

(φ(Xi,j′)− φ(Xi,j)) , (1.0.2)

where D ∈
(
0, 1

2d

]
, j′ ∼ j if and only if j and j′ are direct neighbours, and

φ : R→ R, φ(x) = K
(
1(K,∞)(x)− 1(−∞,−K)(x)

)
, (1.0.3)

where the negative part of φ will only become relevant later on. The parameter D has been included for
the sake of completeness; in [5] only the case D = 0.25 was considered.

In [125], this model is slightly modified in the following ways, yielding the Zhang model: First, the
amount being added in the subcritical regime is allowed to be a random real value between 0 and 1,
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(a) initial state (b) one particle added (c) after first toppling (d) after second toppling

Figure 1.1: An example of an avalanche of length 2 in a two-dimensional BTW model. Increments
compared to the previous state are coloured yellow, the red bar indicates a supercritical site.

which we will not implement in the following. Second, in the supercritical regime, a fixed proportion of
the quantity is removed from the critical site and is equally distributed to its 2d direct neighbours. As
a result, (1.0.2) stays unchanged and (1.0.3) is replaced by

φ : R→ R, φ(x) = x
(
1(K,∞)(x)− 1(−∞,−K)(x)

)
, (1.0.4)

where again only the positive part of φ is used for now. In the original article [125], only the case
D = 0.25 was considered, which corresponds to always distributing the whole quantity from an active
site in a toppling step.

In both of these models, the toppling events can in principle leave behind another supercritical state,
which induces another toppling event. A number m of toppling events in a row will be called an
avalanche of size m (see Figure 1.1). Avalanche sizes are the key observables, because they give rise
to the following statistical effect. If the system is run for a large number of time steps, the frequency of
the observed avalanche sizes will approach a power law, i. e.

frequency (avalanche of size m) ∼ m−α

for some α > 1, on a large range of possible avalanche sizes. This corresponds to lines in the plot of
the logarithm of the frequency against the logarithm of the avalanche size (see Figure 1.2). Due to the
discrete structure of the dynamics, the smallest measurable avalanche size is obviously 1, which explains
the limited extension of the line to the left. The quick decay for large avalanche sizes is believed to be a
finite-size effect. While emerging power laws are typical of systems for which a parameter is tuned to a
critical value, typically at a phase transition, the systems introduced above apparently drive themselves
into such a “critical” state without external tuning. This is why the described phenomenon is referred
to as self-organized criticality. It raised a considerable interest in statistical physics, since it might
explain why power laws arise in many contexts in nature without an obvious phase transition. For
example, we mention the famous Gutenberg-Richter law for the strength of earthquakes, first published
in [81]; for a large choice of similar observations, we refer to [4] and [116].

The statistical behaviour described above has been observed in a number of further theoretical particle
models, see e. g. [104, 55], which share the properties of being infinitesimally slowly driven towards an
unstable state and sudden diffusive relaxation events until a stable state is retained. Moreover, these
features have also been collected in [48, Section III.1] as characteristics of systems displaying SOC.
Following [48, Section III.2], it is possible to replace the global dependence of the drive by a local,
continuous drive with infinitesimally small rate. This can be implemented by modifying the original
model described by (1.0.1) and (1.0.2) into

Xi+1,j = Xi,j +D
∑
j′∼j

(φ(Xi,j′)− φ(Xi,j)) + µ+ ξi,j , (1.0.5)

where (ξi,j)i=0,...,N ;j∈Λ′ are independent random variables identically distributed with Eξi,j = 0 and
Eξ2

i,j = σ2 <∞, Eξ6
i,j <∞, and µ > 0. For ξi,j ∼ N (0, σ2) with µ and σ being chosen small enough, we

were able to reproduce power laws looking very similar to the original sandpile models (see Figure 1.3).

The motivation for this work is given by three natural ambitions. First, as mentioned above, the discrete
structure of the model and the finite system size present extrinsic bounds for the size of avalanches. As
a consequence, the abovementioned power law can only be observed on a limited region of sizes, which
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Figure 1.2: Frequency of avalanche sizes for the BTW model (left graph; K = 10, D = 0.1) and the
Zhang model (right graph; K = 10, D = 0.25). The corresponding simulations have been carried out on
a 2-dimensional 30 × 30 grid over 3 · 104 time steps. In order to smoothen out statistical fluctuations,
each data point cumulates the information of at least 40 avalanches.
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Figure 1.3: Frequency of avalanche sizes for the BTW model (left graph) and the Zhang model (right
graph) with the same choice of parameters as above and with Gaussian forcing (µ = 0.0001, σ = 0.01).
The corresponding simulations have been carried out on a 2-dimensional 30×30 grid over 105 time steps.
In order to smoothen out statistical fluctuations, each data point cumulates the information of at least
40 avalanches. The right picture becomes slightly clearer for different coefficients of the noise, but for
the sake of comparability, we used the same parameters for both simulations.
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might be extended by considering increasingly large lattices. Second, the discrete processes introduced
so far contain many degrees of freedom, most notably the model parameters, but also “hidden” features
such as the lattice structure, while it is not clear in which way these parameters are relevant for the
overall statistical behaviour. Hence, we aim for a universal object which can be viewed as a scaling limit
of a larger class of particle models. Finally, despite the ubiquity of power laws in nature, their occurrence
in the context of SOC is not yet explained. To contribute to this question, it is interesting to work out
a model on a continuous state space which is accessible to more analytical tools and can still be related
to the sandpile models displaying SOC.

To this end, we introduce the following framework. As a first theoretical step, we increase the size of
the space-time grid on which the discrete model as described above is run. We then reinterpret these
larger lattices as finer and finer subdivisions of a fixed and bounded space-time domain [0, T ] × [0, 1]d.
Noting that the spatial lattice size and the number N of time steps can be chosen independently from
each other, we may write τ for the resulting time step size and h for the resulting spatial lattice constant.
We then rewrite equation (1.0.5) in the form of a rescaled toppling mechanism at a grid point xi ∈ [0, 1]d

and at time nτ as

Xh,τ ((n+ 1)τ, xj) =Xh,τ (nτ, xj) +
τ

h2

∑
j′∼j

(φ(Xh,τ (nτ, xj′))− φ(Xh,τ (nτ, xj)))

+ µτ +

√
τ

hd
ξn,jh,τ for n ∈ {0, . . . , N − 1}, j ∈ Λ′,

Xh,τ (0, xj) =x∗j for all j ∈ Λ′,

Xh,τ (nτ, xj) =0 for all n ∈ {0, . . . , N}, j ∈ Λ \ Λ′,

(1.0.6)

where µ ≥ 0, D and σ2 are now replaced by τ
h2 and

√
τ
hd

, respectively, and (x∗j )
Z−1
j=1 ⊂ R allow for

more general initial values. Furthermore, (ξn,ih,τ )i=1,...,Z−1;n∈N∪{0} are centered, R-valued, independent
identically distributed random variables with unit variance and finite sixth moments, and j′ ∼ j denotes
all indices encoding direct neighbouring grid points of xi. The non-positivity of the forcing term leads
to the necessity of a two-sided nonlinearity, which is why φ is defined as in (1.0.3) or (1.0.4). We observe
that the sum in (1.0.6) formally represents a discrete Laplacian, while the stochastic part is a discrete
version of space-time white noise. Hence, (1.0.6) can be formally considered as a finite difference scheme
for the (a priori ill-posed) generalized stochastic porous medium equation

dX(t) = ∆φ(X(t))dt+ µdt+ dW (t) on (0, T ]× (0, 1),

X(0) = x0

(1.0.7)

with zero Dirichlet boundary conditions, where x0 ∈ L2([0, 1]) is a “suitable” initial state andW denotes a
cylindrical Id-Wiener process on L2([0, 1]). This fits to heuristic statements in [8, 49, 46, 109], according
to which (S)PDEs similar to (1.0.7) are “continuous versions” of the previously introduced sandpile
models.

It will be one main result of this thesis to make this correspondence rigorous. For the sake of simplicity,
we will chose K = 1 and µ = 0. For technical reasons, the stochastic model will be treated for the
Zhang nonlinearity (1.0.4) in the case d = 1, while for the BTW nonlinearity (1.0.3), we present some
results in a deterministic framework. We stress that there remains a considerable freedom to choose the
way of rescaling space and time if τ, h → 0. For our subsequent analysis, we will need the relation τ ∈
o(h2), which corresponds to decreasing the toppling proportion D on the discrete level when increasing
the lattice size. Although this seems unjustified a priori, it can be viewed in the context of weak
universality, where scaling limits of processes with decaying parameters are frequently considered (see
e. g. [31, Definition 2.1]).

At this stage, three types of questions arise and will be addressed in the three chapters of this thesis.

1. The heuristic arguments above allude that the formal SPDE in (1.0.7) is a continuous analogue of
the family of processes in (1.0.6). Do the processes in (1.0.6) actually converge in some sense to
solutions of (1.0.7)? How strong is the convergence and under which conditions does it hold?

2. Is it possible to give a meaning to the general type of equations that are associated to the discrete
processes, either as proven limits or as candidates by more heuristic arguments?

10



3. As mentioned above, the main reason to consider the original discrete model is its observed sta-
tistical behaviour. We address this area by analyzing the long time behaviour of solutions to one
of the equations in continuous space and time identified before. More precisely, we prove that the
solutions to this equation possess a unique statistical invariant state.

We briefly comment on these questions and thereby give an overview over this thesis. In Chapter 2, we
introduce an embedding of Xh,τ as defined in (1.0.6) into a continuous space. After having defined a
suitable notion of solution to (1.0.7) and showing uniqueness of solutions in this sense, we prove that
(Xh,τ )h,τ>0 converges in law to a solution of this equation under a suitable scaling. For linearly growing
φ as in the Zhang model, we treat the whole process in (1.0.6), while for bounded φ as in the BTW
model, only the deterministic dynamics can be treated rigorously.

In Chapter 3, we analyze more general singular-degenerate stochastic porous media equations of the
type as arisen above. We formulate a very weak notion of solution, the so-called SVI solution, which
is easy to work with due to few assumptions on the regularity of the solutions are being made. The
solution theory includes both linearly growing and bounded nonlinearities containing discontinuities in
arbitrary space dimensions, but needs more regularity for the noise. For SVI solutions of the SPDEs
under consideration, we prove existence, uniqueness and stability in the initial value.

In Chapter 4, we restrict to the one-dimensional version of the equation in Chapter 3 with linearly
growing nonlinearity φ. Under an additional assumption on the noise, we prove the existence of a
unique invariant measure for the corresponding solution process, using an abstract result on ergodicity
for processes taking values in Polish phase spaces (cf. [91]).

Last but not least, it should be mentioned that generalized stochastic porous media equations with multi-
valued coefficients are an emerging field of research, such that the classical questions of well-posedness
and ergodicity also carry a considerable intrinsic mathematical interest. For more details in this direction,
we refer to the mathematical expositions of each individual chapter.
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Chapter 2

Continuum limits of cellular
automata related to self-organized
criticality

2.1 Introduction

It is important to realize that there are two principally different scopes which lead to the issue of
continuum limits of processes defined on a discrete space. The first one is to solve a problem posed in a
continuous setting (e. g. a partial differential equation) constructively, which will be called the “numerics
approach” in the following. In this case, the precise design of the discrete approximation scheme may
vary, as long as it verifiably converges to a solution of the original problem. The second scope is to find
a continuous simplification of a discrete model which provides a good description on large scales; this
will be called the “scaling limit approach”. In this case, the limiting equation is not known per se, but
is a consequence of the behaviour of the original discrete model. In contrast to the numerics approach,
any change in the setting of the discrete process would considerably affect the research goal.

As it has been discussed in Chapter 1, this work is supposed to provide a scaling limit for a certain
class of discrete models arising in self-organized criticality, i. e. it follows the second approach. Since
both perspectives lead to the same type of proof, most concepts we use stem from numerical analysis.
However, the rigidity of the discrete scheme leads to a number of difficulties, which we aim to explain
after introducing the basic objects.

For the first main result of this chapter, we consider the up to now formal SPDE

dX(t) ∈ ∆(φ(X(t)))dt+ dW (t),

X(0) = x0

(2.1.1)

on the interval (0, 1) ⊂ R with zero Dirichlet boundary conditions and x0 ∈ L2 := L2((0, 1)). In this
setting, W is a cylindrical Id-Wiener process in L2 and the nonlinearity φ : R → 2R is the maximal
monotone extension of

φ̃ : R 3 x 7→ x1|x|>1(x), (2.1.2)

which is the nonlinearity corresponding to the Zhang model in the sense described in Chapter 1.

For the second main result, we consider the singular-degenerate partial differential equation

∂tu(t) ∈ ∆(φ1(u(t))dt,

u(0) = u0

(2.1.3)

on a bounded interval (0, 1) ⊂ R with zero Dirichlet boundary conditions and u0 ∈ L2. In this case,
φ1 : R→ 2R is the maximal monotone extension of

φ̃1 : R 3 x 7→ sgn(x) 1|x|>1(x), (2.1.4)

13



which is the nonlinearity corresponding to the BTW model in the sense described in Chapter 1.

Furthermore, on an equidistant space-time grid over [0, T ] × [0, 1] with N time steps of step size τ and
Z+1 spatial nodes with distance h (including the boundary), such that Nτ = T and Zh = 1, we consider
the process (Xn

h,τ )Nn=0 ⊂ RZ−1 given by

Xn+1
h,τ = Xn

h,τ + τ∆hφ(Xn
h,τ ) +

√
τ

h
ξnh,τ for n = 0, . . . , N − 1,

X0
h,τ = x0

h,

(2.1.5)

where x0
h ∈ RZ−1 is a suitably chosen initial configuration, (ξn,ih,τ )Z−1

i=1 are centered, R-valued, independent
identically distributed random variables with unit variance and finite sixth moments, ∆h denotes the
discrete Laplacian which is rigorously defined in section 2.1.2 below, and Xn,k

h,τ denotes the value of the
approximating process at the point (nτ, kh) ∈ [0, T ]×[0, 1]. Note that by the assumed Dirichlet boundary
conditions, it is sufficient to consider the bulk part of the approximating process, setting

Xn,0
h,τ = Xn,Z

h,τ = 0 for n = 0, . . . , N − 1

if required. Similarly, we define

un+1
h,τ = unh,τ + τ∆hφ1(unh,τ ) for n = 0, . . . , N − 1,

u0
h,τ = u∗h,

(2.1.6)

where u∗h ∈ RZ−1 is a suitably chosen initial configuration.

The main results of this chapter, Theorem 2.2.5 and 2.2.8 below, provide that the (S)PDEs (2.1.1) and
(2.1.3) are, in a weak sense, the scaling limits of the discrete processes (2.1.5) and (2.1.6), respectively.
The key difficulties which have to be overcome result from the rigid discretization scheme which is
determined by the design of the discrete SOC models, which render most established numerical methods
unusable. In the following, we illustrate this effect in terms of the discretization via finite differences and
the singular-degenerate nonlinearity.

Finite difference schemes for classical porous media equations usually strongly rely on the regularity of the
nonlinear diffusion coefficient. The most general work in this direction is [44], in which the convergence
of explicit finite difference schemes of generalized porous medium equations with Lipschitz nonlinearities
is proved. However, the proof relies on a comparison principle on the level of the discrete scheme leading
to an L1 bound, which is closely connected to the CFL-type condition

τ

h2
≤ 1

2dLipφ
,

where Lipφ is the Lipschitz constant of the nonlinearity φ (see [44, p. 2272]). It is obvious that none of the
nonlinearities in (1.0.3) and (1.0.4) is Lipschitz-continuous, such that this condition can only be satisfied
in a limiting sense. In view of this, the necessity of the technical assumption τ ∈ o(h2), which will be
crucial in order to establish an adequate convergence result in the present work, becomes plausible. Hence,
in the present situation of discontinuous drift terms, we need different concepts to ensure convergence
of the numerical approximations to a solution, which are mainly based on the maximal monotonicity of
the nonlinearity φ, in case of the Zhang model in combination with its coercivity providing L2 bounds.
As another indication that the L1 framework in [54, 44] is not applicable in the present setting, we
remark that the compactness of the sequence of discrete process in C([0, T ];L1), which is exploited there,
strongly relies either on the driving process being integral-preserving or in L1 for almost all times. Both
properties are not met by space-time white noise, which does not have higher spatial regularity than
C− 1

2 .

Since the scaling limit will be taken in distribution with respect to weak topologies, the proof structure
is flexible regarding the form of the discrete noise, especially allowing for non-Gaussian discrete input.
This is necessary to treat numerical schemes which are as similar as possible to the original sandpile
models. Later on, almost sure weak convergence will be recovered by passing to another stochastic basis,
using a Skorohod-type result. As a consequence, the solution theory is posed in a probabilistically weak
sense, which entails more work to ensure uniqueness.

Finally, we also mention inherent challenges that space-time white noise presents in the context of the
continuous equation. In most of the literature, either the drift term is more regular, such as in the case
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of semi-linear SPDE, or the noise is restricted to be in L2, such as in [14, 12, 103]. This gap has been
closed by [100], where the well-posedness of multivalued SPDE driven by Levy noise has been proved by
techniques which are also used in the present work to identify scaling limits.

The structure of this chapter is as follows: We first give an overview on the mathematical and physical
literature in Section 2.1.1 and introduce some general notational conventions in Section 2.1.2. After
stating the main results in Section 2.2, we prove uniqueness of weak solutions in Section 2.3. The proofs
of the main theorems are given in Section 2.4 and 2.5 for the stochastic Zhang model and the deterministic
BTW model, respectively.

A publication of the results of this chapter is in preparation.

2.1.1 Literature

Explicit finite difference discretizations of porous media equations have been subject to a lively research
activity in numerical mathematics, advancing from the classical power functions (e. g. [47]) via differ-
entiable nonlinearities ([54]) to merely Lipschitz nonlinearities ([44]). As related results, we mention
convergence results for implicit finite difference schemes of degenerate porous media equations ([53, 44])
and a finite-difference discretization of a fractional porous medium equation ([43]).

For discretizations of stochastic porous media equations, we refer to [112] and [80], where a finite element
approach is applied in order to construct and analyze solutions. In [64, 82], linear SPDE with multiplica-
tive noise are discretized using finite difference approximations in space, while [101] considers space-time
finite difference approximations of linear parabolic SPDE with additive noise. To the best of the author’s
knowledge, the present work is the first time that finite difference approximations of stochastic porous
media equations are rigorously analyzed.

Concerning the underlying techniques the main arguments of this article rely on, we mention the fol-
lowing sources of theory and inspiration. For Yamada-Watanabe type results, we refer to [123] for the
foundational work and to [94, 112] for applications to SPDE. The meanwhile classical weak convergence
approach has been used before e. g. by [58, 25, 69], relying on a Skorohod-type result by Jakubowski
[87]. For the identification of the limit of the discrete approximations as a solution, we use the theory of
maximal monotone operators given in [7] in a similar way as [100].

Finally, we mention some further attempts to approach SOC in a continuous setting. Related to the
scaling limit approach, one strategy consists in considering cellular automata resulting from a reformula-
tion and modification of the original sandpile models, as proceeded in [28], in order to obtain a problem
which is more accessible for analysis. For one of these models, a hydrodynamic limit PDE has been
rigorously obtained in [29]. For the existence of a scaling limit for deterministic sandpiles started from
specific initial configurations, we refer to [108]. In [111, 24, 85], systems of PDEs are analyzed as ad-hoc
models for natural processes displaying power-law statistics.

2.1.2 Notation

We begin with a quick recap of frequently used concepts, most of which can be found in [112].

Let O ⊂ R be an open and bounded interval. For k ≥ 0, let Ck(O) (Ckc (O)) be the space of k times
differentiable real-valued functions (with compact support). Let L2 := L2(O) be the Lebesgue space of
square integrable functions, endowed with the norm ‖·‖L2 . Let H1

0 := H1
0 (O) be the Sobolev space of

weakly differentiable functions with zero trace, endowed with the norm ‖u‖H1
0

= ‖∇u‖L2 , and let H−1

be its topological dual space. Recall the canonical continuous embedding I : H1
0 → L2 provided by the

Poincaré inequality, and define its dual map I ′ : L2 → H−1 by

〈I ′u, v〉H−1×H1
0

= 〈u, Iv〉L2 .

for u ∈ H−1, v ∈ H1
0 . Its dual map I ′′ : H−1 → (L2)′ is defined analogously. We will also use the adjoint

operator (I ′)∗ : H−1 → L2 of I ′, defined by

〈(I ′)∗u, v〉L2 = 〈u, I ′v〉H−1

for u ∈ H−1, v ∈ L2. If there is no risk of misunderstanding, we will not mention the use of the
embeddings I, I ′ and I ′′.
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Recall that the negative Laplace operator −∆ : H1
0 → H−1 is defined by

〈−∆u, v〉H−1×H1
0

= 〈∇u,∇v〉L2 .

We note that I ′′ ◦ (−∆) : H1
0 → (L2)′ is continuous with respect to the L2 norm. Hence, it can be

extended linearly and continuously to the whole of L2. The resulting operator L2 → (L2)′ will also
be denoted by −∆. As pointed out in [112, Remark 4.1.14], we note that this operator is a surjective
isometry, and we stress that it does not coincide with the Riesz isomorphism for the classical dualization
of L2 with itself.

For two separable Hilbert spaces H1, H2, we write L2(H1, H2) for the space of all Hilbert-Schmidt
operators from H1 to H2.

For a Banach space B and k ≥ 0, let Ck([0, T ];V ) be the space of k times continuously differentiable curves
in V parametrized by t ∈ [0, T ]. For a measurable space (S,A), we denote the Lebesgue-Bochner space
of measurable, square integrable B-valued functions by L2(S;B), which is defined e. g. in [86, Definition
1.2.15]. If S is the product two Banach spaces S1 × S2, we will use L2(S;B) and L2(S1;L2(S2;B))
interchangeably, see Lemma 2.B.3 for a justification. Let f ∈ L2(Ω× [0, T ];B) be a Banach-space valued
random function. Then, f is called progressively measurable with respect to a filtration (Ft)t∈[0,T ], if
f |[0,t] is measurable with respect to Ft ⊗ B([0, t])− B(B) for all t ∈ [0, T ].

For the product V = V1 × · · · × Vn of topological spaces, where n ∈ N, we define the i-th projection Πi

by Πi(v) = vi for i ∈ {1, . . . , n}, which is a continuous map by the definition of the product space. We
will use Πi for any such projection, regardless of the respective underlying spaces.

Let T > 0 and consider a probability triple (Ω,F ,P) and a filtration (Ft)t∈[0,T ], where Ft ⊂ F for all
t ∈ [0, T ]. Expected values with respect to P will be denoted by E. The filtration is called normal, if it
is complete, i. e. Ft contains all A ∈ F with P(A) = 0 for all t ∈ [0, T ], and right-continuous, i. e.

Ft =
⋂
s>t

Fs for all t ∈ [0, T ].

Each filtration (Ft)t∈[0,T ] can be augmented to a normal filtration (F∗t )t∈[0,T ] by defining

F∗T = σ(FT ∪N ),

F∗t =
⋂
s>t

σ(Fs ∪N ) for all t ∈ [0, T ),

where N denotes the collection of all P-zero sets. We refer to [114, p. 45] for details.

We now turn to the finite-dimensional structures which we will use to formulate numerical convergence
results. From now on, we fix

O = [0, 1] ⊂ R.

Consider an equidistant grid on the unit interval with grid points (xi)
Z
i=0 with h = 1

Z , Z ∈ N and xi = ih.
For i = 0, . . . , Z−1 let yi =

(
i+ 1

2

)
h. Consider the sets of intervals (Ki)i=0,...,Z and (Ji)i=0,...,Z−1 given

by

K0 = [x0, y0), KZ = [yZ−1, xZ ] , Ki = [yi−1, yi) for i = 1, . . . , Z − 1,

Ji = [xi, xi+1) for i = 0, . . . , Z − 1.
(2.1.7)

We consider the space of grid functions on (xi)
Z
i=0 with zero boundary conditions, which is isomorphic

to RZ−1, and we define the following prolongations (see Figure 2.1).

Definition 2.1.1. Let uh ∈ RZ−1 and vh ∈ RZ . We then define the piecewise linear prolongation with
respect to the grid (xi)i=0,...,Z with zero-boundary conditions by

Iplx
h : RZ−1 ↪→ H1

0 , uh 7→ uplx
h :=

Z−1∑
i=0

[
uh,i +

uh,i+1 − uh,i
h

(· − xi)
]

1Ji ,

and the piecewise constant prolongation by

Ipcx
h : RZ−1 ↪→ L2, uh 7→ upcx :=

Z−1∑
i=1

uh,i1Ki ,
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0 h 2h · · · 1

0

u

upcx

uplx

Figure 2.1: Different prolongations of a spatial grid function

with the convention uh,0 = uh,Z = 0. The image of Ipcx
h , i. e. the space of piecewise constant functions

on the partition (Ki)
Z
i=0 with zero Dirichlet boundary conditions, will be denoted by Spcx

h . The L2-
orthogonal projection to this space will be denoted by Πpcx

h . Note that Ipcx
h : RZ−1 → Spcx

h is bijective.

Lemma 2.1.2. Let η ∈ L2. Then, Πpcx
h η → η in L2 for h→ 0.

Proof. The proof is a simpler version of the proof of Lemma 2.5.6 below, which is why it is omitted
here.

Let 〈·, ·〉 := 〈·, ·〉l2 denote the inner product arising from the Euclidean norm ‖·‖ := ‖·‖l2 on RZ−1. For
a matrix A ∈ R(Z−1)×(Z−1), ‖A‖ denotes the matrix norm induced by ‖·‖, i. e.

‖A‖ := sup
x∈RZ−1\{0}

‖Ax‖
‖x‖ . (2.1.8)

Let ∆h ∈ R(Z−1)×(Z−1) be the matrix corresponding to the finite difference Laplacian on grid functions
on (xi)

Z
i=0 with zero Dirichlet boundary conditions, i. e.

∆h = − 1

h2



2 −1

−1 2 −1 0
−1

. . .
. . .

. . .
. . . −1

0 −1 2 −1
−1 2


. (2.1.9)

Recall that −∆h is symmetric and positive definite (for a formal argument, see Lemma 2.4.1 below).
Hence, the following definition is admissible.

Definition 2.1.3. On RZ−1, we define the inner products 〈·, ·〉0, 〈·, ·〉1 and 〈·, ·〉−1 by

〈u, v〉0 = h 〈u, v〉
〈u, v〉1 = 〈−∆hu, v〉0
〈u, v〉−1 =

〈
(−∆h)−1u, v

〉
0

for u, v ∈ RZ−1.

Remark 2.1.4. The inner product 〈·, ·〉0 in Definition 2.1.3 corresponds to the L2 norm on O by the fact
that

Ipcx
h :

(
RZ−1, ‖·‖0

)
→ (Spcx

h , ‖·‖L2)

is an isometry, i. e.
〈u, v〉0 = 〈Ipcx

h u, Ipcx
h v〉

L2 for u, v ∈ RZ−1.
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0 τ 2τ · · · T

v0

v

vpct−

vpct+

vplt

Figure 2.2: Different prolongations of a time grid function

Furthermore, Definition 2.1.3 suggests to view 〈u, v〉1 and 〈u, v〉−1 as discrete analogues of the H1
0 and

H−1 norm on O, respectively. These connections are more subtle and will be made more precise in
Lemma 2.4.7, Lemma 2.4.9 and Proposition 2.4.29 below.

Next, we consider a lattice for the time interval [0, T ], T > 0. For τ > 0 such that T = Nτ , N ∈
N, consider the equidistant grid (0, τ, 2τ, . . . , Nτ). We then define the following prolongations of grid
functions (see Figure 2.2).

Definition 2.1.5. Let (vk)Nk=0 ⊆ R be a grid function on the previously described grid of length τ .
Then we define the piecewise linear prolongation vplt : [0, T ] → R, the left-sided piecewise constant
prolongation vpct- : [0, T ]→ R and the right-sided piecewise constant prolongation vpct+ : [0, T ]→ R by

vplt(t) =
t− tτ
τ

vbt/τc+1 +
tτ + τ − t

τ
vbt/τc,

vpct-(t) = vbt/τc,

vpct+(t) = vbt/τc+1.

Definition 2.1.6. Let N,Z ∈ N and (uk,l)k=0,...,N ;l=1,...,Z−1 ⊂ R be a function on the space-time

grid covering [0, T ] × [0, 1], with time grid length τ and space grid length h, such that τN = T and
Zh = 1. Committing a slight abuse of notation, we define the componentwise time prolongations
uplt, upct-, upct+ : [0, T ]→ RZ−1 by

uplt(t) :=
(
(u·,l)

plt(t)
)Z−1

l=1
:=
((

(uk,l)
N
k=0

)plt
(t)
)Z−1

l=1
,

upct-(t) :=
(
(u·,l)

pct-(t)
)Z−1

l=1
:=
((

(uk,l)
N
k=0

)pct-
(t)
)Z−1

l=1
,

upct+(t) :=
(
(u·,l)

pct+(t)
)Z−1

l=1
:=
((

(uk,l)
N
k=0

)pct+
(t)
)Z−1

l=1
,

and the componentwise spatial piecewise constant prolongation upcx : [0, 1]→ RN+1 by

upcx(x) := (upcx
k (x))

N

k=0
:=
((

(uk,l)
Z−1
l=1

)pcx
(x)
)N
k=0

,

where we used the extensions from Definition 2.1.1 and 2.1.5. Finally, we define the full prolongations

uplt,pcx, upct-pcx, upct+pcx : [0, T ]× [0, 1]→ R

by

uplt,pcx(t, x) =
(
uplt(t)

)pcx
(x) = (upcx(x))

plt
(t),

upct-pcx(t, x) =
(
upct-(t)

)pcx
(x) = (upcx(x))

pct-
(t),

and upct+pcx(t, x) =
(
upct+(t)

)pcx
(x) = (upcx(x))

pct+
(t).
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2.2 Setting and main results

We set the stage for the following analysis by defining a notion of solution to (2.1.1) in a probabilistically
weak sense, which means that the solution is not bound to a specific stochastic basis, but that the
stochastic basis is part of the solution.

Definition 2.2.1. Let x0 ∈ H−1. A triple
(

(Ω̃, F̃ , (F̃t)t∈[0,T ], P̃), X̃, W̃
)

, where (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) is

a complete probability space endowed with a normal filtration,

X̃ ∈ L2(Ω̃× [0, T ];L2) ∩ L2(Ω̃;L∞([0, T ];H−1))

is an (F̃t)t∈[0,T ]-progressively measurable process and W̃ is a cylindrical Id-Wiener process with respect

to (F̃t)t∈[0,T ] in L2, is a weak solution to (2.1.1), if there exists an (F̃t)t∈[0,T ]-progressively measurable

process Ỹ ∈ L2(Ω̃× [0, T ];L2) such that

X̃(t) = x0 +

∫ t

0

∆Ỹ (r) dr + W̃ (t) (2.2.1)

is satisfied in L2(Ω̃× [0, T ]; (L2)′), and

Ỹ (t) ∈ φ(X̃(t)) (dt⊗ dx)-almost everywhere P̃-almost surely. (2.2.2)

Remark 2.2.2. If W̃ is a cylindrical Id-Wiener process, then I ′W̃ is a classical Wiener process in H−1

with covariance operator I ′(I ′)∗, which is trace class. We will frequently identify W̃ and I ′W̃ .

The following theorem is a preparatory result and will be proved at the end of section 2.3.

Theorem 2.2.3. The processes (X̃, W̃ ) of every weak solution to (2.1.1) have the same law with respect
to the Borel σ-algebra of L2([0, T ];L2)× C0([0, T ];H−1).

We make the following central assumption for the rest of this article.

Assumptions 2.2.4. Let T > 0. Consider a sequence (hm)m∈N ⊂ (0, 1), (Zm)m∈N ⊂ N with

hm → 0 for m→∞ and hmZm = 1 for all m ∈ N.

For each m ∈ N, choose τm > 0, Nm ∈ N in such a way that

τmNm = T for all m ∈ N and
τm
h2
m

→ 0 for m→∞ (CFL)

is satisfied, which presents a strengthened Courant-Friedrichs-Lewy-type condition.

Motivated by the discrete Zhang model (cf. Chapter 1), we construct a family of time-discrete evolution
processes on RZm−1 as follows. For each m ∈ N, we define (Xn

hm
)n∈{0,1,...,Nm+1} ⊂ RZm−1 iteratively by

Xn+1
hm

= Xn
hm + τm∆hm φ̃(Xn

hm) +

√
τm
hm

ξnhm ,

X0
hm = x0

hm ,

(2.2.3)

where (x0
hm

)m∈N ⊂ RZm−1 such that (x0
hm

)pcx → x0 in L2, and (ξn,lhm)n=0,...,Nm;l=1,...,Zm−1 are centred
independent random variables identically distributed on a probability triple (Ω,F ,P). We assume that
E(ξ0,1

h1
)2 = 1 and that E(ξ0,1

h1
)6 is finite. Furthermore, let (Fnhm)Nmn=0, Fnhm ⊆ F , the filtration generated

by (ξkhm)Nmk=0, i. e.

Fnhm = σ
(
ξkhm : k ∈ {0, . . . , n− 1}

)
for n ∈ {0, . . . , Nm}. (2.2.4)

In order to obtain more complete estimates, we include Nm + 1 time steps instead of Nm. For this
numerical scheme, we have the following main result, which will be proved at the end of Section 2.4.
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Theorem 2.2.5. Recall the notation from Section 2.1.2, let Assumption 2.2.4 be satisfied and, for m ∈ N,
consider the process (Xn

hm
)Nmn=0 given by (2.2.3). Then, for m → ∞, Xplt,pcx

hm
converges in distribution

to a probability measure µ on L2([0, T ];L2) ∩ L∞([0, T ];H−1) both on L2([0, T ];L2) endowed with the
weak topology and on L∞([0, T ];H−1) endowed with the weak* topology. The measure µ is the law of a
stochastic process

X̃ ∈ L2(Ω̃× [0, T ];L2) ∩ L2(Ω̃;L∞([0, T ];H−1)),

on a probability space (Ω̃, F̃ , P̃), such that (Ω̃, F̃ , P̃, X̃) can be extended to a weak solution(
(Ω̃, F̃ , (F̃t)t∈[0,T ], P̃), X̃, W̃

)
of (2.1.1).

We give a brief overview of the proof structure. The uniqueness theorem is proven by applying a
Yamada-Watanabe type result by Kurtz [94] using the monotonicity of the drift operator to obtain
pathwise uniqueness.

In order to be in a setting in which the discrete process in (2.1.5) can be shown to approximate a solution
to (2.1.1), we first need to embed it into a suitable state space. This can be realized in different ways, such
as interpolating piecewise linearly or using piecewise constant extensions. Carefully chosen combinations
of these embeddings will be used to meet different requirements, and it will be crucial to show that all
of them converge in law to the same limit.

As a next step, we need a priori bounds for the embedded discrete processes (Xemb
hm

)m∈N, which are
satisfied uniformly in the grid size. To this end, we need to define several norms on the vector space
of grid functions and to analyze how they are related to their continuous counterparts. Afterwards, the
resulting bounds are used to apply a Skorohod-type theorem by Jakubowski [87] in order to obtain a
nonrelabeled subsequence (Xemb

hm
)m∈N, a different probability space and random variables X̃, (X̃emb

hm
)m∈N

on this probability space such that

L(Xemb
hm ) = L(X̃emb

hm ) for all m ∈ N

and X̃emb
hm → X̃ for m→∞ almost surely.

This ansatz is often referred to as “weak convergence approach” or “compactness method”.

As a last step, we identify X̃ as a solution to (2.1.1) as required, using classical Taylor expansion
arguments to identify the limit in the finite difference Laplacian, the discrete energy estimate, the
maximal monotonicity of the drift operator in the H−1 setting and lower-semicontinuity of the norm
together with the almost sure convergence mentioned above. The uniqueness of solutions allows to
conclude that the whole sequence (Xemb

hm
)m∈N converges in law to X̃ for h→ 0.

The previously mentioned a priori estimates yield a bound for (Xemb
hm

)m∈N in Lp(Ω × [0, T ];Lp((0, 1))),
where Ω is the underlying probability space and p depends on the growth of the linearity. Unfortunately,
this bound is much harder to use for compactness arguments once p = 1, which is the case for the BTW
nonlinearity φ1 (cf. (2.1.4)). As a result, the construction of a solution candidate, as in the approach
described above, fails. This is why we work with the notion of (S)VI solutions as introduced in Chapter 3
below, which does not include space-time white noise as stochastic input. Hence, we restrict our analysis
to the deterministic dynamics. The energy estimates are very similar to the Zhang model case. For the
subsequent identification of the limit, we make use of the fact that the variational inequality, which is a
defining property of VI solutions, does not require strong regularity properties.

To this end, we define

ψ : R→ [0,∞), ψ(x) =

∫ x

0

φ1(y)dy = 1R\[−1,1](x)(|x− 1|), (2.2.5)

and ϕ : H−1 → [0,∞),

ϕ(u) =

{
‖ψ(u)‖TV , if u ∈M∩H−1,

+∞, else,
(2.2.6)

as in Chapter 3 below, where the precise definition of the convex functional of a measure is given in
Definition 3.3.3. Furthermore, recall from Section 2.1 the partial differential equation (2.1.3) and the
discrete process (2.1.6). We then define the following notion of solution, which is a special case of a
stochastic variational inequality (SVI) solution (cf. Chapter 3 for a more detailed analysis).
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Definition 2.2.6 (VI solution). Let u0 ∈ H−1, T > 0. We say that u ∈ C([0, T ];H−1) is a VI solution
to (2.1.3) if the following conditions are satisfied:

(i) (Regularity)
ϕ(X) ∈ L1([0, T ]).

(ii) (Variational inequality) For each G ∈ L2([0, T ];H−1), and Z ∈ L2([0, T ];L2) ∩ C([0, T ];H−1)
solving the equation

Z(t)− Z(0) =

∫ t

0

G(s) ds for all t ∈ [0, T ],

we have

‖u(t)− Z(t)‖2H−1 + 2

∫ t

0

ϕ(u(r))dr

≤ ‖u0 − Z(0)‖2H−1 + 2

∫ t

0

ϕ(Z(r))dr

− 2

∫ t

0

〈G(r), u(r)− Z(r)〉H−1 dr

(2.2.7)

for almost all t ∈ [0, T ].

Remark 2.2.7. Existence and uniqueness of solutions to (2.1.3) in this sense is treated in Theorem 3.2.6
below with the choice B ≡ 0 in Assumption 3.2.1, (A1).

Still using Assumption 2.2.4, for each m ∈ N, let (unhm)n∈{0,...,Nm−1} ⊂ RZm−1 be defined iteratively by

un+1
hm

= unhm + τm∆hm φ̃1(unhm)

u0
hm = u∗hm ,

(2.2.8)

where (u∗hm)m∈N ⊂ RZm−1 such that (u∗hm)pcx → u0 in L2. Then, we have the following result, which
will be proved in Section 2.5.

Theorem 2.2.8. Recall the notation from Section 2.1.2 and let Assumption 2.2.4 be satisfied. Then, the
process uplt,pcxhm

obtained from (2.2.8) converges weakly* to the VI solution of (2.1.3) in L∞([0, T ];H−1)
for m→∞.

2.3 Uniqueness of laws of weak solutions

In order to apply the main result from [94] to obtain uniqueness of the law of weak solutions, we first
establish some preparatory results and helpful notions.

Definition 2.3.1. We define a multivalued operator by its graph AT ⊂ L2([0, T ];L2) × L2([0, T ];L2),
given by

(f, g) ∈ AT if and only if g ∈ φ(f) for almost every (t, x) ∈ [0, T ]× [0, 1]. (2.3.1)

Lemma 2.3.2. The operator AT is maximal monotone.

Proof. By [7, Theorem 2.8], it is enough to show that AT is the subdifferential of a convex, proper
and lower-semicontinuous functional ϕ : H → [0,∞] on a real Banach space H. To this end, define
ψ̃ : R→ [0,∞) by

ψ̃(x) = 1{|x|≥1}(x
2 − 1),

which is proper, convex and continuous, and for which we have ∂ψ̃ = φ. We note that H := L2([0, T ];L2)
is a Hilbert space. Defining

ϕT : H → [0,∞], ϕT (u) =

∫ T

0

∫ 1

0

ψ̃(u(t, x))dxdt, (2.3.2)

we obtain by [19, Theorem 16.50] that ϕT is convex, proper and lower-semicontinuous and AT = ∂ϕT ,
as required.
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Lemma 2.3.3. The graph AT is a closed subset of L2([0, T ];L2) × L2([0, T ];L2) and thus measurable
with respect to the Borel σ-algebra on L2([0, T ];L2).

Proof. The first statement is true for any maximal monotone operator by [7, Proposition 2.1]. The
measurability then follows by definition of the Borel σ-algebra.

We define two kinds of Sobolev spaces that we are going to use.

Definition 2.3.4. Let V ⊂ H ⊂ V ′ a Gelfand triple and T > 0. We define

W 1,2([0, T ];V ′) := {u ∈ L2([0, T ];V ′) : u′ ∈ L2([0, T ];V ′)}
and W 1,2([0, T ];V,H) := {u ∈ L2([0, T ], V ) : u′ ∈ L2([0, T ];V ′)},

where u′ is the weak derivative of u as defined e. g. in [86, Definition 2.5.1]. These spaces are Banach
spaces with the norms

‖u‖W 1,2([0,T ];V ′) =
(
‖u‖2L2([0,T ];V ′) + ‖u′‖2L2([0,T ];V ′)

) 1
2

and ‖u‖W 1,2([0,T ];V,H) =
(
‖u‖2L2([0,T ];V ) + ‖u′‖2L2([0,T ];V ′)

) 1
2

,

respectively. These norms are norm-equivalent to the ones given in [86, Section 2.5.b] and [124, Propo-
sition 23.23], respectively, where also the Banach space property is proved.

We have the following measurability properties.

Lemma 2.3.5. The subset

M1 :=

{
(u, z) ∈ L2([0, T ];L2)× L2([0, T ]; (L2)′) :

∃v ∈ L2([0, T ];L2) such that z = ∆v dt-almost everywhere and (u, v) ∈ AT

}
(2.3.3)

is Borel-measurable. The map ∂t : W 1,2([0, T ]; (L2)′)→ L2([0, T ]; (L2)′) is continuous and

M2 := (Π1, ∂t(Π2))−1(M1) ⊆ L2([0, T ];L2)×W 1,2([0, T ]; (L2)′) (2.3.4)

is Borel-measurable. The set M2 is also Borel-measurable as a subset of L2([0, T ];L2)×L2([0, T ]; (L2)′).

Finally, the canonical embedding Ixw : L2([0, T ];L2)×C([0, T ];H−1) ↪→
(
L2([0, T ]; (L2)′)

)2
is continuous,

and the subset

M3 := {(Π1,Π1(Ixw)−Π2(Ixw)) ∈M2} ⊆ L2([0, T ];L2)× C([0, T ];H−1)

is Borel-measurable.

Proof. We notice that M1 is the image of the set AT , which is Borel-measurable by Lemma 2.3.3, under
the isometry (Π1,∆ ◦ Π2), and hence Borel-measurable by the Kuratowski theorem (cf. [107, Theorem
3.9]). The operator ∂t : W 1,2([0, T ]; (L2)′)→ L2([0, T ]; (L2)′) is linear and bounded by the definition of
the Sobolev space. Hence it is continuous, which implies Borel-measurability. Thus, also (Π1, ∂t(Π2)) is
continuous and Borel-measurable, which yields measurability of M2 using the measurability of M1. The
set M2, viewed as a subset of L2([0, T ];L2) × L2([0, T ]; (L2)′), is the image of the canonical embedding
and thus Borel-measurable by the Kuratowski theorem. The embedding Ixw is linear and bounded, the
latter of which can be seen by computing

‖Ixw(u, z)‖2L2([0,T ];(L2)′)×L2([0,T ];(L2)′) = ‖u‖2L2([0,T ];(L2)′) + ‖z‖2L2([0,T ];(L2)′)

=

∫ T

0

‖u(t)‖2(L2)′ dt+

∫ T

0

‖z(t)‖2H−1 dt

≤ C
∫ T

0

‖u(t)‖2L2 dt+ CT sup
t∈[0,T ]

‖z(t)‖2H−1

≤ CT ‖(u, z)‖2L2([0,T ];L2)×C([0,T ],H−1) .

The Borel-measurability of M3 follows.
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The previous lemma alludes that (2.2.1) and (2.2.2) are actually distributional properties, which moti-
vates the following definition.

Definition 2.3.6. We call a probability measure Q on the probability space L2([0, T ];L2)×C([0, T ];H−1)
endowed with its Borel σ-algebra a pre-solution to (2.1.1), if

Q(M3) = 1, (2.3.5)

where M3 is defined as in Lemma 2.3.5.

Lemma 2.3.7. The joint law of the processes (X,W ) of each weak solution to (2.1.1) in the sense of
Definition 2.2.1 is a pre-solution.

Proof. Let
(
(Ω,F , (Ft)t∈[0,T ],P), X,W

)
be a weak solution to (2.1.1) and Y ∈ L2(Ω̃ × [0, T ];L2) the

corresponding drift process as in Definition 2.2.1. Then, [86, Proposition 2.5.9], (2.2.1) and (2.2.2) yield

∂t (Π1(Ixw(X,W ))−Π2(Ixw(X,W ))) = ∆Y P-almost surely

with (X,Y ) ∈ AT . Hence, using the notation from Lemma 2.3.5,

(X,Π1(Ixw(X,W ))−Π2(Ixw(X,W ))) ∈M2 P-almost surely,

which by construction is equivalent to (X,W ) ∈M3 P-almost surely. This finishes the proof.

We cite the concept of pointwise uniqueness from [94, Definition 1.4].

Definition 2.3.8. Pointwise uniqueness holds for pre-solutions, if for any processes (X1, X2,W ) defined
on the same probability space with L((X1,W )) and L((X2,W )) being pre-solutions, X1 = X2 almost
surely.

From [124, Proposition 23.23], we obtain the following.

Lemma 2.3.9. Let V ⊂ H ⊂ V ′ be a Gelfand triple and let u ∈W 1,2([0, T ];V,H). Then, there exists a
uniquely determined continuous function u1 : [0, T ] → H, which coincides dt-almost everywhere with u.
Furthermore, for t ∈ [0, T ] we have

‖u1(t)‖2H = ‖u1(0)‖2H + 2

∫ t

0

〈u′(s), u(s)〉V ′×V ds.

Lemma 2.3.10. Pointwise uniqueness holds for pre-solutions to (2.1.1).

