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Abstract

This chapter describes a case study in using a combination of virtualization
technology, Git as well as a continuous integration (CI) server to support sus-
tainability of analytical pipelines. The case study was designed to reproduce
one processing step in the analytical pipeline described in the paper “Tuking a
goal-centered dynamic snapshot as a possibility for local homing in initially naive
bumblebees” [1]. In this paper, the researchers report their findings regarding
the exploratory flights of bumblebees in unknown territories. Trajectories were
recorded using two cameras and triangulated, yielding 3D trajectories of the
flights. The original analytical workflow was implemented in MATLAB. As a
result of Conquaire, the analytical workflow could be reproduced using Python,
yielding trajectories that faithfully match the original trajectories. In Conquaire,
we implemented an analytical workflow that relies on virtualization as well as
on a continuous integration server. The main function of the virtualization is
to preserve the computational environment so that it can be easily executed by
third parties without the need to reproduce the exact computational environ-
ment nor to install any libraries. A continuous integration server was used to
implement basic mechanisms for quality control over the data, leading to the
discovery of some minor mistakes that could be directly corrected. The case
study has demonstrated the usefulness of using a combination of virtualization
and continuous integration to support analytical reproducibility in the natural
sciences, neuroethology in particular.
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4.1 Introduction

Animals move in their environment in a quest for food, a mating partner, or
a place to raise their offspring. The animals, therefore, need to solve spatial
tasks, viz. orientating themselves, identifying and reaching a target (such as a
mating partner or a food source), following habitual routes (for e.g., between
their home and food sources). Even in cluttered environments, animals manage
to solve these complex spatial tasks without collisions with obstacles in their
path. These abilities are not only observed in vertebrates but also in insects
with small brains. Indeed, flying insects can chase their partner [2], learn the
surroundings of their nest [3, 1], cross cluttered environments [4, 5], and follow
routes [6, 7]. Given the small number of nerve cells in insect brains and the
limited reliability of neurons in general, extracting information required to solve
navigational tasks needs to rely on extremely efficient neural mechanisms. As
a consequence of millions of years of evolution, these mechanisms are tightly
linked to the sophisticated locomotion and gaze strategies of insects.

The research focus of the Neurobiology group at Bielefeld University is to
elucidate the computational principles, down to the level of neurons and neural
networks that generate and control visually guided behaviour in complex and
cluttered environments. Understanding the computational principles involved
in visually guided behaviour requires, first, monitoring the behaviour of the
animal over long periods, and second, reconstructing the visual perception of
the environment from the animal’s perspective.

The visual processing and behaviour of insects is extremely fast, and hence
monitoring their behaviour and reconstructing it requires high frequency and
precision recording techniques to obtain the position and orientation of the ani-
mal. The position of an animal in an environment can be accurately derived via
triangulation or 3D reconstruction of high-frequency data from video recordings
of the animal taken with several synchronized cameras. This method requires
a precise orientation and positioning of the camera, as well as a correction of
potential distortions due to the lens, and an accurate detection of the position
and orientation of the insect on the camera (obtained by feature extraction).
However, no tracking software is error-free, and thus, the recording even after
manual reviewing may contain errors (especially for extended recordings, e.g. of
several 10,000 frames) that need to be automatically post-processed by a later
processing stage.

Lobecke et al. [1] recorded the behaviour of naive bumblebees exiting their
nest for the first time. This behaviour can last for several minutes, and the
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monitoring of the animal’s behaviour resulted in the collection of several thou-
sand images on which the bumblebees’ positions were automatically tracked and
manually reviewed. The orientations of the bumblebees during their learning
flights were obtained from the recorded positions using the Camera Calibration
Toolbox from MATLAB [8]).

In this chapter, we discuss a case study in applying a combination of contin-
uous integration principles, virtualization and Git to support reproducibility of
one computational step in the experimental pipeline described by Lobecke et al.
[1]. Our main motivation for this case study is to develop best practices that
support the execution of the original analytical workflow by third parties. For
this reason, we explore how virtualization technology can be used to create a
reproducible computational environment that can be directly executed without
the need to install software. An approach based on virtualization prevents prob-
lems related to broken dependencies due to later non-availability of the required
version of software and packages. In addition to using virtualization, we make
use of an integration server to specify and execute a number of integrity tests
that ensure validity of the data.

The structure of this chapter is as follows: in the following section 4.2, we
describe how the data in the original study by Lobecke et al. was collected. In
section 4.3, we describe the technical environment we have set up to preserve
the computational environment and thus ensure executability of the analytical
workflow. We also describe how we have used continuous integration (CI) prin-
ciples to implement a set of quality checks and integrity tests that ensure the
validity of the data.

