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Dirichlet twists of GLn-automorphic L-functions and
hyper-Kloosterman Dirichlet series

Jeanine Van Order (1)

ABSTRACT. — We calculate mean values of GLn-automorphic L-functions twisted
by primitive even Dirichlet characters of prime-power conductor, at arbitrary points
within the critical strip, by derivation of special Voronoi summation formulae. Our
calculation is novel in that the twisted sum can be expressed in terms of the aver-
age itself, and also that it sees the derivation of various new summation formulae
in the setting of prime-power modulus. One consequence, as we explain, is to show
the analytic continuation and additive summation formulae for hyper-Kloosterman
Dirichlet series associated to GLn-automorphic L-functions.

RÉSUMÉ. — Nous calculons les valuers moyennes des fonctions L automorphes
sur GLn tordues par des caractères de Dirichlet primitifs et pairs, du conducteur
une puissance d’un nombre premier, à des points arbitraires dans la bande critique,
en dérivant des formules de sommation spéciales du type Voronoi. Notre calcul est
nouveau car la somme est exprimé en termes de la moyenne elle-même, et aussi qu’il
voit la dérivation de diverses nouvelles formules de sommation dans le regime des
puissances d’un nombre premier. Une conséquence, comme nous l’expliquons, est de
montrer les prolongations analytiques et des formules de sommation additive pour
les séries de Dirichlet hyper-Kloosterman associées aux fonctions L automorphes sur
GLn.

1. Introduction

Let π = ⊗vπv be a cuspidal automorphic representation of GLn(AQ)
of conductor N and unitary central character ω for n > 2. Suppose the
achimedean component π∞ of π is spherical and parametrized by a diagonal
matrix diag(µj)nj=1. We consider the standard L-function

Λ(s, π) = L(s, π∞)L(s, π) =
∏
v

L(s, πv)
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of π, whose Euler factors L(s, πv) at an unramified places v are given by the
n-fold products

L(s, πv) =
{∏n

j=1 (1− αj(πv)v−s)
−1 if v is finite∏n

j=1 ΓR(s− µj(πv)) if v =∞ is the real place,

where the (αj(πv))j and (µj(π∞))j denote the corresponding Satake param-
eters of the local representations πv. More precisely, we shall consider twists
Λ(s, π ⊗ χ) = L(s, π)L(s, π ⊗ χ) of this standard L-function by primitive,
even Dirichlet characters χ as follows.

Fix a prime number p which does not divide N , and let β > 2 be any
integer. Let δ ∈ C be any complex number inside the critical strip 0 < <(δ) <
1. We derive various exact summation formulae in the style of Lavrik [8] and
Voronoi [16] to describe the mean values

Xβ(π, δ) = 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(δ, π ⊗ χ),

where ϕ?(pβ) = ϕ(pβ) − ϕ(pβ−1) denotes the number of primitive Dirich-
let characters χmod pβ , and the sum runs over all primitive even Dirichlet
characters χ of conductor pβ . To be clear, we average over the finite parts
of the completed L-functions Λ(s, π ⊗ χ), whose archimedean components
are each given by L(s, π∞) (independently of the choice of χ), where the
main difficulty and novelty is to compute the implicit polar term directly.
We note that this average is of interest for several reasons, one being the
applications to the generalized Ramanujan conjecture (at the real place) via
the argument of Luo-Rudnick-Sarnak [10, §1]. To be more concrete, we de-
rive the following formulae in terms of the L-function coefficients a(m) of π.
LetW (π) denote the root number of L(s, π), so that the functional equation
for the standard L-function reads Λ(s, π) = W (π)Λ(1− s, π̃). Fix a rational
prime p not diving N . Given an integer β > 1 and a coprime class c mod-
ulo pβ , consider the n-dimensional hyper-Kloosterman sum of modulus pβ
evaluated at c:

Kln(c, pβ) =
∑

x1,...,xn mod pβ

x1···xn≡cmod pβ

e

(
x1 + . . .+ xn

pβ

)
.

Here (as usual) e(x) = exp(2πix). We consider natural sums of these hyper-
Kloosterman sums,

Kln(±c, pβ) := Kln(c, pβ) + Kln(−c, pβ) =
∑

x1,...,xn mod pβ

x1···xn≡±cmod pβ

e

(
x1 + . . .+ xn

pβ

)
.
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Given any choice of real number Z > 0, we derive the following summation
formula for the twisted sum in the approximate functional equation formula
for Xβ(π, δ) (see Lemma 3.2 and Proposition 4.3) in the course of showing
of Theorems 6.7, 6.8, and Corollary 6.9 below. Writing to c denote the mul-
tiplicative inverse of a class cmod pβ , and taking k(s) to be the Mellin trans-
form of some smooth and compactly supported function (see Lemma 3.1),
or in fact any such test function with k(0) = 1 if the generalized Ramanujan
conjecture for π at the real place is known, we derive the summation formula

p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
βn
2

∑
m>1

(m,p)=1

a(m)
m1−δ Kln(±mN, pβ)

∫
<(s)=2

k(−s)
s

L(1− s+ δ, π̃∞)
L(−s+ δ, π∞)

(
mZ

Npnβ

)−s
ds

2πi

= Xβ(π, δ) + Z1−δ

 ∑
m>1

m≡±1 mod pβ

a(m)
m

∫
<(s)=−2

k(−s+ (1− δ))
s− (1− δ)

(
Z

m

)s
ds

2πi

− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
m

∫
<(s)=−2

k(−s+ (1− δ))
s− (1− δ)

(
Z

m

)s
ds

2πi

 .

In particular, we compute the average Xβ(π, δ) as a residue term directly,
which is a nontrivial calculation. The value in this calculation is to illus-
trate the derivation through successive Voronoi summation formulae, where
the explicit nature of the prime-power modulus setting reveals the struc-
ture of passage clearly. Such summation formulae are not accessible via any
of the existing works on Voronoi, among them those of Miller-Schmid [11],
Goldfeld-Li [3], [2] or Ichino-Templier [4], or the more recent works of Miller-
Zhou [12] and Kiral-Zhou [7]. This is a consequence of the delicate analysis
required to deal with the implicit and non-admissible choice of archimedean
weight function, which leads to the (indirect) derivation of the residual term
Xβ(π, δ).(1) Unlike these other works, we also make use of the setting of
prime-power modulus, where the hyper-Kloosterman sums which appear af-
ter unraveling the n-th power Gauss sums can be evaluated explicitly in
the style of Salié (see Proposition 6.1). This calculation with its intermedi-
ate summation formulae suggests potential applications to the calculation
of higher moments of L-functions, as well as to estimation in the style of

(1) The aforementioned works require smooth and compactly supported test functions,
or else work directly on the level of Dirichlet series in the range of absolute convergence.
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Luo-Rudnick-Sarnak [10], although we do not pursue such applications here.
Note as well that we restrict to the setting of cuspidal representations for
simplicity, and that a similar summation formula could be derived for coeffi-
cients of Eisenstein series. In this way, our calculations should also imply the
analytic continuation and corresponding functional equations for Eisenstein
series on GLn(AQ) twisted by additive characters and hyper-Kloosterman
sums. To spell out this latter point in a related special case, we explain in a
final section §7 how to derive the analytic continuation and functional equa-
tions of the following class of hyper-Kloosterman Dirichlet series: Given a
coprime class hmod pβ and s ∈ C (first with <(s) > 1), we first consider the
series defined by

Kn(π, h, pβ , s) =
∑
m>1

(m,p)=1

a(m)
ms

Kln(±mh, pβ) (1.1)

=
∑
m>1

(m,p)=1

a(m)
ms

(
Kln(mh, pβ) + Kln(−mh, pβ)

)
. (1.2)

We prove the following theorems as a direct consequence of the calculations
described above.

Theorem 1.1. — Let π be a cuspidal GLn(AQ)-automorphic represen-
tation for n > 2 with level N , central character ω, and L-function coefficients
a(m) as above. Let

F (s) = L(1− s, π̃∞)
L(s, π∞) = π−

n
2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)

denote the quotient of archimedean factors appearing in the functional equa-
tion (6.3) for L(s, π⊗χ) below. Fix a rational prime p which does not divide
N . Let β > 1 be any integer, and h any coprime class modulo pβ.

(A) The Dirichlet series Kn(π, h, pβ , s) has an analytic continuation to all
s ∈ C, and satisfies the following additive functional identity:
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(i) If β > 2, then for <(s) < 0 (after analytic continuation)

Kn(π, h, pβ , s) = W (π)ω(pβ)N 1
2−spnβ(1−s)F (s)ϕ(p)

p

∑
m>1

m≡±hN mod pβ

a(m)
m1−s −

1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m1−s

 .

(ii) If β = 1, then for <(s) < 0 (after analytic continuation)

Kn(π, h, p, s) = W (π)N 1
2−sF (s)pn(1−s)ω(p)

 ∑
m>1

m≡±hN mod p

a(m)
m1−s −

2
p− 3

∑
m>1

m 6≡±hN mod p

a(m)
m1−s

+ 2
p− 3(−1)nL(1− s, π̃)

 .

(B) Let φ be any smooth function on y ∈ R>0 which decays rapidly at 0 and
∞, and let φ∗(s) =

∫∞
0 φ(y)ys dyy denote its Mellin transform (when defined).

Let us also write Φ = Φ(φ) to denote the function on y ∈ R>0 defined for a
suitable choice of real number σ ∈ R>1 by the integral transform

Φ(y) =
∫

(−σ)
φ∗(s)F (s)ys ds2πi =

∫
(−σ)

φ∗(s)

π−n2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)
 ys

ds

2πi .

(i) If β > 2, then we have for any coprime class hmod pβ the summa-
tion formula∑

m>1
(m,p)=1

a(m) Kln(±mh, pβ)φ(m)

= W (π)ω(pβ)N 1
2 pnβϕ(p)

p

∑
m>1

m≡±hN mod pβ

a(m)
m

Φ
(

m

Npnβ

)
− 1
p

∑
m>1

m≡±hN mod pβ

m6≡±hN mod pβ

a(m)
m

Φ
(

m

Npnβ

) .
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(ii) If β = 1, then we have for any coprime class hmod p the summation
formula∑

m>1
(m,p)=1

a(m) Kln(±hN, p)φ(m) = W (π)N 1
2F (s)

×

pnω(p)

 ∑
m>1

m≡±hN mod p

a(m)
m

Φ
(

m

Npn

)
− 2
p− 3

∑
m>1

m6≡±hN mod p

a(m)
m

Φ
(

m

Npn

)
+(−1)n 2

p− 3
∑
m>1

a(m)
m

Φ
(m
N

) .

Remark 1.2. — Let us note that although the main (residual) calculations
in the body of this work cannot be recovered by existing Voronoi summation
formulae, the simpler Voronoi formulae of Theorem 1.1 (A) and (B) above
can be derived from those of Miller-Schmidt [11] after taking a sum over
additive characters to reduce to Ramanujan sums. To be more precise, one
can consider a sum over coprime residue classes a mod pβ of sums of the
form ∑

m>1

a(m)
ms

e

(
aq

pβ

)
,

to which the theorems of [11] apply. Thus taking another coprime class h mod
pβ , we have that∑
a mod pβ

(a,pβ)=1

e

(
−ha
pβ

)∑
m>1

a(m)
ms

e

(
aq

pβ

)
=
∑
m>1

a(m)
ms

∑
a mod pβ

(a,pβ)=1

e

(
−ha
pβ

)
e

(
aq

pβ

)

=
∑
m>1

a(m)
ms

cpβ (m− h),

where cpβ (r) denotes the Ramanujan sum of modulus pβ at r. Since we have
the well-known relation

cpβ (r) = µ

(
pβ

(pβ , r)

)
ϕ(pβ)

ϕ (pβ/(pβ , r)) ,

we deduce in the case of β > 2 (via the contribution of the Möbius function to
cpβ (m−h)) that the additional hyper-Kloosterman sums of moduli dividing
pβ in the formula of [11] vanish. Thus the formulae of Theorem 1.1 (A) and
(B) can be recovered from [11], although we give a different (streamlined)
proof.
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We also consider the setting corresponding to twists by GL1(AQ) as
follows. Let us again fix ξ a primitive Dirichlet character of conductor q
prime to p. Given n > 1 an integer, β > 1 an integer, h a coprime class
modulo pβ , and s ∈ C (first with <(s) > 1), we consider the Dirichlet series
defined by

K0
n(ξ, h, pβ , s) =

∑
m>1

(m,p)=1

ξ(m)
ms

Kln(±mh, pβ)

=
∑
m>1

(m,p)=1

ξ(m)
ms

(
Kln(mh, pβ) + Kln(−mh, pβ)

)
,

as well as

K0
0(ξ, h, pβ , s) =



∑
m>1

m≡hmod pβ

ξ(m)
ms −

1
p

∑
m>1

m≡±hmod pβ−1

m 6≡±hmod pβ

ξ(m)
ms if β > 2

∑
m>1

m≡±hmod p

ξ(m)
ms −

2
p−3

∑
m>1

m 6≡±hmod p

ξ(m)
ms if β = 1.

Theorem 1.3. — Fix an integer n > 1. Fix a prime number p. Let ξ be
any primitive Dirichlet character of conductor q prime to p. Let τ(ξ) denote
the standard Gauss sum of ξ. Fix an integer β > 2, and let h be any coprime
class modulus pβ.

(A) The Dirichlet series K0
n(ξ, h, pβ , s) has an analytic continuation to all

s ∈ C, and satisfies the following additive functional identity.

(i) If β > 2, then we have for s ∈ C with <(s) < 0 (after analytic
continuation) the functional identity

K0
n(ξ, h, pβ , s) = ξ(pβ)τ(ξ)q−spβ(1−s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )K0

n−1(ξ, qh, pβ , 1− s).

(ii) If β = 1, then we have for s ∈ C with <(s) < 0 (after analytic
continuation) the functional identity

K0
n(ξ, h, p, s) = τ(ξ)q−s

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) [p1−sξ(p)K0

n−1(ξ, hq, p, 1− s) + (−1)n(
1 + 2

p− 3εp(s, ξ)
)
L(p)(1− s, ξ)

]
Here, εp(s, ξ)−1 denotes the Euler factor at p of L(s, ξ), so that
εp(s, ξ)L(s, ξ) = L(p)(s, ξ) denotes the incomplete L-function of ξ,
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with the Euler factor at p removed.