Proof. Let (X1, X2,W ) be defined on a probability space (Ω,F ,P), such that L((X1,W )) and L((X2,W ))
are two pre-solutions to (2.1.1). Let M3 be defined as in Lemma 2.3.5, and let

M̃3 := (X1,W )−1(M3) ∩ (X2,W )−1(M3),

which implies that P(M̃3) = 1 by construction. From now on, we conduct all arguments pointwise for
ω ∈ M̃3. We define Y i ∈ L2([0, T ];L2) for i = 1, 2 by

Y i = ∆−1(∂t(X
i −W )),

which is well-defined due to the construction of M3. Moreover, it follows that (2.2.1) and (2.2.2) are
satisfied for (Xi, Y i,W ) for i = 1, 2, which implies

X1(t)−X2(t) =

∫ t

0

∆(Y 1(r)− Y 2(r))dr in L2([0, T ]; (L2)′). (2.3.6)

By [86, Proposition 2.5.9], (2.3.6) implies that X1 − X2 is weakly differentiable with (X1 − X2)′ =
∆(Y 1−Y 2). Since Xi, Y i ∈ L2([0, T ];L2) for i = 1, 2 by construction, X1−X2 ∈W 1,2([0, T ];L2, H−1).
Lemma 2.3.9 then yields that there exists a continuous H−1-valued dt-version Z of X1 −X2, for which
we have

‖Z(t)‖2H−1 =

∫ t

0

〈
∆(Y 1(r)− Y 2(r)), X1(r)−X2(r)

〉
(L2)′×L2 dr

= −
∫ t

0

〈
Y 1(r)− Y 2(r), X1(r)−X2(r)

〉
L2 dr ≤ 0,

where the last step follows from (2.2.2). This implies that Z and consequently X1−X2 is zero dt-almost
everywhere. Since this is true for every ω ∈ M̃3, X1 = X2 P-almost surely, as required.
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Corollary 2.3.11. There exists at most one pre-solution to (2.1.1).

Proof. This is part of the statement of [94, Theorem 1.5].

Proof of Theorem 2.2.3. The claim is a direct consequence of Lemma 2.3.7 and Corollary 2.3.11.

2.4 Continuum limit of a modified Zhang model

Throughout this section, we will drop the index m of the discretization sequences

(hm)m∈N, (Zm)m∈N, (τm)m∈N, (Nm)m∈N,

writing instead (h)h>0 etc. Moreover, convergence of sequences and usually nonrelabeled subsequences
indexed by m for m→∞ will be denoted by h→ 0. Expressions like “for h > 0” have to be understood
in the sense “for all elements of (hm)m∈N” or “for all elements of the subsequence at hand”.

We begin with recalling an estimate controlling the operator norm of the discrete Laplacian.

Lemma 2.4.1. Let ∆h ∈ R(Z−1)×(Z−1) be defined as in (2.1.9) and recall the matrix norm ‖·‖ in (2.1.8).
Then, −∆h is positive definite and

‖−∆h‖ ≤
4

h2
.

Proof. From [96, Equation (2.23)], we obtain that the eigenvalues of −∆h are

λj =
2

h2
(1− cos(jπh)) ∈

(
0,

4

h2

)
, j = 1, . . . , Z − 1,

which implies that −∆h is positive definite. Equation (2.77) in [117] then yields the second claim.

We have the following bounds on the discrete process Xh defined in (2.2.3).

Lemma 2.4.2. Let τ, h > 0, Z,N ∈ N as in Assumption 2.2.4, where we choose h small enough for
τ
h2 ≤ 1

4 to be satisfied. Then, the discrete process in (2.2.3) satisfies

‖Xn
h ‖2−1 + Sn,h ≤

∥∥x0
h

∥∥2

−1
+

n−1∑
k=0

(
2

√
τ

h

〈
Xk
h , ξ

k
h

〉
−1

+ 2τ
3
2h−

1
2

〈
∆hφ̃(Xk

h), ξkh

〉
−1

+
τ

h

∥∥ξkh∥∥2

−1

)
(2.4.1)

and

E ‖Xn
h ‖2−1 + ESn,h ≤ E

∥∥x0
h

∥∥2

−1
+ nτ Tr(−∆−1

h ) (2.4.2)

for all n ∈ {1, . . . , N + 1}, where

Sn,h ∈
{
τ

n−1∑
k=0

〈
Xk
h , φ̃(Xk

h)
〉

0
, τ

n−1∑
k=0

∥∥∥φ̃(Xk
h)
∥∥∥2

0
, τ

n−1∑
k=0

∥∥Xk
h

∥∥2

0
− nτ

}
.

Moreover, we have for n ∈ {1, . . . , N}

1

h
E ‖ξnh‖2−1 = Tr(−∆−1

h ) (2.4.3)

and

E ‖Xn
h ‖2−1 + 2τE

n−1∑
k=0

〈
Xk
h , φ̃(Xk

h)
〉

0
≤
(

1 +
4τ

h2

)(
E
∥∥x0

h

∥∥2

−1
+ nτ Tr(−∆−1

h )
)
. (2.4.4)
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Proof. For τ
h2 ≤ 1

4 and n ∈ {0, . . . , N}, we compute

∥∥Xn+1
h

∥∥2

−1
=

∥∥∥∥Xn
h + τ∆hφ̃(Xn

h ) +

√
τ

h
ξnh

∥∥∥∥2

−1

= ‖Xn
h ‖2−1 + 2τ

〈
Xn
h ,∆hφ̃(Xn

h )
〉
−1

+ τ2
∥∥∥∆hφ̃(Xn

h )
∥∥∥2

−1

+ 2

√
τ

h
〈Xn

h , ξ
n
h 〉−1 + 2τ

3
2h−

1
2

〈
∆hφ̃(Xn

h ), ξnh

〉
−1

+
τ

h
‖ξnh‖2−1 .

(2.4.5)

Using Lemma 2.4.1, we compute for u ∈ RZ−1

‖∆hu‖2−1 = |〈−∆hu, u〉0| = h |〈−∆hu, u〉| ≤ h ‖−∆hu‖ ‖u‖ ≤ ‖−∆h‖h ‖u‖2 ≤
4

h2
‖u‖20 . (2.4.6)

Furthermore, note that by the definition of φ̃, we have for all x ∈ RZ−1〈
x, φ̃(x)

〉
0

=
∥∥∥φ̃(x)

∥∥∥2

0
. (2.4.7)

Hence, for the first three terms, we obtain

‖Xn
h ‖2−1 + 2τ

〈
Xn
h ,∆hφ̃(Xn

h )
〉
−1

+ τ2
∥∥∥∆hφ̃(Xn

h )
∥∥∥2

−1

= ‖Xn
h ‖2−1 − 2τ

〈
Xn
h , φ̃(Xn

h )
〉

0
+ τ2

∥∥∥∆hφ̃(Xn
h )
∥∥∥2

−1

≤ ‖Xn
h ‖2−1 − (τ + τ)

〈
Xn
h , φ̃(Xn

h )
〉

0
+ 4τ

τ

h2

∥∥∥φ̃(Xn
h )
∥∥∥2

0

= ‖Xn
h ‖2−1 − τ

〈
Xn
h , φ̃(Xn

h )
〉

0
− τ

(
1− 4

τ

h2

)∥∥∥φ̃(Xn
h )
∥∥∥2

0

≤ ‖Xn
h ‖2−1 − τ

〈
Xn
h , φ̃(Xn

h )
〉

0
.

(2.4.8)

This yields (2.4.1) with the first choice for Sn,h by induction.

Now taking expectation in (2.4.5), we treat the last terms as follows. Recall the definition of the filtration

(Fnh )Nn=0 in (2.2.4). Note that for h > 0 and n ∈ {0, . . . , N + 1}, ‖Xn
h ‖ and hence

∥∥∥φ̃(Xn
h )
∥∥∥ is integrable

by induction, and that for Fnh -measurable and integrable random variables z ∈ L1(Ω;RZ−1) we have

E 〈z, ξnh 〉−1 = hE
〈
−∆−1

h z, ξnh
〉

= h

Z∑
i=0

E
(

(−∆−1
h z)i ξ

n,i
h

)
= h

Z∑
i=0

EE
[
(−∆−1

h z)i ξ
n,i
h |Fnh

]
= h

Z∑
i=0

E(−∆−1
h z)i Eξn,ih = 0,

using that ξnh is independent of Fnh by assumption. Thus, the two mixed terms in the last line of (2.4.5)
vanish. For the last term, we notice that

τ

h
E ‖ξnh‖2−1 =

τ

h
E
〈
−∆−1

h ξnh , hξ
n
h

〉
= τ E

〈
−∆−1

h ξnh , ξ
n
h

〉
= τ Tr(−∆−1

h ), (2.4.9)

since for any family (ξi)
Z−1
i=1 of random variables with E(ξiξj) = δij and for any matrix A ∈ R(Z−1)×(Z−1),

we have

E 〈Aξ, ξ〉 = E
Z−1∑
i,j=1

Aijξjξi =

Z−1∑
i,j=1

AijE(ξjξi) =

Z−1∑
i,j=1

Aijδij = Tr(A). (2.4.10)

In particular, (2.4.3) follows. Collecting all estimates, we conclude by induction that

E ‖Xn
h ‖2−1 + τ

n−1∑
k=0

E
〈
Xk
h , φ̃(Xk

h)
〉

0
≤ E

∥∥x0
h

∥∥2

−1
+ nτ Tr(−∆−1

h ) (2.4.11)
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for n ∈ {0, . . . , N+1}, which proves (2.4.2) for the first choice of Sn,h. In view of (2.4.7), this immediately
yields (2.4.1) and (2.4.2) for the second choice of Sn,h. Considering∣∣∣φ̃(x)

∣∣∣2 ≥ |x|2 − 1,

we may compute

τ

n−1∑
k=0

∥∥Xk
h

∥∥2

0
− nτ = τ

n−1∑
k=0

Z−1∑
i=1

h

(∣∣∣Xk,i
h

∣∣∣2 − 1

)

≤ τ
n−1∑
k=0

Z−1∑
i=1

h
∣∣∣φ̃(Xk,i

h

)∣∣∣2 ≤ τ n−1∑
k=0

∥∥∥φ̃(Xk
h)
∥∥∥2

0
,

which extends these statements to the last choice of Sn,h. Carrying out only the first two steps of (2.4.8)
before taking expectation and using induction, we obtain

E ‖Xn
h ‖2−1 + 2τE

n−1∑
k=0

〈
Xk
h , φ̃(Xk

h)
〉

0
≤ E

∥∥x0
h

∥∥2

−1
+ nτ Tr(−∆−1

h ) +
4τ

h2
τ

n−1∑
k=0

∥∥∥φ̃(Xk
h)
∥∥∥2

0
.

Finally, using (2.4.2) yields (2.4.4).

Lemma 2.4.3. Let h > 0 as in Assumption 2.2.4, and let I ′ : L2 → H−1 be the canonical embedding.
Then, I ′ ∈ L2(L2, H−1) and

lim
h→0

Tr(−∆−1
h ) =

∞∑
k=1

1

π2k2
= ‖I ′‖2L2(L2,H−1) . (2.4.12)

Proof. For k = 1, 2, . . . , define bk(x) =
√

2 sin(πk x), such that (bk)k∈N is an L2([0, 1])-orthonormal basis
of eigenvectors of the Laplacian. For the last equality in (2.4.12), we compute

‖I ′‖2L2(L2,H−1) =

∞∑
k=1

〈I ′ek, I ′ek〉H−1 =

∞∑
k=1

〈
−∆−1ek, ek

〉
L2 =

∞∑
k=1

1

π2k2
=

1

6
,

which also proves that I ′ is Hilbert-Schmidt.

For the convergence of the trace of the inverse discrete Laplacian, we first recall from [96, Section 2.10]
that the eigenvalues of −∆h are

λZ,k =
2

h2
(1− cos(πkh)) for k = 1, . . . , Z − 1.

This can be reformulated, using trigonometric identities and 1
h = Z, to

λZ,k = 4Z2 sin2

(
πk

2Z

)
.

In order to prove the statement, we divide the sums into∣∣∣∣∣
Z−1∑
k=1

1

λZ,k
−
∞∑
k=1

1

π2k2

∣∣∣∣∣ ≤
Z−1∑
k=1

∣∣∣∣ 1

λZ,k
− 1

π2k2

∣∣∣∣+

∞∑
k=Z

1

π2k2

Note that the last sum converges to zero for Z →∞ by the finiteness of ζ(2). It remains to estimate the
first sum on the right hand side. Carrying out a Taylor expansion of the sine function around zero for
each k ∈ {1, . . . , Z − 1}, Z ∈ N, the Lagrange remainder formula yields ξZ,k ∈ [0, π2 ] such that

λZ,k = 4Z2

(
πk

2Z
− 1

6

(
πk

2Z

)3

cos(ξZ,k)

)2

.
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Hence, for k ∈ {1, . . . , Z − 1}, Z ∈ N, we have

1

λZ,k
− 1

π2k2
=

1

4Z2
(
πk
2Z − 1

6

(
πk
2Z

)3
cos(ξZ,k)

)2 −
1

π2k2

=
π2k2 − 4Z2

((
πk
2Z

)2 − 1
3

(
πk
2Z

)4
cos(ξZ,k) + 1

36

(
πk
2Z

)6
cos2(ξZ,k)

)
4Z2π2k2

((
πk
2Z

)2 − 1
3

(
πk
2Z

)4
cos(ξZ,k) + 1

36

(
πk
2Z

)6
cos2(ξZ,k)

)
=
π2k2 − π2k2 + 4

3Z
2
(
πk
2Z

)4
cos(ξZ,k)− 1

9Z
2
(
πk
2Z

)6
cos2(ξZ,k)

π4k4
(

1− 1
3

(
πk
2Z

)2
cos(ξZ,k) + 1

36

(
πk
2Z

)4
cos2(ξZ,k)

)
=

π4k4
(

4
3

1
24Z2 cos(ξZ,k)− 1

9
π2k2

26Z4 cos2(ξZ,k)
)

π4k4
(

1− 1
3

(
πk
2Z

)2
cos(ξZ,k) + 1

36

(
πk
2Z

)4
cos2(ξZ,k)

) .

(2.4.13)

Using |cos(ξZ,k)| ≤ 1, k
Z ≤ 1 and π2 < 10, we have(

1− 1

3

(
πk

2Z

)2

cos(ξZ,k) +
1

36

(
πk

2Z

)4

cos2(ξZ,k)

)
≥ 1− 1

3

π2

4
≥ 1

6
.

Together with (2.4.13), we obtain for Z →∞
Z−1∑
k=1

∣∣∣∣ 1

λZ,k
− 1

π2k2

∣∣∣∣ ≤ Z−1∑
k=1

6

Z2

(
1

12
+

10

9 · 26

)
≤ CZ − 1

Z2
→ 0,

which completes the proof.

Corollary 2.4.4. Let τ, h > 0 as in Assumption 2.2.4. Then, there exists a constant C > 0 which only
depends on T and x0

h, such that the discrete process in (2.2.3) satisfies

E
∥∥Xn+1

h −Xn
h

∥∥2

−1
≤ C τ

h2
for all n ∈ {0, . . . , N − 1}.

Proof. We compute

E
∥∥Xn+1

h −Xn
h

∥∥2

−1
= E

∥∥∥∥τ∆hφ̃(Xn
h ) +

√
τ

h
ξnh

∥∥∥∥2

−1

= E
∥∥∥τ∆hφ̃(Xn

h )
∥∥∥2

−1
+ 2E

〈
τ∆hφ̃(Xn

h ),

√
τ

h
ξnh

〉
−1

+
τ

h
E ‖ξnh‖2−1 .

(2.4.14)

Arguing as in (2.4.6), we have

τ2E
∥∥∥∆hφ̃(Xn

h )
∥∥∥2

−1
≤ 4

τ2

h2
E
∥∥∥φ̃(Xn

h )
∥∥∥2

0
,

such that we can use Lemma 2.4.2 to obtain

E
∥∥∥τ∆hφ̃(Xn

h )
∥∥∥2

−1
≤ 4

τ

h2
τ

N∑
n=0

E
∥∥∥φ̃(Xn

h )
∥∥∥2

0
≤ 4

τ

h2

(
E
∥∥x0

h

∥∥2

−1
+ T Tr(−∆−1

h )
)
≤ C τ

h2
. (2.4.15)

Moreover, as in the proof of Lemma 2.4.2, we have that

E
〈
τ∆hφ(Xn

h ),

√
τ

h
ξnh

〉
−1

= 0 (2.4.16)

by the independence of ξnh of Fnh , where (Fnh )Nn=0 is given as in (2.2.4). Finally, by (2.4.3) and Lemma
2.4.3, one can choose C independent of h satisfying

τ

h
E ‖ξnh‖2−1 ≤ τC, (2.4.17)

such that (2.4.14) together with (2.4.15), (2.4.16) and (2.4.17) yields the claim.
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Lemma 2.4.5. Let τ, h > 0 and N,Z ∈ N as in Assumption 2.2.4, and let (Xn
h )Nn=0 be constructed as

in (2.2.3). Then

E max
n=0,...,N

‖Xn
h ‖2−1 ≤ C,

where C is independent of h.

Proof. We recall equation (2.4.1), which leads us to consider the stochastic processes (Mn)Nn=0, (M̃n)Nn=0

defined by

Mn = 2

√
τ

h

n−1∑
k=0

〈
Xk
h , ξ

k
h

〉
−1
, M̃n = 2τ

3
2h−

1
2

n−1∑
k=0

〈
∆hφ̃(Xk

h), ξkh

〉
−1

for n ∈ {0, . . . , N}.

Furthermore, let (Fn)Nn=0, Fn ⊆ F be given as in (2.2.4). Note that for all n ∈ {0, . . . , N}, both
Mn+1 −Mn and M̃n+1 − M̃n depend linearly on ξnh , which is stochastically independent of Fn, with

coefficients which are Fn-measurable. Hence, both (Mn)Nn=0 and (M̃n)Nn=0 are (Fn)Nn=0-martingales,
which allows to apply the Burkholder-Davis-Gundy inequality in the form of [40, Theorem 1]. We note
that this theorem is proved for C = 130, i. e. C is independent of the process to which the inequality is
applied. For (Mn)Nn=0, this yields

E max
n=1,...,N

|Mn| ≤ C E

(
N∑
k=1

(Mn −Mn−1)2

) 1
2

= C E

(
N−1∑
k=0

4
τ

h

〈
Xk
h , ξ

k
h

〉2
−1

) 1
2

≤ 2C E

(
N−1∑
k=0

τ

h

∥∥Xk
h

∥∥2

−1

∥∥ξkh∥∥2

−1

) 1
2

≤ 2C E

 max
k=0,...,N−1

(∥∥Xk
h

∥∥
−1

)(N−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

) 1
2


≤ 1

2
E max
k=0,...,N−1

∥∥Xk
h

∥∥2

−1
+ 2C2 E

N−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

=
1

2
E max
k=0,...,N−1

∥∥Xk
h

∥∥2

−1
+ 2C2 T Tr(−∆−1

h ) ≤ 1

2
E max
k=0,...,N−1

∥∥Xk
h

∥∥2

−1
+ C,

where we used the weighted Young inequality in the fifth step, (2.4.3) in the sixth step and Lemma 2.4.3
in the last step. Similarly, we compute for (M̃n)Nn=0

E max
n=0,...,N

∣∣∣M̃n

∣∣∣ ≤ C E

(
N−1∑
k=0

4
τ3

h

〈
∆hφ̃(Xk

h), ξkh

〉2

−1

) 1
2

≤ 2C E

(
N−1∑
k=0

τ3

h

∥∥∥∆hφ̃(Xk
h)
∥∥∥2

−1

∥∥ξkh∥∥2

−1

) 1
2

≤ 2C E

τ max
k=0,...,N−1

(∥∥∥∆hφ̃(Xk
h)
∥∥∥
−1

)(N−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

) 1
2


≤ Cτ2 E max

k=0,...,N−1

∥∥∥∆hφ̃(Xk
h)
∥∥∥2

−1
+ C E

N−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

≤ Cτ E τ
N−1∑
k=0

∥∥∥∆hφ̃(Xk
h)
∥∥∥2

−1
+ CT Tr(−∆−1

h )

≤ 4C
τ

h2
E τ

N−1∑
k=0

∥∥∥φ̃(Xk
h)
∥∥∥2

0
+ C ≤ C

( τ
h2

+ 1
)
≤ 2C,
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where, in addition to the arguments above, we used (2.4.6) in the sixth step, Lemma 2.4.2 in the seventh
step and Assumption 2.2.4 in the last step.

Collecting all estimates, we obtain from (2.4.1)

E max
n=0,...,N

∥∥Xk
h

∥∥2

−1
≤ E

∥∥x0
h

∥∥2

−1
+ E max

n=0,...,N−1
|Mn|+ E max

n=0,...,N−1

∣∣∣M̃n

∣∣∣+ E max
n=0,...,N

n−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

≤ C +
1

2
E max
n=0,...,N−1

∥∥Xk
h

∥∥2

−1
+ E

N−1∑
k=0

τ

h

∥∥ξkh∥∥2

−1

≤ 1

2
E max
n=0,...,N

∥∥Xk
h

∥∥2

−1
+ C,

which yields

E max
n=0,...,N

∥∥Xk
h

∥∥2

−1
≤ C,

as required.

Lemma 2.4.6. Let T > 0, N ∈ N and (uk)Nk=0 ⊆ R. Let τ = T
N and recall the prolongations from

Definition 2.1.5. Then, there exists C > 0 independent of N , such that

max

{∫ T

0

∣∣uplt(t)∣∣2 dt,

∫ T

0

∣∣upct-(t)∣∣2 dt,

∫ T

0

∣∣upct+(t)
∣∣2 dt

}
≤ C

N∑
k=0

τu2
kdt.

Proof. For the last two terms, we have

∫ T

0

∣∣upct-(t)
∣∣2 dt =

N−1∑
k=0

τu2
kdt ≤

N∑
k=0

τu2
kdt

and ∫ T

0

∣∣upct+(t)
∣∣2 dt =

N∑
k=1

τu2
kdt ≤

N∑
k=0

τu2
kdt,

such that it only remains to include the first term. To this end, we define the extended piecewise constant
prolongation vpct0 : [−τ, T + τ ]→ R using the grid points as midpoints, i. e.

vpct0(t) = vbt/τe,

where we set v−1 = vN+1 = 0, and the extended piecewise linear prolongation vplt0 : [−τ, T + τ ]→ R by

vplt0 =
t− tτ
τ

vbt/τc+1 +
tτ + τ − t

τ
vbt/τc,

again setting v−1 = vN+1 = 0. We compute

∫ T

0

∣∣uplt(t)
∣∣2 dt ≤

∫ T+τ

−τ

∣∣uplt0(t)
∣∣2 dt ≤ C

∫ T+τ

−τ

∣∣upct0(t)
∣∣2 dt = Cτ

N∑
k=0

u2
kdt,

where in the second step, we used the following reasoning. We substitute t by (T + 2τ)s − τ and we
notice that

uplt0((T + 2τ) · −τ) = Pγ
(
(uk−1)N+1

k=1

)
and upct0((T + 2τ) · −τ) = Qγ

(
(uk−1)N+1

k=1

)
where γ = (N + 1 + 1)−1 and Pγ ,Qγ are the piecewise linear (respectively piecewise constant) extensions
from [52, Equations (3.6) and (3.7)], with h replaced by γ and N replaced by N + 1. Keeping these
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conventions, we use [52, Propositions 3.1 and 3.2] to obtain∫ T+τ

−τ

∣∣uplt0(t)
∣∣2 dt = (T + 2τ)

∫ 1

0

∣∣uplt0(s(T + 2τ)− τ)
∣∣2 dt

= (T + 2τ)
∥∥Pγ ((uk−1)N+1

k=1

)∥∥2

L2([0,1])

≤ C(T + 2τ)
∥∥Qγ ((uk−1)N+1

k=1

)∥∥2

L2([0,1])

= C(T + 2τ)

∫ 1

0

∣∣upct0(s(T + 2τ)− τ)
∣∣2 dt

= C

∫ T+τ

−τ

∣∣upct0(t)
∣∣2 dt,

for C > 0 independent of τ , which finishes the proof.

Recall the partitions (Ki)
Z
i=0 and (Ji)

Z−1
i=0 and the grids (xi)

Z
i=0 and (yi)

Z−1
i=0 as given in (2.1.7), and the

definition of prolongations of functions on the grid (xi)i=0,...,Z as given in Definition 2.1.1.

Lemma 2.4.7. Let u = (ui)
Z−1
i=1 ∈ RZ−1 and v = (vi)

Z−1
i=0 ∈ RZ and recall the convention u0 = uZ = 0.

Define the piecewise constant prolongation with respect to the grid (yi)i=0,...,Z−1 by

Ipcy
h : RZ → L2, v 7→

Z−1∑
i=0

vi1Ji ,

and the piecewise linear prolongation with zero-Neumann boundary conditions by

Iply
h : RZ → H1, v 7→ v01K0

+

Z−1∑
i=1

[
vi−1 +

vi − vi−1

h
(· − xi)

]
1Ki + vZ−11KZ .

1. We have ∥∥∥Iply
h v

∥∥∥
L2
≤ ‖Ipcy

h v‖
L2 ≤ 3

∥∥∥Iply
h v

∥∥∥
L2
.

2. We have
∫ 1

0
Iply
h v dx =

∫ 1

0
Ipcy
h v dx.

3. For all a ∈ R, we have

Iply
h v − a = Iply

h (v − a) and Ipcy
h v − a = Ipcy

h (v − a),

where the difference is understood pointwise or componentwise, respectively.

4. We have

∂xI
pcy
h v =

Z−1∑
i=1

δxi(vi − vi−1),

where ∂x is the distributional derivative and for z ∈ [0, 1], δz is a Dirac mass on z.

5. For i = 0, . . . Z − 1, let vi =
∑i
j=0 huj. Then

∂x(Iply
h v) = Ipcx

h u.

6. We have ‖u‖1 =
∥∥∥Iplx
h u

∥∥∥
H1

0

.

7. We have ∥∥∥∂xx(Iplx
h u)

∥∥∥
H−1

=

∥∥∥∥∥
Z−1∑
i=1

1

h
(−ui−1 + 2ui − ui+1)δxi

∥∥∥∥∥
H−1

with the same conventions as in 4.
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Proof. 1. We first note that for i = 0, . . . , Z − 2∫ yi+1

yi

(Iply
h v)2(x)dx =

∫ yi+1

yi

(
x− yi
h

vi+1 +
yi+1 − x

h
vi

)2

dx

=

∫ 1

0

(vi+1x+ (1− x)vi)
2hdx

= h

∫ 1

0

(vi + (vi+1 − vi)x)2dx

= h

∫ 1

0

v2
i + 2vi(vi+1 − vi)x+ (vi+1 − vi)2x2dx

= h(v2
i + vi(vi+1 − vi) +

1

3
(vi+1 − vi)2)

=
h

3
(v2
i + vivi+1 + v2

i+1)

=
h

2
(v2
i+1 + v2

i )− h

6
(vi+1 − vi)2

≤ h

2
(v2
i+1 + v2

i )

=

∫ xi+1

yi

v2
i dx+

∫ yi+1

xi+1

v2
i+1dx =

∫ yi+1

yi

(Ipcy
h v)2(x)dx.

Carrying out the same first seven steps, one can also continue by

3

∫ yi+1

yi

(Iply
h v)2(x)dx =

h

2
(v2
i+1 + v2

i ) + h(v2
i+1 + v2

i )− h

2
(vi+1 − vi)2

=

∫ yi+1

yi

(Ipcy
h v)2(x)dx+

h

2
(2v2

i+1 + 2v2
i − v2

i+1 + 2vivi+1 − v2
i )

=

∫ yi+1

yi

(Ipcy
h v)2(x)dx+

h

2
(vi+1 + vi)

2 ≥
∫ yi+1

yi

(Ipcy
h v)2(x)dx.

This can be used to conclude∥∥∥Iply
h v

∥∥∥2

L2
=
h

2
v2

0 +

Z−2∑
i=0

∫ yi+1

yi

(Iply
h v)2(x)dx+

h

2
v2
Z−1

≤ h

2
v2

0 +

Z−2∑
i=0

∫ yi+1

yi

(Ipcy
h v)2(x)dx+

h

2
v2
Z−1 = ‖Ipcy

h v‖2
L2

≤ 3h

2
v2

0 +

Z−2∑
i=0

3

∫ yi+1

yi

(Iply
h v)2(x)dx+

3h

2
v2
Z−1 = 3

∥∥∥Iply
h v

∥∥∥2

L2
,

as required.

2. We first note that for i = 0, . . . , Z − 2∫ yi+1

yi

(Iply
h v)(x) dx = h

∫ 1

0

vi+1x+ (1− x)vi dx =
h

2
(vi+1 + vi) =

∫ yi+1

yi

(Ipcy
h v)(x) dx,

which yields∫ 1

0

(Iply
h v)(x) dx =

h

2
v0 +

Z−2∑
i=0

∫ yi+1

yi

(Iply
h v)(x) dx+

h

2
vZ

=
h

2
v0 +

Z−2∑
i=0

∫ yi+1

yi

(Ipcy
h v)(x) dx+

h

2
vZ =

∫ 1

0

(Ipcy
h v)(x) dx,

as required.
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3. The statement is clear for Ipcy
h and for Iply

h on K0 and KZ . For yi ≤ x < yi+1, i = 0, . . . , Z − 2, we
have

(Iply
h (v − a))(x) =

x− yi
h

(vi+1 − a) +
yi+1 − x

h
(vi − a)

= (Iply
h v)(x)− x− yi + yi+1 − x

h
a = (Iply

h v)(x)− a,

as required.

4. Let η ∈ C∞c ([0, 1]). Then∫ 1

0

(Ipcy
h v) ∂xη dx =

Z−1∑
i=0

∫ xi+1

xi

vi∂xη dx

=

Z−1∑
i=0

vi(η(xi+1)− η(xi))

=

Z−1∑
i=1

η(xi)(vi−1 − vi) = −
∫ 1

0

η

(
Z−1∑
i=1

(vi − vi−1)δxi

)
(dx),

as required.

5. The equation is satisfied on K0 and KZ , since

(Ipcx
h u)|K0

= (Ipcx
h u)|K0

≡ 0,

while Iply
h v is constant on K0 and KZ . For all x ∈ Ki, i = 1, . . . , Z − 1, we have

∂x(Iply
h v)(x) =

vi − vi−1

h
= ui = (Ipcx

h u)(x),

as required.

6. We directly compute∥∥∥Iplx
h u

∥∥∥2

H1
0

=
∥∥∥∂x(Iplx

h u)
∥∥∥2

L2
=

∥∥∥∥∥Ipcy
h

((
ui+1 − ui

h

)Z−1

i=0

)∥∥∥∥∥
2

L2

=

Z−1∑
i=0

(
ui+1 − ui

h

)2

h

=

Z−1∑
i=0

1

h
(u2
i+1 − 2ui+1ui + u2

i )

=

Z−1∑
i=1

2

h
(ui − ui+1)ui

=

Z−1∑
i=1

1

h
(−ui+1 + 2ui − ui−1)ui

=

Z−1∑
i=1

(−h∆hu)i ui = 〈−∆hu, u〉0 = ‖u‖21 .

7. Using 4., we compute

−∂xx(Iplx
h u) = −∂x

(
Ipcy
h

(
ui+1 − ui

h

)Z−1

i=0

)

= −
Z−1∑
i=1

δxi

(
ui+1 − ui

h
− ui − ui−1

h

)

=

Z−1∑
i=1

1

h
(−ui+1 + 2ui − ui−1)δxi .

Since ‖·‖H−1 is absolutely homogeneous, this finishes the proof.
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Lemma 2.4.8. Let u ∈ H−1 and v ∈ L2 such that ∂xv = u in the sense of distributions. Then

‖u‖H−1 =

∥∥∥∥v − ∫ 1

0

vdx

∥∥∥∥
L2

.

In particular,

‖u‖H−1 ≤ C ‖v‖L2 .

Proof. Let w : [0, 1]→ R be defined by

w(x) =

∫ x

0

v(y)dy − x
∫ 1

0

v(y)dy.

Obviously w ∈ H1
0 . We show that ∆w = u in the sense of distributions. To this end, let η ∈ C∞c and

compute

H−1〈u, η〉H1
0

= −〈v, ∂xη〉L2 = −〈∂xw, ∂xη〉L2 +

〈∫ 1

0

v(y)dy, ∂xη

〉
L2

= 〈w,∆η〉L2 ,

where for the last step, we note that〈∫ 1

0

v(y)dy, ∂xη

〉
L2

=

∫ 1

0

v(y)dy

∫ 1

0

∂xηdx =

∫ 1

0

v(y)dy(η(1)− η(0)) = 0.

Thus, we conclude

‖u‖H−1 = ‖w‖H1
0

= ‖∂xw‖L2 =

∥∥∥∥v − ∫ 1

0

v(y)dy

∥∥∥∥
L2

.

For the last statement, we compute

‖u‖H−1 ≤ ‖v‖L2 +

∥∥∥∥∫ 1

0

v dx

∥∥∥∥
L2

≤ ‖v‖L2 +

(∫ 1

0

∣∣∣∣∫ 1

0

v(x) dx

∣∣∣∣2 dy

) 1
2

≤ ‖v‖L2 +

(∫ 1

0

∫ 1

0

v(x)2 dxdy

) 1
2

= 2 ‖v‖L2 ,

as required.

Lemma 2.4.9. Let u = (ui)
Z−1
i=1 ∈ RZ−1, where Z is defined as in (2.1.7). Then

‖Ipcx
h u‖

H−1 ≤ ‖u‖−1 ≤ 3 ‖Ipcx
h u‖

H−1 .

Proof. Let v = (vi)
Z−1
i=0 ∈ RZ be defined by

vi =

i∑
j=0

huj .

Then, using the convention
(
∆−1
h u

)
0

=
(
∆−1
h u

)
Z

= 0 and the prolongations Iply
h , Ipcy

h from Lemma
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2.4.7, we have

‖Ipcx
h u‖

H−1 =

∥∥∥∥Iply
h v −

∫ 1

0

Iply
h v dx

∥∥∥∥
L2

(by Lemma 2.4.7, 5., and Lemma 2.4.8)

=

∥∥∥∥Iply
h

(
v −

∫ 1

0

Iply
h v dx

)∥∥∥∥
L2

(by Lemma 2.4.7, 3.)

≤
∥∥∥∥Ipcy
h

(
v −

∫ 1

0

Ipcy
h v dx

)∥∥∥∥
L2

(by Lemma 2.4.7, 1. and 2.)

= ‖∂x(Ipcy
h v)‖

H−1 (by Lemma 2.4.7, 3. and Lemma 2.4.8)

=

∥∥∥∥∥
Z−1∑
i=1

δxihui

∥∥∥∥∥
H−1

(by Lemma 2.4.7, 4.)

=

∥∥∥∥∥
Z−1∑
i=1

δxih(∆h∆−1
h u)i

∥∥∥∥∥
H−1

=

∥∥∥∥∥−
Z−1∑
i=1

δxi
1

h

(
−
(
∆−1
h u

)
i−1

+ 2
(
∆−1
h u

)
i
−
(
∆−1
h u

)
i+1

)∥∥∥∥∥
H−1

=
∥∥∥∂xx(Iplx

h ∆−1
h u)

∥∥∥
H−1

(by Lemma 2.4.7, 7.)

=
∥∥∥Iplx
h ∆−1

h u
∥∥∥
H1

0

=
∥∥∆−1

h u
∥∥

1
(by Lemma 2.4.7, 6.)

= ‖u‖−1 ,

which yields the first inequality. The same calculation yields the second inequality if we start with
3 ‖Ipcx

h u‖
H−1 and replace the third step by

3

∥∥∥∥Iply
h

(
v −

∫ 1

0

Iply
h v dx

)∥∥∥∥
L2

≥
∥∥∥∥Ipcy
h

(
v −

∫ 1

0

Ipcy
h v dx

)∥∥∥∥
L2

,

using the second part of Lemma 2.4.7, 1.

We now use this correspondence between the discrete norm ‖·‖−1 and the continuous H−1 norm to
obtain estimates on the spatially embedded processes.

Corollary 2.4.10. Let N , Z be given as in (2.1.7), and let Xh : Ω → RN×(Z−1) be random variables
(e. g. constructed as in (2.2.3)). Then

max

{
sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct-pcx
h (t)

∥∥∥2

H−1
, sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct+pcx
h (t)

∥∥∥2

H−1

}
≤ max
n∈{0,...,N−1}

E
∥∥Xn+1

h −Xn
h

∥∥2

−1
.

Proof. We compute, using Lemma 2.4.9 in the first step and the piecewise affine shape of Xpl
hτ in the

second step,

sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct-pcx
h (t)

∥∥∥2

H−1
≤ sup
t∈[0,T ]

E
∥∥∥Xplt

h (t)−Xpct-
h (t)

∥∥∥2

−1

= max
n∈{0,...,N−1}

sup
t∈[nτ,(n+1)τ)

E
∥∥∥∥ t− nττ

(
Xn+1
h −Xn

h

)∥∥∥∥2

−1

≤ max
n∈{0,...,N−1}

E
∥∥Xn+1

h −Xn
h

∥∥2

−1
.
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Similarly, we have

sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct+pcx
h (t)

∥∥∥2

H−1
≤ sup
t∈[0,T ]

E
∥∥∥Xplt

h (t)−Xpct+
h (t)

∥∥∥2

−1

= max
n∈{0,...,N−1}

sup
t∈[nτ,(n+1)τ)

E
∥∥∥∥ (n+ 1)τ − t

τ

(
Xn+1
h −Xn

h

)∥∥∥∥2

−1

≤ max
n∈{0,...,N−1}

E
∥∥Xn+1

h −Xn
h

∥∥2

−1
,

as required.

Corollary 2.4.11. Let Xh be constructed as in (2.2.3). Then, Assumption 2.2.4, Lemma 2.4.4 and
Corollary 2.4.10 immediately yield

max

{
sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct-pcx
h (t)

∥∥∥2

H−1
, sup
t∈[0,T ]

E
∥∥∥Xplt,pcx

h (t)−Xpct+pcx
h (t)

∥∥∥2

H−1

}
→ 0 (2.4.18)

for h → 0. Moreover, since L∞([0, T ];L2(Ω;H−1)) is continuously embedded into L2(Ω × [0, T ];H−1),
(2.4.18) also implies

E
∫ T

0

∥∥∥Xplt,pcx
h (t)−Xpct-pcx

h (t)
∥∥∥2

H−1
dt→ 0 and E

∫ T

0

∥∥∥Xplt,pcx
h (t)−Xpct+pcx

h (t)
∥∥∥2

H−1
dt→ 0.

Lemma 2.4.12. Let τ, h > 0, N, Z ∈ N as in Assumption 2.2.4, with h small enough for τ
h2 ≤ 1

4 to
be satisfied, and let Xh be constructed as in (2.2.3). Then, there exists C > 0 only depending on T (in
particular, independent of h), such that

max

{
E
∫ T

0

∥∥∥Xplt,pcx
h

∥∥∥2

L2
dt, E

∫ T

0

∥∥Xpct-pcx
h

∥∥2

L2 dt, E
∫ T

0

∥∥Xpct+pcx
h

∥∥2

L2 dt,

}
≤ C, (2.4.19)

E
∫ T

0

∥∥∥φ̃(Xpct-pcx
h )

∥∥∥2

L2
dt ≤ C, (2.4.20)

and E ess sup
t∈[0,T ]

∥∥∥Xplt,pcx
h

∥∥∥2

H−1
≤ C. (2.4.21)

Proof. We compute for the first term of (2.4.19), using Definition 2.1.6, Definition 2.1.5, Lemma 2.4.6
and Lemma 2.4.2,

E
∫ T

0

∥∥∥Xplt,pcx
h

∥∥∥2

L2
dt = E

∫ T

0

∥∥∥(Xplt
h (t)

)pcx∥∥∥2

L2
dt

= E
∫ T

0

h

Z−1∑
l=1

(
Xplt
h (t)

)2

l
dt

= h

Z−1∑
l=1

E
∫ T

0

∣∣∣∣(X ·,lh )plt

(t)

∣∣∣∣2 dt

≤ Ch
Z−1∑
l=1

E
N∑
k=0

τ
(
Xk,l
h

)2

= CE
N∑
k=0

τ

Z−1∑
l=0

h
(
Xk,l
h

)2

= CE
N∑
k=0

τ
∥∥Xk

h

∥∥2

0
≤ C.

(2.4.22)

The second and third term in (2.4.19) can be treated analogously. For (2.4.20), we note that

φ̃(Xpct-pcx
h ) =

(
φ̃(Xh)

)pct-pcx

,

where on the right hand side, φ̃ is applied component-wise. Then, an analogous computation to (2.4.22)
applies. For (2.4.21), we first compute for arbitrary grid functions (uk,l)k=1,...,N ;l=1,...,Z−1 ⊂ R, using
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Definition 2.1.6 and Lemma 2.4.9,

sup
t∈[0,T ]

∥∥uplt,pcx(t)
∥∥
H−1 = sup

t∈[0,T ]

∥∥∥(uplt(t)
)pcx

∥∥∥
H−1

≤ sup
t∈[0,T ]

∥∥uplt(t)
∥∥
−1

= sup
t∈[0,T ]

∥∥∥∥ t− tττ
ubt/τc+1,· +

tτ + τ − t
τ

ubt/τc,·

∥∥∥∥
−1

≤ sup
t∈[0,T ]

(
t− tτ
τ

+
tτ + τ − t

τ

)
max

n=0,...,N
‖un,·‖−1 = max

n=0,...,N
‖un,·‖−1 .

Hence, by Lemma 2.4.5, we obtain

E ess sup
t∈[0,T ]

∥∥∥Xplt,pcx
h

∥∥∥2

H−1
≤ E max

n=0,...,N
‖Xn

h ‖2−1 ≤ C,

as required.

Definition 2.4.13. Let (Xn
h )Nn=0 and (ξnh )Nn=0 be defined as in (2.2.3). We then define random variables

Yh,Wh : Ω→ R(Z−1)(N+1) by

Yh = (φ̃(Xn
h ))Nn=0 and Wh =

(
n−1∑
k=0

√
τ

h
ξkh

)N+1

n=0

.

Furthermore, we define Fh : Ω→ C([0, T ]× [0, 1]) to be the spatial antiderivative of W plt,pcx
h , i. e.

Fh(t, x) =

∫ x

0

W plt,pcx
h (t, x′) dx′. (2.4.23)

Remark 2.4.14. Note that Fh is continuous in time by the continuity of the piecewise linear prolongation,
and absolutely continuous in space, since W plt,pcx

h (t, ·) is Lebesgue integrable at any time t ∈ [0, T ].

We proceed by showing that Fh converges in law to a Brownian sheet on [0, T ]× [0, 1] (for a Definition,
see [88, p. 1]). To this end, we use the following formalism from [51, Definition 1.3], which we adapt to
the special case we are going to use.

Definition 2.4.15. Let h > 0, N,Z ∈ N be as in Assumption 2.2.4 and let (ξn,lh )n=0,...,N ;l=1,...,Z−1 be
as in (2.2.3). For n ∈ {1, . . . , N}, l ∈ {1, . . . , Z − 1}, we define rectangles

Rn,lh =

[
n− 1

N
,
n

N

]
×
[
l − 1

Z − 1
,

l

Z − 1

]
.

We now define for A ∈ B([0, 1]2)

F ′h(A) :=

N∑
n=1

Z−1∑
l=1

∣∣∣Rn,lh ∣∣∣− 1
2
∣∣∣Rn,lh ∩A∣∣∣ ξn−1,l

h , (2.4.24)

where |·| denotes the Lebesgue measure. Furthermore, we define a process F 1
h : Ω× [0, 1]2 → R by

F 1
h (t, x) = F ′h([0, t]× [0, x]) for (t, x) ∈ [0, 1]2.

Lemma 2.4.16. Let F 1
h be defined as in Definition 2.4.15. Then, F 1

h is continuous P-almost surely.

Proof. We note that P-almost surely,

M := max
{
ξk,lh : k ∈ {0, . . . , N − 1}, l ∈ {1, . . . , Z − 1}

}
<∞,
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and we have
∣∣∣Rn,lh ∣∣∣ = (N(Z − 1))−1 independent of k and l. Hence, for (s, x), (t, y) ∈ [0, 1]2, we have

P-almost surely∣∣F 1
h (s, x)− F 1

h (t, y)
∣∣ ≤ ∣∣F 1

h (s, x)− F 1
h (t, x)

∣∣+
∣∣F 1
h (t, x)− F 1

h (t, y)
∣∣

≤M(N(Z − 1))
1
2

N∑
n=1

Z−1∑
l=1

∣∣∣Rn,lh ∩ ([min(s, t),max(s, t)]× [0, x])
∣∣∣

+M(N(Z − 1))
1
2

N∑
n=1

Z−1∑
l=1

∣∣∣Rn,lh ∩ ([0, t]× [min(x, y),max(x, y)])
∣∣∣

≤M(N(Z − 1))
3
2 (|s− t|+ |x− y|)→ 0

for (s, x)→ (t, y), as required.

The following proposition corresponds to [51, Theorem 7.5 and Theorem 7.6].

Proposition 2.4.17. For h > 0 as in Assumption 2.2.4, let F ′h be given as in Definition 2.4.15, and let
p > 2. Then, there is a constant Kp > 0, such that for all admissible h > 0, A,B ∈ B([0, 1]2) we have

E |F ′h(A)− F ′h(B)|p ≤ Kp E
∣∣∣ξ1,1
h

∣∣∣p |A∆B|
p
2 ,

where A∆B denotes the symmetric difference of sets. Furthermore, F ′h converges in distribution to the
Brownian sheet on [0, 1]2 as defined by [51, Definition 1.2] for h→ 0.

Corollary 2.4.18. For h > 0 as in Assumption 2.2.4, let F 1
h be given as in Definition 2.4.15, and let

p > 2. Then, there is a constant Kp > 0, such that for all admissible h > 0, (s, x), (t, y) ∈ [0, 1]2, we
have

E
∣∣F 1
h (s, x)− F 1

h (t, y)
∣∣p ≤ Kp E

∣∣∣ξ1,1
h

∣∣∣p (|s− t| p2 + |x− y|
p
2

)
. (2.4.25)

Furthermore, for h → 0, the finite-dimensional distributions of F 1
h converge weakly to those of the

Brownian sheet F 1 on [0, 1]2 as defined by [88]. Finally, F 1
h → F 1 in distribution with respect to

C([0, 1]2) for h→ 0.

Proof. Inequality (2.4.25) and the convergence of finite-dimensional distributions immediately follow
from Proposition 2.4.17 when setting A = [0, s]× [0, x] and B = [0, t]× [0, y] and observing that

|A∆B| ≤ |t− s|+ |y − x| .

