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Dirichlet twists of GL,-automorphic L-functions and
hyper-Kloosterman Dirichlet series

JEANINE VAN ORDER ()

ABSTRACT. — We calculate mean values of GLy-automorphic L-functions twisted
by primitive even Dirichlet characters of prime-power conductor, at arbitrary points
within the critical strip, by derivation of special Voronoi summation formulae. Our
calculation is novel in that the twisted sum can be expressed in terms of the aver-
age itself, and also that it sees the derivation of various new summation formulae
in the setting of prime-power modulus. One consequence, as we explain, is to show
the analytic continuation and additive summation formulae for hyper-Kloosterman
Dirichlet series associated to GLp-automorphic L-functions.

RESUME. — Nous calculons les valuers moyennes des fonctions L automorphes
sur GL,, tordues par des caractéres de Dirichlet primitifs et pairs, du conducteur
une puissance d’un nombre premier, & des points arbitraires dans la bande critique,
en dérivant des formules de sommation spéciales du type Voronoi. Notre calcul est
nouveau car la somme est exprimé en termes de la moyenne elle-méme, et aussi qu’il
voit la dérivation de diverses nouvelles formules de sommation dans le regime des
puissances d’un nombre premier. Une conséquence, comme nous l’expliquons, est de
montrer les prolongations analytiques et des formules de sommation additive pour
les séries de Dirichlet hyper-Kloosterman associées aux fonctions L automorphes sur
GLy,.

1. Introduction

Let 7 = ®,m, be a cuspidal automorphic representation of GL,(Aqg)
of conductor N and unitary central character w for n > 2. Suppose the
achimedean component 7., of 7 is spherical and parametrized by a diagonal
matrix diag(p;)7_;. We consider the standard L-function

A(s,m) = L(s, 7o) L(s,7) = [ [ L(s,m)
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of m, whose Euler factors L(s,,) at an unramified places v are given by the
n-fold products

L ) H?=1 (1- Oéj(ﬂu)vfs)il if v is finite
8, Ty) = A . .
[Ti=i (s — pj(m0)) if v = oo is the real place,

where the (o (m,)); and (1;(7)); denote the corresponding Satake param-
eters of the local representations m,. More precisely, we shall consider twists
A(s,m ® x) = L(s,m)L(s, 7 ® x) of this standard L-function by primitive,
even Dirichlet characters x as follows.

Fix a prime number p which does not divide IV, and let 8 > 2 be any
integer. Let § € C be any complex number inside the critical strip 0 < R(4) <
1. We derive various exact summation formulae in the style of Lavrik [8] and
Voronoi [16] to describe the mean values

Xo(md) = =2z X LEmeX)

x mod pB

primitive,x(—1)=1

where ¢*(p?) = o(p”) — p(p®~!) denotes the number of primitive Dirich-
let characters x mod p?, and the sum runs over all primitive even Dirichlet
characters x of conductor p?. To be clear, we average over the finite parts
of the completed L-functions A(s, 7 ® x), whose archimedean components
are each given by L(s,7s) (independently of the choice of x), where the
main difficulty and novelty is to compute the implicit polar term directly.
We note that this average is of interest for several reasons, one being the
applications to the generalized Ramanujan conjecture (at the real place) via
the argument of Luo-Rudnick-Sarnak [10, §1]. To be more concrete, we de-
rive the following formulae in terms of the L-function coefficients a(m) of .
Let W(7) denote the root number of L(s, ), so that the functional equation
for the standard L-function reads A(s,7) = W (m)A(1 — s,7). Fix a rational
prime p not diving N. Given an integer 8 > 1 and a coprime class ¢ mod-
ulo p?, consider the n-dimensional hyper-Kloosterman sum of modulus p?
evaluated at c:

1+ ... +x,
Kerf)= 3 et
LYy Tymy mode p

xq--xp=cmod phB

Here (as usual) e(z) = exp(2mix). We consider natural sums of these hyper-
Kloosterman sums,

x1+ ...+ x,
Kln(ﬂ:c,pﬁ) = Kln(c,pﬂ) + K]n(—c,pﬁ) = Z ‘ (1]9’@> .

z1--xp=2cmod ph
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Given any choice of real number Z > 0, we derive the following summation
formula for the twisted sum in the approximate functional equation formula
for Xg(m,d) (see Lemma 3.2 and Proposition 4.3) in the course of showing
of Theorems 6.7, 6.8, and Corollary 6.9 below. Writing to ¢ denote the mul-
tiplicative inverse of a class cmod p”, and taking k(s) to be the Mellin trans-
form of some smooth and compactly supported function (see Lemma 3.1),
or in fact any such test function with £(0) = 1 if the generalized Ramanujan
conjecture for 7 at the real place is known, we derive the summation formula

p W(mwp®)(Np): -0 3 a(m)

K1, (£mN, p°)

#(p) p oome
(m.p)=1
/ k(—s) L(1 —s+6,70) ( )
Rs)=2 S L(=s+6,m)
_ 1-6) (Z\° ds
- X S Zl 6 / ( “ i
p(m0) + m>1 R(s)=—2 S— (1 —9) m) 2mi

m=+1mod pB

1 Z a(m)/ E(—s+(1-19)) <Z>S ds
¢(p) = m Jpg=—2 s—(1=06) \m/ 2mi
m=+1mod pB—1
m#Z+1 mod pB
In particular, we compute the average Xg(m,d) as a residue term directly,
which is a nontrivial calculation. The value in this calculation is to illus-
trate the derivation through successive Voronoi summation formulae, where
the explicit nature of the prime-power modulus setting reveals the struc-
ture of passage clearly. Such summation formulae are not accessible via any
of the existing works on Voronoi, among them those of Miller-Schmid [11],
Goldfeld-Li [3], [2] or Ichino-Templier [4], or the more recent works of Miller-
Zhou [12] and Kiral-Zhou [7]. This is a consequence of the delicate analysis
required to deal with the implicit and non-admissible choice of archimedean
weight function, which leads to the (indirect) derivation of the residual term
Xs(m,6).) Unlike these other works, we also make use of the setting of
prime-power modulus, where the hyper-Kloosterman sums which appear af-
ter unraveling the n-th power Gauss sums can be evaluated explicitly in
the style of Salié (see Proposition 6.1). This calculation with its intermedi-
ate summation formulae suggests potential applications to the calculation
of higher moments of L-functions, as well as to estimation in the style of

(1) The aforementioned works require smooth and compactly supported test functions,
or else work directly on the level of Dirichlet series in the range of absolute convergence.
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Luo-Rudnick-Sarnak [10], although we do not pursue such applications here.
Note as well that we restrict to the setting of cuspidal representations for
simplicity, and that a similar summation formula could be derived for coeffi-
cients of Eisenstein series. In this way, our calculations should also imply the
analytic continuation and corresponding functional equations for Eisenstein
series on GL,, (Aq) twisted by additive characters and hyper-Kloosterman
sums. To spell out this latter point in a related special case, we explain in a
final section §7 how to derive the analytic continuation and functional equa-
tions of the following class of hyper-Kloosterman Dirichlet series: Given a
coprime class h mod p? and s € C (first with R(s) > 1), we first consider the
series defined by

B o) — Z a(m) B
ﬁn(,”,hvp 78)* ] ms Kln(imhap ) (11)
(771,;):1
= E a(ﬂ;b) (Kln(mh,pﬂ) +K1n(—mh,pﬂ)). (1.2)
me
m>1
(m,p)=1

We prove the following theorems as a direct consequence of the calculations
described above.

THEOREM 1.1. — Let 7 be a cuspidal GL,,(Aq)-automorphic represen-
tation for n > 2 with level N, central character w, and L-function coefficients
a(m) as above. Let

L1 —5,T) _n nsnyzll—‘(lisziﬁj)
=" e ()

Jj=1

denote the quotient of archimedean factors appearing in the functional equa-
tion (6.3) for L(s, m® x) below. Fix a rational prime p which does not divide
N. Let B > 1 be any integer, and h any coprime class modulo p°.

(A) The Dirichlet series &, (m, h,p%,s) has an analytic continuation to all
s € C, and satisfies the following additive functional identity:
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(i) If B = 2, then for R(s) < 0 (after analytic continuation)

Ra(m, hypP,s) = W(mw(pP)N2=5pmB1=5) F(s)

o(v) afm) 1 a(m)
P ; mi—s P 7HZ;1 mi—s

m==4hN mod pB m=+hN mod pB—1
m#=+hN mod pB

(ii) If B =1, then for R(s) <0 (after analytic continuation)

R, hyp,s) = W(m)NZ5F(s)

pn(l_s)o.)(p) Z a(m) _ i Z Tan(m) + i(—1)77”_[/(1 —5,7)

1—s

m -3

m>1 p m>1
m=+hN mod p m#Z+hN mod p

(B) Let ¢ be any smooth function on y € Rso which decays rapidly at 0 and
oo, and let ¢*(s) = [~ qb(y)ys% denote its Mellin transform (when defined).
Let us also write & = ®(¢) to denote the function on y € Rsq defined for a
suitable choice of real number o € Rs1 by the integral transform

H;'L:1 r (1_52_ﬁj ) ds

S

n s—1; Y ori
Hj:l F 2

D(y) - /( )eb*(s)F(s)yS;f; = /( (o (e

(i) If B = 2, then we have for any coprime class hmod p® the summa-
tion formula

> a(m) Kl (£mh,p’)p(m)

m>1
(m,p)=1

= W(m)w(p?)Nzp"

Py We(ge) -, L we(wme)

m=4hN mod pB m=+hN mod pB
m#+hN mod pB
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(ii) If B = 1, then we have for any coprime class hmod p the summation
formula

> a(m) KL, (£hN, p)p(m) = W(r)N2 F(s)
s

m>1 m>1
m=+hN mod p m#Z+hN mod p

= P C)

Remark 1.2. — Let us note that although the main (residual) calculations
in the body of this work cannot be recovered by existing Voronoi summation
formulae, the simpler Voronoi formulae of Theorem 1.1 (A) and (B) above
can be derived from those of Miller-Schmidt [11] after taking a sum over
additive characters to reduce to Ramanujan sums. To be more precise, one
can consider a sum over coprime residue classes a mod p? of sums of the

form
Z a(m) ( aq )
el —43 />
ms P

m>1

to which the theorems of [11] apply. Thus taking another coprime class h mod
p?, we have that

S () () 5 5 () ()

)
a mod pB m2>=1 m21 a mod pB p
(a,pP)=1 (a,pP)=1
a\m
= E ( )Cpﬁ(m_h)v
ms
m2=1

where c,s () denotes the Ramanujan sum of modulus p” at r. Since we have
the well-known relation

- p? p(”)
() =p ((PB,T)> v 07/ (p%,7)”

we deduce in the case of 5 > 2 (via the contribution of the M6bius function to
cps(m —h)) that the additional hyper-Kloosterman sums of moduli dividing
p? in the formula of [11] vanish. Thus the formulae of Theorem 1.1 (A) and
(B) can be recovered from [11], although we give a different (streamlined)
proof.
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We also consider the setting corresponding to twists by GLi(Aq) as
follows. Let us again fix & a primitive Dirichlet character of conductor ¢
prime to p. Given n > 1 an integer, 5 > 1 an integer, h a coprime class
modulo p?, and s € C (first with R(s) > 1), we consider the Dirichlet series
defined by

REhp )= ) % Kl, (£mh, p?)

m>=1

(m,p)=1
§(m)
(7:,Lp>)l=1
as well as
oo p
m= r;o B m=+ "an/o B—1
K& hps) =TT e
g(m 2 g(m : _
mz:tnh/modp mz;h/modp
THEOREM 1.3. — Fiz an integer n > 1. Fiz a prime number p. Let & be

any primitive Dirichlet character of conductor q prime to p. Let 7(§) denote
the standard Gauss sum of £&. Fiz an integer § > 2, and let h be any coprime
class modulus p°.

(A) The Dirichlet series 82 (&,h,p®,s) has an analytic continuation to all
s € C, and satisfies the following additive functional identity.

(i) If B = 2, then we have for s € C with R(s) < 0 (after analytic
continuation) the functional identity

T 1—s

ﬁ2(€7h,p578) = E(pﬁ)T(é')q*Spﬁ(lfS) <7TS% I\((i))

(ii) If B = 1, then we have for s € C with R(s) < 0 (after analytic
continuation) the functional identity

> ﬁg—l(g7q7h‘ap57 1- 8)'

[N

R(&hps) = 7€) (N I (E;)> P )R ERapd — 8) + ()"

(1 42 36p(s,£)) LP(1~ 5’5)}

Here, €,(s,£)™! denotes the Euler factor at p of L(s,£), so that
ep(s,6)L(s,&) = LW)(s,€) denotes the incomplete L-function of &,
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with the Euler factor at p removed.

