
6 Visualization of economic
agent-based simulations:
introducing the FLAViz
toolbox

Sander van der Hoog1, Philipp Cimiano2

1 – Faculty of Business Administration and Economics, Bielefeld University
2 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction

Technology Excellence Center (CITEC), Bielefeld University

Abstract
We describe the result of a collaboration between the Economic Theory and
Computational Economics (ETACE) group at Bielefeld University and the Con-
quaire project. The Economic Theory and Computational Economics (ETACE)
group, with a project led by Prof. van der Hoog, applies agent-based modeling
approaches to study dynamic equilibrium models resulting from the interaction
of heterogeneous rational agents. This allows insights into the application of
different industrial policy measures in different regions, the existence of varying
spatial frictions on goods and labour markets, the spatial dynamics of indus-
trial activity, technical change and growth, the micro- and macro-prudential
regulations and their effects on micro-fragility and macro-financial stability, as
well as financialisation of the real sector and the need for productive credit for
economic development. In this paper, we describe the implementation of the
FLAViz library that realizes a data analytic processing pipeline supporting the
computational analysis and visualization of simulation data generated in the
FLAME environment. This library is a key step towards ensuring computa-
tional reproducibility of the analyses of the available simulation data.

Keywords
Computational Economics, Python, Pandas, simulation data, High-Performance
Computing.

71

Cimiano P., Pietsch C., & Wiljes C. (Eds.) (2021). Studies in Analytical Reproducibility: the 
Conquaire Project. Bielefeld. https://doi.org/10.4119/unibi/2942780

https://doi.org/10.4119/unibi/2942780


6 Visualization of economic agent-based simulations

6.1 Introduction
The research group on Economic Theory and Computational Economics (ETACE)
is concerned with the analysis of different aspects of economic dynamics and
strategic interaction. It employs and extends both analytical methods, in par-
ticular dynamic optimization and dynamic game theory, and computational
approaches, where the latter include numerical methods for the solution of (dy-
namic) equilibrium models as well as agent-based simulations.

Research at ETACE is based on the conviction that a thorough examina-
tion of (dynamic) economic phenomena should be based on a combination of
(i) dynamic equilibrium analysis, providing benchmark results under full ratio-
nality (and foresight) of decision makers, and (ii) the explicit consideration of
the economic dynamics unfolding under the interaction of rationally bounded
heterogeneous agents. The aim of the work undertaken by the ETACE group
is to extend the toolbox of economists and policy makers, and to apply these
tools to relevant research questions, mainly in the areas of Industrial Economics,
Labour Economics and Macroeconomic Dynamics.

Ongoing research at ETACE can be broadly categorized in the following re-
search topics:

• Agent-based Modelling for Economic Policy Analysis

• Economics of Innovation and Industrial Dynamics

• Network Formation and Spatial Dynamics

• Labour Economics and Search Theory

Within the Conquaire project, we have addressed work in the first topic
area, that is Agent-based Modelling for Economic Policy Analysis. In partic-
ular, we have identified the Eurace@Unibi Model, a specific agent-based sim-
ulation model, as a case study to test the notions of analytical reproducibility
and continuous integration of research data, which are two key aspects of data
management for the Conquaire project.

In recent years, it has been widely acknowledged by economic scholars that the
explanatory power of standard representative agent models is in many cases lim-
ited. This has led to a surging interest in the empirical exploration of bounded
rationality in economic decision making, mainly by means of laboratory exper-
iments and attempts to incorporate heterogeneity in endowments or behavior
into economic models. A particularly natural and promising approach to ac-
count for economic phenomena that result from the (bounded) rational inter-
action of heterogeneous economic agents is the use of agent-based computer
simulation models. Phenomena of such types are abundant (the avalanche-like
dynamics in the network of connected commercial banks inducing the current
economic crisis is just one prominent example in that respect), and a large

72



6.1 Introduction

amount of insightful agent-based research has addressed a wide range of rel-
evant economic issues (see e.g. the Handbook of Computational Economics
Volume II edited by Tesfatsion and Judd [1] for an overview, and the more re-
cent Handbook of Computational Economics Volume IV edited by Hommes and
LeBaron [2] for applications).