(B) Suppose n > 2. Let φ be a smooth function on y ∈ R>0 which decays
rapidly at 0 and∞, and let φ∗(s) =

∫∞
0 φ(y)ys dyy denote its Mellin transform

(when defined). Let us also write Φ = Φ(φ) to denote the function on y ∈
R>0 defined for a suitable choice of real number σ ∈ R>1 by the integral
transform

Φ(y) =
∫

(−σ)
φ∗(s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) ys ds2πi .

(i) If β > 2, then we have for any coprime class hmod pβ the summa-
tion formula∑

m>1
(m,p)=1

ξ(m) Kln(±mh, pβ)φ(m) = τ(ξ)ξ(pβ)pβ
∑
m>1

(m,p)=1

ξ(m)
m

Kln−1(±mhq, pβ)Φ
(
m

qpβ

)
.

(ii) If β = 1, then we have for any coprime class hmod p the summation
formula∑
m>1

(m,p)=1

ξ(m) Kln(±mh, p)φ(m)

= τ(ξ)

ξ(p)p ∑
m>1

(m,p)=1

ξ(m)
m

Kln−1(±mhq, p)Φ
(
m

pq

)

+(−1)n
∑
m>1

(m,p)=1

ξ(m)
m

(
Φ
(
m

q

)
+ 2
p− 3Φ̃

(
m

q

)) .

Here, Φ̃ denotes the function on y ∈ R>0 defined by the modified
integral transform

Φ̃(y) =
∫

(−σ)
φ∗(s)εp(s, ξ)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) ys ds2πi .

It is curious that while these latter results are derived almost entirely via
the functional equations for L(s, π⊗χ) or L(s, ξ⊗χ), with a modest amount
of harmonic analysis, the series Kn(π, h, pβ , s) and even K0

n(ξ, h, pβ , s) do not
seem to be well-understood or so far much developed. At the same time, it
seems likely they have a crucial role to play in the estimation of the moments
Xβ(π, δ), and hence in subsequent progress towards to the generalized Ra-
manujan conjecture. As well, it seems likely this perspective could shed light
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on the open problem of calculating higher moments of L-functions, not only
through natural links with Eisenstein series, but also through the scope it
suggests for using p-adic Fourier theory (see e.g. [14]) as a tool for estima-
tion. The work is therefore written with this perspective in mind, and with
many of the lesser-known details for the case of prime-power modulus β > 2
described in full, so that other cases that we omit for simplicity such as
Eisenstein series or n = 1 could be derived mutatis mutandis in the same
way.
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2. Some background

Fix χ a primitive even Dirichlet character of conductor q prime to N .
Recall that for <(s) > 1 we consider

L(s, π ⊗ χ) =
∑
m>1

(m,q)=1

a(m)χ(m)m−s.

Recall too that this forms one component of the standard L-function Λ(s, π) =
L(s, π∞)L(s, π), where

L(s, π∞) =
n∏
j=1

ΓR(s− µj) =
n∏
j=1

π−
(s−µj)

2 Γ
(
s− µj

2

)
denotes the archimedean component, defined in terms of the Satake pa-
rameters (µj)nj=1. Note that when π∞ is unitary, {µj} = {−µj}. Let δ0 =
maxj(<(µj))nj=1 denote the maximal real part of any of these parameters, so
that L(s, π∞) is entire in the half plane <(s) > δ0. Note that the generalized
Ramanujan/Selberg conjecture predicts δ0 = 0, and also that we have the
following unconditional bounds towards this conjecture:
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Theorem 2.1 (Luo-Rudnick-Sarnak, [10, Theorem 1.2]). — Let π =
⊗vπv be a cuspidal automorphic representation of GLn(AQ) with unitary
central character. If the component π∞ is spherical and parametrized by
diag(µj)nj=1, then for each index 1 6 j 6 n, we have the bound |<(µj)| 6
1
2 −

1
n2+1 .

Remark 2.2. — Better approximations towards the conjecture (e.g. to-
wards Selberg’s eigenvalue conjecture [15]) exist for n = 2, where the current
record is 7/64 by Kim-Sarnak [6].

3. Functional equations

Given a continuous or piecewise continuous function f on x ∈ R, let
f∗(s) =

∫∞
0 f(x)xs dxx denote its Mellin transform. We start with the follow-

ing choice of test function k(s) (cf. [10, §3]).

Lemma 3.1. — Fix g ∈ C∞c (R>0) a smooth test function. Let

G(x) =
n∏
j=1

(
x
d

dx
+ µj

)
g(x).

Then, the Mellin transform G∗(s) =
∫∞

0 G(x)xs dxx of G(s) satisfies the re-
lation

G∗(s) = g∗(s)
n∏
j=1

(−s+ µj).

In particular, G∗(0) =
∏n
j=1 µj and G∗(µ1) = · · · = G∗(µn) = 0. If we

assume additionally that
∏n
j=1 µj 6= 0, then the (holomorphic) function k(s)

defined by

k(s) = G∗(s)∏n
j=1 µj

(3.1)

satisfies the properties that k(0) = 1 and that k(µ1) = · · · = k(µn) = 0.

Proof. — The claim is easy to deduce using integration by parts, or
even simply the known formula for the Mellin transform of (x d

dx )ng(x) as
(−s)ng∗(s). �

Let us henceforth take k(s) = G∗(s) to be the Mellin transform defined
in (3.1), imposing the additional condition(2) that

∫∞
0 G(x)dxx = 1 so that

(2) Note that [10] take such a Mellin transform g∗(s) (denoted k(s) = f∗(s)) as the
test function in their approximate functional equation. However, there is typo in [10] on
the line before equation (3.6), i.e. the condition should read

∫∞
0 f(x) dx

x
= 1.
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k(0) = 1. Let χ be any primitive even Dirichlet chapter of conductor q prime
to the conductor N of π. Note that the completed L-functions Λ(s, π⊗π) =
L(s, π∞⊗χ∞)L(s, π⊗χ) and Λ(s, π) = L(s, π∞)L(s, π) then have the same
archimedean components L(s, π∞⊗χ∞) = L(s, π∞). We can then write the
functional equation of the finite part of the L-function L(s, π ⊗ χ) in this
setup as

L(s, π ⊗ χ) =W (π)ω(q)χ(N)
(
τ(χ)
√
q

)n
(Nqn) 1

2−s
(
L(1− s, π̃∞)
L(s, π∞)

)
L(1− s, π̃ ⊗ χ−1)

=W (π)ω(q)χ(N)
(
τ(χ)
√
q

)n

(Nqn) 1
2−s

π−n2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)
L(1− s, π̃ ⊗ χ−1)

Here (again), W (π) denotes the root number of Λ(s, π), and ω = ωπ the
central character of π. Let us also write F (s) to denote the quotient of
archimedean factors in this functional equation:

F (s) = L(1− s, π̃∞)
L(s, π∞) = π−

n
2 +ns ·

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

) . (3.2)

Let us now consider the following smooth and rapidly decaying functions
on y ∈ R>0:

V1(y) = 1
2πi

∫
<(s)=2

k(s)y−s ds
s

(3.3)

and

V2(y) = Vδ,2(y) = 1
2πi

∫
<(s)=2

k(−s)F (−s+ δ)y−s ds
s
. (3.4)

We can apply a standard contour argument to the integral

1
2πi

∫
<(s)=2

k(s)L(s+ δ, π ⊗ χ)Zs ds
s

(3.5)

to derive the following useful formula.

Lemma 3.2. — Let χ be a primitive even Dirichlet character of conduc-
tor q coprime to the level N of π. Let Z > 0 be any real number. Let δ be
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any complex number with 0 < <(δ) < 1. Then, we have

L(δ, π ⊗ χ) =
∑
m>1

(m,q)=1

a(m)χ(m)
mδ

V1

(m
Z

)

+W (π)ω(q)χ(N)
(
τ(χ)
√
q

)n
(Nqn) 1

2−δ
∑
m>1

a(m)χ−1(m)
m1−δ V2

(
mZ

Nqn

)
.

(3.6)

Proof. — The result is a standard; see [10, Lemma 3.2]. �

The functions V1(x) and V2(x) decay rapidly as follows. Let us first review
how to apply the Stirling approximation theorem to estimate the quotient
of gamma factors appearing in the second function V2(x):

Lemma 3.3. — Given s ∈ C, write s = σ + it for t 6= 0. Then, for
σ = <(s) fixed and |=(s)| → +∞, we have∏n

j=1 Γ
(

1−s−µj
2

)
∏n
j=1 Γ

(
s−µj

2

) =
∏n
j=1 |1− s− µj |

1/2−σ−µj∏n
j=1 |s− µj |σ−µj−

1
2

.

Proof. — See the discussion in [5, Ch. 5, A4]. Stirling’s asymptotic for-
mula implies that∏n

j=1 Γ
(

1−s−µj
2

)
∏n
j=1 Γ

(
s−µj

2

) ≈
∏n
j=1 |1− s− µj |

1−σ−µj−1/2e−|t|
π
2∏n

j=1 |s− µj |σ−µj−1/2e−|t|
π
2

=
∏n
j=1 |1− s− µj |

1/2−σ−µj∏n
j=1 |s− µj |σ−µj−

1
2

.

�

Lemma 3.4. — Let δ0 = maxj(<(µj)). The functions V1(x) and V2(x)
are bounded as follows:

(i) For each of j = 1, 2, Vj(x) = OC,j(x−C) for any choice of C > 0
when x > 1, i.e. as x→∞.

(ii) V1(x) = 1+OA(xA) for any choice of A > 1 when 0 < x 6 1, i.e. as
x→ 0.

(iii) V2(x)�ε 1 +O(x1−<(δ)−δ0−ε) when 0 < x 6 1, i.e. as x→ 0.

Proof. — The result follows from the same standard contour argument
given in [10, Lemma 3.1]. �

Finally, let us record the following observation for future use. Recall that
δ0 = maxj=1,2(<(µj)).
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Proposition 3.5. — Let φ∞ denote the function defined on a real vari-
able x ∈ R>0 by φ∞(x) = x−(1−δ)V2(f−1

β x), where fβ > 0 is some arbitrary
fixed real number. We have the following integral presentation of this func-
tion φ∞(x) for any x ∈ R>0: For any choice of real number σ in the interval
max(δ0, 1−<(δ)) < σ < 3−<(δ),

φ∞(x) =
∫
<(s)=σ

f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ)π−n2 +n(s−1)

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
1−s−µj

2

)
x−s

ds

2πi . (3.7)

Proof. — Recall that the cutoff function V2(x) is defined explicitly for
any x ∈ R>0 as

V2(x) =
∫
<(s)=2

k(−s)
s

π−n2 +n(−s+δ) ·

∏n
j=1 Γ

(
1+s−δ−µj

2

)
∏n
j=1 Γ

(
−s+δ−µj

2

)
x−s

ds

2π .

(3.8)

Recall too that the function k(s) is holomorphic and bounded for |=(s)| →
∞, with the additional properties k(0) = 1 and k(µ1) = · · · = k(µn) = 0.
Now, it is easy to see that the quotient of gamma factors in the kernel has
poles as s = µ1 − (1− δ), . . . , s = µn − (1− δ). We may therefore move the
line of integration in this definition (3.8) to the left, avoiding these poles.
That is, we may also define

V2(x) =
∫

(σ)

k(−s)
s

π−n2 +n(−s+δ) ·

∏n
j=1 Γ

(
1+s−δ−µj

2

)
∏n
j=1 Γ

(
−s+δ−µj

2

)
x−s

ds

2π

so long as

max
j

(
0,<(µj)− (1−<(δ))

)
< σ 6 2.
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Let us now return to the function φ∞(x) = x−(1−δ)V2(f−1
β x). Observe (using

the definition) that we have

φ∞(x) =
∫

(2)

k(−s)
s

π−n2 +n(−s+δ) ·

∏n
j=1 Γ

(
1+s−δ−µj

2

)
∏n
j=1 Γ

(
−s+δ−µj

2

)
x−(1−δ)

(
x

fβ

)−s
ds

2πi

=
∫

(2)
fsβ
k(−s)
s

π−n2 +n(−s+δ) ·

∏n
j=1 Γ

(
1+s−δ−µj

2

)
∏n
j=1 Γ

(
−s+δ−µj

2

)
x−s−(1−δ) ds

2πi

=
∫

(2+(1−<(δ)))
f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ)π−n2 +n(−s+1) ·

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
1−s−µj

2

)
x−s

ds

2πi ,

where in the last step we change variables s → s − (1 − δ). Thus for s ∈ C
with <(s) = σ in the interval

max
j

(
1−<(δ),<(µj)

)
< σ < 2 + (1−<(δ)),

we may write

φ∞(x) =
∫

(σ)
f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ)π−n2 +n(−s+1) ·

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
1−s−µj

2

)
x−s

ds

2πi .

This shows the stated presentation of φ∞(x). �

4. Average values

Fix a prime p which does not divide the dimension n or the conductor
N of π. Fix β > 1 an integer. Let ϕ?(pβ) denote the number of primitive
Dirichlet characters χmod pβ . Hence,

ϕ?(pβ) = pβ
∏
p||pβ

(
1− 2

p

) ∏
p2|pβ

(
1− 1

p

)2
,

where the factor of (1−2/p) is omitted if β > 2 (as we shall usually assume).
To derive our working expressing for the average Xβ(π, δ), we begin with the
following basic formulae, which although classical do not seem to be so well-
known in the setting of prime-power modulus.
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Proposition 4.1. — Fix an integer β > 2. We have for any integer
m > 1 that

∑
χmod pβ

primitive,χ(−1)=1

χ(m) =


1
2ϕ

?(pβ) if m ≡ ±1 mod pβ

− 1
2ϕ(pβ−1) if m ≡ ±1 mod pβ−1and m 6≡ ±1 mod pβ

0 otherwise.

In the case that β = 1 corresponding to prime modulus, we also have the
formula

∑
χmod pβ

primitive,χ(−1)=1

χ(m) =


0 if m ≡ 0 mod p
ϕ(p)

2 − 1 if m ≡ ±1 mod p
−1 otherwise.

Proof. — Fix integers m > 1 and β > 1. Let us first consider the sum
over primitive characters χmod pβ , which via the Möbius inversion formula
([5, (3.8)]) is ∑

χmod pβ
χ 6=χ0

χ(m) =
∑

06x6β
px|(m−1,pβ)

ϕ(px)µ
(
pβ

px

)
.