(B) Suppose n = 2. Let ¢ be a smooth function on y € Ryg which decays
rapidly at 0 and oo, and let ¢p* (s fo 5 dyy denote its Mellin transform

(when defined). Let us also wmte o = <I>(¢) to denote the function on y €
R.q defined for a suitable choice of real number o € R~1 by the integral

transform
1 D)\, ds
0= [ (=G e

(i) If B = 2, then we have for any coprime class hmod p® the summa-
tion formula

> €lm) KluGemh,p)om) = 7@’ Y Uk (mg ) (5!%)

m>1 m>1
(m,p)=1 (m,p)=1

(ii) If B =1, then we have for any coprime class hmod p the summation
formula

> &(m) Kl (£mh, p)¢(m)

m>1
(m,p)=1

=rte) [0 X K i e (%)
> ()0 (5))

(m,p)=1

Here, ® denotes the function on y € Rsq defined by the modified
integral transform

- (oo (o) [wo2 DEF) Y o ds
P(y) = (7U)¢ (s)en( ,f)( T (2) )y 27’

It is curious that while these latter results are derived almost entirely via
the functional equations for L(s, 7 ®x) or L(s,{®x), with a modest amount
of harmonic analysis, the series &, (7, h, p?, 5) and even £ (¢, h,p?, s) do not
seem to be well-understood or so far much developed. At the same time, it
seems likely they have a crucial role to play in the estimation of the moments
Xp(m,0), and hence in subsequent progress towards to the generalized Ra-
manujan conjecture. As well, it seems likely this perspective could shed light

— 8 —
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on the open problem of calculating higher moments of L-functions, not only
through natural links with Eisenstein series, but also through the scope it
suggests for using p-adic Fourier theory (see e.g. [14]) as a tool for estima-
tion. The work is therefore written with this perspective in mind, and with
many of the lesser-known details for the case of prime-power modulus 8 > 2
described in full, so that other cases that we omit for simplicity such as
FEisenstein series or n = 1 could be derived mutatis mutandis in the same
way.
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2. Some background

Fix x a primitive even Dirichlet character of conductor ¢ prime to N.
Recall that for R(s) > 1 we consider

Ls,m@x) = Y a(m)x(m)m™*.

m>1
(m,q)=1

Recall too that this forms one component of the standard L-function A(s, 7) =
L(s, 7o) L(s, ), where

L(s,To0) HFRS*H] :ﬁ e (‘SQW)

denotes the archlmedean component, deﬁned in terms of the Satake pa-
rameters (u;)7_;. Note that when 7o is unitary, {155} = {—u;}. Let dp =
max; (f(p;))}—; denote the maximal real part of any of these parameters, so
that L(s, 7TOC) is entlre in the half plane R(s) > . Note that the generalized
Ramanujan/Selberg conjecture predicts dg = 0, and also that we have the
following unconditional bounds towards this conjecture:

-9 -
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THEOREM 2.1 (Luo-Rudnick-Sarnak, [10, Theorem 1.2]). — Let m =
®umy be a cuspidal automorphic representation of GL,(Aq) with unitary
central character. If the component T, is spherical and parametrized by
diag(p;)j—1, then for each index 1 < j < n, we have the bound [R(p;)| <
1 1

2 n2f1lc
Remark 2.2. — Better approximations towards the conjecture (e.g. to-

wards Selberg’s eigenvalue conjecture [15]) exist for n = 2, where the current
record is 7/64 by Kim-Sarnak [6].

3. Functional equations

Given a continuous or piecewise continuous function f on =z € R, let
f(s)=[° f(z)z* 9 denote its Mellin transform. We start with the follow-
ing choice of test function k(s) (cf. [10, §3]).

LEMMA 3.1. — Fiz g € C°(Rso) a smooth test function. Let

J
Then, the Mellin transform G*(s) = [;° G(z)x*“ of G(s) satisfies the re-
lation
G*(s) =g"(s) [[(=s + 1))
j=1
In particular, G*(0) = H?Zlﬁj and G*(fi,) = --- = G*(@,,) = 0. If we

assume additionally that H?Zl f; # 0, then the (holomorphic) function k(s)
defined by

G*(s)
k(s) = =——— (3.1)
H?:l My
satisfies the properties that k(0) =1 and that k(@y) = --- = k(@,,) = 0.

Proof. — The claim is easy to deduce using integration by parts, or
even simply the known formula for the Mellin transform of (z-L)"g(z) as

()" (5)- O
Let us henceforth take k(s) = G*(s) to be the Mellin transform defined
in (3.1), imposing the additional condition(®) that I G(r)% =1 so that

x

() Note that [10] take such a Mellin transform g*(s) (denoted k(s) = f*(s)) as the
test function in their approximate functional equation. However, there is typo in [10] on
the line before equation (3.6), i.e. the condition should read fooo f(:v)df =1.

~10 —
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k(0) = 1. Let x be any primitive even Dirichlet chapter of conductor ¢ prime
to the conductor N of w. Note that the completed L-functions A(s, 7 ®@7) =
L(5, o0 ® Xoo)L(s,T®x) and A(s,7) = L(s, T ) L(s, ) then have the same
archimedean components L($, oo ® Xoo) = L(8, o). We can then write the
functional equation of the finite part of the L-function L(s,7 ® x) in this
setup as

Lis.,n® y) =W (mw(@)x(N) ((jg)

e (U

ﬂWWW@MmU(T§>n

n 1-s—h;
(Nqn)%—s g Ftns Hj:lr ( 2 ) L(
T, T ()

Here (again), W(w) denotes the root number of A(s,7), and w = w, the
central character of 7. Let us also write F(s) to denote the quotient of
archimedean factors in this functional equation:

L= 57T) __ains Mo (52
A e T T

Jj=1

)Lﬂ&%®x1)

1-s5,70x 1)

(3.2)

Let us now consider the following smooth and rapidly decaying functions
ony € Ryo:

1 ds
V = — k —— 3.3
) =5 [ MO (33)
and
1 _gds
Valy) = Vs2(y) = 5~ k(=s)F(=s+0)y~"—. (3.4)
T JR(s)=2 8
We can apply a standard contour argument to the integral
1 d
— k(s)L(s + 06,7 @ y)Z°% (3.5)
211 R(s)=2 S
to derive the following useful formula.
LEMMA 3.2. — Let x be a primitive even Dirichlet character of conduc-

tor q coprime to the level N of m. Let Z > 0 be any real number. Let § be

— 11 -
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any complex number with 0 < R(§) < 1. Then, we have

LErox) = Y a(m)x(m) . (@)

m=>1 m(s Z
(m,q)=1
700\" 1 a(m)x~1(m) mZ
+W7rwqu<) Nqg™)z V .
(m)w(g)x(N) NG (Ng") 2 > N
(3.6)
Proof. — The result is a standard; see [10, Lemma 3.2]. |

The functions V;(x) and Va(z) decay rapidly as follows. Let us first review
how to apply the Stirling approximation theorem to estimate the quotient
of gamma factors appearing in the second function V5(x):

LEMMA 3.3. — Given s € C, write s = o + it for t # 0. Then, for
o =R(s) fized and |3(s)| = +oo, we have

n 1-s—p; n — —o—Ti
Hj=1 I ( 2 ) Hj:l [1—5— Nj|1/2 &
I, T (S‘;j) 1y ls — pylom=3

Jj=1

Proof. — See the discussion in [5, Ch. 5, A4]. Stirling’s asymptotic for-
mula implies that

[T (1_32_ﬁj) [[= 1 -s— ﬁj|1_o_ﬁj_1/2e"t|%
H" 1F<5—2ﬂj) - H;.l:1|s—,u,j‘0*#j*1/26—‘t|%
j=
I s T

—pa—L
H?:1|5_Nj|g i

O

LEMMA 3.4. — Let §o = max;(R(7;)). The functions Vi(z) and Va(x)
are bounded as follows:

(i) For each of j = 1,2, Vi(x) = Oc, (=) for any choice of C > 0
when x > 1, i.e. as x — 00.
(ii) Vi(z) = 1+04(x?) for any choice of A > 1 when 0 < x < 1, i.e. as
xz— 0.
(iil) Va(z) <o 1+ Ozt =RO)=%0=¢) yhen 0 < 2 < 1, i.e. as x — 0.

Proof. — The result follows from the same standard contour argument
given in [10, Lemma 3.1]. O

Finally, let us record the following observation for future use. Recall that
= maszl,g(%(ﬁj)).

- 12 —
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PROPOSITION 3.5. — Let ¢ denote the function defined on a real vari-
able x € Rsg by ¢doo(z) = x’(1*5)\/2(f5_1:£), where fg > 0 is some arbitrary
fized real number. We have the following integral presentation of this func-
tion ¢oo () for any x € Rsg: For any choice of real number o in the interval

max(dp, 1 — R(0)) < o < 3 —R(J),
s—(1-8) k(=54 (1 —0))

¢OO(1:> = A(S)_U fﬂ s — (1 _5)

ﬂ_—%-‘rn(s—l)

[, T (=2
H"j ;(EZ’H)) x_S%. (3.7)

j=1

Proof. — Recall that the cutoff function V(x) is defined explicitly for
any x € R~ as

x
s T, T (—8+5—w ) 2

n 1+S_5_ﬁj
/ k(—s) o3 Hn(—s+0) | [l= T ( 2 ) —sds
R(s)=2 5
(3.8)

Jj=1

Recall too that the function k(s) is holomorphic and bounded for |J(s)| —
0o, with the additional properties k(0) = 1 and k(@) = -+ = k(z,,) = 0.
Now, it is easy to see that the quotient of gamma factors in the kernel has
polesas s =7y — (1 —9),...,s =0, — (1 —J). We may therefore move the
line of integration in this definition (3.8) to the left, avoiding these poles.
That is, we may also define

n 1+s—6—n;
vg(g;):/ Bs) [ ganisrn 1= 2 s s
@ H?:1F<_S+§—#j> o

so long as

max (0,R(z;) — (1 —R())) < o < 2.

- 13 -
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Let us now return to the function ¢, (z) = x’(l"s)Vg(fﬁ_lx). Observe (using
the definition) that we have

n 1+s—5—ﬁj s
foo() = / K ﬂ—%+n<—s+é>.nj21r( ) =17 (x) i
(2) S H;'lzl r (—s+§—}1«j ) fﬁ 271

ke [ [T ()

_ s —24n(—s+d) —s—(1-6) 45
f x
ORI IT;. 1F(7_S+§_’”> 2
=

:/ fs_(l_(;) k’(*SJr (1 75))
+a-n@) s—(1-0)

L ()
ooy, =T .
n 1—s—p; 273’
Hj:l r (TM) 7m
where in the last step we change variables s — s — (1 — §). Thus for s € C
with R(s) = o in the interval

max (1-R0),R(@m;) < o < 24 (1-R(3)),

we may write

/ 219 +(1 —9))
(o) (1 _5)
I T (*52)

pmdn(ostn) LU ds
Mor(=5=)) 2

This shows the stated presentation of ¢oo (). O

—S

4. Average values

Fix a prime p which does not divide the dimension n or the conductor
N of 7. Fix 8 > 1 an integer. Let ¢*(p?) denote the number of primitive
Dirichlet characters x mod p®. Hence,

2 1\
I3 TL(-5)
pllp? p?|p?
where the factor of (1—2/p) is omitted if 5 > 2 (as we shall usually assume).
To derive our working expressing for the average Xg(m, ), we begin with the

following basic formulae, which although classical do not seem to be so well-
known in the setting of prime-power modulus.

— 14 —
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ProPOSITION 4.1. — Fiz an integer > 2. We have for any integer
m > 1 that
3¢*(p?) if m = £1mod p”®
Z x(m) =< —2p(p?~1) if m=+lmodp’ tand m # £1mod p”
x mod pf 0 otherwise.

primitive,x(—1)=1

In the case that 8 =1 corresponding to prime modulus, we also have the
formula

0 if m =0modp
Z x(m) = @—1 if m = £1modp
x mod pf -1 otherwise.

primitive,x(—1)=1

Proof. — Fix integers m > 1 and 8 > 1. Let us first consider the sum
over primitive characters x mod p?, which via the Mébius inversion formula

([5, (3.8)]) is

o oxtm= > @(pm)u<pﬁ>-

X
x mod pB 0z <B p
X#X0 p®|(m—1,pB)

Here, p denotes the Mébius function. It is easy to see from this formula that
for 8 > 2 we have the relations

©*(p®) if m = 1 mod p®
Z x(m) =4 —¢(P® 1) ifm=1modp’!and m #Z 1modp®,
x mod pf? 0 otherwise

X7#X0

using that ¢(p?) —p(p?~1) = ¢*(p?) and that u(p”) = 0. To detect relations
for the subset of even characters x(—1) = x(1), we compute

> ) (M) S5 S xm g E em)

x mod pB x mod pB x mod pB
XF#X0 XF#X0 X#X0

The stated relations are then easy to derive. The well-known case of § =1
(cf. [10, (3.11)]) can also be derived in this way, using the relations

©*(p) if m=+lmodp

Z x(m)=<0 if m = 0modp
X oaP -1 otherwise

O

Using this result, we now derive the following basic but crucial result for
our calculations. Fix an integer n > 1. Given a residue class r prime to the

~ 15 —
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modulus p” (and hence 7 prime to p), let us write Kl, (r, p?) to denote the
classical hyper-Kloosterman sum evaluated at r:

,3 . €1 + e + T
Kl,(r,p”) := Z e <p3 .
xq1, - ,&pn mod p/i
zl---znzrmodpﬁ
Here, we write e(x) = exp(2miz). We also use the notation Kl; to denote the
corresponding Ramanujan sum. Given a coprime residue class r mod p?, let

us write 7 to denote the multiplicative inverse of r mod p®.

