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The selection-recombination equation is a large, nonlinear system of differential
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1 Introduction

Since the pioneering work in evolution and genetics by Darwin [Dar59] and Mendel [Men66],

the advent of large scale sequencing technology and increasing accessibility of computing

power have brought about a proliferation of quantitative methods in these fields [Wak04]. The

models of mathematical population genetics provide a rigorous framework to describe how the

genetic composition of idealised populations is shaped over time by various evolutionary forces,

such as natural selection, mutation, random genetic drift, recombination and migration. There

is an enormous variety of models, varying not only in the specific subset of evolutionary forces

considered, but also in whether the population is finite or infinite, or whether evolution is

assumed to act over the course of discrete generations or in continuous time. The role of

these models is twofold; on the one hand, they provide a theoretical framework to generate

testable hypotheses and thus help to guide empirical research. On the other hand, they often

exhibit interesting mathematical features, which are worthy of investigation in their own

right [Cas88].

Of all evolutionary forces commonly considered, the treatment of recombination is particularly

challenging, due to its highly nonlinear nature. Since its first introduction by Jennings [Jen17]

and Robbins [Rob18] more than a hundred years ago, the deterministic recombination equation
defied all attempts at its solution for a century. It was ultimately solved by Baake et al.

in 2016 [BBS16; BB16] by relating the complicated dynamics forward in time to a much

simpler stochastic process that describes the ancestral lineages of single individuals backward

in time. This theme, the interplay between the dynamics of the solution of an ODE model

for recombination forward in time and probabilistic aspects of the corresponding ancestral

process backward in time, will be developed further in this thesis, culminating in an explicit

solution of the selection-recombination equation for single-crossover with single-site selection.

1.1 Background

Recombination describes the reshuffling of genetic information that occurs during the repro-

ductive cycle of sexually reproducing organisms; it is ubiquitous among virtually all organ-

isms on earth [ABHJ, Ch. 2]. Biologically, this is realised via one or more so-called crossover
events between two parental sequences, a mechanism that was discovered by Morgan [Mor11]

in 1911. It was first formalised in 1917 by Jennings [Jen17] via a discrete dynamical system

that models the evolution of a diploid population at two diallelic loci. The word locus refers

to the position of a particular gene within a chromosome and diallelic means that this gene
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occurs in two different variants (or alleles). Shortly after, in 1918, this work was continued by

Robbins [Rob18], still restricted to the case of two loci. In 1944, Geiringer [Gei44] considered

a more general equation, for the first time with more than two loci and an arbitrary number

of alleles at each of them. She investigated the asymptotic behaviour and, in the case of three

loci, stated the general form of the solution in terms of linear combinations of certain ansatz

functions. This was subsequently generalised by Bennett [Ben54] to an arbitrary number of

loci. Later, it was seen that this method leads to a linearisation of the original model, an

approach which was then developed further within the sophisticated framework of genetic
algebras [MR83; Lyu92] and became known by the name of Haldane linearisation. Somewhat

surprisingly, these efforts yielded relatively few concrete results.

While most research in mathematical population genetics had initially focussed on determin-

istic models, stochastic models became more and more fashionable, starting with the seminal

works of Fisher [Fis30], Wright [Wri31], Malécot [Mal48], Feller [Fel51], and Moran [Mor58].

The major benefit of stochastic models lies in their ability to take into account the random

fluctuations in type frequency that occur due to random reproduction. These fluctuations

are particularly important if one considers either very small populations, or the large time

scales on which evolution usually takes place. Of great theoretical importance are graphical

constructions, which were introduced by Harris [Har78] in the general context of additive,

set-valued Markov processes. In our setting, these constructions enable us, thanks to the

time-reversibility of the Poisson process, to trace back the ancestry of a finite sample of in-

dividuals. The resulting ancestral processes, running backward in time, are again Markovian

and contain information about the evolution in the original forward direction of time. In the

case of recombination, this leads to the ancestral recombination graph, see [Hud83; GM96;

GM97; LPS; JFS15; BS16]. Formally, the forward and backward processes are related via

the notion(s) of duality [Lig10; JK14]. For an introduction to this approach, see [Wak09] and

the seminal work by Kingman [Kin82a; Kin82b]. Over time, various evolutionary forces have

been incorporated, and the corresponding ancestral processes have been studied extensively.

For a survey of the state of the art, see the monographs [Ewe04; Dur08; Eth11].

In light of these new developments, Baake et al. have recently reconsidered the deterministic

recombination equation in a very general setting, even allowing for an arbitrary number of

parents. To accommodate the needs of quantitative genetics [Bür00, Ch. IV], even uncount-

able sets of alleles are admitted. The deterministic recombination equation can be constructed

from a sequence of (stochastic) Moran models with increasing population sizes via a dynam-

ical law of large numbers [Kur70; EK86] and the corresponding ancestral processes remain

random in the infinite-population limit. The limiting process is a simple partitioning process
on the set of partitions of the genetic sequence, and the solution of the linear Kolmogorov for-

ward equation yields a solution of the original nonlinear equation. In addition, this sheds new

light on the idea of Haldane linearisation, outside the framework of genetic algebras [BB16].

Previously, these authors obtained an explicit, albeit somewhat involved, recursive solution

via lattice theoretic techniques [BBS16]. For a recent review, see [BB].



1.2 Outline 3

While the solution of the recombination equation was a significant achievement in its own

right, the selection-recombination equation, which describes recombination along with natural

selection, has remained unsolved. Indeed, explicit solutions have been deemed out of reach

(as illustrated by the opening quote of Akin) and research has instead focussed on either its

asymptotic behaviour or on special cases in which recombination and selection act on different

time scales [NHB99]. Only in the special case of two neutral loci linked to one locus under

selection, an approximate solution was given in [SSL06]. While sufficiently precise, it does

not convey any hope for generalisation.

Last but not least, an interesting perspective on population genetics can be found in the

monograph by Akin [Aki79]. There, deterministic models of population genetics are reformu-

lated in the language of differential geometry and a number of qualitative results are proved —

it is shown, for instance, that the entropy of the type distribution is a Lyapunov function for

the recombination equation. Indeed, it is even a potential for a generalised gradient system,

as was later shown by Hofbauer [Hof17]. This follows by reinterpreting the recombination

equation as the law of mass action of a strongly reversible chemical reaction network, which

was done by Müller and Hofbauer [HM15].

1.2 Outline

This thesis is structured as follows. First, in Chapter 2, we recall the pure recombination

equation, both in discrete and continuous time, along with its basic properties and establish

the notation that will be used in subsequent chapters. Due to its importance for the rest of

this work, we briefly review the dual partitioning process.

In Chapter 3, we reinterpret the recombination equation for an arbitrary number of par-

ents as a strongly reversible chemical reaction network, generalising the result by Müller and

Hofbauer, at least in the case of finite sets of alleles. In particular, we again obtain a rep-

resentation as a generalised gradient system. Later, we also see how the monotonicity of the

partitioning process implies the gradients structure of the evolution of its law, regardless of

the underlying type space. Last not least, we consider the finite-dimensional (but nonlinear)

system of equations that was derived in [BBS16] for the coefficients in an ansatz for the solu-

tion of the recombination equation. We will see that it can be understood as the law of mass

action for a network of chemical reactions among the partitions of the genetic sequence.

The heart of this thesis is Chapter 4, where the explicit solution of the selection-recombination

equation is presented, in the case of one selected site, located at an arbitrary position within

the sequence, and linked to an arbitrary number of neutral sites. It is stated in the form of

iterated integrals, and we will show that this structure is intimately connected to the model’s

genealogical structure which is subsequently distilled into three distinct (but related) dual

stochastic processes, each yielding different insight. Via their Markov semigroups (which

we derive in closed form!), the solution of the original differential equation mentioned above

can be stated explicitly. As an important technical tool, we introduce a non-commutative
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generalisation of the product of probability measures. This allows us to greatly streamline

the necessary computations and also illuminates the algebraic structure of the model that

underlies our solution.

Finally, in Chapter 3, we apply the methods of [BB16] to a dynamical system that describes

the joint action of recombination and migration, in discrete time. This sheds additional light

on results obtained previously by Bürger [Bür00] via the classical theory of dynamical systems.

Again, the dual process will be a partitioning process, this time labelled by the origins of the

parents. Finally, its quasi-stationary distribution [CMS13] is investigated, based on ideas

from [Mar17].

The first chapter is based on a single-author paper by the author of this thesis [Alb], the

second chapter is joint work with Ellen Baake [AB], and the third chapter is joint work with

Ellen Baake, Ian Letter and Servet Martínez [ABLM]; in both cases, all authors contributed

equally. All manuscripts have been submitted for publication.



2 The recombination equation in discrete and
continuous time

Let us set the stage by recalling the recombination equation in discrete and continuous time.

We want to model the evolution of an infinitely large population of haploid individuals under

the influence of genetic recombination. For our purposes, a (genetic) type will be a finite

sequence of letters, indexed by the set

S = {1, . . . , n}

of sequence sites; they can either be thought of as the set of nucleotide positions in a DNA

sequence or genetic loci on a chromosome. The letter at each site i ∈ S is chosen from its

own alphabet Xi. If S is interpreted as the set of nucleotide positions, the Xi are the set

{A,C,G, T} of nucleotides, but they can be more general. For the purposes of quantitative
genetics [Bür00, Ch. IV], for instance, it is useful to allow general locally compact Hausdorff

spaces as alphabets. In any case, a genetic type will be thought of as an element of the

type space
X :=

∏

i∈S

Xi, (2.1)

which is endowed with the product topology. If Xi is finite, we endow it with the discrete

topology.

In addition to sequences defined over the entire set of sequence sites, we will also be interested

in sequences that are only defined over a subset of S; keep in mind that even with modern

technology, it is usually infeasible to observe evolution along an entire genome at once. We

thus define, for every U ⊆ S, the marginal type space

XU :=
∏

i∈U

Xi

with respect to U . When U is empty, X∅ is the empty Cartesian product, and thus the set

with a single element, namely the empty sequence e. We drop the subscript when U = S,

that is, we simply write X as in (2.1) instead of XS . We denote by P(XU ) the set of all

probability measures on XU .

Remark 2.1. In the general case of arbitrary Hausdorff spaces, we always understand the

term ‘probability measure’ to mean ‘Borel probability measure’. ♦

More generally, we will at some point also need to consider signed measures. For any compact

topological space M , the set of finite signed (Borel-)measures on M is denoted by M(M).
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Clearly, M(M) is a real vector space; equipped with the total variation norm, it is indeed a

Banach space, although we will not make use of this fact. Consider a finite collection (Mi)i∈I of

such spaces and assume that theMi are all finite. Then, the set of finite signed measures on the

cartesian product×i∈I Mi can be identified with the tensor product
⊗

i∈IM(Mi); the product
⊗

i∈I νi of νi ∈ M(Mi) can be read either as a measure product or an elementary tensor,

according to personal preference. More explicitly, we identify for each (mi)i∈I ∈
∏

i∈I Mi the

point (or Dirac) measure δ(mi)i∈I
on (mi)i∈I with the (tensor or measure) product

⊗
i∈I δmi

.

Finally, (again for finite M), the set P(M) of probability measures on M can be identified

with the
(
|M | − 1

)
-dimensional standard simplex, i.e.

P(M) =

{
∑

m∈M

ν(m)δm :
∑

m∈M

ν(m) = 1, ν(m) ∈ [0, 1] for all m ∈M

}
.

For V ⊆ S, we denote by πV the canonical projection to XV , which maps any sequence

xU = (xi)i∈U defined over any U ⊇ V to the subsequence xV
U := (xi)i∈V , also called the

marginal type of xU with respect to V . To keep the notation simple, we use the same symbol

for all projections to a given XV , irrespective of their domains.

We abbreviate the push-forward πV .νU of νU ∈ P(XU ) (or, more generally, of νU ∈M(XU ))

under πV by νV
U . More explicitly,

νV
U (E) := νU

(
π−1

V (E)
)

= νU (E ×XU\V ) (2.2)

for all measurable E ⊆ XV . In words, νV
U (E) is the probability that the letters at the sites in

V of a random sample from νU match those of some type in E.

The following result is elementary, but useful.

Lemma 2.1. Let U, V ⊆ S, U ∩ V = ∅, and let νU ∈ M(XU ) and νV ∈ M(XV ). Then, for
any W ⊆ U ∪ V , we have

(νU ⊗ νV )W = νU∩W
U ⊗ νV ∩W

V .

Proof. Note that XW = XU∩W × XV ∩W . Let us fix EU∩W ⊆ XU∩W and EV ∩W ⊆ XV ∩W .

Then, for any W ⊆ U ∪ V ,

(νU ⊗ νV )W (EU∩W × EV ∩W ) = (νU ⊗ νV )(EU∩W ×EV ∩W ×X(U∪V )\W )

= (νU ⊗ νV )
(
(EU∩W ×XU\W )× (EV ∩W ×XV \W )

)

= νU (EU∩W ×XU\W ) · νV (EV ∩W ×XV \W )

= νU∩W
U (EU∩W ) · νV ∩W

V (EV ∩W ).

Remark 2.2. It is important to note that Lemma 2.1 remains true if U∩W = ∅ or V ∩W = ∅.

Assume, for instance, that U ∩W = ∅. As the empty Cartesian product X∅ is the singleton

{e}, where e is the empty sequence, νU∩W
U is then the unique measure on {e} with the same
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a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6

a1 b2 b3 a4 a5 c6

Figure 2.1. A mating event involving 3 parents. One parent contributes the letters at sites
1, 4 and 5 of its genetic sequence, another the letters at sites 2 and 3 and the third one only
the letter at site 6. Thus, the offspring is recombined according to A = {{1, 4, 5}, {2, 3}, {6}}.

total mass as νU and can be treated as the scalar νU (XU ), in the sense that

νU∩W
U ⊗ νV ∩W

V = νU (XU )νV ∩W
V ;

when νU is a probability measure, this simplifies to

νU∩W
U ⊗ νV ∩W

V = νV ∩W
V ;

This convention will simplify several calculations later on. ♦

Whenever a group of individuals mate, they produce an offspring whose type sequence is

pieced together from fragments of those of its ancestors1 This group may consist of a single

individual2, two, or arbitrarily many. Obviously, only the first two cases are of biological

relevance. However, the case of an arbitrary number of parents is an interesting generalisation

from a mathematical perspective, and requires little additional effort.

A central role in the description of recombination in this general setting is played by the

partitions of S and its subsets. Recall that a partition of an arbitrary set M is a set of

pairwise disjoint, non-empty subsets, called blocks, of M whose union is M ; We denote the

set of partitions of M by P (M). Be careful not to confuse P (M) with P(M), which denotes

the set of probability measures on M . Partitions can be used to describe the process of

recombination as follows. To any offspring, we can associate an A ∈ P (S) to describe how

its genetic sequence has been pieced together from its parents. More precisely, the letters at

sites i, j ∈ S are inherited from the same parent if and only if i, j are in the same block of

A; we say that the individual is recombined according to A; compare Fig. 2.1. If we are only

interested in the offspring’s type along a subset U ⊆ S, we can take A to be a partition of U .

Assuming that the current (marginal) type distribution (along U) in the population is given

1 While recombination, strictly speaking, does not occur during reproduction itself, this is not relevant in the

simplified setting of our model; simply put, as we are working at the level of gametes, the word ‘reproduction’

refers, in this context, to the formation of new germ cells prior to mating.
2 Obviously, in sexual populations, every individual has two parents. However, crossover events are fairly rare

and thus, the entire sequence is often inherited from a single parent. From a modelling perspective, we can

think of such an individual as the offspring of a single parent.
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by νU ∈ P(XU ), the type of the offspring is given by

RU
A(νU ) :=

⊗

A∈A

νA
U ; (2.3)

this formalises the idea that the offspring ‘chooses’ its parents independently from the current

generation. The (nonlinear) operators

RU
A : P(XU )→ P(XU ), νU 7→

⊗

A∈A

νA
U

for A ∈ P (U) are called recombinators, and have been introduced in [BB03]. Whenever

U = S, we suppress the subindex and write R instead of RS .

The following representation of the recombinator will play an important role in the next

chapter. For this, assume we are given A ∈ P (S) and a collection (xA)A∈A of marginal types

xA ∈ XA. Then, we denote by ⊔

A∈A

xA ∈ X

the type (defined over the entire sequence) obtained by glueing the xA together; its letter at

site i ∈ S is the letter at site i of xA∗ where A∗ is the unique block of A that contains i.

Lemma 2.2. Let X be a finite type space. Then, for ν ∈ P(X) and A = {A1, . . . , Ak} ∈ P (S),
we have

RA(ν) =
∑

x(1),...,x(k)∈X

ν
(
x(1)) · . . . · ν

(
x(k))δ⊔k

i=1
π

Ai
(x(i))

.

Proof. Let us write R̃ for the map on P(X) defined by the right-hand side. Then, for all

y ∈ X,

R̃(ν)(y) =
∑

x(1),...,x(k)∈X

π
Ai

(x(i))=yAi∀i

ν
(
x(1)) · . . . · ν

(
x(k)) =

k∏

i=1

ν
(
π−1

Ai
(y)
)
,

which implies the identity claimed; recall that yAi denotes the subsequence of y over Ai.

Remark 2.3. Whenever we enumerate the blocks of a partition of S, i.e. write

A = {A1, . . . , A|A|},

we order the blocks such that A1 is the block that contains 1 and, for all 2 6 k 6 |A|, Ak is

the block that contains the smallest element not contained in
⋃k−1

j=1 Aj . ♦

Notation 2.3. As expressions of the form

δ⊔k

i=1
π

Ai
(x(i))
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are difficult to read, we simplify the notation by formally identifying each element m of some

finite set M with the associated point measure δm. Under this convention, the statement

from Lemma 2.2 reads

RA(ν) =
∑

x(1),...,x(k)∈X

ν
(
x(1)) · . . . · ν

(
x(k))

k⊔

i=1

πAi

(
x(i)).

♦

Remark 2.4. Sampling parents independently from the same type distribution as described

by Eq. (2.3) is only valid in the setting of an infinite population. If the population were finite,

the parents would need to be sampled without replacement. The corresponding sampling
functions can, however, be expressed in terms of recombinators (which describe sampling

with replacement); this is an application of the inclusion-exclusion principle in the form of

the Möbius inversion formula [BEP16; Aig79]. ♦

Remark 2.5. Let us also mention at this point that, in Section 4.4, we will introduce a

generalisation of ⊗ to products of measures that are defined on XU and XV with U ∩V 6= ∅.

In particular, they may be marginals with respect to overlapping subsets of S. This will prove

to be a handy alternative to the use of recombinators in the description of recombination. ♦

Now, we can fomulate the basic recombination model, first in discrete time. We denote the

type distribution in generation t ∈ N0 by µt ∈ P(X), and assume that generations do not

overlap; that is, between generations t and t + 1, the entire population is replaced by new

offspring. We write rA for the proportion of the offspring that are recombined according to

A. As the entire population is replaced, we demand that these proportions add up to one;

thus, the type distribution is replaced by the convex combination of the recombined type

distributions from Eq. (2.3),

µt+1 =
∑

A∈P (S)

rARA(µt), (2.4)

where we refer to the collection r =
(
rA
)
A∈P (S)

as the recombination distribution.

In continuous time, the role of the recombination distribution r is taken by the collection

̺ =
(
̺A
)
A∈P (S)

of non-negative recombination rates. The intuition is that, for each A ∈ P (S) and during

each infinitesimally short time interval [t, t+ dt], a proportion of size ̺A dt of the population

is replaced by offspring that are recombined according to A (as explained above). Denoting

the type distribution at time t ∈ R>0 by ωt, this translates into the ordinary differential

equation

ω̇t =
∑

A∈P (S)

̺A(RA − id)(ωt). (2.5)

We will refer to Eqs. (2.4) and (2.5) as the recombination equations in discrete and continuous
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time; note that we use different letters, namely ω (in the continuous setting) and µ (in the

discrete setting) to avoid confusion.

Remark 2.6. Let us mention that Eqs. (2.4) and (2.5) may alternatively be obtained as large

population limits from the (discrete-time) Wright–Fisher model and (continuous-time) Moran

model with recombination via a dynamical law of large numbers. In the continuous-time case,

this follows from the standard theory of density dependent families; see [EK86, Thm. 11.2.1].

We are going to elaborate on this in Chapter 4 in the context of the selection-recombination

equation. In discrete time, we refer the interested reader to [BW14, Prop. 1] for the worked

(elementary) argument in the special case of single-crossover recombination. ♦

Keep in mind that the choice of the set S of sequence sites was rather arbitrary; in the

motivation of the recombination equation we may just as well replace S by U ⊆ S; indeed,

S itself should be thought of as a mere subset of the entire genome. Then, we would expect

to obtain equations of a similar form for µU =
(
µU

t

)
t∈N0

and ωU =
(
ωU

t

)
t>0

. This is indeed

the case, and is known as marginalisation consistency. To state this formally, we need the

concept of an induced partition.

Given A ∈ P (S) and U ⊆ S, we denote by

A|U := {A ∩ U : ∅ 6= A ∩ U, A ∈ A}

the partition of U induced by A.

Now, we can state the marginalisation consistency as follows, in both continuous and discrete

time. But first, note that an inductive application of Lemma 2.1 yields

RA(ν)U = RU
A|

U
(νU ) (2.6)

for all ν ∈ P(X), A ∈ P (S) and U ⊆ S; see also [BB16, Lem. 1].

Theorem 2.4 ([BB16, Prop. 3]). Let U ⊆ S and let ω be a solution of the recombination equa-
tion in continuous time (2.5). Then, ωU satisfies the marginalised recombination equation in
continuous time, i.e.

ω̇U
t =

∑

A∈P (U)

̺U
A

(
RU
A − id

)
(ωU

t ),

where the marginal recombination rates ̺U
A are given by

̺U
A =

∑

B∈P (S)
B|

U
=A

̺B.

Theorem 2.5 ([BB16, Lem. 3]). Let U ⊆ S and let µ be a solution of the recombination
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equation in discrete time (2.4). Then, µU satisfies the marginalised equation

µU
t+1 =

∑

A∈P (U)

rU
AR

U
A(µU

t ),

where the marginal recombination distribution rU is given by

rU
A =

∑

B∈P (S)
B|

U
=A

rB.

Both theorems are an immediate consequence of Eq. (2.6).

There are a few additional notions around partitions, which will be essential in what follows.

First, we can compare two partitions A and B. If every block of A is contained within some

block of B, we say that A is finer than B and write A 4 B. This defines a partial order on

each P (U), with unique minimal element

0U :=
{
{i} : i ∈ U

}

and unique maximal element

1U := {U}.

When U = S, we drop the subscript and simply write 1 and 0 rather than 1S and 0S . For

two partitions A and B, we use

A ∧ B := {A ∩B : A ∈ A, B ∈ B and A ∩B 6= ∅}

to denote their coarsest common refinement; it is the coarsest partition that is finer than both

A and B, and unique as such.

Remark 2.7. For all partitions A and B, there exists also a unique finest partition among all

partitions coarser than both A and B, denoted by A ∨ B. Therefore, the partitions (of any

finite set) form a complete lattice [Aig79]. ♦

In our discussion of marginalisation consistency, we have introduced the concept of an induced

partition. Conversely, assume we are given a partition A of U and a collection
(
BA

)
A∈A

, where

BA is a partition of A for each A ∈ A. Then,

⋃

A∈A

BA

is a partition of U .

Remark 2.8. It is not difficult to see that for any two partitions A,B ∈ P (U), B 4 A if and
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A1 A2 A3 A4 A5 A6

BA1
= B|A1

BA2
= B|A2

BA3
= B|A3

BA4
= B|A4

BA5
= B|A5

BA6
= B|A6

A

B =
⋃6

j=1 BAj

Figure 2.2. At the top, a partition of S. In the middle, a partition finer than A, which gives
rise to partitions of the blocks of A (bottom). Conversely, one can start with the collection
of partitions at the bottom and join them to obtain a partition that is finer than A.

only if

B =
⋃

A∈A

B|A.

For a fixed A ∈ P (U), this implies the following bijection between all B ∈ P (U) with B 4 A

and all collections
(
BA

)
A∈A

of partitions of the individual blocks of A. Namely, given B 4 A,

we obtain the collection
(
B|A

)
A∈A

of induced partitions. Conversely, given
(
BA

)
A∈A

, we

set B :=
⋃

A∈A BA. Note that B 4 A and B|A = BA for all A ∈ A. See Fig. 2.2 for an

illustration. ♦

On the level of recombinators, we make the following observation.

Lemma 2.6. Let A ∈ P (S) and let BA ∈ P (A) for all A ∈ A. Then,

R⋃
A∈A

B
A

(ν) =
⊗

A∈A

RA
BA

(νA)

for all ν ∈ P(X).

We close this preliminary chapter by recalling two fundamental results. First, a reduction of

the (potentially) infinite-dimensional measure-valued ODE (2.5) to a finite-dimensional one.

For the sake of simplicity, we only consider the case U = S.