Here, µ denotes the Möbius function. It is easy to see from this formula that
for β > 2 we have the relations

∑
χmod pβ
χ 6=χ0

χ(m) =


ϕ?(pβ) if m ≡ 1 mod pβ

−ϕ(pβ−1) if m ≡ 1 mod pβ−1 and m 6≡ 1 mod pβ

0 otherwise
,

using that ϕ(pβ)−ϕ(pβ−1) = ϕ?(pβ) and that µ(pβ) = 0. To detect relations
for the subset of even characters χ(−1) = χ(1), we compute∑

χmod pβ
χ 6=χ0

χ(m)
(
χ(1) + χ(−1)

2

)
= 1

2
∑

χmod pβ
χ 6=χ0

χ(m) + 1
2

∑
χmod pβ
χ 6=χ0

χ(−m).

The stated relations are then easy to derive. The well-known case of β = 1
(cf. [10, (3.11)]) can also be derived in this way, using the relations

∑
χmod p
χ 6=χ0

χ(m) =


ϕ?(p) if m ≡ ±1 mod p
0 if m ≡ 0 mod p
−1 otherwise

.

�

Using this result, we now derive the following basic but crucial result for
our calculations. Fix an integer n > 1. Given a residue class r prime to the
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modulus pβ (and hence r prime to p), let us write Kln(r, pβ) to denote the
classical hyper-Kloosterman sum evaluated at r:

Kln(r, pβ) :=
∑

x1,··· ,xn mod pβ

x1···xn≡rmod pβ

e

(
x1 + · · ·+ xn

pβ

)
.

Here, we write e(x) = exp(2πix). We also use the notation Kl1 to denote the
corresponding Ramanujan sum. Given a coprime residue class rmod pβ , let
us write r to denote the multiplicative inverse of rmod pβ .

Lemma 4.2. — Let n > 1 be any integer.

(i) Given an integer β > 2, we have for any integer r coprime to p that∑
χmod pβ

primitive,χ(−1)=1

χ(r)τ(χ)n = ϕ(pβ)
2

(
Kln(r, pβ) + Kln(−r, pβ)

)
,

where the sum ranges over primitive, even Dirichlet characters χmod pβ.

(ii) In the case of prime modulus corresponding to β = 1, we also have
for any integer r coprime to p that∑

χmod p
primitive,χ(−1)=1

χ(r)τ(χ)n =
(
ϕ(p)

2 − 1
)(

Kln(r, pβ) + Kln(−r, pβ)
)
− (−1)n,

where the sum ranges over primitive, even Dirichlet characters χmod p.

Proof. — Let us start with (i). Opening up the sum, we have the identi-
fication∑

χmod pβ
primitive,χ(−1)=1

χ(r)τ(χ)n =
∑

χmod pβ
primitive,χ(−1)=1

∑
x1,...,xn mod pβ

χ(rx1 · · ·xn)e
(
x1 + · · ·+ xn

pβ

)
.

Switching the order of summation and using the relations of Proposition 4.1,
we then obtain

ϕ?(pβ)
2

∑
x1,...,xn mod pβ

x1···xn≡±rmod pβ

e

(
x1 + · · ·+ xn

pβ

)

− ϕ(pβ−1)
2

∑
x1,...,xn mod pβ

x1···xn≡±rmod pβ−1

x1···xn 6≡±rmod pβ

e

(
x1 + · · ·+ xn

pβ

)
.
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Now, consider the second sum in this expression, which after writing y =
x1 · · ·xn−1rmod pβ is the same as∑

x1,...,xn mod pβ

x1···xn≡±rmod pβ−1

x1···xn 6≡±rmod pβ

e

(
x1 + · · ·+ xn

pβ

)

=
∑

x1,...,xn−1 mod pβ
e

(
x1 + · · ·+ xn−1

pβ

) ∑
xn≡±ymod pβ−1

xn 6≡±ymod pβ

e

(
xn
pβ

)
. (4.1)

Observe that each class xn in the inner sum can then be written as xn =
±y + lpβ−1 for some 1 6 l 6 p− 1,∑

xn≡±ymod pβ−1

xn 6≡±ymod pβ

e

(
xn
pβ

)
=

∑
16l6p−1

e

(
y + lpβ−1

pβ

)
+ e

(
−y + lpβ−1

pβ

)

=
(
e

(
y

pβ

)
+ e

(
− y

pβ

)) ∑
16l6p−1

e

(
l

p

)
.

Using the well-known identity
∑

16l6p−1 e
(
l
p

)
= −1, it is then easy to see

that the sum (4.1) is equal to

−
∑

x1,...,xn mod pβ

x1···xn≡±rmod pβ

e

(
x1 + · · ·+ xn

pβ

)
= −

(
Kln(r, pβ) + Kln(−r, pβ)

)
.

In this way, we obtain the formula∑
χmod pβ

primitive,χ(−1)=1

τ(χ)n =
(
ϕ?(pβ) + ϕ(pβ−1)

2

) ∑
x1,...,xn mod pβ

x1···xn≡±rmod pβ

e

(
x1 + · · ·+ xn

pβ

)
.

The stated formula then follows, using that ϕ?(pβ) = ϕ(pβ)− ϕ(pβ−1).

To derive (ii) (cf. [10, (3.19)]), we open up the sum and switch the order
of summation to obtain∑

χmod p
primitive,χ(−1)=1

χ(r)τ(χ)n

=
∑
χmod p

primitive,χ(−1)=1

χ(r)
∑

x1,...,xn mod pβ
χ(x1 · · ·xn)e

(
x1 + · · ·+ xn

pβ

)

=
∑

x1,...,xn mod pβ

∑
χmod p

primitive,χ(−1)=1

χ(x1 · · ·xnr)e
(
x1 + · · ·+ xn

pβ

)
.
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Using Proposition 4.1 to evaluate in the inner sum then gives us the expres-
sion (

ϕ(p)
2 − 1

) ∑
x1,...,xn mod p

x1···xn≡±rmod p

e

(
x1 + · · ·+ xn

p

)

−
∑

x1,...,xn mod p
x1···xnr 6≡±1 mod p

e

(
x1 + · · ·+ xn

p

)

=
(
ϕ(p)

2 − 1
) ∑

x1,··· ,xn mod p
x1···xn≡±rmod p

e

(
x1 + · · ·+ xn

p

)

−

 ∑
x1 mod p
x1 6≡1 mod p

e

(
x1

p

)
· · ·

∑
xn mod p
xn 6≡1 mod p

e

(
xn
p

)
=
(
ϕ(p)

2 − 1
) ∑

x1,...,xn mod p
x1···xn≡±rmod p

e

(
x1 + · · ·+ xn

p

)
− (−1)n.

�

Using these relations, we can now derive the following moment formula
(assuming β > 2 for simplicity):

Proposition 4.3. — Fix a prime p which does not divide the conductor
N of π, and let β > 2 be any integer. We have for any choice of real parameter
Z > 0 the following average formula:

Xβ(π, δ) = Xβ,1(π, δ, Z) +Xβ,2(π, δ, Z), (4.2)

where

Xβ,1(π, δ, Z) =
∑
m>1

m≡±1 mod pβ

a(m)
mδ

V1

(m
Z

)
− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m 6≡±1 mod pβ

a(m)
mδ

V1

(m
Z

)
,

(4.3)

Xβ,2(π, δ, Z) =
(

p

ϕ(p)

)
W (π)ω(pβ)(Npβn) 1

2−δ

(pβ)n2∑
m>1

(m,p)=1

a(m)
m1−δ V2

(
mZ

Npβn

)(
Kln(mN, pβ) + Kln(−mN, pβ)

)
. (4.4)
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Proof. — Using formula Lemma 3.2, we can decompose the averageXβ(π, δ)
into sums

Xβ,1(π, δ, Z) := 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

∑
m>1

(m,p)=1

a(m)χ(m)
mδ

V1

(m
Z

)
and

Xβ,2(π, δ, Z) := 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

W (π)ω(pβ)
(
τ(χ)
pβ

)n
(Npnβ) 1

2−δ

∑
m>1

(m,p)=1

a(m)χ−1(m)
m1−δ V2

(
mZ

Npβn

)
.

To evaluate Xβ,1(π, δ, Z), we switch the order of summation, then use
(4.1) to evaluate the inner sum:

Xβ,1(π, δ, Z) =
(
ϕ?(pβ)

2

)−1 ∑
m>1

(m,p)=1

a(m)
mδ

V1

(m
Z

) ∑
χmod pβ

primitive,χ(−1)=1

χ(m)

=
∑
m>1

m≡±1 mod pβ

a(m)
mδ

V1

(m
Z

)
− ϕ(pβ−1)

ϕ?(pβ)
∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
mδ

V1

(m
Z

)
.

The stated formula is then easy to derive from the fact that ϕ?(pβ) = (p−
1)2pβ−2 for β > 2.

To evaluate the twisted sum Xβ,2(π, δ, Z), let us first open up the sum
and switch the order of summation:

∑
χmod pβ

primitive,χ(−1)=1

W (π)ω(pβ)χ(N)
(
τ(χ)
p
β
2

)n
(Npnβ) 1

2−δ
∑
m>1

(m,p)=1

a(m)χ−1(m)
m1−δ V2

(
mZ

Npβn

)

= W (π)ω(pβ)· (Np
βn) 1

2−δ

p
βn
2

∑
m>1

(m,p)=1

a(m)
m1−δ V2

(
mZ

Npβn

) ∑
χmod pβ

primitive,χ(−1)=1

χ(Nm)τ(χ)n

Now, we can use Lemma 4.2 to evaluate the inner sum in this latter expres-
sion as ∑

χmod pβ
primitive,χ(−1)=1

χ(Nm)τ(χ)n = ϕ(pβ)
2

(
Kln(mN, pβ) + Kln(−mN, pβ)

)
.
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Substituting this back into the previous expression then gives

ϕ(pβ)
2 ·W (π)ω(pβ) · (Npβn) 1

2−δ

p
βn
2∑

m>1
(m,p)=1

a(m)
m1−δ V2

(
mZ

Npβn

)(
Kln(mN, pβ) + Kln(−mN, pβ)

)
,

from which we derive the identity

Xβ,2(π, δ, pu) = 2
ϕ?(pβ)

ϕ(pβ)
2 ·W (π)ω(pβ) · (Npβn) 1

2−δ

p
βn
2∑

m>1
(m,p)=1

a(m)
m1−δ V2

(
mZ

Npβn

)(
Kln(mN, pβ) + Kln(−mN, pβ)

)
.

The stated formula for X2(π, δ, Z) then follows after taking into account that
for β > 2,

2
ϕ?(pβ)

ϕ(pβ)
2 = (p− 1)pβ−1

(p− 1)2pβ−2 = p

ϕ(p) . (4.5)

�

5. Preliminary estimates

Let us now consider the following preliminary estimates for Xβ(π, δ),
using the theorem of Molteni [13] (cf. [9]). Hence, we begin by stating the
following result (“Ramanujan on average"):

Theorem 5.1 (Molteni, [13, Theorem 4]). — Let π be a cuspidal auto-
morphic representation of GLn(AQ) of conductor N , with L-function coef-
ficients a(m) as above. Then, for any choice of ε > 0, we have that∑

16m<x

|a(m)|
m

�ε (Nx)ε.

Let us now return to the setup of Proposition 4.3 above.

Lemma 5.2. — We have for any choice of 1 < Z < pβ−1 and for any
choice of A > 1 and C > 0 the estimate

Xβ,1(π, δ, Z) = 1 +OA(Z−A) +OC,p

(
(pβ)θ−<(δ)−CZC

)
.
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Here, we write θ ∈ [0, 1/2] to denote the best known approximation towards
the generalized Ramanujan conjecture (with θ = 0 conjectured). Hence, tak-
ing C � θ −<(δ) sufficiently large gives us the lower bound

Xβ,1(π, δ, Z)� 1. (5.1)

Proof. — Let us first consider the contribution from the first coefficient
m = 1 in Xβ,1(π, δ, Z):

a(1)V1

(
1
Z

)
= V1

(
1
Z

)
= 1 +OA(Z−A).

Here, we have used that a(1) = 1 in the first equality, and then the estimate
of Lemma 3.4 to bound the contribution of V1(Z−1) (which lies in the region
of moderate decay).

To deal with the remaining contributions m > 2 in the expression (4.3),
notice that m must satisfy one of the constraints m ≡ ±1 mod pβ or else
m ≡ ±1 mod pβ−1 with m 6≡ ±1 mod pβ . On the other hand, observe that
since we have chosen 1 < Z < pβ−1, each of the remaining contributions
m > 2 must satisfy the condition m > Z. Hence for each such m > 2, we
have by the estimate of Lemma 3.4 that

V1

(m
Z

)
= OC

((m
Z

)−C)
for any choice of constant C > 0.

We can then bound the coefficient corresponding to each contributing term
as

a(m)
mδ

V1

(m
Z

)
= OC

(
mθ−<(δ)−CZC

)
.

Expanding out the arithmetic progressions which define the sum of remaining
contributions, we obtain

∑
t>1

a(±1 + pβt)
(±1 + pβt)δ V1

(
±1 + pβt

Z

)
− 1
ϕ(p)

∑
t>1

a(±1 + pβ−1t)
(±1 + pβ−1t)δ V1

(
±1 + pβ−1t

Z

)
�C,p

∑
t>1

(pβt)θ−<(δ)−CZC .

That is, the sum of remaining contributions is bounded above in modulus
by ZC(pβ)θ−<(δ)−C∑

t>1 t
−C . �

Lemma 5.3. — We have for any choices of Z > 1 and ε > 0 the (coarse)
estimate

Xβ,2(π, δ, Z)�p,π,ε p
− β2 (Npβn) 3

2 +εN<(d)+εZ−(1+<(δ)+ε).
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Proof. — Put fβ = NpβnZ−1. Using the classical bound Kln(c, pβ) �
(pβ)

(n−1)
2 together with Theorem 5.1 and Lemma 3.4 (iii), it follows that

Xβ,2(π, δ, Z)�p,π,ε (pβ)− 1
2 (Npβn) 1

2−<(δ)(Nfβ)<(δ)+εfβ .

The stated bound follows after expanding and grouping together like terms.
�

6. Calculation of the twisted sum

We now consider the twisted sum Xβ,2(π, δ, Z), taking for granted the
result of Lemma 5.2. That is, let us choose some unbalancing parameter
1 < Z < pβ−1 of the form Z = pu with 1 < u < β − 1, and consider

Xβ,2(π, δ, pu) = p

ϕ(p)
W (π)ω(pβ)(Npβn) 1

2−δ

p
nβ
2∑

m>1
(m,p)=1

a(m)
m1−δ V2

(
m

Npβn−u

)(
Kln(mN, pβ) + Kln(−mN, pβ)

)
. (6.1)

6.1. Evaluation of hyper-Kloosterman sums

Let us now suppose that β > 4.