LEMMA 4.2. — Let n > 1 be any integer.

(i) Given an integer B > 2, we have for any integer r coprime to p that

B
> w0 = 2 @)+ KL r).

x mod pB
primitive,x(—1)=1

where the sum ranges over primitive, even Dirichlet characters x modp®.

(ii) In the case of prime modulus corresponding to 8 = 1, we also have
for any integer r coprime to p that

> w0 = (2 1) (000 + Kl p) - (1),

x mod p
primitive,x(—1)=1

where the sum ranges over primitive, even Dirichlet characters x mod p.

Proof. — Let us start with (i). Opening up the sum, we have the identi-
fication

X + e + T

_ n__ _

S oxrt= Y R R ]
x mod pB x mod pB Z1,...,&yn mod pP

primitive,x(—1)=1 primitive,x(—1)=1

Switching the order of summation and using the relations of Proposition 4.1,
we then obtain

<p*(2p3) Z e(x1+-])'[3~+wn>

Z1,...,@xn mod pB

xq - -xp=£7rmod pB

D Y ()

Z1,...,xn mod pB
:1_'1“-:1;”5:&7'1[10(113571
@1--@pZEr mod ph

~ 16 —
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Now, consider the second sum in this expression, which after writing y =
Tl Tp_1l mode is the same as

> e(w)

Z1,...,2p mod pB
z1-zp=4rmodpf—1
:cl-»-mn‘;‘:trmodpﬁ

_ 3 e (”“ t 'p'; x”*) oo (;g) o (41)

L1,y Tm—1 modpﬁ Zp=4ymod pf—1

zn #Z+y mod ph

Observe that each class x,, in the inner sum can then be written as x, =
+y 4+ IpP~1 for some 1 <1< p—1,

T, y—&-lpﬂ_l) (—y—i—lpﬁ_l)
el =)= el —F— ) +e| —F—
x ()2 (5 >

wn=tymod ph—1 1<i<p—1

2n Z+y mod ph
l
()= (%) .2 <G)
p p 1<I<p—1 b

Using the well-known identity Z1<lgp—1 e (L) = —1, it is then easy to see

P
that the sum (4.1) is equal to

_ E e (ﬁ) = — (Kln(npﬁ) + Kln(—r,pﬁ)) .
= o 8 P
ESREEEN xp mod p
x1--@p==+rmod ph

In this way, we obtain the formula

Y = (w*(p’g) J;so(pﬁ‘l)) > . <x1 + At @,

x mod pB 21,...,xn mod pP
primitive,x(—1)=1 xq1--xp==+rmod phB

The stated formula then follows, using that ¢*(p?) = o(p”) — p(p®~1).

To derive (ii) (cf. [10, (3.19)]), we open up the sum and switch the order
of summation to obtain

> X"

x mod p
primitive,x(—1)=1

= Y xt) Y X@iewe <“Tl+pﬂ+xn)

_ xmodp T1,...,T, mod p?
primitive,x(—1)=1

2 S X@ozae <W> |

1,...,oy mod pP X mod p
primitive,x(—1)=1

17 -
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Using Proposition 4.1 to evaluate in the inner sum then gives us the expres-

() 2 (5

TY,een, xp mod p
z1-xp=*trmodp

B Z €<x1+~]-)~+xn>

LY, xp mod p
T - @prZ+tlmodp

(w) 2 ()

., zp mod p
Tn—j:Tnlodp

ORI

x1 mod p xp mod p
x1#1modp xn#Z1lmodp
= (— 1 > e LTI (Cym,
2 p
.Ll ..... xp mod p

x1 - xp=4rmodp

Using these relations, we can now derive the following moment formula
(assuming 5 > 2 for simplicity):

PROPOSITION 4.3. — Fiz a prime p which does not divide the conductor
N of m, and let B > 2 be any integer. We have for any choice of real parameter
Z > 0 the following average formula:

XB(?T,(S) = Xﬁ,l(ﬂ-v 5a Z) + Xﬁ,Q(ﬂ-a 57 Z)v (42)
where
Xpa(mo,2)= 3 alm)y, (%) - Y alm) ,, (%)
ﬂ,l o m>=1 m6 ' Z sp(p) m=>=1 m6 ' Z 7
m=+1mod pB m=+1mod pBf—1

m#z=+1 mod pB

(4.3)
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Proof. — Using formula Lemma 3.2, we can decompose the average X (7, )
into sums

Xpi(m,6,7) = <p*(2p5) Z Z V1 (Z)

x mod pB m>=1
primitive,x(—1)=1 (m,p)=1

> W) (;BX)) (N3

Xmodpﬁ
a(m)x~1(m) mZ
> :
m Npbn

primitive,x(—1)=1
m>1

(m,p)=1

To evaluate Xg1(m,0,2Z), we switch the order of summation, then use
(4.1) to evaluate the inner sum:

Xp1(m,8,2) = (‘P*(Qpﬂ))_l 3 ag’;)m(%) > x(m)

mz1 x mod pB
(m,p)=1 primitive,x(—1)=1
_ a(m) . my o) a(m) ., (m
- Z 5 V1 7 o (pP) Z 5 Vi 7))
1 m L m>1 m
m=+1mod pB m=+1mod pf—1

m#+1mod pB

The stated formula is then easy to derive from the fact that ¢*(p?) = (p —
1)2pP=2 for g > 2.

To evaluate the twisted sum Xgo(m, 9, Z), let us first open up the sum
and switch the order of summation:

Xmodpﬁ p2 m>=1
primitive,x(—1)=1 (m,p)=1
(Npin)z—? a(m) mZ (N
= W(m)w(p?)- = Y. sl N > x(Nm)r(x)"
p m=1 x mod pB
(m,p)=1 primitive,x(—1)=1

Now, we can use Lemma 4.2 to evaluate the inner sum in this latter expres-
sion as
~(N n e(p?) N .8 ~ .8
Y. XEm)r(0)" = =5 (Kl (mN,p”) + Kl (=mN, p%)).

x mod pB
primitive,x(—1)=1
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Substituting this back into the previous expression then gives

B Nphn)z—o
P p
W) W) B
p 2
a(m) mZ — —
alm) Kl,(mN,p?) + Kl,(-mN, p’
mz>:1 m1_5‘/2<Nan>( (m P )+ ( miv,p ))a
(m,p)=1

from which we derive the identity

2 () (NpBn)3—s
X77T’(57pu: 7W7TOJpB7n
a(m) mZ Y ~ 8
> s 2 e ) (K (mN.) 4 KL (-mN.p%).
(m.p)=1

The stated formula for X5 (7, d, Z) then follows after taking into account that
for g = 2,
2 90" _ -1 _ p (4.5)
e*(p?) 2 (p—1)2p°~2  o(p)

O

5. Preliminary estimates

Let us now consider the following preliminary estimates for Xg(m,d),
using the theorem of Molteni [13] (cf. [9]). Hence, we begin by stating the
following result (“Ramanujan on average'):

THEOREM 5.1 (Molteni, [13, Theorem 4]). — Let 7 be a cuspidal auto-
morphic representation of GL,(Aq) of conductor N, with L-function coef-
ficients a(m) as above. Then, for any choice of € > 0, we have that

> @ < (Nz)°.

1<m<z

Let us now return to the setup of Proposition 4.3 above.

LEMMA 5.2. — We have for any choice of 1 < Z < p°~1 and for any
choice of A > 1 and C > 0 the estimate

Xy (7,6, 2) = 1+ 04(Z74) + Oc,, ((p7)7RO=C 7).
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Here, we write 0 € [0,1/2] to denote the best known approximation towards
the generalized Ramanujan conjecture (with 8 = 0 conjectured). Hence, tak-
ing C > 0 — R(5) sufficiently large gives us the lower bound

Xg’l(ﬂ',(s,Z)>>1. (51)

Proof. — Let us first consider the contribution from the first coefficient
m=11in Xg1(m, 9, Z):

a(1)Vs (;) ~V (;) —1+0a(Z74).

Here, we have used that a(1) = 1 in the first equality, and then the estimate
of Lemma 3.4 to bound the contribution of V1 (Z~!) (which lies in the region
of moderate decay).

To deal with the remaining contributions m > 2 in the expression (4.3),
notice that m must satisfy one of the constraints m = +1modp?® or else
m = +1mod p®~! with m # +1modp®. On the other hand, observe that
since we have chosen 1 < Z < p®~! each of the remaining contributions
m > 2 must satisfy the condition m > Z. Hence for each such m > 2, we
have by the estimate of Lemma 3.4 that

Vi (%) = O¢ ((T;)C> for any choice of constant C' > 0.

We can then bound the coefficient corresponding to each contributing term
as

aﬁlﬂz) v (%) — Oc (mB—ER(é)—CZC> '

Expanding out the arithmetic progressions which define the sum of remaining
contributions, we obtain

Za(il +p5t)V (il +p5t)_ 1 Za(il +p/3—1t)V (ﬂ +p5‘1t)
(£1+pPt)s Z p(p) & (F1+p7 1) 7

<o Z(pﬁt)efﬂ?((?)fCZC.
t>1

t>1

That is, the sum of remaining contributions is bounded above in modulus

by 29 (p?)?= RO €. -
LEMMA 5.3. — We have for any choices of Z > 1 and € > 0 the (coarse)
estimate

Xp 2(7r, 5, Z) Lpre p*% (Npﬁn)%+€N%(d)+62*(1+§ﬁ(5)+6).
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Proof. — Put fz = Np’"Z~!. Using the classical bound Kl,(c,p?) <
(n—1)

(p?)= together with Theorem 5.1 and Lemma 3.4 (iii), it follows that

Xpo(m,0,Z) <pome (p°) 2 (NpPm) 3ROV (N f5) RO+ g,

The stated bound follows after expanding and grouping together like terms.
O

6. Calculation of the twisted sum

We now consider the twisted sum X o(m,d,Z), taking for granted the
result of Lemma 5.2. That is, let us choose some unbalancing parameter
1 < Z < p®~1 of the form Z = p* with 1 < u < 8 — 1, and consider

p W(mwp?)(Np’m)z—0

Xpo(m,o,p") = -
72 o(p) P
a(m) m — —
Z:l s V2 (Np5”“> (KL,(mN,p?) + KL,,(-mN,p?)) . (6.1)
(m,p)=1

6.1. Evaluation of hyper-Kloosterman sums

Let us now suppose that 5 > 4.

THEOREM 6.1 (“Salié”). — Suppose that p does not divide n. Assume
without loss of generality that the exponent 8 > 4 is even, say B = 2« for
a > 2. Then for any integer ¢ prime to p® (and hence prime to p),

- -1 i
Klo(e.p”) = ") Y e<(n ;;ch)’ (6.2)
w mod p&

w=cmod p™

where the sum runs over all n-th roots of ¢ mod p®.

Proof. — The result is supposedly classical, though the main reference
is [1, Theorem C.1] (cf. [5, Lemma 12.2]). Note however that the statement
of [1, Theorem C.1] in fact depends on a choice of lifting of root mod p®
(i.e. their notation r!/" refers to a lifting of a root of rmodp® to p>*). O
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6.2. Reduction to twists by additive characters

Given a class cmod p?, let 1), denote the additive character defined by
Ye(m) = e (';7"}) Let us also write ¥.(£m) = 1.(m) + ¥.(m) to lighten
notation. Given g > 1 an integer, let (p%)n denote the n-th power residue
symbol. Hence, (p—%)n = 1 if any only if there exists a coprime class { mod p?
with {™ = e¢mod p?. Note that by Hensel’s lemma, (;%)n = 1 if any only if

(i)n =1

PROPOSITION 6.2. — Suppose that p does not divide n. Assume again
(without loss of generality) that 8 > 4 is even, say 8 = 2 with a > 2. Then,
the twisted sum Xgo(m,d,p") is equal to

§ E el ———24— "~
4,0(19) p% zmodpB  wmodp™ pﬁ
(Z)p=1 wn =z mod p&

y Z Vn(—2) Z a(m)¢t(imN)%<NpZ;—u>'

mi-9d
t mod pP m2>1
(mp)=1

Proof. — We apply Fourier inversion to the function R : (Z / pBZ) — C
defined by

Z e ((’ﬂ*l}));ﬂﬁ’CE) lf (%)n _ 1
R(c) = § wilimdiye
0 otherwise.