4.2 Experiment settings and data acquisition
pipeline

The behaviour of naive bumblebees was recorded with two cameras (Falcon2
3M, Teldyne Dalsa, Inc) at 148fps, an exposure time of 1/1000s and a spatial
resolution of 2048x2048 px. The focal lens of the cameras was 8mm, and the
physical pixel size was 6 ym. The behaviour of bumblebees was continuously
monitored for several hours on a hard disk array using the software Marathon
Pro (GS Vitec, Germany). Relevant sequences of learning flights were stored as
8-bit jpeg images for the flight analyses. From the series of images, the position
of the bumblebee on the image was obtained by segmenting the image into
background and foreground and fitting an ellipse around the foreground (the
bumblebee) by using the software ivTrace[9]").

After this automated procedure, the position and orientation of the bumble-
bee on the images were manually reviewed and potential errors were corrected
by watching the video frame by frame and using the software ivTrace. In a paral-

lhttps://opensource.cit-ec.de/projects/ivtools
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lel step, the Camera Calibration Toolbox for MATLAB by Jean-Yves Bouguet?
was used for the camera calibration and the 3D stereo triangulation. A checker-
board pattern (5 cm per square) was used for the calibration and the difference
between checkerboard points recorded by the camera and checkerboard points
reprojected to the images from their triangulated 3D positions was determined.
The average position error for the top and the side camera were 0.11 and 0.09
pX, respectively.

Lobecke et al. [1] reported that the first learning flights of bumblebees are
highly variable and depend on the recorded individual. The learning flight was
recorded along a prolonged time-span and at a high spatio-temporal resolution.
The bumblebees’ flight positions and orientations were then reconstructed by
using triangulation from two synchronized cameras. Fig. 4.1 depicts the com-
putational workflow of the calibration to triangulation process. Fig. 4.3 depicts
an example of a trajectory of a bumblebee flight. For more detailed depiction,
see [1].

All data files;, MATLAB and Python scripts for analysis as listed in Fig.
4.1 were made available by the Neurobiology group. The XML-file (Fig. 4.7)
contains parameters of the camera that were used for recording the bee flight
movement. They are used in the triangulation process to calculate trajectories
using two tra format files. The dataset is the basis for a publication by Lobecke
et al. (2018) [1]. The tra files (Fig. 4.8) contain the trajectory values in 2D
format from two cameras, one located on top and the other located on the side
of the bee. The MATLAB file format contains resulting trajectory information
in 3D format.

?http://www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 4.1: Procedure to calculate the trajectories of bumblebee flights, original
procedure as described in Lobecke et al. [1]

Figure 4.2: Example trajectory of a bumblebee flight, seen in 3D (cf. Lobecke
et al. [1])
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4.3 Computational Environment for
Reproducibility

In this case study, we set up a computational environment that builds on three
key components to support 3rd party execution of the analytical pipeline for
computing the 3D trajectories:

o Git Repository: The original data and the scripts to compute 3D tra-
jectories from the 2D data of the two cameras were uploaded to a Git
repository. The benefit of using Git is that data and scripts are stored in
a versioned fashion so that particular versions of data and scripts can be
referenced. Further, the data is backuped.

o Virtualization: We rely on virtualization technology to create a virtual
image of the computational environment that can be shared and executed
on any machine that runs the same virtualization software. In our case,
we rely on VM Ware.

o Continuous Integration: We deploy a continuous integration server that
pulls the data and scripts from the Git repository, builds the analytical
pipeline, and executes a number of integrity tests on the data.

In the following, we describe the virtualization and continuous integration
approach in more detail. Before, however, we briefly describe how the original
MATLAB code that was used in the original experiment was migrated to an
open source programming language, Python in particular.

4.3.1 Software Migration

The original code used in the study carried out by Lobecke et al. was written
using the commercial software MATLAB. As part of Conquaire, the scripts
were ported to the open source programming language Python. Some data files
remained in MATLAB format, which did not constitute a problem as Python’s
scipy library can be used to read in MATLAB files. The resulting Python
code is available in a shared GitLab repository®. The Python script reads the
position of the bees from the two cameras, performs the triangulation for the
two camera images and produces the 3D trajectories as output. Note, that the
reconstruction of the camera calibration from the data as depicted in Fig. 4.3
was only necessary for reproduction purposes. For future data, the calibration
parameters for the python scripts would also be generated from a checkerboard
calibration processes.