Theorem 2.7 ([BBS16, Thm. 1]). Every solution ω of (2.5) has the form

ωt =
∑

A∈P (S)

at(A)RA(ω0), (2.7)

where the coefficients at(A) satisfy the coupled nonlinear differential equations

ȧt(A) = −
∑

B

̺(B) · at(A) +
∑

.B<A

( |B|∏

i=1

∑

C∈P (S)
C|Bi

=A|Bi

at(C)

)
̺(B),

with initial value a0(1) = 1 and a0(A) = 0, otherwise. The sums run over all partitions of U ,
where the underdot marks the summation variable.
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This result is immediate after inserting the ansatz (2.7) into (2.5) and using Lemma 2.6 to-

gether with Eq. (2.6). In vector notation (compare Notation 2.3), writing at :=
∑
A∈P (S) at(A)A,

this system can be written as

ȧt = −
∑

A

∑

B

̺(B) · at(A)A+
∑

A

∑

.B<A

( |B|∏

i=1

∑

C∈P (S)
C|Bi

=A|Bi

at(C)

)
̺(B)A (2.8)

The second result we want to mention is the connection to the so-called partitioning pro-
cess [BB16; BEP16]. The partitioning process Σ = (Σt)t>0 or Σ = (Σt)t∈N0 is a Markov chain

with values in P (S), that, just like the recombination equation, comes in both a continuous

and discrete-time version; it describes how the genome of an individual is pieced together

from those of its ancestors.

Since similar concepts will be discussed later in more detail, we content ourselves at this point

with a rough sketch of the general idea in the case of discrete time. It is best understood if Σ

starts at 1. The single block of 1 represents the genome of an individual (Bob, say), sampled

from the population at present. Recall that for each A ∈ P (S), Bob is with probability

rA recombined according to A. Accordingly, in the first time step from 0 to 1, this single

block is replaced by the blocks of A which represent the different parts of Bob’s genome that

are contributed by the different parents. The genomes of these ancestors are in turn pieced

together from the genomes of their ancestors. This means that during the next time step,

from 1 to 2, every block A of A is again replaced by a random partition of it, according to the

corresponding marginal recombination distribution rA. This is then iterated until we arrive

at Σt which describes how Bob’s genome is pieced together from its ancestors that lived t

generations before the present. Finally, their types are sampled, indepedently of each other,

from the initial type distribution µ0.

Formally, the last paragraph boils down to the following stochastic representation for the

solution of the recombination equation. In continuous time, we have

E[RΣt
(ω0) | Σ0 = 1] = ωt, t ∈ R>0, (2.9)

while in discrete time, we have

E[RΣt
(µ0) | Σ0 = 1] = µt, t ∈ N>0.

More generally, admitting arbitrary A ∈ P (S) as initial values for the partitioning process,

the following holds, respectively in continuous and discrete time; see also [BB, Remark 3.5].

E[RΣt
(ω0) | Σ0 = A] = RA(ωt), t ∈ R>0,

E[RΣt
(µ0) | Σ0 = A] = RA(µt), t ∈ N>0.
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This is an example of a so-called duality relation [JK14] between Markov processes, if we

interpret ω as a Markov process with deterministic transitions. The transitions of Σ are in

continuous time described by the rate matrix Q, where

Q(A,B) :=





0, if B 64 A,

̺A
B

A
, if B = (A \ {A}) ∪ BA

−
∑

.C6=AQ(A, C), if A = B

(2.10)

and in discrete time by the Markov matrix T with entries

TAB =





0, if B 64 A,

∏
A∈A r

A
B|

A
, if B 4 A.

(2.11)

Let us finish this Chapter by remarking that Σ is a variant of the ancestral recombination
graph [Hud83; GM96; GM97; BS16].



3 Genetic recombination as a gradient flow

In this chapter, we consider Eq. (2.5), the general recombination equation in continuous time.

In the biologically relevant case of only two parents, that is, ̺A = 0 for |A| > 3 and finite sets

of alleles, this equation was reinterpreted by Hofbauer and Müller [HM15] as the law of mass

action for a network of chemical reactions between gametes. This reaction network is strongly

reversible and general theory [Mie11; Yon12] on chemical reaction networks therefore implies

that it can be represented as a generalised gradient system, with respect to entropy [Hof17].

This strengthens an earlier result by Akin [Aki79, Thm III.2.5] that entropy is a strong

Lyapunov function for recombination; for a somewhat weaker statement, see [Lyu92, Thm.

6.3.5].

The first goal in this chapter is to generalise this to the setting of arbitrary partitions, in

particular, to allow for an arbitrary number of parents. In the setting of finite sets of alleles,

we shall generalise the results of [HM15] directly to the multi-parent case; secondly, we will

show that the law of associated partitioning process evolves like a gradient system, a property

swhich ultimately comes down to the monotonicity of its sample paths. Last not least, we

reconsider the nonlinear system Eq. (2.8) and reinterpret it as the law of mass action for a

chemical reaction network among the partition of the set of sequence sites.

The rest of this chapter is organised as follows. First, we recall the necessary basic notions

from chemical reaction network theory. Then, we discuss the results on the gradient structure

of the reaction network equivalent to the recombination equation, along with the necessary

background in differential geometry. Section 3.3 explains the gradient structure of a particular

class of Markov chains, which contains in particular the partitioning process.

3.1 Chemical reaction networks

Let us recapitulate some basic notions in chemical reaction network theory, taylored to our

purposes. A general introduction to the field can be found in [Fei19].

Let S (not to be confused with S, the set of sequence sites) be a finite set, the elements of

which will be thought of as the reacting species in a chemical reaction network (CRN), that

is, a finite collection of chemical reactions, which are represented by symbolic expressions of

the form

r1 + . . .+ rm1

κ
−→ s1 + . . .+ sm2 . (3.1)

Here, the ri and si are reacting species (not necessarily distinct) and κ > 0 is the reaction
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constant. The left and right-hand sides in Eq. (3.1) are called the complexes of substrates and

products. In our setting, we will always have m1 = m2 = m, as we will see later.

Remark 3.1. Recall from Notation 2.3 that we formally identified the elements of a finite

set with the corresponding point or Dirac measures. In this sense, the addition in Eq. (3.1)

can be understood as addition of vectors in the space of signed measures on S. Furthermore,

we understand all vectors as column-vectors, as this will be the more natural choice in the

context of this chapter. In particular, this entails that the standard scalar product of any two

vectors v and w can be written as vTw (where T denotes transposition) whereas vwT denotes

the matrix that maps any other vector u to 〈w, u〉v. ♦

Of particular interest are strongly reversible CRNs. They are usually defined as CRNs in

which the forward reaction constant agrees with the backward reaction constant for every

reaction. In the present setting, where we think of reactions as unidirectional, it is more

convenient to phrase this slightly differently.

Definition 3.1. A CRN is called strongly reversible if it can be partitioned into pairs, each

consisting of a reaction,

r1 + . . .+ rm
κ
−→ s1 + . . .+ sm,

together with its backward reaction,

s1 + . . . + sm
κ
−→ r1 + . . .+ rm.

♦

Given a CRN, it is natural to inquire about the dynamics of the probability vector

ct =
∑

s∈S

ct(s)δs =
∑

s∈S

ct(s)s

of normalised concentrations of reacting species. In our case, as the left and right-hand sides

in Eq. (3.1) contain the same number of reacting species, the total mass is preserved and may

therefore be normalised to one.

The law of mass action translates the collection of formal expressions (3.1) into a system of

coupled differential equations for c = (ct)t>0. It assumes that each reaction occurs with a rate

that is proportional to the concentration of each of the substrates, and hence to their product;

the proportionality factor is the reaction constant κ in Eq. (3.1). As each reaction decreases

the concentration of substrates and increases the concentration of products, we obtain the

following system of ordinary differential equations,

ċt =
∑

κct(r1) · . . . · ct(rm)
(
s1 + . . .+ sm − r1 − . . .− rm

)
, (3.2)

where, again, the reacting species s1, . . . , sm and r1, . . . , rm are identified with the correspond-

ing point measures δs1
, . . . , δsm

and δr1
, . . . , δrm

, in accordance with Notation 2.3. The sum

Frederic
Notiz
reactions, LMA
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is taken over all reactions that make up the CRN. We refer the interested reader to [EK86,

Ex. 11.1.C] for a probabilistic variation on this theme.

We now return to recombination. In [HM15], genetic recombination is treated as a CRN with

the types as reacting species, in the special case of two parents. For example, recombination

according to A = {{1, 2}, {3}} translates to reactions of the form

(x1, x2, x3) + (y1, y2, y3)
κ
−→ (x1, x2, y3) + (y1, y2, x3).

This describes the process of recombination at the molecular level; first, the parental sequences

(x1, x2, x3) and (y1, y2, y3) are split in two, according to A. Then, two new sequences are

obtained by joining the leading part of one sequence with the trailing part of the other, and

vice versa. For each (ordered) pair of types and each partition A, the reaction constant is

κ = ̺(A)
2 ; this is a special case of Theorem 3.2, which is stated below. In the general case of

more than two parents, the basic idea is still the same; for any partition C, take |C| types,

split each of them according to C, rearrange the parts and join them back together. Note that

this last step is somewhat ambiguous; already in the three-parent case, this can be done in

at least two different ways; either,

(x1, x2, x3) + (y1, y2, y3) + (z1, z2, z3) −→ (x1, y2, z3) + (y1, z2, x3) + (z1, x2, y3), (3.3)

or

(x1, x2, x3) + (y1, y2, y3) + (z1, z2, z3) −→ (x1, z2, y3) + (z1, y2, x3) + (y1, x2, z3). (3.4)

One way of resolving this ambiguity is to order the substrates and define the reaction accord-

ingly. Thus, there may be many different reactions that share the same complex of substrates.

More precisely, for every partition C ∈ P (S) and each ordered tuple
(
x(1), . . . , x(|C|)

)
∈ X |C|,

we define a chemical reaction via the following graphical construction, illustrated in Fig-

ure 3.1. First, just as in the two-parent case, the |C| type sequences are broken up into the

subsequences πCj
(x(i)) over the blocks of C. Then, these fragments are arranged on a two-

dimensional, |C|-periodic grid (or discrete torus), where πCj

(
x(i)

)
is placed in the i-th column

and j-th row. Finally, the products are formed by joining the fragments along each diagonal

line, running from north-west to south-east through the grid. Alternatively, one may think

about moving the i-th row i − 1 places to the left, and then joining the fragments in each

column. More formally, every choice of C and
(
x(1), . . . , x|C|

)
defines a reaction

|C|∑

j=1

x(j)
̺(C)
|C|
−−−→

|C|∑

j=1

|C|⊔

i=1

πCi

(
x(i+j−1)), (3.5)

where the indices are to be read modulo |C|.

Notice that the right-hand side depends on the order of the substrates, while the left-hand
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πC1

(
x(1)

)
πC1

(
x(2)

)
πC1

(
x(3)

)
πC1

(
x(1)

)
πC1

(
x(2)

)

πC2

(
x(1)

)
πC2

(
x(2)

)
πC2

(
x(3)

)
πC2

(
x(1)

)
πC2

(
x(2)

)

πC3

(
x(1)

)
πC3

(
x(2)

)
πC3

(
x(3)

)
πC3

(
x(1)

)
πC3

(
x(2)

)

Figure 3.1. An illustration of the reaction scheme for |C| = 3. The types x(1), x(2) and x(3)

are each split according to C and then joined back together as indicated by the diagonal lines.
For the sake of clarity, the first two columns of the diagram are repeated after the vertical
line.

side does not. For instance, in our earlier example with three sites and parents (that is,

C is 0, the trivial partition into singletons), the choice x(1) = x = (x1, x2, x3), x(2) = y =

(y1, y2, y3), x(3) = z = (z1, z2, z3) leads to Eq. (3.3), while exchanging the roles of the second

and third type leads to Eq. (3.4).

Theorem 3.2. For finite X, the general recombination equation (Eq. (2.5)) can be written as
the law of mass action for the CRN comprised of all reactions (3.5), one for every choice of
C and

(
x(1), . . . , x(|C|)

)
. More concisely, (2.5) is equivalent to

ω̇t =
∑

C∈P (S)

∑

x(1),...,x(|C|)∈X

̺(C)

|C|
ωt

(
x(1)) · . . . · ωt

(
x(|C|))

( |C|∑

j=1

( |C|⊔

i=1

πCi

(
x(i+j−1))− x(j)

))
.

Proof. We show that

(RC(ν)− ν) =
1

|C|

∑

x(1),...,x(|C|)

ν
(
x(1)) · . . . · ν

(
x(|C|))

|C|∑

j=1

( |C|⊔

i=1

πCi

(
x(i+j−1))− x(j)

)

holds for all C ∈ P (S) and all nu ∈ P(X). Recall that, by Lemma 2.2, we have

RC(ν) =
∑

x(1),...,x(|C|)∈X

ν
(
x(1)) · . . . · ν

(
x(|C|))

|C|⊔

i=1

πCi

(
x(i))

=
1

|C|

|C|∑

j=1

∑

x(1),...,x(|C|)∈X

ν
(
x(1)) · . . . · ν

(
x(|C|))

|C|⊔

i=1

πCi

(
x(i+j−1))

=
1

|C|

∑

x(1),...,x(|C|)∈X

ν
(
x(1)) · . . . · ν

(
x(|C|))

|C|∑

j=1

|C|⊔

i=1

πCi

(
x(i+j−1)).

Frederic
Notiz
recombination -> CRN
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Here, the second equality is obtained by replacing the product ν
(
x(1)

)
· . . . · ν(x(|C|)) with its

cyclic permutation,

ν
(
x(1−j+1)) · . . . · ν

(
x(|C|−j+1)),

and subsequently renaming the indices; recall that indices are to be read modulo |C|. Similarly,

keeping in mind that
∑

x∈X ν(x) = 1 because ν is a probability measure, we obtain

ν =
∑

x∈X

ν(x)x =
1

|C|

|C|∑

j=1

∑

x∈X

( ∑

y∈X

ν(y)

)j−1

ν(x)

( ∑

y∈X

ν(y)

)|C|−j

x

=
1

|C|

∑

x(1),...,x(|C|)

ν
(
x(1)) · . . . · ν

(
x(|C|))(x(1) + . . .+ x(|C|)),

which completes the argument.

We have thus seen that in the case of finite type spaces, genetic recombination can be rein-

terpreted as a CRN, also in the case of an arbitrary number of parents. Next, we show that

this network is strongly reversible.

Theorem 3.3. The CRN from Theorem 3.2 is strongly reversible in the sense of Defini-
tion 3.1.

Proof. Let C ∈ P (S) be fixed. Define ϕ : X |C| → X |C| via

ϕ
(
x(1), . . . , x(|C|)) :=

( |C|⊔

i=1

πCi

(
x(i+|C|−1)), . . . ,

|C|⊔

i=1

πCi
(x(i))

)
.

Note that ϕ
(
x(1), . . . , x(|C|)

)
contains the products in the reaction defined by C together with(

x(1), . . . , x(|C|)
)
, in reverse order (compare Eq. 3.5). A short reflection on Fig. 3.1 reveals

that ϕ is an involution and thus partitions X |C| into orbits that contain one or two elements

each. Consider first an orbit with two elements
(
x(1), . . . , x(|C|)

)
and

(
y(1), . . . , y(|C|)

)
. Then,

the associated reactions form a forward-backward reaction pair,

|C|∑

j=1

x(j)
̺(C)
|C|
−−−→

|C|∑

j=1

y(j) and

|C|∑

j=1

y(j)
̺(C)
|C|
−−−→

|C|∑

j=1

x(j).

When, on the other hand, an equivalence class consists of a single element, the reaction defined

by it is void in the sense that its contribution to the right-hand side of the system (3.2) of

differential equations vanishes, since its product and substrate complex agree.

Next, we consider the connection to gradient systems.
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3.2 The gradient system

In this section, we need a few basic notions from differential (particularly Riemannian) geo-

metry, which we recall here for the convenience of the reader. For further background we

refer the reader to [Wal04], in particular to Chapter 5.

For a real-valued differentiable function V defined on (some subset of) Rd, a function C with

the same domain and values in the positive semi-definite symmetric matrices, a generalised
gradient system (with respect to V ) is an ordinary differential equation of the form

ẋ = C(x)∇V (x), (3.6)

where we suppressed the time argument. Here,

∇ :=
d∑

i=1

êi
∂

∂xi

is the nabla symbol and ê1, . . . , êd denote the standard basis vectors of Rd. The real-valued

function V can be thought of as a potential. Here, x does not denote a type, but rather a

point in R
d.

Given x ∈ R
d, a vector v in Tx(Rd), the tangent space of R

d at x, and a continuously

differentiable curve γ in R
d with γ(0) = x and γ′(0) = v, recall that the directional derivative

of V in direction v is given by

dV (x)(v) :=
d

dt
V
(
γ(t)

)
|t=0.

The one-form dV is called the exterior derivative of V ; note that it can be defined analogously

for any real-valued function on a smooth manifold, and, in particular, does not depend on

the Euclidean structure of Rd. One has, by an application of the chain rule,

dV (x)(v) =
d∑

j=1

γ′(0)j
∂

∂xj
V (x) = 〈γ′(0),∇V (x)〉, (3.7)

where 〈·, ·〉 denotes the standard scalar product on R
d. Replacing the standard scalar product

by a general Riemannian metric 〈〈·, ·〉〉x on R
d (that is, a positive definite, symmetric bilinear

form on the tangent space, which varies smoothly, depending on the base point), Eq. (3.7)

can be used to define the gradient of V with respect to this metric [Wal04, Ex. 108], denoted

by grad〈〈·,·〉〉(V ); it is the unique vectorfield that satisfies

dV (x)(v) = 〈〈v, grad〈〈·,·〉〉(V )(x)〉〉x

for all x and v. Geometrically, this means that, unless x is an equilibrium, grad〈〈·,·〉〉(V )(x)

points in the direction of steepest ascent of V at the point x, with respect to the chosen

Frederic
Notiz
gradients
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metric. In particular, if C(x) in Eq. (3.6) is invertible and we consider the metric,

〈〈u,w〉〉x := 〈u,C(x)−1w〉,

we see that

grad〈〈·,·〉〉(V )(x) = C(x)grad〈·,·〉(V )(x) = C(x)∇V (x).

Thus, Eq. (3.6) can be thought of as a gradient system in the classical sense, if we replace

the Euclidean metric on R
d by a Riemannian one, at least when C(x) is invertible.

The interpretation is somewhat more delicate when C(x) fails to be invertible. Intuitively, one

might think of the kernel of C(x) as a set of forbidden directions, and try to restrict attention

to submanifolds which partition the space and are in each point x tangent to the image of C.

However, this interpretation is only valid when the image of C is integrable in the sense that

whenever Y and Z are two vectorfields such that Y (x) ∈ Im C(x) and Z(x) ∈ Im C(x) for

all x, then also [Y,Z](x) ∈ Im C(x) for all x, where [Y,Z] denotes the Lie bracket of Y and

Z; this is the content of frobenius’ Theorem [Wal04, Thm. 1.9.2]. The situation when Im C

is not integrable can be understood via the theory of sub-Riemannian manifolds. Roughly

speaking, this theory is concerned with Riemannian metrics which may take the value +∞;

see [BR96] for an overview.

Remark 3.2. To demonstrate the non-triviality of the condition of integrability, consider the

following two vector fields on R
3.

X1 :=
∂

∂x1
and X2 := x1

∂

∂x3
+

∂

∂x2
.

Then,

[X1,X2] =
∂

∂x3
,

which is nowhere in the span of X1 and X2; thus, proving integrability in our case (and for

the gradient systems arising in chemical reaction network theory in general) might be an

interesting problem in its own right. ♦

We remark that, under the assumption that (3.6) has a unique equilibrium, the potential V is

always a strong (global) Lyapunov function (by which we mean that V is strictly increasing

along non-constant solutions). This is because

〈∇V (x), ẋ〉 = 〈∇V (x), C(x)∇V (x)〉 > 0,

by the positive semi-definiteness of C(x). Equality holds if and only if ∇V (x) is in the kernel

of C(x) (implying that ẋ = 0), hence, if and only if the system is in equilibrium.

We have seen in the previous section that the general recombination equation, interpreted

as a chemical reaction network, is strongly reversible. Thus, it is a gradient system in the

sense of Eq. (3.6), by standard theory; compare [Yon12; Mie11], where this is proved in much
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greater generality. For the sake of completeness, we include the simple proof of this fact, in

the special case needed for our purposes.

Theorem 3.4. The law of mass action for any strongly reversible CRN can be written as a
generalised gradient system,

ċt = C(c)∇F (c),

where
F (c) := −

∑

s∈S

(
c(s) log

(
c(s)

)
− c(s)

)

is called the negative free energy and C is a continuous function on P(S), which is smooth
on its interior and takes values in the positive semi-definite matrices.

Proof. Due to strong reversibility (see Definition 3.1), the law of mass action takes the form

ċt =
∑( m∏

i=1

c(ri)−
m∏

i=1

c(si)
) m∑

i=1

(si − ri),

where the outer sum is taken over all forward-backward reaction pairs in the network. Define

for r, t > 0,

L(r, t) :=
r − t

log (r)− log (t)
.

It is a straightforward exercise to verify that L defines a continuous, non-negative function

on R
2
>0, which is smooth on R

2
>0. Note that

∇F (c) = −
∑

s∈S

log
(
c(s)

)
s.

Thus, defining (for each forward-backward reaction pair)

M(c) := L
( m∏

i=1

c(ri),
m∏

i=1

c(si)
)( m∑

i=1

(si − ri)

)( m∑

i=1

(si − ri)

)T

,

we see by the multiplication rule for the logarithm that

( m∏

i=1

c(ri)−
m∏

i=1

c(si)
) m∑

i=1

(si − ri) = M(c)∇F (c).

Here, we also used that sT∇F (c) = − log
(
c(s)

)
for all s ∈ S. Since a non-negative linear

combination of positive semi-definite, symmetric matrices is symmetric and positive semi-

definite, the claim follows.

Remark 3.3. Since the total mass,
∑

s∈S ct(s), is preserved in our case, we may replace the
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negative free energy F in Theorem 3.4 by the entropy,

H(c) := −
∑

s∈S

c(s) log
(
c(s)

)
.

For the solution of the recombination equation (Eq. (2.5)) this has the following consequence.

It is a well-known fact that, when considering the set of probability measures on a product

space which all have the same marginals, the product measure of these marginals is a max-

imiser for the entropy. As the one-dimensional marginals are preserved under recombination

(in absence of mutation or selection), the fact that Eq. (2.5) can be written as a generalised

gradient system with respect to H reflects on the fact that the solution approaches linkage

equilibrium; compare [Bür09, Theorem 3.1]. ♦

3.2.1 Explicit examples

Combining Theorems 3.4,3.2 and 3.3, for finite X, there exists a Function C, defined on P(X)

with values in the symmetric positive semi-definite matrices such that

ω̇t = C(ωt)∇F (ωt)

is equivalent to the recombination equation (2.5). Our goal is now to write down the function

ν 7→ C(ν) for ν ∈ P(X) explicitly for concrete examples. The most simple one is the classical

case with two parents and two diallelic loci (compare [HM15, Ex. 1]). Then, we have the

reaction

(0, 0) + (1, 1)
̺
←→ (1, 0) + (0, 1).

Identifying (0, 0) with the first, (0, 1) with the second, (1, 0) with the third and (1, 1) with

the fourth basis vector in R
4, the matrix C(ν), as constructed in the proof of Theorem 3.4

can be written as

̺L
(
ν(0, 0)ν(1, 1), ν(1, 0)ν(0, 1)

)




1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1



,

where L is as in the proof of Theorem 3.4.