Theorem 6.1 (“Salié”). — Suppose that p does not divide n. Assume
without loss of generality that the exponent β > 4 is even, say β = 2α for
α > 2. Then for any integer c prime to pβ (and hence prime to p),

Kln(c, pβ) = pβ(n−1
2 ) ∑

wmod pα
wn≡cmod pα

e

(
(n− 1)w + cw

pβ

)
, (6.2)

where the sum runs over all n-th roots of cmod pα.

Proof. — The result is supposedly classical, though the main reference
is [1, Theorem C.1] (cf. [5, Lemma 12.2]). Note however that the statement
of [1, Theorem C.1] in fact depends on a choice of lifting of root mod pα
(i.e. their notation r1/n refers to a lifting of a root of rmod pα to p2α). �
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6.2. Reduction to twists by additive characters

Given a class cmod pβ , let ψc denote the additive character defined by
ψc(m) = e

(
cm
pβ

)
. Let us also write ψc(±m) = ψc(m) + ψc(m) to lighten

notation. Given β > 1 an integer, let ( c
pβ

)n denote the n-th power residue
symbol. Hence, ( c

pβ
)n = 1 if any only if there exists a coprime class lmod pβ

with ln ≡ cmod pβ . Note that by Hensel’s lemma, ( c
pβ

)n = 1 if any only if
( cp )n = 1.

Proposition 6.2. — Suppose that p does not divide n. Assume again
(without loss of generality) that β > 4 is even, say β = 2α with α > 2. Then,
the twisted sum Xβ,2(π, δ, pu) is equal to

p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)

×
∑

tmod pβ
ψt(−x)

∑
m>1

(m,p)=1

a(m)ψt(±mN)
m1−δ V2

(
m

Npnβ−u

)
.

Proof. — We apply Fourier inversion to the function K :
(
Z/pβZ

)
−→ C

defined by

K(c) =


∑

wmod pα
wn≡cmod pα

e
(

(n−1)w+cw
pβ

)
if (xp )n = 1

0 otherwise.

Hence,

K(c) = p−
β
2
∑

tmod pβ
K̂(t)e

(
tc

pβ

)
,

where K̂(t) denotes the Fourier transform at the additive character deter-
mined by the class tmod pβ :

K̂(t) = p−
β
2
∑

xmod pβ
K(x)e

(
− tx
pβ

)
.

Using this relation, we find that for any integer c prime to pβ ,

K(c) = p−β
∑

tmod pβ

∑
xmod pβ

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
e

(
ct− xt
pβ

)

– 23 –



Jeanine Van Order

and hence

K(c) + K(−c) = p−β
∑

tmod pβ

∑
xmod pβ

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
(
e

(
ct− xt
pβ

)
+ e

(
−ct− xt

pβ

))
.

Using Proposition 6.1, it follows that

Kln(c, pβ) + Kln(c, pβ) =
(
pβ
)n−1

2 (K(c) + K(−c))

=(pβ)
n−3

2
∑

tmod pβ

∑
xmod pβ

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
(
e

(
ct− xt
pβ

)
+ e

(
−ct− xt

pβ

))
.

Substituting this back into (4.4), and switching the order of summation, we
derive

Xβ,2(π, δ, pu) = p

ϕ(p)
W (π)ω(pβ)(Npβn) 1

2−δ

p
nβ
2

(pβ)
n−3

2
∑
m>1

(m,p)=1

a(m)
m1−δ V2

(
m

Npβn−u

)

×
∑

tmod pβ

∑
xmod pβ

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
(
e

(
tmN − tx

pβ

)
+ e

(
−tmN − tx

pβ

))
.

which after re-arranging terms is equal to the stated formula. �

6.3. Voronoi summation for additive twists

We now derive special Voronoi summation formulae (with polar terms) for
the twisted sum Xβ,2(π, δ, pu) via Proposition 6.2, using nothing more than
the functional equation for L(s, π ⊗ χ). Recall that this functional equation
is given explicitly by

L(s, π ⊗ χ) = W (π)ω(pβ)χ(N)N 1
2−sp−βnsτ(χ)nπ n2−ns∏n

j=1 Γ
(

1−s−µj
2

)
∏n
j=1 Γ

(
s−µj

2

)
L(1− s, π̃ ⊗ χ−1). (6.3)

Again (as in (3.2) above), we shall write F (s) to denote the quotient of
archimedean factors appearing in (6.3).
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6.3.1. Functional identities for additive twists

We begin with the following Corollary to Lemma 4.2 above:
Corollary 6.3. — Let m be any integer prime to p. Given β > 2 an

integer, we have that

e

(
m

pβ

)
+ e

(
−m
pβ

)
= 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(m)τ(χ),

and in the case of β = 1 corresponding to prime modulus p that

e

(
m

p

)
+ e

(
−m
p

)
= 2
p− 3

 ∑
χmod p

primitive,χ(−1)=1

χ(m)τ(χ)− (−1)n

 .

Proof. — Specialize Lemma 4.2 to n = 1, then isolate the sums of additive
characters in each case. �

Given β > 1 any integer, and h any coprime class modulo pβ , let us now
consider the Dirichlet series defined on s ∈ C (first with <(s) > 1) by

D(π, h, pβ , s) =
∑
m>1

(m,p)=1

a(m)
ms

(
e

(
mh

pβ

)
+ e

(
−mh
pβ

))
.

We now show that D(π, h, pβ , s) has an analytic continuation to s ∈ C via
the following functional identities. Let us again (for any n > 1 and β > 1)
write Kln(±c, pβ) = Kln(c, pβ) + Kln(−c, pβ) to simplify expressions.

Proposition 6.4. — We have the following additive functional identi-
ties for the Dirichlet series D(π, h, pβ , s).

(i) If β > 2, then we have for any coprime class hmod pβ the additive
functional identity

D(π, h, pβ , s) = W (π)ω(pβ)N 1
2−spβ(1−ns)F (s)

∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±mNh, pβ).

(ii) In the case of β = 1 corresponding to prime modulus p, we also have
the additive functional identity

D(π, h, p, s) = W (π)ω(p)N 1
2−sp1−nsF (s)∑

m>1
(m,p)=1

a(m)
m1−s

(
Kln−1(±mhN, p) + (−1)n

(
2

p− 3

)[
1− εp(s)εp(1− s)

p1−ns

])
,
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where εp(s)−1 denotes the Euler factor at p of L(s, π), and εp(s)−1 that of
L(s, π̃).

Proof. — Let us start with (i). Hence for <(s) > 1, we open up the sum
and use Corollary 6.3 (i) to obtain

D(π, h, pβ , s) = 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(mh)τ(χ)
∑
m>1

(m,p)=1

a(m)
ms

= 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(h)τ(χ)L(s, π ⊗ χ). (6.4)

Applying the functional equation (6.3) to the inner Dirichlet series L(s, π ⊗
χ), we then obtain

D(π, h, pβ , s) = 2
ϕ(pβ)W (π)ω(pβ)N 1

2−sp−βnsF (s)∑
χmod pβ

primitive,χ(−1)=1

χ(Nh)|τ(χ)|2τ(χ)n−1L(1− s, π̃ ⊗ χ),

which after using that τ(χ) = τ(χ) (and hence that τ(χ)τ(χ) = |τ(χ)|2 = pβ)
gives us the identity

D(π, h, pβ , s) = 2
ϕ(pβ)W (π)ω(pβ)N 1

2−spβ(1−ns)F (s)∑
χmod pβ

primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(1− s, π̃ ⊗ χ) (6.5)

after analytic continuation. Let us now suppose that <(s) < 0, in which case
we can open up the Dirichlet series on the right of (6.5) and interchange
summation to obtain

2
ϕ(pβ)W (π)ω(pβ)N 1

2−spβ−βnsF (s)
∑
m>1

(m,p)=1

a(m)
m1−s

∑
χmod pβ

primitive,χ(−1)=1

χ(hNm)τ(χ)n−1.

Using Corollary 6.3 (i) to evaluate the inner sum, we then obtain (after
analytic continuation) the identity

D(π, h, pβ , s) = W (π)ω(pβ)N 1
2−spβ−βnsF (s)

∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±Nhm, pβ).
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Let us now consider (ii). Hence for <(s) > 1, we open up the sum and
use Corollary 6.3 (ii) to obtain

D(π, h, p, s) = 2
p− 3

 ∑
χmod p

primitive,χ(−1)=1

χ(h)τ(χ)L(s, π ⊗ χ)− (−1)nεp(s)L(s, π)

 .

Applying the functional equation (6.3) to each of the inner Dirichlet series,
we then obtain

2
p− 3W (π)ω(p)N 1

2−sF (s)p−ns ∑
χmod p

primitive,χ(−1)=1

χ(hN)τ(χ)τ(χ)nL(1− s, π̃ ⊗ χ)− (−1)nεp(s)L(1− s, π̃)

 ,

which after using again that τ(χ) = τ(χ) gives us (after analytic continua-
tion) the expression

D(π, h, p, s) = 2
p− 3W (π)ω(p)N 1

2−sF (s)p−ns+1
∑
χmod p

primitive,χ(−1)=1

χ(hN)τ(χ)n−1L(1− s, π̃ ⊗ χ)− εp(s)L(1− s, π̃)

 .

(6.6)

Let us now suppose that <(s) < 0. We can then expand the Dirichlet series
on the right of (6.6) to obtain

2
p− 3W (π)ω(p)N 1

2−sF (s)p−ns+1
∑
χmod p

primitive,χ(−1)=1

χ(hN)τ(χ)n−1
∑
m>1

(m,p)=1

a(m)χ(m)
m1−s − εp(s)

∑
m>1

a(m)
m1−s


= 2
p− 3W (π)ω(p)N 1

2−sF (s)p−ns+1
∑
m>1

(m,p)=1

a(m)
m1−s

∑
χmod p

primitive,χ(−1)=1

χ(hNm)τ(χ)n−1 − εp(s)εp(1− s)
∑
m>1

(m,p)=1

a(m)
m1−s

 .
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Now, observe that we may use Lemma 4.2 to evaluate the inner sum in this
latter expression as∑

χmod p
primitive,χ(−1)=1

χ(hNm)τ(χ)n−1 = p− 3
2 Kln−1(±mhN, p) + (−1)n,

which gives us

W (π)ω(p)N 1
2−sF (s)

p1−ns
∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±mhN, p)

+(−1)n[p1−ns − εp(s)εp(1− s)]
2

p− 3
∑
m>1

(m,p)=1

a(m)
m1−s

 ,

or equivalently

W (π)ω(p)N 1
2−sp1−nsF (s)∑

m>1
(m,p)=1

a(m)
m1−s

(
Kln−1(±mhN, p) + (−1)n

(
2

p− 3

)[
1− εp(s)εp(1− s)

p1−ns

])
.

Hence (after analytic continuation), we derive the stated functional identity
for D(π, h, p, s). �

Let us also consider the following hyper-Kloosterman Dirichlet series.
Let β > 2 be an integer. Here, we consider the Dirichlet series defined for a
coprime residue class hmod pβ and s ∈ C (first with <(s) > 1) by

Kn(π, h, pβ , s) =
∑
m>1

(m,p)=1

a(m)
ms

Kln(±mh, pβ)

=
∑
m>1

(m,p)=1

a(m)
ms

(
Kln(mh, pβ) + Kln(−mh, pβ)

)
. (6.7)

Proposition 6.5. — Assume that β > 2. The Dirichlet series K(π, h, pβ , s)
satisfies the functional identity

Kn(π, h, pβ , s) = W (π)ω(pβ)N 1
2−spnβ(1−s)F (s)ϕ(p)

p

∑
m>1

m≡±hN mod pβ

a(m)
m1−s −

1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m1−s

 (6.8)
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for <(s) < 0 (after analytic continuation).

Proof. — Observe that Lemma 4.2 gives us for <(s) > 1 the relation

Kn(π, h, pβ , s) = 2
ϕ(pβ)

∑
m>1

(m,p)=1

a(m)
ms

∑
χmod pβ

primitive,χ(−1)=1

χ(mh)τ(χ)n

= 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(h)τ(χ)nL(s, π ⊗ χ).

Applying the functional equation (6.3) to each L(s, π ⊗ χ), we then obtain
(after analytic continuation)

2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(h)τ(χ)n
(
W (π)ω(pβ)χ(N)N 1

2−sp−βnsτ(χ)nF (s)L(1− s, π̃ ⊗ χ)
)

= 2
ϕ(pβ)W (π)ω(pβ)N 1

2−spβn(1−s)F (s)
∑

χmod pβ
primitive,χ(−1)=1

χ(hN)L(1− s, π̃ ⊗ χ).

Note that in the last step, we use that τ(χ)τ(χ) = τ(χ)τ(χ) = |τ(χ)|2 = pβ .
Hence, we derive the expression

Kn(π, h, pβ , s) = 2
ϕ(pβ)W (π)ω(pβ)N 1

2−spβn(1−s)F (s)∑
χmod pβ

primitive,χ(−1)=1

χ(hN)L(1− s, π̃ ⊗ χ) (6.9)

after analytic continuation. Let us now suppose that <(s) < 0, so that we
can expand the absolutely convergent Dirichlet series on the right hand side
of this latter expression as

∑
χmod pβ

primitive,χ(−1)=1

χ(hN)L(1− s, π̃ ⊗ χ) =
∑
m>1

(m,p)=1

a(m)
m1−s

∑
χmod pβ

primitive,χ(−1)=1

χ(hNm).

Applying the quasi-orthogonality relations of Proposition 4.1 to the inner
sum, this latter expression equals

ϕ?(pβ)
2

∑
m>1

m≡±hN mod pβ

a(m)
m1−s −

ϕ(pβ−1)
2

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m1−s .
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Substituting this back into the previous expression, we see that Kn(f, h, pβ , s)
can be expressed for <(s) < 0 (after analytic continuation) as

2
ϕ(pβ)W (π)ω(pβ)N 1

2−spnβ(1−s)F (s)ϕ
?(pβ)

2
∑
m>1

m≡±hN mod pβ

a(m)
m1−s −

ϕ(pβ−1)
2

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m1−s

 .

Simplifying the scalar terms, using that ϕ?(pβ) = (p − 1)2pβ−2 for β > 2,
we derive the stated result. �

6.3.2. Derivation of formulae

Let φ be any continuous or piecewise continuous function on R>0 which
decays rapidly as 0 and ∞, and let φ∗(s) =

∫∞
0 φ(x)xs dxx denote its Mellin

transform (when defined). Note that the only property we shall require of
this of this function φ is that its Mellin transform be defined, and that it
can be recovered from its Mellin transform by the inversion formula φ(x) =∫

(σ) φ
∗(s)x−s ds2πi for a suitable choice of σ ∈ R>0 so that φ∗(s) is analytic

and the integral absolutely convergent for <(s) = σ.