A main research topic at ETACE is the development of micro-founded macro-
economic heterogeneous agent-based models that can be used as an integrated
framework for policy analysis in different economic policy areas. Based on work
carried out in the EU-funded Eurace Project, the Eurace@Unibi model has
been developed and used as a tool for the analysis of various economic policy
questions related to issues of technological change and economic growth, labor
market policies, social cohesion and convergence, and to study banking and
credit market regulations. See [3] and [4] for a more detailed description of
the model. The Eurace@Unibi model is among the most sophisticated and
well-documented models in this domain of economic research. It has strong
empirical micro-foundations and reproduces a large set of empirical stylized
facts. Ongoing work focuses on the analysis of policy effects considering spatial
factors and knowledge and information flows. In particular, the goal of the
model is to allow to study the effects of:

• the application of different industrial policy measures in different regions,

• the existence of varying spatial frictions on goods and labour markets,

• the spatial dynamics of industrial activity, technical change and growth,

• microprudential and macroprudential regulations and their effects on micro-
fragility and macro-financial stability, and the

• financialization of the real sector and the need for productive credit for
economic development.

The Eurace@Unibi model is adapted and extended on a regular basis to ad-
dress concrete research questions in economic policy. Finally, members of the
ETACE group develop and apply statistical methods and concepts to system-
atically and rigorously analyse computational policy experiments using agent-
based simulation models. The data being generated by such simulation models
can be quite complex, not just in terms of data volumes but also in terms of its
dimensions, heterogeneity, and variety. This is especially true when large-scale
agent-based models with large agent populations are simulated. To analyse such
high-dimensional data, new data visualization techniques must be developed,
and this was one of the main tasks to be accomplished by the ETACE group
in the context of the Conquaire project. Since the Eurace@Unibi model, which
was selected as our use-case for the Conquaire project, has been implemented
in the simulation environment FLAME, we give a brief description of this sim-
ulation platform below. In the following subsection 6.2, we describe how the

73



6 Visualization of economic agent-based simulations

FLAME environment is used to generate the simulation executable and describe
a library called FLAViz that has been developed in cooperation with Conquaire
and supports the analysis of simulation data generated by a FLAME-generated
model.

6.2 Methods
In this section, we describe the FLAME environment.

6.2.1 The FLAME Environment
The Flexible Large-scale Agent Modelling Environment (FLAME) is a generic
agent-based modelling platform, which can be used to generate agent-based
models in a wide range of applications, such as biology, crowd simulations, and
economic analyses (see the FLAME website for examples and code).1 The soft-
ware components XParser and Libmboard can be downloaded from the GitHub
repository of FLAME-HPC.2

In principle, FLAME is not a simulator, but a simulator generator since it
creates a simulation executable that can be run on any hardware platform from
laptops or servers, to HPC clusters. Currently, there exist different versions
of FLAME for use with CPUs or GPUs, and efforts are underway to create
a single, uniform environment that addresses all hardware architectures. The
CPU version is called FLAME-HPC and is currently the most mature version
(see [5, 6, 7, 8, 9, 10] for a more detailed description of FLAME).

Several features make FLAME particularly appealing as a framework to de-
velop and analyse large-scale agent-based models since the framework has been
specifically designed for use on high-performance computing clusters. It pro-
vides a very transparent and clean way to model information flows between
agents using messages, both internal inside the conceptual model and outside of
it through the use of a Message Passing Interface (MPI), provided by the Libm-
board library. The only means to communicate private data between agents is
through the exchange of messages, where the data an agent can transmit con-
sists of a list of values of its own state variables (e.g. wealth, income, skills,
profits, expectations about certain variables). Messages are added to a cen-
tralized message board and the sender determines which agents can read the
message. Agents check the message boards in every iteration in order to collect
all the information they are supposed to receive. An agent can use the collected
information as input to its decision rules or as the basis for updating some of
its own state variables.

Since high-performance computing clusters are involved, and computational
resources on such clusters are still a scarce resource, the data generation and

1See the FLAME website <http://www.flame.ac.uk>.
2See the GitHub repository <https://github.com/FLAME-HPC>.