Since (2.4.25) together with F 1
h (0, 0) = 0 P-almost surely implies tightness of (F 1

h )h>0 with respect to
the strong topology on C([0, 1]2) by [93, Theorem 1.4.7], the convergence in distribution follows.

We next relate the processes (F 1
h )h>0 to (Fh)h>0.

Lemma 2.4.19. Let h > 0 as in Assumption 2.2.4. We define the affine transformation Qh by

Qh : [0, 1]→ [0, 1]h :=

[
− h

2− 2h
,

2− h
2− 2h

]
, Qh(x) =

x− h
2

1− h .

Let F̄ 1
h be the continuous extension of F 1

h to [0, 1]× [0, 1]h such that F̄ 1
h is constant in space direction on

[0, 1]× ([0, 1]h \ (0, 1)). Then, for (t, x) ∈ [0, T ]× [0, 1], we have

Fh(t, x) =
√
T
√

1− hF̄ 1
h

(
t

T
,Qh(x)

)
for all h > 0.

Proof. We first show the statement for

(t, x) =

(
nτ,

(
l +

1

2

)
h

)
, (2.4.26)
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where k ∈ {0, . . . , N}, l ∈ {0, . . . , Z − 1}. By Definition 2.4.13, we have

Fh(t, x) =

l∑
j=1

h
(
W ·,jh

)plt

(t) = h

l∑
j=1

Wn,j
h =

√
τh

l∑
j=1

n−1∑
k=0

ξk,jh .

On the other hand, we have

Rk,jh ∩
([

0,
n

N

]
×
[
0,

l

Z − 1

])
= Rk,jh

if k ≤ n and j ≤ l, otherwise the intersection is a Lebesgue zero set. Noting furthermore that
∣∣∣Rk,jh ∣∣∣ =

(N(Z − 1))−1, we have

F 1
h

(
n

N
,

l

Z − 1

)
= (N(Z − 1))−

1
2

n∑
k=1

l∑
j=1

ξk−1,j
h = T−

1
2
√
τ

√
Z

Z − 1

√
h

n−1∑
k=0

l∑
j=1

ξk,jh ,

where we recall that Zh = 1 and Nτ = T . Noticing that Z(Z − 1)−1 = (1− h)−1 and

Qh

((
l +

1

2

)
h

)
=

l

Z − 1
for l ∈ {0, . . . , Z − 1}

yields the claim for grid points as set in (2.4.26). By definition, Fh is piecewise affine in space and time
direction between those grid points. The same applies to

√
T (1− h) F̄ 1

h (T−1 ·, Qh(·)), since Qh is linear
and the image of (T−1 ·, Qh·) of a rectangle formed by the grid points in (2.4.26) is one of the rectangles

Rn,lh . Hence, it suffices to show that F 1
h is piecewise affine in each variable on each of those rectangles. In

the time variable, this can be seen by writing for (s, x), (t, x) ∈ Rn,lh such that s < t, l = bx/(Z − 1)c+ 1,
x = l−1

Z−1 + x′,

F 1
h (t, x)− F 1

h (s, x) =
√
N(Z − 1)(t− s)

 1

Z − 1

l−1∑
j=1

ξn−1,j
h + x′ξn−1,l

h

 .

An analogous calculation yields the claim in the space variable. Finally, both functions are piecewise
constant in space direction for x ≤ h

2 or x ≥ 1− h
2 . Hence, both functions are uniquely defined by their

values on the grid points in (2.4.26), which concludes the proof.

Lemma 2.4.20. The family (Fh)h>0 from Definition 2.4.13 satisfies the conditions for [93, Theorem
1.4.7] with γ = 6, d = 2 and α1 = α2 = 3.

Proof. Note that (2.4.25) is still true when replacing F 1
h by F̄ 1

h , since for t ∈ [0, 1], x ∈ [0, 1]h \ [0, 1],
either F 1

h (s, 0) or F 1
h (s, 1) equals F̄ 1

h (s, x) and can replace it yielding an even stronger inequality. Hence,
we compute for (s, x), (t, y) ∈ [0, T ]× [0, 1]

E (Fh(s, x)− Fh(t, y))
6

= T 3(1− h)3E
(
F̄ 1
h

( s
T
,Qh(x)

)
− F̄ 1

h

(
t

T
,Qh(y)

))
≤ T 3(1− h)3K6

(∣∣∣∣ sT − t

T

∣∣∣∣3 + |Qhx−Qhy|3
)

≤ K6

(
|s− t|3 + T 3 |x− y|3

)
.

Since Fh(0, 0) = 0 P-almost surely, this completes the proof.

Corollary 2.4.21. The family of the laws of (Fh)h>0 is tight with respect to the strong topology in
C([0, T ]× [0, 1]).

Proof. Tightness with respect to the semi-weak topology on C([0, T ]× [0, 1]) follows from Lemma 2.4.20
and [93, Theorem 1.4.7]. Since Property (a) in [93, Theorem 1.4.6] is equivalent to Property (a’) in [93,
p. 38] in the case S = R, relatively compact sets in the semi-weak topology are also relatively compact in
the strong topology on C([0, T ]× [0, 1]). This implies tightness with respect to the strong topology.

38



Lemma 2.4.22. The finite-dimensional distributions of (Fh)h>0 from Definition 2.4.13 converge weakly
to those of a Brownian sheet F on [0, T ]× [0, 1] in the sense of [88, p. 1].

Proof. In view of Corollary 2.4.18, we first note that the finite-dimensional distributions of
√
T F 1

h

( ·
T , ·
)

converge weakly to the finite-dimensional distributions of
√
T F 1

( ·
T , ·
)
, where F 1 is a Brownian sheet

on [0, 1]2. Moreover, we note that (√
T F 1

(
t

T
, x

))
(t,x)∈[0,T ]×[0,1]

is a centred Gaussian process, and that for (s, x), (t, y) ∈ [0, T ]× [0, 1], we have

E
[√

T F 1
( s
T
, x
)√

T F 1

(
t

T
, y

)]
= T max

{
s

T
,
t

T

}
max{x, y} = max{s, t}max{x, y},

which implies that
√
T F 1

( ·
T , ·
)

is a Brownian sheet on [0, T ]× [0, 1].

Furthermore, note that
√

1− h→ 1 stochastically for h→ 0, which implies that also

√
T
√

1− hF 1
h

( ·
T
, ·
)
→
√
T F 1

( ·
T
, ·
)

in distribution for h→ 0 by [22, Theorem 4.4].

In order to apply Slutsky’s theorem, we claim that the finite-dimensional distributions of

Fh −
√
T
√

1− hF 1
h

( ·
T
, ·
)

converge to zero stochastically for h → 0, which we argue in the following. Since all norms on Rd
are equivalent, we are free to choose the `1 norm. Using Lemma 2.4.19, we write for a finite family
((ti, xi))

M
i=1 ⊂ [0, T ]× [0, 1] and δ > 0

P

(
M∑
i=1

∣∣∣∣Fh(ti, xi)−
√
T
√

1− hF 1
h

(
ti
T
, xi

)∣∣∣∣ > δ

)

≤
M∑
i=1

P
(∣∣Fh(ti, xi)− Fh(ti, Q

−1
h xi)

∣∣ > δ

M

)
,

(2.4.27)

such that it is enough to show for δ > 0 and (t, x) ∈ [0, T ]× [0, 1]

P
(∣∣Fh(t, x)− Fh(t, Q−1

h x)
∣∣ > δ

)
→ 0 for h→ 0.

To this end, we note that
∣∣Q−1

h x− x
∣∣ < h

2 for x ∈ [0, 1] and Q−1
h x ≥ x if and only if x ≤ 1

2 . We restrict
to this case since the case x > 1

2 can be carried out analogously. Due to the construction of Fh, we then
observe that ∣∣Fh(t, x)− Fh(t, Q−1

h x)
∣∣ ≤ h

2

(∣∣∣∣(W ·,bx/heh

)plt

(t)

∣∣∣∣+

∣∣∣∣(W ·,bx/he+1
h

)plt

(t)

∣∣∣∣) ,
such that, by the same argument as in (2.4.27), it is enough to show

P
(
h

2

∣∣∣∣(W ·,bx/heh

)plt

(t)

∣∣∣∣ > δ

)
→ 0 (2.4.28)

for h→ 0, where we omit the statement and argument for the second summand since it can be conducted
analogously. Writing tτ = τ bt/τc, we note that

(
W
·,bx/he
h

)plt

(t) =

bt/τc−1∑
k=0

√
τ

h
ξ
k,bx/he
h +

t− tτ
τ

√
τ

h
ξ
bt/τc,bx/he
h ,

such that we have by the space-time independence of the random input that

Var

(
h

2

(
W
·,bx/he
h

)plt

(t)

)
=
τh

4

(⌊
t

τ

⌋
+

(t− tτ )2

τ2

)
≤ Th

4
.
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Since moreover Eξk,lh = 0 for all k ∈ {0, . . . , N}, l ∈ {1, . . . , Z − 1}, applying Chebyshev’s inequality to
(2.4.28) yields

P
(
h

2

∣∣∣∣(W ·,bx/heh

)plt

(t)

∣∣∣∣ > δ

)
≤ Th

4δ2
→ 0

for h→ 0. This proves the previously claimed stochastic convergence. The proof is finished by applying
Slutsky’s theorem (cf. [90, Theorem 13.18]).

Corollary 2.4.23. The family (Fh)h>0 converges in law to F , which is a Brownian sheet on [0, T ]×[0, 1].

Proof. This is a consequence of Corollary 2.4.21 and Corollary 2.4.22.

Lemma 2.4.24. Let (Xh)h>0 and (Yh)h>0 be defined as in (2.2.3) and Definition 2.4.13, respectively.

1. The family of the laws of (Xplt,pcx
h )h>0 is tight with respect to the weak* topology in L∞([0, T ];H−1).

2. The families of the laws of (Xplt,pcx
h )h>0, (X

pct-pcx
h )h>0, (X

pct+pcx
h )h>0 and (Y pct-pcx

h )h>0 are tight

with respect to the weak topology in L2([0, T ];L2), where Yh = φ̃(Xh) as before.

Proof. 1. By Lemma 2.4.12, we obtain

E ess sup
t∈[0,T ]

∥∥∥Xplt,pcx
h (t)

∥∥∥
H−1
≤
(
E sup
t∈[0,T ]

∥∥Xh(t)plt,pcx
∥∥2

H−1

) 1
2

≤ C (2.4.29)

independently of h. Hence, by the Markov inequality, we have for R ≥ 1

P
(
‖Xpcx

h ‖L∞([0,T ];H−1)
≥ R

)
≤ C

R
,

which converges to 0 for R→∞ uniformly in h. Since bounded sets are compact in the weak* topology
by the Banach-Alaoglu theorem, this yields the claim.

2. By Lemma 2.4.12, there exists C > 0 only depending on T , such that

E
∫ T

0

∥∥∥Xplt,pcx
h

∥∥∥2

L2
dt ≤ C

for all h > 0 as in Assumption 2.2.4. Using the Markov inequality, we obtain

P
(∥∥∥Xplt,pcx

h

∥∥∥
L2([0,T ];L2)

> R

)
≤ C

R
,

which converges to 0 for R → ∞ uniformly in h. Since L2([0, T ];L2) is a Hilbert space and hence
reflexive, we obtain that closed balls are weakly sequentially compact. This implies compactness with
respect to the weak topology by the Eberlein-Smulian theorem. The remaining processes can be treated
analogously.

Lemma 2.4.25. Let (Xh)h>0, (Yh)h>0 and (Fh)h>0 be defined as in (2.2.3) and Definition 2.4.13,
respectively. Then, the family of the distributions of the tuples(

(Xplt,pcx
h , Xplt,pcx

h , Xpct-pcx
h , Xpct+pcx

h , Y pct-pcx
h , Fh)

)
h>0

is tight with respect to the product topology τ of (τ∗w, τw, τw, τw, τw, τC), where

τ∗w is the weak* topology in L∞([0, T ];H−1),

τw is the weak topology in L2([0, T ];L2), and

τC is the strong topology in C([0, T ]× [0, 1];R).

(2.4.30)
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Proof. Let 0 < ε < 1. By Corollary 2.4.21 and Lemma 2.4.24, we obtain compact sets K1,K2,K3,K4,K5

such that for all h > 0

K0 is compact with respect to τ∗w and P(Xpcx
h ∈ K1) ≥ 1− ε

6

K1 is compact with respect to τw and P(Xplt,pcx
h ∈ K1) ≥ 1− ε

6

K2 is compact with respect to τw and P(Xpct-pcx
h ∈ K2) ≥ 1− ε

6

K3 is compact with respect to τw and P(Xpct+pcx
h ∈ K3) ≥ 1− ε

6

K4 is compact with respect to τw and P(Y pct-pcx
h ∈ K4) ≥ 1− ε

6

K5 is compact with respect to τC and P(Fh ∈ K5) ≥ 1− ε

6
.

Then, K := K0 ×K1 ×K2 ×K3 ×K4 ×K5 is compact with respect to τ , and we have

P
(

(Xplt,pcx
h , Xpct-pcx

h , Xpct+pcx
h , Y pct-pcx

h , Fh) ∈ K
)

= 1− P
(
{Xplt,pcx

h /∈ K0} ∪ {Xplt,pcx
h /∈ K1} ∪ {Xpct-pcx

h /∈ K2}

∪ {Xpct+pcx
h /∈ K3} ∪ {Y pct-pcx

h /∈ K4} ∪ {Fh /∈ K5}
)

≥ 1− P(Xplt,pcx
h /∈ K0)− P(Xplt,pcx

h /∈ K1)− P(Xpct-pcx
h /∈ K2)

− P(Xpct+pcx
h /∈ K3)− P(Y pct-pcx

h /∈ K4)− P(Fh /∈ K5)

≥ 1− ε,

as required.

Lemma 2.4.26. Let (Xh)h>0, (Yh)h>0 and (Wh)h>0 be defined as in (2.2.3) and Definition 2.4.13,
respectively. Then, there is a probability space (Ω̃, F̃ , P̃), stochastic processes

X̃ ∈ L2(Ω̃;L∞([0, T ];H−1)) ∩ L2(Ω̃;L2([0, T ];L2),

Ỹ ∈ L2(Ω̃;L2([0, T ];L2)),

W̃ ∈ L2(Ω̃; C([0, T ];H−1)),

where W̃ is an I ′(I ′)∗-Wiener process on H−1, a nonrelabeled subsequence h → 0 such that for each h
in this subsequence, there are random variables X̃h, Ỹh, W̃h : Ω̃ → R(N+1)(Z−1) satisfying the following
properties. The processes

X̃plt,pcx
h ∈ L2(Ω̃;L∞([0, T ];H−1)) (2.4.31)

X̃plt,pcx
h , X̃pct-pcx

h , X̃pct+pcx
h , Ỹ pct-pcx

h ∈ L2(Ω̃;L2([0, T ];L2), (2.4.32)

and W̃ plt,pcx
h ∈ L2(Ω̃; C([0, T ];H−1)) (2.4.33)

are bounded in the respective space uniformly in h. For each h in this subsequence,

L
(

(X̃h, Ỹh, W̃h)
)

= L ((Xh, Yh,Wh)) (2.4.34)

and

L
(

(X̃plt,pcx
h , X̃plt,pcx

h , X̃pct-pcx
h , X̃pct+pcx

h , Ỹ pct-pcx
h , W̃ plt,pcx

h )
)

= L
(

(Xplt,pcx
h , Xplt,pcx

h , Xpct-pcx
h , Xpct+pcx

h , Y pct-pcx
h ,W plt,pcx

h )
) (2.4.35)

with respect to the product topology of (τ∗w, τw, τw, τw, τw, τ̃C), where τ∗w and τw are defined in (2.4.30)
and τ̃C denotes the strong topology on C([0, T ];H−1). Finally, P̃-almost surely, we have for h→ 0

X̃plt,pcx
h

∗
⇀ X̃ in L∞([0, T ];H−1),

X̃plt,pcx
h ⇀ X̃, X̃pct-pcx

h ⇀ X̃, X̃pct+pcx
h ⇀ X̃, Ỹ pct-pcx

h ⇀ Ỹ in L2([0, T ];L2),

and W̃ plt,pcx
h → W̃ in C([0, T ];H−1).
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Remark 2.4.27. Expected values with respect to P̃ will be denoted by Ẽ.

Proof of Lemma 2.4.26. Note that condition (2.C.1), which is the central requirement in the article [87],
is satisfied for each of the topological spaces(

L∞([0, T ];H−1), τ∗w
)
,
(
L2([0, T ];L2), τw

)
, and (C([0, T ]× [0, 1]), τC)

separately by Lemma 2.C.1. Hence,
6⋃
i=1

{f ◦Πi : f ∈ Ti}

where Πi is the canonical projection and Ti the separating class for the respective factor space, serves
as a countable family satisfying condition (2.C.1) on the product space. Let (Fh)h>0 be defined as in
Definition 2.4.13. Lemma 2.4.25 and the generalized Skorohod-type theorem [87, Theorem 2] then yield
for (Ω̃, F̃ , P̃) = ([0, 1],B([0, 1]),dx) the existence of a subsequence h→ 0 and random variables

X
∼∼ plt,pcx

h , X̃0 : Ω̃→ L∞([0, T ];H−1), (2.4.36)

X̃plt,pcx
h , X̃1, X̃

pct-pcx
h , X̃2, X̃

pct+pcx
h , X̃3, Ỹ

pct-pcx
h , Ỹ : Ω̃→ L2([0, T ];L2), (2.4.37)

F̃h, F̃ : Ω̃→ C([0, T ]× [0, 1]), (2.4.38)

such that

L
(

(X
∼∼ plt,pcx

h , X̃plt,pcx
h , X̃pct-pcx

h , X̃pct+pcx
h , Ỹ pct-pcx

h , F̃h)

)
= L

(
(Xplt,pcx

h , Xplt,pcx
h , Xpct-pcx

h , Xpct+pcx
h , Y pct-pcx

h , Fh)
) (2.4.39)

with respect to the topology τ from Lemma 2.4.25, and P̃-almost surely

X
∼∼ plt,pcx

h
∗
⇀ X̃0 in L∞([0, T ];H−1), (2.4.40)

X̃plt,pcx
h ⇀ X̃1, X̃

pct-pcx
h ⇀ X̃2, X̃

pct+pcx
h ⇀ X̃3, Ỹ

pct-pcx
h ⇀ Ỹ in L2([0, T ];L2), (2.4.41)

and F̃h → F̃ in C([0, T ]× [0, 1]), (2.4.42)

where we recall that convergence in the product topology is equivalent to component-wise convergence,
that convergence in the weak topology on a normed space is equivalent to weak convergence (cf. [61,
Proposition A.49]) and that convergence in the weak* topology on the dual of a normed space is equivalent
to weak* convergence (cf. [61, Proposition A.51]). Note that despite the suggestive notation, we have
not yet shown at this stage that the approximating processes actually arise as the prolongations of
corresponding R(N+1)(Z−1)-valued processes. This will be done at the end of the proof.

We next show that the newly defined processes have uniformly in h bounded second moments. Using
Lemma 2.A.3 and Lemma 2.4.12, we obtain

Ẽ ess sup
t∈[0,T ]

∥∥∥∥X∼∼ plt,pcx

h

∥∥∥∥2

H−1

= E ess sup
t∈[0,T ]

∥∥∥Xplt,pcx
h

∥∥∥2

H−1
≤ C

independent of h, and further, with (2.4.40), Fatou’s lemma and the weak* lower-semicontinuity of the
norm,

Ẽ ess sup
t∈[0,T ]

∥∥∥X̃0

∥∥∥2

H−1
≤ Ẽ lim inf

h→0
ess sup
t∈[0,T ]

∥∥∥∥X∼∼ plt,pcx

h

∥∥∥∥2

H−1

≤ lim inf
h→0

E ess sup
t∈[0,T ]

∥∥∥∥X∼∼ plt,pcx

h

∥∥∥∥2

H−1

≤ C.

Using Lemma 2.A.2 and Lemma 2.4.12, we obtain

Ẽ
∫ T

0

∥∥∥X̃plt,pcx
h

∥∥∥2

L2
dt = E

∫ T

0

∥∥∥Xplt,pcx
h

∥∥∥2

L2
dt ≤ C
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and further, with (2.4.41), Fatou’s lemma and the weak lower-semicontinuity of the norm,

Ẽ
∫ T

0

∥∥∥X̃∥∥∥2

L2
dt ≤ Ẽ lim inf

h→0

∫ T

0

∥∥∥X̃plt,pcx
h

∥∥∥2

L2
dt

≤ lim inf
h→0

E
∫ T

0

∥∥∥X̃plt,pcx
h

∥∥∥2

L2
dt ≤ C.

The other processes in (2.4.37) can be treated analogously. To bound the moments of F̃h, we note

that E supt∈[0,T ],x∈[0,1] |Fh|6 ≤ C by [93, Theorem 1.4.1], where C is independent of h. For the latter

statement, note that the moment EK6 of the random variable K used in inequality (2) in [93, Theorem
1.4.1] only depends on the parameters in [93, Theorem 1.4.1], which becomes clear from the proof of [93,
Lema 1.4.3]. By the continuity of the norm in C([0, T ]×[0, 1]), this carries over to E supt∈[0,T ],x∈[0,1] |F̃h|6.

Again using Fatou’s lemma and continuity of the norm, one shows that also F̃ has a finite second (even
sixth) moment.

Next, we identify the processes X0, X1, X2 and X3. To this end, we first use Lemma 2.B.6 together with
(2.4.41) and the previously shown moment bounds to obtain that the limits in (2.4.41) are also true as
weak limits in L2(Ω̃;L2([0, T ];L2)) and thus as weak limits in L2(Ω̃;L2([0, T ];H−1)). Furthermore, we
note that equality in L2(Ω̃;L2([0, T ];H−1)) implies equality in L2(Ω̃;L2([0, T ];L2)), which means that
it is sufficient to show that the limits coincide in L2(Ω;L2([0, T ];H−1)). We claim that Corollary 2.4.11

carries over to the processes X̃plt,pcx
h , X̃pct-pcx

h , X̃pct+pcx
h for the subsequence chosen above, which we

argue as follows. By (2.4.39), it is enough to show that

(x, y) 7→
∫ T

0

‖x− y‖2H−1

is measurable with respect to the Borel σ-algebras of the weak topologies on
(
(L2([0, T ];L2)

)2
and(

L2([0, T ];H−1)
)2

. By continuity, this is clear if considering strong topologies, which immediately
yields the claimed measurability by Lemma 2.A.2. Hence, with 〈·, ·〉∼ denoting the inner product in

L2(Ω̃;L2([0, T ];H−1)) and ‖·‖∼ the corresponding norm, we may compute for Z ∈ L2(Ω̃;L2([0, T ];H−1))∣∣∣〈X̃plt,pcx
h − X̃2, Z(t)

〉
∼

∣∣∣
≤
∣∣∣〈X̃plt,pcx

h − X̃pct-pcx
h , Z

〉
∼

∣∣∣+
∣∣∣〈X̃pct-pcx

h − X̃2, Z
〉
∼

∣∣∣
≤
∥∥∥X̃plt,pcx

h − X̃pct-pcx
h

∥∥∥
∼
‖Z‖∼ +

∣∣∣〈X̃pct-pcx
h − X̃2, Z

〉
∼

∣∣∣
→ 0

(2.4.43)

for h→ 0, i. e. X̃1 = X̃2 by the uniqueness of weak limits. The identification with X̃3 works analogously.

Very similarly, we obtain that X
∼∼ plt,pcx

h ⇀ X̃0 in L2(Ω̃;L2([0, T ];H−1)) and X
∼∼ plt,pcx

h = X̃plt,pcx
h P̃-almost

surely in L2([0, T ];H−1) for all h in the subsequence chosen above, which especially implies

X̃plt,pcx
h ∈ L2(Ω̃;L2([0, T ];L2)) ∩ L2(Ω̃;L∞([0, T ];H−1)).

Passing to the limit h→ 0 yields

X̃0 = X̃1 ∈ L2(Ω̃;L2([0, T ];L2)) ∩ L2(Ω̃;L∞([0, T ];H−1)).

Hence, we may define
X̃1 = X̃2 = X̃3 =: X̃. (2.4.44)

Next, we pass from the auxiliary processes F̃h and F̃ to their spatial distributional derivative. Note that
F̃h and F̃ can be continuously embedded into C([0, T ];L2), consequently (2.4.42) implies F̃h → F̃ in
C([0, T ];L2). Defining

W̃ plt,pcx
h := ∂xF̃h and W̃ := ∂xF̃ , (2.4.45)

we obtain that (W̃ plt,pcx
h )h>0 and W̃ are uniformly bounded in L2(Ω̃; C([0, T ];H−1)) and W̃ plt,pcx

h → W̃

in C([0, T ];H−1) P̃-almost surely for h → 0 in the subsequence provided above, using the fact that
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∂x : C([0, T ];L2) → C([0, T ];H−1) is a linear and bounded operator. We conclude that (2.4.35) is
satisfied, which follows from (2.4.39), (2.4.44) and the continuity of the map

(Id, Id, Id, Id, Id, ∂x).

Next, we show that W̃ is an I ′(I ′)∗-Wiener process by checking the requirements in [112, Definition
2.1.9]. Using that F̃ is a Brownian sheet on [0, T ] × [0, 1], which follows from Corollary 2.4.23 and
(2.4.39), we first note that F̃ (0, ·) = 0 P̃-almost surely by definition. It follows that for η ∈ H1

0 , we have〈
W̃ (0, ·), η

〉
H−1×H1

0

= −
〈
F̃ (0, ·), ∂xη

〉
L2

= 0

P̃-almost surely. Furthermore we note that W̃ is P̃-almost surely continuous in time by construction.
For the independence of the increments, we note that the C([0, T ] × [0, 1]) norm is stronger than the
C([0, T ];L2) norm, which implies

B(C([0, T ];L2)) ∩ C([0, T ]× [0, 1]) ⊆ B(C([0, T ]× [0, 1]).

Furthermore, we recall that for n ∈ N, t1, . . . , tn ∈ [0, T ], t1 < · · · < tn

F̃ (tn, ·)− F̃ (tn−1, ·), . . . , F̃ (t2, ·)− F̃ (t1, ·), F̃ (t1, ·)

are independent. Since ∂x : L2 → H−1 is continuous (see Lemma 2.4.8) and thus

A ∈ C([0, T ];H−1) implies ∂−1
x A ∈ C([0, T ];L2),

we have for A1, . . . An ∈ C([0, T ];H−1)

P̃(W̃ (tn)− W̃ (tn−1) ∈ An, . . . W̃ (t2)− W̃ (t1) ∈ A2, W̃ (t1) ∈ A1)

= P̃(F̃ (tn, ·)− F̃ (tn−1, ·) ∈ ∂−1
x (An), . . . , F̃ (t2, ·)− F̃ (t1, ·) ∈ ∂−1

x (A2), F̃ (t1, ·) ∈ ∂−1
x (A1))

= P̃(F̃ (tn, ·)− F̃ (tn−1, ·) ∈ ∂−1
x (An)) · · · P̃(F̃ (t2, ·)− F̃ (t1, ·) ∈ ∂−1

x (A2)) P̃(F̃ (t1, ·) ∈ ∂−1
x (A1))

= P̃(W̃ (tn)− W̃ (tn−1) ∈ An) · · · P̃(W̃ (t2)− W̃ (t1) ∈ A2) P̃(W̃ (t1) ∈ A1).

Finally, we verify the distribution of W̃ (t)− W̃ (s) (0 ≤ s ≤ t ≤ T ). Comuputing for η ∈ L2, r ∈ [0, T ]∣∣∣〈F̃ (r, ·), η
〉
L2

∣∣∣ =

∣∣∣∣∫ 1

0

F̃ (r, ·)ηdx

∣∣∣∣ ≤ sup
x∈[0,1]

∣∣∣F̃ (r, x)
∣∣∣ ‖η‖L1 ≤ C sup

(r′,x)∈[0,T ]×[0,1]

∣∣∣F̃ (r′, x)
∣∣∣ ‖η‖L2 ,

we may conclude that W̃ (r) is Gaussian for all r ∈ [0, T ], since for η ∈ H1
0 , we have〈

W̃ (r, ·), η
〉
H−1×H1

0

= −
〈
F̃ (r, ·), ∂xη

〉
L2
.

Hence, also W̃ (t) − W̃ (s) is Gausssian. In order to establish the parameters of the distribution, we
compute for η, ξ ∈ H1

0

Ẽ
〈
W̃ (t)− W̃ (s), η

〉
H−1×H1

0

= −Ẽ
〈
F̃ (t, ·)− F̃ (s, ·), ∂xη

〉
L2

= 0,

and

Ẽ
[〈
W̃ (t)− W̃ (s), η

〉
H−1×H1

0

〈
W̃ (t)− W̃ (s), ξ

〉
H−1×H1

0

]
= Ẽ

[〈
F̃ (t, ·)− F̃ (s, ·), ∂xη

〉
L2

〈
F̃ (t, ·)− F̃ (s, ·), ∂xξ

〉
L2

]
= Ẽ

[∫ 1

0

(F̃ (t, x)− F̃ (s, x)) ∂xη(x) dx

∫ 1

0

(F̃ (t, y)− F̃ (s, y)) ∂xξ(y) dy

]
=

∫ 1

0

∫ 1

0

Ẽ
[
(F̃ (t, x)− F̃ (s, x))(F̃ (t, y)− F̃ (s, y))

]
∂xη(x) ∂xξ(y) dx dy,

(2.4.46)
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where Fubini’s theorem applies since F̃ has a finite second moment as shown above. By the definition
of the Brownian sheet, we notice that

Ẽ
[
(F̃ (t, x)− F̃ (s, x))(F̃ (t, y)− F̃ (s, y))

]
= Ẽ

[
F̃ (t, x)F̃ (t, y)

]
− Ẽ

[
F̃ (t, x)F̃ (s, y)

]
− Ẽ

[
F̃ (s, x)F̃ (t, y)

]
+ Ẽ

[
F̃ (s, x)F̃ (s, y)

]
= t (x ∧ y)− 2s(x ∧ y) + s (x ∧ y)

= (t− s)(x ∧ y).

(2.4.47)

Moreover, we compute∫ 1

0

∫ 1

0

(x ∧ y) ∂xη(x) ∂xξ(y) dxdy = −
∫ 1

0

∂xη(x)

∫ 1

0

ξ(y)1[0,x](y) dy dx

= −
∫ 1

0

ξ(y)

∫ 1

0

∂xη(x)1[y,1](x) dxdy

= −
∫ 1

0

ξ(y)(η(1)− η(y))dy = 〈η, ξ〉L2 ,

(2.4.48)

and further
〈η, ξ〉L2 = −〈∆η, I ′ξ〉H−1 = −〈(I ′)∗∆η, ξ〉L2 = 〈I ′(I ′)∗∆η,∆ξ〉H−1 . (2.4.49)

Combining (2.4.46) – (2.4.49), we obtain for u, v ∈ H−1

Ẽ
[〈
W̃ (t)− W̃ (s), u

〉
H−1

〈
W̃ (t)− W̃ (s), v

〉
H−1

]
= Ẽ

[〈
W̃ (t)− W̃ (s),∆−1u

〉
H−1×H1

0

〈
W̃ (t)− W̃ (s),∆−1v

〉
H−1×H1

0

]
= (t− s) 〈I ′(I ′)∗u, v〉H−1 ,

as required.

It remains to show that the processes in (2.4.31) – (2.4.33) are actually images of R(N+1)(Z−1)-valued
random variables (X̃h, Ỹh, W̃h) under the respective prolongations. To this end, for k ∈ {0, . . . , N} and
l ∈ {1, . . . , Z − 1}, let

ek,lh = (δk′kδl′l)k′=0,...,N ;l′=1,...,Z−1 .

Then, we define linear subspaces Spct-pcx
h , Spct+pcx

h of L2([0, T ];L2), and Splt,pcx
h , which can be interpreted

as a subspace of both L2([0, T ];L2) and C([0, T ];H−1), by

Splt,pcx
h = span

{(
ek,lh

)plt,pcx

: k ∈ {0, . . . , N}, l ∈ {1, . . . , Z − 1

}
,

Spct-pcx
h = span

{(
ek,lh

)pct-pcx

: k ∈ {0, . . . , N}, l ∈ {1, . . . , Z − 1

}
,

noting that both generating systems are linearly independent. Since these subspaces are finite-dimensional,
there exist continuous projections

Πplt,pcx
h : L2([0, T ];L2)→ Splt,pcx

h ,

Ξplt,pcx
h : C([0, T ];H−1)→ Splt,pcx

h ,

Πpct-pcx
h : L2([0, T ];L2)→ Spct-pcx

h ,

(see e. g. [1, 7.2(1), 7.15]), and bounded linear coordinate functions

Γplt,pcx
h : Splt,pcx

h → R(N+1)(Z−1),

Γpct-pcx
h : Spct-pcx

h → R(N+1)(Z−1).

It follows from the definition of the projection and the injectivity of all prolongations involved that for
u ∈ Splt,pcx

h we have ((
Γplt,pcx
h ◦Πplt,pcx

h

)
(u)
)plt,pcx

= u, (2.4.50)
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with analogous statements for Γplt,pcx
h ◦ Ξplt,pcx

h and Γpct-pcx
h ◦Πpct-pcx

h . We now set

X̃h = Γplt,pcx
h

(
Πplt,pcx
h

(
X̃plt,pcx
h

))
,

Ỹh = Γpct+pcx
h

(
Πpct-pcx
h

(
Ỹ pct-pcx
h

))
,

W̃h = Γplt,pcx
h

(
Ξplt,pcx
h

(
W̃ plt,pcx
h

))
,

which is compatible with the previously defined processes in (2.4.36) – (2.4.38) due to (2.4.50) and thus
does not cause notational ambiguities. The equality of the laws in (2.4.34) follows by (2.4.35) and the
measurability of (

Γplt,pcx
h ◦Πplt,pcx

h , Γpct-pcx
h ◦Πpct-pcx

h , Γplt,pcx
h ◦ Ξplt,pcx

h

)
,

which completes the proof.

We now turn to identify the limiting processes belong to a weak solution, starting by providing a stochastic
basis and proving that W̃ is a Wiener process with respect to this basis in the sense of [112, Definition
2.1.12].

Lemma 2.4.28. In the setting of Lemma 2.4.26, W̃ is an I ′(I ′)∗-Wiener process on H−1 with respect
to the augmented filtration (F̃t)t∈[0,T ] of (F̃ ′t)t∈[0,T ] in the sense of [112, Defintion 2.1.12], where

F̃ ′t := σ
(
X̃|Ω̃×[0,t], Ỹ |Ω̃×[0,t], W̃ |Ω̃×[0,t]

)
.

Proof. It has already been shown in Lemma 2.4.26 that W̃ is an I ′(I ′)∗-Wiener process. Furthermore,
W̃ is adapted to (F̃ ′t)t∈[0,T ] by construction and hence also to its augmentation. Thus, it remains to
show that for 0 ≤ s < t ≤ T

W̃ (t)− W̃ (s) is independent of F̃s. (2.4.51)

We begin with proving (2.4.51) for F̃s replaced by F̃ ′s. To this end, let

Φ ∈ C
(
L2([0, s];L2)× L2([0, s];L2)× C([0, s];H−1); [0, 1]

)
and Ψ ∈ C

(
H−1; [0, 1]

)
,

where L2([0, s];L2) is endowed with the weak topology and C([0, s];H−1) with the strong topology. We
note that for 0 < s ≤ T the operator Ps : f 7→ f |[0,s] is continuous both as a map

L2([0, T ];L2)→ L2([0, s];L2)

with respect to the weak topologies and as a map

C([0, T ];H−1)→ C([0, s];H−1)

with respect to the strong topologies. Let (sn)n∈N ⊂ (s, T ] such that sn ↘ s for n → ∞. Using the
continuity of W̃ , Lemma 2.4.26, dominated convergence due to the boundedness and continuity of Φ and
Ψ, and independence on the discrete level by construction, we obtain

Ẽ
[
Ψ
(
W̃ (t)− W̃ (s)

)
Φ
(
X̃|[0,s], Ỹ[0,s], W̃ |[0,s]

)]
= lim
n→∞

Ẽ
[
Ψ
(
W̃ (t)− W̃ (sn)

)
Φ
(
X̃|[0,s], Ỹ[0,s], W̃ |[0,s]

)]
= lim
n→∞

lim
h→0

Ẽ
[
Ψ
(

(W̃ plt,pcx
h (t)− W̃ plt,pcx

h (sn))
)

Φ
(
X̃plt,pcx
h |[0,s], Ỹ pct-pcx

h |[0,s], W̃ plt,pcx
h |[0,s]

)]
= lim
n→∞

lim
h→0

E
[
Ψ
(

(W plt,pcx
h (t)−W plt,pcx

h (sn))
)

Φ
(
Xplt,pcx
h |[0,s], Y pct-pcx

h |[0,s],W plt,pcx
h |[0,s]

)]
= lim
n→∞

lim
h→0

(
E
[
Ψ
(

(W plt,pcx
h (t)−W plt,pcx

h (sn))
)]

×E
[
Φ
(
Xplt,pcx
h |[0,s], Y pct-pcx

h |[0,s],W plt,pcx
h |[0,s]

)])
= lim
n→∞

lim
h→0

(
Ẽ
[
Ψ
(

(W̃ plt,pcx
h (t)− W̃ plt,pcx

h (sn))
)]

× Ẽ
[
Φ
(
X̃plt,pcx
h |[0,s], Ỹ pct-pcx

h |[0,s], W̃ plt,pcx
h |[0,s]

)])
= lim
n→∞

(
Ẽ
[
Ψ
(
W̃ (t)− W̃ (sn)

)]
Ẽ
[
Φ
(
X̃|[0,s], Ỹ |[0,s]), W̃ |[0,s]

)])
= Ẽ

[
Ψ
(
W̃ (t)− W̃ (s)

)]
Ẽ
[
Φ
(
X̃|[0,s], Ỹ |[0,s], W̃ |[0,s]

)]
.
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This proves that W̃ (t)− W̃ (s) is independent of F̃ ′s.
Next, we note that the family

A := {B ∪N : B ∈ F̃ ′s, N ∈ N},
where we recall that N is the collection of all P̃-zero sets, is stable under intersections, since for B1, B2 ∈
F̃ ′s, N1, N2 ∈ N we have

(B1 ∪N1) ∩ (B2 ∪N2) = (B1 ∩B2) ∪ (B1 ∩N2) ∪ (B2 ∩N1) ∪ (N1 ∩N2),

where B1 ∩ B2 ∈ F̃ ′s and the last three sets are P̃-zero sets. Using the independence of W̃ (t)− W̃ (s) of
F̃ ′s, we then compute for A ∈ σ(W̃ (t)− W̃ (s)), B ∈ F̃ ′s and N ∈ N

P̃(A ∩ (B ∪N)) = P̃(A ∩B) + P̃(A ∩ (N ∩Bc)) = P̃(A)P(B) = P̃(A)P(B ∪N),

which proves that W̃ (t)− W̃ (s) is independent of

F̃0
t := σ(F̃ ′t ∪N )

by [90, Theorem 2.13]. Finally, if B ∈ F̃s, then, by construction of the augmentation, B ∈ F̃0
sn for all

n ∈ N, where (sn)n∈N ⊂ (s, T ] is an arbitrary subsequence for which sn → s for n → ∞. Hence, by
almost sure continuity of W̃ and dominated convergence, we obtain

Ẽ
[
Ψ
(
W̃ (t)− W̃ (s)

)
1B

]
= lim
n→∞

Ẽ
[
Ψ
(
W̃ (t)− W̃ (sn)

)
1B

]
= lim
n→∞

Ẽ
[
Ψ
(
W̃ (t)− W̃ (sn)

)]
P̃(B)

= Ẽ
[
Ψ
(
W̃ (t)− W̃ (s)

)]
P̃(B),

which proves (2.4.51), as required.

Proposition 2.4.29. Let h > 0 denote a sequence converging to 0, u ∈ L2([0, T ];H−1), η ∈ L2([0, T ];L2),
and for all h in this sequence, t ∈ [0, T ] let uh(t), ηh(t) ∈ RZ−1, such that upcxh ∈ L2([0, T ];H−1) with
upcxh ⇀ u in L2([0, T ];H−1), and ηpcxh ∈ L2([0, T ];L2) with ηpcxh → η in L2([0, T ];L2). Then, for h→ 0,∫ T

0

〈ηh(t), uh(t)〉−1 dt→
∫ T

0

〈η(t), u(t)〉H−1 dt.

Proof. First note that upcx
h ⇀ u in L2([0, T ];H−1) implies that (upcx

h )h>0 is bounded in L2([0, T ];H−1)

(see e. g. [1, Bemerkungen 6.3, (5)]). Thus,
∫ T

0
‖uh(t)‖2−1 is uniformly bounded by Lemma 2.4.9. Fur-

thermore, we have a Poincaré inequality for the discrete norms by

‖vh‖20 = ‖vpcx
h ‖

2

L2 ≤ C
∥∥∥vplx
h

∥∥∥2

L2
≤ C

∥∥∥∇vplx
h

∥∥∥2

L2
= C ‖vh‖21 (2.4.52)

for C independent of h and grid functions v ∈ RZ−1, where the first inequality can be obtained by
connecting [52, Propositions 3.1 and 3.2], and the last equality is the statement in Lemma 2.4.7, 6.
Recalling that 〈·, ·〉 denotes the Euclidean inner product in RZ−1, this leads to∫ T

0

∥∥∥(−∆−1
h uh(t)

)pcx
∥∥∥2

L2
dt =

∫ T

0

∥∥−∆−1
h uh(t)

∥∥2

0
dt

≤ C
∫ T

0

∥∥−∆−1
h uh(t)

∥∥2

1
dt

= C

∫ T

0

〈
−∆−1

h uh(t), uh(t)
〉

0
dt = C

∫ T

0

‖uh(t)‖2−1 dt,

which is uniformly bounded in h as argued above, such that we can extract a subsequence of
(
−∆−1

h uh
)pcx

weakly converging to some f ∈ L2([0, T ];L2).

For η ∈ L∞([0, 1]), let D−h η,D
+
h η ∈ L∞([0, 1]) be the h-difference quotients to the left and right, i. e.

D−h η(x) =
ηext(x− h)− η(x)

h
and D+

h η(x) =
ηext(x+ h)− η(x)

h
,
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where ηext is the extension of η by zero to a function on R.

Let ξ ∈ C∞c ([0, T ]× [0, 1]). Then, for h chosen small enough such that

supp(ξ) ⊆ [0, T ]× (3h, 1− 3h),

we have

ξ(t, x)(−∆huh(t))
pcx

(x) = −ξ(t, x)
(
D−hD

+
h u

pcx
h (t)

)
(x) for almost all t ∈ [0, T ], x ∈ [0, 1]. (2.4.53)

Hence, using discrete integration by parts and considering that ξ has compact support, we compute∫ T

0

〈u, ξ〉H−1×H1
0

dt = lim
h→0

∫ T

0

〈ūpcx
h , ξ〉

L2 dt

= lim
h→0

∫ T

0

〈(
∆h∆−1

h uh
)pcx

, ξ
〉
L2

dt

= lim
h→0

∫ T

0

〈
−D−hD+

h

(
−∆−1

h uh
)pcx

, ξ
〉
L2

dt

= lim
h→0

∫ T

0

〈(
−∆−1

h uh
)pcx

,−D−hD+
h ξ
〉
L2

dt =

∫ T

0

〈f,−∆ξ〉L2 dt.

(2.4.54)

To justify the last step, we note that ξ is smooth, hence

sup
(t,x)∈R2

|∂xxxξext(t, x)| = sup
(t,x)∈[0,T ]×[0,1]

|∂xxxξ(t, x)| ≤ Cξ,

which allows to use Taylor’s formula and the Lagrange form of the remainder to obtain x1, x2 ∈ [−h, 1+h],
such that for all (t, x) ∈ [0, T ]× [0, 1]

∣∣D−hD+
h ξ(t, x)− ∂xxξ(t, x)

∣∣ ≤ 1

h2
(ξext(t, x+ h)− 2ξext(t, x) + ξext(t, x− h))− ∂xxξ(t, x)

=
1

h2

(
ξ(t, x) + h∂xξ(t, x) +

h2

2
∂xxξ(t, x) +

h3

3
∂xxxξext(t, x1)− 2ξ(t, x)

+ ξ(t, x)− h∂xξ(t, x) +
h2

2
∂xxξ(t, x)− h3

3
∂xxxξext(t, x2)

)
− ∂xxξ(t, x)

≤h
3
Cξ

and hence D−hD
+
h ξ → ∂xxξ in L2([0, T ]× [0, 1]) for h→ 0.

Next, we show that (2.4.54) implies f = −∆−1u for almost every t ∈ [0, T ] in the sense of distributions.
Since C2((0, 1)) is separable, so is (C∞c ((0, 1)), ‖·‖C2), such that there is a countable dense set (ηi)i∈N in
this space. For all θ ∈ C∞c ((0, T )) and i ∈ N, we have that θ(t)ηi(x) ∈ C∞c ((0, T ) × (0, 1)), such that
(2.4.54) yields ∫ T

0

〈u(t), ηi〉H−1×H1
0
θ(t)dt =

∫ T

0

〈f(t),−∂xxηi〉L2 θ(t)dt.

By the fundamental lemma of the calculus of variations, there exists a zero set Ni ⊂ [0, T ] such that

〈u(t), ηi〉H−1×H1
0

= 〈f(t),−∂xxηi〉L2 for all t ∈ [0, T ] \Ni. (2.4.55)

Defining N := ∪i∈NNi, which is again a zero set, we obtain by linearity that (2.4.55) is true for ηi
replaced by any function in the linear span span(ηi; i ∈ N) for each t ∈ [0, T ] \ N . Let finally η ∈
C∞c ((0, 1)) be chosen arbitrarily. Since (ηi)i∈N was chosen to be a dense subset, there is a sequence
(ηk)k∈N ⊂ span(ηi; i ∈ N) such that

ηk → η in C2((0, 1)).

Hence, we obtain for t ∈ [0, T ] \N

〈u(t), η〉H−1×H1
0

= lim
k→∞

〈u(t), ηk〉H−1×H1
0

= lim
k→∞

〈f(t),−∂xxηk〉L2 = 〈f(t),−∂xxη〉L2 ,
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as required. The proof can then be finished by computing∫ T

0

〈uh, ηh〉−1 dt =

∫ T

0

〈
−∆−1

h uh, ηh
〉

0
dt

=

∫ T

0

〈(
−∆−1

h uh
)pcx

, ηpcx
h

〉
L2

dt→
∫ T

0

〈
−∆−1u, η

〉
L2 dt =

∫ T

0

〈u, η〉H−1 dt.