Using this Python script, we could successfully reproduce the 3D trajecto-
ries from the original experiment. Fig. 4.4 plots the 2D projection of the 3D

3https://GitLab.ub.uni-bielefeld.de/olivier.bertrand/tra3dpy
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Figure 4.3: Procedure to obtain the trajectories of bumblebees. In shaded gray:
The original procedure followed in Lobecke et al. [1]. In shaded
green: the reproduced and adapted procedure. In parenthesis, the
software/tools used to accomplish the task.

trajectories computed by the original MATLAB workflow in comparison to the
Python-based workflow. One can appreciate that the deviations are minor and
barely visible. A statistical analysis of the differences for all 18 investigated
flight experiments is shown in Fig. 4.5. The average error along x- and y-axis
is a maximum of 0.024 mm and is much smaller than the maximum error of
measurement and therefore negligible. In contrast, the average error along the
z-axis is larger (0.3 mm). However, the differences are clearly small and within
an acceptable range.
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Figure 4.5: Distribution of differences between original MATLAB and new
Python calculation for the three dimensions, x, y and z respectively
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Figure 4.4: A close magnified snapshot displaying comparing the 2D projections
to x- and z-axes of the 3D trajectories computed by the MATLAB
analytical workflow (red) and the Python-based workflow (green).

4.3.2 Virtualization

A virtual machine was set up with the necessary libraries and dependencies
required to run the toolbox. A linux-based virtual environment was created
using VMWare. The virtual machine was provided with 2GB RAM and 50GB
of storage. The CI server Jenkins was installed and the Python environment
needed to execute the Python tool mentioned above was setup. In particular,
Python version 3.4 was installed. The benefit of the virtualization is that the
computational workflow can be executed by a third party without any need
for installing operating systems, software nor libraries except for setting up a
machine that runs VMWare and that supports execution of the virtual image.
Thus, the party interested in running the computational workflow does not have
to take care of installing any packages with the correct version. Further, the
workflow can be executed in spite of the specific version of the libraries on which
the script depends not being available anymore.
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4.3.3 Continuous Integration supporting quality control
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Figure 4.6: Flow Chart of Jenkins Continuous Integration pipeline.

As mentioned above, a Jenkins server was installed and deployed on the virtual
machine. The Jenkins server is used to automate the process of checking out
the toolbox from the Git repository and deploying the analytical pipeline in the
local (virtual) machine. It allows to deploy the toolbox in a repeatable and reli-
able way involving automated testing. The CI workflow has been implemented
in such a way that it continuously checks the Git repository for new changes
and executes the whole pipeline every time the data and/or scripts have been
updated. The workflow also installs all the necessary Python libraries using
the pip package manager. The whole pipeline is depicted in Figure 4.6. After
starting the Jenkins Server and starting the workflow, the data and scripts are
checked out from the Git repository. Then, the necessary Python libraries are
installed on the virtual machine and the project is build. A number of unit
tests are performed on the software. Then, a number of data validation tests
are executed and the test results are stored in a log. When all tests are passed,
the toolbox is run on the data and the results of the analysis are stored.
Data validation tests were written for the three types of files:

« XML file: The XML file describes parameters of the camera used when
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<ncameras>2</ncameras>
- <intrinsic_matrix_0 type_id="opencv-matrix">
<rows>3</rows>
<cols>3=/cols>
<dt>d</dt>
<data> 1.387568067493582930e+03 0.000000000000000000e+00
1.023365607919307526e+03 0.000000000000000000e+00
1.388484636313603232e+03 9.826170565500219709e+02
0.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 </data>
</fintrinsic_matrix_0>
- «distortion_0 type_id="opencv-matrix">
<rows>1</rows>
<cols>5</cols>
<dt>d</dt>
<data> -1.699464481329500953e-01 1.037890723530551507e-01
-1.343643214518156490e-04 -9.632742957689408806e-04
0.000000000000000000e+00 </data>
</distortion_0>
- <pose_0 type_id="opencv-matrix">
<rows>4</rows>
<cols>4=/cols>
<dt>d</dt>
<data> 1.000000000000000000e+00 0.000000000000000000e+00
0.000000000000000000e+00 -7.622218701741510394e+00
0.000000000000000000e+00 1.000000000000000000e+00
0.000000000000000000e+00 4.227830369639376329e+01
0.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 1.186040562746989963e+03
0.000000000000000000e+00 0.000000000000000000e+00
0.000000000000000000e+00 1.000000000000000000e+00 </data>
<fpose_0>