Hence,
_B -~ tc
S =t Y & (1),
t mod p# p

where .a\(t) denotes the Fourier transform at the additive character deter-
mined by the class ¢ mod p®:

3 _8 tx
Rt)=p 2 Z R(x)e <_p@) .
z mod pf
Using this relation, we find that for any integer ¢ prime to p?,

Re)y=p® > Y 3 e((”—l)er:vw)e(ct—xt)

B B
t mod pf x mod p#  wmodp® p p
w

"=z mod p%®
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and hence

RO+ R(=)=p" > > Q(MWU>

pﬁ
t mod pf x mod pf  wmodp®

w” =z mod p%
< (ct—mt>+ <—ct—xt>)
e el —— |-
p’ p°
Using Proposition 6.1, it follows that

Kl (c,p%) + Ko (e, ") = (0°) T (&(c) + R(—¢))

:(pB)ang Z Z Z e((n—l)w—i—xw)

pﬁ
t mod pf x modpf  wmodp®

wn =z mod p%

((57) < (55)

Substituting this back into (4.4), and switching the order of summation, we
derive

“ p W(m)w(p? Npﬁ"%_‘s n—3 a(m m
Xy a(m,8,p) =L WINPT oy 52 el (-

n — 2 —
w(p) 7 = oml phn—u

(m,p)=1

Y YT 6<(n1)w+xw>

B
tmod pf x mod pf  wmodp® p

w? =z mod p™

() e (),

which after re-arranging terms is equal to the stated formula. |

6.3. Voronoi summation for additive twists

We now derive special Voronoi summation formulae (with polar terms) for
the twisted sum Xg (7, d, p*) via Proposition 6.2, using nothing more than
the functional equation for L(s, ™ ® x). Recall that this functional equation
is given explicitly by

L(s,m @ x) = W(m)w(p”)x(N)NzZ=*p~ s ()"
Il T (55
M- ()

Again (as in (3.2) above), we shall write F(s) to denote the quotient of
archimedean factors appearing in (6.3).

) Ll—-s,7®@x ). (6.3)
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6.3.1. Functional identities for additive twists

We begin with the following Corollary to Lemma 4.2 above:

COROLLARY 6.3. — Let m be any integer prime to p. Given 8 > 2 an
integer, we have that

(p”;)+(_;;>:g£ﬁ) S xm)ro,

x mod pB
primitive,x(—1)=1

and in the case of B =1 corresponding to prime modulus p that

e(z)ﬁ(_j):p?g 3 myrho - (-1

primitive,x(—1)=1

Proof. — Specialize Lemma 4.2 to n = 1, then isolate the sums of additive
characters in each case. (]

Given 3 > 1 any integer, and h any coprime class modulo p?, let us now
consider the Dirichlet series defined on s € C (first with £(s) > 1) by

senr- 5 5 () 0o )

m>1
(m,p)=1

We now show that D(7, h,p?, s) has an analytic continuation to s € C via
the following functional identities. Let us again (for any n > 1 and 8 > 1)
write Kl,,(£¢, p?) = Kl,, (¢, p?) + Kl,,(—c¢, p?) to simplify expressions.

PROPOSITION 6.4. — We have the following additive functional identi-
ties for the Dirichlet series D(m,h,pP,s).

(i) If B > 2, then we have for any coprime class hmodp® the additive
functional identity

D(m, h,p?,8) = W(m)w(p?)N2=spP1=19) p(s) > ;‘n(l"f) Kl,_1(£mNh,p?).
m>1
(m,p)=1

(i) In the case of B =1 corresponding to prime modulus p, we also have
the additive functional identity

D(r, h,p, s) = W(m)w(p)N?~p' " F(s)
> (s + (-1 (25 ) [1- @0,

m>1 p—
(m,p)=1
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where €,(s)™! denotes the Euler factor at p of L(s,n), and €,(s)™" that of
L(s,).

Proof. — Let us start with (i). Hence for R(s) > 1, we open up the sum
and use Corollary 6.3 (i) to obtain

2 — a(m)
D(ﬂ—v hap57 S) = 5\ X(mh)7‘(x)
o(p?) nZ; s mz; ms
primi)éive,xffl)=1 (m,p)=1
2
= —— X(h)T(x)L(s, T @X). (6.4)
So(pﬂ) x;,;ﬂ

primitive,x(—1)=1

Applying the functional equation (6.3) to the inner Dirichlet series L(s, T ®
X), we then obtain

D(?T, h7pﬁ7 S) = WW(W)w(pﬁ)NéispiﬁnsF(s)
> XWRIFEPT)" L - 5,7 ® X),

primitive,x(—1)=1

which after using that 7(%) = 7(x) (and hence that 7(x)7(X) = |7(x)|* = p”)

gives us the identity

D(m,h,pP,s) = W(ﬁ)w(pﬁ)N%_Spﬂ(l_”s)F(s)

o(p?)
> X(NB)r(R)"TLA - s, F@x) (6.5)
x mod pB
primitive,x(—1)=1
after analytic continuation. Let us now suppose that R(s) < 0, in which case
we can open up the Dirichlet series on the right of (6.5) and interchange
summation to obtain

2 15, B—pns alm ~(FH N\ n—
2 W )N ) S A S @R myr ().
o(p ) e « mod ph

(m,p)=1 primitive,x(—1)=1

Using Corollary 6.3 (i) to evaluate the inner sum, we then obtain (after
analytic continuation) the identity

alm _—
D(m, h,p?,s) = W(m)w(p’)N2=5pP =7 () > m(l_z Kl,_1(£Nhm,p®).
m>=1
(m,p)=1
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Let us now consider (ii). Hence for $(s) > 1, we open up the sum and
use Corollary 6.3 (ii) to obtain

2
D(m, h,p,s) = p— Y. XWT)L(s,m®X) — (=1)"€y(s)L(s,m)
[)rixxliéjsz(il):l

Applying the functional equation (6.3) to each of the inner Dirichlet series,
we then obtain

2 i,
mW(w)w(p)N2 F(s)

P Y XN)TO)T(RL(L = s, T @ x) = (~1)"ep(s)L(L — 5, 7)
x mod p
primitive,x(—1)=1

which after using again that 7(%) = 7(x) gives us (after analytic continua-
tion) the expression

D(.hup.s) = ~= W)V F ()

pmt > X(hN)T(X)" ' L(1 5, T ®X) — ep(s)L(1 — 5,7)
x mod p
primitive,x(—1)=1

(6.6)

Let us now suppose that R(s) < 0. We can then expand the Dirichlet series
on the right of (6.6) to obtain

2 As
EW(W)W(P)NZ F(s)
—ns+1 — hN —\n—1 a(m)X(m) _ a’(m)
P > XN Y = el 3
x mod p m>1 m m>=1 m
primitive,x(—1)=1 (m,p)=1
2 i,
prgW(ﬂ)W(p)N? F(s)
—ns a(m) ~(7H N\ n— =
ptt Y i Y. XANm)TO)" ' = e()g(l—s) D
(7:’?;;2)1:1 primié\:::);(il)=1 (7::5)1:1
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Now, observe that we may use Lemma 4.2 to evaluate the inner sum in this
latter expression as

3 y(th)T(X)“*LDKln L (EmAN, p) + (—1)",

x mod p
primitive,x(—1)=1

which gives us

5—S —ns a{m T AT
W (m)w(p)N=5F(s) | p! > m(ll Kl,,_, (+mhN, p)
m>1
(m,p)=1

HD B - g e -9 S A

(m,p)=1

or equivalently

W(w)w PINE P E(s)
£ L oo ) - ).
(e

Hence (after analytic continuation), we derive the stated functional identity
for D(m, h,p,s). O
Let us also consider the following hyper-Kloosterman Dirichlet series.

Let 8 > 2 be an integer. Here, we consider the Dirichlet series defined for a
coprime residue class hmodp® and s € C (first with R(s) > 1) by

falmhp® )= Y “751”? K1, (£mh, p°)

m>1

(m,p)=1

= ¥ “g’s‘) (KL, (mh, p°) + KL, (=mh,p?)) . (6.7)
m>1
(m,p)=1

PROPOSITION 6.5. — Assume that 3 > 2. The Dirichlet series &(m, h, p?, s)
satisfies the functional identity

Ry (m, b, pP5) = W(W)w(pﬁ)N%*Sp”ﬂ(PS)F(s)

a(m 1 a(m)
AP VR B DR O

m=4hN mod pB m=+hN mod pB—1
m#Z+hN mod pf
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for R(s) < 0 (after analytic continuation).

Proof. — Observe that Lemma 4.2 gives us for R(s) > 1 the relation

2 a(m) _
~Qn(ﬂ-7 hvpﬂ7 8) = a5\ X(mh)T(X)n
e(p?) ; m? E 5
(m,p)=1 primi)iive,)(?fl)zl

2
= — x(h)7(X)"L(s, ™ ® x).
¢(p?) Xn%;pﬁ

primitive,x(—1)=1

Applying the functional equation (6.3) to each L(s,m ® x), we then obtain
(after analytic continuation)

5L W (Wl N () ()L - s F 9 D)
e T 1)1

= W(mwp?)N2=p = Fs) Y x(hN)L(1 - 5,7 ®X).

x mod pﬁ
primitive,x(—1)=1

Note that in the last step, we use that 7(x)7(x) = 7(x)7(x) = |7(x)|* = p”.
Hence, we derive the expression

ﬁ’n(ﬂ-a h7pﬂa S) = W(ﬂ')w(pﬁ)N%fsp:Bn(lfs)F(S)

e(p?)
> X(AN)L(1 —5,7®%) (6.9)
x mod pB
primitive,x(—1)=1
after analytic continuation. Let us now suppose that R(s) < 0, so that we
can expand the absolutely convergent Dirichlet series on the right hand side
of this latter expression as

Y XENLA-sFex) = Y. “(1”1)9 Y x(hNm).
x mod phB mz1 m x mod pB
primitive,x(—1)=1 (m,p)=1 primitive,x(—1)=1

Applying the quasi-orthogonality relations of Proposition 4.1 to the inner
sum, this latter expression equals

©*(p?) > a(m)  (p* 1) 3 a(m)

2 - ml-s '

ml—s 2
m>=1 m>1
m=+hN mod pB m=4hN mod pB—1

m#Z+hN mod pB
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Substituting this back into the previous expression, we see that &, (f, h,p?, s)
can be expressed for R(s) < 0 (after analytic continuation) as

L WP\ N =) Fr( s
(p(pﬁ)W( Jw(p”)N=""p F(s)

@*(p?) Z a(m) @" ) Z a(m)
2 ml-s 2 '
m>1 m>1
m=+4hN mod pP m==4hN mod pf—1
m#Z+hN mod pB

Simplifying the scalar terms, using that o*(p®) = (p — 1)2p%~2 for g > 2,
we derive the stated result. ]

6.3.2. Derivation of formulae

Let ¢ be any continuous or piecewise continuous function on R~y which
decays rapidly as 0 and oo, and let ¢*(s) = fooo ¢(x)z* % denote its Mellin
transform (when defined). Note that the only property we shall require of
this of this function ¢ is that its Mellin transform be defined, and that it
can be recovered from its Mellin transform by the inversion formula ¢(x) =
f(a) gb*(s):cfsf—;i for a suitable choice of 0 € R~q so that ¢*(s) is analytic
and the integral absolutely convergent for R(s) = o.

THEOREM 6.6 (Voronoi summation formula). — Let 7 = ®,m, be a
cuspidal automorphic representation of GL,(Aq) for n > 2, with L-function
coefficients a(m) and conductor N. Let p be a prime which does not divide
N. Let ¢ be a smooth on R~ which decays rapidly at 0 and oo, and let ®
denote the function defined on y € Rsq for suitable choice of real number
o € R~ by the integral transform

1—s—7,;
T T (555 L ds
Hﬂ F(S—Hj) Y 2
j=1 2

v = [ o |7
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Dirichlet twists of GLp-automorphic L-functions

(i) Given an integer B > 2, we have for each coprime class hmod p® the
summation formula

> a(m) Kly(£mh, p?)¢(m) = W (m)w(p’) N2 p”

m=1
(m,p)=1

Z @ Kl,_1(£mNh,p*)® (

m=>=1
(m,p)=1

m
Npbn J°

(ii) In the case of B =1 corresponding to prime modulus p, we also have
the summation formula

S a(m) KLy (£mh, p)é(m)

m>1
(m,p)=1

_ W(w)w(p)N%p Z a(::) (K1n1(:|:m]\7h,p) + (—l)npi3> ® (Nrgn>
(=1
. a(m)~ /m
g LA (R)

Here, & denotes the modified function defined on y € Rsq by the integral
transform

n 1-s—7,
&)(y)/(g) (;5*(5) 7r3+nsnl_j[;1 FF((S}])) EP(S)yS%,

Jj=1

where €,(s) denotes the multiplicative inverse of the Euler factor at p of
L(s,m).