Next, we treat the slightly more complicated example of three diallelic loci (but still 2 parents);

compare [HM15, Ex. 2]. Again, we denote the two alleles by 0 and 1. We denote the type

(i1, i2, i3) by g4ii+2i2+i3
; in other words, the index of a type is just the type itself, read as a

binary integer. For example, we refer to (0, 0, 0) by g0 and to (1, 0, 1) by g5, and identify gi

with the canonical i+ 1-th basis vector of R8.
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Now, by the proof of Theorem 3.4, we associate to each reaction pair of the form

gi1
+ gi2

κ
←→ gj1

+ gj2
, (3.8)

an 8× 8 matrix M(ν) with entries

Mij(ν) :=





κL
(
ν(gi1

)ν(gi2
), ν(gj1

)ν(gj2
)
)
, if gi−1 and gj−1 are on the same side of (3.8),

−κL
(
ν(gi1

)ν(gi2
), ν(gj1

)ν(gj2
)
)
, if gi−1 and gj−1 are on different sides of (3.8),

0, otherwise

and C(ν) is then given by summing these matrices over all forward-backward reaction pairs

in the network. To keep things tidy, instead of summing over all forward-backward reaction

pairs, we write down the sums over each different linkage class seperately; this allows to take

advantage of the following symmetry implied by our choice of indices. Namely, as 1s are only

exchanged between gametes but their relative positions in the sequence remains unchanged,

the sum of indices is the same for each complex that are in the same linkage class, of which

there are seven; six consisting of only one forward-backward reaction pair each, and one

consisting of six such pairs. Assume that M belongs to a reaction within a complex where

the indices sum to ℓ. Then, it is easy to see that we have Mi,j = Mℓ−i+2,j = Mi,ℓ−j+2 =

Mℓ−i+2,ℓ−j+2. This means that, for ℓ odd, M is of the form




A �A 0


A 
�A 0

0 0 0


 if ℓ 6 7 and




0 0 0

0 
�A 
A

0 �A A


 for ℓ > 7,

where � denotes the reversal of columns and 
 denotes the reversal of rows within a matrix

and A is a ℓ+1
2 ×

ℓ+1
2 matrix if ℓ 6 7 and a 14−ℓ+1

2 matrix if ℓ > 7. For ℓ even , M is of the

form 


A 0 �A 0

0 0 0 0


A 0 
�A 0

0 0 0 0




if ℓ 6 7 and




0 0 0 0

0 
�A 0 
A

0 0 0 0

0 �A 0 A




for ℓ > 7,

where A is now an ℓ
2 ×

ℓ
2 matrix if ℓ 6 7 and 14−ℓ

2 if ℓ > 7; Here, the extra 0 between the

reflected copies of A comes from the fact that reactions of the form

gi + gi
κ
←→ gi + gi

do not contribute to the system. Let us now write these matrices A for the different linkage

classes. We abbreviate the function ν 7→ L
(
ν(gi1

)ν(gi2
), ν(gj1

))ν(gj2
)
)

by Li1i2,j1j2. For all
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1 6 i 6 3, ̺i denotes the recombination rate for the partition {{i}, {1, 2, 3} \ {i}}. For the

first six linkage classes in [HM15, Ex. 2], each consisting of one reaction, we have in place of

A

(
(̺1+̺2)L06,24 0 −(̺1+̺2)L06,24

0 0 0
−(̺1+̺2)L06,24 0 (̺1+̺2)L06,24

)
,

(
(̺1+̺2)L17,35 0 −(̺1+̺2)L17,35

0 0 0
−(̺1+̺2)L17,35 0 (̺1+̺2)L17,35

)
,

(
(̺1+̺3)L05,14 −(̺1+̺3)L05,14 0

−(̺1+̺3)L05,14 (̺1+̺3)L05,14 0
0 0 0

)
,

( 0 0 0
0 (̺1+̺3)L27,36 −(̺1+̺3)L27,36

0 −(̺1+̺3)L27,36 (̺1+̺3)L27,36

)
,

representing the reactions g0 + g6

̺1+̺2←−−−→ g4 + g2, g1 + g7

̺1+̺2←−−−→ g5 + g3, g0 + g5

̺1+̺3←−−−→

g4 + g1, g2 + g7

̺1+̺3←−−−→ g6 + g3 and

(
(̺2+̺3)L03,12 −(̺2+̺3)L03,12

−(̺2+̺3)L03,12 −(̺2+̺3)L03,12

)
,
(

(̺2+̺3)L47,56 −(̺2+̺3)L47,56

−(̺2+̺3)L47,56 (̺2+̺3)L47,56

)
,

representing the reactions g0 + g3

̺2+̺3←−−−→ g2 + g1 and g4 + g7

̺2+̺3←−−−→ g5 + g6. Finally, the

last linkage class, comprised of the six reactions g2 + g5

̺1←→ g6 + g1, g6 + g1

̺2←→ g4 + g3,

g4 + g3

̺1←→ g0 + g7, g0 + g7

̺2←→ g2 + g5, g2 + g5

̺3←→ g4 + g3, g6 + g1

̺3←→ g0 + g7, is represented

by




̺1L07,34+̺2L07,25+̺3L16,07 −̺3L16,07 −̺2L07,25 −̺1L07,34

−̺3L16,07 ̺1L16,25+̺2L16,34+̺3L16,07 −̺1L16,25 −̺2L16,34

−̺2L25,07 −̺1L25,16 ̺1L25,16+̺2L25,07+̺3L25,34 −̺3L25,34

−̺1L34,07 −̺2L34,16 −̺3L34,25 ̺1L34,07+̺2L34,16+̺3L34,25


 .

3.3 Markov chains with strictly monotone orbits and the par-

titioning process

We have seen how the result of Müller and Hofbauer [HM15] generalises in the setting of an

arbitrary number of parents, at least for finite type spaces. For more general, potentially

uncountable type spaces, this approach fails because it is not clear how to even make sense of

the notion of the concentration of individual types, unless ωt is pure point. Now, we show how

the evolution of the law of the partitioning process, related to ω via Eq. (2.9) can be written

as a gradient system. Ultimately, this is due to the monotonicity of its sample paths; recall

from (2.10) that the transition rate from A to B vanishes whenever B 64 A. In particular, the

number of blocks increases strictly in each transition.

Definition 3.5. Let X =
(
Xt

)
t>0

be a continuous-time Markov chain on a finite state-space

E, with rate matrix
(
Q(i, j)

)
i,j∈E

; it is called a Markov chain with strictly monotone orbits
(MCsmo) (with respect to a real-valued function W on E) if Q(i, j) > 0 implies that W (j) >

W (i). ♦

Recall that the distribution of a finite-state Markov chain X can be interpreted as a probability
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vector,

pXt :=
∑

i∈E

pXt (i)i,

which evolves in time according to the differential equation,

ṗXt =
∑

i∈E

∑

j∈E

pXt (i)Q(i, j)(j − i). (3.9)

If X has strictly monotone orbits in the sense of Definition 3.5, Eq. (3.9) can be written as a

generalised gradient system, as defined in Section 3.2.

Theorem 3.6. Let X be a MCsmo with respect to W and define Ψ : P(E)→ R,

Ψ(p) :=
∑

i∈E

p(i)W (i).

Then, Eq. (3.9), which describes the time evolution of pX :=
(
pXt
)

t>0
, can be written as

ṗXt = K(pXt )∇Ψ(pXt ),

where K takes values in the symmetric, positive semi-definite matrices, is continuous on P(E)

and smooth on its interior.

Proof. Define

K(p) :=
∑

i,j∈E
Q(i,j)>0

p(i)Q(i, j)

W (j)−W (i)
(j − i)(j − i)

T

.

Since Ψ is linear with (constant) gradient

∇Ψ =
∑

i∈E

W (i)i,

we have (j − i)T∇Ψ = W (j)−W (i) and thus,

K(p)∇Ψ =
∑

i,j∈E
Q(i,j)>0

p(i)Q(i, j)

W (j)−W (i)

(
W (j)−W (i)

)
(j − i) =

∑

i,j∈E

p(i)Q(i, j)(j − i).

Inserting pXt for p, this is exactly the right-hand side of Eq. (3.9).

As mentioned before, the partitioning process is a process of successive refinement; in every

non-silent transition, the number of blocks increases at least by one. Thus, it is a MCsmo

with respect to the number of blocks.

Corollary 3.7. The law pΣ of the partitioning process with generator Q given in Eq. (2.10)
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satisfies a generalised gradient system with respect to N given by

N(p) =
∑

A∈P (S)

p(A)|A|.

Let us give an explicit example.

Example 3.1. Let us consider a Markov chain with 4 states A,B,C,D and jump rates

q(A,B) = q(A,C) = 1 and q(B,D) = q(C,D) = 2. All other transition rates are 0. This

is a Markov chain with strictly monotone orbits in the sense of Definition 3.5, with respect

to W given by W (A) = 1,W (B) = W (C) = 2,W (D) = 3. Upon identifying A,B,C,D

with the standard basis of R4, the linear differential equation describing the dynamics of its

distribution reads

ṗt =




−2 0 0 0
1 −2 0 0
1 0 −2 0
0 2 2 0


 pt, (3.10)

and can be rewritten as

ṗt =




2pt(A) −pt(A) −pt(A) 0
−pt(A) pt(A) + 2pt(B) 0 −2pt(B)
−pt(A) 0 2pt(C) + pt(A) −2pt(C)

0 −2pt(B) −2pt(C) 2pt(C) + 2pt(B)







1
2
2
3


 . (3.11)

Here, the vector (1, 2, 2, 3)T is the gradient (with respect to the euclidean metric) of

Ψ(p) = p(A) + 2p(B) + 2p(C) + 3p(D).

Also, the matrix is symmetric and it is positive semi-definite, as it can be written as a sum

of positive semi-definite matrices (as long as p(A), p(B), p(C) > 0),

p(A)

(−1
1
0
0

)
(−1 1 0 0 )+p(A)

(−1
0
1
0

)
(−1 0 1 0 )+2p(B)

( 0
−1
0
1

)
( 0 −1 0 1 )+2p(C)

( 0
0
−1
1

)
( 0 0 −1 1 ) ,

evaluated at p = pt. Thus, Eq. (3.11) is a generalised gradient system in the sense of Eq. (3.6).

Note that the coefficient matrix in Eq. (3.10) is not diagonalisable; this is because the eigen-

value −2 has algebraic multiplicity 3, but the associated eigenspace is merely two-dimensional

and spanned by (0, 1,−1, 0)T and (0, 1, 0,−1)T . Its general solution will therefore contain terms

of the form te−2t. This seems to be in contradiction with the fact that generalised gradient

system can not have resonant solutions of the form tkeλt for k > 1. One has to keep in

mind, however, that the gradient representation only holds on the non-negative cone (which

is invariant for the system). Note also that the problematic generalised eigenspace only has

a trivial intersection with R
4
>0. ♦

Let us conclude this section with one additional example.
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Example 3.2. Let us now consider the actual partitioning process, for three loci. We have

the five partitions A1 = {{1, 2, 3}},A2 = {{1}, {2, 3}},A3 = {{1, 3}, {2}},A4 = {{1, 2}, {3}}

and A5 = {{1}, {2}, {3}}. Identifying Ai with the i-th basis vector in R
5, the generator Q of

the partitioning process (compare Eq. (2.10)) reads




−̺1−̺2−̺3 ̺1 ̺2 ̺3 0
0 −̺2−̺3 0 0 ̺2+̺3
0 0 −̺1−̺3 0 ̺1+̺3
0 0 0 −̺1−̺2 ̺1+̺2
0 0 0 0 0


 ,

where ̺1, ̺2, ̺3 are as in Subsection 3.2.1, and he gradient system then for the distribution

pΣ
t then reads

ṗΣ
t =




D1 −pt(A1)̺1 −pt(A1)̺2 −pt(A1)̺3 0

−pt(A1)̺1 D2 0 0 −pt(A2)(̺2+̺3)

−pt(A1)̺2 0 D3 0 −pt(A3)(̺1+̺3)

−pt(A1)̺3 0 0 D4 −pt(A4)(̺1+̺2)

0 −pt(A2)(̺2+̺3) −pt(A3)(̺1+̺3) −pt(A4)(̺1+̺2) D5




( 1
2
2
2
3

)
,

where D1, . . . ,D5 are chosen such that the rows sum to 0 and (1, 2, 2, 3)T is the gradient

∇N of the mean number of blocks N , defined in Corollary 3.7. Again, the maximum of the

potential, the partition {{1}, {2}, {3}} characterises linkage equilibrium (‘all sites come from

independent ancestors’). ♦

3.4 Nonlinear partitioning as a chemical reaction network

We have seen in the previous chapter that the evolution of the law of the partitioning process

can be rewritten as a linear generalised gradient system. We now consider the nonlinear

system from Theorem 2.7. We will see that it, too, can be interpreted as the law of mass

action for a network of chemical reactions between the partitions of S. Its construction is

very similar to the network from Section 3.1.

To motivate this result, imagine that at time t = 0, we paint every gamete in a different

color. As described in Theorem 3.5 and Fig. 3.1, for every C ∈ P (S), every randomly chosen

|C|-tuple of gametes undergoes a chemical reaction as in Eq. (3.5) at rate ̺(C)
|C| . But now,

instead of investigating the effect on the type distribution, we ask how the initially assigned

colors are mixed in the process. To this end, we attach to each individual a partition of its

sites by grouping together all sites with the same color.

Now, consider the j-th gamete that results from such a reaction (compare Eq. (3.5)); for

two sites k and ℓ in this individual to have the same color, they must come from the same

individual on the left-hand side (this is due to the fact that the tuple was chosen randomly

and, as there are infinitely many colors in the population, the probability that the same color

occurs in more than one individual in the chosen sample is negligible). More formally, there

must be an i between 1 and |C| such that k and ℓ are both in Ci. If that is true, both sites

come from the i + j − 1-th individual, and thus must share the same block of Ai+j−1. Put
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more concisely, this means that k and ℓ belong to the same block of the induced partition

Ai+j−1|Ci
for some i ∈ {1, . . . , |C|}. Equivalently, this means that the partition that describes

the coloring of the j-th product gamete is given precisely by

|C|⋃

i=1

Ai+j−1|Ci
.

For an illustration, see Fig. 3.2. Thus, the reaction network from Section 3.1 translates to

the system consisting of the reactions

|C|∑

j=1

Aj

̺(C)
|C|
−−−→

|C|∑

j=1

|C|⋃

i=1

Ai+j−1|Ci
, (3.12)

one for each C and every |C|-tuple of partitions of S; as always, indices are to be read mod

|C|. These reactions are of the same form as the ones between gametes in Eq. (3.5), after

replacing the type fragments πCi

(
x(i+j−1)

)
with the induced partitions Ai+j−1|Ci

.

We finish by showing that the law of mass action of this chemical reaction network is precisely

the nonlinear system from Theorem 2.7.

Theorem 3.8. The nonlinear system of ordinary differential equations that describes the dy-
namics of the coefficients in (2.7) can be written as the law of mass action for the CRN

comprised of all reactions (3.12). More concisely, the system from Theorem 2.7 is equivalent
to

ȧt =
∑

C

∑

A1,...,A|C|

̺(C)

|C|
at(A1) · . . . · at(A|C|)

( |C|∑

j=1

( |C|⋃

i=1

Ai+j−1|Ci
−Aj

))
,

where the summation is over P (S).

Proof. We will use the following identity (the proof of which will conclude the proof of the

theorem),

|B|∏

i=1

∑

C∈P (S)
C|Bi

=A|Bi

a(C) =
1

|B|

|B|∑

j=1

∑

A1,...,A|B|

δ

(
A,

|B|⋃

i=1

Ai+j−1|Bi

)
· a(A1) · . . . · a(A|B|), (3.13)

valid for all B < A and all a ∈ R
P (S), where B = {B1, . . . , B|B|}. Inserting (3.13), we see that

the second sum on the right-hand side of Eq. (2.8),

∑

A

∑

.B<A

( |B|∏

i=1

∑

C∈P (S)
C|Bi

=A|Bi

at(C)

)
̺(B)A,
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can be written as

∑

A

∑

.B<A

(
̺(B)

|B|

|B|∑

j=1

∑

A1,...,A|B|

δ

(
A,

|B|⋃

i=1

Ai+j−1|Bi

)
at(A1) · . . . · at(A|B|)A

)
. (3.14)

Notice that the second argument of the Kronecker function is always finer than B. Thus,

the whole summand vanishes whenever B < A does not hold. We may therefore ignore the

restriction B < A in the inner sum, which allows us then to change the order of summation.

After using the Kronecker function to perform the summation with respect to A, what remains

is
∑

B

̺(B)

|B|

∑

A1,...,A|B|

a(A1) · . . . · a(A|B|)

|B|∑

j=1

|B|⋃

i=1

Ai+j−1|Bi
.

Up to renaming B with C, this is exactly the first part of the law of mass action for the CRN

described above. Using the same argument as in the proof of Theorem 3.2, the first sum in

Eq. (2.8),

−
∑

B

̺(B)
∑

A

a(A)A,

can be rewritten as

−
∑

B

̺(B)

|B|

∑

A1,...,A|B|

at(A1) · . . . · at(A|B|)(A1 + . . .+A|B|).

Up to renaming B with C, this completes the proof, provided Eq. (3.13) is correct. To show

this, we start by expanding the right hand side,

|B|∏

i=1

∑

C∈P (S)
C|Bi

=A|Bi

a(C) =
∑

(A1,...,A|B|)∈G(A)

a(A1) · . . . · a(A|B|)

=
∑

A1,...,A|B|

δ

(
A,

|B|⋃

i=1

Ai|Bi

)
a(A1) · . . . · a(A|B|)

where G(A) is the set of all |B|-tupels (A1, . . . ,A|B|) of partitions with Ai|Bi
= A|Bi

. Since

A 4 B implies that

A = A|B1 ∪ . . . ∪A|B|B|
,

(A1, . . . ,A|B|) ∈ G(A) if and only if

A =

|B|⋃

i=1

Ai|Bi
.
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̺(C)
|C|

+

+

Figure 3.2. A reaction between two gametes with 3 loci, corresponding to the partition
C = {{1, 2}, {3}}. This means that the leading two sites of the left gamete on the top is
combined with the trailing third site of the gamete on the right, and the leading two sites of the
gamete to the right are combined with the trailing third of the left one. Here, the coloring of
the sites is represented by different patterns. The partitions associated with the gametes are as
follows. For the substrate complex (top), we have A1 = {{1, 2}, {3}} and A2 = {{1}, {2, 3}},
and the product complex (bottom) consists ofA1|C1

∪A2|C2
= {{1, 2}}∪{{3}}= {{1, 2}, {3}}

and A1|C2
∪ A2|C1

= {{3}} ∪ {{1}, {2}} = {{1}, {2}, {3}}.

Now, as in the proof of Theorem 3.2, we replace the product (for 1 6 j 6 |B|)

a(A1) · . . . · a(A|B|)

by

a(A1−j+1) · . . . · a(A|B|−j+1)

and subsequently rename the summation indices. Thus,

∑

A1,...,A|B|

δ

(
A,

|B|⋃

i=1

Ai|Bi

)
a(A1) · . . . · a(A|B|)

=
1

|B|

|B|∑

j=1

∑

A1,...,A|B|

δ

(
A,

|B|⋃

i=1

Ai+j−1|Bi

)
a(A1) · . . . · a(A|B|),

which finishes the proof of Eq. (3.13) and hence, of the theorem.

Despite their similar appearance, there is one crucial difference between the CRN from Sec-

tion 3.1, and the one above. Because the products are pieced together from partitions of

subsets induced by the substrates, the total number of blocks on the right-hand side is in

general strictly larger than on the left-hand side. This implies that this network is not revers-

ible, and the question whether it can be interpreted as a gradient system remains open. The

loss of reversibility appears to be the coarse-graining of the information in our system that

we performed by transitioning from the (potentially infinite) set of types to the finite set of

partitions. This is vaguely reminiscent of the common phenomenon in statistical mechanics

where the projection of the underlying (high-dimensional) microscopic model to a smaller set

of macroscopic degrees of freedom leads to a loss of reversibility.





4 Ancestral lines under selection and
recombination

After investigating aspects of the dynamics of pure recombination in the previous chapter,

we now want to attack the selection-recombination equation, which describes evolution under

the joint action of recombination and selection. Here, selection means that fit individuals

flourish at the expense of less fit ones. This equation first appeared in the literature in a

paper by Kimura [Kim65] in 1956 and has since been studied intensely; see [Bür00, Ch. II]

for a comprehensive review. The selection-recombination dynamics is more complex than

that of pure recombination; in particular, it displays Hopf bifurcations and stable limit cycles

in certain parameter regimes [Aki74]. Much research has been devoted to the case where

recombination is much faster than selection, so that time-scale separation applies and the

dynamics is confined to a specific manifold [NHB99].

In this chapter, our goal is to understand the selection-recombination equation with one se-

lected site and single crossovers, to provide a systematic and transparent approach that also

generalises to an arbitrary number of sites, and to establish an exact solution via a recursion.

We do this by extending the approach used in [BBS16; BB16] for the pure recombination

equation; namely, we trace back the (potential) ancestral lines of individuals in the cur-

rent population, this time by a variant of the ancestral selection-recombination graph [DK99;

LK12; BP18] for an arbitrary number of sites. This gives rise to a Markov process on the

set of weighted partitions of the set of sequence sites; this process is dual to the selection-

recombination equation. The corresponding Markov semigroup is available in closed form,

and the resulting stochastic representation yields deep insight into the genealogical content of

the solution of the differential equation. Moreover, it gives access to the long-term behaviour.

This chapter is organised as follows. Sections 4.1 and 4.2 introduce the selection-recombination

equation, both in its own right and in terms of a dynamical law of large numbers of the corres-

ponding Moran model, which describes a finite population under selection and recombination

and, via its graphical construction, provides the foundation for the genealogical arguments

to follow later. In Section 4.3, we revisit marginalisation consistency, which, in the presence

of selection, is more subtle and only true for certain subsets, but all the more interesting.

A recursive integral representation of the solution is given in Section 4.4. The core of this

chapter consists of Sections 4.5 and 4.6, where we construct the backward process and provide

the genealogical argument behind our recursion, together with Section 4.7, where the dual

process is formulated and the formal duality result is proved. Finally, the explicit solution is

presented in Section 5.6, and its long-term behaviour is investigated.
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4.1 The selection-recombination equation

The selection-recombination equation is based on the pure recombination equation (compare

Eq. (2.5)) in continuous time, together with an additional selection term, which we will explain

later.

We restrict our attention to the special case of single-crossover. This means that in (2.5), we

assume that ̺A = 0 whenever A is not an interval partition into two parts, i.e. whenever A

is not of the form {[1 : i], [i+ 1 : n]} for some i ∈ S, where [a : b] denotes the discrete interval

{a, a+1, . . . , b−1, b}, which is empty if b < a. Moreover, we assume that Xi = {0, 1}, that is,

there are two alleles at each locus. Thus, the selection-recombination equation has the form

ω̇t = Ψrec(ωt) + Ψsel(ωt), (4.1)

where

Ψrec(ωt) :=
∑

A∈P (S)

̺A(RA − id)(ωt)

is the right-hand side of Eq. (2.5).

Remark 4.1. We remark that our assumption of single-crossover recombination is in line with

the biological reality. In each generation, crossover events are typically rare and approximately

independent; thus, the probability of multiple simultaneous crossovers is negligible. ♦

To explain the selection term Ψsel(ωt), we start by fixing a site 1 6 i∗ 6 n, which we will refer

to as the selected site, and set S∗ := S \ {i∗} (note that card(S∗) = n− 1). An individual of

type x ∈ X is deemed to be fit or of beneficial type if xi∗ = 0 and unfit or of deleterious type
otherwise, regardless of the letters at all other sites.

Selection then works as follows. Unfit individuals produce offspring at rate 1, while fit indi-

viduals reproduce at a higher rate 1 + s, s > 0. Put differently, every individual, regardless

of its type, has the neutral reproduction rate 1, while the fit individuals have an additional

(selective) rate s. Upon reproduction, every offspring individual replaces another randomly

chosen individual from the population so that the total population size remains constant.

The net effect of the difference in reproduction rate between the fit and unfit type is that, in

every infinitesimal time step, a certain (infinitesimal) fraction of the population is replaced

by offspring of the subpopulation of fit individuals.

Let us be more precise. We write

f(ν) := ν
(
π−1

i∗
(0)
)

= ν{i∗}(0) (4.2)

for the proportion of fit individuals in a population with type distribution ν, and the selection
operator F : P(X)→ P(X) via

F (ν)(x) = (1− xi∗)ν(x). (4.3)
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Taking advantage of the interpretation ofM(X) as a tensor product (compare the discussion

after Remark 2.1), the selection operator can also be written as

F = Pi∗
⊗ idS∗ , (4.4)

where Pi∗
:= δ0δ

T

0 (recall that measures are interpreted as column vectors). Here, the sub-

scripts indicate the site(s) at which the matrices act.

In words, F is the orthogonal projection to the subspace spanned by all elements of the form

δ0 ⊗ v with v ∈
⊗

i∈S∗

M(Xi) =M(XS∗).

Furthermore, we define b(ν) and d(ν) via

f(ν)b(ν) = Fν (4.5)

and (
1− f(ν)

)
d(ν) = (1− F )ν, (4.6)

respectively (thus averting the danger of division by zero); here and in what follows, we write

Fν instead of F (ν) when there is no risk of confusion. The measure b(ν) (the measure d(ν))

is the type distribution in the beneficial (deleterious) subpopulation.

Finally, we assume that, in each infinitesimal time interval [t, t+ dt], the number of individuals

replaced by offspring of the subpopulation of fit individuals is proportional to f(ωt). Thus

the selection term is given by

Ψsel(ωt) = sf(ωt)
(
b(ωt)− ωt

)
, (4.7)

where b(ωt) is as in (4.5), and we refer to the proportionality factor s as the selection intensity.

Remark 4.2. The additive structure (4.1) of the selection-recombination is a consequence

of the independence of recombination and selection and reflects the assumption that both

selection and recombination are rare, so that one can neglect the possibility that recombination

happens during selective reproduction; see Remark 4.3 below, and [Hof85] for the worked

argument in the analogous case of the selection-mutation equation. ♦

To better exploit the additional structure we gain by restricting to single crossover, we intro-

duce the following partial order on S.

Definition 4.1. For two sites i, j ∈ S, we say that i precedes j, or i 4 j, if either i∗ 6 i 6 j

or j 6 i 6 i∗. We write i ≺ j if i 4 j and i 6= j. We furthermore define the i-tail as the set

Di := {j ∈ S | i 4 j}

of all sites that succeed i, including i itself. We define the i-head Ci to be the complement
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1 2 3 4 5 6 7 8 9 10

i
∗
= 4

Di Ci

DkCk

i
←−
i

k
←−
k

Figure 4.1. A sequence of length 10 with selected site, and two examples of predecessor,
head, and tail; see text for more.

of the i-tail, Ci := S \ Di = Di (throughout, the overbar will denote the complement with

respect to S); see Figure 4.1. Note that Di∗ = S and Ci∗ = ∅. Finally, if i 6= i∗, we denote

by
←−
i the predecessor of i; that is, the maximal j ∈ S with j ≺ i (note that

←−
i = i∗ is

possible). ♦

Remark 4.1. 1. Let us stress the fact that, in this chapter, 4 now defines a partial order

on S rather than refinement of partitions.

2. The definition may appear awkward in that i∗ ∈ Di∗ but i∗ ∈ Ci for i ∈ S∗. However,

it will become clear in Section 4.7 why this is exactly the way it must be.

3. In the limiting case s = 0, we may single out any site as the selected one; say i∗ = n,

so that Di = [1 : i] and Ci = [i + 1 : n]. ♦

For i ∈ S∗, we now define a slightly different version of the recombinator Ri : P(X)→ P(X)

by

Ri(ν) := R{Ci,Di}
(ν) = νCi ⊗ νDi , (4.8)

with the notation of (2.2) and (2.3); we will also write Riν instead of Ri(ν). Note the use of

‘R’ rather than ‘R’. With this, Eq. (4.1) now reads

ω̇t =
∑

i∈S∗

̺i(Ri − id)ωt + s
(
F − f(ωt)

)
ωt = Ψrec(ωt) + Ψsel(ωt) (4.9)

with recombination rates ̺i > 0 for i ∈ S∗; for consistency, we set ̺i∗ := 0. This means that,

for i < i∗ (i > i∗), a single-crossover event takes place between sites i and i + 1 (sites i − 1

and i) with rate ̺i; in any case, we say that recombination happens at site i. This way, we

address the links between neighbouring sites, as in [BB03], but in a way that depends on the

location of the selected site.