Theorem 6.6 (Voronoi summation formula). — Let π = ⊗vπv be a
cuspidal automorphic representation of GLn(AQ) for n > 2, with L-function
coefficients a(m) and conductor N . Let p be a prime which does not divide
N . Let φ be a smooth on R>0 which decays rapidly at 0 and ∞, and let Φ
denote the function defined on y ∈ R>0 for suitable choice of real number
σ ∈ R>1 by the integral transform

Φ(y) =
∫

(−σ)
φ∗(s)

π−n2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)
 ys

ds

2πi .
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(i) Given an integer β > 2, we have for each coprime class hmod pβ the
summation formula∑
m>1

(m,p)=1

a(m) Kl1(±mh, pβ)φ(m) = W (π)ω(pβ)N 1
2 pβ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mNh, pβ)Φ
(

m

Npβn

)
.

(ii) In the case of β = 1 corresponding to prime modulus p, we also have
the summation formula∑
m>1

(m,p)=1

a(m) Kl1(±mh, p)φ(m)

= W (π)ω(p)N 1
2 p

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±mNh, p) + (−1)n 2

p− 3

)
Φ
(

m

Npn

)

−(−1)n 2
p− 3 ·

1
p

∑
m>1

a(m)
m

Φ̃
(m
N

) .

Here, Φ̃ denotes the modified function defined on y ∈ R>0 by the integral
transform

Φ̃(y) =
∫

(−σ)
φ∗(s)

π−n2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)
 εp(s)ys

ds

2πi ,

where εp(s) denotes the multiplicative inverse of the Euler factor at p of
L(s, π).

Proof. — In either case, we use the Mellin inversion theorem φ(x) =∫
(σ) φ

∗(s)x−s ds2πi to express the sum as∑
m>1

(m,p)=1

a(m) Kl1(±mh, pβ)φ(m) =
∑
m>1

(m,p)=1

a(m)
(
e

(
mh

pβ

)
+ e

(
−mh
pβ

))
φ(m)

=
∫

(σ)
φ∗(s)D(π, h, pβ , s) ds2πi .

Switching the range of integration to <(s) = −σ, then applying the cor-
responding additive functional identity of Proposition 6.4 to the Dirichlet
series in remaining integral, the stated formula (in each case) follows. �
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Let us now consider the corresponding Voronoi summation formulae we
obtain after replacing the generic choice of well-behaved weight function φ
with the function φ∞ appearing in Proposition 3.5 above. More specifically,
let us now consider what happens when we take as the weight function in
Theorem 6.6 the function defined on y ∈ R>0 by φ∞(y) := y−(1−δ)V2(f−1

β y),
where V2 is the cutoff function of rapid decay defined in (3.4) above, and
fβ := Npnβ−u = NpnβZ−1 is now taken to be the length of its region of
moderate decay (according to our choice of unbalancing parameter Z = pu).
Recall that in the definition (3.4) of the cutoff function V2(x), we introduced
a holomorphic test function k(s) := G∗(s)/(

∏n
j=1 µj) from Lemma 3.1, and

that this function satisfies the convenient properties k(0) = 1 and k(µ1) =
· · · = k(µn) = 0.

Theorem 6.7 (Voronoi summation with the weight function φ∞). —
Let π = ⊗vπv be a cuspidal automorphic representation of GLn(AQ) for
n > 2, with L-function coefficients a(m). Fix δ ∈ C with 0 < <(δ) < 1. Let
φ∞ denote the function defined on y ∈ R>0 by φ∞(y) = y−(1−δ)V2(f−1

β y),
where fβ = Npnβ−u for some fixed real parameter 0 < u < β − 1 is the
length of the region of moderate decay for the cutoff function V2(y). Let us
for this choice of u write Φu to denote the function on y ∈ R>0 defined for
any choice of real number 1 < σ < 3−<(δ) by the integral transform

Φu(y) =
∫

(−σ)

k(−s+ (1− δ))
s− (1− δ)

(
y

pu

)s
ds

2πi .

(i) Given an integer β > 2, we have for each integer h prime to p the
summation formula

∑
m>1

(m,p)=1

a(m) Kl1(±mNh, pβ)φ∞(m)

= 2
ϕ(pβ)W (π̃)ω(pβ)Nδ− 1

2 pβ(1−n(1−δ))
∑

χmod pβ
primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(δ, π ⊗ χ)

+ W (π̃)ω(pβ)N 1
2 pβ

(Npnβ−u)1−δ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mNh, pβ)Φu(m).
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(ii) In the case of β = 1 corresponding to prime modulus p, we also have
the summation formula∑

m>1
(m,p)=1

a(m) Kl1(±mh, p)φ∞(m)

= 2
p− 3 ·W (π̃)ω(p)Nδ− 1

2

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(δ, π ⊗ χ)

−εp(1− δ)L(δ, π))

+ W (π̃)ω(p)N 1
2 p

(Npn−u)1−δ

∑
m>1

a(m)
m

(
Kln−1(±mNh, p) + (−1)n 2

p− 3

)
Φu(m)

−(−1)n 2
p− 3 ·

1
p

∑
m>1

a(m)
m

Φ̃u(pnm)

 .

Here, Φ̃u denotes the function defined on y ∈ R>0 by the modified integral
transform

Φ̃u(y) =
∫

(−σ)

k(−s+ (1− δ))
s− (1− δ)

(
y

pu

)s
εp(s)

ds

2πi ,

where εp(s) again denotes the multiplicative inverse of the Euler factor at p
of L(s, π).

Proof. — We proceed in the same way as for Theorem 6.6 (but spelling
out all details), viewing Proposition 3.5 above as an explicit form of the
Mellin inversion theorem. Hence, fix any real number σ in the interval 1 <
σ < 3−<(δ). Then for any β > 1, Proposition 3.5 (with fβ = Npnβ−u) gives
us the expression∑

m>1
(m,p)=1

a(m) Kl1(±mh, pβ)φ∞(m) =
∫

(σ)
D(π̃, h, pβ , s)φ∗∞(s) ds2πi , (6.10)

where

φ∗∞(s) = f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) F (−s+ 1)

= f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) π−

n
2 +n(−s+1)

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
−s+1−µj

2

) (6.11)
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denotes the Mellin transform of φ∞(s) in this region 1 < σ < 3−<(δ).

Suppose first that β > 2. We shift the range of integration in (6.10)
to <(s) = −σ, crossing poles at s = µj for each 1 6 j 6 n of vanishing
residues, i.e. since k(µ1) = . . . = k(µn) = 0 thanks to the construction of
k(s) in Lemma 3.1 above. We also cross a simple pole at s = 1− δ of residue

Ress=1−δ
(
D(π̃, h, pβ , s)φ∗∞(s)

)
= Ress=1−δ

(
D(π̃, h, pβ , s)fs−(1−δ)

β

k(−s+ (1− δ))
s− (1− δ) F (s)

)

=D(π̃, h, pβ , 1− δ)F (1− δ) = D(π̃, h, pβ , 1− δ)π−n2 +n(1−δ)

∏n
j=1 Γ

(
δ−µj

2

)
∏n
j=1 Γ

(
1−δ−µj

2

) .
Recall that we can calculate the value D(π̃, h, pβ , 1− δ) using analytic con-
tinuation as in (6.5) above. To be precise, let us write F (s) to denote the
corresponding quotient of contragredient archimedean components

F (s) = L(1− s, π∞)
L(s, π̃∞) = π−

n
2 +ns

∏n
j=1 Γ

(
1−s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

) .

Using the calculation (6.5), we then have the formula

D(π̃, h, pβ , 1− δ) = 2
ϕ(pβ) ·W (π̃)ω(pβ)Nδ− 1

2 pβ(1−n(1−δ))F (δ)∑
χmod pβ

primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(δ, π ⊗ χ),

from which it follows that

D(π̃, h, pβ , 1− δ)F (1− δ) = 2
ϕ(pβ) ·W (π̃)ω(pβ)Nδ− 1

2 pβ(1−n(1−δ))∑
χmod pβ

primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(δ, π ⊗ χ).

To be clear, we have used the fact that the quotients of archimedean factors
F (δ)F (1− δ) cancel out:

F (s)F (−s+ 1) = L(1− s, π∞)
L(s, π̃∞) · L(1− s+ 1, π̃∞)

L(−s+ 1, π∞) (6.12)

= π−
n
2 +ns−n2 +n(1−s)

∏n
j=1 Γ

(
1−s−µj

2

)
Γ
(
s−µj

2

)
∏n
j=1 Γ

(
s−µj

2

)
Γ
(

1−s−µj
2

) = 1.
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Let us now consider the remaining integral (first with shorthand notations
introduced above) ∫

(−σ)
D(π̃, h, pβ , s)φ∗∞(s) ds2πi .

Since we are now in the range of absolute convergence for the Dirichlet series
D(π̃, h, pβ , s), we may invoke the functional identity of Proposition 6.4 (i)
above to obtain the expression

∫
(−σ)

φ∗∞(s)

W (π̃)ω(pβ)N 1
2−spβ(1−ns)F (s)

∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±mNh, pβ)

 ds

2πi

= W (π̃)ω(pβ)N 1
2 pβ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mNh, pβ)

∫
(−σ)

F (s)
(

m

Npnβ

)s
φ∗∞(s) ds2πi .

Opening up the definition (3.7) of φ∗∞(s), this expression is then seen to be
given more precisely by

W (π̃)ω(pβ)N 1
2 pβ

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mNh, pβ)

∫
(−σ)

(
mfβ
Npnβ

)s
k(−s+ (1− δ))
s− (1− δ) F (s)F (−s+ 1) ds2π ,

where the product of quotients of archimedean factors F (s)F (−s+1) cancels
out identically as in (6.12) above. Now, using that fβ = Npnβ−u, we obtain
the even more precise expression

W (π̃)ω(pβ)N 1
2 pβ

(Npnβ−u)1−δ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mNh, pβ)

∫
(−σ)

(
m

pu

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi .

Putting this together with the residue term, we then derive the stated for-
mula (i).

Let us now consider (ii), starting with the integral presentation (6.10).
Shifting the range of integration to <(s) = −σ, we cross poles at s = µj for
each 1 6 j 6 n of vanishing residues thanks to the fact that k(µj) = 0 for
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each 1 6 j 6 n by Lemma 3.1 above. We also cross a simple pole at s = 1−δ
of residue

Ress=1−δ (D(π̃, h, p, s)φ∗∞(s))

= Ress=1−δ

(
D(π̃, h, p, s)fs−(1−δ)

β

k(−s+ (1− δ))
s− (1− δ) F (s)

)

=D(π̃, h, p, 1− δ)F (1− δ) = D(π̃, h, p, 1− δ)π−n2 +n(1−δ)

∏n
j=1 Γ

(
δ−µj

2

)
∏n
j=1 Γ

(
1−δ−µj

2

) ,
which we can calculate thanks to analytic continuation as in (6.6) above as

2
p− 3W (π̃)ω(p)Nδ− 1

2p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

χ(Nh)τ(χ)n−1L(δ, π ⊗ χ)− εp(1− δ)L(δ, π)

 .

Here again, in the last equality, we use that F (1− δ)F (δ) = 1. To evaluate
the remaining integral ∫

(−σ)
D(π̃, h, p, s)φ∗∞(s) ds2πi ,

we apply the functional identity of Proposition 6.4 (ii) to the Dirichlet series
D(π̃, h, p, s) to obtain∫

(−σ)
W (π̃)ω(p)N 1

2−sp1−nsF (s)
∑
m>1

(m,p)=1

a(m)
m1−s

(
Kln−1(±mhN, p) + (−1)n

(
2

p− 3

)
[
1− εp(s)εp(1− s)

p1−ns

])
φ∗∞(s) ds2πi

=W (π̃)ω(p)N 1
2 p

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±mNh, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
m

Npnβ

)s
F (s)φ∗∞(s) ds2πi

− 1
p

(−1)n 2
p− 3W (π̃)ω(p)N 1

2 p
∑
m>1

(m,p)=1

a(m)
m

∫
(σ)

(
mpn

Npn

)s
F (s)εp(s)φ∗∞(s) ds2πi ,
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which after using the definition (3.7) of the Mellin transform φ∗∞(s) is given
more precisely by

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±mNh, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
mfβ
Npnβ

)s
F (s)k(−s+ (1− δ))

s− (1− δ) F (−s+ 1) ds2πi

− 1
p

(−1)n 2
p− 3

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m∫

(σ)

(
mfβ
N

)s
F (s)εp(s)

k(−s+ (1− δ))
s− (1− δ) F (−s+ 1) ds2πi .

Using again that F (s)F (−s+1) = 1, as spellt out in (6.12) above, this latter
expression is the same as

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±mNh, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
mfβ
Npnβ

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi

− 1
p

(−1)n 2
p− 3

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m∫

(σ)

(
mfβ
N

)s
εp(s)

k(−s+ (1− δ))
s− (1− δ)

ds

2πi .

Now, using that fβ = Npnβ−u, this latter expression simplifies to give the
stated formula. �

We can now derive a Voronoi summation formula to describe the sum
Xβ,2(π, δ, pu) defined in (4.4) above.

Theorem 6.8 (Voronoi summation formula for the twisted sumXβ,2(π, δ, pu)).
Suppose that β > 4 is even, say β = 2α for α > 2. Fixing a real parameter
0 < u < β − 1 as above, let us again write Φu to denote the function on
y ∈ R>0 defined for any choice of real number 1 < σ < 3 − <(δ) by the
integral transform

Φu(y) =
∫

(−σ)

k(−s+ (1− δ))
s− (1− δ)

(
y

pu

)s
ds

2πi .
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The twisted sum Xβ,2(π, δ, pu) defined in (4.4) above can be described equiv-
alently by the formula

Xβ,2(π, δ, pu) = pβ(1−n2 )

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(−x)τ(χ)nL(δ, π ⊗ χ)

+
∑

16y6β−2

ω(py)ψpy (−x)
py

pny(1−δ) 2
ϕ?(pβ−y)∑

χmod pβ−y
primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

+
ω(pβ−1)ψpβ−1(−x)

pβ−1
p

ϕ(p)
2

p− 3pnδ ∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)− pn−1εp(1− δ)L(δ, π)


+pu(1−δ) (S1,x + S2,x + S3,x)

}
,

where

S1,x = p

ϕ(p)
∑
m>1

(m,p)=1

a(m)
m

Kln(±mx, pβ)Φu(m),

S2,x = p

ϕ(p)
∑

16y6β−2

ω(py)ψ−py (x)
py

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)Φu(pnym),

– 38 –



Dirichlet twists of GLn-automorphic L-functions

and

S3,x = p

ϕ(p)
ω(pβ−1)ψpβ−1(−x)

pβ−1

×

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)

Φu(pn(β−1)m)− 1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)

 .