Lemma 2.4.30. Let (X̃h, Ỹh, W̃h) be the processes from Lemma 2.4.26. Then,

X̃plt
h (t) = x0

h +

∫ t

0

∆hỸ
pct-
h (r) dr + W̃ plt

h (t) (2.4.56)

in L2([0, T ];RZ−1) P̃-almost surely, and the limits in Lemma 2.4.26 satisfy

X̃(t) = x0 +

∫ t

0

∆Ỹ (r)dr + W̃ (t) (2.4.57)

in L2([0, T ]; (L2)′) P̃-almost surely.

Proof. Step 1: We first prove (2.4.56). We note that by construction of the prolongations in use here,
(2.4.56) is equivalent to

X̃n
h = x0

h + τ

n−1∑
k=0

∆hỸ
k
h + W̃n

h

for all n ∈ {0, . . . , N} P̃-almost surely. This is given by the construction of (Xh, Yh,Wh) in (2.2.3) and
Definition 2.4.13, and by the equality of laws in (2.4.34).

Step 2: We need to show that P̃-almost surely, for every ζ ∈ L2([0, T ];L2)∫ T

0

〈
X̃(t), ζ(t)

〉
(L2)′×L2

dt =

∫ T

0

〈
x0 +

∫ t

0

∆Ỹ (r)dr + W̃ (t), ζ(t)

〉
(L2)′×L2

dt, (2.4.58)

where 〈u, v〉(L2)′×L2 =
〈
−∆−1u, v

〉
L2 . In this step, we first show (2.4.58) for a test function ζ of the type

ζ = θ(t)η, (2.4.59)

where η ∈ L2 and θ ∈ L∞([0, T ]). For h > 0, Z ∈ N with hZ = 1, let Πpcx
h η be the L2-orthogonal

projection of η to the space

Spcx
h := span ({Ipcx

h ei : i = 1, . . . , Z − 1})

and ηh ∈ RZ−1 the corresponding coefficients, i. e. ηpcx
h = Πpcx

h η. Then

ηpcx
h → η in L2 for h→ 0

by Lemma 2.1.2, which implies
θηpcx
h → θη in L2([0, T ];L2). (2.4.60)

From now on, we consider a subsequence h→ 0 realizing the limits in Lemma 2.4.26. Using (2.4.56), we
obtain

P̃

(∫ T

0

〈
X̃plt
h (t), θ(t)ηh

〉
−1

dt =

∫ T

0

〈
x0
h +

∫ t

0

∆hỸ
pct-
h (r)dr + W̃ plt

h (t), θ(t)ηh

〉
−1

dt

)

≥ P̃
(
X̃plt
h (t) = x0

h +

∫ t

0

∆hỸ
pct-
h (r)dr + W̃ plt

h (t) in L2([0, T ];RZ−1)

)
= 1.

(2.4.61)

Moreover, we have X̃plt,pcx
h ⇀ X̃ in L2([0, T ];L2) and thus in L2([0, T ];H−1) P̃-almost surely by Lemma

2.4.26, and X̃plt,pcx
h = Ipcx

h X̃plt
h P̃⊗ dt-almost surely by construction. Hence, Proposition 2.4.29 applies

and yields∫ T

0

〈
X̃plt
h (t), θ(t)ηh

〉
−1

dt→
∫ T

0

〈
X̃, ζ

〉
H−1

dt =

∫ T

0

〈
X̃, ζ

〉
(L2)′×L2

dt P̃-almost surely. (2.4.62)
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Furthermore, we notice that Ỹ pct-pcx
h ⇀ Ỹ in L2([0, T ];L2) P̃-almost surely by Lemma 2.4.26 and ηpcx

h θ →
η θ in L2([0, T ];L2) as in (2.4.60), where θ ∈ L∞([0, T ]) can be chosen as θ(r) = 1[0,t](r) for any t ∈ [0, T ].
This allows to write for arbitrary t ∈ [0, T ], h→ 0∫ t

0

〈
Ỹ pct-pcx
h (r), ηpcx

h

〉
L2

dr =

∫ T

0

〈
Ỹ pct-pcx
h (r), ηpcx

h 1[0,t](r)
〉
L2

dr

→
∫ T

0

〈
Ỹ (r), η 1[0,t](r)

〉
L2

dr =

〈∫ t

0

Ỹ (r)dr, η

〉
L2

,

(2.4.63)

where for the last step we used the compatibility of Bochner integrals with bounded linear operators (see
e. g. [112, Proposition A.2.2]). Furthermore, we have for all t ∈ [0, T ]∣∣∣∣〈∫ t

0

Ỹ pct-pcx
h (r)dr, ηpcx

h

〉
L2

∣∣∣∣ ≤ ∫ t

0

∣∣∣〈Ỹ pct-pcx
h (r), ηpcx

h

〉
L2

∣∣∣dr
≤
(∫ T

0

∥∥∥Ỹ pct-pcx
h (r)

∥∥∥2

L2
dr

) 1
2 √

T ‖η‖L2 <∞
(2.4.64)

uniformly in h by Lemma 2.4.26. Thus, we may use (2.4.63), (2.4.64) and dominated convergence to
obtain for h→ 0∫ T

0

〈∫ t

0

∆hỸ
pct-
h (r)dr, θ(t)ηh

〉
−1

dt =

∫ T

0

∫ t

0

〈
Ỹ pct-
h (r), θ(t)ηh

〉
0

drdt

=

∫ T

0

∫ t

0

〈
Ỹ pct-pcx
h (r), θ(t)ηpcx

h

〉
L2

drdt

→
∫ T

0

〈∫ t

0

Ỹ (r)dr, θ(t)η

〉
L2

dt

=

∫ T

0

〈∫ t

0

∆Ỹ (r)dr, θ(t)η

〉
(L2)′×L2

dt.

(2.4.65)

For the remaining terms, note that Corollary 2.4.26 yields that W̃ plt,pcx → W̃ in C([0, T ];H−1) P̃-almost
surely, which is stronger than weak convergence in L2([0, T ];H−1), and (x0

h)pcx → x0 in L2 and thus in
H−1 by assumption, which implies weak convergence in L2([0, T ];H−1) if x0

h and x0 are interpreted as

constant functions in time. Moreover, W̃ plt,pcx
h = Ipcx

h W̃ plt
h P̃ ⊗ dt-almost everywhere by construction,

which allows to apply Proposition 2.4.29 to obtain P̃-almost surely∫ T

0

〈
x0
h + W̃ plt

h (t), θ(t)ηh

〉
−1

dt→
∫ T

0

〈
x0 + W̃ (t), θ(t)η

〉
H−1

dt

=

∫ T

0

〈
x0 + W̃ (t), θ(t)η

〉
(L2)′×L2

dt.

(2.4.66)

Using (2.4.62), (2.4.65) and (2.4.66), Equation (2.4.58) follows by taking limits in (2.4.61) P̃-almost
surely.

Step 3: By linearity, (2.4.58) is also true for linear combinations of test functions ζ of type (2.4.59) and
thus for every polynomial. Thus, we obtain a P̃-zero set outside of which (2.4.58) is satisfied for any
polynomial. Using the density of polynomials in L2([0, T ]×[0, 1]) given by the Stone-Weierstrass theorem,
outside this zero set the full statement (2.4.58) is satisfied by passing to the limit of approximating
sequences.

Lemma 2.4.31. Let Ỹ and W̃ be constructed as in Lemma 2.4.26 and define the continuous (L2)′-valued
process

Z̃(t) := x0 +

∫ t

0

∆Ỹ (r)dt+ W̃ (t)

for t ∈ [0, T ]. Then, we have

Ẽ

(
sup
t∈[0,T ]

∥∥∥Z̃(t)
∥∥∥2

H−1

)
<∞
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and

Ẽ
∥∥∥Z̃(t)

∥∥∥2

H−1
+ 2 Ẽ

∫ t

0

〈
Z̃(r), Ỹ (r)

〉
L2

dr = ‖x0‖2H−1 + t ‖I ′‖2L2(L2,H−1) . (2.4.67)

Proof. By Lemma 2.4.30, we have that X̃ and Z̃ are in the same P̃ ⊗ dt-equivalence class, and by the
construction in Lemma 2.4.26 we know that X̃ ∈ L2(Ω̃× [0, T ];L2). Moreover, Ỹ ∈ L2(Ω̃;L2([0, T ];L2))
and progressively measurable with respect to (F̃t)t∈[0,T ] by construction (cf. Corollary 2.B.5). Thus,
Ito’s formula from [112, Theorem 4.2.5] applies, which yields both claims..

Remark 2.4.32. By (2.4.57) and the definition of Z̃ above, we have Z̃ = X̃ in L2(Ω̃ × [0, T ]; (L2)′).
Furthermore, we have X̃ ∈ L2(Ω̃ × [0, T ];L2), such that the injectivity of the embedding I ′′I ′ : L2 ↪→
(L2)′, which carries over to an embedding

L2(Ω̃× [0, T ];L2) ↪→ L2(Ω̃× [0, T ]; (L2)′),

implies that Z̃ ∈ L2(Ω̃× [0, T ];L2) and Z̃ = X̃ in L2(Ω̃× [0, T ];L2).

In view of (2.2.2), it remains to inspect the relation of X̃ and Ỹ . To this end, we aim to use (2.4.67)
for Z̃ replaced by X̃. Since this is only possible dt-almost surely, we need to use an integrated version
of (2.4.67). The resulting double integral in the second term leads to the following definition, which will
be useful in the proof of Lemma 2.4.36 below.

Definition 2.4.33. We define the measure µ on [0, T ] as the measure with density

[0, T ] 3 t 7→ T − t,

with respect to dt and we write [0, T ]µ for the measure space ([0, T ], µ). Let A ⊂ L2(Ω̃× [0, T ]µ;L2)×
L2(Ω̃ × [0, T ]µ;L2) be a multivalued operator (which we identify with its graph by a slight abuse of
notation) defined by

(X,Y ) ∈ A if and only if Y ∈ φ(X) for almost every (ω̃, t, x) ∈ Ω̃× [0, T ]× [0, 1]. (2.4.68)

Remark 2.4.34. We note that P̃⊗ µ⊗ dx (resp. µ⊗ dx) and P̃⊗ dt⊗ dx (resp. dt⊗ dx) are equivalent
(i. e. mutually absolutely continuous with respect to each other) by the fact that µ and dt are equivalent.
Moreover, since (T − t) is bounded, we have

L2(Ω̃× [0, T ];L2) ⊆ L2(Ω̃× [0, T ]µ;L2).

Lemma 2.4.35. The operator A is maximal monotone.

Proof. The proof is identical to the proof of Lemma 2.3.2 with H := L2(Ω̃× [0, T ]µ;L2) and

ϕ : H → [0,∞], ϕ(u) = E
∫ T

0

(T − t)
∫ 1

0

ψ̃(u(t, x))dxdt.

Lemma 2.4.36. Let h > 0, (X̃pct-pcx
h )h>0, (Ỹ

pct-pcx
h )h>0, X̃, Ỹ be as in Lemma 2.4.26. Then,

lim sup
h→0

Ẽ
∫ T

0

(T − t)
〈
X̃pct-pcx
h (t), Ỹ pct-pcx

h (t)
〉
L2

dt ≤ Ẽ
∫ T

0

(T − t)
〈
X̃(t), Ỹ (t)

〉
L2

dt.

Proof. We notice that for f ∈ L1([0, T ];R) or measurable f ≥ 0, we have by Fubini’s (resp. Tonelli’s)
theorem∫ T

0

∫ t

0

f(r)drdt =

∫ T

0

∫ T

0

1[0,t](r)f(r)drdt =

∫ T

0

f(r)

∫ T

0

1[r,T ](t)dtdr =

∫ T

0

(T − r)f(r)dr. (2.4.69)

Furthermore, we note that, due to Lemma 2.4.26, (X̃pct+pcx
h )h>0 is bounded in L2(Ω̃;L2([0, T ];L2))

uniformly in h, and
X̃pct+pcx
h ⇀ X̃ P̃-almost surely in L2([0, T ];L2).
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Hence, Lemma 2.B.6 yields that

X̃pct+pcx
h ⇀ X̃ in L2(Ω̃;L2([0, T ];L2))

for h → 0. Since weak convergence in L2(Ω̃;L2(×[0, T ];L2)) is stronger than weak convergence in
L2(Ω̃;L2([0, T ];H−1)), we have by weak lower-semicontinuity of the norm that

Ẽ
∫ T

0

∥∥∥X̃(t)
∥∥∥2

H−1
dt ≤ lim inf

h→0
Ẽ
∫ T

0

∥∥∥X̃pct+pcx
h (t)

∥∥∥2

H−1
dt,

or, equivalently,

−Ẽ
∫ T

0

∥∥∥X̃(t)
∥∥∥2

H−1
dt ≥ lim sup

h→0

(
−Ẽ

∫ T

0

∥∥∥X̃pct+pcx
h (t)

∥∥∥2

H−1
dt

)
. (2.4.70)

Furthermore, by the same arguments as in the proof of Proposition 2.4.29, we obtain(
−∆−1

h x0
h)
)pcx

⇀ −∆−1x0 in L2 for h→ 0,

which allows to compute

lim
h→0

∥∥x0
h

∥∥2

−1
= lim
h→0

〈
−∆−1

h x0
h, x

0
h

〉
0

= lim
h→0

〈
(−∆−1

h x0
h)pcx, (x0

h)pcx
〉
L2

=
〈
−∆−1x0, x0

〉
L2 = ‖x0‖2H−1 .

(2.4.71)

For each h > 0 in the subsequence of Lemma 2.4.26, consider X̃h and Ỹh as constructed in Lemma 2.4.26.
Then, by (2.4.69) and Remark 2.1.4, we obtain

lim sup
h→0

Ẽ
∫ T

0

(T − t)
〈
X̃pct-pcx
h (t), Ỹ pct-pcx

h (t)
〉
L2

dt

= lim sup
h→0

∫ T

0

Ẽ
∫ t

0

〈
X̃pct-pcx
h (r), Ỹh(r)pct-pcx

〉
L2

dr dt

= lim sup
h→0

∫ T

0

Ẽ
∫ t

0

〈
X̃pct-
h (s), Ỹ pct-

h (s)
〉

0
dsdt. (2.4.72)

Writing tτ = bt/τc τ and using the definition of the left-sided piecewise constant embedding embedding,

the positive sign of
〈
X̃pct-
h , Ỹ pct-

h

〉
0
P̃⊗ dt-almost everywhere and Lemma 2.4.2, we continue by

(2.4.72) = lim sup
h→0

∫ T

0

Ẽ

bt/τc∑
n=0

τ
〈
X̃n
h , Ỹ

n
h

〉
0
−
∫ tτ+τ

t

〈
X̃pct-
h (s), Ỹ pct-

h (s)
〉

0
ds

dt

≤ 1

2
lim sup
h→0

(
−
∫ T

0

Ẽ
∥∥∥X̃bt/τc+1

h

∥∥∥2

−1
dt

)

+
1

2
lim
h→0

((
1 +

4τ

h2

)(∫ T

0

∥∥x0
h

∥∥2

−1
dt+

∫ T

0

(tτ + τ)Tr(−∆−1
h ) dt

))
.

(2.4.73)

Using Assumption 2.2.4, the definition of the right-sided piecewise constant embedding, (2.4.71), Lemma
2.4.3 and Lemma 2.4.9, we obtain

(2.4.73) = lim sup
h→0

(
−1

2

∫ T

0

Ẽ
∥∥∥X̃pct+

h (t)
∥∥∥2

−1
dt

)
+

1

2

∫ T

0

‖x0‖2H−1 dt+
1

2

∫ T

0

t ‖I ′‖2L2(L2,H−1) dt

≤ lim sup
h→0

(
−1

2

∫ T

0

Ẽ
∥∥∥X̃pct+pcx

h (t)
∥∥∥2

H−1
dt

)
+

1

2

∫ T

0

‖x0‖2H−1 dt+
1

2

∫ T

0

t ‖I ′‖2L2(L2,H−1) dt.

(2.4.74)
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Using (2.4.70) and Remark 2.4.32, we obtain

(2.4.74) ≤ −1

2

∫ T

0

Ẽ
∥∥∥X̃(t)

∥∥∥2

H−1
dt+

1

2

∫ T

0

‖x0‖2H−1 dt+
1

2

∫ T

0

t ‖I ′‖2L2(L2,H−1) dt

= −1

2

∫ T

0

Ẽ
∥∥∥Z̃(t)

∥∥∥2

H−1
dt+

1

2

∫ T

0

‖x0‖2H−1 dt+
1

2

∫ T

0

t ‖I ′‖2L2(L2,H−1) dt. (2.4.75)

Finally, we obtain by Lemma 2.4.31, Remark 2.4.32 and (2.4.69) combined with the integrability in
Lemma 2.4.26

(2.4.75) =

∫ T

0

Ẽ
∫ t

0

〈
Z̃(r), Ỹ (r)

〉
L2

dr dt

=

∫ T

0

Ẽ
∫ t

0

〈
X̃(r), Ỹ (r)

〉
L2

dr dt = Ẽ
∫ T

0

(T − t)
〈
X̃(t), Ỹ (t)

〉
L2

dt,

which finishes the proof.

Proof of Theorem 2.2.5. By Lemma 2.4.26, we have that a (nonrelabeled) subsequence of
(
X̃plt,pcx
h

)
h>0

converges to X̃ weakly in L2([0, T ];L2) and weakly* in L∞([0, T ];H−1) P̃-almost surely, which implies
by the Slutsky theorem (cf. [90, Theorem 13.18]) that

L
(
X̃plt,pcx
h

)
→ L(X̃)

with respect to the weak topology in L2([0, T ];L2) and the weak* topology in L∞([0, T ];H−1). Since we

also have by Lemma 2.4.26 that L
(
X̃plt,pcx
h

)
= L

(
Xplt,pcx
h

)
in both spaces, these convergence results

transfer to L
(
Xplt,pcx
h

)
.

We next show that
(

(Ω̃, F̃ , (F̃t)t∈[0,T ], P̃), X̃, W̃
)

as constructed in Lemma 2.4.26 and Lemma 2.4.28, is

a weak solution to (2.1.1) in the sense of Definition 2.2.1 belonging to the process Ỹ given in Lemma
2.4.26. Considering the definition of the filtration (F̃t)t∈[0,T ], progressive measurability of X̃ and Ỹ is

clear by Corollary 2.B.5. In Lemma 2.4.28, it is shown that W̃ is an I ′(I ′)∗-Wiener process in H−1 and
hence a cylindrical Id-Wiener process in L2 with respect to (F̃t)t∈[0,T ]. Equality (2.2.1) is proved in

Lemma 2.4.30. Hence, it only remains to show (2.2.2), or, equivalently, (X̃, Ỹ ) ∈ A, which can be done
by proving (

X̃pct-pcx
h , Ỹ pct-pcx

h

)
∈ A for all h ∈ (0, 1), (2.4.76){

X̃pct-pcx
h ⇀ X̃ in L2(Ω̃× [0, T ]µ;L2),

Ỹ pct-pcx
h ⇀ Ỹ in L2(Ω̃× [0, T ]µ;L2),

(2.4.77)

and lim sup
h→0

Ẽ
∫ T

0

(T − t)
〈
X̃pct-pcx
h , Ỹ pct-pcx

h

〉
L2

dt ≤ Ẽ
∫ T

0

(T − t)
〈
X̃, Ỹ

〉
L2

dt (2.4.78)

according to [7, Corollary 2.4].

Ad (2.4.76): We notice that by Lemma 2.4.26 and Definition 2.4.13, we have P̃-almost surely

Ỹh = φ̃(X̃h)

and hence
Ỹ pct-pcx
h = φ̃

(
X̃pct-pcx
h

)
∈ φ

(
X̃pct-pcx
h

)
(2.4.79)

P̃-almost surely in L2([0, T ];L2). By [50, Korollar V.1.6], this implies that (2.4.79) is satisfied for almost
every (ω, t, x) ∈ Ω̃× [0, T ]× [0, 1], which is equivalent to 2.4.76.

Ad (2.4.77): As in the proof of Lemma 2.4.36, we use Lemma 2.4.26, Lemma 2.B.3 and Lemma 2.B.6 to
obtain

X̃pct-pcx
h ⇀ X̃ and Ỹ pct-pcx

h ⇀ Ỹ in L2(Ω̃;L2([0, T ];L2)) (2.4.80)
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for h→ 0.

For ζ ∈ L2(Ω̃× [0, T ]µ;L2), we note that

Ẽ
∫ T

0

‖(T − t)ζ‖2L2 dt ≤ T Ẽ
∫ T

0

(T − t) ‖ζ‖2L2 dt = T ‖ζ‖2L2(Ω̃×[0,T ]µ;L2) ,

which yields that (T − t)ζ ∈ L2(Ω̃× [0, T ];L2). Thus, for h→ 0, we have

Ẽ
∫ T

0

〈
X̃pct-pcx
h (t), ζ(t)

〉
L2
µ(dt) = Ẽ

∫ T

0

〈
X̃pct-pcx
h (t), (T − t)ζ(t)

〉
L2

dt

→ Ẽ
∫ T

0

〈
X̃(t), (T − t)ζ(t)

〉
L2

dt = Ẽ
∫ T

0

〈
X̃(t), ζ(t)

〉
L2
µ(dt),

as required. For Ỹ , an analogous calculation applies.

Ad (2.4.78): This is proven in Lemma 2.4.36.

The same course of arguments also applies to any subsequence of (hm)m∈N, which means that each

subsequence of (Xplt,pcx
h )h>0 contains a subsubsequence converging in law to a weak solution of (2.1.1).

Since every weak solution to (2.1.1) is distributed according to the same law by Theorem 2.2.3, each of
these subsubsequences converges in law to the same limit, which implies convergence in law of the whole
sequence. This completes the proof.

2.5 Continuum limit for the deterministic BTW model

We keep the convention of dropping the index m of the discretization sequences

(hm)m∈N, (Zm)m∈N, (τm)m∈N, (Nm)m∈N,

writing instead (h)h>0 etc. Moreover, convergence of sequences and usually nonrelabeled subsequences
indexed by hm for m→∞ will be denoted by h→ 0. Finally, we will drop the index φ1 to indicate the
different nonlinearity. Of course, φ̃ (φ) denote the (maximally monotone extended) BTW nonlinearity.

In oder to obtain convergent subsequences by compactness arguments, we use a very similar strategy as
in Section 2.4. Hence, we will often refer to the proofs of the corresponding lemmas.

Lemma 2.5.1. Let τ, h > 0 and Z,N ∈ N as in Assumption 2.2.4, where we choose h small enough for
τ
h2 ≤ 1

4 to be satisfied. Let (uh)h≥0 be the discrete process defined in (2.2.8). Then,

max
n∈{0,...,N+1}

‖unh‖2−1 ≤ ‖u∗h‖
2
−1 .

The proof of Lemma 2.5.1 is conducted by the same arguments as the proof of Lemma 2.4.2, using〈
x, φ̃(x)

〉
0
≥
∥∥∥φ̃(x)

∥∥∥2

0
for x ∈ RZ−1

instead of (2.4.7).

We have the following stronger version of Corollary 2.4.4 due to the boundedness of the BTW nonlinearity.

Corollary 2.5.2. Let τ, h > 0 as in Assumption 2.2.4. Then, the discrete process in (2.2.8) satisfies

∥∥un+1
h − unh

∥∥2

−1
≤ 4

τ2

h2
for all n ∈ {0, . . . , N − 1}.

Proof. Using Lemma 2.4.1, we compute for n ∈ {0, . . . , N − 1}
∥∥un+1

h − unh
∥∥2

−1
=
∥∥∥τ∆hφ̃(Xn

h )
∥∥∥2

−1
≤ τ2 ‖−∆h‖E

∥∥∥φ̃(Xn
h )
∥∥∥2

0
≤ 4

τ2

h2
,

using the boundedness of φ̃ in the last step.
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Lemma 2.5.3. Let τ, h > 0 and Z,N ∈ N as in Assumption 2.2.4, where we choose h small enough for
τ
h2 ≤ 1

4 to be satisfied. Let (uh)h≥0 be the discrete process defined in (2.2.8). Then, for h > 0

max

{
ess sup
t∈[0,T ]

∥∥∥uplt,pcxh (t)
∥∥∥2

H−1
, ess sup
t∈[0,T ]

∥∥upct-pcxh (t)
∥∥2

H−1

}
≤ ‖u∗h‖−1 ≤ C (2.5.1)

for a positive constant C independent of h. Moreover,

ess sup
t∈[0,T ]

∥∥∥uplt,pcxh (t)− upct-pcxh (t)
∥∥∥2

H−1
≤ C τ

2

h2
(2.5.2)

for h > 0.

Proof. The bound of the piecewise linear in time interpolated extension of uh in (2.5.1) is shown analogous
to the last part of the proof of Lemma 2.4.12, using Lemma 2.5.1. For the piecewise constant in time
extension of uh, we see, using Definition 2.1.6, Lemma 2.4.9 and Lemma 2.5.1,

ess sup
t∈[0,T ]

∥∥upct-pcx
h (t)

∥∥2

H−1 ≤ ess sup
t∈[0,T ]

∥∥upct-
h (t)

∥∥2

−1
= max
n∈{0,...,N−1}

‖unh‖2−1 ≤ ‖u∗h‖
2
−1 .

A uniform bound C exists, because (u∗h)pcx → u0 in L2 by construction. Hence, (u∗h)pcx is bounded in
L2 and thus in H−1, which by Lemma 2.4.9 yields

‖u∗h‖−1 ≤ 3 ‖(u∗h)pcx‖H−1 ≤ C.

The last statement is proved analogously to Lemma 2.4.10, using Corollary 2.5.1.

Lemma 2.5.4. Let τ, h > 0 and Z,N ∈ N as in Assumption 2.2.4, and let (uh)h≥0 be the discrete
process defined in (2.2.8). Then, there exists u ∈ L∞([0, T ];H−1) and a nonrelabeled subsequence such
that

uplt,pcxh
∗
⇀ u and upct-pcxh

∗
⇀ u

for h→ 0.

Proof. The existence of u ∈ H−1 and a nonrelabeled subsequence such that uplt,pcx
h

∗
⇀ u for h→ 0 follows

by the Banach-Alaoglu theorem and the fact that convergence with respect to the weak* topology on
the dual of a normed space is equivalent to weak* convergence (cf. [61, Proposition A.51]). From this

subsequence, the same argument allows to extract another subsequence such that upct-pcx
h

∗
⇀ ũ for some

ũ ∈ L∞([0, T ];H−1). Using (2.5.2), a similar argument as in (2.4.43) yields that u = ũ, which finishes
the proof.

Lemma 2.5.5. Let O ⊂ Rd a domain and v ∈ Cc(O). For h > 0, let Ph be a partition of O such that

max{diam(P ) : P ∈ Ph} → 0

for h→ 0. For P ∈ Ph, let

vPh :=

{
1
|P |
∫
P
v dx, if |P | > 0,

0, else.
(2.5.3)

Then, ∑
P∈Ph

vPh 1P → v for h→ 0 in L2([0, T ]× [0, 1]).

Proof. Note that v is equicontinuous by the fact that it is continuous and has compact support, i. e.

sup {|v(x)− v(y)| : x, y ∈ O, ‖x− y‖Rd < h} → 0

for h→ 0. Furthermore, for x ∈ P ⊂ O, we have∣∣∣∣v(x)− 1

|P |

∫
P

v(y) dy

∣∣∣∣ ≤ 1

|P |

∫
P

|v(x)− v(y)|dy ≤ sup{|v(x)− v(y)| : ‖x− y‖Rd < diam(P )}.
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Hence,∥∥∥∥∥ ∑
P∈Ph

vPh 1P − v
∥∥∥∥∥

2

L2([0,T ]×[0,1])

=

∫ T

0

∫ 1

0

∣∣∣∣∣ ∑
P∈Ph

vPh 1P (x, t)− v(x, t)

∣∣∣∣∣
2

dx dt

≤
∫ T

0

∫ 1

0

∑
P∈Ph

1P sup{|v(x)− v(y)|2 : ‖x− y‖Rd < diam(P )}dx dt

≤ T (sup{|v(x)− v(y)| : ‖x− y‖Rd < max{diam(P ) : P ∈ Ph}})2

→ 0,

for h→ 0, as required.

Recall the notation in Section 2.1.2. For v ∈ L2, let Πhv be the coordinates of Πpcx
h v with respect to the

basis

{epcx
i : i ∈ {1, . . . , Z − 1}} ⊂ Spcx

h ,

i. e. Πhv := (Ipcx
h )−1Πpcx

h v.

Lemma 2.5.6. Let τ, h > 0 and N,Z ∈ N be as in Assumption 2.2.4 and v ∈ C1([0, T ];L2). Consider
the subsequence which realizes the convergence in Lemma 2.5.4. Then, there exists another nonrelabeled
subsequence h→ 0 and, for each h in this subsequence, there exists vh ∈ C([0, T ];RZ−1), such that vh is
differentiable in time almost everywhere and for h→ 0

vpcxh → v and (∂tvh)pcx → ∂tv in L2([0, T ];L2). (2.5.4)

Proof. Fix m ∈ N and choose wm ∈ C0
c ([0, T ]× [0, 1]), such that

‖∂tv − wm‖L2([0,T ]×[0,1]) <
1

2m
.

Hence, there exists h∗m > 0 such that for all h < h∗m

supp(wm) ⊆ [0, T ]×
[
h

2
, 1− h

2

]
. (2.5.5)

We now choose h < h∗m in the original sequence, and we consider the space-time partition

Ph = Pbulk
h ∪ Pbdry

h ,

Pbulk
h =

{((
j − 1

2

)
h,

(
j +

1

2

)
h

)
× (nτ, (n+ 1)τ) : j = 1, . . . , Z − 1;n = 0, . . . , N − 1

}
,

Pbdry
h =

{(
0,
h

2

)
× (nτ, (n+ 1)τ) : n = 0, . . . , N − 1

}
∪
{(

1− h

2
, 1

)
× (nτ, (n+ 1)τ) : n = 0, . . . , N − 1

}
.

of [0, T ] × [0, 1], where we neglect Lebesgue-zero sets. Recall the notation in (2.5.3) and note that for
h < h∗n, we have by (2.5.5)

(wm)Ph = 0 (2.5.6)

for P ∈ Pbdry
h . Using Lemma 2.5.5, there exists hm < h∗m in the original sequence, such that for all

h ≤ hm, we have ∥∥∥∥∥ ∑
P∈Ph

(wm)Ph 1P − wm
∥∥∥∥∥
L2([0,T ]×[0,1])

<
1

2m
.

For n ∈ {0, . . . , N − 1} and j ∈ {1, . . . , Z − 1} we then define

wn,jhm := (wm)Phm , where P =

((
j − 1

2

)
h,

(
j +

1

2

)
h

)
× (nτ, (n+ 1)τ) ∈ Pbulk

h ,
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so that we may compute∥∥wpct-pcx
hm

− ∂tv
∥∥
L2([0,T ]×[0,1])

≤
∥∥wpct-pcx

hm
− wm

∥∥
L2([0,T ]×[0,1])

+ ‖wm − ∂tv‖L2([0,T ]×[0,1])

≤

∥∥∥∥∥∥
∑

P∈Phm

(wm)Phm1P − wm

∥∥∥∥∥∥
L2([0,T ]×[0,1])

+
1

2m
≤ 1

m
,

(2.5.7)

where we used the construction of wm and (2.5.6) in the second step.

For m ∈ N, define vhm ∈ C([0, T ];RZ−1) by

vhm(t) := Πhmv(0) +

∫ t

0

wpct-
hm

(r) dr,

which is clearly differentiable in time everywhere except at the time grid points. Using the linearity of
the integral to interchange the time integral with the spatial embedding in the first step and Jensen’s
inequality in the last step, we compute∫ T

0

∥∥vpcx
hm

(t)− v(t)
∥∥2

L2
dt =

∫ T

0

∥∥∥∥Πpcx
hm
v(0) +

∫ t

0

wpct-pcx
hm

(r) dr − v(0)−
∫ t

0

∂tv(r) dr

∥∥∥∥2

L2

dt

≤ 2T
∥∥Πpcx

hm
v(0)− v(0)

∥∥2

L2
+ 2

∫ T

0

∥∥∥∥∫ t

0

wpct-pcx
hm

(r)− ∂tv(r) dr

∥∥∥∥2

L2

dt

≤ 2T
∥∥Πpcx

hm
v(0)− v(0)

∥∥2

L2
+ 2

∫ T

0

(∫ T

0

∥∥wpct-pcx
hm

(r)− ∂tv(r)
∥∥
L2

dr

)2

dt

≤ 2T
∥∥Πpcx

hm
v(0)− v(0)

∥∥2

L2
+ 2T 2

∥∥wpct-pcx
hm

− ∂tv(r, x)
∥∥2

L2([0,T ]×[0,1])
,

which converges to 0 for m → ∞ by (2.5.7), where similar techniques as used for this approximation
result lead to the convergence of the projected initial value v(0). Hence, the subsequence (hm)m∈N and
the approximating functions vhm and whm = ∂tvhm satisfy the requirements of (2.5.4).

Definition 2.5.7. Let h > 0 and Z ∈ N as in Assumption 2.2.4. We then define the functional
ϕh : RZ−1 → [0,∞) by

ϕh(wh) =

Z−1∑
i=1

hψ(wh,i),

where ∂ψ = φ as defined in (2.2.5).

Remark 2.5.8. We note that ϕh(wh) = ϕ(wpcx
h ), where ϕ is defined as in (2.2.6).

Lemma 2.5.9. Let h > 0 and Z ∈ N as in Assumption 2.2.4 and let wh ∈ RZ−1. Then

−∆hφ̃(wh) ∈ ∂−1ϕh(wh),

where ∂−1 denotes the subdifferential with respect to the inner product 〈·, ·〉−1.

Proof. Note that we have for wh, vh ∈ RZ−1

ϕh(vh)− ϕh(wh) = h

Z−1∑
i=1

(ψ(vh,i)− ψ(wh,i))

≥ h
Z−1∑
i=1

φ̃(wh,i)(vh,i − wh,i)

=
〈

∆−1
h ∆hφ̃(wh), vh − wh

〉
0

=
〈
−∆hφ̃(wh), vh − uh

〉
−1
,

as required.
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Lemma 2.5.10. Let h > 0 and Z ∈ N as in Assumption 2.2.4. Let vh ∈ C([0, T ];RZ−1) be almost
everywhere differentiable, ∂tvh ∈ L2([0, T ];RZ−1) and uh be defined as in (2.2.8). For all t ∈ [0, T ], we
then have

∥∥∥vh(t)− uplth (t)
∥∥∥2

−1
≤‖vh(0)− u∗h‖2−1 + 2

∫ t

0

ϕh(vh(r))dr − 2

∫ t

0

ϕh(upct-h (r))dr

+ 2

∫ t

0

〈
vh(r)− uplth (r), ∂tvh(r)

〉
−1

dr

+ 2

∫ t

0

〈
upct-h (r)− uplth (r),−∆hφ̃(upct-h (r))

〉
−1

dr.

(2.5.8)

Proof. By construction of uh and the chain rule, we obtain

∥∥∥vh(t)− uplt
h (t)

∥∥∥2

−1
−
∥∥∥vh(0)− uplt

h (0)
∥∥∥2

−1

=

∫ t

0

2
〈
vh(r)− uplt

h (r), ∂tvh(r)−∆hφ̃(upct-
h (r))

〉
−1

dr

=

∫ t

0

2
〈
vh(r)− upct-

h (r),−∆hφ̃(upct-
h (r))

〉
−1

+ 2
〈
upct-
h (r)− uplt

h (r),−∆hφ̃(upct-
h (r))

〉
−1

+ 2
〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr

≤ 2

∫ t

0

ϕh(vh(r))dr − 2

∫ t

0

ϕh(upct-
h (r))dr + 2

∫ t

0

〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr

+ 2

∫ t

0

〈
upct-
h (r)− uplt

h (r),−∆hφ̃(upct-
h (r))

〉
−1

dr,

as required.

Proposition 2.5.11. Let v ∈ C1([0, T ];L2) and u ∈ L∞([0, T ];H−1) be the limit process of (uh)h>0 as
in Lemma 2.5.4. Then

‖v(t)− u(t)‖2H−1 + 2

∫ t

0

ϕ(u(r))dr ≤‖v(0)− u(0)‖2H−1 + 2

∫ t

0

ϕ(v(r))dr

+ 2

∫ t

0

〈v(r)− u(r), ∂tv(r)〉H−1 dr

(2.5.9)

for almost all t ∈ [0, T ].

Proof. Let Assumption 2.2.4 be satisfied. To show (2.5.9), we aim to pass to the limit in (2.5.8), where
we use the sequence (vh)h>0 constructed in Lemma 2.5.6 for the function v. Note that Lemma 2.5.10
applies, since (2.5.4) implies that (∂tvh)pcx is bounded in L2([0, T ];L2) and hence

∫ T

0

‖∂tvh‖20 dt =

∫ T

0

‖(∂tvh)pcx‖2L2 dt <∞

by the isometry in Remark 2.1.4.

To this end, let γ ∈ L∞([0, T ]) satisfy γ ≥ 0 dt-almost everywhere, consider the subsequence (hm)m∈N
constructed in Lemma 2.5.6, which we will denote by h, and let (vh)h>0 be defined as in Lemma 2.5.6.
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Integrating against γ in (2.5.8) yields∫ T

0

γ(t)
∥∥∥vh(t)− uplt

h (t)
∥∥∥2

−1
dt+ 2

∫ T

0

γ(t)

∫ t

0

ϕh(upct-
h (r)) dr dt

≤
∫ T

0

γ(t) ‖vh(0)− u∗h‖2−1 dt+ 2

∫ T

0

γ(t)

∫ t

0

ϕh(vh(r)) dr dt

+ 2

∫ T

0

γ(t)

∫ t

0

〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr dt

+ 2

∫ T

0

γ(t)

∫ t

0

〈
upct-
h (r)− uplt

h (r),−∆hφ(upct-
h (r))

〉
−1

dr dt.

(2.5.10)

We treat each term in (2.5.10) separately. For the first term, we use Lemma 2.4.9 and the weak lower-
semicontinuity of the norm in L2(([0, T ], γ dt);H−1) to obtain

lim inf
h→0

∫ T

0

γ(t)
∥∥∥vh(t)− uplt

h (t)
∥∥∥2

−1
dt ≥ lim inf

h→0

∫ T

0

γ(t)
∥∥∥vpcx
h (t)− uplt,pcx

h (t)
∥∥∥2

H−1
dt

≥
∫ T

0

γ(t) ‖v(t)− u(t)‖2H−1 dt,

where the weak convergence necessary for the last step is due to Lemma 2.5.4 and Lemma 2.5.6. Note
that as in the proof of (2.4.77), we have that

uplt,pcx
h ⇀ u in L2([0, T ];H−1) implies uplt,pcx

h → u in L2(([0, T ], γ dt);H−1), (2.5.11)

For the second term, we first use Fubini’s theorem to rewrite for any measurable function f : [0, T ]→ R∫ T

0

γ(t)

∫ t

0

f(r)dr dt =

∫ T

0

∫ T

0

γ(t)1[0,t](r)f(r) dr dt

=

∫ T

0

f(r)

∫ T

0

1[r,T ](t)γ(t) dtdr

=

∫ T

0

f(r)γ̃(r)dr,

where γ̃ : [0, T ]→ R with

γ̃(r) =

∫ T

r

γ(t)dt.

Since ϕ : H−1 → [0,∞] is convex and lower-semicontinuous, as proved in Section 3.3, the map

L2(([0, T ], γ̃dt);H−1) 3 u 7→
∫ T

0

ϕ(u(t))γ̃(t)dt

is convex and lower-semicontinuous by [19, Proposition 16.50] and hence, by [19, Theorem 9.1], weakly

sequentially lower-semicontinuous. Since (2.5.11) is also satisfied wit γ replaced by γ̃ and uplt,pcx
h replaced

by upct-pcx
h , we obtain

lim inf
h→0

∫ T

0

γ(t)

∫ t

0

ϕh(upct-
h (r)) dr dt = lim inf

h→0

∫ T

0

ϕ(upct-pcx
h (r))γ̃(r) dr

≥
∫ T

0

ϕ(u(r))γ̃(r) dr

=

∫ T

0

γ(t)

∫ t

0

ϕ(u(r)) dr dt,

where we used Remark 2.5.8 in the first step and Lemma 2.5.4 in the second step.

For the third term, recall from Lemma 2.1.2 that

(vh(0))pcx = Πpcx
h v(0)→ v(0) in L2 for h→ 0
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and (u∗h)pcx → u0 in L2 for h→ 0 by assumption. By the same arguments as in the proof of Proposition
2.4.29, we then have(

−∆−1
h (vh(0)− u∗h)

)pcx
⇀ −∆−1(v(0)− u0) in L2 for h→ 0,

which allows to compute

lim
h→0

∫ T

0

γ(t) ‖vh(0)− u∗h‖2−1 dt = lim
h→0

〈
−∆−1

h (vh(0)− u∗h), vh(0)− u∗h
〉

0

∫ T

0

γ(t) dt

= lim
h→0

〈
(−∆−1

h (vh(0)− u∗h))pcx, (vh(0)− u∗h)pcx
〉
L2

∫ T

0

γ(t) dt

=
〈
−∆−1(v(0)− u0), v(0)− u0

〉
L2

∫ T

0

γ(t) dt

=

∫ T

0

γ(t) ‖v(0)− u0‖2H−1 dt.

For the fourth term, we use that ψ defined in (2.2.5) is Lipschitz continuous with Lipschitz constant 1,
Remark 2.5.8 and the fact that v(t), vpcx

h (t) ∈ L1 for all t ∈ [0, T ] to obtain∣∣∣∣∣
∫ T

0

γ(t)

∫ t

0

ϕ(v(r)) dr dt−
∫ T

0

γ(t)

∫ t

0

ϕh(vh(r)) dr dt

∣∣∣∣∣
≤
∫ T

0

γ(t)

∣∣∣∣∫ t

0

ϕ(v(r))− ϕ(vpcx
h (r)) dr

∣∣∣∣dt
≤
∫ T

0

γ(t)

∫ t

0

∫ 1

0

|ψ(v(r, x))− ψ(vpcx
h (r, x))|dx dr dt

≤
∫ T

0

γ(t)dt

∫ T

0

∫ 1

0

|v(r, x)− vpcx
h (r, x)|dxdr

≤
√
T

∫ T

0

γ(t)dt ‖v − vpcx
h ‖L2([0,T ];L2)

→ 0

(2.5.12)

for h→ 0 by the construction of (vh)h>0 in Lemma 2.5.6.

We notice that the integrand of the fifth term is uniformly bounded in t due to

γ(t)

∫ t

0

〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr

≤ ‖γ‖L∞([0,T ])

∫ T

0

∥∥∥vh(r)− uplt
h (r)

∥∥∥
−1
‖∂tvh(r)‖−1 dr

≤ ‖γ‖L∞([0,T ])

(∫ T

0

∥∥∥vh(r)− uplt
h (r)

∥∥∥2

−1
dr

) 1
2
(∫ T

0

‖∂tvh(r)‖2−1 dr

) 1
2

≤ 9 ‖γ‖L∞([0,T ])

(∫ T

0

∥∥∥vpcx
h (r)− uplt,pcx

h (r)
∥∥∥2

H−1
dr

) 1
2
(∫ T

0

‖(∂tvh(r))pcx‖2H−1 dr

) 1
2

, (2.5.13)

where we used Lemma 2.4.9 in the last step. Since (vpcx
h )

h>0
and ((∂tvh)pcx)h>0 are weakly convergent in

L2([0, T ];H−1) by Lemma 2.5.6 and
(
uplt,pcx
h

)
h>0

is weakly* convergent in L∞([0, T ];H−1) by Lemma

2.5.4 and hence also weakly convergent in L2([0, T ];H−1), these sequences are bounded, i. e.

(2.5.13) ≤ C

independently of t. For each t, we note that

∂tv
pcx
h → ∂tv in L2([0, T ];L2) implies 1[0,t]∂tv

pcx
h → 1[0,t]∂tv in L2([0, T ];L2),
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such that Proposition 2.4.29 applies and yields∫ t

0

〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr =

∫ T

0

〈
vh(r)− uplt

h (r),1[0,t](r)∂tvh(r)
〉
−1

dr

→
∫ T

0

〈
v(r)− u(r),1[0,t](r)∂tv(r)

〉
H−1 dr

=

∫ t

0

〈v(r)− u(r), ∂tv(r)〉H−1 dr

for h→ 0. Hence, by dominated convergence,∫ T

0

γ(t)

∫ t

0

〈
vh(r)− uplt

h (r), ∂tvh(r)
〉
−1

dr dt→
∫ T

0

γ(t)

∫ t

0

〈v(r)− u(r), ∂tv(r)〉H−1 dr dt

for h→ 0.

For the last term, we note that

sup
t∈[0,T ]

∥∥∥uplt
h (t)− upct-

h (t)
∥∥∥2

−1
= max
n∈{0,...,N−1}

sup
t∈[nτ,(n+1)τ)

∥∥∥∥ t− nττ

(
un+1
h − unh

)∥∥∥∥2

−1

≤ max
n∈{0,...,N−1}

∥∥un+1
h − unh

∥∥2

−1
≤ 4

τ2

h2
,

using Corollary 2.5.2. Using Estimate (2.4.6) and the boundedness of φ̃, this leads to∣∣∣∣∣
∫ T

0

γ(t)

∫ t

0

〈
upct-
h (r)− uplt

h (r),−∆hφ̃(upct-
h (r))

〉
−1

dr dt

∣∣∣∣∣
≤
∫ T

0

γ(t) dt sup
t∈[0,T ]

∥∥∥uplt
h (t)− upct-

h (t)
∥∥∥
−1

∫ T

0

∥∥∥−∆hφ̃(upct-
h (r))

∥∥∥
−1

dr

≤
∫ T

0

γ(t) dt 2
τ

h

∫ T

0

2

h

∥∥∥φ̃(upct-
h (r))

∥∥∥
0

dr

≤
∫ T

0

γ(t) dt 4T
τ

h2
→ 0

(2.5.14)

for h→ 0. Hence, taking lim infh→0 in (2.5.10), we obtain∫ T

0

γ(t) ‖v(t)− u(t)‖H−1 dt+ 2

∫ T

0

γ(t)

∫ t

0

ϕ(u(r)) dr dt

≤
∫ T

0

γ(t) ‖v(0)− u(0)‖H−1 dt+ 2

∫ T

0

γ(t)

∫ t

0

ϕ(v(r)) dr dt

+ 2

∫ T

0

γ(t)

∫ t

0

〈v(r)− u(r), ∂tv(r)〉H−1 dr dt,

(2.5.15)

and since γ ∈ L∞([0, T ]), γ ≥ 0, was chosen arbitrarily, (2.5.9) follows.