Proof. — In either case, we use the Mellin inversion theorem ¢(x) =
f(a) ¢*(S)$_S% to express the sum as

Z a(m) K1y (£mh, p?)p(m) = Z a(m) (e <TZ£L> +e <—TZ£L>> ¢p(m)
(et (et
= [ 6D )
(o) 7 ¢
Switching the range of integration to R(s) = —o, then applying the cor-
responding additive functional identity of Proposition 6.4 to the Dirichlet
series in remaining integral, the stated formula (in each case) follows. ]
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Let us now consider the corresponding Voronoi summation formulae we
obtain after replacing the generic choice of well-behaved weight function ¢
with the function ¢, appearing in Proposition 3.5 above. More specifically,
let us now consider what happens when we take as the weight function in
Theorem 6.6 the function defined on y € R by doo(y) := y_(l_é)‘@(fg_ly)v
where V3 is the cutoff function of rapid decay defined in (3.4) above, and
fs = Np"?~* = Np™#Z~1 is now taken to be the length of its region of
moderate decay (according to our choice of unbalancing parameter Z = p*).
Recall that in the definition (3.4) of the cutoff function V5(x), we introduced
a holomorphic test function k(s) := G*(s)/(]_[?:1 7i;) from Lemma 3.1, and
that this function satisfies the convenient properties k(0) = 1 and k(f1;) =
o = k(@) = 0.

THEOREM 6.7 (Voronoi summation with the weight function ¢oo). —
Let 1 = ®,m, be a cuspidal automorphic representation of GL,(Aq) for
n > 2, with L-function coefficients a(m). Fixz 6 € C with 0 < R(d) < 1. Let
oo denote the function defined on y € Rsg by doo(y) = y_(l_‘;)Vg(fﬁ_ly),
where fg = Np™~% for some fived real parameter 0 < u < B — 1 is the
length of the region of moderate decay for the cutoff function Va(y). Let us
for this choice of u write ®,, to denote the function on y € R~¢ defined for
any choice of real number 1 < o < 3 —R(4) by the integral transform

(i) Given an integer 8 > 2, we have for each integer h prime to p the
summation formula

> alm) KL (EmNh,p’)doc(m)

m>1
(m,p)=1

=S W(Ea(p?)N T2 pf o= S (NR)r(R)" L0, 7 @ X)

x mod pB
primitive,x(—1)=1

W (7)@(p®) N2 p? 3 a(m)
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Dirichlet twists of GLp-automorphic L-functions

(i) In the case of B =1 corresponding to prime modulus p, we also have
the summation formula

> a(m)Kly (£mh, p)po (m)

m=1
(m,p)=1

= WEw(p)N°~2 [ pt =) N (N (X)L 7 ® X)

x mod p
primitive,x(—1)=1

—€p(1 = 0)L(0,m))

WEBENp [ alm) — . 2
TN MZT (Kln—ﬂim”’p) =D pg) u(m)

—(-1

@\»—*

=R

Here, EI;U denotes the function defined on y € R~ by the modified integral

transform
Buly) = /(_@ S (py)()‘ir

where €,(s) again denotes the multiplicative inverse of the Euler factor at p
of L(s,m).

Proof. — We proceed in the same way as for Theorem 6.6 (but spelling
out all details), viewing Proposition 3.5 above as an explicit form of the
Mellin inversion theorem. Hence, fix any real number o in the interval 1 <
o < 3—R(0). Then for any 8 > 1, Proposition 3.5 (with f3 = Np"’~%) gives
us the expression

> a(m) Kl (Emh, p?) / D(7, h,p’, s)$% (s )ﬁ (6.10)
(=1
where
) (1) k 1-6
o5 (s) = £ 5)((1(_5)”F<5+ D
= = 5>wﬁ—%+n<—s+” I (S_QMJ) (6.11)
] —(1-29) H;_Lzlp(w)
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denotes the Mellin transform of ¢, (s) in this region 1 < o < 3 — R(9).

Suppose first that 5 > 2. We shift the range of integration in (6.10)
to (s) = —o, crossing poles at s = fi; for each 1 < j < n of vanishing
residues, i.e. since k(fi;) = ... = k(f1,,) = 0 thanks to the construction of
k(s) in Lemma 3.1 above. We also cross a simple pole at s = 1 —§ of residue

Res,—1-5 (D(7, h,p”, $)p5(s))

=Ress—1_s (D(%,h,p )fs (1-9) WF(S))

n o—1
. I
—D(, h,pP,1— 6)F(1 - 8) = D(F, h,p®, 1 — §)n— 5 +n1-0) 1= ( 2 )

Lo ()

Recall that we can calculate the value D(7,h,p”,1 — §) using analytic con-
tinuation as in (6.5) above. To be precise, let us write F'(s) to denote the
corresponding quotient of contragredient archimedean components

B nop (1737;47)
F(s) = LU =8 To0) _ 1 mgotns L= 2 /.

L(s, 7o) T, T (S*ﬁj)

j=1 2

Using the calculation (6.5), we then have the formula
2
Db 1 5) = 2 W(EE(EPIN' 00D E()

o(p?)
> X(NR)T(X)" ' L(6, 7 ® x),

x mod p/i
primitive,x(—1)=1

from which it follows that
W EE(F )N 00

Y. XWhTR)"TLE T ® X).

x mod pﬁ
primitive,x(—1)=1

D7, h,p?, 1 —86)F(1—6) = ﬁ

To be clear, we have used the fact that the quotients of archimedean factors
F(0)F(1 — 0) cancel out:

n 1—s—pj S—;
LZ4ns—L4n(l- g)Hj:1F< 2 )F( 2 ) -1
n S—Ih; 1—s—p; :
Hj:lr< 2HJ)F<TM])
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Dirichlet twists of GLp-automorphic L-functions

Let us now consider the remaining integral (first with shorthand notations
introduced above)

ds
2mi”

/ D(F, b, P, 5) 6% (5)

Since we are now in the range of absolute convergence for the Dirichlet series
D(7,h,p?,s), we may invoke the functional identity of Proposition 6.4 (i)
above to obtain the expression

* ~\—(, 3 1_g B(l—ns)i a(m) NF P ﬁ
[ 6 |WEEEINE R S T KN | 5
(1
= W@ w(p’)N2p’ Z Kln L (£mNh, p?)
m>=1
(m,p)=1

/ (s (an,g) Hrals) o

Opening up the definition (3.7) of ¢%_(s), this expression is then seen to be
given more precisely by

W(@)w(p® )Nz pP Z “(::) Kl,,_1(£mNh, p”)

1-6
& e
mfs \° k(=s+ (1—26))— i
/(a) (Np"ﬂ> s—(1-90) F(s)F(—s+ 1)27r

where the product of quotients of archimedean factors F(s)F(—s+1) cancels
out identically as in (6.12) above. Now, using that fz = Np™=% we obtain
the even more precise expression

W (F)w(p? )Nz pP 3 %K]n_l(j:mm, »?)

(Npr7=)i=s

Putting this together with the residue term, we then derive the stated for-
mula (i).

m=1
(m,p)=1

Let us now consider (ii), starting with the integral presentation (6.10).
Shifting the range of integration to $(s) = —o, we cross poles at s = fi; for
each 1 < j < n of vanishing residues thanks to the fact that k(ﬁj) =0 for
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each 1 < j < n by Lemma 3.1 above. We also cross a simple pole at s = 1—4
of residue

Ress=1-5 (D(T, h,p, $)$5.(8))

=Resg—1_5 (D(7~r, h,p, s)f;_(l_‘S) WF(S))

0 (0=

v (52)
1—6—p; )’
H}Llf( — ”)

:D(%7 h’ap7 1- 5)F(1 - 5) = D(%a hap7 1- 5)7T7%+n(175)

which we can calculate thanks to analytic continuation as in (6.6) above as

W ()N

pt ) > X(NR)T(R)" 7 L(8, 7 @ X) — €p(1 = 8)L(8, )
x mod p
primitive,x(—1)=1

Here again, in the last equality, we use that F(1 — 6)F(5) = 1. To evaluate
the remaining integral

ds
D(7, h * —
| DERE5

we apply the functional identity of Proposition 6.4 (ii) to the Dirichlet series
D(7, h,p, s) to obtain

[ WERGN T Y S (K + (1
(i

[RECETER] AR

pl—ns

SWEEINY 3 “) (K1) + (172
(m,p)=1

p—3

| (Fs) Pt

_1_ n_2_ o 1 a(m) mp" Sisg $)o* (s
(1) 2 W EHEEN [ () Termteonts

ds
21

.9



Dirichlet twists of GLp-automorphic L-functions

which after using the definition (3.7) of the Mellin transform ¢%(s) is given
more precisely by

W(W)fu;(lz;)sz ; aEZl) (Kln 1(:|:mNh p)+(_1)npi3)
(m.p)=1
mfs \ g B (=) o ds
/<a> <NP”’3 Fle) (1-9) Fls+ 155
1. 2 W@EE(p)Nip a(m)
p( 1) =3 féfé (; m
m,p)=1
mfs\ s k(s (1=0) ds
/. (02) Ty Dy gy

Using again that F(s)F(—s+1) = 1, as spellt out in (6.12) above, this latter
expression is the same as

w p)N= 2
@) f1 5 ! ; (Kln 1(=mNh,p) + (= 1)nH)

(m,p)=1
mfs \" k(—s+ (1-24)) ds
/((7) (Np"5> 5—(1—5) 2mi

1 2 W(mw(p)Nzp
— 2 (=1)"
PR f1 5 Z

(mm)—l

/. (O RFSLERC K

Now, using that fg = N p™#~ this latter expression simplifies to give the
stated formula. O

We can now derive a Voronoi summation formula to describe the sum
Xp2(m, 6, p") defined in (4.4) above.

THEOREM 6.8 (Voronoi summation formula for the twisted sum Xg o (7, 9, p*)).
Suppose that § > 4 is even, say f = 2« for a > 2. Fizing a real parameter
0 <u< B—1 as above, let us again write ®,, to denote the function on
y € Rso defined for any choice of real number 1 < o < 3 — R(8) by the
integral transform
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The twisted sum Xgo(m,0,p") defined in (4.4) above can be described equiv-
alently by the formula

Xpo(m, d,p") = pﬁ(l Z 3 e((n—l)w+xw>

zmodpﬁ w mod p™ p
(£)n=1 wh =z mod p&

2
- > xR, ® x)
SD (pB) x mod pB

primitive,x(—1)=1

- w(p¥)py (_x)pny(l—ts) 2

< Thos pY ©*(pPY)

> LG eX)

x mod pB—Y
primitive,x(—1)=1

WP pp-a (=) p 2

+
phl o) p—

p" Yo TG T x) — P (1 - 8)L(5, )

x mod p
primitive,x(—1)=1

+p"(1_5) (61,x + 62,x + 63,1)} )

where




Dirichlet twists of GLp-automorphic L-functions

and
O I )
T e(p) pit
a(m) n_ 2
(m,p)=1

_ 1 2 a(m) ~

D, p"(ﬁ Dm) — Z(=1)"—— D, p”ﬁm
( R I XD
(m.p)=1

Proof. — Let us keep all of the setup of Proposition 6.2 and Theorem 6.7.
Hence, we start with the formula

p W(mw(p®)(Np™?)
¢(p) p7

D> e((nl)erzw)

x mod pﬁ w mod p& p
(Z),=1 wh=zmodp®
pIn

S vila) Y alm)vn(EmN) G (m).

t mod pf m21
(m,p)=1

=

Nl

Xﬁ,Z(ﬂ.767pu) =

Let us first divide the t-sum into classes which are coprime to p, plus a sum
over multiples of p as follows:

g = 2 W)V o~ <<nl>w+w>

pP

Yo w-nlz) Y alm)gn(EmN)ge(m) (6.13)

W (m)w(p?)(Np#)z =9 n— 1w+ zw
g, = P (m)w(p”) (Np"") 3 3 e(( Jw+ )

zmodpB  wmodp™ p
(Z)p=1 wn=x mod p™
pin

Z Y_pu () Z mwpy(imﬁ)qu(m)' (6.14)
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We us start with the sum S; over coprime classes (6.13). It is easy to see
from Theorem 6.7 that

p W(mwe?)(Np#)z=0 2

5 = W RN )
¢(p) p7 e(p?)
n— 1w+ 2w
<Y X ()Y v
x mod p/3 w mod p& h mod pﬁ
(FIn=1 wh =z mod p™ (h,pB)=1
> X(NN)T(R)"LG, 7 @ X)
x mod pP

primitive,x(—1)=1

p W(mw@?)(Np?)s=2 W (@w(p®)Nzp?