74

<http://www.flame.ac.uk>
<https://github.com/FLAME-HPC>


6.2 Methods

data analysis stages are a multi-stage process in which considerations of com-
putational time and data storage play an important role. These two steps are
separated in time, with the data first being generated and stored to disk, and
afterwards the data is again loaded for analysis.

At the simulation design stage (before simulations are actually run), the model
analyst can select to output either a complete snapshot of all variables of all
agents (this is very data intensive), or select a subset of agents for which all
variables will be stored. In addition, it is also possible to select a certain fre-
quency at which the data is output, say every n iterations, or to select only a
subset of variables (a much less data intensive mode of simulation).

6.2.2 Simulation Data
FLAME uses the XML format for data input and output files. In order to design
a simulation model in FLAME, three types of XML files are typically required:

• Model XML files: This file follows a DTD (see FLAME User Manual, [5,
pp.43-44]). It specifies the model’s data structures and variable types, with
XML tags for the environment, models, agents, messages, ADTs, and time
units. The environment-tag contains static constants (model parameters)
and file names for the C function files (user-created). The xagent-tag
contains memory variables and functions. Messages and ADTs contain
attributes, which are the variables contained in these data containers.

• Data input XML files: This file is an input argument to the simulator
executable (see FLAME User Manual, [5, pp.30-31]). It contains all initial
values for the model constants and agent variables. Usually the input file is
called 0.xml, and the default file size is now about 25 MB for our standard
economic model.

• Data output XML files: These are the output files generated by the
simulator executable (which itself is generated by FLAME by compiling
the user-created and template C code). This type of file only contains the
values for all the agents’ variables. The environment constants have no
output (except when the output file is a snapshot, see below), since the
constants are static and are already contained in the input file.

In order to understand the structure and data content of the output XML files,
a brief discussion about the notion of agents might be helpful. In research at the
ETACE group, we deal with different economic agent types, such as Eurostat,
Bank, Firm, Household, Central bank, etc. Each agent type has a different set of
variables, since this depends on what activities the agent performs in the model.
For example, the agent type Bank might contain variables such as cash, total
credit, deposits, mean interest rate, etc. Another agent of type Eurostat might

75



6 Visualization of economic agent-based simulations

contain variables like: unemployment rate, total debt, monthly output, average
wage, etc.

Also, each agent type is an archetype, and many instances of each agent type
may actually exist in the simulation. In this sense, the agent types are simi-
lar to an object class, and the individual agents are similar to object instances.
Depending on the particular type of economic analysis, we have different require-
ments for the simulation output. For example, a particular simulation might
contain only the agent type Eurostat, while for another analysis we might need
more than one agent type, for example all Eurostat, Firm and Bank agents.
Therefore, the agent types and their variable lists can be filtered before they are
output to disk, saving on simulation time and storage requirements. This is one
reason why the output XML files may vary in size. Some common file sizes (per
iteration) are: 105 bytes (store only Eurostat, 1 variable), 2 MB (store multi-
ple agent types, multiple instances of each type, and many variables per agent
instance), 25 MB (store a population snapshot, containing all agents, and all
variables per agent). If a certain analysis requires millions of runs for millions
of iterations (for molecular dynamics for instance), it makes sense to filter out
some of the data before it is output to disk.

The population snapshot file of 25 MB also contains the model constants/pa-
rameters in addition to the agent variables. These static constants are usually
not part of the output file, as this would be redundant since they are already
contained in the input XML file (0.xml). As the purpose of the snapshot file
is to be used again as an input file to the simulator, the model constants must
also be contained in this file.

The output XML files are named with the iteration numbers. Basically, a file
named 1.xml contains all the values at the end of the first iteration; similarly
the file 2.xml contains all the values at the end of the second iteration, and so
on.

Visualizing Simulation Data

In order to generate the simulation data we have adopted the following ontology:

• Sets: a set reflects a model parameter setting. Each set differs from
another set only in the parameter setting of the model.