Proposition 2.5.12. Let

v ∈W 1,2(0, T ;L2, H−1) :=
{
v ∈ L2([0, T ];L2)|∂tv ∈ L2([0, T ];H−1)

}
and u ∈ L∞([0, T ];H−1) be the limit process of (uh)h>0 as in Lemma 2.5.4. Then,

‖v(t)− u(t)‖2H−1 + 2

∫ t

0

ϕ(u(r))dr ≤‖v(0)− u(0)‖2H−1 + 2

∫ t

0

ϕ(v(r))dr

+ 2

∫ t

0

〈v(r)− u(r), ∂tv(r)〉H−1 dr

(2.5.16)

for almost all t ∈ [0, T ].
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Proof. By [97, Theorem 2.1], the space C1([0, T ];L2) is dense in W 1,2(0, T ;L2, H−1) with respect to the
norm

‖u‖2W 1,2(0,T ;L2,H−1) = ‖u‖2L2([0,T ];L2) + ‖∂tu‖2L2([0,T ];H−1) .

Hence, there is a sequence (vn)n∈N ⊂ C1([0, T ];L2) such that

vn → v in L2([0, T ];L2) and ∂tvn → ∂tv in L2([0, T ];H−1). (2.5.17)

By the continuous embedding

W 1,2(0, T ;L2, H−1) ↪→ C([0, T ];H−1)

(see e. g. [97, Theorem 3.1]), we also have

vn(t)→ v(t) in H−1 for n→∞ (2.5.18)

for all t ∈ [0, T ]. By Proposition 2.5.11, (2.5.16) is satisfied for v replaced by vn for all n ∈ N. Then, the
convergence properties (2.5.17) and (2.5.18) are sufficient to pass to the limit, where the limit∫ t

0

ϕ(vn(r)) dr →
∫ t

0

ϕ(v(r)) dr for n→∞

is obtained as in (2.5.12). This finishes the proof.

Proof of Theorem 2.2.8. For each sequence (hm)m∈N satisfying Assumption 2.2.4, Lemma 2.5.4 provides

a subsequence denoted by h → 0 and u ∈ L∞([0, T ];H−1), such that uh
∗
⇀ u in L∞([0, T ];H−1) for

h→ 0. In order to show that the limit u of any such subsequence is a dt-version of the unique VI solution
to (2.1.3), we will apply a procedure similar to the uniqueness argument in the proof of Theorem 3.2.6,
to which we refer for details. Let (vn0 )n∈N ⊂ L2 satisfying

vn0 → u0 in H−1 for n→∞ (2.5.19)

and let (vε,n)ε>0,n∈N be the solutions to

dvε,n(t) = ε∆vε,n(t) dt+ ∆φε(vε,n(t)) dt

vε,n(0) = vn0 ,
(2.5.20)

which is an admissible choice for v in Proposition 2.5.12. It is known that

sup
t∈[0,T ]

‖vε,n(t)‖2L2 + ε

∫ T

0

‖vε,n(t)‖2H1
0

dt ≤ C (2.5.21)

for some C > 0 independent of ε and n, and

vε,n → v in C([0, T ];H−1) (2.5.22)

for ε → 0 and then n → ∞, where v is the unique VI solution to (2.1.3). For almost all t ∈ [0, T ],
Proposition 2.5.12 yields

‖u(t)− vε,n(t)‖2H−1 + 2

∫ t

0

ϕ(u(r)) dr

≤‖u0 − vn0 ‖2H−1 + 2

∫ t

0

ϕ(vε,n(r)) dr

− 2

∫ t

0

〈ε∆vε,n(r) + ∆φε(vε,n(r)), u(r)− vε,n(r)〉H−1 dr.

(2.5.23)

Using

〈−∆φε(vε,n), u− vε,n〉H−1 + ϕ(vε,n) ≤ ϕ(u) + Cε
(

1 + ‖vε,n‖2L2

)
dt-almost everywhere
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and the weighted Young inequality, (2.5.23) turns into

‖u(t)− vε,n(t)‖2H−1 ≤ ‖u0 − vn0 ‖2H−1

+ 2

∫ t

0

ε
4
3 ‖∆vε,n(r)‖2H−1 dr + ε

2
3 ‖u(r)− vε,n(r)‖2H−1 dr

+ Cε

∫ t

0

(
1 + ‖vε,n(r)‖2L2

)
dr.

Passing to the limit ε→ 0 and then n→∞, using (2.5.19), (2.5.21) and (2.5.22), we obtain

‖u(t)− v(t)‖2H−1 ≤ 0 for almost all t ∈ [0, T ],

which means that u is uniquely determined in L∞([0, T ];H−1) as the dt-equivalence class belonging to the
VI solution to (2.1.3). Since Assumption 2.2.4 is stable under taking subsequences, this means that each

subsequence of (hm)m∈N contains a subsequence h→ 0 such that uh
∗
⇀ v for h→ 0 in L∞([0, T ];H−1).

This proves the theorem.

2.A Measurability with respect to the weak(*) topology

Lemma 2.A.1. Let H be a separable metric space. Then, each open nonempty set is an at most countable
union of open balls.

Proof. Let Y ⊂ H a countable set such that Y = H and let A ⊂ H open. We claim that

A = A′ :=
⋃
{Br(y) ⊆ A : y ∈ Y, r ∈ Q≥0}, (2.A.1)

where Br(y) denotes the open ball around y with radius r. By construction, A′ ⊆ A. To see the reverse
inclusion, let x ∈ A and choose ε > 0 such that Bε(x) ⊆ A. Then, choose y ∈ Y such that d(x, y) < ε

2
and r ∈ Q≥0 such that d(x, y) < r < ε

2 . Then

x ∈ Br(y) ⊂ Bε(x) ⊂ A′,

which proves (2.A.1) and thus completes the proof.

Lemma 2.A.2. Let H be a separable Hilbert space, τ the strong topology and τw the weak topology. For
any topology ρ, let B(ρ) be the σ-algebra generated by ρ. Then,

B(τ) = B(τw).

Proof. Recall that each closed set with respect to τw is closed with respect to τ , hence τw ⊂ τ . Conse-
quently, we have B(τw) ⊆ B(τ). It remains to show that each open set with respect to τ is contained in
B(τw). In view of Lemma 2.A.1, it is enough to show this for open balls Br(y) ⊂ H, r > 0, y ∈ H.

To this end, choose an orthonormal basis (ei)i∈N of H, which exists according to [1, Satz 7.8]. Then, by
definition of the weak topology, for each n ∈ N the function fn : H → R given by

fn(x) =

n∑
i=1

|〈x− y, ei〉H |
2

is continuous with respect to τw and thus B(τw)-measurable. Consequently, f : H → R defined by

f(x) = ‖x− y‖2H = lim
n→∞

fn(x)

is B(τw)-measurable as the pointwise limit of measurable functions. Thus,

Br(y) = f−1
(
[0, r)

)
∈ B(τw),

which completes the proof.
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Lemma 2.A.3. Let V be a separable Banach space, V ′ its dual space and τ∗w the weak* topology on V ′.
Then, ‖·‖V ′ is measurable with respect to B(τ∗w).

Proof. First, notice that for φ ∈ V we have

V ′ 3 u 7→ |V ′〈u, φ〉V |‖φ‖V
is continuous with respect to τ∗w by definition and hence measurable with respect to B(τ∗w). Let D be a
dense countable subset of V and BV1 the open unit ball in V . Then, writing

‖u‖V ′ = sup
φ∈BV1

|V ′〈u, φ〉V |
‖φ‖V

= sup
φ∈BV1 ∩D

|V ′〈u, φ〉V |
‖φ‖V

, (2.A.2)

we observe that ‖·‖V ′ is the countable supremum of B(τ∗w)-measurable functions and thus measurable.
To justify the “≤” direction in the last equality of (2.A.2), first note that BV1 ∩D is dense in BV1 , such

that for any φ ∈ BV1 , we may choose a sequence (φn)n∈N ⊂ BV1 ∩D such that φn → φ in V for n→∞.
Then,

|V ′〈u, φn〉V |
‖φn‖V

→ |V ′〈u, φ〉V |‖φ‖V
for n→∞

by the fact that u : V → R is continuous. This completes the proof.

2.B Measurability and weak convergence in Bochner spaces

Definition 2.B.1 (Bochner space). Let 1 ≤ p < ∞, V be a separable Banach space and (Ω,F ,P) a
finite measure space. Then the space Lp((Ω,F ,P);V ), also denoted by Lp(Ω;V ) is the space of functions
f : Ω → V which are strongly F-B(V )-measurable, i. e. there are measurable sets (Ak)k∈N ⊂ F and a
sequence (ηk)k∈N ⊂ V such that

f(ω) = lim
N→∞

N∑
k=1

1Ak(ω)ηk for P− almost all ω ∈ Ω,

and ∫
Ω

‖f‖pV dP <∞. (2.B.1)

Remark 2.B.2. Note that for any strongly measurable function f : Ω→ V , ‖f‖V : Ω→ R is measurable,
such that (2.B.1) is well-defined.

Lemma 2.B.3. Let V be a separable Banach space and (Ω,F ,P), (Ω′,F ′,P′) finite measure spaces. Let

f ∈ Lp ((Ω× Ω′,F ⊗ F ′,P⊗ P′);V ) and g ∈ Lp((Ω,F ,P);Lp((Ω′,F ′,P′);V )).

Then f̃ ∈ Lp((Ω,F ,P);Lp((Ω′,F ′,P′);V )) and g̃ ∈ Lp((Ω× Ω′,F ⊗ F ′,P⊗ P′);V ), where

f̃(ω) = f(ω, ·) and g̃(ω, ω′) = g(ω)(ω′).

The identification is linear and isometric, i. e.

‖f‖Lp((Ω×Ω′,F⊗F ′,P⊗P′);V ) = ‖f̃‖Lp((Ω,F,P);Lp((Ω′,F ′,P′);V )).

Proof. See e. g. [86, Proposition 1.2.24].

Remark 2.B.4. We will mostly treat f and f̃ as equivalent.

Corollary 2.B.5. Let V be a separable Banach space and (Ω,F ,P) a probability space endowed with a
filtration (Ft)t∈[0,T ]. Let

f ∈ L2((Ω× [0, T ],F ⊗ B([0, T ]),P⊗ dt);V ). (2.B.2)
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Then, f is progressively measurable with respect to (Ft)t∈[0,T ] if and only if

f̃ |[0,t] is Ft − B(L2([0, t];V )-measurable for all t ∈ [0, T ], (2.B.3)

where
f̃ ∈ L2((Ω,F ,P);L2(([0, T ],B([0, T ]),dt);V )), f̃(ω) = f(ω, ·) (2.B.4)

as in Lemma 2.B.3. Note that the isomorphism in Lemma 2.B.3 commutes with restriction of one of the
two variables, which is why there is no need to reflect the order of these operations in the notation.

Proof. If f is progressively measurable, we have f |[0,t] is Ft ⊗ B([0, t])-B(V )-measurable. Since V
is separable, this amounts to strong measurability, such that together with the integrability of f ,
we obtain f |[0,t] ∈ L2((Ω × [0, t],Ft ⊗ B([0, t]),P ⊗ dt);V ). Lemma 2.B.3 then yields that f̃ |[0,t] ∈
L2((Ω,Ft,P);L2(([0, t],B([0, t],dt);V )), which includes Ft-measurability.

For the reverse statement, note that f̃ |[0,t] is separably valued, such that (2.B.3) implies strong measur-
ability. Moreover, (2.B.4) provides the integrability requirement to conclude

f̃ |[0,t] ∈ L2((Ω,Ft,P);L2(([0, t],B([0, t]),dt);V )).

Then, Lemma 2.B.3 yields f |[0,t] ∈ L2((Ω × [0, t],Ft ⊗ B([0, t]),P ⊗ dt);V ), which implies that f is
progressively measurable with respect to (Ft)t∈[0,T ], as required.

Lemma 2.B.6. Let H be a separable Hilbert space, and (Ω,F ,P) a measurable space. Let (fn)n∈N ⊂
L2(Ω;H) be uniformly bounded and f ∈ L2(Ω;H) such that fn ⇀ f pointwise P-almost everywhere.
Then,

fn ⇀ f in L2(Ω, H).

Proof. We begin with showing that for A ∈ F , η ∈ H, n→∞
E [〈fn, η〉H 1A]→ E [〈f, η〉H 1A] . (2.B.5)

To this end, we note that by assumption

〈fn, η〉H → 〈f, η〉H P-almost everywhere for n→∞,
and

E 〈fn, η〉2H ≤ ‖η‖
2
H E ‖fn‖2H ≤ Cη,

where Cη is independent of n. Thus, [50, Satz VI.5.9] provides

〈fn, η〉H ⇀ 〈f, η〉H in L2(Ω;R),

which yields (2.B.5). For a general function ζ ∈ L2(Ω;H), we use the density of simple functions (see
e. g. [86, Lemma 1.2.19]) to choose M ∈ N, {Ai}Mi=1 ⊂ F , {ηi}Mi=1 ⊂ H such that we have for a given
ε > 0

ζM :=

M∑
i=1

1Aiηi, (2.B.6)

S := max

{
sup
n∈N

(
E ‖fn‖2H

) 1
2

,
(
E ‖f‖2H

) 1
2

}
, (2.B.7)

E ‖ζM − ζ‖2H ≤
ε

3S
, (2.B.8)

where S <∞ by assumption. Then, using (2.B.5), we choose N ∈ N such that for n ≥ N we have

|E [〈fn − f, ηi〉H 1Ai ]| ≤
ε

3M
for all i ∈ {1, . . . ,M}, (2.B.9)

which allows to compute for n ≥ N
|E 〈fn, ζ〉H − E 〈f, ζ〉H |
≤ |E 〈fn, ζ − ζM 〉H |+ |E 〈fn − f, ζM 〉H |+ |E 〈f, ζM − ζ〉H |

≤
((

E ‖fn‖2H
) 1

2

+
(
E ‖f‖2H

) 1
2

)(
E ‖ζ − ζM‖2H

) 1
2

+

M∑
i=1

|E [〈fn − f, ηi〉H 1Ai ]|

≤ ε,
using (2.B.8) and (2.B.9) in the last step. This proves the claim.
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2.C Separating families in topological spaces

In [87, Theorem 2], the following condition for a topological space (X , T ) plays a key role.

There exists a countable family {fi : X → [−1, 1]}i∈I
of T -continuous functions which separate points of X . (2.C.1)

Lemma 2.C.1. Condition (2.C.1) is satisfied for separable Banach spaces endowed with the strong
topology, for separable Hilbert spaces endowed with the weak topology and for duals of separable Banach
spaces endowed with the weak* topology.

Proof. Let ξ : R → [−1, 1] be continuous and injective, e. g. ξ = 2π−1 arctan. Let X be a separable
Banach space and let SX ⊂ X be a countable dense subset. We choose x1, x2 ∈ X, x1 6= x2 arbitrary, as
well as a sequence (xn)n∈N ⊂ SX such that xn → x1 for n→∞. Then there exists N ∈ N such that

‖xN − x1‖X ≤
1

4
‖x1 − x2‖X

and thus

‖xN − x2‖X ≥ ‖x1 − x2‖X − ‖xN − x1‖X ≥
3

4
‖x1 − x2‖X > ‖xN − x1‖X .

Hence, ξ ◦ ‖xN − ·‖X separates x1 from x2, takes values in [−1, 1] and is obviously continuous with
respect to the strong topology. It follows that the family

{ξ ◦ ‖x− ·‖X}x∈SX

satisfies (2.C.1) in the first case.

Let H be a separable Hilbert space and let SH ⊂ H be a countable dense subset. We observe that 〈x, ·〉H
is by definition continuous with respect to the weak topology for every x ∈ SH . Now choose y1, y2 ∈ H,
y1 6= y2 arbitrary and note that

〈y1 − y2, y1〉H 6= 〈y1 − y2, y2〉H ,

since otherwise ‖y1 − y2‖2 = 0 in contradiction to the assumption. Moreover, we choose a sequence
(xn)n∈N ⊂ SH such that xn → y1 − y2 for n → ∞, which means that there exists N ∈ N such that for
n ≥ N

‖xn − (y1 − y2)‖H ≤ min

{
‖y1 − y2‖2H

4 ‖y1‖H
,
‖y1 − y2‖2H

4 ‖y2‖H

}
.

Thus,

|〈xN , y1〉H − 〈xN , y2〉H | = |〈xN − (y1 − y2) + (y1 − y2), y1 − y2〉H |
=
∣∣∣〈xN − (y1 − y2), y1 − y2〉H + ‖y1 − y2‖2H

∣∣∣
≥ ‖y1 − y2‖2H − |〈xN − (y1 − y2), y1〉H | − |〈xN − (y1 − y2), y2〉H |

≥ 1

2
‖y1 − y2‖2H > 0.

Hence, ξ ◦ 〈xN , ·〉H separates y1 from y2, takes values in [−1, 1] and is continuous with respect to the
weak topology. It follows that the family

{ξ ◦ 〈x, ·〉H}x∈SH

satisfies (2.C.1) in the second case.

Finally, let B′ be the dual space of a separable Banach space B and let SB ⊂ B be a countable and
dense subset. We observe that 〈·, y〉B′×B is by definition continuous with respect to the weak* topology
for every y ∈ B. Now choose x1, x2 ∈ B′, x1 6= x2 arbitrary, which means that there exists y ∈ B, y 6= 0
such that

〈x1, y〉B′×B 6= 〈x2, y〉B′×B .
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For this y, choose a sequence (yn)n∈N ⊂ SB such that yn → y for n→∞, which means that there exists
N ∈ N such that

‖yN − y‖B ≤ min

{∣∣〈x1 − x2, y〉B′×B
∣∣

4 ‖x1‖B′
,

∣∣〈x1 − x2, y〉B′×B
∣∣

4 ‖x2‖B′

}
.

Thus, ∣∣〈x1, yN 〉H − 〈x2, yN 〉B′×B
∣∣ =

∣∣〈x1 − x2, yN − y + y〉B′×B
∣∣

≥
∣∣〈x1 − x2, y〉B′×B

∣∣− ∣∣〈x1, yN − y〉B′×B
∣∣− ∣∣〈x2, yN − y〉B′×B

∣∣
≥ 1

2

∣∣〈x1 − x2, y〉B′×B
∣∣ > 0.

Hence, ξ ◦ 〈·, yN 〉B′×B separates x1 from x2, takes values in [−1, 1] and is continuous with respect to the
weak topology. It follows that the family

{ξ ◦ 〈·, y〉B′×B}y∈SB

satisfies (2.C.1) in the last case, as required.
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Chapter 3

Well-posedness of SVI solutions to
singular-degenerate stochastic
porous media equations arising in
self-organized criticality

3.1 Introduction

We consider a class of singular-degenerate generalized stochastic porous media equations

dXt ∈ ∆ (φ(Xt)) dt+B(t,Xt)dWt,

X0 = x0,
(3.1.1)

on a bounded, smooth domain O ⊆ Rd with zero Dirichlet boundary conditions and x0 ∈ H−1, where
H−1 is the dual of H1

0 (O). In the following, W is a cylindrical Wiener process on some separable Hilbert
space U , and the diffusion coefficients B : [0, T ] × H−1 × Ω → L2(U,H−1) take values in the space of
Hilbert-Schmidt operators L2(U,H−1). The nonlinearity φ : R → 2R is the subdifferential of a convex
lower-semicontinuous symmetric function ψ : R→ R (sometimes called “potential”), which grows at least
linearly and at most quadratically for |x| → ∞. As paradigmatic examples, we mention the maximal
monotone extensions of

φ1(x) = sgn(x)
(
1− 1(−1,1)(x)

)
and φ2(x) = x

(
1− 1(−1,1)(x)

)
, (3.1.2)

which are encountered in the context of self-organized criticality, as elaborated in Chapter 1.

The main merits of this article are as follows. First, we give a meaning to (3.1.1) with nonlinearities which
are general enough to include φ1 and φ2 in (3.1.2), by defining a suitable notion of solution and proving
the existence and uniqueness of such solutions. Second, we extend the applicability of the framework of
SVI solutions, which features several properties which are desirable independently of the specific equation
presented above. For instance, it applies to stochastic partial differential equations (SPDE) with a very
general nonlinear drift term, which is exploited here by relatively lose conditions on the potential ψ.
Moreover, solutions for general initial data can be identified by means of the equation and not only in a
limiting sense.

We briefly outline the strategy that we are going to apply. First, we rewrite (3.1.1) into the form

dXt ∈ −∂ϕ(Xt) dt+B(t,Xt) dWt, (3.1.3)

which incorporates the multivalued function φ into an energy functional ϕ : H−1 → [0,∞]. For example,
in case of the nonlinearity φ1 in (3.1.2), we define

ϕ(u) =

{
‖ψ(u)‖TV , if u is a finite Radon measure on O,
+∞, else,

(3.1.4)
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where ψ is the anti-derivative of φ, i. e. ∂ψ = φ, with ψ(0) = 0. For the precise definition of a convex
function of a measure, we refer to Section 3.3 below. We then derive a stochastic variational inequality
(SVI) from (3.1.3) and define a corresponding notion of solution, see Definition 3.2.4 below. In order
to construct such a solution we first show that ϕ as defined above is lower-semicontinuous, which then
allows to show the convergence of an approximating sequence gained by a Yosida approximation of
the nonlinearity and the addition of a viscosity term. Furthermore, in the proof of uniqueness, it is
crucial to show that ϕ can be well approximated by its values on L2, which we ensure by showing that it
coincides with the lower-semicontinuous hull of ϕ|L2 in H−1. To this end, we will construct approximating
sequences by an interplay of mollification and shifts, inspired by the construction of Lemma A6.7 in [1].
This constitutes one technical focus of this work.

The structure of this chapter is as follows. In the subsequent sections of the introduction, we will give
a brief overview on the mathematical literature concerning the solution theory of generalized stochastic
porous media equations, and we will point out how equation (3.1.1) is motivated by the physics literature.
In Section 3.2 we state the precise assumptions and formulate the first main result of this article, in
which the well-posedness of Equation (3.1.1) is established (see Theorem 3.2.6 below). We prove the
lower-semicontinuity of the abovementioned energy functional ϕ and the property of ϕ being the lower-
semicontinuous hull of ϕ|L2 in H−1 in Section 3.3, the latter of which is the second main result (see
Theorem 3.3.8 below). In Section 3.4, the well-posedness result will be proved, following the arguments
of Section 2 in [74].

The results of this chapter are accepted for publication, see [103].

3.1.1 Mathematical Literature

In the recent decades, stochastic porous media equations have been very present in the mathematical
literature. For the original case

dXt = ∆φ(Xt)dt+B(t,Xt)dWt, (3.1.5)

where φ(r) = r[m] := |r|m−1
r for r ∈ R and m ≥ 1 (m = 1 representing the stochastic heat equation),

a concisely summarized well-posedness analysis can be found in [112], which goes back to the work of
Krylov and Rozovskii [92] and Pardoux [106]. In [113], the theory is extended to the fast diffusion case
m ∈ (0, 1), and other nonlinear functions φ are considered. A setting with a more general monotone and
differentiable nonlinearity is considered in [13].

A severe additional difficulty arises when one considers the limit case m = 0, in which φ becomes
multivalued. The first articles treating this type of porous medium equations, [14] and [12], either
require φ to be surjective or more restrictions on the initial state or the noise. In [78], the m = 0 limit of
(3.1.5) can be treated, but one has to restrict to more regular initial data or to the concept of limiting
solutions. For general initial conditions, this notion of solution contains no characterization in terms of
the equation, which is often necessary for further work such as stability results (see e. g. [76]).

In [11] and later in [17, 73], the concept of stochastic variational inequalities (SVIs) and a corresponding
notion of solution have been used to overcome these issues. We note that in [73], an identification of a
functional as a lower-semicontinuous hull was needed in the context of p-Laplace type equations with a
C2 potential, going back to results from [2, 57]. In [74], the existence and uniqueness of SVI solutions
was proven for the m = 0 limit of (3.1.5), for which a refinement of previous methods became necessary,
because the naive choice for the energy functional does not lead to an energy space with adequate
compactness properties. The arising difficulties when setting up the energy functional are similar to the
ones mentioned above for ϕ from (3.1.4). They have been overcome in [74] by using the specific shape
of the nonlinearity, which allows to set the energy functional to

ϕ(u) =

{
‖u‖TV , if u is a finite Radon measure on O,
+∞, else

for u ∈ H−1, which then allows to use structural properties of the TV norm. With more regularity or
structural assumptions on the noise and/or the initial state, more regularity for SVI solutions or the
existence of strong solutions can be proved, as e. g. in [74, 73, 17, 65]. For the regularization by noise of
quasi-linear SPDE with possibly singular drift terms, we also mention the works [63, 83].
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We next mention several different approaches to stochastic porous media equations. The article [18]
considers the equation on an unbounded domain, the works [9, 35] use an approach via Kolmogorov
equations. In [16], an operatorial approach to SPDE is introduced which can be applied to generalized
stochastic porous media equations with continuous nonlinearities. In [70, 41] and [38], stochastic porous
media equations are solved in the sense of kinetic or entropy solutions, respectively. Previous works in
those directions are, e. g., [20, 42] and [23, 56, 89]. [75] makes use of a rough path approach leading to
pathwise rough kinetic/entropy solutions and including regularity results, with [62, 98] as some of the
related preceding works.

Regarding the construction and analysis of the energy functional arising in the context of SVIs, we rely
on techniques from [45, 118] on convex functionals of Radon measures. For the deterministic theory on
porous medium equations, we refer to [105] and [119]. Regarding results on the long-time behaviour of
singular-degenerate SPDE we refer to the literature exposition in Chapter 4.

3.1.2 Notation

Unless specified differently, function or measure spaces will be understood to be defined on a smooth,
bounded domain O ⊂ Rd, d ∈ N. We write Lp = Lp(O) for the usual Lebesgue spaces with norm ‖·‖Lp
and scalar product 〈·, ·〉L2 if p = 2. The Lebesgue measure is denoted by dx, and a measure with density
h ∈ L1 with respect to dx is denoted by hdx. Furthermore, H1

0 = H1
0 (O) denotes the Sobolev space of

L2 functions whose first-order weak derivatives exist and are in L2, and which have zero trace, with norm
‖u‖H1

0
= ‖∇u‖L2 . The full space analogues L2(Rd), H1(Rd) are defined correspondingly. Furthermore,

let H−1 denote the topological dual of H1
0 . We use −∆ to denote the corresponding Riesz isomorphism,

which gives rise to the inner product

〈u, v〉H−1 = H−1

〈
u, (−∆)−1v

〉
H1

0
for all u, v ∈ H−1,

where the notation V ′〈u, v〉V = V 〈v, u〉V ′ denotes evaluating a functional u belonging to the dual space
V ′ of a Banach space V at a vector v ∈ V .

Moreover, we let C0
0 = C0

0(O) denote the set of all continuous functions on O vanishing at the boundary,
while we write C0

c = C0
c (O) for continuous functions with compact support. The same notation applies

to spaces Ck of k times continuously differentiable functions.

For m ∈ [0, 1] we define the set

Lm+1 ∩H−1 :=

{
v ∈ Lm+1 : ∃C ≥ 0 s. t.

∫
vη dx ≤ C ‖η‖H1

0
for all η ∈ C1

c

}
.

Note that L2 = L2 ∩H−1 by the Cauchy-Schwarz and Poincaré inequalities. To each v ∈ Lm+1 ∩H−1

one can injectively assign a map

C1
c 3 η 7→

∫
vη dx. (3.1.6)

By continuity, (3.1.6) can be injectively extended to a bounded linear functional on H1
0 , which we call

ιm(v). The resulting map ιm : Lm+1 ∩ H−1 → H−1 is thus injective, which allows to identify v with
ιm(v).

Let M = M(O) be the space of all signed Radon measures on O with finite total variation, which is

isomorphic to the dual space
(
C0

0

)′
via

M3 µ 7→ µ̃ ∈
(
C0

0

)′
, µ̃(f) =

∫
fdµ. (3.1.7)

This allows us to use
(
C0

0

)′
andM, as well as µ̃ and µ interchangeably. The variation measure of µ ∈M

is denoted by |µ| := µ+ + µ− and the total variation of µ is given by

‖µ‖TV = |µ| (O).

Note that the total variation is also the operator norm if the measure is interpreted as an element of(
C0

0

)′
by the Riesz-Markov representation theorem (see e. g. Theorem 1.200 in [61]). We define the space

of measures of bounded energy by

M∩H−1 :=

{
µ ∈M : ∃C ≥ 0 s. t.

∫
η(x) dµ(x) ≤ C ‖η‖H1

0
for all η ∈ C1

c (O)

}
.
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By a density argument, restricting a measure µ ∈M∩H−1 to a function on C1
c is an injective operation.

Moreover, by continuity µ|C1c can be injectively extended to a bounded linear functional on H1
0 , which

we call ι(µ). The resulting map ι : M∩H−1 → H−1 is thus injective, which allows to identify µ with
ι(µ).

In general, constants may vary from line to line, but are always positive and finite.

3.2 Assumptions and main result

Assumptions 3.2.1. We require the following assumptions throughout this article.

(A1) W is a cylindrical Id-Wiener process in some separable Hilbert space U defined on a probability
space (Ω,F ,P) with normal filtration (Ft)t≥0, which means the following: There is a Hilbert-
Schmidt embedding J from U to another Hilbert space U1, which can be chosen to be bijective
(see e. g. Remark 2.5.1 in [112]). Defining Q1 := JJ∗, Q1 is linear, bounded, non-negative definite,
symmetric and has finite trace, so that we obtain a classical Q1-Wiener process W̃ on U1. Moreover,
for an operator B̃ : U → H−1 we have

B̃ ∈ L2(U,H−1)⇔ B̃ ◦ J−1 ∈ L2

(
Q

1
2
1 (U1), H−1

)
, (3.2.1)

such that if (3.2.1) is satisfied, we can define∫ T

0

B̃ dWt :=

∫ T

0

B̃ ◦ J−1dW̃t.

(A2) The diffusion coefficients B : [0, T ] ×H−1 × Ω → L2(U,H−1) take values in the space of Hilbert-
Schmidt operators, are progressively measurable and satisfy

‖B(t, v)−B(t, w)‖2L2(U,H−1) ≤ C ‖v − w‖
2
H−1 for all v, w ∈ H−1, (3.2.2)

‖B(t, v)‖2L2(U,L2) ≤ C(1 + ‖v‖2L2) for all v ∈ L2, (3.2.3)

‖B(t, 0)‖2L2(U,H−1) ≤ C, (3.2.4)

for some constant C > 0 and all (t, ω) ∈ [0, T ]× Ω.

(A3) The so-called potential ψ : R→ [0,∞) is convex and lower-semicontinuous, and we assume ψ(0) =
0, which then implies 0 ∈ ∂ψ(0). For simplicity, we furthermore impose the symmetry assumption
ψ(x) = ψ(−x) for all x ∈ R.

(A4) Define φ = ∂ψ : R→ 2R, the subdifferential of ψ, and assume for all r ∈ R

inf{|η|2 : η ∈ φ(r)} ≤ C(1 + |r|2). (3.2.5)

In case that

lim
|x|→∞

ψ(x)

|x| → ∞, (3.2.6)

i. e. ψ is superlinear, we require

(A5) There exists m ∈ (0, 1], such that ψ(v) ∈ L1(O) if and only if v ∈ Lm+1(O).

In case that the potential is sublinear, i. e. that there exists a constant C > 0 such that

ψ(x) ≤ C(1 + |x|) for all x ∈ R, (3.2.7)

we require

(A5’) There exists y > 0 such that ψ(y) > 0.
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Note that by convexity, Assumption (A5’) implies that

ψ(x) ≥ ψ(y)

y
|x| − ψ(y) for all x ∈ R.

Next, we define the energy functional for the notion of solution we are going to consider.

Definition 3.2.2. Let Assumptions 3.2.1 be satisfied.

(i) In the case of a superlinear potential, i. e. if (3.2.6) is satisfied, we define for u ∈ H−1 the functional

ϕ(u) =

{∫
ψ(u) dx, if u ∈ Lm+1 ∩H−1,

+∞, else,
(3.2.8)

where m is the exponent from (A5).

(ii) In the case of a sublinear potential, i. e. if (3.2.7) is satisfied, we define for u ∈ H−1 the functional

ϕ(u) =

{
‖ψ(u)‖TV , if u ∈M∩H−1,

+∞, else,
(3.2.9)

where the construction of a nonlinear functional of a measure, which is needed in (3.2.9), is given
in Definition 3.3.3 below.

Remark 3.2.3. The choice of the energy functional in Definition 3.2.2 allows us to reformulate (3.1.1) as
a gradient flow, i. e. to rewrite it in the form

dXt ∈ −∂ϕ(Xt)dt+B(t,Xt)dWt,

X0 = x0,
(3.2.10)

where the subdifferential is well-defined due to Proposition 3.3.7 below. More precisely, let a “classical”
solution to (3.1.1) with x0 ∈ H−1 be defined as an (Ft)t≥0-adapted process X ∈ L2(Ω; C([0, T ];H−1)
with the following properties: P-almost surely, for all t ∈ [0, T ] we have Xt ∈ L2, there is a choice
vt ∈ φ(Xt) such that vt ∈ H1

0 , and

Xt = x0 +

∫ t

0

∆vr dr +

∫ t

0

B(r,Xr) dWr.

Furthermore, we impose ∆v ∈ L2([0, T ] × Ω;H−1). If X is a classical solution in this sense, then
∆v ∈ −∂ϕ(X) P ⊗ dt-almost everywhere, which means that (X,∆v) is a strong solution to (3.2.10) in
the sense of Definition 3.C.1.

Proof. We only need to show that ∆vt ∈ −∂ϕ(Xt) P-almost surely for all t ∈ [0, T ], which is done by
verifying the subdifferential inequality

ϕ(u) ≥ ϕ(Xt) + H−1〈u−Xt,−∆vt〉H−1

for arbitrary u ∈ H−1 and for (t, ω) ∈ [0, T ]×Ω, for which the abovestated properties of classical solutions
are satisfied. For ϕ(u) = ∞, there is nothing to show. For the superlinear case with Assumption 3.2.1
(A5) satisfied for m ∈ (0, 1], we consider u ∈ Lm+1 ∩ H−1, which is equivalent to ϕ(u) < ∞. Since
Xt ∈ L2 ⊆ Lm+1 ∩H−1 by assumption, we have ϕ(Xt) < ∞, such that we can subtract the term and
obtain, using vt ∈ ∂ψ(Xt),

ϕ(u)− ϕ(Xt) =

∫
O
ψ(u)− ψ(Xt) dx

≥
∫
O
vt(u−Xt) dx

= H−1〈u−Xt, vt〉H1
0

= 〈u−Xt, (−∆)vt〉H−1 .

(3.2.11)
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In the sublinear case, i. e. (3.2.7) is satisfied, let u ∈ M ∩ H−1. Let (un)n∈N be the approximating
sequence for u given by Theorem 3.3.8 below. Then, using Theorem 3.3.8 below, we compute

ϕ(u)− ϕ(Xt) = lim
n→∞

ϕ(un)− ϕ(Xt)

= lim
n→∞

∫
O
ψ(un)− ψ(Xt)dx

≥ lim sup
n→∞

∫
vt(un −Xt)dx

= lim sup
n→∞

H−1〈un −Xt, vt〉H1
0

= lim
n→∞

〈un −Xt, (−∆)vt〉H−1 = 〈u−Xt, (−∆)vt〉H−1 ,

as required.

Now we are in the position to formulate the notion of solution we will consider.

Definition 3.2.4 (SVI solution). Given Assumptions 3.2.1, let x0 ∈ L2(Ω,F0;H−1), T > 0 and ϕ be
defined as in Definition 3.2.2. We say that an Ft-adapted process X ∈ L2(Ω; C([0, T ];H−1)) is an SVI
solution to (3.1.1) if the following conditions are satisfied:

(i) (Regularity)
ϕ(X) ∈ L1([0, T ]× Ω).

(ii) (Variational inequality) For each Ft-progressively measurable process G ∈ L2([0, T ]×Ω;H−1), and
each Ft-adapted process Z ∈ L2(Ω; C([0, T ];H−1)) ∩ L2([0, T ]× Ω;L2) solving the equation

Zt − Z0 =

∫ t

0

Gs ds+

∫ t

0

B(s, Zs) dWs for all t ∈ [0, T ],

we have

E ‖Xt − Zt‖2H−1 + 2E
∫ t

0

ϕ(Xr)dr

≤ E ‖x0 − Z0‖2H−1 + 2E
∫ t

0

ϕ(Zr)dr

− 2E
∫ t

0

〈Gr, Xr − Zr〉H−1 dr

+ C E
∫ t

0

‖Xr − Zr‖2H−1 dr for all t ∈ [0, T ]

(3.2.12)

for some C > 0.

Remark 3.2.5. If (X, η) is a strong solution to (3.2.10) in H−1 according to Definition 3.C.1, then X is
an SVI solution to (3.1.1).

Proof. For (i) from Definition 3.2.4, we first note that ϕ(0) = 0 and for s ∈ [0, T ]

0 ≤ ϕ(Xs) ≤ ϕ(0) + 〈ηs, 0−Xs〉H−1 = −〈ηs, Xs〉H−1

by the subdifferential inequality. Hence, using the assumptions on (X, η), we can compute

E
∫ T

0

|ϕ(Xs)|ds = E
∫ T

0

ϕ(Xs) ds ≤ E
∫ T

0

‖ηs‖H−1 ‖Xs‖H−1 ds

≤ 1

2
E
∫ T

0

‖ηs‖2H−1 ds+
1

2
E
∫ T

0

‖Xs‖2H−1 ds

≤ 1

2
E
∫ T

0

‖ηs‖2H−1 ds+
T

2
E

(
sup

s∈[0,T ]

‖Xs‖H−1

)2

<∞,
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as required. For (ii), let G and Z be given as in 3.2.4. Then Ito’s formula (e. g. [112, Theorem 4.2.5])
implies for all t ∈ [0, T ]

E ‖Xt − Zt‖2H−1 = E ‖x0 − Z0‖2H−1 + 2E
∫ t

0

〈ηr −Gr, Xr − Zr〉H−1 dr

+ E
∫ t

0

‖B(r,Xr)−B(r, Zr)‖2L2(U,H−1) dr.

Since ηr ∈ −∂ϕ(Xr) (P⊗ dt)-almost everywhere, we have

〈ηr, Xr − Zr〉H−1 ≤ ϕ(Zr)− ϕ(Xr) dt⊗ dP-a.e..

Using moreover the Lipschitz condition (3.2.2) on B, we obtain for all t ∈ [0, T ]

E ‖Xt − Zt‖2H−1 ≤ E ‖x0 − Z0‖2H−1 + 2E
∫ t

0

ϕ(Zr)− ϕ(Xr)dr

− 2E
∫ t

0

〈Gr, Xr − Zr〉H−1 dr

+ E
∫ t

0

C ‖Xr − Zr‖2H−1 dr,

which is equivalent to (3.2.12).

The main result of this article is as follows.

Theorem 3.2.6. Given Assumptions 3.2.1, let x0 ∈ L2(Ω,F0;H−1) and T > 0. Then there is a unique
SVI solution X to (3.1.1). For two SVI solutions X,Y with initial conditions x0, y0 ∈ L2(Ω,F0;H−1),
we have

sup
t∈[0,T ]

E ‖Xt − Yt‖2H−1 ≤ C E ‖x0 − y0‖2H−1 . (3.2.13)

The proof of this theorem will be given in Section 3.4 below.

3.3 Properties of the energy functional

The aim of this section is to make Definition 3.2.2 rigorous by recalling the concept of convex functionals
on measures, and to prove certain properties of the energy functional defined in Definition 3.2.2, which
are needed for the proof of the main theorem. We start with some basic concepts concerning convex
functions.

Definition 3.3.1. Let f : R → [0,∞] be a convex and lower-semicontinuous function with f(0) = 0.
We then define its convex conjugate f∗ : R→ [0,∞] by

f∗(x) = sup
y∈R

(xy − f(y)), (3.3.1)

and its recession function f∞ : R→ [0,∞] by

f∞(x) = lim
t→∞

f(tx)

t
. (3.3.2)

Remark 3.3.2. Note that f∞ and f∗ are convex. If f is symmetric, so are f∞ and f∗. Moreover, f∞ is
positively homogeneous.

For the notion of solution that we are aiming at, we need the concept of a convex function of a measure,
which has been developed in [45].

Definition 3.3.3. Let ψ satisfy (3.2.7) as well as Assumptions 3.2.1 (A3), (A5’). Define the set

Dψ = {v ∈ C0
c (O) : ψ∗(v) ∈ L1(O)}
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and let µ ∈M(O). We then define the positive measure ψ(µ) ∈M(O) by∫
O
η ψ(µ) := M(O)〈ψ(µ), η〉C00(O)

:= sup

{∫
O
vη dµ−

∫
O
ψ∗(v)η dx : v ∈ Dψ

} (3.3.3)

for η ∈ C0
0(O), η ≥ 0, and for general η ∈ C0

0(O) we set

M(O)〈ψ(µ), η〉C00(O) = M(O)〈ψ(µ), η ∨ 0〉C00(O) −M(O)〈ψ(µ), (−η) ∨ 0〉C00(O),

according to Theorem 1.1 in [45].

Remark 3.3.4. As argued in Lemma 1.1 in [45], one can write for µ ∈M(O)∫
O
ψ(µ) = ‖ψ(µ)‖TV = sup

{∫
O
v dµ−

∫
O
ψ∗(v) dx : v ∈ Dψ

}
.

Remark 3.3.5. Let µ ∈M(O) with Lebesgue decomposition µa+µs, where µa has the density h ∈ L1(O)
with respect to the Lebesgue measure. Then, by Theorem 1.1 in [45], we have∫

O
η ψ(µ) =

∫
O
η(x)ψ(h(x))dx+

∫
O
η ψ∞(µs), (3.3.4)

where the recession function ψ∞ is defined as in (3.3.2). In particular, this formulation shows the useful
fact that

ψ(µ) = ψ(µa) + ψ(µs). (3.3.5)

Our next aim is to prove the lower-semicontinuity of the energy functional defined in Definition 3.2.2 and
Definition 3.3.3. First, we show that the Radon measure ψ(µ) constructed in Definition 3.3.3 controls
the norm of its original measure µ in the following way.

Lemma 3.3.6. Let ψ satisfy (3.2.7) as well as Assumptions 3.2.1 (A3), (A5’). Let µ ∈ M(O) and let
y > 0 such that ψ(y) > 0 as demanded in Assumption 3.2.1 (A5’). Then

‖ψ(µ)‖TV ≥
ψ(y)

y
‖µ‖TV − ψ(y) |O| .

Proof. For µ ∈M(O), denote by µ = µa+µs the Lebesgue decomposition of µ with respect to Lebesgue

measure, and let h = dµa

dx be the Radon-Nikodym derivative of µa. As ψ∞(µs) is singular by Theorem
4.2 in [118], we can use the decomposition (3.3.4) to obtain

‖ψ(µ)‖TV =

∫
O
ψ(h) dx+ ‖ψ∞(µs)‖TV . (3.3.6)

We now estimate the summands separately. For the absolutely continuous part we obtain using Assump-
tion 3.2.1 (A5’) ∫

O
ψ(h) dx ≥ ψ(y)

y

∫
O
|h|dx− ψ(y) |O| = ψ(y)

y
‖µa‖TV − ψ(y) |O| .

For the singular part, we note by Lemma 3.A.5 that for v ∈ C0
c (O) being in Dψ∞ is equivalent to

−ψ∞(1) ≤ v ≤ ψ∞(1), and for such v, ψ∗∞(v) ≡ 0. Thus, we get with Corollary 3.A.4 with k := ψ(y)
y∫

O
ψ∞(µs) = sup

v∈Dψ∞

(∫
O
v dµs −

∫
ψ∗∞(v)dx

)
≥ sup

v∈C0c (O)
−k≤v≤k

∫
O
v dµs = k ‖µs‖TV .

Thus, we can continue (3.3.6) by

‖ψ(µ)‖TV ≥
ψ(y)

y
‖µa‖TV + k ‖µs‖TV − ψ(y) |O| = ψ(y)

y
‖µ‖TV − ψ(y) |O| ,

as required.
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Proposition 3.3.7. In both settings of Definition 3.2.2, ϕ : H−1 → [0,∞] is convex and lower-semi-
continuous.

Proof. In the superlinear case, i. e. Definition 3.2.2 (i) applies, convexity and lower-semicontinuity of ϕ
are proved on p. 68 in [7]. In the sublinear case, i. e. Definition 3.2.2 (ii) applies, convexity becomes clear
by Remark 3.3.4. It remains to prove lower-semicontinuity in the sublinear case.

Step 1: As a preparatory step, we establish weak* lower-semicontinuity of the functional ϕ̃ : M(O) →
[0,∞),

ϕ̃(µ) = ‖ψ(µ)‖TV ,
for which we have

ϕ̃|M(O)∩H−1 = ϕ.

Consider µn → µ weakly* for n → ∞. We can assume that ψ(µn) contains a subsequence which is
bounded in TV norm (otherwise there is nothing to show). Then we select a subsequence (µnk)k∈N
such that ‖ψ(µnk)‖TV → lim infn→∞ ‖ψ(µn)‖TV for k → ∞, from which we can choose a nonrelabeled
subsequence (ψ(µnk))k∈N which converges weakly* to some ν ∈ M(O) (e. g. by Satz 6.5 in [1]). By
Lemma 2.1 in [45], we get that

M(O)〈ψ(µ), η〉C00(O) ≤M(O)〈ν, η〉C00(O)

= lim
k→∞M(O)〈ψ(µnk), η〉C00(O)

≤ lim
k→∞

‖ψ(µnk)‖TV ‖η‖C00(O)

for η ∈ C0
c (O), η ≥ 0. Now, using that ψ(ρ) is a positive measure for any ρ ∈M(O) by (3.3.3), we obtain

‖ψ(µ)‖TV = sup
η∈C0c (O)
η∈[0,1]

M(O)〈ψ(µ), η〉C00(O)

≤ sup
η∈C0c (O)
η∈[0,1]

lim
k→∞M(O)〈ψ(µnk), η〉C00(O)

≤ sup
η∈C0c (O)
η∈[0,1]

lim
k→∞

‖ψ(µnk)‖TV = lim inf
n→∞

‖ψ(µn)‖TV ,

as required.

Step 2: Assume now that (un)n∈N ⊂ H−1, u ∈ H−1, and un → u for n → ∞. Being the only non-
trivial case, we can assume that (un)n∈N contains a subsequence (which we call again (un)) for which
(ϕ(un))n∈N is bounded. Thus, there are measures µn ∈M(O) ∩H−1 such that

un(η) =

∫
O
η dµn for all η ∈ C1

c (O).

By definition of ϕ, ϕ(un) = ‖ψ(µn)‖TV , such that Lemma 3.3.6 implies that ‖µn‖TV is bounded.