Frederic
Notiz
Selrek-Eq.
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4.2 The Moran model with selection and recombination

In order to gain a better understanding of Eq. (4.9) and to prepare for the genealogical

arguments to follow in Section 4.5, we briefly recall the Moran model with selection and

recombination. This is a stochastic model that describes selection and recombination in a

finite population, from which (4.9) is recovered via a dynamical law of large numbers. We

will use the representation as an interacting particle system (IPS). The Moran IPS works with

N individuals, labelled 1 6 α 6 N , each equipped with a (random) type Ξt(α) ∈ X (of (2.1))

at time t, which behaves as follows.

Every individual β reproduces asexually at a fixed rate according to its fitness. That

is, unfit individuals reproduce at rate 1 whereas fit individuals reproduce at rate 1 + s,

where s > 0 is again the selection intensity. Upon reproduction, the single offspring

inherits the parent’s type and replaces a uniformly chosen individual α in the population

(possibly its own parent). We will realise the different reproduction rates of the two

types by distinguishing between neutral reproduction events, which happen at rate 1

to all individuals regardless of their type, and selective reproduction events, which are

additionally performed by fit individuals at rate s. This distinction is a crucial ingredient

in the ancestral selection graph [KN97].

At rate ̺i, i ∈ S∗, individual β reproduces sexually, choosing a partner γ uniformly

at random, possibly β itself. (Biologically, this means that we include the possibility

of selfing.) The offspring is of type
(
ΞCi

(β),ΞDi
(γ)
)

and replaces another uniformly

chosen individual α, possibly one of its own parents.

Formally, we can thus define the Moran IPS as a continuous-time Markov chain with states

ξ =
(
ξ(α)

)
16α6N

∈ XN and the following transitions when Ξt =
(
Ξt(α)

)
16α6N

= ξ:

ξ → ξα←β
neut at rate 1

N
for all 1 6 α, β 6 N, (4.10)

ξ → ξα←β
sel at rate s

N
for all 1 6 α, β 6 N, and (4.11)

ξ → ξα←(β,γ,i)
rec at rate

̺i

N2
for all 1 6 α, β, γ 6 N and i ∈ S∗ (4.12)

where, for 1 6 ε 6 N , the new state vectors explicitly read

ξα←β
neut (ε) =




ξ(β), ε = α,

ξ(ε), otherwise,

ξα←β
sel (ε) =




ξ(β), ε = α and ξi∗

(β) = 0,

ξ(ε), otherwise,

(4.13)

and

ξα←(β,γ,i)
rec (ε) :=





(
ξCi

(β), ξDi
(γ)
)
, ε = α,

ξ(ε), otherwise.
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Remark 4.3. The reader may wonder at this point why we include both sexual and asexual

reproduction in our model. However, the ‘asexual’ reproduction events are actually sexual

ones in which no recombination has occurred; that is, C = ∅ and D = S, so the offspring is a

full copy of the first parent, and the second parent is irrelevant. Selective reproduction never

occurs together with recombination due to the independence built into the SRE. ♦

For our purpose, it is particularly profitable to take advantage of the graphical representation
of the Moran IPS, see Figure 4.2. Here, every individual is represented by a horizontal line,

lines are labelled 1 6 α 6 N from bottom to top, and reproduction events are represented by

arrows between the lines with the parent at the tail, the offspring at the tip, and the offspring

replacing the individual at the target line (arrows pointing to their own tails have no effect and

are omitted). In line with (4.13) and for reasons to become clear when taking the ancestral

perspective in Section 5, we distinguish two types of arrows: neutral arrows (with normal

arrowheads), which appear between every ordered pair of lines at rate 1/N regardless of the

types of the lines; and selective arrows (with star-shaped arrowheads), which are laid down

at rate s/N between every ordered pair of lines, again regardless of the types. Similarly, a

recombination event in which the individual at line α is replaced by the joint offspring of lines β

and γ is encoded as a square (on the α-th line) in which the recombination site i is inscribed

and which is accompanied by two arms connecting to the parents and labelled C or D,

indicating which of the parents contributes the i-head and i-tail, respectively. These graphical

elements appear at rate ̺i/N
2 for every ordered triple of lines and every i ∈ S∗. If both arms

connect to the same parent, the recombination event turns into a neutral reproduction event.

Remark 4.4. In view of this graphical construction, another perspective on the transition

rates in the Moran IPS is natural. We can say that, with rates ̺i, each individual is replaced

by the joint offspring of two uniformly chosen parents with the crossover point at site i.

Likewise, at rate 1, each individual is replaced by the offspring of a single uniformly chosen

parent individual; and with rate s|{1 6 α 6 N : Ξi∗,t(α) = 0}|, it is replaced by the offspring

of a parent individual chosen uniformly from the subset of fit individuals. This point of view

will be particularly useful when looking back in time in Section 4.5. ♦

The fact that we use different kinds of arrows for the two types of reproduction events (rather

than simply letting fit individuals shoot reproduction arrows at a faster rate) reflects the

distinction between neutral and selective reproduction. The advantage of this strategy is

that it allows for an untyped construction of the Moran IPS; that is, we first lay down the

graphical elements between the lines regardless of the types and only then assign an initial type

configuration. This type configuration is finally propagated forward in time under the rule

that only individuals of beneficial type use the selective arrows to place their offspring, while

neutral arrows and the arms of recombination events are used by all individuals, regardless

of type.
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Consider now the process Z(N) := (Z
(N)
t )t>0, where Z

(N)
t is the empirical measure

Z
(N)
t := 1

N

N∑

α=1

δΞt(α);

Proposition 3.1 in [Cor17b] in combination with Theorem 2.1 from [Ess16] (see also [BEP16])

shows that, as N →∞ without rescaling of parameters or time, the processes Z(N) converge

almost surely locally uniformly to the solution ω = (ωt)t>0 of the deterministic SRE (4.9) for

every finite time horizon, whenever Z
(N)
0 converges to ω0. This is because the Moran models,

indexed with population size, form a density-dependent family, for which a dynamical law of

large numbers applies; see [EK86, Thm. 3.2, Ch. 11].

For completeness, we will quote this theorem and see how it applies to our situation. In the

terminology of [EK86], a density-dependent family is a sequence (X(N))N>1 of Markov chains

in continuous time, each defined on its own state space E(N) which is assumed to be of the

form

E(N) = E ∩
1

N
Z

d,

where E is some subset of Rd. It is further assumed that there exists a collection (βℓ)ℓ∈Zd of

non-negative functions on E which describe the transition rates q(N)(e1, e2) of these Markov

chains via

q(N)(e1, e2) = NβN(e2−e1)(e1).

For such a family of Markov chains, the following theorem holds.

Theorem 4.2 ([EK86, Thm. 3.2, Ch. 11]). Let (X(N))N>1 be a density-dependent family as
above. Suppose that, for each compact K ⊆ E,

∑

ℓ∈Zd

|ℓ| sup
e1∈K

βℓ(e1) <∞ (4.14)

and that G :=
∑

ℓ∈Zd ℓβℓ is Lipschitz continuous. If X(N)
0 → x0 ∈ E as N → ∞, then for

every t > 0

lim
N→∞

sup
06s6t

|X(N)
s −Xs| = 0 almost surely,

where X is the unique solution of
Ẋt = G(Xt) (4.15)

with initial condition X(0) = x0.

Remark 4.5. Clearly, Eq. (4.14) ensures that G is a well-defined continuous function on E.

Implicitly, we assume that a global solution to (4.15) exists; its uniqueness is guaranteed by

the assumed Lipschitz continuity of G via the Picard–Lindelöf Theorem. ♦

For us, the role of E will be played by the simplex P(X) of probability measures, which can

be thought of as a subset of R2n
. Clearly, as Z(N) records the relative frequencies of types
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Figure 4.2. Graphical representation of the Moran IPS. Time runs from left to right. Arrows
corresponding to neutral reproduction events are depicted with normal arrowheads, selective
arrows with star-shaped arrowheads; recombination events are symbolised by squares con-
taining the recombination point, and arms connecting to the parents that contribute the head
(C) and tail (D) segments. The selected site is marked in light brown.

in a population of total size N , this process takes values in P(X) ∩ 1
N
Z

2n

. Its transition

rates can be described as follows (see also Remark 4.4). A transition from state ζ ∈ P(X)

to ζ + 1
N

(δy − δx) occurs if an individual of type x is replaced by an individual of type y.

This happens either due to neutral reproduction (4.10) with rate Nζ(y)ζ(x), due to selective

reproduction (4.11) with rate s(1 − yi∗)Nζ(y)ζ(x) and due to recombination (4.12) at site i

with rate ̺iRi(ζ)(y)Nζ(x). Thus, the total transition rate is given by

q(N)(ζ, ζ+
1

N
(δy−δx)) = N

[
ζ(y)ζ(x)+s(1−yi∗ )ζ(y)ζ(x)+

∑

i∈S∗

̺Ri(ζ)(y)ζ(x)
]

= Nβδy−δx
(ζ)

where

βδy−δx
(ζ) = ζ(y)ζ(x) + s(1− yi∗)ζ(y)ζ(x) +

∑

i∈S∗

̺iRi(ζ)(y)ζ(x).

Since individuals are replaced one by one, all possible transitions are of this form and

q(N)(ζ, ζ ′) = 0 for all ζ ′ which are not of the form ζ + δy − δx for some x, y ∈ X. Due

to the finiteness of X, the summability condition (4.14) is trivially fulfilled and we have

∑

x,y∈X

βδy−δx
(ζ)(δy − δx) = (ζ − ζ) + s

(
Fζ − f(ζ)ζ

)
+
∑

i∈S∗

̺i(Riζ − ζ) = Ψsel(ζ) + Ψrec(ζ).

That the right-hand side is Lipschitz continuous follows from the Lipschitz continuity of the

recombinators (compare [BBS16, Prop. 1]) and thus, of Ψrec. The Lipschitz continuity of Ψsel

is immediate. Thus, Theorem 4.2 yields

lim
N→∞

sup
06s6t

|Z(N)
s − ωs|= 0,

under the assumption that Z
(N)
0 → ω0 as N →∞, where ω = (ωt)t>0 solves Eq. (4.9).

Frederic
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4.3 Marginalisation consistency

Let us now turn to the dynamics of the marginal type distributions under selection and

recombination. As the results of this section will not play a pivotal role for the core of the

chapter, the impatient reader may skip this section at first reading. However, knowledge of

marginalisation consistency will help to understand the graphical constructions in Sec. 4.5,

and is also of independent interest. Furthermore, the current section will enable the reader

to appreciate some of the difficulties and pitfalls inherent in the selective case.

For A ⊆ S, we define the marginal recombinators RA
i : P(XA)→ P(XA) by

RA
i ν := νA∩Ci ⊗ νA∩Di (4.16)

for i ∈ A \ i∗, where Ci and Di denote the head and tail for i as before, and we use the

shorthand A \ j for A \ {j}.

Remark 4.6. Note that πA.Riω = RA
i ω

A for all A ⊆ S and ω ∈ P(X), and RA
i = id if A is

contained either in Ci or Di, that is, if {Ci,Di}|A = {A} (compare [BBS16, Lemma 1]). ♦

Consider now the marginal ωA = (ωA
t )t>0 of the solution ω of the recombination equation. In

the neutral case (s = 0), it is well known (compare Theorem 2.4) that the marginal satisfies

the marginalised recombination equation

ω̇A
t = πA.Ψrec(ωt) =

∑

i∈A\i∗

̺A
i

(
RA

i ω
A
t − ω

A
t

)
=: ΨA

rec(ω
A
t ) (4.17)

with initial condition ωA
0 = πA.ω0 and marginal recombination rates

̺A
i :=

∑

j∈S∗

{Cj ,Dj}|A={Ci,Di}|A

̺j for all i ∈ A \ i∗; (4.18)

see Figure 4.3 for an illustration. In particular,

ω̇
{i}
t = 0 for i ∈ S∗ (4.19)

since R
{i}
i = id. Eq. (4.17) follows from Remark 4.6, the linearity of πA. and the definition of

the marginal rates in Eq. (4.18).

Unfortunately, this property does not generalise to the selective case. The reason is that

Ψsel also depends on the proportion f(ωt) = ω
{i∗}
t (0) of fit individuals and that we lose this

information by projecting onto a factor with respect to a subset of S not containing i∗. When

A does contain i∗, however, we clearly have

f(ν) = fA(νA) for any ν ∈ P(X), (4.20)
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S

A























i∗ i

{Ci,Di}|A

{

{Cj ,Dj} : {Cj ,Dj}|A = {Ci,Di}|A, j ∈ S∗

}

Figure 4.3. The partitions in Eq. (4.18) that define the marginal recombination rates.

where fA is defined analogously to (4.2), but with S replaced by A. Moreover, the selection

operator defined in (4.3) acts consistently on subsystems that contain the selected site, that

is,

πA.Fν = FAνA for A ∋ i∗,

where the marginalised selection operator is given by

FA(νA)(xA) =




νA(xA), if xi∗ = 0,

0, otherwise.

In view of these considerations, we can define ΨA
sel : P(XA)→ P(XA) via

ΨA
sel(ν

A) := s
(
FA − fA(νA)

)
νA

such that πA.Ψsel(ν) = ΨA
sel(ν

A) for A ∋ i∗ and all ν ∈ P(X). Combining this with (4.17), we

obtain the following result.

Theorem 4.3 (marginalisation consistency of the SRE). Let ω be a solution of the SRE (4.9).
Let A ⊆ S contain i∗. Then, the marginal ωA := (ωA

t )t>0 solves the marginal SRE,

ω̇A
t = s

(
FA(ωA

t )− fA(ωA
t )ωA

t

)
+

∑

i∈A\i∗

̺A
i

(
RA

i ω
A
t − ω

A
t

)
,

with the marginal recombination rates ̺A
i given in (4.18). In particular, ωA is independent of

all ̺i with i such that {Ci,Di}|A = {A}; or equivalently, with i such that i ≻ j for all j ∈ A
comparable to i.

Remark 4.7. The problem of marginalisation (in)consistency was already observed by Ewens

and Thomson [ET77] in 1977 for the discrete-time SRE; see also the review in [Bür00, pp. 69–

72]. For Theorem 4.3 to hold, the assumption that A contains the selected site is crucial: It is

otherwise impossible to find a closed expression for the projection of the selective part in (4.9)

in terms of the marginal measure, because we lose the information about the proportion of fit
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01 2 3 45 6 7 89

1 2 3 4 5 6 7 8 9 10

Figure 4.4. A nondecreasing permutation of sites. The original labels of the sites, 1 6 i 6 n,
are at the top;below each site with label i, we have noted the corresponding k for which ik = i.

individuals in the case that i∗ 6∈ A. It is indeed a common pitfall to assume that Theorem 4.3

holds for arbitrary A. This is also implicit in [BB03]; see the corresponding erratum. ♦

4.4 Recursive solution of the selection-recombination equa-

tion

The first main result in this chapter will be a recursive solution of the SRE. The recursion will

start at i∗ and work along the site indices in agreement with the partial order introduced in

Definition 4.1. If the original indices are used, the recursion must be formulated individually

for every choice of i∗; in particular, it looks quite different depending on whether i∗ is at one of

the ends or in the interior of the sequence. To establish the recursion in a unified framework,

we introduce a relabelling; let us fix a nondecreasing (in the sense of the partial order from

Definition 4.1) permutation (ik)06k6n−1 of S (compare Fig. 4.4) and denote the corresponding

heads and tails by upper indices, that is, C(k) := Cik
and D(k) := Dik

(compare Figure 4.1).

Note that i0 = i∗, D
(0) = S and C(0) = ∅ and also that this choice of permutation implies

that for all ℓ > k, one has either D(ℓ) ⊆ D(k) (if ℓ < k) or D(ℓ) ⊆ C(k) (if ℓ and k are

incomparable). Furthermore, we define ̺(k) := ̺ik
and R(k) = Rik

for k > 0.

We now proceed as follows. First, we recapitulate the solution of the pure selection equation,

that is, we solve (4.9) in the special case that all recombination rates vanish. Then, in

accordance with the labelling given by (ik)16k6n−1, we will successively add sites at which we

allow recombination. This can be formalised as follows.

Definition 4.4. For ̺(1), . . . , ̺(n−1) as above and every k ∈ [0 : n− 1], we set

Ψ(k)
rec :=

k∑

ℓ=1

̺(ℓ)(R(ℓ) − id
)
, Ψ(k) := Ψsel + Ψ(k)

rec

(with the usual convention that the empty sum is 0). We then define the SRE truncated at k
as the differential equation

ω̇
(k)
t = Ψ(k)(ω

(k)
t ).

Furthermore, we understand (ω(k))06k6n−1 as the family of the corresponding solutions, all

with the same initial condition ω0. In particular, ω(0) is the solution of the pure selection
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equation

ω̇
(0)
t = Ψsel(ω

(0)
t ) = sf(ω

(0)
t )
(
b(ω

(0)
t )− ω

(0)
t

)
. (4.21)

We also define ψ(k) = (ψ
(k)
t )t>0 as the flow semigroup associated to the differential equation

defined via Ψ(k). In line with (4.9), we have ω = ω(n−1) (which is to say ωt = ω
(n−1)
t for all

t > 0) and Ψ = Ψ(n−1), and we likewise set ψ = ψ(n−1). We will also write ϕ instead of ψ(0)

for the (pure) selection semigroup. ♦

Proposition 4.5. The solution of the pure selection equation (4.21) with initial condition
ω0 ∈ P(X) is given by

ω
(0)
t = ϕt(ω0) =

estF (ω0) + (1− F )(ω0)

estf(ω0) + 1− f(ω0)
, t > 0, (4.22)

with f and F as given in (4.2) and (4.3). In particular,

f(ω
(0)
t ) =

estf(ω0)

estf(ω0) + 1− f(ω0)
(4.23)

is increasing over time and ω(0)
t = ϕt(ω0) is a convex combination of the initial type distribu-

tions of the fit (that is, beneficial) and unfit (that is, deleterious) subpopulations introduced
in Eqs. (4.5) and (4.6), namely,

ω
(0)
t = f(ω

(0)
t )b(ω0) +

(
1− f(ω

(0)
t )

)
d(ω0).

This in particular implies

b
(
ϕt(ω0)

)
= b(ω0) and d

(
ϕt(ω0)

)
= d(ω0). (4.24)

Proof. By straightforward verification. To see Eq. (4.24), recall that the fitness operator F

is a projection and b(ω) is in the image of F , while d(ω) is in the image of 1 − F for any

ω ∈ P(X).

Remark 4.8. Eq. (4.23) generalises the well-known solution of the selection equation for a

single site, which is simply a logistic equation; compare [Dur08, p. 198]. Eq. (4.24) reflects

the plausible fact that, while the proportion of fit individuals increases at the cost of the unfit

ones (as quantified in Eq. (4.22)), the type composition within the set of fit types remains

unchanged, and likewise for the set of unfit types. ♦

The main result in this section is the following recursion formula for the family of solutions

of the (truncated) SREs.

Theorem 4.6. The family of solutions (ω(k))16k6n−1 of Definition 4.4 satisfies the recursion

ω
(k)
t = e−̺(k)tω

(k−1)
t + πC(k) .ω

(k−1)
t ⊗ πD(k) .

∫ t

0
̺(k)e−̺(k)τω(k−1)

τ dτ

Frederic
Notiz
recursion
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for 1 6 k 6 n− 1 and t > 0, where ω(0) is the solution of the pure selection equation given in
Proposition 4.5.

We will first give an analytic proof. Then, in the next section, we will give a genealogical proof

of the recursion by means of the ancestral selection-recombination graph (ASRG), which will

provide additional insight.

To deal with the nonlinearity of recombination and to exploit the underlying linear structure

(see [BB16]) more efficiently, we now introduce a variant of the product of two measures that

are defined on XA and XB , where A and B need not be disjoint. Namely, given a subset U

of S, sets I, J ⊆ U , and signed measures νI , νJ on XI and XJ , respectively, we define

νI ⊠ νJ := (πI\J .νI)⊗ νJ ,

which is a signed measure on XI∪J (recall that π∅.ν = ν(XI) for all signed measures ν on

XI , I ⊆ S in line with Remark 2.2). Note that we use νI here to mean any signed measure

on XI , whereas we abbreviate by νI the specific signed measure on XI that is obtained from

ν on X via νI = πI .ν.

Proposition 4.7. Let U ⊆ S. For I, J,K ⊆ U and signed measures νI , νJ , νK on XI , XJ ,
and XK , respectively, the operation ⊠ has the following properties.

(i) (νI ⊠ νJ)⊠ νK = νI ⊠ (νJ ⊠ νK) (associativity).

(ii) If I ∩ J = ∅, we have νI ⊠ νJ = νI ⊗ νJ = νJ ⊠ νI (reduction to tensor product and
commutativity).

(iii) If I ⊆ J , then νI ⊠ νJ = νI(XI)νJ (cancellation property).

Proof. For associativity, note that

(νI ⊠ νJ)⊠ νK =
(
(πI\J .νI)⊗ νJ

)
⊠ νK =

(
π(I∪J)\K .(πI\J .(νI)⊗ νJ)

)
⊗ νK

= πI\(J∪K).νI ⊗ πJ\K .νJ ⊗ νK = πI\(J∪K) ⊗ (νJ ⊠ νK) = νI ⊠ (νJ ⊠ νK),

where we have used in the third step that ((I ∪ J) \K) ∩ (I \ J) = I \ (J ∪K).

When I ∩ J = ∅, one has

νI ⊠ νJ = πI\J .νI ⊗ νJ = πI .νI ⊗ νJ = νI ⊗ νJ = νJ ⊗ νI ,

which implies the claimed reduction to ⊗ and thus commutativity. Finally, for I ⊆ J ,

νI ⊠ νJ = (πI\J .νI)⊗ νJ = (π∅.νI)⊗ νJ = νI(XI)νJ

establishes the cancellation property.
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Under the conditions of Proposition 4.7, we now denote by νJ ⊞ νK the formal sum of νJ and

νK (and use ⊟ for the corresponding formal difference). Note that the formal sum turns into

a proper sum (and hence ⊞ reduces to +) when I = J . Furthermore, we define

νI ⊠ (νJ ⊞ νK) := (νI ⊠ νJ)⊞ (νI ⊠ νK). (4.25)

Clearly, the right-hand side reduces to a proper sum when I ∪ J = I ∪K.

Generalising the formal sum above, we define A(XU ) to be the real vector space of formal

sums

ν := λ1νU1
⊞ . . .⊞ λqνUq

,

where q ∈ N, λ1, . . . , λq ∈ R, U1, . . . , Uq ⊆ U ⊆ S, and νU1
, . . . , νUq

are signed measures on

XU1
, . . . ,XUq

, respectively. We also write ν(XU ) :=
∑q

i=1 λiνUi
(XUi

).

Remark 4.9. If one extends the definition of ⊠ canonically to all of A(XU ) (recalling that

the projections are linear),
(
A(XU ),⊠

)
becomes an associative, unital algebra with neutral

element 1, the measure with weight 1 on X∅. Note that, when multiplying ν ∈ A(XI) and

µ ∈ A(XJ ) for disjoint I and J , the multiplication introduced above agrees with the measure

product. ♦

Now, we can rewrite Ψ
(k)
rec of Definition 4.4 as

Ψrec
(
ω

(k)
t

)
= ω

(k)
t ⊠

( k

⊞
ℓ=1

̺(ℓ)(πD
ℓ
.ω

(k)
t − 1

))
; (4.26)

note that the right-hand side indeed reduces to a proper (rather than a formal) sum of

measures via (4.25), because ω
(k)
t lives on XS and Dℓ ⊆ S for 1 6 ℓ 6 k, so that each term is

a measure on XS .

We shall see later that, when combined with selection, this representation has an advantage

over the use of recombinators because it nicely brings out the recursive structure; this will

streamline calculations and connect to the graphical construction in a natural way. The

fact that the head alone determines the fitness of an individual manifests itself in the right-

multiplicativity of Ψsel and its associated flow ϕ (compare Definition 4.4) as follows.

Lemma 4.8. For all µ ∈ P(X) and all ν ∈ A(XS∗),

F (µ⊠ ν) = F (µ)⊠ ν.

If, in addition, ν(XS∗) = 1, one has

Ψsel(µ⊠ ν) = Ψsel(µ)⊠ ν

and therefore
ϕt(µ ⊠ ν) = ϕt(µ)⊠ ν
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for every t > 0.

Proof. To keep the notation simple, we assume U1, U2 ⊆ S∗ and ν = νU1
⊞ νU2

with signed

measures νU1
and νU2

on XU1 and XU2 , respectively. By the tensor product representation of

F from (4.4), we have

F (µ⊠ νU1
+ µ⊠ νU2

) = F (µ⊠ νU1
) + F (µ⊠ νU2

) = F (π
U1
.µ⊗ νU1

) + F (π
U2
.µ⊗ νU2

)

= (Pi∗ ⊗ idU1\i∗
)(π

U1
.µ)⊗ idU1(νU1

) + (Pi∗ ⊗ idU2\i∗
)(π

U2
.µ)⊗ idU2(νU2

)

= π
U1
.(Pi∗ ⊗ idS∗)(µ)⊗ idU1(νU1

) + π
U2
. (Pi∗ ⊗ idS∗) (µ)⊗ idU2(νU2

)

= F (µ)⊠ νU1
+ F (µ)⊠ νU2

,

which gives the first claim. Taking the first claim together with the fact that f(µ⊠ ν) = f(µ)

if ν(XS∗) = 1, we get the second and the third claim.