• Runs: a run is a replication for a fixed parameter setting. Each run differs
from other runs only by the random seed. The other initial conditions are
kept exactly the same across runs.

Thus, parameter variations are captured in settings or sets. Each set reflects
a different parametrization of the simulation model. In case the model contains
random variables and stochasticity, the statistical properties of the model can be
explored using different random seeds and a Random Number Generator (RNG).
By default, we use the RNG from the open source GNU Statistical Library

76



6.3 Analytical Reproducibility

(GSL), which is based on a Mersenne Twister (mt19937). For each data set,
multiple runs are performed using different random seeds, producing different
simulation output for each run. These runs can be called Monte Carlo replication
runs since the random seeds are themselves varied in a random fashion. The
seed is set randomly based on the system time at simulation launch time, and
stored for later replication of the data, if required.

6.3 Analytical Reproducibility
In this section, we describe the implementation of the Flexible Large-scale Agent
Visualization Library (FLAViz), which is a software library specifically designed
for the analysis and visualization of data generated by Agent-Based Models
(ABMs). Agent-based simulation models typically generate data across mul-
tiple dimensions, e.g. parameter sets, Monte Carlo replication runs, different
agent types, multiple agent instances per type, many variables per agent, and
time periods (iterations). This implies the data is structured as time series
panel data sets. FLAViz has been developed in cooperation with the Conquaire
project and has been specifically designed for FLAME-generated data, but in
principle data from any ABM can be used, as long as the data adheres to the file
specifications. FLAViz builds on the Python pandas library to deal with such
high-dimensional time series panel data sets. The data is stored as structured
data using multiple hierarchical levels in the HDF5 file format. This allows for
proper data aggregation, filtering, selection, slicing, transformation, and visual-
ization. The toolbox is setup in a modular way as a flexible set of tools that can
be integrated into an automated work-flow for analysing the time series data
generated by any computational model. The software code for the visualiza-
tion library FLAViz is open-source and available for download from the GitHub
repository.3 The installation instructions and dependencies are documented in
the readme file of the repository, as well as tutorials and example data.

6.3.1 Data Analysis Pipeline
FLAViz is an addition to the FLAME set of tools used for the simulation and
analysis of large-scale agent-based models. FLAME natively outputs data in
XML format. In FLAViz this gets processed using Python scripts and trans-
formed into HDF5 files for final storage. Building on the pandas and matplotlib
libraries, various plots can be specified, e.g., time series, box plots, scatter plots,
histograms, and delay plots.

FLAViz version 0.1.0 (beta) is written in Python (ver- 3.6) and other package
dependencies include:

• Pandas (ver-0.21.0)
3<https://github.com/svdhoog/FLAViz>

77

mt19937
<https://github.com/svdhoog/FLAViz>


6 Visualization of economic agent-based simulations

• YAML files for easy configuration management

• Matplotlib for data visualization

• HDF5, and

• PyTables

FLAViz uses two important inbuilt features of the pandas library, viz.:

• Hierarchical indexing: this allows a high dimensional data frame (the
ndarray format)

• Bygroup: this allows to re-order the hierarchical index, to reshape the
data dimensions

At the outset, the original simulation data are stored in XML files and are
then converted to a more data-processing friendly format, viz. the HDF5 for-
mat. This is needed because the XML files that FLAME simulations generate
are a fully tagged data format and is therefore very verbose. For large scale
simulations this is prohibitive in terms of the sheer size of the data volumes
generated. The storage and parsing of large data volumes generate a com-
plex data structure. In order to reduce this storage footprint, yet retain the
structured data format, the HDF5 standard was chosen for its hierarchical data
storage structure. The Pandas library can easily read large *.h5 files and store
the data internally into one of its native data formats (either pandas.dataframe
or numpy.ndarray).