Thus, there is µ̃ ∈ M(O) and an again nonrelabeled subsubsequence (µn)n∈N such that µn
∗
⇀ µ̃. For

η ∈ C1
c (O) ⊆ C0

c (O) we have∫
O
η dµ̃ = lim

n→∞

∫
O
η dµn = lim

n→∞
un(η) = u(η) ≤ ‖u‖H−1 ‖η‖H1

0 (O) ,

so µ̃ ∈M(O) ∩H−1 and u = µ̃. Using the weak* lower-semicontinuity of ϕ̃ from Step 1, we get

ϕ(u) = ϕ̃(µ̃) ≤ lim inf
n→∞

ϕ̃(µn) = lim inf
n→∞

ϕ(un). (3.3.7)

As this argument works for any bounded subsequence of (un)n∈N, (3.3.7) is also true for the original
sequence (un)n∈N.

As one can see from the definition of the energy functional ϕ in the second part of Definition 3.2.2, it has
an explicit representation on H−1 \M(O), where it is ∞, and on L1(O) ∩H−1, where it is an integral.
However, whenever we evaluate ϕ for general measures in M(O) ∩H−1, e. g. in the uniqueness part of
the proof of Theorem 3.2.6, we need an approximation reducing it to evaluations on L1(O) functions.
This will be made precise in the following theorem, the proof of which will take the rest of this section.
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Theorem 3.3.8. Assume that ψ satisfies (3.2.7) as well as Assumptions 3.2.1 (A3), (A5’). Let ϕ be
defined as in Definition 3.2.2 (ii) and u ∈M(O)∩H−1. Then there exists a sequence (un)n∈N ⊂ L2(O)
such that

un ⇀ u in H−1, and (3.3.8)

ϕ(un)→ ϕ(u) (3.3.9)

for n→∞.

Corollary 3.3.9. Since convex functions on a real Hilbert space are lower-semicontinuous if and only if
they are weakly sequentially lower-semicontinuous (see e. g. Theorem 9.1 in [19]), Theorem 3.3.8 implies
that ϕ is the lower-semicontinuous hull of ϕ|L2(O) in H−1, which means that

ϕ = sup

{
β : H−1 → [0,∞] :

β convex and lower-semicontinuous, β|L2(O) ≤ ϕ|L2(O)

}
, (3.3.10)

where sup denotes the pointwise supremum.

We will approach Theorem 3.3.8 by giving an explicit construction for the sequence (un)n∈N, inspired
by the construction in Lemma A6.7 in [1]. It will rely on applying the original functional to modified
functions, which is why we first introduce several modifications to functions on O.

We next introduce further notation and recall some concepts relying on the regularity of the boundary.

Notations 3.3.10. Since the domain O is bounded and smooth, its boundary is locally the graph of
a smooth function. More precisely, we recall from Section A6.2 in [1] that for each y ∈ ∂O there is a
neighbourhood Ũ ⊂ Rd, an orthonormal system e1, . . . , ed of Rd, r, h ∈ R with r > h > 0, and a smooth
bounded function g : Rd−1 → R, such that with the notation

x,d := (x1, . . . , xd−1), for x =

d∑
i=1

xiei,

we have
Ũ =

{
x ∈ Rd : |x,d − y| < r and |xd − g(x,d)| < h

}
,

and for x ∈ Ũ

xd = g(x,d) if and only if x ∈ ∂O,
xd ∈ (g(x,d), g(x,d) + h) if and only if x ∈ O, and

xd ∈ (g(x,d)− h, g(x,d)) if and only if x /∈ O.

For technical reasons we set

U =

{
x ∈ Ũ : |x,d − y| <

r

2
and |xd − g(x,d)| <

h

2

}
. (3.3.11)

The boundary ∂O is covered by those open sets U belonging to all possible reference points y. As ∂O is
compact, we can choose a finite subcovering (U j)lj=1, and for each U j , we denote the elements belonging

to it by a superindex j, e. g. yj , ejd, g
j , hj , Ũ j . At last, we fix an open set U0 with U0 ⊂ O, such that

O ⊂ ∪lj=0U
j and we set e0

d := 0.

Subordinate to the covering ∪lj=0U
j , let now ζ0, . . . , ζl be a partition of unity on O, i. e. 0 ≤ ζj ≤ 1, ζj ∈

C∞c (Rd), supp(ζj) ⊆ U j for all j = 0, . . . , l, and

l∑
j=0

ζj = 1 on O.

For η : O → R and µ ∈ M(O), we define ηext : Rd → R and µext ∈ M(Rd) as the extended function
(resp. measure) by zero. Finally, we define for ρ ∈ C∞c (Rd) with

supp(ρ) ⊆ B1(0),

∫
O
ρdx = 1, ρ(x) = ρ(−x) (3.3.12)
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a Dirac sequence (ρδ)δ>0 ⊂ C∞c (Rd) of mollifiers by

ρδ(x) =
1

δd
ρ
(x
δ

)
. (3.3.13)

For η ∈ L2(Rd), µ ∈M(Rd), we then define functions ρδ ∗ η, ρδ ∗ µ ∈ C∞(Rd) by

ρδ ∗ η(x) =

∫
Rd
ρδ(x− y)η(y) dy and ρδ ∗ µ(x) =

∫
Rd
ρδ(x− y)dµ(y).

For brevity, we write ρδ ∗ η := ρδ ∗ ηext for η ∈ L2(O).

The following construction allows to shift a function “away from the boundary”.

Definition 3.3.11. Let ε > 0 and η : O → R. Then we define ηε : O → R by

ηε(x) =

l∑
j=0

ζj(x)ηext(x− εejd), (3.3.14)

where we recall that e0
d is set to 0.

Remark 3.3.12. By this construction, we achieve that ηε = 0 on a w(ε)-neighbourhood of ∂O with

w(ε) := min

{
dist(U0,Oc), min

j=1,...,l

(
min

{
ε

2
,
ε

2Lj
,
hj

4
,
hj

4Lj

})}
> 0, (3.3.15)

where Lj denotes the Lipschitz constant of gj defined in Notations 3.3.10.

Proof. The number w(ε) is obviously strictly positive by the construction of the covering (U j)lj=0. To

show the support property, let j ∈ {0, 1, . . . , l} and U jε := U j ∩ ((U j ∩ O) + εejd). By definition,

ηext(x−εejd) = 0 if x ∈ U j\U jε . By the definition of ζj , we furthermore conclude that ζj(x)ηext(x−εejd) =
0 for x /∈ U jε . Consequently,

ηε : x 7→
l∑

j=0

ζj(x)ηext(x− εejd)

is supported on

Uε :=

l⋃
j=0

U jε ,

such that it remains to show that dist(Uε,Oc) ≥ w(ε), or equivalently, that dist(U jε ,Oc) ≥ w(ε) for all
j ∈ {0, . . . , l}.
For j = 0, this is trivial by construction of U0

ε = U0 and w(ε). For j = 1, . . . , l, using the coordinate
system (xj,d, x

j
d) we can rewrite

U jε = {x ∈ U j : xjd > gj(xj,d) + ε}.

Hence, we can compute for any x ∈ U jε , i. e. x =
(
xj,d , g

j(xj,d) + ε′
)

for some ε′ ∈ (ε, h
j

2 ), and y ∈ ∂O∩Ũ j

‖x− y‖2 = ‖x,d − y,d‖2 + |g(x,d) + ε′ − g(y,d)|2

≥ ‖x,d − y,d‖2 + (ε′ − |g(x,d)− g(y,d)|)2,

where ‖·‖ denotes the Euclidean norm both in Rd and in Rd−1. Letting Lj be the Lipschitz constant of
gj , we can then argue that either ‖x,d − y,d‖ > ε

2Lj or

|g(x,d)− g(y,d)| ≤ Lj
ε

2Lj
=
ε

2
,

such that dist(U jε , ∂O ∩ Ũ j) is at least min
{
ε
2 ,

ε
2Lj

}
. By similar arguments, we can obtain from the

construction of U j in (3.3.11) (note that rj > hj by construction) that

dist(U jε , (Ũ
j)c) ≥ min

{
hj

4
,
hj

4Lj

}
,
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such that we conclude

dist(U jε , ∂O) = min{dist(U jε , ∂O ∩ Ũ j),dist(U jε , ∂O ∩ (Ũ j)c)}
≥ min{dist(U jε , ∂O ∩ Ũ j),dist(U jε , (Ũ

j)c)}

≥ min

{
ε

2
,
ε

2Lj
,
hj

4
,
hj

4Lj

}
≥ w(ε).

This allows to define the following approximating objects for u ∈M(O) ∩H−1.

Definition 3.3.13. Let ε > 0 and 0 < δ ≤ w(ε)
2 . For u ∈ H−1, we define for η ∈ H1

0 (O)

uε(η) = H−1〈u, ηε〉H1
0 (O)

and uε,δ(η) = H−1〈u, ρδ ∗ ηε〉H1
0 (O).

(3.3.16)

These functionals are in H−1 by Lemma 3.3.14 and Lemma 3.3.15 below. For u ∈ M(O), we define for
η ∈ C0

0(O)

ũε(η) = M(O)〈u, ηε〉C00(O)

and ũε,δ(η) = M(O)〈u, ρδ ∗ ηε〉C00(O).
(3.3.17)

These functionals are in M(O) by Lemma 3.3.16 below. If u ∈ M(O) ∩ H−1, the uniqueness of the
linear continuation allows to conclude that

uε, uε,δ ∈M∩H−1, as well as uε = ũε and uε,δ = ũε,δ.

Lemma 3.3.14. Let ε > 0 and η ∈ H1
0 (O). Then the map H1

0 (O) 3 η 7→ ηε ∈ H1
0 (O) is linear, and

‖ηε‖H1
0 (O) ≤ C ‖η‖H1

0 (O) ,

where C only depends on the localizing functions (ζj)lj=0, the number of covering sets l, the Poincaré
constant of the domain O and the spatial dimension d.

Proof. The proof of the linearity claim is straightforward and therefore skipped. In order to prove
boundedness, let V j = U j ∩ O and U jε := U j ∩ ((U j ∩ O) + εejd) as before. We first note

‖ηε‖H1
0 (O) =

∥∥∥∥∥∥
l∑

j=0

ζjηjε

∥∥∥∥∥∥
H1

0 (O)

≤
l∑

j=0

∥∥ζjηjε∥∥H1
0 (O)

, (3.3.18)

where we have written

ηjε ∈ H1(Rd), ηjε(x) = ηext(x− εejd).

We now analyze the summands separately, where we make use of the fact that for all j ∈ {1, . . . , l},
ζj ∈ C∞c (U j) and ζjηjε is supported on V j . In the following, (∂i)

d
i=1 represent the weak partial derivatives

of first order. We then compute for i ∈ {1, . . . , d}∥∥∂i(ζjηjε)∥∥L2(O)
=
∥∥∂i(ζjηjε)∥∥L2(V j)

≤
∥∥(∂iζ

j)ηjε
∥∥
L2(V j)

+
∥∥ζj∂iηjε∥∥L2(V j)

≤ C
∥∥ηjε∥∥L2(V j)

+

(∫
V j

∣∣∣∂i(ηext(x− εejd))
∣∣∣2 dx

) 1
2

≤ C ‖η‖L2(O) +

(∫
Ujε

∣∣∣(∂iη)(x− εejd)
∣∣∣2 dx

) 1
2

≤ C ‖η‖L2(O) + ‖∂iη‖L2(O) .
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This yields

∥∥ζjηjε∥∥2

H1
0 (O)

=

d∑
i=1

∥∥∂i(ζjηjε)∥∥2

L2(O)
≤

d∑
i=1

(
C ‖η‖L2(O) + ‖∂iη‖L2(O)

)2

≤ C ‖η‖2H1
0 (O) + 2

d∑
i=1

‖∂iη‖2L2(O) ≤ C ‖η‖
2
H1

0 (O) ,

where C may depend on d,O (through the Poincare constant) and ζj . Thus, we can continue (3.3.18)
by

‖ηε‖H1
0 (O) ≤

l∑
j=0

∥∥ζjηjε∥∥H1
0 (O)

≤ (l + 1)C ‖η‖H1
0 (O) ,

as required.

Concerning the mollification step, we note that by Remark 3.3.12, ρδ ∗ ηε(x) = 0 if dist(x, ∂O) ≤ w(ε)
2

and 0 < δ ≤ w(ε)
2 , so that in this case we can restrict ρδ ∗ ηε to O to get a C1

c (O) function. By a slight
abuse of notation, we then write

(ρδ ∗ ηε)|O = ρδ ∗ ηε ∈ C1
c (O) ⊆ H1

0 (O) ∩ C0
0(O). (3.3.19)

Also for this step, we have to ensure linearity, which is clear, and an estimate on the H1
0 (O) norm, which

is done in the following lemma.

Lemma 3.3.15. Let ε > 0 and 0 < δ ≤ w(ε)
2 . Then the map H1

0 (O) 3 η 7→ ηε,δ ∈ H1
0 (O) is linear, and

‖ρδ ∗ ηε‖H1
0 (O) ≤ C ‖η‖H1

0 (O) for all η ∈ H1
0 (O),

where C is the constant from Lemma 3.3.14.

Proof. The proof of linearity is straightforward. In order to show boundedness, for any g ∈ L2(O) such
that ρδ ∗ g = 0 on Oc we can compute

‖ρδ ∗ g‖2L2(O) =

∫
Rd

(∫
Rd
ρδ(x− y)gext(y) dy

)2

dx

≤
∫
Rd

∫
Rd
ρδ(x− y) (gext(y))2 dy dx

=

∫
Rd

∫
Rd
ρδ(x− y)dx (gext(y))2 dy

= ‖gext‖2L2(Rd) = ‖g‖2L2(O) ,

(3.3.20)

where in the second step we could apply Jensen’s inequality since ρδ(x− y) dy is a probability measure

for each x ∈ Rd. By Remark 3.3.12 for all i ∈ {1, . . . , d}, ρδ ∗ (∂iηε) vanishes outside of O if 0 < δ ≤ w(ε)
2 .

Hence g in (3.3.20) can be replaced by each partial derivative ∂iηε which yields

‖ρδ ∗ ηε‖2H1
0 (O) =

d∑
i=1

‖∂i(ρδ ∗ ηε)‖2L2(O) =

d∑
i=1

‖ρδ ∗ ∂i(ηε)‖2L2(O)

≤
d∑
i=1

‖∂iηε‖2L2(O) = ‖ηε‖2H1
0 (O) ≤ C ‖η‖

2
H1

0 (O) ,

where the second equality can be found e. g. in Section 2.23 in [1] and the last inequality is the statement
of Lemma 3.3.14.

Lemma 3.3.16. Let ε > 0, 0 < δ ≤ w(ε)
2 and η ∈ C0

c (O). Then, the map

C0
c (O) 3 η 7→ (ηε, ρδ ∗ ηε) ∈ (C0

c (O))2

is linear. Furthermore, we have
‖ρδ ∗ ηε‖∞ ≤ ‖ηε‖∞ ≤ ‖η‖∞ , (3.3.21)

where ‖·‖∞ denotes the supremum norm.
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Proof. The proof of the linearity claim is straightforward. In order to show boundedness, we first note

that for 0 < δ ≤ w(ε)
2 , ρδ ∗ ηε ∈ C0

c (O) by construction and Remark 3.3.12. To obtain (3.3.21), we
estimate for arbitrary x ∈ O

|ηε(x)| ≤
l∑

j=0

ζj(x)
∣∣∣ηext(x− εejd)

∣∣∣ ≤ l∑
j=0

ζj(x) ‖η‖∞ = ‖η‖∞ ,

which yields the second relation. The first one can be seen by

|ρδ ∗ ηε(x)| ≤
∫
Rd
ρδ(x− y) ‖ηε‖∞ dx = ‖ηε‖∞ ,

which concludes the proof.

We next analyze how ϕ as given in Definition 3.2.2 (ii) acts on the approximating measures from Definition
3.3.13. First, we state that if µ is absolutely continuous with respect to the Lebesgue measure, so is µε,
which we show by giving its density.

Lemma 3.3.17. Let ε > 0, h ∈ L1(O) and µ := hdx ∈M(O). Then µε has the density

O 3 x 7→
l∑

j=0

ζj(x+ εejd)hext(x+ εejd)

with respect to the Lebesgue measure.

Proof. For η ∈ C0
c (O), we compute∫

O
η dµε =

∫
O

 l∑
j=0

ζj(x)ηext(x− εejd)

µ(dx)

=

∫
Rd

 l∑
j=0

ζj(x)ηext(x− εejd)

hext(x) dx

=

l∑
j=0

∫
Rd
ζj(x+ εejd)ηext(x)hext(x+ εejd) dx

=

∫
O
η(x)

l∑
j=0

ζj(x+ εejd)hext(x+ εejd) dx,

as required. The switching of integration domains is possible as the integrands are supported on O by
Remark 3.3.12 or by assumption, respectively.

A more direct construction of µε,δ is given by the following lemma.

Lemma 3.3.18. Let ε > 0, 0 < δ ≤ w(ε)
2 and µ ∈M(O). Then, the measure

µ̃ε,δ := ((ρδ ∗ µext)|O dx)ε ∈M(O) (3.3.22)

coincides with µε,δ.

Proof. We apply µ̃ε,δ to η ∈ C0
c (O) and obtain∫

O
η dµ̃ε,δ =

∫
O
η d((ρδ ∗ µext)|O dx)ε

=

∫
O
ηε (ρδ ∗ µext)|O dx

=

∫
Rd

(ηε)ext (ρδ ∗ µext) dx

=

∫
Rd
ρδ ∗ (ηε)ext dµext

=

∫
O
ρδ ∗ ηε dµ,
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where for the last step, we used Remark 3.3.12 to extend the integration domain. We conclude by
noticing that the last term is precisely the definition of M(O)〈µε,δ, η〉C0c (O).

In the rest of this section, we will argue that the sequence(
µ 1
n ,

1
2w( 1

n )

)
n∈N

is an approximation of µ ∈M(O) ∩H−1 in the sense of Theorem 3.3.8. First we address the regularity

of µε,δ, where ε > 0 and 0 < δ ≤ w(ε)
2 .

Lemma 3.3.19. Let ε > 0, 0 < δ ≤ w(ε)
2 and µ ∈M(O). Then, the measure µε,δ has a bounded density

with respect to Lebesgue measure.

Proof. The fact that µε,δ has a density with respect to Lebesgue measure follows from its characterization
in Lemma 3.3.18 and Lemma 3.3.17. This density is bounded in space since∣∣∣∣∣∣

l∑
j=0

ζj(x+ εejd)(ρδ ∗ µext)(x+ εejd)

∣∣∣∣∣∣ ≤ (l + 1) sup
x∈Rd

|ρδ(x)| ‖µ‖TV .

The first part of the following proposition allows to deduce property (3.3.8), while the second part is
needed for the further proof of (3.3.9).

Proposition 3.3.20. Let ρ be as in (3.3.13), and for each ε > 0, let 0 < δε ≤ w(ε)
2 .

1. For η ∈ H1
0 (O), we have

ρδε ∗ ηε → η for ε↘ 0 in H1
0 (O). (3.3.23)

2. For η ∈ C0
c (O), we have

ρδε ∗ ηε → η for ε↘ 0 in C0
c (O). (3.3.24)

Proof. Throughout this proof, we will write δ instead of δε, always assuming that 0 < δ ≤ w(ε)
2 .

Proof of part 1: It is enough to show that for all i ∈ {1, . . . , d}
‖∂i(ρδ ∗ ηε)− ∂iη‖L2(O) → 0 for ε→ 0. (3.3.25)

By the density of C∞0 (O) in H1
0 (O), for any β > 0 we can choose ϕ ∈ C∞0 (O) such that

max
{
‖ϕ− η‖L2(O) , ‖∂iϕ− ∂iη‖L2(O)

}
≤ β

6(l + 1)C̃
, (3.3.26)

where

C̃ := max

{
max
j=1,...,l

(sup
Rd

∣∣∂iζj∣∣), 1} .
As ϕext, ζ

j ∈ C1
b (O) for each j ∈ {1, . . . , l}, we can choose ε0 > 0 small enough, such that for all x ∈ Rd

and y, z ∈ Bε0(x) ∣∣∂iζj(y)ϕext(z)− ∂iζj(x)ϕext(x)
∣∣ ≤ β

6(l + 1) |O| 12
(3.3.27)

and ∣∣ζj(y)∂iϕext(z)− ζj(x)∂iϕext(x)
∣∣ ≤ β

6(l + 1) |O| 12
. (3.3.28)

We approach (3.3.25) by splitting the term under consideration into the more convenient pieces

‖∂i(ρδ ∗ ηε)− ∂iη‖L2(O) = ‖ρδ ∗ ∂iηε − ∂iηext‖L2(Rd)

= ‖ρδ ∗ ∂i(ηε − ϕε) + ρδ ∗ ∂iϕε − ∂iϕext + ∂iϕext − ∂iηext‖L2(Rd)

≤ ‖ρδ ∗ ∂i(ηε − ϕε)‖L2(Rd) + ‖ρδ ∗ ∂iϕε − ∂iϕext‖L2(Rd) + ‖∂iϕext − ∂iηext‖L2(Rd)

= (I) + (II) + (III).

83



We estimate the summands separately. For the first one we get with the convolution estimate (e. g.
Section 2.13 in [1])

(I) ≤ ‖∂i(ηε − ϕε)‖L2(Rd)

=

∥∥∥∥∥∥
l∑

j=0

∂i[ζ
j(ηext(· − εejd)− ϕext(· − εejd))]

∥∥∥∥∥∥
L2(Rd)

≤
l∑

j=0

∥∥∥∂iζj (ηext(· − εejd)− ϕext(· − εejd)
)∥∥∥

L2(Rd)

+

l∑
j=0

∥∥∥ζj (∂iηext(· − εejd)− ∂iϕext(· − εejd)
)∥∥∥

L2(Rd)

≤
l∑

j=0

(
sup
Rd

∣∣∂iζj∣∣ ‖ηext − ϕext‖L2(Rd) + ‖∂iηext − ∂iϕext‖L2(Rd)

)
≤ β

3
,

(3.3.29)

where we used (3.3.26) in the last step. For the second term, we recall that (ζj)lj=0 is a partition of unity
on the support of ϕ. Thus, we can compute

(II) ≤
l∑

j=0

∥∥∥ρδ ∗ ∂i (ζjϕext(· − εejd)
)
− ∂i

(
ζjϕext

)∥∥∥
L2(Rd)

=

l∑
j=0

∥∥∥ρδ ∗ (∂iζjϕext(· − εejd) + ζj∂iϕext(· − εejd)
)
− ∂iζjϕext − ζj∂iϕext

∥∥∥
L2(Rd)

≤
l∑

j=0

∥∥∥ρδ ∗ (∂iζ
jϕext(· − εejd))− ∂iζjϕext

∥∥∥
L2(Rd)

+

l∑
j=0

∥∥∥ρδ ∗ (ζj∂iϕext(· − εejd))− ζj∂iϕext

∥∥∥
L2(Rd)

=:

l∑
j=0

(IV)j +

l∑
j=0

(V)j .

(IV)j and (V)j are treated analogously, so we only show the estimate for (V)j , where we choose ε < ε0
2

with ε0 as for (3.3.27). Noting that ρδ integrates to 1 for any δ > 0 and using Jensen’s inequality in the
second step, we obtain

(V)
2
j =

∫
Rd

∣∣∣∣∫
Rd
ρδ(x− y)

(
ζj(y)∂iϕext(y − εejd)− ζj(x)∂iϕext(x)

)
dy

∣∣∣∣2 dx

≤
∫
Rd

∫
Bδ(x)

ρδ(x− y)
∣∣∣ζj(y)∂iϕext(y − εejd)− ζj(x)∂iϕext(x)

∣∣∣2 dy dx. (3.3.30)

As ∂iϕext is supported on O and, for the analogous step for (IV), so is ϕext, we can argue as in the proof
of Remark 3.3.12 to see that the integrand of the outer integral is supported on O. Thus, we can restrict
the integration domain to obtain

(3.3.30) =

∫
O

∫
Bδ(x)

ρδ(x− y)
∣∣∣ζj(y)∂iϕext(y − εejd)− ζj(x)∂iϕext(x)

∣∣∣2 dy dx

≤
∫
O

β2

36 (l + 1)2 |O|

∫
Rd
ρδ(x− y) dy dx =

(
β

6(l + 1)

)2

.

While we have used (3.3.28) in the second step, the estimate for (IV)j uses (3.3.27) instead and gets the
same result. We conclude

(II) =

l∑
j=0

(
(IV)j + (V)j

)
≤ β

3
. (3.3.31)
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Finally the estimate

(III) ≤ β

3
(3.3.32)

is obvious by property (3.3.26). Collecting (3.3.29), (3.3.31), and (3.3.32), we obtain

‖∂i(ρδ ∗ ηε − η)‖L2(O) ≤ β

only by choosing ε small enough and adapting 0 < δ ≤ w(ε)
2 , which proves (3.3.23).

Proof of part 2: Since η is now assumed to be continuous and to have compact support, it is uniformly
continuous. For arbitrary β > 0, we can thus fix ε0 > 0 such that for all x, y ∈ Rd

|x− y| ≤ ε0 implies |ηext(x)− ηext(y)| ≤ β

l + 1
.

For ε ≤ 1
2ε0, we use δ ≤ w(ε)

2 ≤ ε by (3.3.15) to calculate for x ∈ O

|ρδ ∗ ηε(x)− η(x)| =

∣∣∣∣∣∣
∫
Bδ(x)

ρδ(x− y)

 l∑
j=0

ζj(y)(ηext(y − εejd)− η(x))

 dy

∣∣∣∣∣∣
≤
∫
Bδ(x)

ρδ(x− y)

l∑
j=0

∣∣∣ηext(y − εejd)− ηext(x)
∣∣∣dy

≤
∫
Bδ(x)

ρδ(x− y)

l∑
j=0

β

l + 1
dy = β,

where for the second step we observe that for y ∈ Bδ(x), we have∣∣∣(y − εejd)− x∣∣∣ ≤ δ + ε ≤ 2ε ≤ ε0.

This proves (3.3.24).

We now turn to prove Property (3.3.9). Recall the definition of a convex function of a measure from
Definition 3.3.3. We need some more lemmas on measures obtained by this technique, the first of which
can be found in Equation (2.11) in [45].

Lemma 3.3.21. Let ψ satisfy (3.2.7) as well as Assumptions 3.2.1 (A3),(A5’). Let µ ∈M(Rd) and let
(ρδ)δ>0 be a family of mollifying kernels as specified in (3.3.12) and (3.3.13). Then∫

Rd
ψ(ρδ ∗ µ) dx ≤

∫
Rd
ψ(µ) for all δ > 0. (3.3.33)

Remark 3.3.22. Given the assumptions on ψ, the theory of Definition 3.3.3 indeed also applies to finite
measures on Rd (cf. p. 202 in [118]).

Lemma 3.3.23. Let ψ satisfy (3.2.7) as well as conditions Assumptions 3.2.1 (A3),(A5’). For µ ∈
M(O) we have ∫

Rd
ψ(µext) =

∫
O
ψ(µ). (3.3.34)

Proof. We define

D1 :=

{∫
O
v dµ−

∫
O
ψ∗(v) dx : v ∈ L1(µ), ψ∗(v) ∈ L1(O)

}
and

D2 :=

{∫
Rd
v dµext −

∫
Rd
ψ∗(v) dx : v ∈ L1(µext), ψ

∗(v) ∈ L1(Rd)
}
,

which allows us to write ∫
O
ψ(µ) = supD1 and

∫
Rd
ψ(µext) = supD2.
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We note that for v satisfying the conditions of D1, vext satisfies the conditions of D2, while the involved
integrals agree due to the definition of µext and ψ∗(0) = 0. This yields “≥”.

Conversely, for v satisfying the conditions of D2 we can define ṽ = v|O. ṽ satisfies the conditions of D1.
Furthermore, we have ∫

O
ṽ dµ =

∫
Rd
v dµext and∫

O
ψ∗(ṽ) dx ≤

∫
Rd
ψ∗(v) dx due to ψ∗ ≥ 0.

Thus, we have found an element in D1 being larger than or equal to∫
Rd
v dµext −

∫
Rd
ψ∗(v) dx,

which yields “≤”, completing the proof.

The key tool to prove the approximation property (3.3.9) is the following proposition.

Proposition 3.3.24. Let ε > 0, 0 < δ ≤ w(ε)
2 and µ ∈ M(O). Let ψ satisfy (3.2.7) as well as

Assumptions 3.2.1 (A3),(A5’). Then,

‖ψ(µε,δ)‖TV ≤ ‖ψ(µ)‖TV . (3.3.35)

Proof. Recall Notations 3.3.10 and let V j = U j∩O. Let (ξα)α>0 ⊂ C0
c (Rd) be a sequence of non-negative

cut-off functions compactly supported in O, which converge to 1 pointwise in O for α→ 0, and each of
which is monotonically increasing on each V j in ejd direction.

Let h ∈ L1(O) and µ = hdx. In the following argument, we will need ξα(x) ≥ ξα(x − εejd) for x ∈ V j ,
where x− εejd is not a priori in O. However, since ξα = 0 outside of O, it is clear that the statement is

valid even if x− εejd /∈ O. By the convexity of ψ, the construction of (ζj)lj=0 and Lemma 3.3.17, we then
estimate ∫

O
ξαψ(µε) =

∫
O
ξα(x)ψ

 l∑
j=0

ζj(x+ εejd)hext(x+ εejd)

 dx

≤
∫
O
ξα(x)

l∑
j=0

ζj(x+ εejd)ψ(hext(x+ εejd)) dx

=

∫
Rd
ξα(x)

l∑
j=0

ζj(x+ εejd)ψ(hext(x+ εejd)) dx

=

∫
Rd
ψ(hext(x))

l∑
j=0

ξα(x− εejd)ζj(x)dx. (3.3.36)

We note that
∑l
j=0 ξα(x − εejd)ζj(x) is supported on O by Remark 3.3.12. Furthermore, by the con-

struction of ξα, we have
ξα(x− εejd) ≤ ξα(x)

for all x ∈ V j , so this holds especially for x ∈ O for which ζj(x) > 0. Thus, we can continue

(3.3.36) =

l∑
j=0

∫
O
ξα(x− εejd)ζj(x)ψ(h(x)) dx

≤
∫
O

l∑
j=0

ζj(x)ξα(x)ψ(h(x)) dx

=

∫
O
ξα(x)ψ(h(x)) dx =

∫
O
ξα ψ(µ).

(3.3.37)
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For a positive Radon measure µ, we have µ(O) = sup{µ(K) : K ⊆ O compact}. Since any such K is
included in

Kα := {x ∈ O : dist(x,Oc) ≥ α}
for α small enough, we can as well write µ(O) = limα→0 µ(Kα). Then, noting that ξα ≥ 1Kα , we can
argue by definition of the Radon measure of compact sets that

µ(O) ≥
∫
O
ξαdµ ≥ µ(Kα)

α→0−→ µ(O),

thus µ(O) = limα→0

∫
O ξαdµ.

Hence, we conclude by (3.3.37) for µ = hdx, h ∈ L1(O), that∫
O
ψ(µε) = lim

α→0

∫
O
ξαψ(µε) ≤ lim

α→0

∫
O
ξαψ(µ) =

∫
O
ψ(µ). (3.3.38)

Using (3.3.38), Lemma 3.3.21 and Lemma 3.3.23, we then obtain for 0 < δ ≤ w(ε)
2∫

O
ψ(µε,δ) =

∫
O
ψ(((ρδ ∗ µext)|O dx)ε)

≤
∫
O
ψ((ρδ ∗ µext)|O) dx

=

∫
Rd
ψ(ρδ ∗ µext)1O dx

≤
∫
Rd
ψ(ρδ ∗ µext) dx ≤

∫
Rd
ψ(µext) =

∫
O
ψ(µ),

which finishes the proof.

Corollary 3.3.25. Together with Remark 3.3.4, Proposition 3.3.24 immediately implies

lim sup
ε↘0

∫
O
ψ(µε,δε) ≤

∫
O
ψ(µ),

where µ ∈M(O) and 0 < δε ≤ w(ε)
2 for each ε > 0.

Proof of Theorem 3.3.8. For u as in Theorem 3.3.8, we show that the sequence

(un)n∈N :=
(
u 1
n ,

1
2w( 1

n )

)
n∈N

,

where w was defined in Remark 3.3.12, meets all requirements.

By construction, un ∈ M(O) ∩H−1 for all n ∈ N, and by Lemma 3.3.19, the density of un is bounded
and thus in L2(O). Property (3.3.8) is proved in the first part of Proposition 3.3.20. For Property
(3.3.9), note that Corollary 3.3.25 especially shows that (ψ(un))n∈N is uniformly bounded in the TV
norm, which means that it contains a subsequence that converges weakly* to ψ(u) by Proposition 3.3.20,
Corollary 3.3.25 and Lemma 2.1 in [45]. Since this argument can be carried out for any subsequence, we
get weak* convergence for the whole sequence and, also by Lemma 2.1 in [45],∥∥∥ψ (u 1

n ,
1
2w( 1

n )

)∥∥∥
TV

=

∫
O
ψ
(
u 1
n ,

1
2w( 1

n )

)
→
∫
O
ψ(u) = ‖ψ(u)‖TV as n→∞.

This yields (3.3.9) and thereby concludes the proof.

3.4 Proof of the main result

Throughout this section, we work under Assumptions 3.2.1.

We first solve a modified SPDE by the variational approach, which will yield ε-approximate solutions.
Moreover, we show improved regularity for those approximations, which is used later to prove their
convergence to a limit in L2(Ω; C([0, T ];H−1)) for ε→ 0.
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We consider the SPDE

dXε
t = ε∆Xε

t dt+ ∆φε(Xε
t )dt+B(t,Xε

t )dWt,

Xε
0 = x0,

(3.4.1)

where we use the notation for the Yosida approximation of Appendix 3.D and assume x0 ∈ L2(Ω,F0;L2).
Now and in the following we omit the domain O when using Lebesgue and Sobolev spaces as well as
spaces of continuous or continuously differentiable functions, as introduced in Section 3.1.2.

Lemma 3.4.1. For all T > 0, Problem (3.4.1) gives rise to a solution in sense of Definition 3.B.1 with
respect to the Gelfand triple V := L2 ↪→ H−1 ↪→ (L2)′ = V ′.

Proof. We prove that (3.4.1) fits into the framework of Appendix 3.B with the operator

A(u) = ∆(εu+ φε(u)) for u ∈ L2.

In [112, Example 4.1.11], it is shown that an operator A of the form u 7→ ∆(Ψ(u)) satisfies the four
properties of Appendix 3.B with respect to the Gelfand triple Lp ↪→ H−1 ↪→ (Lp)′, if the following
conditions are satisfied.

(Ψ1) Ψ is continuous.

(Ψ2) For all s, t ∈ R we have
(t− s)(Ψ(t)−Ψ(s)) ≥ 0.

(Ψ3) There exist p ∈ [2,∞), a ∈ (0,∞), c ∈ [0,∞) such that for all s ∈ R we have

sΨ(s) ≥ a |s|p − c.

(Ψ4) There exist c3, c4 ∈ (0,∞) such that for all s ∈ R

|Ψ(s)| ≤ c4 + c3 |s|p−1
,

where p is as in (Ψ3).

We briefly check (Ψ1) – (Ψ4) for Ψ := ε IdR + φε. The first condition is satisfied by Lemma 3.D.2, the
second one by the maximal monotonicity of φε, together with [7, Corollary 2.1]. Using φε(0) = 0 and
again the monotonicity of φε, we obtain sφε(s) ≥ 0 and thereby

sΨ(s) ≥ sε IdR(s) = ε |s|2 .

Thus, (Ψ3) is satisfied for p = 2, a = ε and c = 0. (Ψ4) is then clear by Lemma 3.D.2. Thus, Theorem
3.B.2 is applicable as required.

The following lemma provides an important estimate on the regularity of these approximate solutions
and corresponds to [74, Lemma B.1]:

Lemma 3.4.2. Let ε > 0, x0 ∈ L2(Ω,F0;L2) and T > 0. Then for the solution (Xε
t )t∈[0,T ] to (3.4.1)

we have

E sup
t∈[0,T ]

‖Xε
t ‖22 + εE

∫ T

0

‖Xε
r‖2H1

0
dr ≤ C(E ‖x0‖22 + 1)

with a constant C > 0 independent of ε.

Proof. Let (ei)i∈N ⊂ C2
0 be a sequence of smooth eigenvectors to −∆, i. e. −∆ei = λiei for some

(λi)i∈N ⊂ (0,∞), such that (ei)i∈N is an orthonormal basis in H−1. Such a sequence can be obtained by
first choosing an L2-orthonormal basis of (−∆)-eigenvectors (ẽi)i∈N ⊂ C2

0 ⊂ L2, where

−∆ẽi = λiẽi for some λi > 0. (3.4.2)

Then, setting

ei =
√
λi ẽi for i ∈ N
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keeps (3.4.2) true for ẽi replaced by ei and makes (ei)i∈N an orthonormal basis in H−1 as required. The
latter can be seen by computing for i, j ∈ N

〈ei, ej〉H−1 =
√
λiλj

〈
−∆−1ẽi, ẽj

〉
L2 =

√
λiλj

λi
〈ẽi, ẽj〉L2 = δij .

We further let Pn : H−1 → Hn := span{e1, . . . , en} be the H−1-orthogonal projection onto the span of
the first n eigenvectors, i. e.

Pn(y) =

n∑
i=1

〈y, ei〉H−1 ei.

Recall that the unique variational solution Xε to (3.4.1) is constructed in [112, Section 4.2] as a (weak)
limit in L2([0, T ]× Ω;L2) of the solutions to the Galerkin approximation

dXn
t = εPn∆Xn

t dt+ Pn∆φε(Xn
t )dt+ PnB(t,Xn

t )dWn
t

Xn
0 = Pnx0,

in Hn, where for simplicity we omit the ε-dependence of Xn, and for an orthonormal basis (gi)i∈N of U
(as defined in Assumption 3.2.1 (A1)) we let

Wn
t =

n∑
i=1

〈
J−1(Wt), gi

〉
U
gi.

We first note that for x ∈ Hn we have ∆x ∈ Hn ⊂ L2 and thus Pn(−∆x) = −∆x. Using Xn
t ∈ Hn for

all t ∈ [0, T ], we have

〈Xn
t , P

n(−∆Xn
t )〉L2 = ‖Xn‖2H1

0
.

We note by Lemma 3.D.3 and (3.2.5) that

|φε(Xn)|2 ≤ C(1 + (Xn)2),

so φε(Xn) ∈ L2 since Xn ∈ Hn ⊆ L2. Thus, φε(Xn) ∈ H1
0 by [126, Theorem 2.1.11], and we can

compute

〈Xn, Pn(∆φε(Xn))〉L2 =

〈
Xn,

n∑
i=1

〈∆φε(Xn), ei〉H−1 ei

〉
L2

=

〈
∆φε(Xn),

n∑
i=1

〈Xn, ei〉L2 ei

〉
H−1

=

〈
∆φε(Xn),

n∑
i=1

〈−∆Xn, ei〉H−1 ei

〉
H−1

= 〈∆φε(Xn),−∆Xn〉H−1

= 〈∆φε(Xn), Xn〉H−1×H1
0
.

Again by [126, Theorem 2.1.11], we obtain for all r ∈ [0, T ]

〈∆φε(Xn
r ), Xn

r 〉H−1×H1
0

= −〈∇Xn
r ,∇φε(Xn

r )〉L2 = − (φε)
′
(Xn

r ) ‖Xn
r ‖2H1

0
≤ 0,

where we used that (φε)
′
(Xn

r ) ≥ 0 almost everywhere by the monotonicity of φε. Along with the
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finite-dimensional Ito formula, this can be used to estimate

e−Kt ‖Xn
t ‖2L2 = ‖Pn x0‖2L2 + 2

∫ t

0

e−Kr 〈Xn
r , εP

n(∆Xn
r ) + Pn(∆φε(Xn

r )〉L2 dr

+2

∫ t

0

e−Kr 〈Xn
r , P

nB(r,Xn
r ) dWn

r 〉L2

+

∫ t

0

e−Kr ‖PnB(r,Xn
r )‖2L2(U,L2) dr −K

∫ t

0

e−Kr ‖Xn
r ‖2L2 dr

≤ ‖Pn x0‖2L2 − 2ε

∫ t

0

e−Kr ‖Xn
r ‖2H1

0
dr (3.4.3)

+2

∫ t

0

e−Kr 〈Xn
r , P

nB(r,Xn
r ) dWn

r 〉L2

+

∫ t

0

e−Kr ‖PnB(r,Xn
r )‖2L2(U,L2) dr −K

∫ t

0

e−Kr ‖Xn
r ‖2L2 dr.

Using lemma 3.E.1, the Burkholder-Davis-Gundy inequality (see e. g. [112, Appendix D]) and (3.2.3), we
get for the stochastic integral term in (3.4.3)

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
e−

Kr
2 Xn

r , e
−Kr2 PnB(r,Xn

r ) dWn
r

〉
L2

∣∣∣∣
≤ 3E

〈∫ ·
0

〈
e−

Kr
2 Xn

r , e
−Kr2 PnB(r,Xn

r ) dWn
r

〉
L2

〉 1
2

T

≤ 3E

(∫ T

0

∥∥∥e−Kr2 Xn
r

∥∥∥2

L2

∥∥∥e−Kr2 PnB(r,Xn
r )
∥∥∥2

L2(U,L2)
dr

) 1
2

≤ 3E

(∫ T

0

∥∥∥e−Kr2 Xn
r

∥∥∥2

L2

∥∥∥e−Kr2 B(r,Xn
r )
∥∥∥2

L2(U,L2)
dr

) 1
2

≤ 3E

 sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

) 1
2

(∫ T

0

∥∥∥e−Kr2 B(r,Xn
r )
∥∥∥2

L2(U,L2)

) 1
2


≤ 3E

[
1

12
sup

r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+

6

2

∫ T

0

e−Kr ‖B(r,Xn
r )‖2L2(U,L2) dr

]

≤ 1

4
E sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+ 9E

∫ T

0

e−KrC(1 + ‖Xn
r ‖2L2) dr

=
1

4
E sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+ 9CE

∫ T

0

e−Kr ‖Xn
r ‖2L2 dr + C̃

(3.4.4)

We can now estimate from (3.4.3) and the previous calculation that

E sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+KE

∫ T

0

e−Kr ‖Xn
r ‖2L2 dr + 2ε

∫ T

0

e−Kr ‖Xn
r ‖2H1

0
dr

≤ 3E sup
t∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2 +KE
∫ t

0

e−Kr ‖Xn
r ‖2L2 dr + 2ε

∫ t

0

e−Kr ‖Xn
r ‖2H1

0
dr

)

≤ 3

(
E ‖x0‖2L2 +

1

4
E sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+ CE

∫ T

0

e−Kr ‖Xn
r ‖2L2 dr + C̃

)
,

where we absorbed the second-to-last term in (3.4.3) into the terms with the constants C and C̃. Thus,
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we get

E sup
r∈[0,T ]

(
e−Kr ‖Xn

r ‖2L2

)
+ ε

∫ T

0

e−Kr ‖Xn
r ‖2H1

0
dr

≤ 4E ‖x0‖2L2 + 4(C −K)E
∫ T

0

e−Kr ‖Xn
r ‖2L2 dr + C̃,

and by choosing K large enough and multiplying by eKT , which we absorb in the constant, we obtain

E sup
r∈[0,T ]

‖Xn
r ‖2L2 + εE

∫ T

0

‖Xn
r ‖2H1

0
dr ≤ C(E ‖x0‖2L2 + 1).

Thus, (Xn)n∈N is bounded in L2(Ω;L∞([0, T ];L2)) and in L2(Ω × [0, T ];H1
0 ). The latter is a Hilbert

space, thus we can extract a weakly converging subsequence whose limit can be identified with the
unique weak L2(Ω× [0, T ];L2) limit Xε. Furthermore, we can interpret the former as the dual space of
L2(Ω;L1([0, T ];L2)) which is separable. Thus, we can extract a weak* converging subsequence whose
limit can again be identified with Xε. By weak (respectively weak*) lower-semicontinuity of the norms,
we can thus pass to the limit n→∞ to obtain the required inequality.

Proof of Theorem 3.2.6. The proof will be carried out in three steps. We first construct a solution
candidate as a limit of solutions to (3.4.1). Then we show that this limit indeed is an SVI solution and
we conclude by showing uniqueness, which relies on the same construction which was already used to
show the existence of a solution.

Step 1: We begin by showing that the solutions (Xε)ε>0 to (3.4.1) for ε → 0 form a Cauchy sequence
in L2(Ω; C([0, T ];H−1)). To this end, we first consider two of those solutions Xε1 , Xε2 with respective
initial condition x1

0, x
2
0 ∈ L2(Ω,F0;L2). By subsequently applying the Ito formula for the squared norm

in Hilbert spaces (see e. g. [112, Theorem 4.2.5]) and the finite-dimensional Ito formula (see e. g. [114,
IV.§3]), we have for K > 0

e−Kt ‖Xε1
t −Xε2

t ‖2H−1 =
∥∥x1

0 − x2
0

∥∥2

H−1

+ 2

∫ t

0

e−Kr 〈ε1∆Xε1
r − ε2∆Xε2

r , X
ε1
r −Xε2

r 〉H−1 dr

+ 2

∫ t

0

e−Kr 〈∆φε1(Xε1
r )−∆φε2(Xε2

r ), Xε1
r −Xε2

r 〉H−1 dr

+ 2

∫ t

0

e−Kr 〈Xε1
r −Xε2

r , B(r,Xε1
r )−B(r,Xε2

r )dWr〉H−1

+

∫ t

0

e−Kr ‖B(r,Xε1
r )−B(r,Xε2

r )‖2L2(U,H−1) dr

−K
∫ t

0

e−Kr ‖Xε1
r −Xε2

r ‖2H−1 dr.

(3.4.5)

We note that

〈ε1∆Xε1
r − ε2∆Xε2

r , X
ε1
r −Xε2

r 〉H−1 = −
∫
O

(ε1X
ε1
r − ε2X

ε2
r )(Xε1

r −Xε2
r )dx

≤ C(ε1 + ε2)
(
‖Xε1

r ‖2L2 + ‖Xε2
r ‖2L2

)
and, using Corollary 3.D.9 for the second step,

〈∆φε1(Xε1
r )−∆φε2(Xε2

r ), Xε1
r −Xε2

r 〉H−1 =

= −
∫
O

(φε1(Xε1
r )− φε2(Xε2

r )) (Xε1
r −Xε2

r ) dx

≤ C(ε1 + ε2)
(

1 + ‖Xε1
r ‖2L2 + ‖Xε2

r ‖2L2

)
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dt⊗ dP-almost everywhere. Using this and the Lipschitz property (3.2.2) of B, we continue (3.4.5) by

e−Kt ‖Xε1
t −Xε2

t ‖2H−1 ≤
∥∥x1

0 − x2
0

∥∥2

H−1

+ C(ε1 + ε2)

∫ t

0

e−Kr
(

1 + ‖Xε1
r ‖2L2 + ‖Xε2

r ‖2L2

)
dr

+ 2

∫ t

0

e−Kr 〈Xε1
r −Xε2

r , B(r,Xε1
r )−B(r,Xε2

r )dWr〉H−1 dr

+ C

∫ t

0

e−Kr ‖Xε1
r −Xε2

r ‖2H−1 dr

−K
∫ t

0

e−Kr ‖Xε1
r −Xε2

r ‖2H−1 dr.