Proof. — Let us keep all of the setup of Proposition 6.2 and Theorem 6.7.
Hence, we start with the formula

Xβ,2(π, δ, pu) = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2∑

xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
∑

tmod pβ
ψ−t(x)

∑
m>1

(m,p)=1

a(m)ψt(±mN)φ∞(m).

Let us first divide the t-sum into classes which are coprime to p, plus a sum
over multiples of p as follows:

S1 = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
∑

hmod pβ

(h,pβ)=1

ψ−h(x)
∑
m>1

(m,p)=1

a(m)ψh(±mN)φ∞(m) (6.13)

and

S2 = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
∑

16y6β−1
ψ−py (x)

∑
m>1

(m,p)=1

a(m)ψpy (±mN)φ∞(m). (6.14)
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We us start with the sum S1 over coprime classes (6.13). It is easy to see
from Theorem 6.7 that

S1 = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

· 2
ϕ(pβ)W (π̃)ω(pβ)Nδ− 1

2 pβ(1−n(1−δ))

×
∑

xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

) ∑
hmod pβ

(h,pβ)=1

ψ−h(x)

∑
χmod pβ

primitive,χ(−1)=1

χ(hNN)τ(χ)n−1L(δ, π ⊗ χ)

+ p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

· W (π̃)ω(pβ)N 1
2 pβ

(Npnβ−u)1−δ

×
∑

xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

) ∑
hmod pβ

(h,pβ)=1

ψ−h(x)

∑
m>1

a(m)
m

Kln−1(±mhNN, pβ)Φu(m),

which after grouping together and cancelling out like scalar terms (using the
basic identity (4.5)) equals

S1 = 1
p

3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
pβ(1−n2 )

∑
hmod pβ

(h,pβ)=1

ψ−h(x) 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(h)τ(χ)n−1L(δ, π ⊗ χ)

+ p

ϕ(p)p
β(1−n2 )pu(1−δ)

∑
hmod pβ

(h,pβ)=1

ψ−h(x)
∑
m>1

(m,p)=1

a(m)
m

Kln−1(±mh, pβ)Φu(m)

 ,
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and which after switching the order of summation (in each of the two sums)
is the same as

S1 =pβ(1−n2 )

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)
∑

hmod pβ

(h,pβ)=1

χ(h)ψ−h(x)

+pu(1−δ) p

ϕ(p)
∑
m>1

(m,p)=1

a(m)
m

Φu(m)
∑

hmod pβ

(h,pβ)=1

ψ−h(x) Kln−1(±mh, pβ)

 .

Let us now consider the inner sums over coprime residue classes hmod pβ
appearing in this expression:

∑
hmod pβ

(h,pβ)=1

χ(h)ψ−h(x) =
∑

hmod pβ

(h,pβ)=1

χ(h)e
(
−xh
pβ

)
(6.15)

and ∑
hmod pβ

(h,pβ)=1

ψ−h(x) Kln−1(±mh, pβ) (6.16)

=
∑

hmod pβ

(h,pβ)=1

e

(
−xh
pβ

) ∑
x1,...,xn−1 mod pβ

x1···xn−1≡±mhmod pβ

e

(
x1 + · · ·+ xn−1

pβ

)
. (6.17)

We argue that the first sum (6.15) can be evaluated by taking the Fourier
transform of the additive character:

∑
hmod pβ

(h,pβ)=1

χ(x)e
(
−xh
pβ

)
= χ(−x)τ(χ). (6.18)

This formula is in fact classical (see e.g. [5, (3.12)]). Using this identity
(6.18), we may then compute using (6.16) as follows. Notice that we may
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use Lemma 4.2 to evaluate∑
hmod pβ

(h,pβ)=1

e

(
−xh
pβ

)
Kln−1(±mh, pβ)

= 2
ϕ(pβ)

∑
hmod pβ

(h,pβ)=1

e

(
−xh
pβ

) ∑
χmod pβ

primitive,χ(−1)=1

χ(mh)τ(χ)n−1,

which after switching the order of summation is the same as
2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(m)τ(χ)n−1
∑

hmod pβ

(h,pβ)=1

χ(h)e
(
−xh
pβ

)
.

Using that ∑
hmod pβ

(h,pβ)=1

χ(h)e
(
−xh
pβ

)
= χ(−x)τ(χ),

this latter expression is then evaluated as
2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(−xm)τ(χ)n.

Applying Lemma 4.2 again to evaluate this latter expression, we then obtain
the identity ∑

hmod pβ

(h,pβ)=1

e

(
−xh
pβ

)
Kln−1(±mh, pβ) = Kln(±mx, pβ)

for the inner sum (6.16). Using these identities for (6.15) and (6.16), we then
obtain the expression

S1 =pβ(1−n2 )

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(−x)τ(χ)nL(δ, π ⊗ χ) + p

ϕ(p)p
u(1−δ)

∑
m>1

(m,p)=1

a(m)
m

Kln(±mx, pβ)Φu(m)

 .
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Let us now consider the sum S2 over classes given by powers of p (6.14).
We decompose this sum as

S2 =
∑

16y6β−y
S2,y,

where each sum S2,y is defined by

S2,y = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2∑

xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
ψ−py (x)

∑
m>1

(m,p)=1

a(m)ψpy (±mN)φ∞(m).

We first evaluate the sums S2,y in the range 1 6 y 6 β−2 using the argument
of Theorem 6.7 (i) above. Hence, let us consider the inner sum S?2,y defined
by

S?2,y =
∑
m>1

(m,p)=1

a(m)ψpy (±mN)φ∞(m) =
∑
m>1

(m,p)=1

a(m) Kl1(±mN, pβ−y)φ∞(m),

where (recall) φ∞(y) = y−(1−δ)V2(f−1
β y) for fβ = Npnβ−u as above (with

β > 4 and 0 < u < β − 1 fixed). Fixing a real number σ in the interval
1 < σ < 3 − <(δ), we can use the integral presentation of φ∞(y) given in
Proposition 3.5 above to describe this sum S?2,y as

S?2,y =
∫

(σ)
D(π̃, N, pβ−y, s)φ∗∞(s) ds2πi ,

where the Mellin transform φ∗∞(s) is given explicitly as in (3.7) above as

φ∗∞(s) = f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) · F (−s+ 1)

= f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) · π−n2 +ns

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
1−s−µj

2

) .
Shifting the range of integration to <(s) = −σ, we cross poles at s = µj for
each 1 6 j 6 n of vanishing residues (thanks to Lemma 3.1). We also cross
a simple pole at s = 1− δ of residue

Ress=1−δ
(
D(π̃, N, pβ−y, s)φ∗∞(s)

)
= D(π̃, N, pβ−y, 1− δ)F (δ).
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Now, we can calculate the residue via analytic continuation as in (6.5) above:

D(π̃, N, pβ−y, 1− δ)F (δ)

=
[

2
ϕ(pβ−y)W (π̃)ω(pβ−y)Nδ− 1

2 p(β−y)(1−n(1−δ))F (1− δ)

∑
χmod pβ−y

primitive,χ(−1)=1

χ(NN)τ(χ)n−1L(δ, π ⊗ χ)

F (δ)

= 2
ϕ(pβ−y)W (π̃)ω(pβ−y)Nδ− 1

2 p(β−y)(1−n(1−δ))∑
χmod pβ−y

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ),

using again that that F (1− δ)F (δ) = 1. To evaluate the remaining integral∫
(−σ)

D(π̃, N, pβ−y, s)φ∗∞(s) ds2πi ,

we use that −σ < 0 allows us to apply the functional identity of Proposi-
tion 6.4 (i) to D(π̃, N, pβ−y, s):

D(π̃, N, pβ−y, s) = W (π̃)ω(pβ−y)N 1
2−sp(β−y)(1−ns)F (s)∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±mNN, pβ−y).

This gives us the expression∫
(−σ)

φ∗∞(s)
[
W (π̃)ω(pβ−y)N 1

2−sp(β−y)(1−ns)F (s)

∑
m>1

(m,p)=1

a(m)
m1−s Kln−1(±m, pβ−y)

 ds

2πi

= W (π̃)ω(pβ−y)N 1
2 pβ−y

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)

∫
(−σ)

(
m

Npn(β−y)

)s
F (s)φ∗∞(s) ds2πi ,
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which after expanding the definition of the Mellin transform φ∗∞(s) is given
more explicitly by

W (π̃)ω(pβ−y)N 1
2 pβ−y

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)

∫
(−σ)

(
mfβ

Npn(β−y)

)s
k(−s+ (1− δ))
s− (1− δ) F (−s+ 1)F (s) ds2πi

= W (π̃)ω(pβ−y)N 1
2 pβ−y

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)

∫
(−σ)

(
mfβ

Npn(β−y)

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi .

Here again, we use that F (−s+ 1)F (s) = 1. Since fβ = Npnβ−u, the latter
integral expression equals

W (π̃)ω(pβ−y)N 1
2 pβ−y

(Npnβ−u)1−δ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)

∫
(−σ)

(
mNpnβ−u

Npn(β−y)

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi

= W (π̃)ω(pβ−y)N 1
2 pβ−ypu(1−δ)

(Npnβ)1−δ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)Φu(pnym).

Hence, putting this latter expression together with the residue term, we have
shown (for 1 6 y 6 β − 2) that

S?2,y = 2
ϕ(pβ−y)W (π̃)ω(pβ−y)Nδ− 1

2 p(β−y)(1−n(1−δ))
∑

χmod pβ−y
primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

+ W (π̃)ω(pβ−y)N 1
2 pβ−ypu(1−δ)

(Npnβ)1−δ

∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)Φu(pnym).
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It then follows (from the definition) that

S2,y = p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

· 2
ϕ(pβ−y)W (π̃)ω(pβ−y)

Nδ− 1
2 p(β−y)(1−n(1−δ))

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)

× ψpy (−x)
∑

χmod pβ−y
primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

+ p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

· W (π̃)ω(pβ−y)N 1
2 pβ−ypu(1−δ)

(Npnβ)1−δ∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)

× ψpy (−x)
∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)Φu(pnym).

Now, we can simplify this latter expression by grouping together (and can-
celling out) like scalar terms, using thatW (π̃) = W (π) (so thatW (π)W (π̃) =
|W (π)|2 = 1), that ω(pβ)ω(pβ−y) = ω(pβ)ω(pβ)ω(py) = ω(py), and that the
remaining scalar terms can be simplified as in (4.5) above (since β− y > 2).
Hence, we obtain

S2,y = pβ(1−n2 )

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
ω(py)ψpy (−x)

py

×

pny(1−δ) · 2
ϕ?(pβ−y)

∑
χmod pβ−y

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ) + pu(1−δ) · p

ϕ(p)

·
∑
m>1

(m,p)=1

a(m)
m

Kln−1(±m, pβ−y)Φu(pnym)

 .

Let us now consider the case of y = β−1 (corresponding to the case of prime
modulus), starting with

S?2,β−1 =
∑
m>1

(m,p)=1

a(m)ψpβ−1(±mN)φ∞(m) =
∑
m>1

(m,p)=1

a(m) Kl1(±mN, p)φ∞(m).
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Once again, we use the result of Proposition 3.5, which for any choice of real
number 1 < σ < 3−<(δ) gives

S?2,β−1 =
∫

(σ)
D(π̃, N, p, s)φ∗∞(s) ds2πi .

Shifting the range of integration to <(s) = −σ, we cross poles at s = µj for
each 1 6 j 6 n of vanishing residues (thanks to Lemma 3.1), as well as a
simple pole at s = 1− δ of residue

Ress=1−δ
(
D(π̃, N, p, s)φ∗∞(s)

)
= D(π̃, N, p, 1− δ)F (δ).

Again, we can compute this residue term via analytic continuation as in (6.6)
above to obtain

D(π̃, N, p, 1− δ)F (δ)

=

 2
p− 3W (π̃)ω(p)Nδ− 1

2F (1− δ)

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

−εp(1− δ)L(δ, π))]F (δ)

= 2
p− 3W (π̃)ω(p)Nδ− 1

2

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

−εp(1− δ)L(δ, π)) ,

where we use the cancellation of archimedean factors F (δ)F (1− δ) = 1. To
evaluate the remaining integral

∫
(−σ)

D(π̃, N, p, s)φ∗∞(s) ds2πi ,
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we apply the additive functional identity of Proposition 6.4 (ii) toD(π̃, N, p, s)
to obtain

∫
(−σ)

W (π̃)ω(p)N 1
2−sF (s)

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3[
1− εp(s)εp(1− s)

p1−ns

])
φ∗∞(s) ds2πi

= W (π̃)ω(p)N 1
2 p

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
m

Npn

)s
F (s)φ∗∞(s) ds2πi −W (π̃)ω(p)N 1

2 p · 1
p

(−1)n 2
p− 3∑

m>1
(m,p)=1

a(m)
m

∫
(−σ)

(
mpn

Npn

)s
εp(s)F (s)φ∗∞(s) ds2πi .

Expanding out the definition of φ∗∞(s), this latter expression is given more
explicitly by

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
mfβ
Npn

)s
F (s)k(−s+ (1− δ))

s− (1− δ) F (−s+ 1) ds2πi

− W (π̃)ω(p)N 1
2 p

f1−δ
β

· 1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m∫

(−σ)

(
mfβ
N

)s
F (s)εp(s)

k(−s+ (1− δ))
s− (1− δ) F (−s+ 1) ds2πi ,
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which after using (again) that F (s)F (1− s) = 1 is the same as

W (π̃)ω(p)N 1
2 p

f1−δ
β

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
mfβ
Npn

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi

− W (π̃)ω(p)N 1
2 p

f1−δ
β

· 1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m∫

(−σ)

(
mfβ
N

)s
εp(s)

k(−s+ (1− δ))
s− (1− δ)

ds

2πi .