Now, the proof of Theorem 4.6 is straightforward.

Proof of Theorem 4.6. Let Ψ(k) be as in Definition 4.4. With the shorthand

ν
(k−1)
t := π

D(k).

∫ t

0
̺(k)e−̺(k)τω(k−1)

τ dτ,

one has ν
(k−1)
t (XD(k)) = 1 − e−̺(k)t, and the right-hand side of the recursion formula from

Theorem 4.6 can be expressed as

µ
(k)
t := ω

(k−1)
t ⊠ (e−̺(k)t

1⊞ ν
(k−1)
t ). (4.27)

First, we show that

µ
(k)
t ⊠ π

D(ℓ) .µ
(k)
t =

(
ω

(k−1)
t ⊠ π

D(ℓ) .ω
(k−1)
t

)
⊠(e−̺(k)t

1⊞ ν
(k−1)
t ) (4.28)

for all 1 6 ℓ 6 k. To see this, write the left-hand side as ω
(k−1)
t ⊠A⊠B, where

A := e−̺(k)t
1⊞ ν

(k−1)
t

and

B := π
D(ℓ) .

(
ω

(k−1)
t ⊠(e−̺(k)t

1⊞ ν
(k−1)
t )

)
= π

D(ℓ) .µ
(k)
t .

Recall that, by our monotonicity assumption on the permutation of sites, we have either

D(k) ⊆ D(ℓ) or D(k) ∩ D(ℓ) = ∅. In the first case, (4.28) follows by cancelling A using

Proposition 4.7 (note that A(X
D(k)) = 1). In the second case, B is just π

D(ℓ).ω
(k−1)
t , and so

A⊠B = B ⊠A, again by Proposition 4.7. Now we compute, using (4.26) and (4.27) in the

first step, (4.28) and Lemma 4.8 in the second, Definition 4.4 in the third, and Proposition 4.7
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in the last:

Ψ(k)(µ
(k)
t ) = Ψsel(ω

(k−1)
t ⊠

(
e−̺(k)t

1⊞ ν
(k−1)
t )

)
+

k∑

ℓ=1

̺(ℓ)µ
(k)
t ⊠ (π

D(ℓ) .µ
(k)
t ⊟ 1)

=
(
Ψsel(ω

(k−1)
t ) +

k∑

ℓ=1

̺(ℓ)ω
(k−1)
t ⊠ (π

D(ℓ) .ω
(k−1)
t ⊟ 1)

)
⊠ (e−̺(k)t

1⊞ ν
(k−1)
t )

=
(
Ψ(k−1)(ω

(k−1)
t ) + ̺(k)ω

(k−1)
t ⊠ (π

D(k) .ω
(k−1)
t ⊟ 1)

)
⊠ (e−̺(k)t

1⊞ ν
(k−1)
t )

= ω̇
(k−1)
t ⊠ (e−̺(k)t

1⊞ ν
(k−1)
t ) + ω

(k−1)
t ⊠ (̺(k)e−̺(k)tπ

D(k) .ω
(k−1)
t ⊟ ̺(k)e−̺(k)t

1).

Identifying ̺(k)e−̺(k)tπ
D(k) .ω

(k−1)
t with ν̇

(k−1)
t , we see that the last line is just the time deriv-

ative of µ
(k)
t of (4.27).

Remark 4.10. We could have proved Theorem 4.6 also without the help of formal sums and

the new operations ⊞,⊟,⊠. However, we decided on the current presentation in order to

familiarise the reader with this — admittedly somewhat abstract — formalism, as it is the

key to stating the duality result in Section 4.7 in closed form. It will also allow us later to

state the solution itself in closed form; see Corollary 4.26. ♦

Remark 4.11. Note that the only property of the selection operator that entered the proof

of Theorem 4.6 is the second property in Lemma 4.8, namely, Ψsel(ω ⊠ ν) = Ψsel(ω)⊠ ν for

all ν ∈ A(XS∗) with ν(XS∗) = 1. Therefore, the result remains true if Ψsel is replaced by

a more general operator with this property. In particular, Theorem 4.6 remains true when

frequency-dependent selection and/or mutation at the selected site is included. ♦

Remark 4.12. Applying Theorem 4.3 to A = {i∗} shows that the marginal type frequency

at the selected site is unaffected by recombination. More generally, consider the set

L(k) := {i0 = i∗, i1, . . . , ik}

and note that L(k) \ i∗ is exactly the set of recombination sites that are considered up to

and including the k-th iteration. Obviously, marginalisation consistency holds for L(k) for all

0 6 k 6 n − 1. Since ̺L(k)

i = ̺i for i ∈ L(k) \ i∗, Remark 4.6 and Eq. (4.18) together with

Definition 4.4 give

π
L(k) .ω̇t = π

L(k) .
∑

i∈L(k)\i∗

̺i(Riωt − ωt) = π
L(k) .Ψ

(k)
rec(ωt) = π

L(k) .ω̇
(k)
t ,

and so π
L(k) .ω

(k)
t = π

L(k) .ωt. This implies that if one is only interested in the marginal with

respect to L(k), then one may stop the iteration after the k-th step. ♦

An important application of Theorem 4.6 is the following recursion for the first-order correla-

tion functions ω
(k)
t −R

(k)ω
(k)
t between the type frequencies at the sites contained in C(k) and
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those contained in D(k), for solutions of the truncated equations. These objects, which are

referred to as linkage disequilibria in the biological literature, are also of independent interest;

compare [Dur08, Ch. 3.3].

Lemma 4.9 (correlation functions). The family of solutions (ω(k))06k6n−1 of Definition 4.4

satisfies, for 1 6 k 6 n− 1,

(id−R(k))ω
(k)
t = e−̺(k)t(id−R(k))ω

(k−1)
t .

Proof. By direct verification via Theorem 4.6, using R(k)ω
(k)
t = ω

(k)
t ⊠ π

D(k) .ω
(k)
t .

4.5 Looking back in time: the ancestral selection-recombination

graph

Our next goal is to reveal the genealogical content of the recursive solution formula of The-

orem 4.6. We will accomplish this by a change of perspective: Instead of focusing on the

evolution of the type distribution (in the entire population) forward in time as described by

the SRE (4.9), we will analyse instead the type distribution at time t by tracing back the

genealogy of a given individual.

The crucial tool for this purpose is the ancestral selection-recombination graph (ASRG) of

[DK99; LK12; BP18]. As the name suggests, it is a combination of the ancestral selection graph
(ASG) of [KN97] and the ancestral recombination graph (ARG) of [Hud83; GM96; GM97].

We will introduce the ASRG here as taylored to meet the selection-recombination differential

equation. The purpose of the graph is to trace back all lines that may carry information

about the type (and the ancestry) of an individual at present, so that a Markov structure is

obtained. This is similar to [Cor17a; BCH18] for the selection part and to [BBS16; BB16]

for the recombination part, where the ancestral graphs consist of all potentially ancestral
lines of an individual at present. At this point, we will understand the notion of potentially
ancestral in a broad sense, including lines that are potentially ancestral to some line in the

graph, but not necessarily to the individual at present. It will indeed turn out that some of

these lines are not potentially ancestral to the present individual itself (that is, in this stricter

sense, the notion of potential ancestry is not transitive); such lines will be pruned away later

on. We will first consider the case of a finite population of size N , before taking the limit

N → ∞. Recalling the definition of the Moran IPS in Section 4.2, we can sample from the

type distribution at present time t via the following procedure (compare Fig. 4.5).

(1) Select an arbitrary label α from {1, . . . , N} for the individual to be considered.

(2) Construct the untyped version of the Moran IPS.

(3) Start the graph by tracing back the single line emerging from the individual at present

time t. Proceed as follows in an iterative way in the backward direction of time until
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backward time (ASRG)

Figure 4.5. Sampling from the type distribution at present using the graphical representation
of the Moran IPS. The ASRG is marked in red and the selected site in light brown. Notice
the two different time axes for the IPS and the ASRG, respectively; while the types are
propagated through the IPS from left to right, the genealogy is constructed in the opposite
direction, starting with a present-day individual on the right.

the initial time is reached; note that forward time 0 (forward time t) corresponds to

backward time t (backward time 0).

(3a) If a line currently in the graph is hit by the tip of a neutral arrow, it is relocated

to the line at the tail.

(3b) If a line in the graph is hit by a selective arrow, we trace back both its potential

ancestors, namely the incoming branch (at the tail of the arrow) and the continuing

branch (at the tip). That is, we add the incoming line to the graph, which results

in a branching event.

(3c) If a line is hit by a recombination square at site i, we have a splitting event and

trace back the lines that contribute the head (Ci) and the tail (Di), respectively,

while the line hit by the square is discontinued.

(4) Assign types to all lines in the graph at time 0 by sampling without replacement from

the initial counting measure NZ0 (compare Section 4.2). Then, propagate the types

forward along the lines obtained in step (3), according to the same rules as in the Moran

IPS. That is, selective branchings are resolved by applying the pecking order derived

from the Moran IPS and illustrated in Fig. 4.6, namely: the incoming branch is parental

to the descendant line if it has a 0 at the selected site; otherwise, the continuing branch

is parental. Splitting events are resolved by piecing together heads and tails. This way,

a type is associated with every line element of the graph.

The graph resulting from steps (1)–(3), along with the graphical elements indicating repro-

duction and recombination, is called the untyped ASRG, whereas the outcome of step (4)

is the typed ASRG. While steps (3a) and (3c) are obvious, let us comment on the crucial

Frederic
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Figure 4.6. The pecking order between incoming line and continuing line, and the resulting
type of the descendant. In each case, the ancestral line is bold. To keep the picture simple,
we have only indicated the letter at the selected site. Likewise, the picture applies to the case
n = i∗ = 1.

branching step (3b). It builds on the special role of the selective arrows in the Moran IPS

and reflects the fact that whether the incoming or the continuing branch is the true parent

depends on the type of the incoming branch, which is not known in the untyped situation; in

this sense, every branching event encodes a case distinction. Let us also mention that, in all

events (3a)–(3c), it may happen that a line coalesces with a line that is already in the graph.

Likewise, it is possible that, in a splitting event, the same parent contributes both the head

and the tail; the event then turns into a relocation.

Steps (1)–(4) yield the type of the present individual considered, but also serve to elucidate

the true ancestry of each site in this individual. In step (4), the paths along which the

individuals contributing to the type of the present-day individual are propagated are called

(true) ancestral lines, as opposed to the potentially ancestral lines in the untyped ASRG.

More precisely, for i ∈ S, the path along which the type of the ancestor of site i is propagated

is called the ancestral line of site i. It is obtained explicitly by adding step

(5) For each i ∈ S, trace back the ancestry of site i by starting from the individual at

present, following back the true ancestral line (as determined in step (4)) in every

branching event. This is the bold line in Fig. 4.6, and the one following either the C or

D branch at every splitting event, depending on whether i ∈ C or i ∈ D. That is, we

remove from the ASRG those lines that do not contribute genetic material to site i in

the present individual.

Clearly, in step ((2)), we need not construct the full graphical representation of the interacting

particle system. Instead, it suffices to consider those events that occur on the lines in the

ASRG of the sampled individual, that is, the lines (to be) traced back in step (3). We

therefore obtain the same ASRG (in distribution) if steps (2) and (3) are replaced by the

following single one.

(2’&3’) Starting from the single line at forward time t, move backward in time and independently

at rates 1, s, and ̺i, let each line in the graph be hit by neutral arrows, selective arrows,
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and recombination events at site i, i ∈ S∗, with the (potential) parent individual(s)

chosen uniformly without replacement from the entire population in all cases; update

the graph accordingly.

Note that we make use of the homogeneity of the Poisson process here, which entails that the

graphical elements are laid down according to the same law in either direction of time. As

we let N tend to infinity, another simplification results. Namely, the probability of choosing,

for any kind of event, parent(s) already contained in the genealogy is of order 1/N ; the same

is true for the probability to choose the same parent twice in a recombination event. In the

limit N →∞, therefore, the probability that a coalescence happens when a neutral arrow is

met will vanish. Likewise, selective reproduction (recombination) events will always result in

branching (splitting) into two lines, with the incoming branch (both arms) outside the current

set of lines. Furthermore, we disregard the position of the lines within the IPS; this is allowed

because the types associated with each line form a permutation-invariant or exchangeable
family of random variables. In particular, relocations may be safely ignored. The resulting

random graph is called the ASRG in the law of large numbers regime. Since we will only be

concerned with this limit in the remainder of the paper, we will often omit this specification.

Definition 4.10. For any given t > 0, the ancestral selection-recombination graph (ASRG)

in the law of large numbers (LLN) regime is a random graph-valued function in backward

time starting from a single node at time 0 and growing from right to left until time t, where

branching events

. . .
. . .

occur at rate s on every line, and splitting events

i . . .. . .

occur at rate ̺i, i ∈ S
∗, per line; all events are mutually independent. The right-most node

is called the root of the ASRG and the leftmost nodes are called the leaves. ♦

Note that the graph, grown until any finite time t, is almost surely finite. Note also that

we dispense with the star-shaped arrowheads used in the interacting particle system for the

selective branchings; rather, we use the convention that the incoming branch be placed below

the continuing branch. This is again allowed due to exchangeability. For the same reason, we

dispense with the labelling of the recombination arms and instead adopt the convention that

the sites in the head always come from the individual on the upper line, which we place on

the same level as the descendant line. The sites in the tail are provided by the line attached
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Figure 4.7. Tracing back the ancestry of an individual with 4 sites i∗ = i0 = 1, i1 = 2,
i2 = 3 and i3 = 4 under selection and recombination; the selected site i∗ = 1 is light brown.
The bold line is ancestral to site 4, the thin solid lines are ancestral to sites 1, 2, or 3, and
the dashed lines are not ancestral to any site. Each branch is decorated with its type, and
the sites to which it is ancestral are underlined.

from below. For an example realisation of the ASRG and the construction of the type of an

individual at present along with the ancestral line of one specific site, see Fig. 4.7.

For our purposes, the important point about the ASRG is that it implies the following pro-

cedure for sampling from ωt. First, construct a realisation of the ASRG, run for time t.

Then, assign types to its leaves, sampled independently from ω0. These are then propagated

through the graph in the same way as described above.

Remark 4.13. In order to connect the graphical constructions in this section to the viewpoint

from the previous section, let us describe the type propagation in slightly more formal terms.

Given a realisation of the ASRG of length t, we assign a type distribution to each node as

follows. First, each leaf is assigned the initial type distribution ω0. Each internal node v

arises either from a branching or a splitting event. In the case of a branching, let ωinc and

ωcont be the type distributions associated to the nodes that connect to v via the incoming

and continuing branch. Then, we associate to v the distribution

ωv := f(ωinc)b(ωinc) +
(
1− f(ωinc)

)
ωcont,

that is,

. . .

. . .

. . .
f(ωinc)b(ωinc) +

(
1− f(ωinc)

)
ωcontωcont

ωinc

Likewise, if v is due to splitting (at site i, say), we associate with it the distribution

ωhead ⊠ ωDi

tail,

Frederic
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where ωhead and ωtail are the distributions associated to the nodes that connect to v via the

ancestral lines of the head and tail, respectively,

. . .

. . .

. . .
ωhead ⊠ ωDi

tailωhead

ωtail

i

Finally, the distribution for the root individual is just the same as that of the unique internal

node connected to it. ♦

Example 4.1. In the case of pure selection (k = 0), our ASRG reduces to an ordered version of

the ASG in the deterministic limit; this is equivalent to a special case of the pruned lookdown
ASG in the LLN regime, as introduced in [Cor17a; BCH18] in the context of a probabilistic

representation of the solution of the deterministic selection-mutation equation. Since the

contribution of coalescence events vanishes in this regime, the number of lines in the graph,

that is, the number of potential ancestors of an individual sampled at time t, becomes a

simple Yule process K = (Kt)t>0 with branching rate s. This is a continuous-time branching

process where, at any time t, every individual branches into two at rate s independently of all

others. In the case considered here, the process starts with K0 = 1. Clearly, the pecking order

implies that the individual at present will be drawn from the unfit subpopulation d(ω0) if all

Kt potential ancestors are of deleterious type; this happens with probability (1 − f(ω0))Kt .

Likewise, the individual will be sampled from the fit subpopulation b(ω0) if at least one

potential ancestor is of beneficial type (with probability 1−
(
1− f(ω0)

)Kt). Thus, we obtain

the type distribution by averaging over all realisations of the Yule process at time t:

ω
(0)
t = ϕt(ω0)

= E
[(

1− f(ω0)
)Kt | K0 = 1

]
d(ω0) +

(
1− E

[(
1− f(ω0)

)Kt | K0 = 1
])
b(ω0).

(4.29)

This is a stochastic representation of the solution of the selection equation.

It is well known that Kt, given K0 = 1, follows Geom(e−st) (compare [Fel68, Ch. II.4] or

[SO94, Ex. 2.19]), where Geom(σ) denotes the distribution of the number of independent

Bernoulli trials with success probability σ up to and including the first success. The probab-

ility generating function is given by

g(z) = E
[
zKt | K0 = 1

]
= e−stz

1− (1− e−st)z
. (4.30)

Consequently,

E
[(

1− f(ω0)
)Kt | K0 = 1

]
=

e−st(1− f(ω0)
)

e−st(1− f(ω0)
)

+ f(ω0)
= 1− f(ω

(0)
t ) (4.31)

with f(ω
(0)
t ) of Proposition 4.5. Inserting this into (4.29), we obtain ω

(0)
t of Proposition 4.5.
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Anticipating the results in Section 6, this can be viewed as a special case of the general duality

relation with respect to the duality function

h(m, ν) =
(
1− f(ν)

)m
d(ν) +

(
1−

(
1− f(ν)

)m)
b(ν) (4.32)

(compare Definition 5.9 and Proposition 4.18), which is the distribution of an individual’s type

at present, given it has m potential ancestors, which are sampled from the type distribution

ν ∈ P(X). Note that the right-hand side of Eq. (4.32) is a convex combination of the

probability measures d(ν) and b(ν); this is ultimately due to the fact that while the proportions

of fit and unfit types in the population change over time due to selection, the type compositions

within the fit and unfit subpopulations remain constant. ♦

Example 4.2. Likewise, in the case of pure recombination, the ASRG reduces to the stochastic

partitioning process Σ = (Σt)t>0 explained at the end of Chapter 2. ♦

We can now gear up for the genealogical proof of the recursion formula in Theorem 4.6. (Recall

that the start of the recursion, the solution ω(0) of the pure selection equation, was already

considered in Example 4.1). To this end, we reuse the nondecreasing permutation (ik)06k6n−1

of sites defined in Section 4.4 and, in perfect analogy with the family (ω(k))06k6n−1, define for

0 6 k 6 n−1 the ASRG truncated at k to be an ASRG with ̺(ℓ) = 0 for all ℓ > k. We denote

the ASRG truncated at k by ASRG(k), or by ASRG
(k)
t if we also want to indicate its duration.

Clearly, the ASRG(k) is the ASRG that corresponds to ω(k). In particular, ASRG(0) is just

the ASG (without recombination), and the type at the root of an ASRG
(k)
t follows ω

(k)
t . The

key ingredient to the genealogical proof of the recursion is the following proposition, which

links the type of the root of an ASRG(k) to the type at the root of an ASRG(k−1), or two

independent copies thereof.

Proposition 4.11. For 1 6 k 6 n− 1 and any given t > 0, let B be a Bernoulli variable with
success probability 1−e−̺(k)t. Conditional on {B = 1}, let T be an Exp(̺(k)) random variable
conditioned on being 6 t, where Exp(σ) denotes the exponential distribution with parameter
σ. Furthermore, denote by X ∈ X the type at the root of an ASRG

(k−1)
t , and by X̃ the type

at the root of an ASRG
(k−1)
T , independent of the ASRG

(k−1)
t that delivers X. The type Z at

the root of an ASRG
(k)
t is then, in distribution, given by

Z = (1−B)X +B
(
πC(k)(X), πD(k)(X̃)

)
.

Before we prove this proposition, let us give some intuition for it. We work with the untyped

ASRG
(k)
t , obtained via steps (1) and (2’&3’), and consider the line ancestral to D(k). It is

clear that this is a single line because, due to the partial order, none of the splitting events in

the ASRG(k) partitions D(k). Note that, at this point, the location of the true ancestral line

is not yet known, since this is only decided in step (4), when propagating the types forward

after sampling the initial types, as in Figure 4.7.
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Figure 4.8. Determining the type at the root of a cASRG(4). The graph is a cASRG(4), the
selected site is light brown, ancestral lines in the ASRG(3) are printed in bold, and ancestral
letters are underlined. The shaded recombination squares indicate splitting events at site 4,
where a new copy of an ASRG(4) is attached for the remaining time. Parentheses mark the
4th site in the ASRG(3) that is replaced by the tail of the new copy. Thus, X is obtained by
ignoring the shaded squares as well as the parentheses, and Z is then obtained by replacing
the 0 in brackets in the type of the lower branch of the rightmost recombination event by the
1 from Y1.

We now distinguish two cases. With probability e−̺(k)t, no splitting at site ik has happened

along this line, so the tail is ‘glued’ to the head. Thus, Z may be constructed as in the absence

of recombination events at site ik, that is, via an ASRG
(k−1)
t ; this gives the first term on the

right-hand side. With probability 1 − e−̺(k)t, a splitting at site ik has happened along the

ancestral line of D(k). We then consider the time of the last, that is, of the leftmost splitting

event at site ik on the line in question and identify this time with t− T (since such splitting

events occur at rate ̺(k) and due to the homogeneity of the Poisson process, T is indeed

distributed as stated). The ancestry of the sites in C(k) is then unaffected by the split and

thus follows an ASRG
(k−1)
t ; this is in line with the marginalisation consistency of Theorem 4.3.

But the sites contained in D(k) now come from a different individual. Since t− T is the time

of the leftmost splitting event, we know that no further splits at site ik have occured at any

point further back in the past. This means that, at this point, the tail of the individual at

the root of an independent ASRG
(k−1)
T enters the ancestral line. The combination of head

and tail as described gives the second term on the right-hand side.

In order to turn these heuristics into a proof, we have to make the construction of the ancestral

line of D(k) explicit. To this end, we mimick the recursion forward in time by coupling the

ASRG
(k)
t in a suitable manner to an ASRG

(k−1)
t . To keep things as transparent as possible,

and to reduce the number of lines to be visualised, we introduce the following simplified

construction; see Fig. 4.8.

Definition 4.12 (collapsed ASRG). Let 1 6 k 6 n−1 be given. A collapsed ASRG truncated
at k, or cASRG(k) for short, is an ASRG(k−1) decorated with ik-recombination squares that
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are laid down according to independent Poisson processes at rate ̺(k) on every horizontal line

segment. ♦

We can then construct a realisation of the ASRG
(k)
t by attaching to every ik-recombination

square of a cASRG(k) an independent copy of an ASRG(k) for the remaining time; that is,

for any ik-recombination square at time τ ∈ [0, t], we attach an ASRG
(k)
t−τ . In this context,

therefore, splitting events take the form of attachment events. In the subsequent sampling

step, this attachment provides the k-tail while the k-head comes from the original ASRG
(k−1)
t .

Let us describe now how to utilise the collapsed ASRG to sample a root individual of an

ASRG
(k)
t , that is, to sample from the distribution ω

(k)
t . First, one constructs a realisation

of the cASRG
(k)
t . Then, types are assigned to the leaves according to ω0 in an i.i.d. fashion

and propagated forward, where selective branchings and splitting (attachment) events are

resolved just like in the ASRG. Assume an ik-square is encountered on a given line at some

(forward) time τ ∈ [0, t], and the type just before the ik-square (that is, at time τ − 0) is x.

We then draw a new type y from ω
(k)
τ , independently of x, for the individual contributing the

tail. The type on the line then jumps from x at time τ − 0 to type

z =
(
π

C(k)(x), πD(k) (y)
)

at time τ , see Fig. 4.9. Keeping in mind the original motivation behind Definition 4.12 and

thinking of the ik-squares as splitting events (at site ik) at which a new realisation of an

ASRG(k) is attached, it is clear that this gives the correct result.

Proof of Proposition 4.11. Let 1 6 k 6 n − 1 and t > 0 be fixed and let a realisation of the

cASRG
(k)
t be given, together with an assignment of types to its leaves. Elements of the proof

are illustrated in Fig. 4.8. Note first that

X is, in distribution, equal to the (random) type at the root when ignoring the ik-squares.

We consider the line ancestral to D(k) in the underlying ASRG
(k−1)
t . The location of this line

is now well defined, since we sample the types and can perform steps (4) and (5). Note that

the line ancestral to D(k) is, at the same time, the line ancestral to max(C(k)), where the

maximum is with respect to 4 of Definition 4.1; this is because no splits happen at ik in the

ASRG
(k−1)
t . We consider the following quantities.

Let B1 be the Bernoulli variable that takes the value 0 (the value 1) if there is no (at

x y

ik

z =
(

π
C(k)(x), πD(k)(y)

)

Figure 4.9. Upon encountering an ik-square, the head of type x is combined with the tail of

a newly sampled individual (from ω
(k)
τ ) to form the type of the descendant.