With (3.2.2), Lemma 3.4.2 and, as in (3.4.4), the Burkholder-Davis-Gundy inequality, we obtain

E sup
t∈[0,T ]

(
e−Kt ‖Xε1

t −Xε2
t ‖2H−1

)
≤ CE

∥∥x1
0 − x2

0

∥∥2

H−1 (3.4.6)

+ C(ε1 + ε2)
(
E
∥∥x1

0

∥∥2

L2 + E
∥∥x2

0

∥∥2

L2 + 1
)

for K large enough, where we use the assumption that x1
0, x

2
0 ∈ L2. If we assume that x1

0 = x2
0 =: x0,

(3.4.6) implies

E sup
t∈[0,T ]

(
e−Kt ‖Xε1

t −Xε2
t ‖2H−1

)
≤ C(ε1 + ε2)(E ‖x0‖2L2 + 1),

and thus, by completeness there exists a process X ∈ L2(Ω; C([0, T ];H−1)) satisfying

{
E supt∈[0,T ] ‖Xε

t −Xt‖2H−1 → 0 for ε→ 0

X0 = x0.

In particular, we have for each t ∈ [0, T ] that Xε
t → Xt for ε → 0 in L2(Ω;H−1). Since Xε

t is Ft-
measurable by construction (see Theorem 3.B.2), so is Xt, which makes X an adapted process. If the
initial condition is indeed in L2, this will be the candidate for an SVI solution.

It remains to construct a solution candidate if the initial state is not in L2 but a general H−1 functional.
To this end, we first notice that for two different initial conditions x1

0, x
2
0 ∈ L2(Ω,F0;L2), we can

construct the limit of the approximate solutions in L2(Ω; C([0, T ];H−1)) as before, call them X1 and X2,
respectively, and take the limit ε1, ε2 → 0 in (3.4.6) to obtain

E sup
t∈[0,T ]

(
e−Kt

∥∥X1
t −X2

t

∥∥2

H−1

)
≤ 2E

∥∥x1
0 − x2

0

∥∥2

H−1 . (3.4.7)

Let now x0 ∈ L2(Ω,F0;H−1) and select a sequence (xn0 )n∈N ⊂ L2(Ω,F0;L2) such that xn0 → x0 in
L2(Ω;H−1) for n→∞. Let (Xε,n)ε>0,n∈N be the unique variational solutions to (3.4.1) with respective
initial conditions (x0)n∈N, for which Lemma 3.4.2 applies. We first construct the sequence (Xn)n∈N as
the unique limits in L2(Ω; C([0, T ];H−1)) obtained as in the argument above, and notice that it is a
Cauchy sequence by (3.4.7). Thus, we obtain another limit X ∈ L2(Ω; C([0, T ];H−1)) which we identify
as a solution to (3.1.1) in the sense of Definition 3.2.4 in the following step.

Step 2: We show that the limit process satisfies the properties of Definition 3.2.4. Let ε > 0, x0 ∈
L2(Ω,F0;H−1) and (xn0 )n∈N ⊂ L2(Ω,F0;L2) such that xn → x ∈ L2(Ω;H−1) for n → ∞. Let
(Xε,n)ε>0,n∈N be the solutions to (3.4.1) with initial values xn0 . For part (i) of Definition 3.2.4, we

92



apply Ito’s formula as in (3.4.5) to obtain for t ∈ [0, T ]

e−Kt ‖Xε,n
t ‖

2
H−1 = ‖x0‖2H−1 + 2

∫ t

0

e−Kr 〈ε∆Xε,n
r , Xε,n

r 〉H−1 dr

+ 2

∫ t

0

e−Kr 〈∆φε(Xε,n
r ), Xε,n

r 〉H−1 dr

+ 2

∫ t

0

e−Kr 〈Xε,n
r , B(r,Xε,n

r )dWr〉H−1 dr

+

∫ t

0

e−Kr ‖B(r,Xε,n
r )‖2L2(U,H−1) dr

−K
∫ t

0

e−Kr ‖Xε,n
r ‖2H−1 dr.

(3.4.8)

Note that we have
〈ε∆Xε,n

r , Xε,n
r 〉H−1 = −ε ‖Xε,n

r ‖L2 ≤ 0.

With the notation of Appendix 3.D and setting

ϕε(v) =

{∫
O ψ

ε(v)dx, v ∈ Lm+1,

+∞, otherwise,
(3.4.9)

for v ∈ H−1,m ∈ (0, 1] as in Assumption 3.2.1 (A5) in the superlinear case, i. e. if (3.2.6) is satisfied, and
m = 0 in the sublinear case, i. e. if (3.2.7) is satisfied. We can use φε = ∂ψε, the fact that φε(Xε,n) ∈ H1

0

dt ⊗ P-almost everywhere by Lemma 3.4.2 and Lemma 3.D.2, and the chain rule for Sobolev functions
(see e. g. [126, Theorem 2.1.11]), to obtain

〈∆φε(Xε,n
r ), Xε,n

r 〉H−1 = 〈−∆φε(Xε,n
r ), 0−Xε,n

r 〉H−1

≤ ϕε(0)− ϕε(Xε,n
r ) = −ϕε(Xε,n

r ).
(3.4.10)

Furthermore, we can use (3.2.2) and (3.2.4) to obtain

‖B(t,Xε,n)‖2L2(U,H−1) ≤ 2
(
‖B(t,Xε,n)−B(t, 0)‖2L2(U,H−1) + ‖B(t, 0)‖2L2(U,H−1)

)
≤ C(1 + ‖Xε,n‖2H−1).

Thus, (3.4.8) implies

E
(
e−Kt ‖Xε,n

t ‖
2
H−1

)
≤E ‖xn0‖2H−1 − 2E

∫ t

0

e−Krϕε(Xε,n
r ) dr

+ (C −K)E
∫ t

0

e−Kr ‖Xε,n
r ‖2H−1 dr +

∫ t

0

Ce−Krds.

Choosing K large enough, we get

E
(
e−Kt ‖Xε,n

t ‖
2
H−1

)
≤ E ‖xn0‖2H−1 + C − 2e−KtE

∫ t

0

ϕε(Xε,n
r ) dr (3.4.11)

and thus, by choosing t = T and multiplying with 1
2e
KT ,

E
∫ T

0

ϕε(Xε,n
r ) dr ≤ C(1 + E ‖xn0‖2H−1) ≤ C̃ <∞, (3.4.12)

for some C, C̃ > 0. Note that C̃ can be chosen independent of ε and n due to the convergence of (xn0 )n∈N
to x0. By Assumption 3.2.1 (A4) we can use Corollary 3.D.7 to obtain for v ∈ L2

|ϕε(v)− ϕ(v)| ≤
∫
O
|ψε(v)− ψ(v)| dx

≤
∫
O
Cε(1 + v2) dx

= Cε(1 + ‖v‖2L2).

(3.4.13)
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Since Xε,n ∈ L2 dt⊗ P-almost everywhere by Lemma 3.4.2, this leads to

E
∫ T

0

ϕε(Xε,n
r ) dr ≥ E

∫ T

0

ϕ(Xε,n
r ) dr − CεE

∫ T

0

1 + ‖Xε,n
r ‖2L2 dr. (3.4.14)

With these statements about fixed values of ε, we can now consider the limit ε → 0. Taking into
account that ϕ is convex and lower-semicontinuous as shown in Section 3.3 and that Xε,n → Xn in
L2(Ω; C([0, T ];H−1)) and thus in L2(Ω× [0, T ];H−1), we can use [19, Proposition 16.50] and (3.4.14) to
obtain

E
∫ T

0

ϕ(Xn
r ) dr ≤ lim inf

ε→0
E
∫ T

0

ϕ(Xε,n
r ) dr

≤ lim inf
ε→0

(
E
∫ T

0

ϕε(Xε,n
r ) dr + CεE

∫ T

0

1 + ‖Xε,n
r ‖2L2 dr

)
.

(3.4.15)

Since, by Lemma 3.4.2, the last term converges to 0 for ε→ 0 and n ∈ N fixed, we deduce that

E
∫ T

0

ϕ(Xn
r ) dr ≤ lim inf

ε→0
E
∫ T

0

ϕε(Xε,n
r ) dr. (3.4.16)

Thus, taking lim infε→0 in (3.4.12) and then lim infn→∞, using lower-semicontinuity of ϕ as in (3.4.15),
we obtain

E
∫ T

0

ϕ(Xr) dr ≤ C(1 + ‖x0‖2H−1) <∞,

as required.

For the variational inequality part, let G,Z, t be as in Definition 3.2.4 (ii). Ito’s formula (e. g. [112,
Theorem 4.2.5]) then implies for all t ∈ [0, T ]

E ‖Xε,n
t − Zt‖2H−1 = E ‖xn0 − Z0‖2H−1

+ 2E
∫ t

0

〈ε∆Xε,n
r + ∆φε(Xε,n

r )−Gr, Xε,n
r − Zr〉H−1 dr

+ E
∫ t

0

‖B(r,Xε,n
r )−B(r, Zr)‖2L2(U,H−1) dr.

Analogous to (3.4.10), we have

〈∆φε(Xε,n
r ), Xε,n

r − Zr〉H−1 + ϕε(Xε,n
r ) ≤ ϕε(Zr) (3.4.17)

dt ⊗ P-almost everywhere, where we recall that both Xε,n and Z are in L2 dt ⊗ P-almost everywhere.
Moreover, using the weighted Young inequality,

〈ε∆Xε,n
r , Xε,n

r − Zr〉H−1 ≤ ε ‖∆Xε,n
r ‖H−1 ‖Xε,n

r − Zr‖H−1

≤ 1

2
ε

4
3 ‖∆Xε,n

r ‖2H−1 +
1

2
ε

2
3 ‖Xε,n

r − Zr‖2H−1

(3.4.18)

dt⊗ P-almost everywhere. Hence, by (3.2.2), (3.4.17) and (3.4.18),

E ‖Xε,n
t − Zt‖H−1 + 2E

∫ t

0

ϕε(Xε,n
r ) dr

≤ E ‖xn0 − Z0‖2H−1 + 2E
∫ t

0

ϕε(Zr) dr (3.4.19)

− 2E
∫ t

0

〈Gr, Xε,n
r − Zr〉H−1 dr + CE

∫ t

0

‖Xε,n
r − Zr‖2H−1 dr

+ 2E
∫ t

0

1

2
ε

4
3 ‖∆Xε,n

r ‖2H−1 +
1

2
ε

2
3 ‖Xε,n

r − Zr‖2H−1 dr.

As for (3.4.15), we have

E
∫ t

0

ϕ(Xn
r ) dr ≤ lim inf

ε→0
E
∫ t

0

ϕε(Xε,n
r ) dr. (3.4.20)
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We notice that by Z ∈ L2 dt ⊗ P-almost everywhere, we have ϕε(Zr) ≤ ϕ(Zr) due to Corollary 3.D.5.
Moreover, any other term in (3.4.19) converges because Xε,n → Xn in L2(Ω; C([0, T ];H−1)), the require-
ment of G belonging to L2(Ω× [0, T ];H−1) and Lemma 3.4.2. Thus, we can take lim infε→0 in (3.4.19)
to obtain

E
∫ t

0

ϕ(Xn
r ) dr ≤− 1

2
E ‖Xn

t − Zt‖H−1 +
1

2
E ‖xn0 − Z0‖2H−1 + E

∫ t

0

ϕ(Zr) dr

− E
∫ t

0

〈Gr, Xn
r − Zr〉H−1 dr +

1

2
CE

∫ t

0

‖Xn
r − Zr‖2H−1 dr.

Now taking lim infn→∞, using the lower-semicontinuity of ϕ and convergence of all the other terms,
yields (3.2.12), as required.

Step 3: It remains to show that the solution constructed in the previous step is unique. To this end, let
x0, y0 ∈ L2(Ω,F0;H−1), (yn0 )n∈N ⊂ L2(Ω,F0;L2) satisfying yn0 → y0 in L2(Ω;H−1) for n → ∞. Let X
be an arbitrary SVI solution to (3.1.1) with initial condition x0 and let (Y ε,n)ε>0,n∈N be the solutions
to (3.4.1) with respective initial conditions (yn0 )n∈N. We first check that

Z = Y ε,n and G = ε∆Y ε,n + ∆φε(Y ε,n) (3.4.21)

are admissible choices for (3.2.12). First,

Y ε,n ∈ L2(Ω; C([0, T ];H−1))

by construction and
Y ε,n ∈ L2(Ω× [0, T ];H1

0 ) ⊂ L2(Ω× [0, T ];L2)

by Lemma 3.4.2 with norm bounded uniformly in ε. Also by Lemma 3.4.2, we have

E
∫ T

0

‖ε∆Y ε,nt ‖
2
H−1 dt = ε2 E

∫ T

0

‖Y ε,nt ‖
2
H1

0
dt <∞.

Finally, for the nonlinear term, we have by the chain rule for the composition of Lipschitz functions with
H1

0 functions (e. g. [126, Theorem 2.1.11]) that almost everywhere in O
∇φε(Y ε,nt ) = (φε)′(Y ε,nt )∇Y ε,nt ,

such that we can compute using Lemma 3.D.2∫
O
|∇φε(Y ε,n)|2 dx =

∫
O

∣∣(φε)′(Y ε,nt )∇Y ε,nt

∣∣2dx ≤ 1

ε2
‖∇Y ε,nt ‖

2
L2

dt⊗ P-almost everywhere. Consequently,

‖φε(Y ε,nt )‖2H1
0
≤ C(ε) ‖Y ε,nt ‖

2
H1

0
,

such that we can conclude by Lemma 3.4.2

E
∫ T

0

‖∆φε(Y ε,nt )‖2H−1 dt = E
∫ T

0

‖φε(Y ε,nt )‖2H1
0

dt

≤ C(ε)E
∫ T

0

‖Y ε,nt ‖
2
H1

0
dt

≤ C̃(ε) <∞,
which yields that the choices in (3.4.21) were admissible.

As a consequence, (3.2.12) yields for t ∈ [0, T ]

E ‖Xt − Y ε,nt ‖
2
H−1 + 2E

∫ t

0

ϕ(Xr) dr

≤E ‖x0 − yn0 ‖2H−1 + 2E
∫ t

0

ϕ(Y ε,nr ) dr (3.4.22)

− 2E
∫ t

0

〈ε∆Y ε,nr + ∆φε(Y ε,nr ), Xr − Y ε,nr 〉H−1 dr

+ CE
∫ t

0

‖Xr − Y ε,nr ‖2H−1 dr.

95



For u ∈ L2 and ϕε as in (3.4.9), we have, as in (3.4.10) and (3.4.17),

〈−∆φε(Y ε,n), u− Y ε,n〉H−1 + ϕε(Y ε,n) ≤ ϕε(u) dt⊗ P-a. e. (3.4.23)

Since Y ε,n ∈ H1
0 ⊂ L2 dt ⊗ P-a. e. we can use Corollary 3.D.7 as in (3.4.13) to obtain dt ⊗ P-almost

everywhere

|ϕε(Y ε,n)− ϕ(Y ε,n)| ≤ Cε
(

1 + ‖Y ε,n‖2L2

)
.

Thus, we can modify (3.4.23) and get

〈−∆φε(Y ε,n), u− Y ε,n〉H−1 + ϕ(Y ε,n) ≤ ϕ(u) + Cε
(

1 + ‖Y ε,n‖2L2

)
dt⊗ P-a. e.. (3.4.24)

Note that (3.4.24) is trivial if ϕ(u) = ∞. Furthermore, (3.4.24) can be deduced analogously for u ∈
ιm(Lm+1 ∩ H−1) in the superlinear setting, i. e. when ϕ is given by (3.2.8), with m as in Assumption
3.2.1 (A5). In the sublinear setting, i. e. ϕ is given by (3.2.9), and u ∈ M(O) ∩ H−1, we consider an
approximating sequence (µj)j∈N ⊂M∩H−1 with densities (uj)j∈N ⊂ L2 given by Theorem 3.3.8, such
that (3.4.24) is satisfied for all uj , j ∈ N. We then pass to the limit j →∞ and notice that (µj)j∈N has
been constructed in such a way that both ϕ(uj)→ ϕ(u) and

〈−∆φε(Y ε,n), uj − Y ε,n〉H−1

= H1
0
〈φε(Y ε,n), uj − Y ε,n〉H−1 −→ H1

0
〈φε(Y ε,n), u− Y ε,n〉H−1

= 〈−∆φε(Y ε,n), u− Y ε,n〉H−1 .

Consequently, replacing u by X in (3.4.24), we have in any case

〈−∆φε(Y ε,n), X − Y ε,n〉H−1 + ϕ(Y ε,n) ≤ ϕ(X) + Cε
(

1 + ‖Y ε,n‖2L2

)
dt⊗ P-a. e.. (3.4.25)

Using (3.4.25) and the same estimate as in (3.4.18), we can modify (3.4.22) to obtain for t ∈ [0, T ]

E ‖Xt − Y ε,nt ‖
2
H−1 ≤ E ‖x0 − yn0 ‖2H−1

+ 2E
∫ t

0

1

2
ε

4
3 ‖∆Y ε,nr ‖2H−1 dr +

1

2
ε

2
3 ‖Xr − Y ε,nr ‖2H−1 dr

+ CE
∫ t

0

‖Xr − Y ε,nr ‖2H−1 dr + CεE
∫ t

0

(
1 + ‖Y ε,nr ‖2L2

)
dr.

Taking ε→ 0 and then n→∞ yields

E ‖Xt − Yt‖2H−1 ≤ E ‖x0 − y0‖2H−1 + CE
∫ t

0

‖Xr − Yr‖2H−1 dr for t ∈ [0, T ], (3.4.26)

where Y is the SVI solution which has been constructed from (Y ε,n) in the limiting procedure of the first
two steps of this proof. Gronwall’s inequality then yields X = Y if x0 = y0, and thus uniqueness of SVI
solutions. Then, estimate (3.2.13) follows by applying Gronwall’s inequality to (3.4.26) with different
initial values, which concludes the proof.

3.A Generalities on convex functions

We collect and prove some statements on convex functions defined on R.

Lemma 3.A.1. Let f : R→ [0,∞) be convex with f(0) = 0 and x, y ∈ R \ {0} with x < y. Then

f(x)

x
≤ f(y)

y
. (3.A.1)

In particular, for x > 0 this implies f(x) ≤ f(y).
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Proof. Note that by convexity, we have for λ ∈ (0, 1), x ∈ R

f(λx) = f(λx+ (1− λ)0) ≤ λf(x) + (1− λ)f(0) = λf(x). (3.A.2)

If x < 0 < y, the statement is obvious by the nonnegativity of f . If 0 < x < y, we use (3.A.2) with
λ = x

y to get

f(x)

x
=
f(λy)

λy
≤ λf(y)

λy
=
f(y)

y
,

while for x < y < 0 we use (3.A.2) with λ := y
x to get

f(y)

y
=
f(λx)

λx
≥ λf(x)

λx
=
f(x)

x
,

as required.

Lemma 3.A.2. Let ψ satisfy Assumptions 3.2.1 and y > 0. Then, if ψ(y) > 0, we have

ψ∗(−x) = ψ∗(x) ≤ ψ(y) for x ∈
[
0,
ψ(y)

y

]
,

where ψ∗ is defined as in Definition 3.3.1.

Proof. By Remark 3.3.2, the last part of Lemma 3.A.1 and the nonnegativity of ψ∗, it is enough to show

ψ∗
(
ψ(y)

y

)
≤ ψ(y). (3.A.3)

To verify (3.A.3), we distinguish three cases for y′ ∈ R. For y′ ≥ y we have by Lemma 3.A.1

ψ(y)

y
y′ − ψ(y′) = y′

(
ψ(y)

y
− ψ(y′)

y′

)
≤ 0,

for y′ ≤ 0 we have by the nonnegativity of ψ

ψ(y)

y
y′ − ψ(y′) ≤ 0,

and for y′ ∈ (0, y) we have
ψ(y)

y
y′ − ψ(y′) ≤ ψ(y)

y
y = ψ(y),

which yields the claim.

Lemma 3.A.3. Let ψ satisfy Assumptions 3.2.1. For K = dom(ψ∗) := {x ∈ R : ψ∗(x) <∞} we have

supK = lim
t→∞

ψ(t)

t
and sup(−K) = lim

t→∞

ψ(−t)
t

.

Proof. We only prove the first statement, the second one then becomes clear by symmetry. To this end,

note first that the limit is actually a supremum, as ψ(t)
t is increasing (by (3.A.1)). Let now x ∈ K, which

means that xt − ψ(t) ≤ cx < ∞ and thus ψ(t)
t ≥ x − cx

t for all t ∈ [0,∞), which yields “≤” by letting
t→∞.

Conversely, we have ψ(t)
t ∈ K for t > 0, ψ(t) > 0 by by Lemma 3.A.2. As ψ∗(0) = 0, this is true also if

ψ(t) = 0, thereby proving “≥”.

Corollary 3.A.4. Let ψ satisfy Assumptions 3.2.1. By Lemma 3.A.2 and Lemma 3.A.3, we have that

ψ∞(1) = ψ∞(−1) ≥ ψ(y)

y

for y > 0 with ψ(y) > 0, where ψ∞ is defined as in Definition 3.3.1.
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Lemma 3.A.5. Let ψ satisfy Assumptions 3.2.1. For the convex conjugate of the recession function,
we have

ψ∗∞(x) := (ψ∞)∗(x) = χ[−ψ∞(1),ψ∞(1)](x)

for x ∈ R, where for an Interval I we have written

χI(x) =

{
0, if x ∈ I
+∞, else.

Proof. In the superlinear case, i. e. (3.2.6) is satisfied, we have ψ∞ = χ{0} and thus ψ∗∞ ≡ 0, as required.
In the sublinear case, we first note that ψ∞ is, by definition, positively homogeneous, which by symmetry
amounts to absolute homogeneity. Thus

ψ∞(x) = ψ∞(1) |x| ,

where ψ∞(1) > 0 by Corollary 3.A.4, which allows to conclude by the definition of the convex conjugate.

3.B Variational solutions to nonlinear SPDE

Let (Ω,F ,P) a complete probability space, V ⊂ H ⊂ V ′ a Gelfand triple, (Wt)t∈[0,T ] a cylindrical
Id-Wiener process taking values in another separable Hilbert space (U, 〈, 〉U ) with normal filtration
(Ft)t∈[0,T ]. Let

A : [0, T ]× V × Ω→ V ′, B : [0, T ]× V × Ω→ L2(U,H),

be progressively measurable and satisfy the following conditions:

(H1) (Hemicontinuity) For all u, v, x ∈ V, ω ∈ Ω and t ∈ [0, T ], the map

R 3 λ 7→ V ′〈A(t, u+ λv, ω), x〉V
is continuous.

(H2) (Weak monotonicity) There exists c ∈ R, such that for all u, v ∈ V

2 V ′〈A(·, u)−A(·, v), u− v〉V + ‖B(·, u)−B(·, v)‖2L2(U,H) ≤ c ‖u− v‖
2
H

on [0, T ]× Ω.

(H3) (Coercivity) There exist α ∈ (1,∞), c1 ∈ R, c2 ∈ (0,∞) and an (Ft)-adapted process f ∈ L1([0, T ]×
Ω,dt⊗ P ), such that for all v ∈ V, t ∈ [0, T ]

2 V ′〈A(t, v), v〉V + ‖B(t, v)‖2L2(U,H) ≤ c1 ‖v‖
2
H − c2 ‖v‖

α
V + f(t) on Ω. (3.B.1)

(H4) (Boundedness) There exist c3 ∈ [0,∞) and an (Ft)-adapted process

g ∈ L α
α−1 ([0, T ]× Ω,dt⊗ P ),

such that for all v ∈ V, t ∈ [0, T ]

‖A(t, v)‖V ′ ≤ g(t) + c3 ‖v‖α−1
V

on Ω, where α is as in (H3).

We then consider the stochastic partial differential equation

dXt = A(t,Xt)dt+B(t,Xt) dWt, (3.B.2)

for which we establish the following notion of solution:
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Definition 3.B.1. A continuous H-valued (Ft)-adapted process (Xt)t∈[0,T ] is called a (variational)

solution of (3.B.2), if for its dt⊗ P-equivalence class X̂ we have

X̂ ∈ Lα([0, T ]× Ω,dt⊗ P;V ) ∩ L2([0, T ]× Ω,dt⊗ P;H),

with α as in (3.B.1), and P-a. s.

Xt = X0 +

∫ t

0

A(s, X̄s)ds+

∫ t

0

B(s, X̄s) dWs, t ∈ [0, T ],

where X̄ is any V -valued progressively measurable dt⊗ P-version of X.

We then have the following well-posedness result (see [112, Theorem 4.4], relying on [92]).

Theorem 3.B.2. Let X0 ∈ L2(Ω,F0,P;H). Then there exists a unique solution X to (3.B.2) in the
sense of Definition 3.B.1.

3.C Strong solutions to gradient-type SPDE

Let ϕ : H → R be a proper, lower-semicontinuous, convex function on a separable real Hilbert space H.
We consider an SPDE of the type

dXt ∈ −∂ϕ(Xt)dt+B(t,Xt)dWt,

X0 = x0,
(3.C.1)

where W is a cylindrical Wiener process in a separable Hilbert space U defined on a probability space
(Ω,F ,P) with normal filtration (Ft)t≥0 and B : [0, T ]×H ×Ω→ L2(U,H) is Lipschitz continuous, i. e.
for all v, w ∈ H

‖B(t, v)−B(t, w)‖2L2(U,H) ≤ C ‖v − w‖
2
H ,

and for all (t, ω) ∈ [0, T ]× Ω. Furthermore, we assume that

‖B(·, 0)‖L2(U,H) ∈ L2([0, T ]× Ω).

Definition 3.C.1. Let x0 ∈ L2(Ω,F0;H). AnH-continuous, Ft-adapted processX ∈ L2(Ω; C([0, T ];H))
for which there exists a selection η ∈ −∂ϕ(X), dt⊗P-a. e., is said to be a strong solution to (3.C.1) if

η ∈ L2([0, T ]× Ω;H)

and P-a. s.

Xt = x0 +

∫ t

0

ηr dr +

∫ t

0

B(r,Xr) dWr for all t ∈ [0, T ].

3.D Yosida approximation of multivalued operators

The theory of Yosida approximations can be applied to general maximal monotone operators from Banach
spaces to their dual, see e. g. [7, Section 2]. However, we constrain ourselves to the case of the Hilbert
space R.

Fix ε > 0. For a convex, lower-semicontinuous proper function ψ : R → [0,∞) we define its Moreau-
Yosida approximation ψε : R→ [0,∞) by

ψε(r) = inf
s∈R

(
|r − s|2

2ε
+ ψ(s)

)
. (3.D.1)

Let φ = ∂ψ : R → 2R be the subdifferential of ψ. For each r ∈ R, we define the resolvent Jε(r) as the
unique solution s to

s+ εφ(s) 3 r.
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Hereby the resolvent is well-defined, since φ is maximal monotone as a subdifferential (see e. g. [7,
Theorem 2.8]), which implies that IdR + εφ is bijective. We then define the Yosida approximation
φε : R→ R of φ by

φε(r) =
1

ε
(r − Jεr). (3.D.2)

We state and prove some properties of this approximation, most of which are true for general subpotential
operators. The usage of additional assumptions will be highlighted.

Proposition 3.D.1. We have

φε(r) ∈ φ(Jεr). (3.D.3)

Furthermore, ψε is continuous, convex and Gateaux differentiable, and φε = (ψε)′. In particular, φε is
also maximal monotone.

Proof. The first claim is clear by construction. The remaining statements are proved in [7, Theorem
2.9].

Lemma 3.D.2. The Yosida approximation φε is Lipschitz continuous with Lipschitz constant 1
ε .

Proof. Fix x, y ∈ R. By definition of Jε, we have

Jεx− Jεy + ε (φε(x)− φε(y)) = x− y.

By multiplying with φε(x)− φε(y) and keeping (3.D.3) in mind, we obtain

ε(φε(x)− φε(y))2 ≤ |φε(x)− φε(y)| |x− y| ,

which immediately yields the claim.

Lemma 3.D.3. Defining |φ(r)| := inf{|η| : η ∈ φ(r)}, we have |φε(r)| ≤ |φ(r)| for all r ∈ R.

Proof. By monotonicity of φ, we get for η ∈ φ(r)

0 ≤ (r − Jε(r))(η − φε(r)).

Noting that r − Jε(r) = εφε(r), we can simplify

0 ≤ ε |φε(r)| |η| − ε(φε(r))2

to obtain the estimate.

The next lemma is proved in [7, Theorem 2.9]:

Lemma 3.D.4. For each r ∈ R, we have

ψε(r) =
1

2ε
|r − Jε(r)|2 + ψ(Jεr),

in other words, the infimum in (3.D.1) is assumed at Jεr.

As an immediate consequence, we get

Corollary 3.D.5. For each r ∈ R, we have

ψ(Jεr) ≤ ψε(r) ≤ ψ(r).

Proof. The first inequality is clear by Lemma 3.D.4, the second one by setting r = s in (3.D.1).

Lemma 3.D.6. For each r ∈ R, we have

|ψ(r)− ψε(r)| ≤ ε |φ(r)|2 for all r ∈ R. (3.D.4)
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Proof. Fix an arbitrary r ∈ R. For any η ∈ φ(r) we have, using Corollary 3.D.5 in the first step and the
subdifferential inequality in the second step,

0 ≤ ψ(r)− ψ(Jεr) ≤ −η(Jεr − r) ≤ |η| ε |φε(r)| .
Since η ∈ φ(r) was arbitrary, we can pass to its infimum. Using Lemma 3.D.3, we obtain (3.D.4).

Corollary 3.D.7. With Lemma 3.D.6, under the additional assumption |φ(r)|2 ≤ C(1+ |r|2), we obtain

|ψ(r)− ψε(r)| ≤ Cε(1 + r2) for all r ∈ R.

Lemma 3.D.8. We have for all a, b ∈ R, ε1, ε2 > 0

(φε1(a)− φε2(b)) (a− b) ≥ −C(ε1 + ε2)
(
|φε1(a)|2 + |φε2(b)|2

)
.

Proof. We compute

(φε1(a)− φε2(b)) (a− b) = (φε1(a)− φε2(b))(Jε1a− Jε2b)
+ (φε1(a)− φε2(b))(a− Jε1a− (b− Jε2b))

≥ (φε1(a)− φε2(b))(ε1φ
ε1(a)− ε2φ

ε2(b))

≥ − 1

2
(ε1 + ε2)

(
|φε1(a)|2 + |φε2(b)|2

)
,

where the second step uses (3.D.3) for the first summand to be positive and (3.D.2) for the second
summand. In the last step, we neglect the squared terms and use Young’s inequality for the mixed
terms.

Corollary 3.D.9. Under the additional assumption |φ(r)|2 ≤ C(1 + |r|2), Lemma 3.D.3 immediately
yields

(φε1(a)− φε2(b)) (a− b) ≥ −C(ε1 + ε2)
(

1 + |a|2 + |b|2
)
.

3.E Estimate on specific quadratic variations

Lemma 3.E.1. Let U,H be Hilbert spaces, Q : U → U linear, bounded, non-negative definite and
symmetric, W a (possibly cylindrical) Q-Wiener process on U defined on a probability space (Ω,F ,P)

and normal filtration (Ft)t≥0. Further let B : Ω × [0, T ] → L2

(
Q

1
2 (U), H

)
such that B is predictable

and

P

(∫ T

0

‖B(s)‖
L2

(
Q

1
2 (U),H

) ds <∞
)

= 1,

and f an (Ft)-adapted continuous H-valued process. Then, the quadratic variation of a stochastic integral
on H of the form

Mt =

∫ t

0

〈fr, Br dWr〉H
can be estimated from above by

〈M〉t ≤
∫ t

0

‖fr‖2H ‖Br‖
2

L2

(
Q

1
2 (U),H

) dr.

Proof. If Q is of finite trace and thus W is a classical Wiener process, the statement follows from [112,
Lemma 2.4.2] and [112, Lemma 2.4.3]. In case of a cylindrical Wiener process, we can compute, using
the notation of Assumption 3.2.1 (A1),

〈M〉t =

〈∫ ·
0

〈
fr, Br ◦ J−1 dW̃r

〉
H

〉
t

≤
∫ t

0

‖fr‖2H
∥∥Br ◦ J−1

∥∥2

L2

(
Q

1
2
1 (U1),H

) dr

=

∫ t

0

‖fr‖2H ‖Br‖
2

L2

(
Q

1
2 (U),H

) dr,
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where in the second step, we use the Lemma for the classical Q1-Wiener process W̃ on U1. The last step
can be seen by the fact that for an orthonormal basis (ek)k∈N of Q

1
2 (U), we have that (Jek)k∈N is an

orthonormal basis of L2

(
Q

1
2
1 (U1), H

)
; see [112, section 2.5.2] for details.
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Chapter 4

Ergodicity for singular-degenerate
stochastic porous media equations

4.1 Introduction

We consider the singular-degenerate generalized stochastic porous medium equation

dXt ∈ ∆(φ(Xt))dt+BdWt,

X0 = x0,
(4.1.1)

on a bounded interval O ⊆ R with zero Dirichlet boundary conditions. The multi-valued function φ is
the maximal monotone extension of

R 3 x 7→ x1{|x|>1}, (4.1.2)

W is a cylindrical Wiener process on some separable Hilbert space U , and the diffusion coefficient B
is an L2(O)-valued Hilbert-Schmidt operator satisfying a non-degeneracy condition (see (4.2.5) below).
Equation (4.1.1) is understood as an evolution equation on H−1, the dual of H1

0 (O), where it can be
solved uniquely in the sense of SVI solutions, as shown in Chapter 3. The main result of the present
work is the existence and uniqueness of an invariant probability measure for solutions to (4.1.1).

The above form of stochastic porous media equations is motivated by the analysis of non-equilibrium
systems, appearing in the context of self-organized criticality (for a survey, see e. g. [122]). Self-organized
criticality is a statistical property of systems displaying intermittent events, such as earthquakes, which
are activated when the underlying system locally exceeds a threshold. These dynamics are reflected by
the discontinuity and degeneracy of the nonlinearity φ above. In order to get a better understanding of
the long-time behaviour of these systems, we prove the existence of a unique non-equilibrium statistical
invariant state for (4.1.1). Since this is the candidate to which the transition probabilities are expected
to converge for long times, it is the key object for the statistical behaviour of the respective process.

A previous approach to the long-time behaviour of Markov processes stemming from monotone SPDEs
with singular drift, by which the present article is inspired, is [77], which in turn uses the more abstract
framework of [78]. In these works, the existence and uniqueness of invariant probability measures to
stochastic local and non-local p-Laplace equations is proved, where the multivalued regime p = 1 is
included. In one dimension, the paradigmatic case is the equation

dXt = ∆(sgn(Xt)) + dWt, (4.1.3)

where sgn denotes the maximal monotone extension of the classical sign function. The proof relies
on sufficient criteria from [91], where the so-called lower bound technique has been extended to Polish
spaces which are not necessarily locally compact. This technique relies on the existence of a state being
an accessible point for the time averages of the transition probabilities uniformly in time, and the so-
called “e-property”, which is a uniform continuity assumption on the Markov semigroup. To verify these
criteria, the focus of [77] rests on energy estimates to first bound the mass of these averages to Lm balls
for some suitably chosen m ∈ (2, 3]. As a next step, the convergence to a chosen accessible state with
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probability bounded below is shown, which is done by comparing the solution of (4.1.3) to a control
process, which obeys the mere deterministic dynamics of (4.1.3), i. e.

d

dt
Xt = ∆(sgn(Xt)),

X0 = y,
(4.1.4)

for y ∈ Lm, ‖y‖m ≤ R for some R > 0. In this, simpler setting than (4.1.1), there is a unique limiting
state to (4.1.4) which is a natural candidate for the aforementioned accessible point.

In the present article, we aim to prove the existence and uniqueness of an invariant probability measure
by similar ideas. While energy estimates for (4.1.1) are easier to obtain due to the linear growth of φ
(cf. (4.1.2)) at ±∞, the degenerate form of the nonlinearity destroys the convergence of the noise-free
system to a unique fixed point. This is why we have to add a forcing term to the control process and rely
on a more refined deterministic analysis of the resulting inhomogeneous monotone evolution equation.
To guarantee the convergence of this modified control process, the forcing term has to be sufficiently
non-degenerate, and as the connection of the solution to (4.1.1) to the control process only works if the
noise is “close” to the deterministic forcing with non-zero probability, this relies on some non-degeneracy
requirements on the noise. As in[77], it is important that the convergence of the deterministic process
takes place uniformly for initial values in sets of bounded energy. We tackle this problem with the help
of a comparison principle, which, however, only works if the energy actually controls the L∞ norm. This
leads to the restriction to one spatial dimension. Finally, most of the above-mentioned steps have to be
argued on an approximate level due to the singularity of the drift, so that stability of the statements
under these approximations also has to be ensured.

The structure of this chapter is as follows. After stating the exact setting in the first part of section 4.2,
we state the main result of this article, Theorem 4.2.1 at the end of section 4.2. Section 4.3 then collects
auxiliary results in the natural order of the argumentation, which finally allow to prove Theorem 4.2.1.

The results of this chapter are accepted for publication up to minor revisions, see [102].

4.1.1 Literature

We give a brief overview on the existing results on ergodicity of stochastic nonlinear diffusions, with a
focus on approaches applicable to stochastic (generalized) porous media equations.

In the “classical” approach, e. g. in the monograph [37], the existence of invariant measures to semilinear
SPDEs with non-degenerate noise is proven by bounds that imply the tightness of the averaged transition
probabilities, allowing to use the Krylov-Bogoliubov theorem. Uniqueness is then relying on the Doob-
Khasminskii theorem, using the regularity of the Markov semigroup which can be guaranteed by the
strong Feller property and irreducibility. This technique has been considerably improved by [84], using
smoothing in form of the asymptotic Feller property, though the scope was still on semilinear equations.

Invariant measures to quasilinear diffusions with additive noise have been initially studied in [36] and [35]
on the level of Kolmogorov equations. In [110] (see also the monograph [10]), the strong monotonicity
of the porous medium operator was exploited, which leads to the existence and uniqueness of invariant
measures by strong dissipativity.

In the situation of weakly monotone drift operators, there have been several approaches to obtain con-
traction estimates which ensure ergodicity, e. g. via Harnack inequalities (cf. [121, 120]), weighted L1 dis-
sipativity (cf. [39]) or lower bound techniques (cf. [95], [91]). We note that the first approach also works
for a partly multiplicative noise and the second one even for full multiplicative noise. The last-mentioned
approach was used by [78] and [77], where generalized porous media equations with discontinuous non-
linearities are analyzed as explained above.

A different approach to the long-time behaviour of solutions to SPDEs is to analyze the existence and
the structure of random attractors of random dynamical systems, as e. g. in [34, 33, 66, 71, 21, 72].
A property which has turned out to be very useful in this context is order preservation of trajectories
which are driven by the same noise, see, e. g., [67, 3, 60, 27]. A close connection between random
attractors and ergodic and mixing properties of random dynamical systems can be obtained in the case
of synchronization (see [32]), which is on hand if the random attractor is a singleton. This case has been
investigated in, e. g., [30, 59, 60, 115, 27].
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Last but not least, we mention [8, 15, 68], where similar equations are considered under multiplicative
noise, leading to finite-time absorption of the process into a subcritical region.

4.1.2 Notation

On a bounded open set O ⊂ R, we use the classical notation Lp := Lp(O) for the Lebesgue space with
exponent p ∈ [1,∞] with norm ‖·‖p. We write H1

0 := H1
0 (O) for the Sobolev space of weakly differentiable

functions with exponent 2 and zero trace, and its topological dual will be denoted by H−1. A bounded
linear operator T : U → H, where U and H are separable Hilbert spaces, is called Hilbert-Schmidt if

‖T‖L2(U,H) :=
∑
k∈N
‖Tek‖2H <∞,

where (ek)k∈N is an orthonormal basis of U . For a Hilbert space H, Cb(H) denotes the space of bounded
continuous functions on H, B(H) denotes the Borel σ-algebra, and Bb(H) the set of bounded functions
H → R which are B(H)-B(R)-measurable. Multivalued operators on H, which arise in this work as
subdifferentials of proper, convex and lower-semicontinuous functionals, are mappings A : H → 2H . We
define the domain of A by

D(A) := {x ∈ H : A(x) 6= ∅}
and its range by

R(A) :=
⋃
x∈H

A(x).

For a metric space V and r > 0, we denote by BVr the open ball with radius r with respect to the
corresponding metric. If V = L∞, we use B∞r for BL

∞

r . Within term manipulations, the constant C
may vary from line to line.

4.2 Setting and main result

We consider a one-dimensional open bounded interval O ⊂ R as the underlying domain. For simplicity,
set O := (−1, 1).

Define by φ : R→ 2R the multi-valued maximal monotone extension of

R 3 x 7→ x1{|x|>1},

and let ψ : R→ R be its anti-derivative with ψ(0) = 0, i. e.

ψ(x) =
1

2
(|x|2 − 1)1{|x|>1}.

Let furthermore ϕ : H−1 → [0,∞] be defined as

ϕ(u) =

{∫
O ψ(u) dx if u ∈ L2

+∞ else,
(4.2.1)

and consider the SPDE

dXx
t ∈ −∂ϕ(Xx

t ) dt+B dWt,

Xx
0 = x,

(4.2.2)

where x ∈ H−1, W is an Id-cylindrical Wiener process in some separable Hilbert space U , defined on
a probability space (Ω,F ,P) with normal filtration (Ft)t∈[0,T ], and B ∈ L2(U,L2) is a Hilbert-Schmidt
operator. This leads to BWt being a trace-class Wiener process in L2, such that there are mutually
orthogonal L2 functions (ξk)k∈N with ∑

k∈N
‖ξk‖22 <∞, (4.2.3)
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for which

BWt =

∞∑
i=1

βk(t)ξk, (4.2.4)

where (βk)k∈N are independent one-dimensional standard Brownian motions. Additionally, we impose
that there are m ∈ N, c1, . . . , cm ∈ R such that

g ∈ L2, g(x) :=

m∑
k=1

ckξk(x) > 1 for almost all x ∈ O. (4.2.5)

Note that the well-posedness of the SPDE (4.2.2) has been shown in Chapter 3 in the sense of SVI-
solutions, identifying x with an almost surely constant random variable x ∈ L2(Ω, H−1). The process
constructed there gives rise to a semigroup (Pt)t≥0 of Markov transition kernels by

Pt(x,A) = E1A(Xx
t ) for x ∈ H−1 and A ∈ B(H−1), (4.2.6)

which will be shown below in Lemma 4.3.7. By a slight abuse of notation, we will denote the induced
semigroup on Bb(H−1) also by Pt, i. e.

Ptf(x) =

∫
H−1

f(y)Pt(x, dy) for f ∈ Bb(H−1), x ∈ H−1. (4.2.7)

The main result of this article is the following:

Theorem 4.2.1. In the setting described above, the semigroup (Pt)t≥0 admits a unique invariant prob-
ability Borel measure µ on H−1, i. e. for all f ∈ Cb(H−1) we have∫

H−1

Ptfdµ =

∫
H−1

fdµ.

We briefly mention the steps of the proof. After we introduce the main approximating object Xx,ε to
solutions Xx of (4.2.2), we prove a contraction principle, i. e.

P
(
‖Xx

T −Xy
T ‖H−1 ≤ ‖x− y‖H−1

)
= 1 for all T > 0,

which will be needed throughout the remaining proof. The lower bound technique of [91] is then applied
in three steps: We first prove that solutions to (4.2.2) are likely to stay on average close to a ball in L∞,
i. e. for ρ, δ > 0 there exists an R > 0 such that for sufficiently large T > 0

1

T

∫ T

0

P(Xx
r ∈ Cδ(R)) dr ≥ 1− ρ, (4.2.8)

where Cδ(R) is the δ-neighbourhood of B∞R (0) in H−1. We then analyze the deterministic equation

d

dt
u±R = −∂ϕ(u±R) + g,

u±R(0) ≡ ±R,

which will serve as the control process mentioned above and which converges for large times to a limit
u∞ ∈ H−1. Finally, we show that with positive probability, Xx behaves “similar” to u±R if x ∈ Cδ(R),
so that together with (4.2.8) we conclude that for all x ∈ H−1, δ > 0

lim inf
T→∞

1

T

∫ T

0

Pr

(
x,BH

−1

2δ (u∞)
)

dr > 0,

which implies the existence and uniqueness of an invariant measure by [91, Theorem 1].
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4.3 Lemmas and proof

We recall the following notion from [91]:

Definition 4.3.1. We say that a transition semigroup (Pt)t≥0 on some Hilbert space H has the e-
property if the family of functions (Ptf)t≥0 is equicontinuous at every point x ∈ H for any bounded and
Lipschitz continuous function f : H → R.

As mentioned before, the proof of the main theorem relies on the following sufficient condition of [91]:

Proposition 4.3.2 (Komorowski-Peszat-Szarek 2010). Let (Pt)t≥0 be the transition semigroup of a
stochastically continuous Markov process taking values on a separable Hilbert space H. Assume that
(Pt)t≥0 satisfies the Feller- and the e-property. Furthermore, assume that there exists z ∈ H such that
for every δ > 0 and x ∈ H

lim inf
T→∞

1

T

∫ T

0

Pr(x,B
H
δ (z))dr > 0. (4.3.1)

Then the semigroup (Pt)t≥0 admits a unique invariant probability Borel measure.

Most of the following arguments involve an approximating process, which will be introduced in the follow-
ing lemmas. We first summarize some of the auxiliary statements from Chapter 3. For the quantitative
estimates, see especially (3.4.6).