Expanding out the scalar contribution fβ = Npnβ−u then gives us the even
more explicit expression

W (π̃)ω(p)N 1
2 p

(Npnβ−u)1−δ

∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
∫

(−σ)

(
mNpnβ−u

Npn

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi

− W (π̃)ω(p)N 1
2 p

(Npnβ−u)1−δ ·
1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m∫

(−σ)

(
mNpnβ−u

N

)s
k(−s+ (1− δ))
s− (1− δ)

ds

2πi ,

from which we derive that

∫
(−σ)

D(π̃, N, p, s)φ∗∞(s) ds2πi = W (π̃)ω(p)N 1
2 p

(Npnβ−u)1−δ

 ∑
m>1

(m,p)=1

a(m)
m

(Kln−1(±m, p)

+(−1)n 2
p− 3

)
Φu(pn(β−1)m)− 1

p
(−1)n 2

p− 3
∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)

 .
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Putting this together with the residue term then gives the formula

S?2,β−1 = 2
p− 3W (π̃)ω(p)Nδ− 1

2

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

−εp(1− δ)L(δ, π))

+ W (π̃)ω(p)N 1
2 p

(Npnβ−u)1−δ

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
Φu(pn(β−1)m)

−1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)

 ,

from which we derive

S2,β−1 := p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)

ψpβ−1(−x)S?2,β−1

= p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
ψpβ−1(−x)

× 2
p− 3W (π̃)ω(p)Nδ− 1

2

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)− εp(1− δ)L(δ, π)


+ p

ϕ(p)
W (π)ω(pβ)(Npnβ) 1

2−δ

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
ψpβ−1(−x)

× W (π̃)ω(p)N 1
2 p

(Npnβ−u)1−δ

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
Φu(pn(β−1)m)

−1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)

 ,
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which after grouping together and cancelling out like scalar terms is the same
as

S2,β−1 = p

ϕ(p)
1
p

3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
· ψpβ−1(x)ω(pβ−1)

× pnβ( 1
2−δ)

 2
p− 3

p1−n(1−δ)
∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)− εp(1− δ)L(δ, π)


+ N

1
2 p

(Npnβ) 1
2
pu(1−δ)

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
Φu(pn(β−1)m)

−1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)




= pβ(1−n2 )

p
3β
2

∑
xmod pβ
( x
p

)n=1

∑
wmod pα

wn≡xmod pα

e

(
(n− 1)w + xw

pβ

)
·
ψpβ−1(x)ω(pβ−1)

pβ−1

× p

ϕ(p)

 2
p− 3

pnδ ∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)− pn−1εp(1− δ)L(δ, π)


+ pu(1−δ)

 ∑
m>1

(m,p)=1

a(m)
m

(
Kln−1(±m, p) + (−1)n 2

p− 3

)
Φu(pn(β−1)m)

−1
p

(−1)n 2
p− 3

∑
m>1

(m,p)=1

a(m)
m

Φ̃u(pnβm)


 .

Putting together all of the pieces (separating out residues), we derive the
stated formula. �
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Corollary 6.9. — Keep the hypotheses of Theorem 6.8 above. We also
have the summation formula

Xβ,2(π, δ, pu) = 1
pβn

∑
xmod pβ
( x
p

)n=1

Kln(x, pβ)

 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(−x)τ(χ)nL(δ, π ⊗ χ)

+
∑

16y6β−2

ω(py)ψpy (−x)
py

pny(1−δ) 2
ϕ?(pβ−y)

∑
χmod pβ−y

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

+
ω(pβ−1)ψpβ−1(−x)

pβ−1
p

ϕ(p)
2

p− 3

pnδ ∑
χmod p

primitive,χ(−1)=1

τ(χ)n−1L(δ, π ⊗ χ)

−pn−1εp(1− δ)L(δ, π)
)

+ pu(1−δ) (S1,x + S2,x + S3,x)
}
.

Proof. — We see a direct substitution of the formula of Proposition 6.1
above to derive the stated formula. �

Using this latter summation formula, we can now derive the following
simplification.

Lemma 6.10. — We have the following identity for any exponent β > 4
and any integer n > 2:∑

xmod pβ
( x
p

)n=1

Kln(x, pβ) Kln(±mx, pβ) = pβn
2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(m)

Proof. — Since β > 4, we argue that the x-sum is the same as the sum
over all coprime classes xmod pβ , i.e. as the sum is supported only classes
xmod pβ such that (xp )n = 1 (by Proposition 6.1). Thus, we have

∑
xmod pβ
( x
p

)n=1

Kln(x, pβ) Kln(±mx, pβ) =
∑

xmod pβ

(x,pβ)=1

Kln(x, pβ) Kln(±mx, pβ),

which after applying Lemma 4.2 to describe each of the sums Kln(±mx, pβ)
is the same as

2
ϕ(pβ)

∑
xmod pβ

(x,pβ)=1

Kln(x, pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(mx)τ(χ)n.
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Switching the order of summation, and opening up each of the sums Kln(x, pβ),
we obtain

2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(m)τ(χ)n
∑

y1,··· ,yn−1 mod pβ
e

(
y1 + · · · yn−1

pβ

)
∑

xmod pβ

(x,pβ)=1

χ(x)e
(
xy1 · · · yn−1

pβ

)
.

Changing variables to evaluate the inner x-sum as∑
xmod pβ

(x,pβ)=1

χ(x)e
(
xy1 · · · yn−1

pβ

)
= χ(y1 · · · yn−1)τ(χ) = χ(y1 · · · yn−1)τ(χ),

we then obtain
2

ϕ(pβ)
∑

y1,··· ,yn−1 mod pβ
e

(
y1 + · · · yn−1

pβ

) ∑
χmod pβ

primitive,χ(−1)=1

χ(my1 · · · yn−1)τ(χ)nτ(χ),

which after using that τ(χ)nτ(χ) = τ(χ)n−1|τ(χ)|2 = τ(χ)n−1pβ is the same
as

pβ
∑

y1,··· ,yn−1 mod pβ
e

(
y1 + · · · yn−1

pβ

)
2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(my1 · · · yn−1)τ(χ)n−1.

Switching the order of summation in this latter expression, we then compute

pβ
(

2
ϕ(pβ)

) ∑
χmod pβ

primitive,χ(−1)=1

χ(m)τ(χ)n−1τ(χ)n−1,

which after using that τ(χ)n−1τ(χ)n−1 = (|τ(χ)|2)n−1 = pβ(n−1) gives the
stated formula. �

Corollary 6.11. — Corollary 6.9 gives us the following expression for
the twisted sum Xβ,2(π, δ):

2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(δ, π ⊗ χ) + pu(1−δ)


∑
m>1

m≡±1 mod pβ

a(m)
m

Φu(m)− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
m

Φu(m)

 .
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Equivalently, we have for any exponent β > 4 and for any real parameter
u > 0 the average formula

Xβ(π, δ) = −pu(1−δ)


∑
m>1

m≡±1 mod pβ

a(m)
m

Φu(m)− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
m

Φu(m)


+Xβ,2(π, δ, pu).

Proof. — It is easy (and classical) to show that

∑
xmod pβ
( x
p

)n=1

χ(x) Kln(x, pβ) = τ(χ)n. (6.19)

Using this identity (6.19), it is then easy to see that

1
pβn

∑
xmod pβ
( x
p

)n=1

Kln(x, pβ) 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(x)τ(χ)nL(δ, π ⊗ χ)

= 1
pβn

2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

τ(χ)nτ(χ)nL(δ, π ⊗ χ)

= 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(δ, π ⊗ χ).

Here, in the last step, we use that τ(χ)nτ(χ)n = (|τ(χ)|2)n = pβn. This gives
the stated residue term for the formula. To evaluate each of the remaining
terms in the expression of Corollary 6.9 after switching the order of sum-
mation in this way, we argue using the orthogonality of additive characters
that each of the remaining terms except for the sums S1,x must vanish. To
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evaluate the sum over S1,x, we apply Lemma 6.10:

1
pβn

∑
xmod pβ
( x
p

)n=1

Kln(x, pβ)pu(1−δ)S1,x

= 1
pβn

∑
xmod pβ
( x
p

)n=1

Kln(x, pβ)pu(1−δ) p

ϕ(p)
∑
m>

(m,p)=1

a(m)
m

Kln(±mx, pβ)Φu(m)

= 1
pβn

pu(1−δ) p

ϕ(p)
∑
m>1

(m,p)=1

a(m)
m

 ∑
xmod pβ
( x
p

)n=1

Kln(x, pβ) Kln(±mx, pβ)

Φu(m)

=pu(1−δ) 2
ϕ?(pβ)

∑
m>1

(m,p)=1

a(m)
m

 ∑
χmod pβ

primitive,χ(−1)=1

χ(m)

Φu(m)

=pu(1−δ)


∑
m>1

(m,p)=1

a(m)
m

Φu(m)− 1
ϕ(p)

∑
m>1

m≡±1(pβ−1)
m6≡±1 mod pβ

a(m)
m

Φu(m)

 .

Here, in the last step, we use (4.1) (as well as (4.5)). This proves the stated
formula for the twisted sum. �

6.4. Some estimates

We now determine the rate of decay of the dual function corresponding
to the weight function φ∞ defined on y ∈ R>0 by φ∞(y) := y−(1−δ)V2(f−1

β y)
appearing in Proposition 3.5, where fβ = Npβn−u denotes the length of the
region of non-negligible summation of Xβ,2(π, δ, pu) as defined (4.4) above.
Let us write d = <(δ) and δ0 = max(<(µ1),<(µ2)) to lighten notations.

Lemma 6.12. — Fixing a real parameter u ∈ R as above, let Φu denote
the dual weight functions appearing in Theorems 6.7 and 6.8. Hence, we let
Φu denote the function defined on y ∈ R>0 by the integral transform

Φu(y) =
∫
<(s)=−σ

k(−s+ (1− δ))
s− (1− δ)

(
y

pu

)s
ds

2πi
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for 1 < σ < 2 + (1 − δ). We have for any choice of constants C > 0 and
B > 1 the bounds

Φu(y) =


OC

((
y
pu

)−C)
if y > pu, i.e. as y

pu →∞

−
(
y
pu

)1−δ
+OB

((
y
pu

)B)
if y 6 pu, i.e. as y

pu → 0.

The modified weight functions Φ̃u(y) are estimated in a completely analogous
way.

Proof. — We estimate the integral by a variation of the standard contour
argument used to derive Lemma 3.4 above. Let us simplify the discussion by
writing x = yp−u. Hence, the task is to estimate the integral∫

(−σ)

k(−s+ (1− δ))
s− (1− δ) xs

ds

2πi .

To estimate the behaviour as x→∞, we move the line of integration to the
left to derive the bound

Φu(y) = OC(x−C) = OC
(
(yp−u)−C

)
for any choice of C > 0.

To estimate the behaviour as x → 0, we move to the right, crossing a
simple pole at s = 1− δ of residue

−Ress=1−δ

(
k(−s+ (1− δ))
s− (1− δ) xs

)
= −x1−δ.

The remaining integral is then seen easily to be bounded as OB(xB) for any
choice of constant B > 1 to derive the stated estimate in this region. �

We now at last return to the issue of bounding the twisted sumXβ,2(π, δ, pu),
with notations and conventions as above (so that 0 < u < β − 1 is our fixed
real parameter).

Lemma 6.13. — Taking any choice of real parameter 0 < u < β − 1, we
have for any choice constant C > 0

Xβ,2(π, δ, pu) = −1 + 2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(δ, π ⊗ χ)

+OC

(
pu(1−d+C)pβ(θ−(1−<(δ))−C))

)
,

where 0 6 θ 6 1/2 denotes the best known approximation towards the gen-
eralized Ramanujan conjecture for GLn(AQ)-automorphic forms. Equiva-
lently, we have the estimate

Xβ(π, δ) = 1 +Xβ,2(π, δ, pu) +OC

(
pu(1−d+C)pβ(θ−(1−<(δ))−C))

)
.
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Proof. — Using Corollary 6.11 above (derived from Theorem 6.8 and
Corollary 6.9), it will suffice to estimate

pu(1−δ)


∑
m>1

(m,p)=1

a(m)
m

Φu(m)− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
m

Φu(m)

 .

Since 0 < u < β − 1, the description of the decay of the weight function Φu
in Lemma 6.12 implies that the only contribution in the region of moderate
decay comes from m = 1, this being

pu(1−δ)Φu(1) = pu(1−δ)

(
−
(

1
pu

)1−δ
+OB

(
p−uB

))
= −1 +OB

(
pu(1−d−B)

)
for any choice ofB > 1. Using a variation of the argument given for Lemma 5.2
above, with Lemma 6.12 in place of Lemma 3.4, we see that each of the re-
maining contributions m ≡ ±1 mod pβ is bounded above by

pu(1−δ)mθ−1−CpuC = OC,θ

(
pu(1−d+C)pβ(θ−(1−<(δ))−C)

)
for any choice of constant C > 0. Since the sum over contributions will be
dominated by least m > 2 such that m ≡ ±1 mod pβ , we obtain the stated
bound after taking B > 1− δ to be sufficiently large. �

6.5. Some remarks on hyper-Kloosterman Dirichlet series

Let us now explain how we could have worked directly with the hyper-
Kloosterman Dirichlet series Kn(π, h, pβ , s) to establish a relevant Voronoi
summation formula via the additive functional identity 6.5 to describe the
twisted sum Xβ,2(π, δ, pu).

Theorem 6.14. — Let φ∞ denote the function defined on y ∈ R>0 by
φ∞(y) = y−(1−δ)V2(f−1

β y) as above (where fβ = Npnβ−u), and let Φu denote
the integral transform defined in Theorem 6.7 (cf. Lemma 6.12). We have
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for any coprime residue class hmod pβ the Voronoi summation formula∑
m>1

(m,pβ)=1

a(m) Kln(±mh, pβ)φ∞(m)

= W (π̃)ω(pβ)Nδ− 1
2 pβnδ · 2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(hN)L(δ, π ⊗ χ)

+W (π̃)ω(pβ)Nδ− 1
2 pnβδ · pu(1−δ)

ϕ(p)
p

∑
m>1

m≡±hN mod pβ

a(m)
m

Φu(m)

−1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m

Φu(m)

 .

Proof. — Using Proposition 3.5 above, we have for any choice of 1 < σ <
3−<(δ) the integral presentation∑

m>1
(m,p)=1

a(m) Kln(±mh, pβ)φ∞(m) =
∫

(σ)
Kn(π̃, h, pβ , s)φ∗∞(s) ds2πi ,

where

φ∗∞(s) = f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) F (−s+ 1)

= f
s−(1−δ)
β

k(−s+ (1− δ))
s− (1− δ) · π−n2 +n(−s+1)

∏n
j=1 Γ

(
s−µj

2

)
∏n
j=1 Γ

(
1−s−µj

2

) .
Shifting the line of integration to <(s) = −σ, we cross poles of vanishing
residues at s = µj for each j = 1, . . . , n (thanks to the construction of k(s)
in Lemma 3.1 above), as well as a simple pole of residue

Ress=(1−δ)
(
Kn(π̃, h, pβ , s)φ∗∞(s)

)
= Kn(π̃, h, pβ , 1− δ)F (δ).