58 4 Ancestral lines under selection and recombination

t

time

0A1A2A3A4

ik

ik

ik

ik

Figure 4.10. The ancestral line of D(k) after expanding all the recombination events arriving
at the elements of the set W ∩ [0, t] used in the proof of Proposition 4.11. The ancestral lines
of the corresponding heads are dashed as they need not be considered any further here. Note
that the maximal element A4 is the leftmost one.

least one) recombination square on the ancestral line of D(k). Clearly, B1 has success

probability 1− e−̺(k)t.

Conditional on {B1 = 1}, let T1 be the waiting time for the first ik-square, in the

backward direction of time, on the line ancestral to D(k) (that is, the rightmost ik-

square on this line in our graphical representation). Clearly, T1 is an Exp(̺(k))-random

variable conditioned to be 6 t, and independent of X.

Let Y1 ∈ X be the type at the root of the independent ASRG
(k)
t−T1

attached upon

encountering the ik-square at time T1, that is, an independent sample from ω
(k)
t−T1

.

We then have (compare Fig. 4.8)

Z = (1−B1)X +B1
(
πC(k)(X), πD(k)(Y1)

)
. (4.33)

We now iterate Eq. (4.33), see Figure 4.10. In the first step, we draw X and B1 as above. If

B1 = 1, we also draw T1 according to Exp(̺(k)), conditioned on being 6 t. If B1 = 0, we set

Z = X. If B1 = 1, by Eq. (4.33) we have to construct Y1, which contributes the tail. Since

Y1 is the type at the root of an ASRG
(k)
t−T1

, we do this by applying Eq. (4.33) to Y1 instead

of Z, that is, we repeat the first step but replace t by t− T1. So we determine whether or not

there is a recombination square on the ancestral line of D(k) between 0 and t − T1; if there

is one, we determine the waiting time for it, and so forth. More explicitly, let B2 be the new

indicator variable, which is Bernoulli with success probability 1 − e−̺(k)(t−T1). If B2 = 0, let

X1 be the type at the root of an independent copy of the ASRG
(k−1)
t−T1

. If B2 = 1, let T2 be

the waiting time for the new event; T2 follows Exp(̺(k)) conditioned to be 6 t− T1; and let

Y2 be the type at the root of an independent ASRG
(k−1)
t−T1−T2

. Then, inserting this back into

Eq. (4.33), we obtain

Z = (1−B1)X +B1(1−B2)
(
π

C(k)(X), π
D(k)(X1)

)
+B1B2

(
π

C(k)(X), π
D(k)(Y2)

)
;

note that, if B1 = 0, B2 has not been declared, but the terms involving it remain well-defined
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since B1 vanishes. Iterating this further gives

Z = (1−B1)X +
∑

i>1

B1 · . . . · Bi(1−Bi+1)
(
π

C(k)(X), π
D(k) (Xi)

)
, (4.34)

where Xi is the type at the root of an independent ASRG
(k−1)

t−
∑i

j=1
Tj

, and we adhere to the

above convention concerning undeclared Bi. Note that, with probability 1, exactly one of the

terms on the right-hand side is nonzero; in particular, B1 · . . . ·Bi = 0 whenever
∑i

j=1 Tj > t,

so everything is well defined.

Let us now interpret the arrival times Tj of the ik-squares as arrival times in a Poisson set

W with intensity measure ̺(k)
1t>0 dt and elements A1 < A2 < . . .. When Ai 6 t, we have

Ai =
∑i

j=1 Tj . Furthermore, B1 = 1{A16t} and, for i > 1,

B1 · . . . · Bi = 1{Ai6t}, as well as

B1 · . . . ·Bi(1−Bi+1) = 1{Ai6t<Ai+1}.
(4.35)

We now note that B1 may also be written as B1 = 1{W∩[0,t] 6=∅}. Together with (4.35), this

entails that the nonzero term in (4.34) is the first one if W ∩ [0, t] is empty; and if the set is

nonempty, then the nonzero term is the one with the index i that satisfies Ai = max(W∩[0, t]).

Conditionally on B1 = 1, we therefore set T := t −max(W ∩ [0, t]). The claim then follows

by identifying B with B1, and by noting that, due to the homogeneity of the Poisson process,

T has the same distribution as T1, namely Exp(̺(k)) conditioned to be 6 t.

Remark 4.14. Remembering the original motivation of the collapsed ASRG(k), we think of

every ik-square as the anchor point for a new independent copy of the ASRG(k), which is

collapsed to keep things tidy. In the above proof, however, we iteratively expand the ik-

squares on the ancestral line of D(k) until there are no more recombination events left on that

particular line. Therefore, the Poisson point set W has an interpretation as the collection

of all recombination events that occurred on the ancestral line of D(k). The proof has made

precise the previously heuristic notion of the last splitting event at site ik encountered on the

ancestral line of D(k) in the backward direction of time; that is, the leftmost event in the

graphical representation. For an illustration, see Figure 4.10. ♦

Remark 4.15. When sampling Y1 via the newly attached ASRG(k) in (4.33), the reader may

wonder whether one might be able to cut corners and only construct the potential ancestry of

the tail — after all, the head of Y1 does not enter Z. However, it cannot be overemphasised

that this is not the case! Although Y1 only contributes the tail, the branching events in its

ancestry can only be resolved if the letter at the selected site is known, whence we need to

also trace back the ancestry of the head attached to the new tail. Once more, we are haunted

by marginalisation inconsistency due to selection, as discussed in Section 4.3; see in particular

Remark 4.7. ♦

We are now set to re-prove Theorem 4.6. Indeed, Proposition 4.11 makes a connection between
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the random variable Z, distributed according to an ASRG(k), and random variables X and

X̃ , distributed according to an ASRG(k−1). This is the crucial observation that we will now

exploit.

Genealogical proof of Theorem 4.6. From Proposition 4.11, we can extract the conditional

distribution of Z given B and T :

P(Z = · | B,T ) = (1−B)ω
(k−1)
t +Bπ

C(k) .ω
(k−1)
t ⊗ π

D(k).ω
(k−1)
T .

Theorem 4.6 now follows by integrating out B and T , where we denote the distribution of T

by λ.

ω
(k)
t = P(B = 0)ω

(k−1)
t + P(B = 1)πC(k) .ω

(k−1)
t ⊗

∫ ∞

0
πD(k) .ω(k−1)

τ dλ(τ)

= e−̺(k)tω
(k−1)
t + πC(k) .ω

(k−1)
t ⊗

∫ t

0
̺(k)e−̺(k)tπD(k) .ω(k−1)

τ dτ,

and we are done.

4.6 Interlude

Using our insight from the proof of Proposition 4.11, we now informally describe a more

efficient version of the ASRG in order to motivate the more elegant dual process and the

formal duality results that are detailed and proved in the next section. We start with an

untyped ASG, or, equivalently, an ASRG(0), since this marks the beginning of the recursion.

Recall that, in the iteration leading from ω(0) to ω(1) via the cASRG(1), i1-recombination

squares are laid down at rate ̺(1) independently on every line of the ASG. But at most one

of these squares turns out as relevant; namely the rightmost square on the ancestral line

of D(1), if there is such a square. Recall also that the head of the root individual of the

ASRG(1), that is its sites in C(1), are delivered by the initial ASG, independently of any

recombination squares; while the sites in the tail are delivered by an independent copy of the

ASRG(1), attached below the square for the remaining time and processed in the same way as

the initial one, in an iterative fashion. This procedure stops when no further recombination

square is found on the ancestral line of the tail.

In order to reduce the number of lines and graphical elements in the ASRG(1) to the essential

ones, we now start over and decorate the ASG with at most one recombination event, which

will play the role of the relevant one, see Figure 4.11. Namely, with probability e−̺(1)t,

we include no event, and both head and tail are delivered by the ASG. With probability

1−e−̺(1)t, we include one event, which happens at time T1 distributed according to Exp(̺(1))

conditioned to be 6 t. Since we are in an untyped setting and do not know which of the lines

in the ASG will be ancestral to the head, we symbolise the event by an i1-bar that hits all

lines at the same time. Below the bar, we attach an independent copy of the ASG starting
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Figure 4.11. Constructing the essential ASRG for three sites with i∗ = 1. Top left: An ASG
decorated with a 2-bar to which decorated ASGs are attached repeatedly; solid, dashed, and
dotted lines correspond to steps 1, 2, and 3, respectively. Top right: Labelling and pruning
the resulting graph; green, blue and red encode sites 1,2 and 3, respectively. Bottom: Adding
3-bars to the top right graph. If none occurs, the graph remains unchanged. Two different
realisations including 3-bars are shown bottom left and bottom right.

with a single line and running for the remaining time. The new ASG is processed in the

analogous way, with t replaced by t − T1. This procedure stops when no further i1-bar is

encountered; this is (almost surely) the case after a finite number of steps, see Figure 4.11

(top left). The initial ASG delivers the head, while the last ASG attached delivers the tail.

In particular, at every i1-bar, the tail delivered by the ASG attached below is combined with

the head of whichever of the lines running through the bar will turn out to be ancestral to

the root of the ASG it belongs to.

We now decorate each line in the graph with the set A of sites in the root individual to which

the line is potentially ancestral. This will finally allow us to prune away those lines that are

not informative for the type of the root, see Figure 4.11 (top right). We start with the label

A = S for the single line at the root. When a branching event occurs to a line labelled A, both

branches inherit the label. Upon encountering an i1-bar, the ASG that continues through

the bar to the left is ancestral to A∩C(1), while the new independent copy attached below is

ancestral to A ∩D(1). If A ∩ C(1) = ∅ (this applies in the case of a second and any further

i1-bar), we prune the lines to the left away, because they are neither ancestral to any sites in

A at the root, nor do they affect their ancestry. The latter is true because now the same new

tail is provided for all potential ancestors of the head, at the same moment; in contrast to

the original ASRG, where a new tail may compete with others, see Figure 4.8.

We finally work up the recursion by decorating the set of lines potentially ancestral to D(2)

with i2-bars, adding new ASGs, labelling, and pruning in the analogous way, see Figure 4.11



62 4 Ancestral lines under selection and recombination

(bottom). That is, with probability e−̺(2)t, no i2-bar appears. With probability 1− e−̺(2)t,

we add an i2-bar, at a time distributed according to Exp(̺(2)) conditioned to be 6 t. A new

ASG labelled D(2) is then attached below, starting with a single line, while the lines that

continue through the bar now carry the label D(1) ∩C(2). If a second Exp(̺(2)) waiting time

still falls within the remaining time, a second i2-bar occurs, with no lines running through it

and a single line labelled D(2) starting a new ASG below; and so on until no further i2-bar is

encountered in the remaining time.

We continue like this until S∗ is exhausted. The resulting graph is the essential ASRG.

Rather than constructing it via recursion over S∗ with successive addition of bars, labelling,

and pruning, it can also be produced in one go in a Markovian manner, according to the

following procedure.

Start with a single line labelled S.

Every line independently branches at rate s; both offspring lines inherit the label of the

parent.

Every set of lines that carry the same label, say A, independently receives an i-bar at

rate ̺i for every i ∈ S∗ with A ∩Di 6= ∅, upon which either of the following happens.

– If A∩Di 6= A, the lines continue through the bar and change their labels to A∩Ci;

a new single line labelled A ∩Di starts below the bar.

– If A ∩Di = A, no lines continue through the bar and a new single line labelled A

starts below the bar.

Stop when time horizon t is reached.

Note that the resulting graph may be conceived as a collection of (conditionally) independent

ASGs, each with its own label, and joined together by recombination bars. It is now easy to

see that all the relevant information can be condensed into a weighted partitioning process,
namely a Markov process in continuous time that holds, at any time, an interval partition A

of S into the blocks A ⊆ A of potentially ancestral sites, together with weights vA giving the

number of lines in the respective ASGs. This will be formalised in the next section.

4.7 Duality

For the genealogical proof of the recursive solution in Theorem 4.6, we relied on the graphical

construction, which implicitly assumes a duality between the ASRG and the solution of

the SRE. Since the ASRG is somewhat unwieldy and difficult to formalise, our goal in this

section is to construct a simpler dual processes. Let us begin with our definition of duality for

Markov processes, which is a straightforward extension of the standard concept (see [Lig10] or

[JK14] for thorough expositions, and [Möh99] for an early application to models of population

genetics).
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Definition 4.13. Let X = (Xt)t>0 and Y = (Yt)t>0 be two continuous-time Markov chains

with state spaces E and F , respectively. These chains are said to be dual with respect to

some measurable function H : E × F → R
d if

E[H(Xt, y) | X0 = x] = E[H(x,Yt) | Y0 = y]

holds for all t > 0, x ∈ E, and y ∈ F . Furthermore, H is referred to as a duality function for

X and Y. We use the triple (X ,Y,H) to denote the duality. ♦

Remark 4.16. The slight extension of the standard concept consists in allowing for an R
d-

valued duality function instead of the usual real-valued H. This is, of course, equivalent to

introducing a family of d real-valued duality functions. It touches on the interesting problem

of finding all duality functions for a given pair of Markov processes. The corresponding duality
space has been introduced in [Möh99] and investigated in [Möh13]. ♦

Motivated by our observation at the end of Section 4.6, we now define a suitable dual process

for ω, and a corresponding duality function. More precisely, we will find three different

processes dual to ω, namely the weighted partitioning process, a Yule process with initiation

and resetting, and an initiation process, each linked to ω via a suitable duality function, and

each providing different insight.

4.7.1 The weighted partitioning process

For the first dual process, we refer back to the essential ASRG and now show formally that all

the information required for reconstructing the genetic type of an individual sampled from the

present-day population can be encoded in the form of a weighted partitioning process together

with the initial condition ω0. Just as in the neutral case, the partitioning describes how the

genotype of a given individual is pieced together from the genetic material of its ancestors.

In order to include selection, a positive integer (weight) is assigned to each block, denoting

the number of potential ancestors for the sites contained in that block (the number of lines in

the ASG labelled with this block). As in the single-site case (compare Figure 4.6), the true

ancestor will be of deleterious type if and only if all potential ancestors are of deleterious

type. We now formally define the weighted partitioning process.

Definition 4.14. The weighted partitioning process (WPP) is a continuous-time Markov chain

(Σ,V ) = (Σt, Vt)t>0 with (countable) state space

F :=
⋃

k>0

(
Ik(S)× N

k
+

)
,

where Ik(S) denotes the set of all interval partitions of S into exactly k blocks, and transitions

1. (A, v) −→ (A, w) at rate svA if wA = vA + 1 for some A ∈ A and wB = vB for all

A 6= B ∈ A.

Frederic
Notiz
Dualität
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2. (A, v) −→ (A ∧ {Ci,Di}, w) at rate ̺i if, for i ∈ S∗ and the unique A ∈ A with

|{Ci,Di}|A| = 2, wA∩Ci
= vA, wA∩Di

= 1, and wB = vB for all A 6= B ∈ A.

3. (A, v) −→ (A, w) at rate ̺
A∪{i∗}
min(A) if, for some A ∈ A, wA = 1 and wB = vB for all B 6= A

(the minimum is in the sense of 4). ♦

Note that transition (3) is silent if vA = 1.

The intuitive explanation for the dynamics of the WPP connects to the essential ASRG at

the end of Section 4.6. Clearly, (Σt, Vt) = (A, v) represents the set of ASGs present at time t,

where each block A of A corresponds to one ASG with vA lines. For every i ∈ S∗, every

A splits into A ∩ Ci and A ∩Di at rate ̺i independently of all other blocks. If this split is

nontrivial, then A ∩ Ci inherits the weight of A (reflecting the lines that pass through the

bar), while the weight of A ∩Di is set to 1 (reflecting the new ASG attached below the bar

and starting with a single line); this gives transition (2). If A ⊆ Ci, nothing happens. If

A ⊆ Di, the weight is reset to 1 (again reflecting the new ASG attached below the bar); note

that this happens whenever the split leaves A intact but separates it from the selected site,

which gives rise to the total rate of ̺
A∪{i∗}
min(A) in transition (3). Note also that the marginal Σ is

exactly the partitioning process described in Example 4.2. Independently of everything else,

every block experiences Yule branching at rate s (transition (1)). Based on the WPP, we now

define the corresponding candidate for our duality function.
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Figure 4.12. Illustration of the duality function H for a WPP in state (A, v), where
A = {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} and v{1,2,3} = 3, v{4,5,6,7} = 2, and v{8,9} = 4. The selected

site is i∗ = 5 and highlighted in light brown. As prescribed by (A, v), we sample 3 potential
ancestors (displayed horizontally on the left) for the first, 2 for the second, and 4 for the
third block of sites, all i.i.d. according to ν. The true ancestor (marked by an arrow) is then
sampled uniformly at random from all individuals of beneficial type within the respective
samples, except in the case of the third block, since there are no individuals of beneficial
type. The resulting marginal types for the individual blocks (middle) are then merged into
the sequence on the right. The distribution of this sequence is H(A, v; ν).
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Definition 4.15. For an interval partition A of S and associated weights v := (vA)A∈A we

define

H(A, v; ν) :=
⊗

A∈A

πA.
((

1− f(ν)
)v

Ad(ν) +
(
1−

(
1− f(ν)

)v
A
)
b(ν)

)

for all ν ∈ P(X). ♦

The functionH has the following meaning, which is illustrated in Figure 4.12. For a given (A, v)

and every A ∈ A, we sample one sequence according to ν for each of the vA leaves of the

corresponding ASG. The type at the root of this ASG is then distributed according to b(ν)

(according to d(ν)) if at least one of the leaves (none of the leaves) carries a beneficial type,

just as in the case of pure selection in Example 4.1. Finally, the sequence at the root of the

ASRG is pieced together from the sequences at the roots of the individual ASGs by taking,

for every A ∈ A, the sites in A from the root of the ASG corresponding to A. The resulting

sequence is distributed according to H(A, v; ν); note that H(A, v; ν) may be understood as

a probability vector on X, that is, a vector in R
2n

. For the time being, let us refrain from

proving the resulting duality and proceed to a more convenient representation of the WPP.

4.7.2 The Yule process with initiation and resetting.

Keeping in mind that we are only dealing with single-crossover recombination (and, therefore,

only interval partitions), we will take advantage of the following one-to-one correspondence

between (weighted) partitions and assignments of non-negative integers to the sites of the

sequence (see Figure 4.13). Let a collection m = (mk)16k6n of non-negative integers with

mi∗ > 0 be given. We then obtain an (interval) partition by the rule that two sites i ≺ j

belong to the same block if and only if mk = 0 for all i ≺ k 4 j; intuitively, the non-zero

integers tell us where to chop up the sequence. We obtain in this way a partition A in which,

for each block A ∈ A, mmin(A) > 0, while mi = 0 for min(A) 6= i ∈ A (where the minimum is

with respect to 4, and is unique since A is an interval partition). We then assign a weight

to block A by setting vA := mmin(A). Likewise, we may encode a weighted partition as a

collection m of integers by assigning the weight of each block to its respective minimal site

and 0 to all others. Since i∗ is the unique minimal element of S, one always has mi∗ > 0.

Explicitly, mi∗
= vA for the unique A that contains i∗ and, for i 6= i∗,

mi =





0, if
←−
i and i are in the same block,

vA for the unique A that contains i, otherwise,

with
←−
i as in Definition 4.1.

The new encoding allows us to rewrite H of Definition 4.15 in a convenient way, where we

also take advantage of the formalism introduced in Section 4.4.

Lemma 4.16. Let H be as in Definition 4.15. For m ∈ N
S
0 with mi∗ > 0, let (A(m), v(m))
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m

A

v 3 4 1 2

{{1, 2, 3},{4, 5},{6, 7, 8},{9, 10}}

0 0 3 0 4 1 0 0 2 0

Figure 4.13. Encoding a weighted partition (top) by a tuple of integers (bottom). The
selected site is light brown.

be the weighted partition associated with m, and define

H(m, ν) := H
(
(A(m), v(m)), ν

)
.

Then, one has
H(m, ν) =⊠

i∈S

h(mi, ν)Di (4.36)

where
h(mi, ν) :=

(
1− f(ν)

)mid(ν) +
(
1−

(
1− f(ν)

)mi
)
b(ν) (4.37)

for mi 6= 0 and h(0, ν) := 1. The factors are ordered non-decreasingly with respect to 4.

Remark 4.17. When using the product sign ⊠ for products of elements of A(X) indexed

by S, we always understand the factors to be ordered non-decreasingly. ♦

Remark 4.18. At this point, it becomes clear that the special role played by Di∗ = S in the

definition of the Di (see Remark 4.1) makes perfect sense. Indeed, the representation (4.36)

shows that the contributions to the sequence at the root of the ASRG come from the various

ASGs associated to different tails Di, which are attached to the original one corresponding

to Di∗ = S. This will become even more evident in the context of the initiation process; see

the duality function G in (4.41) and Figure 4.14. ♦

Proof. Recall that, by the minimality of the selected site, we have Ci∗ = ∅,Di∗ = S and

therefore H(m, ν) = h(mi∗ , ν) if mi = 0 for all i 6= i∗. In all other cases, let i be a maximal

site with mi 6= 0. The definitions of H and H then entail

H(m, ν) = H(m′, ν)Ci ⊗ h(mi, ν)Di = H(m′, ν)⊠ h(mi, ν)Di ,

where m′ is obtained from m by setting mi to zero. The claim then follows by induction.

The new encoding also allows us to represent the WPP as a collection of n independent Yule

processes with initiation and resetting, to be defined next. In the neutral case, this is similar

to the representation of interval partitions in [BB] in terms of the sets of breakpoints.

Definition 4.17. A Yule process with initiation and resetting (YPIR) with branching rate

s > 0, initiation rate ̺ > 0, and resetting rate r > 0 is a continuous-time Markov chain on
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N0 with transitions

(Y) m→ m+ 1 at rate sm for m > 0,

(I) 0→ 1 at rate ̺,

(R) m→ 1 at rate r for m > 0.

Note that transition (R) is silent if m = 1. ♦

Given the one-to-one correspondence between (A, v) and m, it is then easy to see that (Σ,V )

is equivalent to a collection M of independent YPIRs, where M = (Mi)i∈S . Here, Mi∗
=

(Mi∗,t)t>0 is a simple Yule process with branching rate s > 0, that is, the degenerate case of a

YPIR with initiation and resetting rates ̺i∗
:= ri∗

:= 0; for i 6= i∗, Mi = (Mi,t)t>0 is a YPIR

with branching rate s, initiation rate ̺i and resetting rate

ri :=
∑

ℓ4i

̺ℓ; (4.38)

note, in particular, that ri > ̺i. Finally, we also write Mt := (Mi,t)i∈S for the entire

collection at time t. Indeed, the equivalence is clear since the transitions of (Σ,V ) and M

and the corresponding rates can be matched in a unique way; compare Definitions 4.14 and

4.17. Note that ri is the total rate at which i is separated from the selected site; it may be

understood as the marginal recombination rate ri = ̺
{i,i∗}
i , compare (4.18).

Note that our Yule process K (compare Example 4.1) has the law of Mi∗ . Let us recapitulate

from [BCH18] the duality result for the pure selection equation, which is a slight extension

of Example 4.1.

Proposition 4.18. Let K be a Yule process with branching rate s. For k > 1 and ν ∈ P(X),
define h(k, ν) as in Eq. (4.37). Then,

h
(
k, ϕt(ν)

)
= E

(
h(Kt, ν) | K0 = k

)
,

where ϕ is the selection semigroup.

Proof. Combining Eqs. (4.37), (4.24) and (4.31), one gets

h
(
k,ϕt(ν)

)

=
(
E
[(

1− f(ν)
)Kt | K0 = 1

])k
d
(
ϕt(ν)

)
+
(
1−

(
E
[(

1− f(ν)
)Kt | K0 = 1

])k)
b
(
ϕt(ν)

)

= E
(
h(Kt, ν) | K0 = k

)
,

where the last step follows from the fact that a collection of k independent Yule processes,

each started with a single line, is equivalent to a Yule process started with k lines.

Let us still postpone the duality result in the case with recombination to the next section,

since the proof is most convenient on the basis of the initiation process.
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4.7.3 The initiation process.

Let us first try to gain some intuition by representing the duality function from Lemma 4.16

in terms of (box-)products of elements of the selection semigroup at various times. To this

end, recall first from Proposition 4.5 that ϕt(ν) is, for all ν and t, a convex combination of

the conditional type distributions d(ν) and b(ν), and so is h(k, ν) for all k > 1, see Eq. (4.37).

Since f(ϕt(ν)) is strictly increasing in t (compare Proposition 4.5), there exists, for all k > 1

and s > 0, a unique θ(k) ∈ R such that
(
1− f(ν)

)k
= 1− f

(
ϕ

θ(k)(ν)
)

and thus,

h(k, ν) = ϕθ(k)(ν). (4.39)

Note that θ(1) = 0 since h(1, ν) = ν = ϕ0(ν). Then, setting θ(0) := ∆ and ϕ∆(ν) := 1 for

all ν (in line with h(0, ·) = 1 in Lemma 4.16), we can write, using the representation from

Lemma 4.16,

H(m, ν) =⊠
i∈S

h(mi, ν)Di =⊠
i∈S

ϕθ(mi)(ν)Di =: G
(
θ(m), ν

)
, (4.40)

where θ(m) := (θ(mi))i∈S . More generally, this leads to the ansatz

G(θ, ν) :=⊠
i∈S

ϕθi
(ν)Di (4.41)

for a third (putative) duality function. Here, θ = (θi)i∈S ∈ R
i∗
>0 × (R>0 ∪ {∆})

S∗
, where the

symbol ∆ is used to indicate that the factor is absent from the product; thus, we have θi∗ 6= ∆,

in analogy to mi∗ > 0. Recall that the factors in the product are ordered non-decreasingly

w.r.t. 4 and note that its value is the same for all such orderings since incomparable factors

commute by Proposition 4.7, (ii).