Lemma 4.3.3. Let φε be the Yosida approximation of φ, as introduced in Appendix 4.B. Let T > 0 and
x ∈ L2, and consider the SPDE

dXx,ε
t = ε∆Xx,ε

t dt+ ∆φε(Xx,ε
t )dt+B dWt,

X0 = x.
(4.3.2)

Then, identifying x with a random variable x ∈ L2(Ω, L2) being almost surely constant, (4.3.2) allows
for a unique variational solution (Xx,ε

t )t∈[0,T ] in the sense of [112, Definition 4.2.1] with respect to the
Gelfand triple L2 ↪→ H−1 ↪→ (L2)′. Furthermore, Xx,ε satisfies the regularity estimate

E sup
t∈[0,T ]

‖Xx,ε
t ‖

2
2 + εE

∫ T

0

‖Xx,ε
r ‖2H1

0
dr ≤ C(T )(E ‖x‖22 + 1) (4.3.3)

with a constant C(T ) > 0 independent of ε. For (xn)n∈N ⊂ L2, xn → x in H−1 for n→∞, we have

lim
n→∞

lim
ε→0

Xxn,ε = Xx, (4.3.4)

where the limits are taken in L2
(
Ω, C([0, T ], H−1)

)
and Xx is the SVI solution to (4.2.2). More precisely,

the ε-limit is uniform on bounded sets of L2 by the estimate

E sup
t∈[0,T ]

‖Xy,ε −Xy‖2H−1 ≤ εC(T )(‖y‖22 + 1) (4.3.5)

for y ∈ L2, and for the n-limit we have

E sup
t∈[0,T ]

‖Xxn −Xx‖2H−1 ≤ C(T ) ‖x− xn‖2H−1 . (4.3.6)

Finally, for x, y ∈ H−1 we have

sup
t∈[0,T ]

E ‖Xx
t −Xy

t ‖
2
H−1 ≤ C(T ) ‖x− y‖2H−1 . (4.3.7)

Remark 4.3.4. We note that if 0 < T1 < T2 < ∞, x ∈ L2, Xx,ε is a solution to (4.3.2) constructed
on [0, T1] and Y x,ε is a solution to (4.3.2) constructed on [0, T2], then (Y x,εt )t∈[0,T1] is also a solution to
(4.3.2). By the uniqueness part of [112, Theorem 4.2.4], we have

Xx,ε
t = Y x,εt for all t ∈ [0, T1].

Consequently, Xx,ε
t is consistently defined for all t ≥ 0, x ∈ H−1, and the same is true for Xx

t by (4.3.4).
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From [99, section 4.3], we recall the following disintegration result.

Lemma 4.3.5. The solution to (4.3.2) is a time-homogeneous Markov process, such that we have

Ef(Xx,ε
t+s) = Eω1

Eω2
f(X

Xx,εs (ω1),ε
t (ω2))

for any f ∈ Bb(L2) and t, s > 0.

We need that solutions to (4.2.2) are almost surely contractive, which will be important in the subsequent
analysis.

Lemma 4.3.6. Let x, y ∈ H−1 and let (Xx
t )t≥0 and (Xy

t )t≥0 be the SVI solutions to (4.2.2) with initial
value x and y, respectively. Then for all T > 0 we have

P
(
‖Xx

T −Xy
T ‖H−1 ≤ ‖x− y‖H−1

)
= 1. (4.3.8)

Proof. We first fix T > 0 for which we want to show the statement.

Step 1: First we prove contractivity on the level of approximate solutions and x, y ∈ L2. For this,
let (Xx,ε

t )t∈[0,T ] and (Xy,ε
t )t∈[0,T ] solve (4.3.2) with the respective initial value. Let furthermore Zt :=

Xx,ε
t −Xy,ε

t , which solves

dZt = ε∆(Xx,ε
t −Xy,ε

t ) dt+ (∆φε(Xx,ε
t )−∆φε(Xy,ε

t )) dt,

Z0 = x− y.
Then, by Ito’s formula (see e. g. [112, Theorem 4.2.5]), and noting that Z ∈ H1

0 P⊗ dt-almost surely by
(4.3.3), we obtain P-almost surely

‖Zt‖2H−1 = ‖x− y‖2H−1 + 2ε

∫ t

0

〈∆Zr, Zr〉H−1 dr

+

∫ t

0

〈∆φε(Xx,ε
r )−∆φε(Xy,ε

r ), Zr〉H−1 dr

= ‖x− y‖2H−1 − 2ε

∫ t

0

‖Zr‖22 dr

−
∫ t

0

〈φε(Xx,ε
r )− φε(Xy,ε

r ), Xx,ε
r −Xy,ε

r 〉L2 dr.

The last two terms (the latter because of the monotonicity of φε) are negative, which yields

P
(
‖Xx,ε

T −Xy,ε
T ‖H−1 − ‖x− y‖H−1 > 0

)
= 0. (4.3.9)

Step 2: We now turn to SVI solutions to (4.2.2) with x, y ∈ L2. Note that it is enough to show for
arbitrary n ∈ N, γ > 0 that

P
(
‖Xx

T −Xy
T ‖H−1 − ‖x− y‖H−1 >

1

n

)
≤ γ. (4.3.10)

To obtain this, choose ε sufficiently small such that by (4.3.5)

max
{
E ‖Xx,ε

T −Xx
T ‖H−1 ,E ‖Xy,ε

T −Xy
T ‖H−1

}
<

γ

4n
,

which yields by Markov’s inequality that

P
(
‖Xx,ε

T −Xx
T ‖H−1 ≥

1

2n

)
≤ γ

2

and the corresponding statement for Xy
T . Thus together with (4.3.9) we have

P
(
‖Xx

T −Xy
T ‖H−1 − ‖x− y‖H−1 >

1

n

)
≤ P

(
‖Xx

T −Xx,ε
T ‖H−1 ≥

1

2n

)
+ P

(
‖Xy

T −Xy,ε
T ‖H−1 ≥

1

2n

)
+ P

(
‖Xx,ε

T −Xy,ε
T ‖H−1 − ‖x− y‖H−1 > 0

)
≤ γ,
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which yields (4.3.8) in the case x, y ∈ L2.

Step 3: Finally consider x, y ∈ H−1. By (4.3.7) we know that for x, y ∈ H−1

E ‖Xx
T −Xy

T ‖H−1 ≤ C ‖x− y‖H−1 .

In order to confirm (4.3.10), we choose x̃, ỹ ∈ L2 in a way that (‖·‖ = ‖·‖H−1)

max {‖x− x̃‖ , ‖y − ỹ‖} ≤ 1

4n
and max {C ‖x− x̃‖ , C ‖y − ỹ‖} ≤ γ

8n
.

Using
‖x− y‖ = ‖x− x̃+ x̃− ỹ + ỹ − y‖ ≥ ‖x̃− ỹ‖ − ‖x− x̃‖ − ‖y − ỹ‖

and, again by Markov’s inequality,

max

{
P
(∥∥Xx

T −X x̃
T

∥∥ ≥ 1

4n

)
,P
(∥∥∥Xy

T −X ỹ
T

∥∥∥ ≥ 1

4n

)}
≤ γ

2
,

we compute

P
(
‖Xx

T −Xy
T ‖H−1 − ‖x− y‖H−1 >

1

n

)
≤ P

(∥∥Xx
T −X x̃

T

∥∥ ≥ 1

4n

)
+ P

(∥∥∥X x̃
T −X ỹ

T

∥∥∥− ‖x̃− ỹ‖ > 0
)

+ P
(∥∥∥X ỹ

T −Xy
T

∥∥∥ ≥ 1

4n

)
+ P

(
‖x− x̃‖ ≥ 1

4n

)
+ P

(
‖y − ỹ‖ ≥ 1

4n

)
≤ γ,

which finishes the proof.

Lemma 4.3.7. The solution to (4.2.2) gives rise to a semigroup of Markov transition kernels by

Pt(x,A) = E1A(Xx
t ) for x ∈ H−1 and A ∈ B(H−1).

The induced semigroup (Pt)t≥0 on Bb(H−1), given by

Ptf(x) =

∫
H−1

f(y)Pt(x, dy),

has the Feller- and the e-property. For all x ∈ H−1 and f ∈ Cb(H−1),

[0,∞) 3 t 7→ Ptf(x) (4.3.11)

is continuous at t = 0.

Remark 4.3.8. The semigroup (Pt)t≥0 consisting of Markov transition kernels together with the obvious
fact

P0(x,A) = 1A(x)

implies that there is a “canonical” Markov process with transition probabilities (Pt)t≥0 (see e. g. [37,
Section 2.2]).

Remark 4.3.9. Note that the last statement in Lemma 4.3.7 implies the stochastic continuity of (Pt)t≥0

by [37, Proposition 2.1.1]. By [37, Theorem 2.2.2], the corresponding canonical process is then also
stochastically continuous.

Proof of Lemma 4.3.7: The continuity of (4.3.11) follows from the construction as an almost surely
continuous process, and the Feller property from the contractivity in Lemma 4.3.6. In both arguments,
the dominated convergence theorem applies due to the continuity and boundedness of the test functions.

To prove the e-property for (Pt)t≥0, it is sufficient to show that for f : H−1 → R bounded and Lipschitz
continuous, Ptf (t ≥ 0) is Lipschitz continuous with Lipschitz constant independent of t and equal to
the Lipschitz constant [f ]Lip of f . Using Lemma 4.3.6, we compute for x, y ∈ H−1

|Ptf(x)− Ptf(y)| = |E [f(Xx
t )− f(Xy

t )]|
≤ E |f(Xx

t )− f(Xy
t )|

≤ E [[f ]Lip ‖Xx
t −Xy

t ‖H−1 ]

≤ [f ]Lip ‖x− y‖H−1 ,
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as required.

We turn to the kernel properties of Pt: For x ∈ H−1, t ≥ 0, Pt(x, ·) is the pushforward measure of
Xx
t and thereby a probability measure. Moreover, let A ∈ B(H−1). Note that the class of all functions

f ∈ Bb(H−1), for which
H−1 3 x 7→ Ptf(x) (4.3.12)

is measurable, is monotone in the sense of [114, Theorem 0.2.2, i) and ii)]. As the family of bounded
Lipschitz functions generates the Borel σ-algebra and is stable under pointwise multiplication,

H−1 3 x 7→ Pt1A(x)

is proven to be measurable by the monotone class theorem (see e. g. [114, Theorem 0.2.2]), as soon as we
show measurability of (4.3.12) for bounded and Lipschitz continuous f . The latter, however, becomes
clear by taking into account that Ptf is Lipschitz continuous if f is Lipschitz continuous (see the proof
of the e-property above).

To establish the semigroup property, we first note that the class of functions f ∈ Bb(H−1), for which the
semigroup property

Pt+sf(x) = Ps(Ptf)(x) for all t, s ≥ 0, x ∈ H−1 (4.3.13)

is satisfied, is also monotone, so that it is enough to prove the semigroup property for f : H−1 → R
being bounded and Lipschitz continuous.

For x ∈ L2, recall the approximation of (Xx
t )t≥0 by (Xx,ε

t )t≥0 as in (4.3.5). We compute for f : H−1 → R
bounded and Lipschitz continuous with constant [f ]Lip, t, s > 0

Pt+sf(x) = Ef(Xx
t+s) = lim

ε→0
Ef(Xx,ε

t+s)

= lim
ε→0

Eω1
Eω2

f(X
Xx,εs (ω1),ε
t (ω2))

= Eω1
Eω2

f(X
Xxs (ω1)
t (ω2)) = Ps(Ptf)(x),

(4.3.14)

where the steps are justified as follows. The semigroup property on the level of ε-approximations is
known from Lemma 4.3.5. The first limit is clear by construction and the assumption of f being Lipschitz
continuous together with (4.3.5). For the second limit, we compute∣∣∣Eω1

Eω2
f(X

Xx,εs (ω1),ε
t (ω2))− Eω1

Eω2
f(X

Xxs (ω1)
t (ω2))

∣∣∣
≤ Eω1

Eω2

∣∣∣f(X
Xx,εs (ω1),ε
t (ω2))− f(X

Xxs (ω1)
t (ω2))

∣∣∣
≤ Eω1

Eω2

∣∣∣f(X
Xx,εs (ω1),ε
t (ω2))− f(X

Xx,εs (ω1)
t (ω2))

∣∣∣
+ Eω1

Eω2

∣∣∣f(X
Xx,εs (ω1)
t (ω2))− f(X

Xxs (ω1)
t (ω2))

∣∣∣
(4.3.15)

For the first term, we use (4.3.5) and (4.3.3) (which in particular implies that Xx,ε
s ∈ L2 almost surely)

to compute (
Eω1

Eω2

∣∣∣f(X
Xx,εs (ω1),ε
t (ω2))− f(X

Xx,εs (ω1)
t (ω2))

∣∣∣)2

≤ Eω1
Eω2

[
[f ]2Lip

∥∥∥XXx,εs (ω1),ε
t (ω2)−XXx,εs (ω1)

t (ω2)
∥∥∥2

H−1

]
≤ [f ]2Lip Eω1

[
C(t) ε (‖Xx,ε

s (ω1)‖2L2 + 1)
]

≤ C(t) ε [f ]2Lip C(s)(‖x‖2L2 + 1)→ 0 for ε→ 0.

For the second term, we use Lemma 4.3.6 and again (4.3.5) to obtain(
Eω1

Eω2

∣∣∣f(X
Xx,εs (ω1)
t (ω2))− f(X

Xxs (ω1)
t (ω2))

∣∣∣)2

≤ Eω1
Eω2

[
[f ]2Lip

∥∥∥XXx,εs (ω1)
t (ω2)−XXxs (ω1)

t (ω2)
∥∥∥2

H−1

]
≤ [f ]2Lip E ‖Xx,ε

s −Xx
s ‖2H−1 → 0 for ε→ 0.

(4.3.16)
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It remains to show (4.3.13) for general initial conditions x ∈ H−1, f still being bounded and Lipschitz.
In analogy to (4.3.14), we compute for a sequence (xn)n∈N ⊂ L2, xn → x in H−1,

Pt+sf(x) = Ef(Xx
t+s) = lim

n→∞
Ef(Xxn

t+s)

= lim
n→∞

Eω1
Eω2

f(X
Xxns (ω1)
t (ω2))

= Eω1Eω2f(X
Xxs (ω1)
t (ω2)) = Ps(Ptf)(x).

(4.3.17)

The intermediate step on the level of the approximating sequence has been proved above. The first limit
is clear by (4.3.6) and the Lipschitz continuity of f . The second limit is treated by the same steps as in
(4.3.16), using (4.3.6) instead of (4.3.5). This concludes the proof.

The following lemma is an energy estimate for the L∞ norm.

Lemma 4.3.10. Let x ∈ H−1, δ, ρ > 0 and for R > 0

Cδ(R) :=
{
u ∈ H−1 : ∃v ∈ B∞R (0) such that ‖u− v‖H−1 < δ

}
,

where B∞R (0) := {v ∈ L∞ : ‖v‖∞ < R}. Then there exists R = R(ρ, x) > 3 such that for all T > 1 we
have

1

T

∫ T

0

P(Xx
r ∈ Cδ(R)) dr ≥ 1− ρ. (4.3.18)

for solutions Xx to (4.2.2).

Proof. We first consider the approximating solutions from (4.3.2) with initial value x̃ ∈ L2, for which we
know by (4.3.3) that they are in H1

0 , P⊗ dt-almost surely. We choose x̃ in a way that

‖x− x̃‖H−1 ≤
δ

2
. (4.3.19)

Note also that φε is weakly differentiable for ε > 0 and

(φε)′ ≥ 1

2
1R\[−1,1] (4.3.20)

for 0 < ε < 1 by (4.B.2). Ito’s formula (see e. g. [112, Theorem 4.2.5]) on the Gelfand triple H1
0 ↪→ L2 ↪→

H−1 then yields ∥∥∥X x̃,ε
t

∥∥∥2

2
= ‖x̃‖22 +

∫ t

0

2H1
0

〈
X x̃,ε
r ,∆(εX x̃,ε

r + φε(X x̃,ε
r ))

〉
H−1 dr

+

∫ t

0

2
〈
X x̃,ε
r , B dWr

〉
L2 +

∫ t

0

2 ‖B‖2L2(U,L2) dr.

Abbreviating the last two summands by K and using the chain rule for Sobolev functions (see e. g. [126,
Theorem 2.1.11]) and (4.3.20), we obtain∥∥∥X x̃,ε

t

∥∥∥2

2
= ‖x̃‖22 − 2ε

∫ t

0

∥∥∇X x̃,ε
r

∥∥2

2
dr

−
∫ t

0

∫
O

2
〈
∇X x̃,ε

r ,∇φε(X x̃,ε
r )

〉
dxdr +K

≤ ‖x̃‖22 − 2

∫ t

0

∫
O

(φε)′(X x̃,ε
r )(∇X x̃,ε

r )2 dx dr +K

≤ ‖x̃‖22 −
∫ t

0

∫
O

1{|Xx̃,εr |>1}(∇X
x̃,ε
r )2 dxdr +K

= ‖x̃‖22 −
∫ t

0

∫
O

(
1{|Xx̃,εr |>1}∇X

x̃,ε
r

)2

dxdr +K.

(4.3.21)

Defining A ∈ Lip(R) by
x 7→ A(x) = sgn(x) (|x| − 1) 1{|x|>1},
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we see that almost everywhere
A′(X x̃,ε

r ) = 1{|Xx̃,εr |>1}.
Thus, using the chain rule for Sobolev functions and the continuous embedding H1

0 ↪→ L∞, we continue
(4.3.21) by ∥∥∥X x̃,ε

t

∥∥∥2

2
≤ ‖x̃‖22 −

∫ t

0

∫
O

(
∇A(X x̃,ε

r )
)2

dx dr +K

≤ ‖x̃‖22 − C
∫ t

0

∥∥A(X x̃,ε
r )

∥∥2

∞ dr +K

= ‖x̃‖22 − C
∫ t

0

(∥∥X x̃,ε
r

∥∥
∞ − 1

)2
+

dr +K.

(4.3.22)

For the remaining part

K =

∫ t

0

2
〈
X x̃,ε
r , B dWr

〉
L2 +

∫ t

0

2 ‖B‖2L2(U,L2) dr

we notice that the first summand vanishes in expectation and that the second one can be estimated from
above by Ct by the assumptions on B. Thus, taking expectations in (4.3.22) provides

E
∫ t

0

(
∥∥X x̃,ε

r

∥∥
∞ − 1)2

+ dr ≤ C
(
‖x̃‖22 + t

)
, (4.3.23)

where we emphasize that C does not depend on ε. By the Markov inequality, we then use (4.3.23) to
compute

1

T

∫ T

0

P
((∥∥X x̃,ε

r

∥∥
∞ − 1

)2
+
> R

)
dr ≤ 1

T

∫ T

0

E
(∥∥X x̃,ε

r

∥∥
∞ − 1

)2
+

R
dr

≤ C

TR

(
‖x̃‖22 + T

)
,

which for T > 1 becomes smaller than ρ
2 by choosing R large enough, uniformly in ε. For technical

reasons, we impose R > 3 without loss of generality. For T > 1 fixed, we now choose ε small enough
such that

E sup
t∈[0,T ]

∥∥∥X x̃
t −X x̃,ε

t

∥∥∥
H−1
≤ ρδ

4
. (4.3.24)

By Markov’s inequality, (4.3.24) yields

P

(
sup
t∈[0,T ]

∥∥∥X x̃
t −X x̃,ε

t

∥∥∥
H−1
≥ δ

2

)
≤ ρ

2
.

By Lemma 4.3.6 and (4.3.19) we have for t > 0∥∥Xx
t −X x̃

t

∥∥
H−1 ≤

δ

2
almost surely,

which we use to conclude for R as chosen above

1

T

∫ T

0

P(Xx
r ∈ Cδ(R)) dr

≥ 1

T

∫ T

0

P(X x̃
r ∈ C δ

2
(R) dr

= 1− 1

T

∫ T

0

P(X x̃
r /∈ C δ

2
(R)) dr

≥ 1− 1

T

∫ T

0

P
(∥∥X x̃

r −X x̃,ε
r

∥∥
H−1 ≥

δ

2
or
∥∥X x̃,ε

r

∥∥
∞ ≥ R

)
dr

≥ 1− 1

T

∫ T

0

P
(∥∥X x̃

r −X x̃,ε
r

∥∥
H−1 ≥

δ

2

)
+ P

(∥∥X x̃,ε
r

∥∥
∞ ≥

√
R+ 1

)
dr

≥ 1− ρ

2
− 1

T

∫ T

0

P
(
(
∥∥X x̃,ε

r

∥∥
∞ − 1)2

+ ≥ R
)

dr

≥ 1− ρ,

(4.3.25)

112



as required.

We continue with the analysis of the deterministic control process, for which we cite a translated version
of [26, Théorème 3.11]. For the definition of weak and strong solutions, see Definition 4.A.1.

Proposition 4.3.11. Let H be a Hilbert space and A : H ⊇ D(A)→ H a maximal monotone operator
of the form A = ∂ϕ for some ϕ : H → [0,∞] convex, proper and lower-semicontinuous. Suppose that for
all α ∈ R the set

Mα := {x ∈ H : ϕ(x) + ‖x‖2 ≤ α} (4.3.26)

is strongly compact. Let f ∈ L1
loc([0,∞);H) such that limt→∞ f(t) =: f∞ exists, f − f∞ ∈ L1([0,∞);H)

and f∞ ∈ R(∂ϕ). For x ∈ D(∂ϕ), let ux be a weak solution to

d

dt
ux ∈ −∂ϕ(ux) + f,

u(0) = x.

Then limt→∞ ux(t) =: u∞ exists and
f∞ ∈ ∂ϕ(u∞). (4.3.27)

Remark 4.3.12. Note that existence even of strong solutions to (4.3.28) is guaranteed by [26, Théorèmes
3.4 and 3.6] for t ∈ [0, T ], T > 0. By uniqueness, we can extend the solution to [0,∞), analogous to
Remark 4.3.4. In particular, for t > 0 and x ∈ D(∂ϕ) we have ux(t) ∈ D(∂ϕ).

From the definition of g in (4.2.5), recall especially that g ∈ L2 and g > 1 almost everywhere in O. For
x ∈ D(∂ϕ), consider the deterministic evolution equation

d

dt
ux ∈ −∂ϕ(ux) + g,

ux(0) = x
(4.3.28)

on H−1, where ϕ is defined as in (4.2.1).

Lemma 4.3.13. Let R > 1. For the initial states x ≡ ±R, Proposition 4.3.11 can be applied to problem
(4.3.28) by replacing both f(t) and f∞ by g. In this case,

u∞ = ((−∆)−1g) ∨ 1. (4.3.29)

Proof. The functional ϕ as defined in (4.2.1) is obviously not constantly ∞. Furthermore, it is convex
and lower-semicontinuous by [7, Proposition 2.10].

In order to verify the compactness of the sets Mα, α ∈ R, as defined in (4.3.26), we first show that Mα

is a bounded subset of L2. This is obvious for α ≤ 0 such that we can restrict to α > 0 in the following.
Indeed, if for u ∈ H−1 ϕ(u) ≤ α <∞, then u ∈ L2 by (4.2.1). Then, we compute∫

O
u2dx ≤ |O|+

∫
{|u|≥1}

(|u| − 1 + 1)2dx

≤ |O|+
∫
{|u|≥1}

(|u| − 1)2 + 2(|u| − 1) + 1 dx

≤ |O|+ 2ϕ(u) + 2 |O| 12
(∫
{|u|≥1}

(|u| − 1)2dx

) 1
2

+ |O|

≤ 2 |O|+ 2ϕ(u) + 2
√

2 |O| 12 ϕ 1
2 (u) ≤ C (1 + α) <∞.

Since the canonical embedding L2 ↪→ H−1 is compact, it follows that Mα is compact. As ϕ is lower-
semicontinuous, so is ϕ+ ‖·‖2H−1 , and thus Mα is also closed. Hence, Mα is compact, as required.

We recall from [7, Proposition 2.10] that ∂ϕ can be characterized by

∂ϕ =

{
[u,w] ∈ (H−1 ∩ L1)×H−1 :

w = −∆v, v ∈ H1
0 , v(x) ∈ φ(u(x)) for a. e.x ∈ O

}
,
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with
D(∂ϕ) =

{
u ∈ H−1 ∩ L1 : ∃ v ∈ H1

0 such that v ∈ φ(u) almost everywhere
}
.

To show that the constant functions ±R are elements of D(∂ϕ), we define for n ∈ N

vn := n(1− x) ∧ n(x+ 1) ∧R ∈ H1
0 ,

and un := vn ∨ 1. We then have un ∈ H−1 ∩ L1 and vn ∈ φ(un), and thus un ∈ D(∂ϕ). Since un → R
in H−1, we have that the constant function R ∈ D(∂ϕ). For the constant function with value −R,
analogous considerations apply.

Finally, to show (4.3.29), we first prove that

u∞ = ((−∆)−1g) ∨ 1 (4.3.30)

satisfies (4.3.27) with f∞ replaced by g. Setting v := (−∆)−1g, we have v ∈ H1
0 , as g was assumed to be

in L2 ⊂ H−1, and consequently v ∨ 1 ∈ H−1 ∩ L1. Furthermore, v > 0 almost everywhere by the strong
maximum principle (see [79, Theorem 8.19]) and thus v ∈ φ(v ∨ 1) a. e., such that v ∨ 1 ∈ D(∂ϕ). Since
additionally g = −∆v, we have g ∈ R(∂ϕ) and g ∈ ∂ϕ(v ∨ 1).

We conclude by noticing that (4.3.30) is the only choice for u∞ such that (4.3.27) is satisfied. This
becomes clear by the strict monotonicity of φ|R\(−1,1) and the strict positivity of (−∆)−1g by the strong
maximum principle.

Similarly to Lemma 4.3.3, we define approximations ux,ε for equation (4.3.28) by

d

dt
ux,εt = ε∆ux,εt + ∆φε(ux,εt ) + g for t ∈ (0, S],

ux,ε0 = x,
(4.3.31)

where S > 0 and g still satisfies assumption (4.2.5). Analogous to the approximation of Xx, there is a
unique variational solution to (4.3.31), and if x ∈ D(∂ϕ) ∩L2, so that (4.3.28) has a strong solution, we
obtain

sup
t∈[0,S]

‖ux,εt − uxt ‖
2
H−1 ≤ εC(S)(‖x‖22 + 1) (4.3.32)

analogous to (4.3.5).

For these approximating deterministic equations, we need order-preservation in the initial value. A
partial order on H−1 can be defined as follows:

Definition 4.3.14. We write u ≤ v in H−1, if for all η ∈ H1
0 , η ≥ 0 almost everywhere, one has

u(η) ≤ v(η).

Lemma 4.3.15. Let u, v, w ∈ H−1. Then u ≤ v ≤ w in H−1 implies

‖v‖H−1 ≤ ‖u‖H−1 + ‖w‖H−1 .

Proof. For arbitrary η ∈ H1
0 , ‖η‖H1

0
≤ 1, we compute

v(η) = v(η ∧ 0) + v(η ∨ 0)

= −v(−(η ∧ 0)) + v(η ∨ 0)

≤ −u(−(η ∧ 0)) + w(η ∨ 0)

= u(η ∧ 0) + w(η ∧ 0)

≤ ‖u‖H−1 + ‖w‖H−1 ,

where for the last step we note that both η ∧ 0 and η ∨ 0 are H1
0 functions with norm less than η (see

e. g. [126, Corollary 2.1.8]).

For the approximate deterministic dynamics governed by (4.3.31), we then have the following comparison
principle:
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Lemma 4.3.16. Let x, y ∈ L∞ ⊆ L2 and x ≤ y almost everywhere, and let ux,ε and uy,ε be the solutions
to (4.3.31) with the corresponding initial values. Then

ux,εt ≤ uy,εt in H−1, for all t > 0.

Proof. Note that ux,ε for x ∈ L∞ is also a weak solution in the sense of [119, Chapter 5] with Φ = εId+φε.
By [119, Theorem 5.7], the claimed comparison principle is satisfied.

Corollary 4.3.17. Let R > 0. As a consequence of Lemmas 4.3.15 and 4.3.16, we have for x ∈ L∞,
‖x‖∞ ≤ R and arbitrary u ∈ H−1

‖ux,εt − u‖H−1 ≤
∥∥∥uR,εt − u

∥∥∥
H−1

+
∥∥∥u−R,εt − u

∥∥∥
H−1

for t ≥ 0.

Proof. It is enough to read off Definition 4.3.14 that −R ≤ x ≤ R almost everywhere implies −R ≤ x ≤ R
in H−1, and that the order is invariant under translation by a fixed element of H−1.

We now compare the approximations ux,ε to the solution of the stochastic equation (4.3.2), with a noise
conditioned on suitable events.

Lemma 4.3.18. Let R,S > 0, 0 < β ≤ 1, x ∈ L∞, ‖x‖∞ ≤ R and let ux,ε be the solution to (4.3.31).
Furthermore, let Xx,ε be the solution to (4.3.2) up to time S with the same initial condition x. Assume
that

sup
t∈[0,S]

∥∥WB
t − tg

∥∥
2
≤ β, (4.3.33)

where for simplicity we write WB
t = BWt. Then for 0 < ε ≤ 1 we have

‖Xx,ε
S − ux,εS ‖H−1 ≤ C(R,S)β.

Proof. We consider the transformed processes

Y x,εt = Xx,ε
t −WB

t and

vx,εt = ux,εt − tg,

so that by
‖Xx,ε

S − ux,εS ‖H−1 ≤ ‖Y x,εS − vx,εS ‖H−1 +
∥∥WB

S − Sg
∥∥
H−1 ,

we can focus on ‖Y x,εS − vx,εS ‖
2

H−1 using (4.3.33) and the continuity of the embedding L2 ↪→ H−1. For
the following equalities, recall that Xx,ε ∈ H1

0 P ⊗ dt–almost everywhere due to (4.3.3) and ux,εr ∈ H1
0

for almost every r ∈ [0, S] by [119, Theorem 5.7]. Thus,

εXx,ε
r + φε(Xx,ε

r ) ∈ H1
0 P⊗ dt–a. e.

and εux,εr + φε(ux,εr ) ∈ H1
0 for a. e. r ∈ [0, S],

(4.3.34)

by the Lipschitz continuity of φε and the chain rule for Sobolev functions (e. g. [126, Theorem 2.1.11]),
which allows to write

1

2
‖Y x,εS − vx,εS ‖

2

H−1

=

∫ S

0

〈Y x,εr − vx,εr ,∆ (εXx,ε
r + φε(Xx,ε

r ))−∆ (εux,εr + φε(ux,εr ))〉H−1 dr

= −
∫ S

0

〈Y x,εr − vx,εr , εXx,ε
r + φε(Xx,ε

r )− (εux,εr + φε(ux,εr ))〉L2 dr

= −
∫ S

0

〈
Y x,εr +WB

r − (vx,εr + rg), ε(Y x,εr +WB
r − (vx,εr + rg))

〉
L2 dr

−
∫ S

0

〈
Y x,εr +WB

r − (vx,εr + rg), φε(Y x,εr +WB
r )− φε(vx,εr + rg)

〉
L2 dr

+

∫ S

0

〈
WB
r − rg, ε(Y x,εr +WB

r − (vx,εr + rg)) + φε(Y x,εr +WB
r )− φε(vx,εr + rg)

〉
L2

dr
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≤
∫ S

0

∥∥WB
r − rg

∥∥
2

∥∥ε(Y x,εr +WB
r ) + φε(Y x,εr +WB

r )− ε(vx,εr + rg)− φε(vx,εr + rg)
∥∥

2
dr

≤
(∫ S

0

∥∥WB
r − rg

∥∥2

2
dr

) 1
2

×
(∫ S

0

(
ε
∥∥Y x,εr +WB

r

∥∥
2

+
∥∥φε(Y x,εr +WB

r )
∥∥

2

+ ε ‖vx,εr + rg‖2 + ‖φε(vx,εr + rg)‖2
)2

dr

) 1
2

≤ S 1
2 β

(
4

∫ S

0

ε2
∥∥Y x,εr +WB

r

∥∥2

2
+
∥∥φε(Y x,εr +WB

r )
∥∥2

2

+ ε2 ‖vx,εr + rg‖22 + ‖φε(vx,εr + rg)‖22 dr

) 1
2

.

Note that the monotonicity of φε has been used for the first inequality. It remains to show that the last
factor can be bounded in terms of R and S uniformly in β ≤ 1.

To see this boundedness, first notice by (4.B.3) in Appendix 4.B that |φε(x)| ≤ |x| for all x ∈ R, ε > 0,
so that it is enough to prove suitable bounds on∫ S

0

∥∥Y x,εr +WB
r

∥∥2

2
dr and

∫ S

0

‖vx,εr + rg‖22 dr.

To this end, we compute

1

2
‖Y x,εS ‖

2

H−1 = ‖x‖2H−1 +

∫ S

0

〈ε∆(Xx,ε
r ) + ∆φε(Xx,ε

r ), Y x,εr 〉H−1 dr (4.3.35)

by (4.3.3), and further, noting Y x,εr ∈ L2 by (4.3.3) and (4.2.4),

(4.3.35) = ‖x‖2H−1 −
∫ S

0

〈εXx,ε
r + φε(Xx,ε

r ), Y x,εr 〉L2 dr

= ‖x‖2H−1 −
∫ S

0

〈
ε(Y x,εr +WB

r ) + φε(Y x,εr +WB
r ), Y x,εr +WB

r

〉
L2 dr

+

∫ S

0

〈
ε(Y x,εr +WB

r ) + φε(Y x,εr +WB
r ),WB

r

〉
L2 dr.

(4.3.36)

From (4.B.3) in Appendix 4.B, we obtain the lower bound |φε(x)| ≥ 1
2 |x| for |x| ≥ 1 + ε and ε ≤ 1, so

that for u ∈ L2 we have the estimate

‖u‖22 ≤
∫
{|u|≥1+ε}

2uφε(u) dx+ 4 |O| ≤ 2 〈u, φε(u)〉L2 + 4 |O| . (4.3.37)

Using (4.3.37) and Young’s inequality for the last two summands, once weighted by 1
2 , we continue by

(4.3.36) ≤‖x‖2H−1 −
∫ S

0

ε
∥∥Y x,εr +WB

r

∥∥2

2
+

1

2

∥∥Y x,εr +WB
r

∥∥2

2
− C dr

+

∫ S

0

ε

2

∥∥Y x,εr +WB
r

∥∥2

2
+
ε

2

∥∥WB
r

∥∥2

2
+

1

4

∥∥φε(Y x,εr +WB
r )
∥∥2

2
+
∥∥WB

r

∥∥2

2
dr

≤‖x‖2H−1 −
1

4

∫ S

0

∥∥Y x,εr +WB
r

∥∥2

2
dr +

3

2

∫ S

0

∥∥WB
r

∥∥2

2
+ C dr.

(4.3.38)

By (4.3.33), assumption (4.2.5) and β ≤ 1, we have for r ∈ [0, S]∥∥WB
r

∥∥
2
≤
∥∥WB

r − rg
∥∥

2
+ ‖rg‖2 ≤ β + S ‖g‖2 ≤ C(S),
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such that (4.3.38) yields, by dropping the left-hand side and relabelling the constants,∫ S

0

∥∥Y x,εr +WB
r

∥∥2

2
dr ≤ 4C(S, ‖x‖2H−1). (4.3.39)

To obtain a bound that only depends on S and R, note that x ∈ L∞, ‖x‖∞ ≤ R by assumption, such
that

‖x‖H−1 ≤ C ‖x‖2 ≤ 2C |O| 12 R,
which, together with (4.3.39), yields the desired bound. A similar estimate for

∫ S
0
‖vx,εr + rg‖22 dr can

be obtained by analogous computations.

We need to ensure that (4.3.33) is realized for each β > 0 with non-zero probability.

Lemma 4.3.19. As in (4.2.4) we denote

WB
t = BWt =

∞∑
i=1

βk(t)ξk,

with
∑
k∈N ‖ξk‖

2
2 < ∞. Let g and m be defined as in (4.2.5), and let the degeneracy assumption on

(ξk)k∈N in (4.2.5) be satisfied. Then for all S ≥ 0, β > 0 we have

P

(
sup
t∈[0,S]

∥∥WB
t − tg

∥∥2

2
≤ β

)
> 0.

Proof. We use the orthogonality of (ξk)k∈N to write, for m∗ > m,∥∥WB
t − tg

∥∥2

2
=

=

∥∥∥∥∥
m∑
k=1

ξk(βk(t)− tck)

∥∥∥∥∥
2

2

+

∥∥∥∥∥
m∗∑

k=m+1

ξkβk(t)

∥∥∥∥∥
2

2

+

∥∥∥∥∥
∞∑

k=m∗+1

ξkβk(t)

∥∥∥∥∥
2

2

=

m∑
k=1

‖ξk‖22 |βk(t)− tck|2 +

m∗∑
k=m+1

‖ξk‖22 |βk(t)|2 +

∞∑
k=m∗+1

‖ξk‖22 |βk(t)|2 .

(4.3.40)

For the first term, we note that the event

max
k∈{1,...,m}

sup
t∈[0,S]

|βk(t)− ckt|2 ≤
β

3
∑m
k=1 ‖ξk‖2

(4.3.41)

has positive probability by the following reasoning: As the (βk)mk=1 are independent, it is enough to show
for each k ∈ {1, . . . ,m} that

P

(
sup
t∈[0,S]

|βk(t)− ckt| ≤ ε
)
> 0 (4.3.42)

for any fixed S > 0, ε > 0. To see this, note that βk(t)− ckt is again a standard Brownian motion with
respect to some probability measure PQ, which is absolutely continuous with respect to P by Girsanov’s
theorem. From [68, Lemma B.1], we obtain for a standard Brownian motion β1 that

P

(
sup
t∈[0,S]

|β1(t)| ≤ ε
)
> 0, (4.3.43)

which is equivalent to

PQ

(
sup
t∈[0,S]

|βk(t)− ckt| ≤ ε
)
> 0.

Absolute continuity then yields (4.3.42). For the third term in (4.3.40), we compute

E sup
t∈[0,S]

∑
k>m∗

|βk(t)|2 ‖ξk‖22 ≤
∑
k>m∗

‖ξk‖22 E sup
t∈[0,S]

|βk(t)|2

≤ 4S
∑
k>m∗

‖ξk‖22 =: R(m∗)↘ 0
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for m∗ → ∞, where we used the squared version of the Burkholder-Davis-Gundy inequality. Choosing
m∗ so large that R(m∗) ≤ β

3 we obtain

P

(
sup
t∈[0,S]

∑
k>m∗

‖ξk‖22 |βk(t)|2 ≤ β

3

)
≥ 1− R(m∗)

β
3

> 0.

Having chosen m∗ in this way, we can now conclude by (4.3.43) that also for the second term of (4.3.40)
we have

P

(
sup
t∈[0,S]

m∗∑
k=m+1

‖ξk‖22 |βk(t)|2 ≤ β

3

)
> 0,

which proves the claim by independence.

The following lemma combines all results up to now.

Lemma 4.3.20. Let δ > 0, R > 1 and let g ∈ L2 satisfy assumption (4.2.5). Recall u∞ from Lemma
4.3.13 as the long-time limit of solutions uR, u−R to (4.3.28). Then there exist γ, S > 0 such that for
every initial value x ∈ Cδ(R), where Cδ(R) is the δ-neighbourhood of B∞R (0) in H−1, we have

P(‖Xx
S − u∞‖H−1 < 2δ) ≥ γ.

Proof. Recall that uR, u−R are well-defined by Remark 4.3.12 and Lemma 4.3.13. According to Lemma
4.3.13, we can choose S > 0 such that we have

max
{∥∥uR(t)− u∞

∥∥
H−1 ,

∥∥u−R(t)− u∞
∥∥
H−1

}
≤ δ

8
for all t ≥ S. (4.3.44)

Let ux,ε be defined as in Lemma 4.3.18. As shown there, we can choose 0 < β ≤ 1 such that

sup
t∈[0,S]

∥∥WB
t − tg

∥∥
2
≤ β implies ‖Xx,ε

S − ux,εS ‖H−1 <
δ

4
, (4.3.45)

uniformly for all ε ∈ (0, 1], x ∈ B∞R (0). We then define

γ :=
2

3
P

(
sup
t∈[0,S]

∥∥WB
t − tg

∥∥2

2
≤ β

)
, (4.3.46)

which is strictly positive by Lemma 4.3.19. We then choose ε ∈ (0, 1] small enough such that for uR,ε

and u−R,ε as in (4.3.31) we have

max
{∥∥∥uR,εS − uRS

∥∥∥
H−1

,
∥∥∥u−R,εS − u−RS

∥∥∥
H−1

}
≤ δ

8
, (4.3.47)

which is possible by (4.3.32), and such that

E sup
r∈[0,S]

‖Xx,ε
r −Xx

r ‖H−1 ≤
γδ

8
(4.3.48)

is satisfied uniformly for x ∈ B∞R (0) by (4.3.5) (note that the squared form in (4.3.5) is a stronger
statement than needed for (4.3.48) by Jensen’s inequality). For every x ∈ B∞R (0), (4.3.48) implies

P
(
‖Xx

S −Xx,ε
S ‖H−1 ≤

δ

4

)
≥ 1− γ

2
, (4.3.49)

and Corollary 4.3.17, (4.3.44) and (4.3.47) yield

‖ux,εS − u∞‖H−1 ≤
∥∥∥uR,εS − u∞

∥∥∥
H−1

+
∥∥∥u−R,εS − u∞

∥∥∥
H−1

≤
∥∥∥uR,εS − uRS

∥∥∥
H−1

+
∥∥uRS − u∞∥∥H−1

+
∥∥∥u−R,εS − u−RS

∥∥∥
H−1

+
∥∥u−RS − u∞

∥∥
H−1

≤ 4
δ

8
=
δ

2
.
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Hence, still for x ∈ B∞R (0), we conclude,

P (‖Xx
S − u∞‖H−1 < δ)

≥ P
(
‖Xx

S −Xx,ε
S ‖H−1 <

δ

4
and ‖Xx,ε

S − ux,εS ‖H−1 <
δ

4

)
= 1− P

(
‖Xx

S −Xx,ε
S ‖H−1 ≥

δ

4
or ‖Xx,ε

S − ux,εS ‖H−1 ≥
δ

4

)
≥ 1− P

(
‖Xx

S −Xx,ε
S ‖H−1 ≥

δ

4

)
− P

(
‖Xx,ε

S − ux,εS ‖H−1 ≥
δ

4

)
≥ P

(
‖Xx,ε

S − ux,εS ‖H−1 <
δ

4

)
− γ

2

≥ P

(
sup
t∈[0,S]

∥∥WB
t − tg

∥∥2

2
≤ β

)
− γ

2
= γ.

The claim for x ∈ Cδ(R) follows immediately by Lemma 4.3.6.

Proof of Theorem 4.2.1. Lemma 4.3.7, Remark 4.3.8 and Remark 4.3.9 prove all requirements of Propo-
sition 4.3.2 except (4.3.1). To see this remaining statement, we estimate for 0 < ρ < 1 and R(ρ, x) given
in Lemma 4.3.10

lim inf
T→∞

1

T

∫ T

0

Pr

(
x,BH

−1

2δ (u∞)
)

dr

= lim inf
T→∞

1

T

∫ T

0

Pr+S

(
x,BH

−1

2δ (u∞)
)

dr

= lim inf
T→∞

1

T

∫ T

0

∫
H−1

PS

(
y,BH

−1

2δ (u∞)
)
Pr(x, dy) dr

≥ lim inf
T→∞

1

T

∫ T

0

∫
Cδ(R(ρ,x))

PS

(
y,BH

−1

2δ (u∞)
)
Pr(x, dy) dr

≥ γ lim inf
T→∞

1

T

∫ T

0

Pr(x,Cδ(R(ρ, x))) dr > γ (1− ρ) > 0,

where we used the semigroup property of (Pt)t≥0, Lemma 4.3.20 and Lemma 4.3.10. The result then
follows by Proposition 4.3.2.

4.A Solutions to monotone evolution equations

For the reader’s convenience, we cite and translate [26, Definition 3.1]:

Definition 4.A.1. Let H be a Hilbert space, f ∈ L1([0, T ];H), A : H ⊇ D(A) → H a maximal
monotone operator. A function u ∈ C([0, T ];H−1) is called a strong solution to

d

dt
u ∈ −Au+ f, (4.A.1)

if u is absolutely continuous on compact subsets of (0, T ) (which implies that u is differentiable almost
everywhere in (0, T )) and for almost all t ∈ (0, T )

u(t) ∈ D(A)

and
du

dt
(t) ∈ −Au(t) + f(t).

We call u ∈ C([0, T ];H−1) a weak solution to (4.A.1) if there are sequences fn ∈ L1([0, T ];H) and
un ∈ C([0, T ];H) (n ∈ N) such that un is a strong solution of the equation

d

dt
un ∈ −Aun + fn,

fn → f in L1([0, T ];H) and un → u uniformly in [0, T ] for n→∞.

Remark 4.A.2. We observe that each strong solution is also a weak solution.
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4.B Yosida approximation for the specific function φ

Recall from section 4.2 that the multivalued function φ : R → R is defined as the maximal monotone
extension of

R 3 x 7→ x1{|x|>1}.

We want to explicitly calculate its resolvent function Rε : R→ R and its Yosida approximation φε : R→
R. For theoretical details, see [74, Appendix C].

The resolvent Rε(x) is defined as the solution s to

s+ εφ(s) 3 x. (4.B.1)

Note that (4.B.1) has exactly one solution by the maximal monotonicity of φ. For x ∈ [−1, 1] we have

0 ∈ φ(x),

thus (4.B.1) is solved by s = x. Consequently Rε(x) = x.

For x ∈ (1, 1 + ε] we have
x− 1

ε
∈ [0, 1] = φ(1).

Thus, s = 1 solves the equation by

x = 1 + ε
x− 1

ε
∈ 1 + εφ(1),

which yields Rε(x) = 1. If x ∈ [−1− ε, 1), the same argument yields Rε(x) = −1.

For |x| > 1 + ε, we have
∣∣∣ x

1+ε

∣∣∣ > 1 such that

x =
x

1 + ε
+ ε

x

1 + ε
∈ x

1 + ε
+ εφ

(
x

1 + ε

)
,

yielding Rε(x) = x
1+ε . By definition of the Yosida approximation,

φε(x) =
x−Rε(x)

ε
,

it is now easy to conclude that

φε(x) =


0, |x| ≤ 1
x−1
ε x ∈ (1, 1 + ε]

x+1
ε x ∈ [−1− ε, 1)
x

1+ε |x| > 1 + ε

. (4.B.2)

In particular, for ε ≤ 1 and |x| ≥ 1 + ε, we observe that

|φε(x)| ≥ |x|
2
. (4.B.3)
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[13] V. Barbu, G. D. Prato, and M. Röckner. Existence and uniqueness of nonnegative solutions to the
stochastic porous media equation. Indiana University Mathematics Journal, 57(1):187–211, 2008.
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[70] B. Gess and M. Hofmanová. Well-posedness and regularity for quasilinear degenerate parabolic-
hyperbolic SPDE. Ann. Probab., 46(5):2495–2544, 2018.
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