¢(p) 7 (Nprp-u)l=3
n— 1 w —|—J:w
<Y Y ()Y e
x mod pﬁ w mod p™ h mod p/}
(L)p=1 wh=wmodp® (h,pP)=1

> En m) Kl (£mhNN, p?)®,(m),

m21

which after grouping together and cancelling out like scalar terms (using the
basic identity (4.5)) equals

Z Z e((n—l)w—i—xw)

2 ameaph wmodne p
(L)n=1 wn =z mod p&

PR ST ol ( 52 XL Tex)
hmod pP x mod pB
(h,pB)=1 primitive,x(—1)=1

Cny w1 a(m -
+Lpf O Bpu=0 N7 ) Y ;)Klnﬂ(imhmﬂ)@u(m) )

h mod pB m21
(h,pB)=1 (m.p)=1
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and which after switching the order of summation (in each of the two sums)
is the same as

51—
5 = =

Z 5 e((n—l)w+xw>

2 mod pB w mod p& p
(z )n71 w" =z mod p&

’ S @ LGrey Y Xhoa@)

*(pB
SO (p ) Xmodpﬂ hmodpﬁ
primitive,x(—1)=1 (h,pB)=1
1-5) P Z a Z
90 p m=>=1 h mod pﬁ
(m,p)=1 (h,pB)=1

Let us now consider the inner sums over coprime residue classes h mod p?
appearing in this expression:

> xhs) = 5 xthe(-35) (6.15)

8
h mod pﬁ h mod pﬁ p
(h,pB)=1 (h,pB)=1

and
> Won(@) Klyy (Emh, p”) (6.16)
hmode
(h,pB)=1
zh 1+ Tpoa
v e(_pﬁ) SR CESIEEIS)
h mod pB TY,en,y mn_lmodpﬁ

(h.pP)=1 @1 @y _1=+mhmod pB

We argue that the first sum (6.15) can be evaluated by taking the Fourier
transform of the additive character:

> xe (-5 = x(-alr(o. (6.18)

Il
h mod pB p
(h,pP)=1

This formula is in fact classical (see e.g. [5, (3.12)]). Using this identity
(6.18), we may then compute using (6.16) as follows. Notice that we may
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use Lemma 4.2 to evaluate

B

h mod pB p

(h,pB)=1

2 xh _
= - X(mh)r(x)"!

5 X (%) X s
<,0(p ) h mod pB p x mod pB

(h,pB)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

S I DI OUSERED x(h)e(—xh).

x mod pf h mod pf
primitive,x(—1)=1 (h,pP)=1

Using that

> xihe (-5 =x(-a)r0

h mod pﬁ
(h,pB)=1

this latter expression is then evaluated as

2 - n
~ Y X(cam)r(on
So(p ) x mod pﬂ

primitive,x(—1)=1

Applying Lemma 4.2 again to evaluate this latter expression, we then obtain
the identity

h
E e( xﬁ) Kl,_1(£mh,p ) Kl, (£maz, p°)
h,modpﬁ p
(h,pP)=1

for the inner sum (6.16). Using these identities for (6.15) and (6.16), we then
obtain the expression

S, — i Z Z €<(n—1)w—|—xw)

mmodpﬁ w mod p™ p
(Z)n=1 W=z mod p&

2 — )T (¥)" T L u(1—4)
=07 > X(=o)TR)"LG, D)+ 5P

x mod ph
primitive,x(—1)=1

S 1) ), e, ) (m)
m>1 m
(m,p)=1
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Let us now consider the sum Sy over classes given by powers of p (6.14).
We decompose this sum as

Sy = E S92,y
1<y<B—y

where each sum Sy , is defined by

p W(mw(p®)(Np?)z—?

2,y —

©(p) P
SR S (G 2. MINEIS Sl R P

(Z),=1 w"=zmodp® (m,p)=1
p

We first evaluate the sums S3 , in the range 1 < y < 8—2 using the argument
of Theorem 6.7 (i) above. Hence, let us consider the inner sum S5 defined
by

Siy= > alm)p(EmN)ée(m) = > alm)Kli(£mN,p’~¥)goo(m),

m=1 m=>=1
(m,p)=1 (m,p)=1

where (recall) ¢ (y) = y’(lf‘s)\/g(fﬂ_ly) for fg = Np"#~% as above (with
B >4and 0 < u < §—1 fixed). Fixing a real number o in the interval
1 <o < 3—%R(0), we can use the integral presentation of ¢ (y) given in
Proposition 3.5 above to describe this sum S5, as

ds
2’

S5, = /( DGR 0 ()

where the Mellin transform ¢7_(s) is given explicitly as in (3.7) above as

k(—=s+ (1 —19))
s—(1-9)

n S—H;
_fS—(l—é)k(_s—’_(l_(s)) .ﬂ_f%+ns Hj:lr ( 2 )
/B — — n l—s—p; ’
s—(1-194) Hj:lr( 2#)
Shifting the range of integration to R(s) = —o, we cross poles at s = fi; for

each 1 < j < n of vanishing residues (thanks to Lemma 3.1). We also cross
a simple pole at s = 1 — § of residue

¢ (s) = f57077 F(—s+1)

Res,—1_s (D(7,N,p°~Y,8)¢%.(s)) = D(7, N,p’~v,1 — §)F(6).
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Now, we can calculate the residue via analytic continuation as in (6.5) above:

D(%7ﬁapﬂ_y7 1- 6)F(6)

Lo(pzy)W(%)w(pﬁ—y)Né—ép(ﬁ—y)(l—n(l—é))p(l —9)

Y. XINN)T()" 'L, m @ x) | F(5)

x mod pB—Y
primitive,x(—1)=1

2 -
— =W (EE(p? V)N 2 plI ) mn(1=0)

p(pPv)
Y r@MILE T e ),

x mod pB—Y
primitive,x(—1)=1

using again that that F'(1 — &§)F () = 1. To evaluate the remaining integral

/ D& N, p°, ) (s) L
(70') 27’(’2

we use that —o < 0 allows us to apply the functional identity of Proposi-

tion 6.4 (i) to D(7, N,p®~¥,s):

D N.p"",5) = W@’ *)Nz—*pl I (s)

> a(lm) Kl,_1(£mNN, p®~v).
m+—*S
m>1

(m,p)=1

This gives us the expression
| o) [WEmtr N R ()
(=o)

ds

a(m) _
Kl,,_1(£m, B-yy| 22
; i Klnoa(Em,p0) | 5
(m,p)=1
= W(@w(p’ NI Y M) 1, (dem, )
m>1
(m,p)=1

m L, ds
/(_U) (an(ﬁy)) F(S)(boo(s)%’
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which after expanding the definition of the Mellin transform ¢%_(s) is given
more explicitly by

W (7)w(p?~¥)Nipi—v > a(m)

Kln_l(:lzm,pﬁfy)

fg ° m=1 m
(m.p)=1
mfg “k(-s+(1-9)) 3 —, . ds
I (anw 5) M Fe IR
B—y N
p a\m _
= (f 6) Z (m)Kln_l(:I:m,pﬁ Y)
(m.p)=1

mfgs P k(—s+(1-19)) ds
/(_U) (an(ﬁ—y)) s—(1=9) 2’

Here again, we use that F((—s + 1)F(s) = 1. Since fz = Np"#~%, the latter
integral expression equals

ANea(pP~Y\N3zpb—Y a(m
= ()NifZLB—J)JY—ép > ( )Kl”‘l(im’pﬂiy)

m2=1
(m,p)=1

[ (mrryHeraom e

_oy \ Np(B=v) s—(1-9) 2m

_ W(@w(p? YN pfvp—o)
(anﬁ)lfé

2 ?Kln—ﬂim,pﬁ*y)@u(p%»

m>1
(m,p)=1

Hence, putting this latter expression together with the residue term, we have
shown (for 1 < y < 8 —2) that

S5 2

by =gy VRN e Y. tLETeX)

x mod pB—Y
primitive,x(—1)=1

W (7)@(p? )Nz pf—vpu(i=9) > a(m)

B— n
(Npnh)1=s Kl —1(£m, p”7¥) @y (p"Ym).

_|_

m=1
(m,p)=1
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It then follows (from the definition) that

p W(mwp®)(Np#)z= 2

Sy, = : . W (F)w(p® Y
e e Erea M
, —Dw+ 2w
N -0 (1=n(1-5) . ((” )
Irng wr;p" pﬁ

(%)nzl w =z mod p¥

XUp(=z) D> TG T@X)

x mod pB—Y
primitive,x(—1)=1

p W(mw@?)(Np)2=0 W (F)w(pP~v)Nzps-vpui=9)

©(p) % (NpnP)1=5
I YSS
e ———
B
2 mod pB w mod p™ P

(Zyp=1 w™ =z mod p®
pIn

X Ppy (—) Z a(T:Ln) Kl,,_1(£m, p?~¥)®,(p"™m).

(m,p)=1

Now, we can simplify this latter expression by grouping together (and can-
celling out) like scalar terms, using that W(7) = W (r) (so that W (m)W (%) =
[W(m)? = 1), that w(p?)w(p’ ) = w(p®)@(p”)o(p¥) = w(p¥), and that the
remaining scalar terms can be simplified as in (4.5) above (since § —y > 2).
Hence, we obtain

5, -0y y () s
p2

B
z mod pf o mod p® N p py
(%)n=1 w™ =z mod p
= g p
X pny(175) —_— T(Y)nilL(é, r® X) +pu(175) P
SD* (pﬂ y) x mod pP—Y¥ gD(p

primitive,x(—1)=1

> “E;”) Kl 1 (£m, p° =)@, (p"m)

m>1
(m,p)=1

Let us now consider the case of y = f—1 (corresponding to the case of prime

modulus), starting with

S5 =Y a(m)pe (EmN)peo(m) = D a(m) Kl (£mN, p)do (m

m>=1 m=>=1
(m,p)=1 (m,p)=1
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Once again, we use the result of Proposition 3.5, which for any choice of real
number 1 < o < 3 — R(4) gives

— ds
S5 = D(mw,N x —.
2,4—1 (o) (71', 7p75)¢oo( )27'('2
Shifting the range of integration to R(s) = —o, we cross poles at s = fi; for

each 1 < j < n of vanishing residues (thanks to Lemma 3.1), as well as a
simple pole at s = 1 — § of residue

Ress—1-5 (D(7, N, p, s)¢%.(s)) = D(7,N,p,1 — 0)F(6).

Again, we can compute this residue term via analytic continuation as in (6.6)

above to obtain

2 ~\— —i7 —n(l— —\n—
= | —W(@wp)N°"2F(1—0) | pt "9 > ()" L6, 7 X)
x mod p

p—3
primitive,x(—1)=1

—&p(1 = 0)L(,m))] ()

2 ~\— -1 —n(1l— ~\n—
=p7_3W(7r)w(p)N‘5 2 [ptm Y rm)TILE T @ X)
x mod p
primitive,x(—1)=1

—&p(1 = 0)L(3,m)),

where we use the cancellation of archimedean factors F(§)F(1 —d) = 1. To

evaluate the remaining integral
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we apply the additive functional identity of Proposition 6.4 (ii) to D(7, N, p, s)

to obtain

SO %_5—8 a(m) m _ ni
| wEEmN F<>; ) (Ktatemn) + (12
€p(s)ep(l —s) . ds
o | L~
o 1 a(m) 2
=W (m)w(p)Nzp MZ% m(Klnl(im7P)+( 1) p—3>
(m,p)=1
1\ Fror (0% eyt L1y L
/<—a) (Np"> Fs)0%(s) 5 — WERPIN2p p( D p—3
a(m) mp” s — N ds
> (W) sereeeg:
(m,p)=1

Expanding out the definition of ¢%_(s), this latter expression is given more

explicitly by

TR
(et
mfs\’ =, k(=s+ (1-9)) ds
/(_a)<an F(s) P F( s—l—l)%
WEBE)Nep 1, ., 2 a(m)
(m,p)=1
mfs\° =, . k(—s+ (1 —10)) ds
/(_U) (N) F(s)ey(s) S=0=9) F( s+1)%,



Dirichlet twists of GLp-automorphic L-functions

which after using (again) that F(s)F(1 —s) = 1 is the same as

W@ s 5N2p T; (Kln (Em,p) + (- 1)"1723)
(mfg) Kos )5)) Qd;
W(f p)Nzp %( 1)71]% ; a(TZz)
(mimt
[ () w0

Expanding out the scalar contribution fz =

more explicit expression

W (w sz
Dt 2

m>1
(m,p)=1

Np™P~ then gives us the even

) (K1t + (12

p—3

9)) ds

/ mNp™ =\ k(—s+ (1 —
(—0o) Np" S — (1 — (5)

W(@w(p)Nop 1

.2 a(m)
a (NpB—u)1=5 '5(*1) ]fg Z m

2mi

m=1
(m,p)=1

/ (mNp"f’—“)‘* k(=s+(1-20)) ds
(—o) N —(1-=48) 2mi’
from which we derive that
ds _ W(@)w(p)Nip a(m)
D(7, N = Kl,_1 (£
/ 7T y Dy S )¢ ()27TZ (angfu)lfg mZ:l m ( n 1( m7p)
(m.p)=1
2 _ 1 2 a(m) ~
(-1 n (bu n(B l)m — Z(=1)" (I)u nﬁm
(1525 26 m L S (5om)
(m,p)=1
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Putting this together with the residue term then gives the formula