Recall that m in (4.36) corresponds to a partition of S in which each block is weighted by a

positive integer, counting the number of lines in the associated ASG (as part of an essential

ASRG, see Section 4.6). Similarly, θ in Eq. (4.41) also encodes a partition of S (the role of 0

now being played by ∆), only this time, the blocks are not weighted by the number of lines

in the associated ASGs, but by their runtimes (again, seen as part of an essential ASRG). In

the sampling step, we average over all realisations of the ASG with the indicated runtime,

and thus obtain G from H by replacing the factors h(mi, ν) in H(m, ν) by

ϕθi
(ν) = E[h(Kθi

, ν) | K0 = 1];

this will later make the connection to the transformation (4.39).

We now give an informal description of the initiation process which will take the role of the

YPIR. It is a continuous-time Markov process, and its transition rates relate to that of the

YPIR as follows. As ∆ takes the role of 0, the transition (I) (initiation) in Definition 4.17

corresponds to a transition from ∆ to 0. Similarly, as 0 takes the role of 1, a reset (R) (to 1)
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Figure 4.14. A realisation of the essential ASRG, where every ASG is collapsed into a single
line. It describes the evolution of a partitioning process whose blocks are weighted by the
time that has passed since the corresponding ASG was attached. The colour coding is the
same as in Figure 4.11. Light brown, blue and red for site 1,2 and 3; as before, the first site is
selected. Below the graph, we indicate the evolution of the associated collection of initiation
processes Θ. At the bottom, we see how the function G(Θt, ·), defined in Eq. (4.41), evolves
in time. Every factor corresponds to a different line, and attachment of a new line due to
an i-recombination event corresponds to multiplication from the right by ϕDi

0 ; subsequently,
the time index in each factor evolves on its own. Notice the cancellation that occurs at time
t3; it corresponds to the discontinuation of the line at the recombination bar and the reset of
the second component of Θ, due to {2} ∩D2 = {2}.
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of the YPIR corresponds to a reset (to 0) of the initiation process. Keeping in mind that (Y)

describes the branching of the ASG (and that we now only want to record its runtime), we

replace these random jumps by a deterministic and continuous increase. Thus, Θt is either

∆, signifying that it has not yet been initiated, or its value is just the time that has passed

since the last reset. Finally, when no resetting occurs, we have Θt = Θ0 + t.

This can be condensed into the following definition; for an illustration, see Fig. 4.14.

Definition 4.19. We define the initiation process with initiation rate ̺ > 0 and resetting

rate r > 0 as the continuous-time Markov process with values in R>0∪{∆} and its generator

mapping u ∈ C1(R) to ũ, which is defined via

ũ(t) = u̇(t) + r
(
u(0)− u(t)

)
for t ∈ R>0,

ũ(∆) = ̺
(
u(0)− u(∆)

)
.

(4.42)

For later use, we define Θ as the following collection of independent initiation processes, where

Θ = (Θi)i∈S . The process Θi = (Θi,t)t>0 has initiation rate ̺i and resetting rate ri (compare

(4.38)). In particular, since ̺i∗
= ri∗

= 0, all stochastic contributions in Eq. (4.42) vanish

for this choice, and what remains is a purely deterministic drift, that is Θi∗,t = t + Θi∗,0.

We denote by Li the generator of Θi. Furthermore, L :=
∑

i∈S Li, where Li acts on the i-th

component of the argument. ♦

Note that Θ shares the parameters ̺i and ri with M , but it does not depend on s. Rather,

for any given s, Θ and M are related at the level of an expectation, as we now show. First, we

prove the duality result for the triple (ω,Θ,G). From there, we recover the duality (ω,M,H)

and, equivalently, (ω, (Σ,V ),H). The first step is to see that the YPIR and the initiation

process are related at the level of expectations.

Proposition 4.20. For all i ∈ S, the YPIR Mi and the initiation process Θi satisfy

E
(
h(Mi,t, ν) |Mi,0 = mi

)
= E

(
ϕΘi,t

(ν) | Θi,0 = θ(mi)
)

for all mi ∈ N0 and t > 0.

Proof. It suffices to show that the left- and right-hand side of the statement solve the same

initial value problem. By (4.39), the expressions agree at t = 0. It remains to be shown that

Qih(·, ν)(mi) = Liϕ·(ν)
(
θ(mi)

)
,

where Qi is the generator of Mi, and Li that of Θi. Comparing Definitions 4.17 and 4.19, it

is obvious that the transitions from m to 1 in the YPIR (at rate ̺i if mi = 0 and at rate ri

if mi > 0) correspond to transitions to 0 in the initiation process (at rate ̺i if Θi = ∆ and

at rate ri if Θi ∈ R>0). The identity (4.39) then implies the equality of the corresponding

contributions to the left and right-hand side, i.e.
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h(1, ν)− h(mi, ν) = ϕ0(ν)− ϕ∆(ν) for m = 0, and

h(1, ν)− h(mi, ν) = ϕ0(ν)− ϕθ(mi)(ν) for m > 0.

Furthermore, it is a direct consequence of Proposition 4.18 together with (4.39) that the time

derivative corresponds to branching of the YPIR, that is,

ϕ̇θ(mi)(ν) = d
dt

E
(
h(Kt, ν) | K0 = mi)

)
|t=0 = smi

(
h(mi + 1, ν)− h(mi, ν)

)

by the Kolmogorov backward equation for the Yule process.

Returning now to H and G, we obtain immediately, by independence:

Corollary 4.21. The families M and Θ of independent YPIRs and initiation processes satisfy

E
(
H(Mt, ν) |M0 = m

)
= E

(
G(Θt, ν) | Θ0 = θ(m)

)

for all m ∈ N
n
0 and t > 0.

We are now set to state the main result of this section, the duality for (ω,Θ,G).

Theorem 4.22. Let Θ be the family of independent initiation processes introduced in Defin-
ition 4.19. Then, with G as in (4.41), we have, for all ν ∈ P(X) and all θ ∈ R

i∗
>0 × (R>0 ∪

{∆})S∗
,

G
(
θ, ψt(ν)

)
= E

(
G(θ, ωt) | ω0 = ν) = E(G(Θt, ν) | Θ0 = θ

)
,

where ψ = (ψt)t>0 is the flow of the SRE introduced in Definition 4.4.

Proof. The first equality is clear because ψ is deterministic. For the proof of the second

equality (that is, the duality relation), it will be useful to think of the solution of the SRE

(4.9) as a deterministic Markov process with generator Ψ̃ = Ψ̃sel + Ψ̃rec given by

Ψ̃f(ν) := d
dt
f
(
ψt(ν)

)
|t=0 = d

dt
f
(
ν + tΨsel(ν) + tΨrec(ν)

)
t=0

= d
dt
f
(
ν + tΨsel(ν)

)
|t=0 + d

dt
f
(
ν + tΨrec(ν)

)
|t=0

=: Ψ̃self(ν) + Ψ̃recf(ν)

for all f ∈ C1(P(X)).

As in the proof of Proposition 4.20, we are going to show that the left and right-hand side

satisfy the same initial value problem. As their values at t = 0 obviously agree (see Eq. (4.39)),

it suffices to show that

Ψ̃G(θ, ·)(ν) = LG(·, ν)(θ) (4.43)

for all ν ∈ P(X) and all θ ∈ R
i∗
>0 × (R>0 ∪ {∆})

S∗
. (Indeed, if (4.43) is satisfied, it trivially



72 4 Ancestral lines under selection and recombination

applies to all components of the R
2n

-valued function G and thus establishes duality also in

our slightly extended sense; compare Remark 4.16.) First of all, let us note that, since Ψ̃ is

a differential operator, we have

Ψ̃
(
G(θ, ·)

)
(ν) =

∑

j∈S
θj 6=∆

(
⊠

j 6≺.i∈S\j

ϕθi
(ν)Di

)
⊠
(
Ψ̃ ◦ ϕθj

(ν)
)Dj

⊠ ⊠
j≺.i∈S

ϕθi
(ν)Di (4.44)

by the product rule, where the underdot indicates the summation variable; note that since

ϕ∆(ν) = 1, factors with θi = ∆ play no role. Hence, in order to evaluate the left-hand side of

Eq. (4.43), we only need to compute
(
Ψ̃(ϕθj

)(ν)
)Dj for all j ∈ S such that θj 6= ∆. Clearly,

(
Ψ̃sel(ϕθj

)(ν)
)Dj =

(
ϕ̇θj

(ν)
)Dj (4.45)

because ϕ is the flow of the pure selection equation. For the recombination part, we calculate

(
Ψ̃rec(ϕθj

)(ν)
)Dj

=
(

d
dh
ϕθj

(
ν + hΨrec(ν)

)
|h=0

)Dj

=
(

d
dh
ϕθj

(
ν ⊠

(
1⊞ h

∑

ℓ∈S∗

̺ℓ(ν
Dℓ ⊟ 1)

))
|h=0

)Dj

=
(
ϕθj

(ν)⊠ d
dh

(
1⊞ h

∑

ℓ∈S∗

̺ℓ(ν
Dℓ ⊟ 1)

)
|h=0

)Dj

=
∑

ℓ∈S∗

̺ℓ

(
ϕθj

(ν)Dj ⊠ νDℓ∩Dj − ϕθj
(ν)Dj

)

=
∑

ℓ∈S∗

ℓ4j

̺ℓ

(
ϕ0(ν)Dj − ϕθj

(ν)Dj
)

+
∑

ℓ∈S∗

ℓ≻j

̺ℓ

(
ϕθj

(ν)Dj ⊠ ϕ0(ν)Dℓ − ϕθj
(ν)Dj

)
.

(4.46)

Here, we have used Lemma 4.8 in the third step, and in the last that ϕ0(ν) = ν together

with the fact that the sum over sites incomparable to j vanishes because Dj ∩ Dℓ = ∅ if ℓ

is incomparable to j. To simplify the first sum, we took advantage of the fact that ℓ 4 j

implies Dj ⊆ Dℓ together with the cancellation rule from Proposition 4.7. Similarly, ℓ ≻ j

implies Dℓ ⊆ Dj, which simplifies the second sum. Inserting (4.46) and (4.45) into (4.44) and

recalling Eq. (4.38), we have shown so far that

Ψ̃G(θ, ·)(ν)

=
∑

j∈S
θj 6=∆

(
rj

(
G((θ<j , 0, θ>j), ν)− G(θ, ν)

)
+ ∂
∂θj

G(θ, ν) +
∑

ℓ≻j

̺ℓ

(
Gj,ℓ(θ, ν)− G(θ, ν)

))
,

where we use the obvious convention that (θ<j, 0, θ>j) is obtained from θ by setting θj to

0. Furthermore, Gj,ℓ(θ, ν) (for tj 6= ∆ and j ≺ ℓ) arises from G(θ, ν) by inserting the factor

ϕ0(ν)Dℓ at the immediate right of ϕθj
(ν)Dj . That is, if G(θ, ν) is of the form G(θ, ν) =
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A⊠ ϕθj
(ν)Dj ⊠B, then

Gj,ℓ(θ, ν) = A⊠ ϕθj
(ν)Dj ⊠ ϕ0(ν)Dℓ ⊠B. (4.47)

Hence, if we can show that

∑

j∈S
θj 6=∆

∑

ℓ≻j

̺ℓ

(
Gj,ℓ(θ, ν)− G(θ, ν)

)
=
∑

ℓ∈S∗

θℓ=∆

̺ℓ

(
G((θ<ℓ, 0, θ>ℓ), ν)− G(θ, ν)

)
, (4.48)

it follows that Ψ̃G(θ, ·)(ν) =
∑

j∈S LjG((θ<j , ·, θ>j), ν)(θj) = LG(·, ν)(θ).

To see Eq. (4.48), notice that, if j 6= max{j′ 4 ℓ : θj′ 6= ∆}) (in particular, this is the case if

θℓ 6= ∆), then Gj,ℓ(θ, ν) is of the form

A⊠ ϕθj
(ν)Dj ⊠ ϕ0(ν)Dℓ ⊠ ϕθj′ (ν)Dj′

⊠B′ (4.49)

for some j′ 4 ℓ due to the site ordering (compare Remark 4.17), where B = ϕθj′
⊠B′. Since

j′ 4 ℓ means Dℓ ⊆ Dj′ , (4.49) is equal to

A⊠ ϕθj
(ν)Dj ⊠ ϕθj′

(ν)Dj′
⊠B′ = G(θ, ν)

by the cancellation rule from Proposition 4.7. If j = max{j′ 4 ℓ : θj′ 6= ∆}, the factors in

(4.47) are ordered strictly non-decreasingly w.r.t. 4, and no cancellations occur; hence we

have Gj,ℓ(θ, ν) = G((θ<ℓ, 0, θ>ℓ), ν). Thus, we have verified (4.48).

Remark 4.2. A few comments are in order.

(i) Another approach to recover Theorem 4.22 would be to prove the right multiplicativity

for h(m, ·) for m > 1 by the same argument as in Lemma 4.8, and to replace ϕt by

h(m, ·) in the proof of Theorem 4.22.

(ii) Note that nowhere in the proof of Theorem 4.22 have we used the particular form of

the selection term; the only property required was the second statement in Lemma 4.8.

Therefore, the same procedure can be applied to any single-locus model with linked

neutral sites. Examples include the deterministic mutation-selection equation, for which

the dual process can then be expressed as a collection of independent pruned lookdown
ASGs [BCH18; BW18] that are initiated and reset at random.

(iii) It is also instructive to pause and relate the proof of Theorem 4.22 to the genealogical

construction detailed above; see Figure 4.14. Recall that the factors ϕ
Dj

θj
in G(θ, ν)

correspond to the different independent ASGs that make up the essential ASRG of

Section 4.5, and which are ancestral to different sets of sites. At rate ̺ℓ, ℓ ∈ S
∗, each

such ASG is hit independently by a recombination bar labelled ℓ, at which a new ASG

is started for the tail. This corresponds to right multiplication of ϕ
Dj

tj
by ϕDℓ

tℓ
. Recall
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that in the case of such a multiplication, we had to distinguish the three cases of j

being either incomparable to ℓ, ℓ 4 j and ℓ ≻ j. In the genealogical picture, these cases

correspond to the recombination event being either ignored (if ℓ and j are incomparable,

which entails that the ASG in question is only ancestral to sites in Cℓ); a resetting event

if ℓ 4 j, which means that the ASG is only ancestral to sites contained in Dℓ; or an

initiation event if ℓ ≻ j, where a new ASG is initiated for the tail. ♦

By Corollary 4.21 and (4.40), Theorem 4.22 also yields the duality of ω and M .

Corollary 4.23. The family M of YPIRs and the solution ω of the SRE (4.9) are dual with
respect to H of (4.32), namely

E
[
H(Mt, ν) |M0 = m

]
= E

[
H(m,ωt) | ω0 = ν

]
= H

(
m,ψt(ν)

)
(4.50)

for all ν ∈ P(X) and all initial values m ∈ N
S
0 with mi∗ > 0. Here, ψ is the deterministic

flow introduced in Definition 4.4.

The following representations analogous to (4.29) for the solution of the selection-recombination

differential equation are now immediate.

Corollary 4.24. Let ω = ψ(ω0) be the solution of the SRE (4.9). Then, for all t > 0, we have
the stochastic representations

ωt = E

[
H(Mt, ω0) |Mi,0 = δ(i, i∗) for i ∈ S

]
= E

[
G(Θt, ω0) | Θi∗,0 = 0,Θi,0 = ∆ for i ∈ S∗

]

with H of (4.32) and G of (4.41). That is, we average over all realisations of the WPP

starting from the trivial partition with weight one as represented by the family of YPIRs, or
the family of initiation processes, started in 0 for i = i∗ and started in ∆ for i ∈ S∗.

4.8 The explicit solution and its long-term behaviour

We have seen in the previous section that the solution of the SRE (forward in time) has a

stochastic representation in terms of a collection of independent Yule processes with initiation

and resetting. Their semigroups are easily expressed in terms of geometric distributions with

random success probability.

Proposition 4.25. Let i ∈ S and let Mi be a YPIR with branching rate s > 0, initiation
rate ̺i > 0 and resetting rate ri > 0. If ri > 0, let Ti be a random variable with distribution
Exp(ri); if ri = 0, set Ti :=∞ for consistency. The Markov transition semigroup pi = (pi,t)t>0
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corresponding to Mi is then given by

pi,t(1, ·) = E
[
Geom(e−s(Ti∧t))

]
,

pi,t(0, ni) =

∫ ∞

0
̺ie
−̺iτpi,t−τ (1, ni) dτ + δ0,ni

e−̺it,

pi,t(mi, ni) =

∫ ∞

0
rie
−riτpi,t−τ (1, ni) dτ + e−rit NegBin(mi, e

−st)(ni), mi > 1,

where NegBin(mi, σ) is the negative binomial distribution with parameters mi and σ, and we
set pi,t(1, ·) ≡ 0 for t < 0.

Proof. For the first formula, we argue as in the genealogical proof of Theorem 4.6. After

the time of the last resetting event, which is exponentially distributed with parameter ri,

the YPIR experiences no further resetting and hence has the law of a Yule process with

branching rate s for the remaining time. The second and third formulae follow from the first

by waiting the Exp(̺i) (Exp(ri))-distributed time until the process initiates (resets); recall

that NegBin(mi, σ) is the distribution of the number of independent Bernoulli trials (with

the success probability σ) up to and including the mi-th success. In the degenerate case (for

i = i∗), ri = 0 and ̺i = 0, the statement reduces to

pi,t(mi, ni) = NegBin(mi, e
−st)(ni), m > 1, pi,t(0, ni) = δ(0, ni)

which is just the semigroup of the ordinary Yule process. The consistency in the cases where

only one of the parameters ̺i or ri vanishes is seen just as easily.

Combining Proposition 4.25 with Corollary 4.24 yields a closed expression for the solution ω

of the SRE.

Corollary 4.26. The solution of the SRE is given by

ωt = pi∗,th(·, ω0)Di∗ (1)⊠⊠
i∈S∗

pi,th(·, ω0)Di(0),

where pi = (pi,t)t>0 is the semigroup of Mi as in Proposition 4.25.

We now turn our attention to the long-term behaviour of the solution. We do so by using its

explicit representation in Corollary 4.26. The obvious first step is to consider the asymptotics

of the semigroup from Proposition 4.25.

Corollary 4.27. As in Proposition 4.25, let pi be the Markov semigroup of the YPIR at site
i with branching rate s > 0, initiation rate ̺i, and resetting rate ri > 0. If ̺i > 0, then, for
all mi > 0,

lim
t→∞

pi,t(mi, ·) = E
[
Geom(e−sTi)

]
=: ζi, (4.51)

where Ti follows Exp(ri). If ̺i = 0, then pi,t(0, ni) = δ(0, ni), and Eq. (4.51) applies for
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mi > 0. More explicitly, ζi in (4.51) is given by

ζi(ni) =

∫ ∞

0
rie
−(sni+ri)t(est − 1)ni−1 dt. (4.52)

Proof. Since a YPIR with ri, s > 0 is irreducible, positive recurrent, and non-explosive (since

it is stochastically dominated by a Yule processes with branching rate s, which is non-

explosive), there exists a unique asymptotic distribution ζi such that pi,t(mi, ·) converges

to ζi for all initial conditions mi > 0. To see that in fact ζi = Geom(e−sT ), it suffices in the

case that ̺i > 0 to simply let t → ∞ in pi,t(1, ·) in Proposition 4.25; note that even when

starting in 0, the process will jump to one almost surely. This is not the case if ̺i = 0; in

this case, the process started in 0 will stay there for all times whence the convergence to

Geom(e−sT ) then only holds for strictly positive m.

Remark 4.19. In the degenerate case ̺i = ri = 0 (where the YPIR degenerates to an

ordinary Yule process), there is no stationary distribution as the Yule process is transitive;

the number of lines diverges almost surely. Nonetheless, one may still define (somewhat

informally) ζi(ni) := 0 for all ni ∈ N together with ζi(∞) = 1. ♦

If ri > 0, substituting t for τ := rit in Eq. (4.52) gives

ζi(ni) =

∫ ∞

0
e
−(1+

sni
ri

)τ
(e

s
ri

τ
− 1)ni−1 dτ ; (4.53)

the long-term behaviour thus depends only on the ratio s/ri. In particular, (4.53) yields

ζi(1) = ri/(s + ri). For ri ≫ s, therefore, ζi is close to a point measure on 1; whereas for

ri ≪ s, ζi puts substantial mass on large values, in line with intuition.

From the representation of the solution in Corollaries 4.25–4.27 together with Eq. (4.37) and

(1− x)∞ = δx,0 for x ∈ [0, 1], the long-term behaviour of the solution is now immediate.

Corollary 4.28. Assuming that ̺i > 0 for all i ∈ S∗, we have

ω∞ := lim
t→∞

ωt =
⊗

i∈S

πi.
((

1− γi(1− f(ω0))
)
b(ω0) + γi(1− f(ω0))d(ω0)

)

for all initial conditions ω0 ∈ P(X). As always, f(ω0) is the initial frequency of the beneficial
type. Furthermore, γi∗

(x) = δx,0 (in line with Remark 4.19 and (1 − x)∞ = δx,0), and for
i ∈ S∗, γi is the probability generating function

γi(x) :=
∞∑

n=1

ζi(n)xn

of ζi.

Remark 4.20. From Corollary 4.28, it is clear that γi(1− f(ω0)) is the probability that site

i is drawn from πi.d(ω0), or equivalently, that it is associated with i∗ = 1 at equilibrium;
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Figure 4.15. Asymptotic probability of site i being drawn from πi.d(ω0) as a function of
ri/s. As recombination becomes stronger, the asymptotic probability approaches the initial
probability 1− f(ω0) = 1/2 assumed here.

see Figure 4.15 for an illustration of its parameter dependence. For a site i that is far

away from i∗ in the sense that its total rate of separation from i∗ is large in comparison

to the selection strength (s ≪ ri), the dynamics is close to that of the pure recombination

equation; in particular, the marginals πi.ωt are approximately time invariant, in line with the

marginalisation consistency (4.19) of the pure recombination equation. Accordingly, the long-

term behaviour is governed by γi(x) ≈ x. In contrast, in the regime s ≫ ri, the behaviour

is closer to that of the pure selection equation, in that ζ places much weight on large values,

which implies that γi(x) is very small for small values of x, and the beneficial type prevails. ♦

4.8.1 The evolution of linkage disequilibria during selective sweeps

We close by showing how our results can explain the effect of a selective sweep on the cor-

relation between two neutral sites. A selective sweep [SH74] occurs when a new beneficial

mutant is introduced into the population and thus also increases the frequency of the letters

of the neutral sites of that mutant; these neutral letters thus hitchhike along with the be-

neficial mutation at the selected site. We assume the simplest scenario of two neutral sites

L and R that are linked to the single selected site i∗. Following [SSL06], we therefore take

S = {i∗, L,R}, where i∗ ∈ {1, 2, 3} is given and L,R ∈ S \ i∗ satisfy L < R; L and R denote

the ‘left’ and the ‘right’ neutral site, respectively, see Figure 4.16. We then consider

Cor(ωt) := (π{L,R}.ωt){(1, 1)} − (πL.ωt){(1)}(πR.ωt){(1)}; (4.54)

due to marginalisation consistency as discussed in Section 4.3, the results are not affected by

adding additional neutral sites to S. We will examine how the dynamics of the correlation is

affected by the location of the selected site relative to the neutral ones. Indeed, a somewhat
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i∗ = 1 L = 2 R = 3

L = 1 i∗ = 2 R = 3

L = 1 R = 2 i∗ = 3

Figure 4.16. The three cases i∗ = 1, i∗ = 2, and i∗ = 3. The selected site is represented by
a bullet, the other two (neutral) sites by circles.

complicated behaviour was observed in Figure 2 of [SSL06] but remained somewhat obscure.

A partial explanation was given in [PLS08], which we will complement here.

We are interested in a single, rare beneficial mutation that is introduced into a population

that otherwise consists exclusively of unfit individuals. To model this, we pick a single type

xm ∈ {x ∈ X : xi∗
= 0} and set ω0({xm}) := ε (where ε is a small positive number), together

with ω0({x}) := 0 for all x ∈ {x ∈ X : x 6= xm, xi∗
= 0}. For our numerical solutions, we

specifically chose xm,L = xm,R = 1 and adjusted the remaining type frequencies such that

Cor(ω0) > 0, and

for ̺L = ̺R = 0, one has d
dt

Cor(ωt)|t=0 > 0 (in line with hitchhiking of xR = 1 and

xL = 1 along with xi∗ = 0 in the mutant).

For our exact parameter values, see Fig. 4.17.

It is clear that, for ̺L = ̺R = 0, the correlation eventually decays to zero. This is because

ω∞ = δxm , and the correlation vanishes for any point measure. Let us now investigate how

this behaviour changes in the presence of recombination. Here, it is essential to distinguish

between recombination events that separate L and R (separating recombination) (compare

Fig. 4.17 (b)) and those that do not (compare Fig. 4.17 (a)). We denote the set of all sites j

such that recombination at site j separates L and R by Ssep, that is,

Ssep = {j ∈ S : L ∈ Cj and R ∈ Dj or L ∈ Dj and R ∈ Cj}.

Likewise, the set of sites j such that recombination at site j separates {L,R} from i∗ but not

from each other is denoted by

Sns = {j ∈ S : {L,R} ⊆ Cj and i∗ ∈ Dj or {L,R} ⊆ Dj and i∗ ∈ Cj}.