The data hierarchy is as follows:

1. Agent types: a = 1, ..., A - Classes, groups of agent sub-populations

2. Sets: s = 1, ..., S - Parameter settings (model calibrations)

3. Runs: r = 1, ..., R - Monte Carlo replication runs (random seeds)

4. Iterations: t = 1, .., T - Time periods

5. Agents: i = 1, ..., n a - Individual agents (per type)

6. Variables: j = 1, ..., m - Scalars, Arrays, Composites

Due to this large data heterogeneity, the file sizes may vary across simulations
with the same model, even when using exactly the same input file, due to
stochasticity. The data for each agent-type is stored in a single HDF5 file without
any file-size limitations. The data is heterogeneous across several dimensions:

• agent types: there can be many different agent types (e.g., household
agents, firm agents, bank agents, etc.)

78



6.3 Analytical Reproducibility

• agent instances: there can be a different number of agent instances per
agent type

• agent memory variables: there can be a different number of memory
variables per agent type (but all agents of the same type have the same
set of memory variables, specified a priori, in the model.xml file that fully
specifies the model’s structure)

HDF5 File Format

HDF5 has a simplified file structure that includes only two major types of ob-
jects:

1. Datasets: which are multidimensional arrays of a homogeneous type; and

2. Groups: which are container structures which can hold datasets and
other groups.

The main restrictions of the HDF5 file standard are:

1. the HDF5 file format requires that the atomic data set at the lowest
hierarchical level is a homogeneous data format (no ragged edges). This
means that the choice of the 6 dimensions (Sets, Runs, Iterations, Agent
types, Agent instances per type and Variables) requires us to choose those
dimensions that remain invariant across all model simulations as the ones
contained in this homogeneous data structure. These dimensions are:
Agent instances, Iterations and Variables. These dimensions are invariant
because we simulate the same model many times, and we do not change
the model structure across simulations. Therefore the number of variables
per agent remains the same, the number of agent instances per agent
type is constant, and the total number of iterations also remains constant
across simulation runs. Another reason for choosing those 3 dimensions
is that the sets and runs form a unit of analysis, so it makes sense to
choose those for the higher level in the hierarchy. Also, the simulation
output for the sets and runs can be generated on a cluster in a massively
distributed fashion, by distributing the compute load across many nodes.
Logically, this implies storing the output in separate files according to the
set/run combinations first, and only at the very end combining all these
files according to the agent types.

2. The 3D Panel format in Python pandas has 3 axes (item, major and
minor) and is specified as row-major. This means that the data structure
requires the largest dimension to be on the major axis. In our case, the
largest dimension is the number of iterations, typically 1000 or higher.
The other dimensions are the number of agent instances (on the order of
100), and the number of variables (also on the order of 100).

79



6 Visualization of economic agent-based simulations

Given the above constraints, we specify the 3D Panel data structure as follows:

1. item axis: agent instances

2. major axis (table rows): iterations

3. minor axis (table columns): variables

To deal with the remaining 3 dimensions (agent types, sets and runs), we
proceed as follows. We generate a separate HDF5 file per agent type, using
the naming convention AgentType.h5. To account for the two remaining data
dimensions of sets and runs, we specify the data groups inside the HDF5 file
using set/run combinations as follows: set_s_run_r (s = 1, ..., S and r =
1, ..., R).

Summarizing, the simulation data is stored in a HDF5 container file (*.h5,
*.hdf5) using a hierarchical data format. Currently, these HDF5 files are struc-
tured as follows:

• Each agent type is contained in a separate HDF5 file, with the same name
as the agent type (e.g., Firm.h5, Bank.h5, etc.).

• Inside each HDF5 file there is a Group (similar to a folder structure) for
each combination of set and run, using the naming convention set_s_
run_r.

• Inside each Group there is a Dataset which contains a pandas Panel,
which is a datastructure that consists of items, major and minor axes.

• the Python pandas Panel is written to the HDF5 file with the PyTables
module of Python, which uses a write-once policy (no appending).

The HDF5 file structure described above can be created from SQLite database
files that contain the results from set/run combinations by using the data pro-
cessing scripts that are included in the FLAViz package. Alternatively, the
HDF5 file could be created from the XML files directly, but a big disadvantage
of this method is that the entire collection of XML files has to be available on disk
in uncompressed form (very bulky), which could be prohibitive for large-scale
applications. It is also not very resource-friendly, due to its lack in parallelism.
Another option would be to stream the data into the final database file as it
becomes available from the simulations. Unfortunately, however, streaming the
data into an HDF5 file is not possible, due to the write-once feature of the
PyTables module that we have chosen to adopt in the library to write to the
HDF5 file. The reason for this choice is that appending data to an HDF5 file
would require a different write method using the h5py module, which is less
performant than doing it write-once.