2 SN _1 (- e
S2,5-1 :pii?)W(W)W(P)N(s 2 [ pt—n(=9) ) ()" L(6, @ X)
x mod p
primitive,x(—1)=1

51— 8)L(5,m))

SRR S M () + (1) e )

W (m)w(p®) (Np™P) 5~ 3 3 e((n—l)zwrm)

2 P’
p 2 mod pB w mod p&
(Zyp=1 wn =z mod p™

pin

o1 (—2)8551
(P npys—3 n—1w+zw
_ p WEe@) V) g e<<1>+>wl(_@

P

x mod pB w mod p&
(Zyp=1 w™ =z mod p®
pIm

W(EE(p)N°~7 [ pl=) Y. TG ©X) — (1 - 6L, 7)

x mod p
primitive,x(—1)=1

p W(mw(p®)(Np"?)s—* (n = Dw + 2w _
+ o) p% Z Z e < PE ) ¢p/3_1( x)

p—3

2z mod pB w mod p&
(Z)p,=1 w"=zmodp®
P

X (an,B—u)l—é ;1 . Kl,—1(£m,p) + (1) m . (p m)
(m,p)=1

1 2 a(m)
—=(=1)" (0] p”ﬁm ,
p( ) p— 22:1 P )

(m,p)=1
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which after grouping together and cancelling out like scalar terms is the same
as

>, > e(W)-wpﬂ-l<x>w<pﬁ-l>

zmodpﬁ w mod p*
n= d
(L)p=1 wh=wmodp®

SQ,B—I - 75
2

2
pBG—) P prr Y @TLE, @ x) — &(1 — 6)L(S,7)
x mod p

primitive,x(—1)=1

Nz _ a(m n 2 n(B—
ey AN DD (o) (Kln—l(imap)Jr(—l) p_3> @, (p" P~ Hm)

_1(_1)ni Z ?iu(pnﬁm)

P p—3 =
(m,p)=1
Z Z . <(n —Dw + xw) _ Yps—1 (z)w(p?1)
TB z mod pB w mod p™ pﬁ pﬁil
(& 2y 2] wh=2mod p&
p 2 no — n—lL 5 n—1— 1 NS
7) 1)73 p Z T(X) (77T®X)_p 6}7( - ) (?ﬂ-)
primintea(21)=1
2
u(l ) |: K1n71(:|:m,p) + (_1)n3) (I)u(pn(ﬁ’—l)m)
p—
>1
2 a(m) ~
——(-1)"— D, (p"Pm
p( ) 23 ; o Pul )
(m,p)=1

Putting together all of the pieces (separating out residues), we derive the
stated formula. O

~5] —
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COROLLARY 6.9. — Keep the hypotheses of Theorem 6.8 above. We also
have the summation formula

Xpo(m, 6,p") = Bn Z Kln(x,pﬁ) (B Z x(=2)7(X)"L(6, 7 ® X)
p x mod pB ® (p ) x mod pB
(%)nzl primitive,x(—1)=1
w(p¥)pu (—x _ 2 o
+ Z ) zJ( >pny(1 ) *( ,ny) Z T(X)n IL((S, T X)
1<y<B—2 p L4 N

primitive,x(—1)=1

+ T(X)" L6, @ X)

wpP s (—x) p 2 >
pPl op)p—3 |7 Z

x mod p
primitive,x(—1)=1

—p" (1= L6, m)) + ") (G + G+ B |

Proof. — We see a direct substitution of the formula of Proposition 6.1
above to derive the stated formula. O

Using this latter summation formula, we can now derive the following
simplification.

LEMMA 6.10. — We have the following identity for any exponent B = 4
and any integer n = 2:

2 _
> Kla(oop) Kl (Emap’) =p™ o 3 Xm)
z mod pf x mod pP
(%)nzl primitive,x(—1)=1
Proof. — Since 8 > 4, we argue that the z-sum is the same as the sum

over all coprime classes 2 mod p?, i.e. as the sum is supported only classes

rmod p? such that (3)n =1 (by Proposition 6.1). Thus, we have

Z K, (z,p”) KL, (£ma, p°) = Z Kl, (z, p?) K1, (£mz, p?),

x mod pﬂ x mod p/’,
(£)n=1 (=,pP)=1

which after applying Lemma 4.2 to describe each of the sums Kl,, (+mz, p?)
is the same as

ﬁﬁ S K@) S X(ma)r(on

2 mod pB x mod pB
(z,pB)=1 primitive,x(—1)=1

— 52—



Dirichlet twists of GLp-automorphic L-functions

Switching the order of summation, and opening up each of the sums Kl,, (z, p?),
we obtain

ﬁ IR D (y+y)

pP
x mod pf Y1, »Yn—1 mod p?
primitive,x(—1)=1

_ Y1 Yn—1
Z X(.’E)e <> .
z mod pB

(z,pP)=1

Changing variables to evaluate the inner z-sum as

—_ TY1 - Yn—-1 —_ — —
> X()e (pﬁn) = X1 Yn-1)7(X) = X1 - Ya-)T(X),
5

we then obtain
2 Yy - " —
o X (M) T w0 ),

3 &)
b Y1, 3Yn—1 mod p? p

x mod pB
primitive,x(—1)=1

which after using that 7(x)"7(X) = 7(x)" |7 (x)|? = 7(x)"~'p? is the same
as

14 Yne 2 - _—
P’ Z e (y Y 1) o(7P) Z X(my1 - yn—1)T(X)" .

pﬁ
Y1, Yn—1 mod pP

x mod pB
primitive,x(—1)=1

Switching the order of summation in this latter expression, we then compute
2
8 = n—1_/—=\n—1
P =5 X(m)T(x)" ()",
< o(p?) ) 2

x mod ph
primitive,x(—1)=1

which after using that 7(x)" '7(x)"' = (|7(x)]?)"~! = p?("~V gives the

stated formula. O
COROLLARY 6.11. — Corollary 6.9 gives us the following expression for
the twisted sum X o(m,6):
2
L (S,?T QX +pu(1—6)
©*(p7) 2 ( )

x mod pB
primitive,x(—1)=1

~ m ¢(p) = m
m=+41mod pB m=+41mod pB—1
m#Z+1 mod pB
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FEquivalently, we have for any exponent 8 > 4 and for any real parameter
u > 0 the average formula

Xp(m,0) = —p"=0 | 3" “(n’j)@u(m)w(lm 3 a(;:)éu(m)

m=41mod pB m=+1mod pf—1
m#Z+1mod p/i

+ Xp2(m, d,p").

Proof. — Tt is easy (and classical) to show that

> x(@) Kl (x,p%) = (0™ (6.19)
2 mod pB
(%)nzl

Using this identity (6.19), it is then easy to see that

1 2 -
2 Klu(z,p")—— Y X@)r@LE R @)
p z mod pB ¥ (p ) x mod pB

(FIn=1 primitive,x(—1)=1
2 S LGy
= T(X) T(X , T X
pﬁn @*(pﬂ) mod pB
prim;éivc,xffl)ZI
2

= ] > L(6, 7 ® X).

x mod pﬁ
primitive,x(—1)=1

Here, in the last step, we use that 7(x)"7(X)" = (|7(x)|?)" = p”™. This gives
the stated residue term for the formula. To evaluate each of the remaining
terms in the expression of Corollary 6.9 after switching the order of sum-
mation in this way, we argue using the orthogonality of additive characters
that each of the remaining terms except for the sums &; ;, must vanish. To
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evaluate the sum over &; ,, we apply Lemma 6.10:

1 _
“Bn Z Kln(xvpﬁ)pu(l 5)61,1-
b s
x mod p
(%)nzl
1 5 D a(m)
=— Kl (z, p”)p*—0) —— K1, (£ma, p°) @, (m)
pon mz;ﬁ ©(p) ; m
(£)n=1 (m.p)=1

1 _ p (l(m) )
u(1—46) E E Kl ( ﬁ)Kl (:t X 5) ( )
= p n\T, P n\TMNT, P ulh

pﬂn ¥ (]:) m>1 m « mod pB

(m,p)=1 (%)n:1

e 2y~ alm) S xm) | @u(m)

x mod pB
(m,p)=1 primitive,x(—1)=1

=oom ) =om
(m,p)=1 m=+1(pB—1)
m#Z=+1mod pB

Here, in the last step, we use (4.1) (as well as (4.5)). This proves the stated
formula for the twisted sum. O

6.4. Some estimates

We now determine the rate of decay of the dual function corresponding
to the weight function ¢, defined on y € R by ¢doo(y) := y*(l"s)Vg(fﬁ_ly)
appearing in Proposition 3.5, where fz = N, pB7=% denotes the length of the
region of non-negligible summation of Xz o(m,d, p*) as defined (4.4) above.
Let us write d = R(J) and 69 = max(R(%;), R(F,)) to lighten notations.

LEMMA 6.12. — Fizing a real parameter u € R as above, let ®,, denote
the dual weight functions appearing in Theorems 6.7 and 6.8. Hence, we let
®,, denote the function defined on y € Rsq by the integral transform

q>u(y)=/%(s):_ak(;sz(1;)6)) (;{1)2{‘;
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for1 <o <24+ (1—49). We have for any choice of constants C > 0 and
B > 1 the bounds

el
Oc¢ <(p?i) > if y = pY, i.e. asz%%oo

_ (#)175 +Op ((;{L)B> if y <p“, i.e. as >

The modified weight functions &)u (y) are estimated in a completely analogous
way.

Dy (y) =

:‘“ﬁ

— 0.

Proof. — We estimate the integral by a variation of the standard contour
argument used to derive Lemma 3.4 above. Let us simplify the discussion by
writing « = yp~*. Hence, the task is to estimate the integral

/ k(s +(1-0) . ds
(—o) S — (1 — 6) 27'('7,

To estimate the behaviour as z — oo, we move the line of integration to the
left to derive the bound

D,(y) = Oc(z7¢) = Oc ((yp™)™¢) for any choice of C' > 0.

To estimate the behaviour as * — 0, we move to the right, crossing a
simple pole at s = 1 — ¢ of residue

k(=s+(1-9)) 1-5
— R s=1— A Sy = — .
es 15( P s T x
The remaining integral is then seen easily to be bounded as Op(2?) for any
choice of constant B > 1 to derive the stated estimate in this region. O

We now at last return to the issue of bounding the twisted sum Xg o (7, 8, p*),
with notations and conventions as above (so that 0 < u < 8 — 1 is our fixed
real parameter).

LEMMA 6.13. — Taking any choice of real parameter 0 < u < f— 1, we
have for any choice constant C > 0
2
X ,2(71—751pu):_1+7 L(577T®X)
’ ©*(p?) Xn%;pﬁ

primitive,x(—1)=1
+0c (pu(l—d+0)p/3(9—(1—%(5))—0))) 7

where 0 < 6 < 1/2 denotes the best known approzimation towards the gen-
eralized Ramanujan conjecture for GL,(Aq)-automorphic forms. Equiva-
lently, we have the estimate

Xp(m,8) =14 Xpo(m,6,p*) + Oc (puufdw)pﬁ(ef(14&(6))70))) .
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Proof. — Using Corollary 6.11 above (derived from Theorem 6.8 and
Corollary 6.9), it will suffice to estimate

u(1—96) a(m) m 1 a(m) m

(m,p)=1 m=+41mod pBf—1
m#Z+1 mod pB

Since 0 < u < 8 — 1, the description of the decay of the weight function ®,,
in Lemma 6.12 implies that the only contribution in the region of moderate
decay comes from m = 1, this being

1 1-48
pu(l—é)@u(l) — pu(l—é) (_ <pu> +0p (p—uB)> =-1+0p <pu(1—d—B)>

for any choice of B > 1. Using a variation of the argument given for Lemma 5.2
above, with Lemma 6.12 in place of Lemma 3.4, we see that each of the re-
maining contributions m = +1mod p” is bounded above by

pu(1—6)m9—1—cpuc = Ocg (pu(l—d+C)p,(3(9—(1—§R(6))—C’))

for any choice of constant C' > 0. Since the sum over contributions will be
dominated by least m > 2 such that m = +1mod p”, we obtain the stated
bound after taking B > 1 — § to be sufficiently large. O

6.5. Some remarks on hyper-Kloosterman Dirichlet series

Let us now explain how we could have worked directly with the hyper-
Kloosterman Dirichlet series &, (7, h,p”, s) to establish a relevant Voronoi
summation formula via the additive functional identity 6.5 to describe the
twisted sum Xg o(m, 6, p™).