Figure 4.7: Camera calibration data in XML format

B 1835.73 7F38.81 -2.19488 152 a.la
1 1835.65 7F38.37 -2.26295 15@ 8.06
2 1835.88 7F38.51 -2.@1619 144 8.96
3 1835.43 7F38.68 -2.07323 145 8.a85
4 1@35.22 738.88 -2.11374 145 a.82
5 1834.99 748.95 -1.95341 148 8.83
6 1834.98 739.20 -2.85625 139 8.81
7 1@35.1¢ 748.95 -1.98317 132 a.82
8 1e35.34 748.12 -2.84238 125 a.84
9 1835.46 7F48.42 -2.07244 118 @.a5

Figure 4.8: The tra format. The rows are in the following format: frame number,
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X, y, orientation, roundness, size

recording the bees’ flight movements (see 4.7 for a sample). We imple-
mented a parser that checks the syntactic well-formedness of the XML
file. In addition, we implemented a set of basic tests checking that the
x- and y-position of the center of the camera is within acceptable ranges.
The test succeeds if the center of both cameras is less than half of the
size of the camera. Finally, we wrote a test to check that the focal length
parameter of the camera is within acceptable ranges.

tra files: The tra files contain 2D trajectory values of the bees’ flights as
recorded by the two cameras. A set of unit tests was implemented to check
that there are no empty values for any row/column as well as that each
value is of numeric type. In addition, we implemented checks to verify
that the values are within acceptable ranges as specified for each column.
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Figure 4.9: Flight speed for a bee which is well within the range as defined by
the researcher (below 10m/s).

A sample of the data is shown in Figure 4.8.

« MATLAB files: The MATLAB files contain the 3D trajectories as cal-
culated from the 2D files using a triangulation mechanism described by
Lobecke et al. [1]. We implemented a test that computes the distance
between any subsequent 3D data points and computes the bumblebee’s
speed from the distance and frames per second as recorded by the cameras.
The test is passed if the speed is below the maximum of 10m/s.

These tests were intended to validate the data by discovering potential errors.
The XML file with the camera parameters passed all the tests. Our validation
scripts highlighted that some rows in the tra files had missing values and that
some rows had 11 (instead of 6) values. In the case of the MATLAB files, some
tests were not passed as for a number of data points the bumblebee’s flight speed
was observed to be out of the possible range (Fig. 4.9 and Fig. 4.10). Overall,
this validation helped the researchers to discover small errors in the data and
correct them.
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Plot of Bee flight speed
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Figure 4.10: Flight speed for a bee in which an error in the data was found.
The erroneous speed was above 150 m/s, which is far outside the
acceptable range.

4.4 Conclusion

We have described a case study in applying a combination of continuous in-
tegration principles, virtualization and Git to support reproducibility of one
computational step within an experiment in neurobiology studying the first
flights of bumblebees. Git supports the versioned storage of data and scripts
so that we can refer back to any version of the data if needed. Virtualization
technology allows to preserve the computational environment in order to avoid
a situation in which the software can not run any more due to broken dependen-
cies, non-availability of the particular version of a required software, etc. Third
party researchers can re-run the computational procedure by merely installing
the image of the virtual machine, without having to install any further software
or having to built it. A continuous integration server has been deployed on the
virtual machine to automatically pull the most recent version of the data on
the repository, build the computational pipeline and run a number of tests that
check the well-formedness of the data.

In the specific use case considered, the use of virtualization and continuous
integration might be considered an overkill as the processing scripts in Python
that calculate the 3D trajectories have a limited complexity. The quality tests
implemented are also rather simple. Yet, our goal has been to understand the
potential of using virtualization and continuous integration, also with respect
to more complex cases and experimental environments in which more complex
software artifacts and analytical pipelines are involved. In the specific case
study considered, we could successfully re-run one computational step from the
experimental settings described in the paper “Taking a goal-centered dynamic
snapshot as a possibility for local homing in initially naive bumblebees” [1]. In
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particular, we could rerun the step that calculates and visualizes the trajectories
of bumblebees. In this sense we could reproduce a key step in the analysis of
the recorded flights.

A drawback of our proposed architecture and combination of virtualization,
continuous integration and Git is that the data resides on a Git repository and
is pulled every time the computational pipeline is deployed and tested by the
continuous integration server. While this allows to pull the most recent version
of data and scripts, in our experience once the data and scripts are final, they
are typically not modified so that a static inclusion of the data and scripts in
the virtual machine would be sufficient. The dependency on a Git repository
introduces a dependency that can potentially break if the Git server is not hosted
anymore. In future work, the potential and benefits of using virtualization in
combination with a continuous integration server should be further investigated
on additional use cases. Especially, using the CI pipeline for continuous quality
control on newly recorded data in follow-up projects would be highly beneficial
for neuroethological research.
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