80

AgentType.h5
set_s_run_r
set_s_run_r
set_s_run_r


6.3 Analytical Reproducibility

6.3.2 Plotting with FLAViz
To adhere to the general principle that all results of a published paper should be
computationally reproducible given the data from computational experiments,
we should be able to reproduce the plots using various permutations and com-
binations of the data. FLAViz uses three configuration files, through which the
necessary conditions can be set. The configuration files follow the hierarchi-
cal yaml format for clarity and functionality with specific indentation for the
input to be interpreted correctly. For the general plot settings, the yaml file
config.yaml contains settings for selecting the desired sets and runs, or to
specify ranges for the iterations and variables along the major and minor
axes, respectively. It is also possible to perform data transformations of agent
variables, and to select data based on data slicing. For example, select all data
at iteration t = x, or select all data for agent ID = i. Data filtering can also
be performed, in which case the data is filtered based on agent conditions or
variable conditions. For example, filter the selected data on the condition that
the agent variable X has value v. For selecting the plotting styles, the yaml
file plot_config.yaml contains settings to select what kind of features the plot
should contain. Everything related to axes, legends, colours, etc, can be set in
this file, which follows the basic features of matplotlib, which is the standard
plotting library used by Python pandas. Currently, if the user specifies multiple
plots, these are processed one by one. To speed up this process and parallelize
the plotting routine, each plot could be run as a separate sub-process that re-
trieves data from the main data set once it has been read into main memory.
This is left for future development of the FLAViz library.

Example config files As an example, the plot in Fig. 6.1 shows a visual-
ization of data for the agent type "Firm", the variable "price", and is based on
data for 4 sets (selected sets: 10, 13, 16, 17). Each set consists of 20 runs. The
plotting style is specified as using a time series multiple-batch plot, showing
the 20th and 80th percentiles. The construction and generation of this plot is
specified in the following settings in the configuration files.

config.yaml:

plot1:
timeseries:

agent: Firm
analysis: multiple_batch
variables:

var1: [price]
set: [10,13,16,17]
run: [range,[1,20]]
major: [range,[6020,12500,20]]
minor: [range,[1,80]]

81

yaml
config.yaml
plot_config.yaml
matplotlib


6 Visualization of economic agent-based simulations

summary: custom_quantile
quantile_values:

lower_percentile : 0.20
upper_percentile : 0.80

plot_config.yaml:

plot1:
number_plots: one
plot_legend: yes
legend_location: best
xaxis_label: Time
yaxis_label: price
linestyle: solid
marker: None
fill_between: yes
fillcolor: darkgreen

Figure 6.1: Plotting the price time series for data covering 4 sets, each consisting
of 20 runs of 6.500 iterations, and for 80 Firm agents.

82



6.4 Summary and limitations

6.4 Summary and limitations
FLAME simulations with large-scale economic simulation models require high-
performance super-computing (HPC) facilities and generate large datasets that
typically represent a bottleneck from the perspective of both computational
resources and storage requirements.

BigData storage using the HDF5 format (a hierarchical filesystem-like data
format) works well for economic data that consists predominately of time series
data (i.e., numerical, not text data). If needed, more complex storage APIs
representing images and tables can be built using datasets, groups, attributes,
types, dataspaces and property lists. Because the bulk of the data is transformed
into straightforward arrays (the table objects) for processing, the data can be
accessed in a much faster way than with more traditional row-based processing
in an SQL database.

The time performance of the FLAViz Library could probably be reconfig-
ured/refactored to work in a more distributed fashion by optimizing the order
in which the data is post-processed. We can probably speed-up several oper-
ations that now are taking place sequentially. This is a matter of figuring out
what the main loops on the various dimensions of the data (agents, variables,
iterations, etc.) are, and then determine the optimal order in which these loops
should be executed. The items in the loops can then be executed in differ-
ent threads, and it should be investigated whether there are any information
dependencies that need to be resolved between those threads.