THEOREM 6.14. — Let ¢, denote the function defined on y € R<qg by
Poo(y) = y*(l";)Vz(fﬂ_ly) as above (where fs = Np™#~*), and let ®,, denote
the integral transform defined in Theorem 6.7 (cf. Lemma 6.12). We have
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for any coprime residue class hmod p® the Voronoi summation formula

Z a(m) K1, (£mh, p?)poo (m)

m>1
(m,pB)=1

= W(@w(p )N ~2pi? . ﬁ > X(WN)LGT®Y)

x mod pﬂ
primitive,x(—1)=1

+ W(%)w(pﬂ)Ntif%pnﬁfs . pu(lfﬁ) % Z a(m) o, (m)

m2=1
m=+hN mod pP

1
p o1 m
m=+hN mod pB—1
m#Z+hN mod pf
Proof. — Using Proposition 3.5 above, we have for any choice of 1 < 0 <
3 — R(9) the integral presentation

~ d
S alm) Kl Gmh p*)nem) = [ SR 5)6%(s) 5
m> (o)
(nz,p>)1=1
where
5y = g0kt U =0) b oy
n S—;
_ fsf<176>’€(—8+ (L=9))  —%tn(-st) Hf:lr( 2 )
— /B — — n 1—s—p; \
S (]. 5) Hj:l T ( 5 NJ)
Shifting the line of integration to R(s) = —o, we cross poles of vanishing
residues at s = fi; for each j = 1,...,n (thanks to the construction of k(s)

in Lemma 3.1 above), as well as a simple pole of residue
Ress:(lfé) (ﬁn(%v hvp,8> 3)¢§o(3)) = &(%7 h‘>pBa 1- 6)F(6)

Again, we can evaluate this residue via analytic continuation as in (6.9) (with

F(1—-0)F(0) =1) to derive

~ 2 o 1
-@’n(ﬂ-a h7pﬁa 1- 5)F(6) - WW(W)W(]?[})NJ Qpﬁ 5
S XBN)LG e ),
x mod pB

primitive,x(—1)=1
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To evaluate the remaining integral

ds

(7, 017 5) 850 (5) 5 —
(o) m

we apply the additive functional identity

R (7 h,pP5) = WEBRP)N2—prfU-9F(s)

©o(p) a(m) 1 a(m)
P mz mi=rp mz mi
mz:th,N/modpﬁ msj:hzv;.odpﬁfl

m#Z+hN mod pB

of Proposition 6.5 to obtain

1 — s ds

WE BN o x | 2P 3 a(m) OF() (o)

(ﬂ‘)w(p) 2pX D 2 m (_U)Qj) (S) (S) Npnp i
szj:hN/mod ph

1 a(m) e m \° ds
5 e () o |

m=+hN mod pB—1
m#z+hN mod pP

which after expanding out the explicit definition of the Mellin transform
#%.(s) (as above) and using that F(s)F(—1+s) = 1 and that fz = Np"#~4,
is the same as

N ds  W(@w(pP)Nipns
B * b
o) ﬁn(ﬂ-ahvp ?S)(boo(s) 27 (anﬁfu)l—é

L e S 1

p m>=1 mz=1
m=+hN mod pB m=+hN mod pB—1
m%z+hN mod pP

Simplifying scalar terms, and putting this together with the residue, we
obtain the stated formula. |

Hence, we derive the same recursive formula for the average:

COROLLARY 6.15. — Assume that 5 > 2. The twisted sum Xg2(f,d,p")
defined in (4.4) above can be described equivalently for any choice of real
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parameter u > 0 by

2
©*(p?) Z L6, 7®X)+ p(1=9)

x mod pB
primitive,x(—1)=1

soom vlp) = m
m=+41mod pB m=+41mod pB—1
m#Z+1 mod pB

Proof. — The result is immediate after grouping together like scalar
terms. O

7. Hyper-Kloosterman Dirichlet series at large

We can now give the proofs of Theorems 1.1 and 1.3 for the hyper-
Kloosterman Dirichlet series (1.1):

Proof of Theorem 1.1 (A). — The first claim (i) appears in Proposi-
tion 6.5. For (ii), fix s € C with R(s) > 1. Expanding the absolutely conver-
gent Dirichlet series and applying Lemma 4.2 (ii), we obtain

a(m
Rn(m hop,s) = Y fns)Kln(imh,p)

m=1
(m,p)=1

2 a(m)
= > x(mh)r(x)" + (=1)" |,
p—3 &5 ™ Z
(m,p)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

Samhips) =22 | X MWL 90+ ()" Lsm)

x mod p
primitive,x(—1)=1

Applying the functional equation (6.3) to each of the L-functions L(s, 7 ® )
and L(s, ) then gives us

2 1
ﬁ,n(’ff, h>p7 8) = 73W(7T)N§75F(8)

p"Vw(p) > X(AN)L(1 = 5,7 @ X) + (=1)"L(1 = 5,7) | ,
x mod p
primitive,x(—1)=1
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which (by the analytic continuation of L(s, 7 ® x) and L(s,)) is valid for
any s € C. Let us now assume that R(s) < 0, in which case we can open up
the absolutely convergent Dirichlet series

S NI -sFey = S N Y Amxm

x mod p x mod p m>=1 m
primitive,x(—1)=1 primitive,x(—1)=1 (m,p)=1
a(m)
= i > x(hNm)
m —S
m>=1 x mod p
(m,p)=1 primitive,x(—1)=1

in the latter expression. Evaluating the inner sum via the relation of Propo-
sition 4.1 then gives us

Sodmy e =ty A s ),

m>=1 x mod p m>=1 m>=1
(m,p)=1 primitive,x(—1)=1 m=+hN mod p m#Z+hN mod p

Using this relation in the previous expression for &, (m, h, p, s) then gives the
stated functional identity. |

Proof of Theorem 1.1 (B). — The proof in either case follows from The-
orem 1.1 (A) via Mellin inversion, as in Theorem 6.6. Hence for (i), choosing
o € R+ suitably so that ¢(y) = f(a) ¢ (s)y~* 2 we have that

2mi)

S a(m) KLy (£mh, p*)g(m) = /( OB ) K1 . 5) o

m>=1 m>1 27‘(2
(m,p)=1 (m,p)=1

_ * A
ALY Nabr =

ds

Shifting the range of integration to R(s) = —o, we then apply the additive
functional identity of Theorem 1.1 (A) (i) to derive the stated formula. The
proof of (ii) follow in the same way for Theorem 1.1 (B) (ii). O

Proof of Theorem 1.3 (A). — Let us first consider (i), hence with g > 2.
Taking s € C with R(s) > 1, we open up the absolutely convergent Dirichlet
series and apply Lemma 4.2 to obtain the identification

m>1
2 §(m) —\n
_W Z: e Z x(mh)T(x)".
m>1 x mod pB
(m,p)=1 primitive,x(—1)=1
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Switching the order of summation, we then obtain

2 —\7

ﬁ?L (67 hap67 8) = 75 Z X(h)T(X) LL(‘S? fX)
So(p ) Xmodpﬂ

primitive,x(—1)=1

Applying the classical functional equation

L{s, ) = (a") 7(6x) (w*é F&%?) L0~ 56
= (qp”)*¢(0")x ()7 (&) (x) (”S_é Fr((z;)> L(1—s,€x)

to this latter expression, we then obtain the identification

1—s
(& hp?5) =g~ P I (@) (E) (”S_;F( : )>
T (3)

2 o _
BTG Z X(hg)T ()" L(1 — 5, €X),
o(p?) ~
x mod p
primitive,x(—1)=1
which is valid for any s € C (thanks to the analytic continuation of the
Dirichlet series L(s,&x)). Let us now consider this latter expression at a

complex variable s with ®(s) < 0, where we can expand out as

— >, x(hg)r(x)" L1 - 5,&x)

x mod pfi
primitive,x(—1)=1

— Y gt Y 2

&) 1—
go(p) x mod pB m>17 m-=*
primitive,x(—1)=1 (m,p)=1

gm) 2 PN
= Z s B Z x(hgm)7(X)" !
— omt o) 5
> x mod p
(m,p)=1 primitive,x(—1)=1

Applying Lemma 4.2 (or Proposition 4.1 if n = 1) to evaluate the inner sum,
we then find that

Y 2 e

= m p(pf)

od pB
(m,p)=1 prim;éit‘e,if—l):l
&(m) —
= Z 1_s Klnfl(imhfbpﬂ)
m>1 m
(m,p)=1

—62 —



Dirichlet twists of GLp-automorphic L-functions

if n > 2, and
6 2 _
> 7) > x(hgm)
m>1 x mod phB
(m,p)=1 primitive,x(—1)=1
_ Z &m) 2 e Z &(m)
o omz ) 2 - m
mzihqmodpﬁ nlzihqmodpﬁ_l

m#Z+hqgmod pB

if n = 1. Substituting these expressions back into the previous (analytic
continuation) formula for 82 (¢, h, p?, s), we then obtain for R(s) < 0 (after
analytic continuation) the stated additive functional identity

1—s
(& h,pPs) = pP ()7 (€) (WS_;F( 2 )>ﬁ2 (€ Rg,p%,1 - s).

Let us now show (ii), hence with 8 = 1. Again we start with s € C having
R(s) > 1, opening up the absolutely convergent Dirichlet series and applying
Lemma 4.2 to obtain

Rehp= Y K, emh,p

m>1
(m,p)=1

S s e+

m>1 x mod p
(m,p)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

Rlehpo) =2 X X0 L0 + (1) (s OL.)

x mod p
primitive,x(—1)=1

Again, we write €,(s,£) ™! to denote the Euler factor at p of L(s,£), so that
ep(s,€)L(s, &) = (p)(s &) denotes the Dirichlet series with the Euler factor
at p removed. Applying the functional equations

—
oy
=
N—
—
N—
»
I
—
S~—
—
=
—
N
N~—
ﬂ
—
S
N~—
VR
)
»
|
Nl
—
—~
S
SN—
\—/
t~
—
—
|
[V
Iy
o
(a
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to this latter expression, we then obtain the identification

T 1—s
R (& hyp,5) =q7°7(€) (W_(Q)>
2

2 —S n—
P Y ) - 5 6
p— xmod(p ;

primitive,x(—1)=1

+H(=1)"ep(s,6)L(1 = 5,9))

which is valid for all s € C (again by the analytic continuation of the Dirich-
let series L(s,&x) and L(s,€)). Let us now assume that R(s) < 0. Hence,
we can expand out the absolutely convergent Dirichlet series in this latter
expression, switching the order of summation to derive

2y x(h)r®LO - 5,8

x mod p
primitive,x(—1)=1

2 X(m) o\ —yn—1
= - x(hgm)7(X)"
(m,p)=1 primitive,x(—1)=1

If n > 2, then we can apply Lemma 4.2 to evaluate the inner sum so that

2 n—

o3 Y x(hg) (@) L - 5,€X)
x mod p

primitive,x(—1)=1

Z zl(ln_lz (Kln—l(imh,p) + (71)n) '

m=1
(m,p)=1

If n =1, then we simply apply Proposition 4.1 to evaluate

2
p— Z x(hg)T(x)" L1 - 5,€x)
p ) At)émod(p_l):1

- Z £(m) _ 2 Z §(m)

- 1— _ 1—s"

m>1 me=e p 3 m>1 meTe
m=+hgmod p m#Z+hgmod p

Substituting these expressions back into the previous formula for &) (¢, h, p, s)
then proves the claim. O

— 64 —



Dirichlet twists of GLp-automorphic L-functions

Proof of Theorem 1.3 (B). — In either case, we expand for a suitable

choice of real number ¢ > 1, shifting the range of integration to R(s) = —o:
0 ds
S &(m) KL, (£mh, p®)¢ LR 95
(=1
ds
= *(5)R2(&, hypP,8) .
/( L TORER )5

Suppose first that 8 > 2. Applying the functional identity of Theorem 1.3
(A) (i) to Ru(€,h,p”, s) gives

ds
[R5
. T 1—s o
:7—(5)5(])5)1)5 - qﬁ*(s)(qpﬂ)_s <7Ts_2 F((g))> ﬁ%71(§7 %pﬁ, 1-— S)%a

which after expanding the absolutely convergent Dirichlet series 82 | (%, hq, p®, 1—
s) equals

m>1
(m,p)=1

7 ¥ S [ oo (= 5E) ()

This shows (i). For 8 = 1, we apply Theorem 1.3 (A) (i) to 82(&, h, p, s) to
find

d
& (5)R2(, by p, 5)

(—o’) 27TZ
=7(§)&(p)p ¢*(s) <7T5é ﬁ (qp)* R _1(€, hg, p, 1 );
(=) I (3) mi
n -1 ( 2 )) —s1(p)
—1)"r s 2 L'Y(1—s
+(-1) (f)/(g)as()( o (15,85
ety [ o (r %”é))>q-86p<s,5>L<p><1—s,s>j;,
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which after expanding out the absolutely convergent Dirichlet series is the

same as
£(m) 7 * Sfér(lis) m\°® ds
T(©)Epp ; S KhaGembap) | 6%6) (w5 <qp> &
(m.p)=1)
n E(m) * 3_%1—‘(%) m\”° ds
R I G THs (q &
(m.p)=1
n 2 E(m) * S_%F(lgs) = m s ds
+(=1) T(g)m mz;l o (_U)¢ (s) W ep(s, )<q> 3
(m,p)=1
O
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