Again, we can evaluate this residue via analytic continuation as in (6.9) (with
F (1− δ)F (δ) = 1) to derive

Kn(π̃, h, pβ , 1− δ)F (δ) = 2
ϕ(pβ)W (π̃)ω(pβ)Nδ− 1

2 pβnδ∑
χmod pβ

primitive,χ(−1)=1

χ(hN)L(δ, π ⊗ χ).
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To evaluate the remaining integral∫
(−σ)

Kn(π̃, h, pβ , s)φ∗∞(s) ds2πi ,

we apply the additive functional identity

Kn(π̃, h, pβ , s) = W (π̃)ω(pβ)N 1
2−spnβ(1−s)F (s)ϕ(p)

p

∑
m>1

m≡±hN mod pβ

a(m)
m1−s −

1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m1−s


of Proposition 6.5 to obtain

W (π̃)ω(pβ)N 1
2 pnβ×

ϕ(p)
p

∑
m>1

m≡±hN mod pβ

a(m)
m

∫
(−σ)

φ∗∞(s)F (s)
(

m

Npnβ

)s
ds

2πi

−1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m

∫
(−σ)

φ∗∞(s)F (s)
(

m

Npnβ

)s
ds

2πi

 ,

which after expanding out the explicit definition of the Mellin transform
φ∗∞(s) (as above) and using that F (s)F (−1+s) = 1 and that fβ = Npnβ−u,
is the same as∫

(−σ)
Kn(π̃, h, pβ , s)φ∗∞(s) ds2πi = W (π̃)ω(pβ)N 1

2 pnβ

(Npnβ−u)1−δϕ(p)
p

∑
m>1

m≡±hN mod pβ

a(m)
m

Φu(m)− 1
p

∑
m>1

m≡±hN mod pβ−1

m6≡±hN mod pβ

a(m)
m

Φu(m)

 .

Simplifying scalar terms, and putting this together with the residue, we
obtain the stated formula. �

Hence, we derive the same recursive formula for the average:

Corollary 6.15. — Assume that β > 2. The twisted sum Xβ,2(f, δ, pu)
defined in (4.4) above can be described equivalently for any choice of real
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parameter u > 0 by
2

ϕ?(pβ)
∑

χmod pβ
primitive,χ(−1)=1

L(δ, π ⊗ χ) + pu(1−δ)


∑
m>1

m≡±1 mod pβ

a(m)
m

Φu(m)− 1
ϕ(p)

∑
m>1

m≡±1 mod pβ−1

m6≡±1 mod pβ

a(m)
m

Φu(m)

 .

Proof. — The result is immediate after grouping together like scalar
terms. �

7. Hyper-Kloosterman Dirichlet series at large

We can now give the proofs of Theorems 1.1 and 1.3 for the hyper-
Kloosterman Dirichlet series (1.1):

Proof of Theorem 1.1 (A). — The first claim (i) appears in Proposi-
tion 6.5. For (ii), fix s ∈ C with <(s) > 1. Expanding the absolutely conver-
gent Dirichlet series and applying Lemma 4.2 (ii), we obtain

Kn(π, h, p, s) =
∑
m>1

(m,p)=1

a(m)
ms

Kln(±mh, p)

= 2
p− 3

∑
m>1

(m,p)=1

a(m)
ms

 ∑
χmod p

primitive,χ(−1)=1

χ(mh)τ(χ)n + (−1)n

 ,

which after switching the order of summation is the same as

Kn(π, h, p, s) = 2
p− 3

 ∑
χmod p

primitive,χ(−1)=1

χ(h)τ(χ)nL(s, π ⊗ χ) + (−1)nL(s, π)

 .

Applying the functional equation (6.3) to each of the L-functions L(s, π⊗χ)
and L(s, π) then gives us

Kn(π, h, p, s) = 2
p− 3W (π)N 1

2−sF (s)pn(1−s)ω(p)
∑
χmod p

primitive,χ(−1)=1

χ(hN)L(1− s, π̃ ⊗ χ) + (−1)nL(1− s, π̃)

 ,
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which (by the analytic continuation of L(s, π ⊗ χ) and L(s, π)) is valid for
any s ∈ C. Let us now assume that <(s) < 0, in which case we can open up
the absolutely convergent Dirichlet series

∑
χmod p

primitive,χ(−1)=1

χ(hN)L(1− s, π̃ ⊗ χ) =
∑
χmod p

primitive,χ(−1)=1

χ(hN)
∑
m>1

(m,p)=1

a(m)χ(m)
m1−s

=
∑
m>1

(m,p)=1

a(m)
m1−s

∑
χmod p

primitive,χ(−1)=1

χ(hNm)

in the latter expression. Evaluating the inner sum via the relation of Propo-
sition 4.1 then gives us

∑
m>1

(m,p)=1

a(m)
m1−s

∑
χmod p

primitive,χ(−1)=1

χ(hNm) = p− 3
2

∑
m>1

m≡±hN mod p

a(m)
m1−s −

∑
m>1

m6≡±hN mod p

a(m)
m1−s .

Using this relation in the previous expression for Kn(π, h, p, s) then gives the
stated functional identity. �

Proof of Theorem 1.1 (B). — The proof in either case follows from The-
orem 1.1 (A) via Mellin inversion, as in Theorem 6.6. Hence for (i), choosing
σ ∈ R>1 suitably so that φ(y) =

∫
(σ) φ

∗(s)y−s ds2πi , we have that

∑
m>1

(m,p)=1

a(m) Kln(±mh, pβ)φ(m) =
∫

(σ)
φ∗(s)

∑
m>1

(m,p)=1

a(m)
ms

Kln(±hm, pβ , s) ds2πi

=
∫

(σ)
φ∗(s)Kn(π, h, pβ , s) ds2πi .

Shifting the range of integration to <(s) = −σ, we then apply the additive
functional identity of Theorem 1.1 (A) (i) to derive the stated formula. The
proof of (ii) follow in the same way for Theorem 1.1 (B) (ii). �

Proof of Theorem 1.3 (A). — Let us first consider (i), hence with β > 2.
Taking s ∈ C with <(s) > 1, we open up the absolutely convergent Dirichlet
series and apply Lemma 4.2 to obtain the identification

K0
n(ξ, h, pβ) =

∑
m>1

ξ(m)
ms

Kln(±mh, pβ)

= 2
ϕ(pβ)

∑
m>1

(m,p)=1

ξ(m)
ms

∑
χmod pβ

primitive,χ(−1)=1

χ(mh)τ(χ)n.
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Switching the order of summation, we then obtain

K0
n(ξ, h, pβ , s) = 2

ϕ(pβ)
∑

χmod pβ
primitive,χ(−1)=1

χ(h)τ(χ)nL(s, ξχ).

Applying the classical functional equation

L(s, ξχ) = (qpβ)−sτ(ξχ)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )L(1− s, ξχ)

= (qpβ)−sξ(pβ)χ(q)τ(ξ)τ(χ)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )L(1− s, ξχ)

to this latter expression, we then obtain the identification

K0
n(ξ, h, pβ , s) =q−spβ(1−s)ξ(pβ)χ(q)τ(ξ)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )

· 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ),

which is valid for any s ∈ C (thanks to the analytic continuation of the
Dirichlet series L(s, ξχ)). Let us now consider this latter expression at a
complex variable s with <(s) < 0, where we can expand out as

2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ)

= 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hq)τ(χ)n−1
∑
m>1

(m,p)=1

ξχ(m)
m1−s

=
∑
m>1

(m,p)=1

ξ(m)
ms

· 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hqm)τ(χ)n−1.

Applying Lemma 4.2 (or Proposition 4.1 if n = 1) to evaluate the inner sum,
we then find that∑

m>1
(m,p)=1

ξ(m)
ms

· 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hqm)τ(χ)n−1

=
∑
m>1

(m,p)=1

ξ(m)
m1−s Kln−1(±mhq, pβ)
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if n > 2, and∑
m>1

(m,p)=1

ξ(m)
ms

· 2
ϕ(pβ)

∑
χmod pβ

primitive,χ(−1)=1

χ(hqm)

=
∑
m>1

m≡±hqmod pβ

ξ(m)
m1−s −

2
ϕ(pβ) ·

ϕ(pβ−1)
2

∑
m>1

m≡±hqmod pβ−1

m6≡±hqmod pβ

ξ(m)
m1−s

if n = 1. Substituting these expressions back into the previous (analytic
continuation) formula for K0

n(ξ, h, pβ , s), we then obtain for <(s) < 0 (after
analytic continuation) the stated additive functional identity

K0
n(ξ, h, pβ , s) = q−spβ(1−s)ξ(pβ)τ(ξ)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )K0

n−1(ξ, hq, pβ , 1− s).

Let us now show (ii), hence with β = 1. Again we start with s ∈ C having
<(s) > 1, opening up the absolutely convergent Dirichlet series and applying
Lemma 4.2 to obtain

K0
n(ξ, h, p, s) =

∑
m>1

(m,p)=1

ξ(m)
ms

Kln(±mh, p)

= 2
p− 3

∑
m>1

(m,p)=1

ξ(m)
ms

 ∑
χmod p

primitive,χ(−1)=1

χ(mh)τ(χ)n + (−1)n

 ,

which after switching the order of summation is the same as

K0
n(ξ, h, p, s) = 2

p− 3

 ∑
χmod p

primitive,χ(−1)=1

χ(h)τ(χ)nL(s, ξχ) + (−1)nεp(s, ξ)L(s, ξ)

 .

Again, we write εp(s, ξ)−1 to denote the Euler factor at p of L(s, ξ), so that
εp(s, ξ)L(s, ξ) = L(p)(s, ξ) denotes the Dirichlet series with the Euler factor
at p removed. Applying the functional equations

L(s, ξχ) = (qpβ)−sξ(pβ)χ(q)τ(ξ)τ(χ)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )L(1− s, ξχ)

L(s, ξ) = q−sτ(ξ)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )L(1− s, ξ)
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to this latter expression, we then obtain the identification

K0
n(ξ, h, p, s) =q−sτ(ξ)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )

× 2
p− 3

p1−sξ(pβ)
∑
χmod p

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ)

+(−1)nεp(s, ξ)L(1− s, ξ)
)
,

which is valid for all s ∈ C (again by the analytic continuation of the Dirich-
let series L(s, ξχ) and L(s, ξ)). Let us now assume that <(s) < 0. Hence,
we can expand out the absolutely convergent Dirichlet series in this latter
expression, switching the order of summation to derive

2
p− 3

∑
χmod p

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ)

= 2
p− 3

∑
m>1

(m,p)=1

χ(m)
m1−s

∑
χmod p

primitive,χ(−1)=1

χ(hqm)τ(χ)n−1.

If n > 2, then we can apply Lemma 4.2 to evaluate the inner sum so that

2
p− 3

∑
χmod p

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ)

=
∑
m>1

(m,p)=1

χ(m)
m1−s (Kln−1(±mh, p) + (−1)n) .

If n = 1, then we simply apply Proposition 4.1 to evaluate

2
p− 3

∑
χmod p

primitive,χ(−1)=1

χ(hq)τ(χ)n−1L(1− s, ξχ)

=
∑
m>1

m≡±hqmod p

ξ(m)
m1−s −

2
p− 3

∑
m>1

m6≡±hqmod p

ξ(m)
m1−s .

Substituting these expressions back into the previous formula for K0
n(ξ, h, p, s)

then proves the claim. �
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Proof of Theorem 1.3 (B). — In either case, we expand for a suitable
choice of real number σ > 1, shifting the range of integration to <(s) = −σ:

∑
m>1

(m,p)=1

ξ(m) Kln(±mh, pβ)φ(m) =
∫

(σ)
φ∗(s)K0

n(ξ, h, pβ , s) ds2πi

=
∫

(−σ)
φ∗(s)K0

n(ξ, h, pβ , s) ds2πi .

Suppose first that β > 2. Applying the functional identity of Theorem 1.3
(A) (i) to Kn(ξ, h, pβ , s) gives

∫
(−σ)

φ∗(s)K0
n(ξ, h, pβ , s) ds2πi

=τ(ξ)ξ(pβ)pβ
∫

(−σ)
φ∗(s)(qpβ)−s

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )K0

n−1(ξ, hq, pβ , 1− s) ds2πi ,

which after expanding the absolutely convergent Dirichlet series K0
n−1(χ, hq, pβ , 1−

s) equals

τ(ξ)ξ(pβ)pβ
∑
m>1

(m,p)=1

ξ(m)
m

Kln−1(±mhq, pβ)
∫

(−σ)
φ∗(s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )( m

qpβ

)s
ds

2πi .

This shows (i). For β = 1, we apply Theorem 1.3 (A) (i) to K0
n(ξ, h, p, s) to

find

∫
(−σ)

φ∗(s)K0
n(ξ, h, p, s) ds2πi

=τ(ξ)ξ(p)p
∫

(−σ)
φ∗(s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) (qp)−sK0

n−1(ξ, hq, p, 1− s) ds2πi

+ (−1)nτ(ξ)
∫

(−σ)
φ∗(s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) q−sL(p)(1− s, ξ) ds2πi

+ (−1)nτ(ξ) 2
p− 3

∫
(−σ)

φ∗(s)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) q−sεp(s, ξ)L(p)(1− s, ξ) ds2πi ,

– 65 –



Jeanine Van Order

which after expanding out the absolutely convergent Dirichlet series is the
same as

τ(ξ)ξ(p)p
∑
m>1

(m,p)=1)

ξ(m)
m

Kln−1(±mhq, p)
∫

(−σ)
φ∗(s)

(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )(m

qp

)s
ds

2πi

+ (−1)nτ(ξ)
∑
m>1

(m,p)=1

ξ(m)
m

∫
(−σ)

φ∗(s)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) )(m

q

)s
ds

2πi

+ (−1)nτ(ξ) 2
p− 3

∑
m>1

(m,p)=1

ξ(m)
m

∫
(−σ)

φ∗(s)
(
πs−

1
2

Γ
( 1−s

2
)

Γ
(
s
2
) ) εp(s, ξ)(m

q

)s
ds

2πi .

�
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