Also the storage performance could be optimized. Not all data need to re-
main in memory at all times. Currently, we first read-in all the data into main
memory, then filter it based on conditions, and then process it further.

In simulation science, we deal with very complex data objects with a wide
variety of metadata that require a portable file format without any limits on the
number or size of data objects in the collection. The HDF5 format is a versatile
data model that makes it easier to manage extremely large and complex data
collections with time and storage space optimizations. It also runs on a range
of computational platforms. Some advantages of using the HDF5 format are:

• HDF5 is a Self Describing Format: Each file, group and dataset can
have associated metadata that describes exactly what the data is, viz.,
data types, description, documentation of data ontologies, information
about how the data in the dataset were collected, etc.

• Compressed & Efficient subsetting: The HDF5 format is a com-
pressed format and data size optimization makes the overall file size smaller.
The data slicing feature allows subsets of a dataset to be extracted for pro-
cessing in order to avoid storing the whole dataset in main memory.

• Heterogeneous Data Storage: HDF5 files can store multiple types of
data within the same file as sets of datasets containing heterogeneous data

83



References

types (e.g., both text and numeric data in one dataset)

• Open Format: HDF5 has technical support in many programming lan-
guages and tools, like ’R’, ’Python’ and ’Julia’ due to its open format.

6.5 Conclusion
This paper has described a case study in the area of computational economics
on the computational reproducibility of simulation results. In contrast to other
chapters, we have not aimed at reproducing a particular result published by
the ETACE group. Instead, Conquaire has cooperated with the ETACE group
to implement a generic visualization library called FLAViz, to support the ex-
ploration and visualization of simulation data. The pipeline implemented in
FLAViz makes use of the HDF5 format, which has turned out to be a very
flexible and versatile data format.

FLAViz supports the analytical reproducibility of research data in two ways,
both ex-ante and ex-post publication. Firstly, if researchers store their simu-
lation data on an ongoing basis during a research project, and FLAViz config-
uration files are also available, then an automatic plot generation tool can be
used in the sense of Continuous Integration of research data. This helps a lot
in increasing the trustworthiness and credibility in the results, as well as giving
us the ability to track how the results are changing over time as the research
project progresses. Secondly, if pre-generated simulation data is available from
a published paper from the original authors, then the FLAViz toolbox could be
directly applied to this dataset to reproduce the plots of the published paper.
These can then be used to check the validity of the claims made by the original
authors in their paper. In these two important ways, toolboxes such as FLAViz
can be regarded as helping us to ensure the analytical reproducibility of research
data.

Acknowledgements
We would like to thank Krishna Devkota for implementing the FLAViz library
and Fabian Hermann for documentation and bug fixing.

References
[1] Leigh Tesfatsion and Kenneth Judd, editors. Handbook on Agent-Based

Computational Economics, volume 2. North-Holland: Elsevier,
Amsterdam, 2006.

84



References

[2] Cars H. Hommes and Blake LeBaron, editors. Handbook on Agent-Based
Computational Economics, volume 4. North-Holland: Elsevier,
Amsterdam, 2018.

[3] Herbert Dawid, Simon Gemkow, Philipp Harting, Sander van der Hoog,
and Michael Neugart. Agent-Based Macroeconomic Modeling and Policy
Analysis: The Eurace@Unibi Model. In S-H Chen, Kaboudan M., and
Y.-R. Du, editors, The Oxford Handbook of Computational Economics and
Finance, chapter 17, pages 490–519. Oxford University Press, 2018.

[4] Herbert Dawid, Philipp Harting, Sander van der Hoog, and Michael
Neugart. A Heterogeneous Agent Macroeconomic Model for Policy
Evaluation: Improving Transparency and Reproducibility. Journal of
Evolutionary Economics, 29:467–538, 2019.

[5] Mariam Kiran. FLAME Flexible Large-sale Agent-based Modelling
Environment User Manual. University of Sheffield, 2010.

[6] Simon Coakley and Mariam Kiran. FLAME User Manual. University of
Sheffield and Rutherford Appleton Laboratories, STFC, 2012.

[7] Simon Coakley, Marian Gheorghe, Mike Holcombe, Shawn-Lee Chin,
David Worth, and Christopher Greenough. Exploitation of high
performance computing in the FLAME agent-based simulation
framework. In Proceedings of the 14th International Conference on High
Performance Computing and Communications, pages 538–545, 2012.

[8] Paul Richmond. FLAME GPU Technical Report and User Guide.
Technical Report CS-11-03, 2011.

[9] Simon Coakley, Paul Richmond, Marian Gheorghe, Shawn-Lee Chin,
David Worth, Mike Holcombe, and Christopher Greenough. Large-Scale
Simulations with FLAME. In Joanna Kołodziej, Luís Correia, and José
Manuel Molina, editors, Intelligent Agents in Data-intensive Computing,
Studies in Big Data Series, pages 123–142, 2016.

[10] Mariam Kiran. X-Machines for Agent-Based Modeling: FLAME
Perspectives. Computer and Information Science Series. Chapman &
Hall/CRC Press, Boca Raton, Fla., 2017.

85


	Preface
	Introduction
	Motivation
	Overview of Conquaire Infrastructure and Workflow
	Case Studies in Computational Reproducibility
	Analysis
	Levels of Reproducibility
	Data formats used by case study partners
	Tools used by case study partners
	Reproducibility Analysis

	Summary
	Bibliography

	Conquaire Infrastructure for Continuous Quality Control
	Introduction
	Why we use Git and GitLab
	Git
	GitLab

	Conquaire Continuous Quality Control Infrastructure
	Overview
	Example of pre-configured YAML file
	Quality checks

	Summary

	Reproducibility of whole-body movement analyses of insects
	Introduction
	Methods
	Data workflow: acquisition and processing pipeline
	Data acquisition: Experimental procedure
	Manual editing and annotation
	Secondary processing: Whole-body kinematics

	Analytical Reproducibility
	Analysis pipeline, data formats and software tools
	Technical Challenges and Issues

	Conclusion
	Bibliography

	Reproducing Trajectory Analysis of Bumblebee Exploration Flights
	Introduction
	Experiment settings and data acquisition pipeline
	Computational Environment for Reproducibility
	Software Migration
	Virtualization
	Continuous Integration supporting quality control

	Conclusion
	Bibliography

	Reproducing experiments of ice nucleation in atmospheric chemistry
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experimental data
	Main Results

	Analytical Reproducibility
	Research Data - Primary
	Research Data - Analyzed and Processed
	Data Workflow Lifecycle
	Summary of Reproducibility Experiment

	Conclusion
	Bibliography

	Visualization of economic agent-based simulations
	Introduction
	Methods
	The FLAME Environment
	Simulation Data

	Analytical Reproducibility
	Data Analysis Pipeline
	Plotting with FLAViz

	Summary and limitations
	Conclusion
	Bibliography

	Reproducing experiments on early verb understanding in infants
	Introduction
	Methods
	Experimental settings and data acquisition pipeline
	Methods applied to analyze the data
	Main Results

	Analytical Reproducibility
	Data Workflow Lifecycle
	Reproducibility Results

	Summary of computational reproduction experiment
	Conclusion
	Bibliography

	Reproducing an experiment in automatic disfluency detection
	Introduction
	Methods
	Analytical Reproducibility
	Summary of reproducibility experiment
	Conclusion
	Bibliography

	Reproducing the analysis of sequential visual processing
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experiment data

	Analytical Reproducibility
	Research Data
	Analytical Reproducibility status
	Discussion of reproducibility experiment

	Conclusion
	Bibliography

	Reproducibility in Human-Robot Interaction Research: A Case Study
	Introduction
	Experimental Settings and Methods
	The JSE Experiment
	Replication in Indiana

	Analytical Reproducibility: Results & Lessons Learned
	Technical Obstacles & Procedural Issues
	Results of the Pilot Study on Reproducibility in HRI

	Analysis of reproducibility experiment
	Conclusion
	Bibliography

	Conclusion
	Leere Seite