We define ̺sep :=
∑

j∈Ssep
̺j and ̺ns :=

∑
j∈Sns

̺j; in other words, ̺sep and ̺ns are the

marginal recombination rates ̺
{L,R}
{L},{R} and ̺

{L,R,i∗}
{L,R},{i∗}

. More explicitly, we have for i∗ = 1
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Figure 4.17. Time evolution of the correlation under recombination and selection ob-
tained by evaluating the solution formula from Theorem 4.6. In the left panel, recombination
only separates the block {L,R} from the selected site, but not L and R from each other.
In the right panel, separating recombination is added. The parameters are chosen as fol-
lows. s = 10−2, Initial type distribution: ω0({(0, 1, 1)}) = 5 · 10−5 = ε, ω0({(1, 1, 1)}) =
0.38995, ω0({(1, 0, 1)}) = 0.23, ω0({(1, 1, 0)}) = 0.2 and ω0({(1, 0, 0)}) = 0.18.

that ̺sep = ̺3 and ̺ns = ̺2. If the selected site is in the middle, i.e. i∗ = 2, then we have

̺sep = ̺1 + ̺3 and ̺ns = 0. Finally, if i∗ = 3, then ̺sep = ̺1 and ̺ns = ̺3.

First, let us consider the effect of recombination separating L and R, as this is somewhat

easier to understand.

Theorem 4.29. Let ωns be the solution of the selection-recombination equation (4.9) with all
̺j with j ∈ Ssep set to 0. Then, we have

Cor(ωns

t ) = e−̺septCor(ωt).

Proof. This follows by an iterative application of Lemma 4.9. Note that in all three cases, the

labelling in Section 4.4 is such that Ssep = {i1, i2} (if i∗ is in the middle) or Ssep = {i2}.

Next, we examine the effect of recombination at sites in Sns. In the forward-time evolution,

they have the effect that the subsequences (x2, x3) = (0, 0), (0, 1), (1, 0) partially replace the

original tail (x2, x3) = (1, 1) in the mutant and thwart its establishment as it is ‘swept’

through the population together with x1 = 0. In the absence of separating recombination,

this preserves some of the correlation built up initially. In particular, ωns
∞ is not a point

measure. We can compute the limit of the correlation explicitly.
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Theorem 4.30. The limit of Cor(ωns

t ) as t→∞ is given by

Cor(ωns

∞) =

∫ ∞

0
̺nse

−τ̺ns(π{L,R}.ω
(0)
τ ){(1, 1)}dτ

−

∫ ∞

0
̺nse

−τ̺ns(πL.ω
(0)
τ ){(1)}dτ

∫ ∞

0
̺nse

−τ̺ns(πR.ω
(0)
τ ){(1)}dτ.

Proof. If i∗ is in the middle, then ̺ns = 0 and the right-hand side vanishes, in line with our

earlier observations. Otherwise, we have Sns = {i1} and the statement follows by letting

t→∞ in Theorem 4.6.

For an illustration, see Fig. 4.17. In (a), we plotted Cor(ωns
t ). Note that this behaviour is only

possible if the selected site is not in the middle, and does not seem to have been described

previously. In (b), the situation is as in [PLS08].



5 The migration-recombination equation and the
labelled partitioning process

Last but not least, we consider the evolution under the joint action of recombination and

migration of individuals between discrete locations (or demes). As before, the model will be

deterministic. In contrast to previous chapters, which were set in continuous time, we now

focus mainly on discrete time, where generations do not overlap.

This dynamical system is a variant of the migration-selection-recombination equation for-

mulated by Bürger [Bür09] in 2009, who analysed its asymptotic behaviour in the classical

dynamical systems setting forward in time. It is our goal to complement this picture by re-

lating this nonlinear system to a linear one by embedding the solution into a space of higher

dimension, a technique known as Haldane linearisation [MR83; Lyu92] in the context of ge-

netic algebras. This extends the approach taken in [BB16] to the case with migration. The

resulting linear system has a natural interpretation as a Markov chain on the set of labelled
partitions of the set of sequence sites. Intuitively, this Markov chain describes how the ge-

netic material of an individual from the current population is partitioned across an increasing

number of ancestors, along with their locations, as the lines of descent are traced back into

the past. This backward (or dual) process combines a variant of the ancestral recombination
graph with a variant of the ancestral migration graph [Not90; MW06]. It is tractable in the

law-of-large-numbers regime considered here; this was previously exploited for the recombin-

ation equation (without migration) in [BBS16; Mar17; BB16]; see [BB] for a review. For an

application of a similar idea in the context of the ancestral selection graph, see [SW05].

All this leads to a stochastic representation of the solution of the (nonlinear, deterministic)

migration-recombination equation in terms of the labelled partitioning process. As a con-

sequence, one obtains an explicit solution of the nonlinear dynamics, simply in terms of

powers of the transition matrix of the Markov chain. In particular, the asymptotic beha-

viour of the recombination-migration equation emerges without any additional effort, via the

(unique) absorbing state of the Markov chain. In addition, we will investigate the quasi-

limiting behaviour of the labelled partitioning process, based on ideas from [Mar17].

This chapter is organised as follows. In Section 5.1, we set the scene and introduce the model.

In Section 5.2, we adapt the notion of recombinators to the setting of labelled partitions, and

reformulate the model in a compact way. The marginalisation consistency (cf. Theorem 2.5)

is established in Section 5.3. The core of the chapter is Section 5.4, where we solve the forward

iteration, together with Section 5.5, which establishes the connection to the labelled parti-

tioning process in terms of a duality, together with a genealogical interpretation. Section 5.6

is devoted to the asymptotic properties, namely the limiting and quasi-limiting behaviour,
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and Section 5.7 sketches how the approach carries over to continuous time.

5.1 The migration-recombination model

As in previous chapters, we want to model the time evolution of the distribution of the

genetic type within a large population. In order to discuss migration, let us fix a geographical

structure in the form of a finite set L of discrete locations (or demes). Then, a type distribution

will be given not by one probability measure, but by a vector µ ∈ P(X)L of probability

measures µ(α), one to describe the local type distribution at each location α ∈ L. For any

subset U ⊆ S, the vector of marginal distributions µU (α) is denoted by µU .

We assume that, in each generation, the global type distribution evolves in two stages. First,

individuals migrate between locations; then, random mating takes place among individuals at

the same location, followed by reproduction involving recombination. Discrete generations will

be indexed by t ∈ N0, where a population at time t is understood as the population after the

t-th round of mating and recombination, but before migration; we will use the corresponding

half integers t+ 1
2 to indicate the population after migration, but before mating.

5.1.1 Describing migration

We first consider migration, following the presentation in [Nag92, Ch. 6.2]. The most obvious

way to describe migration is via the so-called forward migration matrix M̃ . It is a stochastic

matrix indexed by L, where the entry M̃(α, β) is the probability that a randomly chosen

individual at location α will migrate to location β in the next generation. However, it is more

convenient to work instead with the backward migration matrix M . It is also a stochastic

matrix, and M(α, β) is the probability that a randomly chosen individual that currently lives

at location α has migrated from location β. We assume, mainly for the sake of technical

convenience (see Remark 5.1 below), that the local population sizes c(α) ∈ R>0 remain

constant over time. This is the case if either

c(α) =
∑

β∈L

c(β)M̃ (β, α) (5.1)

for all α ∈ L, or if population regulation takes place after the migration step. In any case,

denoting the location of a randomly sampled individual at time t+ 1
2 by ℓt+ 1

2
and its location

in generation t by ℓt, we have

M(α, β) = P
(
ℓt = β | ℓt+ 1

2
= α

)
=

P
(
ℓt = β, ℓt+ 1

2
= α

)

P
(
ℓt+ 1

2
= α

)

=
P
(
ℓt+ 1

2
= α | ℓt = β

)
P
(
ℓt = β

)

P
(
ℓt+ 1

2
= α

) =
c(β)

c(α)
M̃(β, α).
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Note that M is stochastic by definition, i.e.
∑

β∈L M(α, β) = 1 and M(α, β) > 0 for all

α, β ∈ L.

Remark 5.1. Dropping the assumption of constant population sizes (but still assuming con-

stant forward migration rates) would result in a time-dependent backward migration matrix.

As a consequence, the Markov chain discussed in Section 5.5 would be non-homogeneous.

However, the considerations in Section 5.6 about the limiting and quasi-limiting behaviour

remain valid if we assume a primitive forward migration matrix; as the population sizes con-

verge to a unique equilibrium, the (time-dependent) backward migration matrix also stabilises

asymptotically. ♦

For additional background, see [Nag92, Ch. 6.2]. In what follows, we will work exclusively

with the backward migration matrix. Since we are only interested in relative type frequencies,

the population sizes c(α) are irrelevant. After migration (but before recombination), the local

population at α is therefore given by

µt+ 1
2
(α) =

∑

β∈L

M(α, β)µt(β), (5.2)

and the metapopulation may be written compactly as

µt+ 1
2

= Mµt; (5.3)

again, we interpret µ as a column vector.

5.1.2 Describing recombination

To describe recombination, recall the discrete recombination equation from Chapter 2 (cf.

Eq. (2.4)) and the preceding discussion. Two things are different. First, we do not consider

only one probability measure, but rather |L| of them, one for each location.

Secondly, random mating occurs after migration, so we have to replace µt on the right-hand

side of Eq. (2.4) by µt+ 1
2
.
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Thus, the migration-recombination equation reads

µt+1(α) =
∑

A∈P (S)

rA ·
⊗

A∈A

µA
t+ 1

2
(α) =

∑

A∈P (S)

rA ·
⊗

A∈A

∑

β∈L

M(α, β)µA
t (β), (5.4)

where we have used (5.2) and the linearity of marginalisation in the last step.

Remark 5.2. A closely related migration-recombination equation was already considered by

Bürger [Bür09]. It differs from our model in two ways. First, Bürger’s model describes the

evolution of diploid organisms, wheras our model considers the population at the gamete

level. The justification is that, in the absence of selection, diploid genotypes are independent

combinations of haploid gametes at all stages of the life cycle, that is, one has Hardy–Weinberg

equilibrium throughout. Secondly, Bürger’s model only allows for mating of at most two

parents; while this is sufficient for most applications, the generalisation to recombination

patterns involving more than two parents is interesting from a mathematical perspective and,

using our methods, does not require additional effort. ♦

5.2 Reformulation of the model

Extending concepts established in [BBS16; Mar17; BB16], we now reformulate the MRE (5.4)

in a more compact way. In particular, this involves labelling the blocks of a partition by

elements of L to keep track of the location of the ancestors of the various blocks.

Definition 5.1. A labelled partition of U ⊆ S is a collection A := {A1, . . . ,Am} for some

m 6 |U |, where Ai = (Ai, λi), A = {A1, . . . , Am} is a partition of U , and λi ∈ L for 1 6 i 6 m.

We call A the base of A, refer to its elements as the blocks of A, and interpret λi as the label
of block Ai. We write LP (U) for the set of all labelled partitions of U . ♦

In order to rewrite Eq. (5.4), we now introduce the labelled recombinator. It is the labelled

analogue of the recombinator defined in (2.3) for unlabelled partitions. Since we will later

also be interested in the evolution of the distribution of subsequences (cf. Section 5.3), we

introduce the concept in the required generality right away.

Definition 5.2. Let U ⊆ S and A ∈ LP (U). Then, the labelled recombinator (with respect

to A), namely RU
A : P(XU )L → P(XU ), is defined by

RU
A(ν) :=

⊗

(A,λ)∈A

νA(λ);

if U = S, we will drop the superscript and write RA instead of RS
A. ♦

In words, RA(ν) is the distribution of the type of an offspring individual that is recombined

according to A; the parent of the labelled block (A,λ) is sampled from the local population

ν(λ). A similar interpretation holds for the marginal recombinators; see Theorem 5.5 and

Frederic
Notiz
Mirego-Eq.
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Remark 5.5.

With this, we can now restate Eq. (5.4).

Lemma 5.3. The MRE can be written as

µt+1 =
∑

A∈LP (S)

pARA(µt) (5.5)

with
pA :=

(
pA(α)

)
α∈L

and the migration-recombination probabilities

pA(α) := rA
∏

(A,λ)∈A

M(α, λ).

Furthermore, for all α ∈ L, ∑

A∈LP (S)

pA(α) = 1. (5.6)

Proof. This follows immediately from Definition 5.2 by expanding the measure product in

Eq. (5.4):

µt+1(α) =
∑

A∈P (S)

rA
⊗

A∈A

∑

λ∈L

M(α, λ)µA
t (λ) =

∑

A∈P (S)

∑

λ∈LA

rA
∏

A∈A

M
(
α, λ(A)

) ⊗

A∈A

µA
t (λA)

=
∑

A∈LP (S)

pA(α)
⊗

(A,λ)∈A

µA
t (λ) =

∑

A∈LP (S)

pA(α)RA(µt),

where, in the third step, we identified the double sum over all partitions of S and all possible

vectors of labels of their blocks with the sum over all labelled partitions. The normalisation

in (5.6) is a consequence of
∑
A∈P (S) rA = 1 =

∑
β∈L M(α, β).

We call the probability distribution p(α) =
(
pA(α)

)
A∈LP (S)

the migration-recombination
distribution at α.

Remark 5.3. Lemma 5.3 has a simple stochastic interpretation. To sample the type of an

individual in generation t+ 1 (say at location α), we first pick a random labelled partition A

according to p(α) and subsequently sample from RA(µt). The intuition behind the formula

for pA(α) in Theorem 5.3 is that the genome is first partitioned across its parents according to

A, with probability rA. Subsequently, the labels are reassigned, (conditionally) independently

for each block, according to M(α, ·) as we trace back the origin of each ancestor. Finally, the

offspring type is determined by piecing together (fragments of) independent samples of the

ancestral sequences at the appropriate locations, in generation t. This leads to the product

measure in Definition 5.2. We will further elaborate on this in Section 5.5. ♦

To continue, we need a few additional concepts around labelled partitions. First, the notion
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of an induced (labelled) partition is required. For ∅ 6= V ⊆ U and A ∈ LP (U), we denote by

A|V the labelled partition of V induced by A; it is given by

A|V := {(A ∩ V, λ) : A ∩ V 6= ∅, (A,λ) ∈ A}

with base A|V as in Chapter 2. Put simply, every block inherits the label of the unique block

of the original partition that contains it.

Conversely, given a partition A of U and a family (BA)A∈A of labelled partitions of its blocks,

their union ⋃

A∈A

BA

is a labelled partition of U ; its base is the union

⋃

A∈A

BA

of the bases BA.

Finally, given two labelled partitions A and B, we say that B is finer than A (B 4 A) if

B 4 A. The partial order on P (U) thus carries over to a partial order on LP (U). For any

α ∈ L, there is a unique maximal element; namely, the labelled partition 1
α
U := {(U,α)} that

consists of a single block with label α. If U = S, we drop the subscript.

We have the following analogue to Remark 2.8.

Remark 5.4. It is not difficult to see that B 4 A if and only if

B =
⋃

A∈A

B|A.

For a fixed A ∈ P (S), this implies the following bijection between the labelled partitions

B with B 4 A and collections (BA)A∈A of labelled partitions of the individual blocks of A.

Given B with B 4 A, we obtain the collection (B|A)A∈A of labelled partitions induced by B

on the blocks of A. Conversely, given a collection (BA)A∈A of labelled partitions of the blocks

of A, we set B :=
⋃

A∈ABA; note that B 4 A and B|A = BA. See also Fig. 5.1. ♦

We will now see that the recombinator for a union of labelled partitions of disjoint subets is

the product of the recombinators for the individual labelled partitions..

Lemma 5.4. Let A ∈ P (S) and BA ∈ LP (A) for all A ∈ A. Then, for all ν ∈ P(X)L,

R∪A∈ABA
(ν) =

⊗

A∈A

RA
B

A
(νA).



5.3 Marginalisation consistency 87
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A1 A2 A3 A4 A5 A6

BA1
= B|A1

BA2
= B|A2

BA3
= B|A3

BA4
= B|A4

BA5
= B|A5

BA6
= B|A6

A

B =
⋃

6

j=1
BAj

Figure 5.1. At the top, an unlabelled partition of S. In the middle, a labelled refinement
of A, which gives rise to labelled partitions of the blocks of A (bottom). Conversely, one can
start with the collection of labelled partitions at the bottom and take their union to obtain
a labelled refinement of A.

In particular, for B ∈ LP (S) with B 4 A, we have

RB(ν) =
⊗

A∈A

RA
B|

A
(νA).

Proof. For the first claim, we write out the labelled recombinators and see that

⊗

A∈A

RA
BA

(νA) =
⊗

A∈A

⊗

(B,λ)∈BA

νB(λ) =
⊗

(B,λ)∈∪A∈ABA

νB(λ) = R∪A∈ABA
(ν).

For the second claim, see Remark 5.4.

We now turn to the marginalisation consistency of the MRE, a property that will turn out

as the key to its solution.

5.3 Marginalisation consistency

A crucial ingredient is the marginalisation consistency of the model, which was already dis-

cussed in Chapter 2 (cf. Theorem 2.5) in absence of migration. Now, we turn to the analogue

in the case with migration.

Theorem 5.5. Let (µt)t∈N0
be a solution of the MRE (5.5) and U a non-empty subset of S.

Then, (µU
t )t∈N0

satisfies the marginal MRE

µU
t+1 =

∑

A∈LP (U)

pU
AR

U
A(µU

t ),

where pU
Ais given by

pU
A :=

∑

B∈LP (S)
B|

U
=A

pB for A ∈ LP (U).

This sum is to be understood component-wise.
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Proof. By Lemma 5.3 and the linearity of marginalisation, we have

µU
t+1 =

( ∑

B∈LP (S)

pBRB(µt)

)U

=
∑

B∈LP (S)

pB

(
RB(µt)

)U
.

Using Lemma 2.1, we obtain for all B ∈ LP (S)

(
RB(µt)

)U
=

( ⊗

(Ã,λ)∈B

µÃ
t (λ)

)U

=
⊗

(B,λ)∈B
B∩U 6=∅

µB∩U
t (λ) =

⊗

(A,λ)∈B|
U

µA
t (λ) = RU

B|
U

(µU
t ),

where, in the second step, we ignored the factors corresponding to B with B ∩ U = ∅ (cf.

Remark 2.2). Thus,

µU
t+1 =

∑

B∈LP (S)

pBR
U
B|

U
(µU

t ) =
∑

A∈LP (U)

pU
AR

U
A(µU

t ),

which is what we wanted to show.

The pU
A(α) are called marginal migration-recombination probabilities, and pU (α) =

(
pU

A(α)
)

A∈LP (U)

is called the marginal migration-recombination distribution (at location α). We will now see

that the marginal migration-recombination probabilities have a product structure analogous

to that of the migration-recombination probabilities in Lemma 5.3.

Lemma 5.6. The marginal labelled recombination probabilities pU
A(α) from Theorem 5.5 can

be written as

pU
A(α) =

( ∑

B∈P (S)
B|

U
=A

rA

) ∏

(A,λ)∈A

M(α, λ).

Proof. We write the (given) labelled partition A as

A = {(A1, λ1), . . . , (Ak, λk)}.

Next, we split the conditional sum over the labelled partitions into the sums over the appro-

priate partitions and their labels. Thus,

pU
A(α) =

∑

B∈LP (S)
B|

U
=A

pB(α) =
∑

B={B1,...,Bm}∈P (S)
{B1,...,Bm}|U =A

rB
∑

λ̃1,...,λ̃m∈L

k∏

j=1

1λ̃j=λj

m∏

j=1

M(α, λ̃j), (5.7)

where (deviating from the usual convention) the indices are ordered such that Bj ∩ U = Aj
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for all 1 6 j 6 k and Bj ∩ U = ∅ for k + 1 6 j 6 m. Clearly,

∑

λ̃1,...,λ̃m∈L

k∏

j=1

1λ̃j=λj

m∏

j=1

M(α, λ̃j)

=

( ∑

λ̃1,...,λ̃k

k∏

j=1

1λ̃j=λj

k∏

j=1

M(α, λ̃j)

)( ∑

λ̃k+1,...,λ̃m

m∏

j=k+1

M(α, λ̃j)

)

with the usual convention that the empty product is 1. Now, we can use the indicator in the

first bracket to eliminate the summation, yielding

∑

λ̃1,...,λ̃k

k∏

j=1

1λ̃j=λj

k∏

j=1

M(α, λ̃j) =
k∏

j=1

M(α, λj).

The second bracket is equal to one, by the stochasticity of M :

∑

λ̃k+1,...,λ̃m

m∏

j=k+1

M(α, λ̃j) =
m∏

j=r+1

∑

λ̃∈L

M(α, λ̃) = 1.

Inserting this back into (5.7) finishes the proof.

Remark 5.5. The same stochastic interpretation as for Eq. (5.5) (see Remark 5.3) holds also

for the marginalised system. With probability

rU
A :=

∑

B∈P (S)
B|

U
=A

rA,

the subsequence with respect to U of a sampled individual is partitioned across its ancestors

according to A. Then, the labels are reassigned independently according to M , reflecting

their independent migration. ♦

5.4 Solution of the forward iteration

Next, we use the marginalisation consistency established in the previous section to tame the

MRE. As discussed in [BB16] for pure recombination, the main idea is to consider the time

evolution of the (column) vector R(µt) :=
(
RA(µt)

)
A∈LP (S)

, rather than µt on its own; note

that we recover µt(α) as the 1
α-component of R(µt).

Theorem 5.7. The matrix T , indexed by LP (S), with entries

T AB =





0, if B 64 A,
∏

(A,λ)∈A pA
B|

A
(λ), if B 4 A,



90 5 The migration-recombination equation and the labelled partitioning process

where the pA
B|

A
(λ) are as in Lemma 5.6, is stochastic. Assume that (µt)t∈N0

satisfies the
MRE (5.5). Then, R(µt) satisfies the linear recursion

R(µt+1) = TR(µt).

In particular,
R(µt) = T

tR(µ0)

(where T t denotes the t-th power of T ).

Proof. By Definition 5.2, Theorem 5.5, Remark 5.4, and Lemma 5.4,

RA(µt+1) =
⊗

(A,λ)∈A

∑

BA∈LP (A)

pA
BA

(λ)RA
BA

(µA
t )

=
∑

BA∈LP (A)
A∈A

( ∏

(A,λ)∈A

pA
BA

(λ)
) ⊗

A∈A

RA
BA

(µA
t )

=
∑

.B4A

( ∏

(A,λ)∈A

pA
B|

A
(λ)
) ⊗

A∈A

RA
B|

A
(µA

t )

=
∑

.B4A

T ABRB(µt),

where the underdot indicates the summation variable. That T is a stochastic matrix is

a straightforward consequence of pA(α) being a probability distribution on LP (A) for all

A ⊆ S and all α ∈ L.

We have just witnessed how the solution of a nonlinear system, embedded in a higher di-

mensional space, turns into the solution of a linear system and may thus be given explicitly,

simply via matrix powers. This is an extension of a technique called Haldane linearisation
[MR83; BB16; BB] to the case with migration. The reason for why this works out so well can

be found in the underlying genealogical structure, which is discussed next.

5.5 Stochastic interpretation, genealogical content, and dual-

ity

Let us now turn to the probabilistic content of Theorem 5.7. We will see that the appear-

ance of the stochastic matrix T is no coincidence; rather, it has a natural interpretation as

the transition matrix of a Markov chain, which describes the random genealogy of a single

individual.

Definition 5.8. The labelled partitioning process (LPP) is a discrete-time Markov chain Σ =

Frederic
Notiz
Migreco-sol.
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(
Σt

)
t∈N0

with values in LP (S) and transition matrix T , that is,

P(Σt+1 = B | Σt = A) = T AB

for all A,B ∈ LP (S). ♦

So, Σt+1 is constructed from Σt by independently replacing each labelled block (A,λ) ∈ Σt

by the (labelled) blocks of the labelled partition BA with probability pA
BA

(λ).

The genealogical interpretation of Σ, started in 1
α, is as follows. Each labelled block (A,λ)

of Σt corresponds to a different ancestor of the individual at present, which was sampled

at location α, who lived t generations before the present, at location λ. The elements of

A are the sequence sites that are inherited from this ancestor. As we look one generation

further into the past, A is replaced by the blocks of a labelled partition BA ∈ LP (A), which

describes how the type of that ancestor is, in turn, pieced together from its parents, alive t+1

generations before the present. Note that now the labelled partitions of A are relevant rather

than those of S. This is because we already know that this ancestor only contributes sites

contained in A, whence we only need to trace back the ancestry of these sites. (This reflects

the marginalisation consistency of the model, cf. Remark 5.5). Furthermore, the various

blocks split independently as the law of large numbers regime assumed here implies that

two given individuals never share a common ancestor; thus, their lineages are conditionally

independent.

The connection between the solution of the MRE and the genealogical process is formalised

in the following theorem, which is a probabilistic restatement of Theorem 5.7 and draws on

the notion of duality for Markov processes [Lig10; JK14]; in particular, we think about the

solution of the forward-time equation as a Markov chain with deterministic transitions.

Theorem 5.9. The LPP and the solution of the MRE are dual with respect to the duality
function

(A, ν) 7→ RA(ν).

That is, for all A ∈ LP (S) and all µ0 ∈ P(X)L, we have

E[RΣt
(µ0) | Σ0 = A] = RA(µt).

In particular, this entails the stochastic representation

µt(α) = E[RΣt
(µ0) | Σ0 = 1

α]

for the solution of the MRE.

Proof. We prove the theorem by induction over t. For t = 0, there is nothing to show.

Assuming now that

E[RΣt
(µ0) | Σ0 = A] = RA(µt)



92 5 The migration-recombination equation and the labelled partitioning process

for any t > 0, we compute, using Theorem 5.7 in the first step, the induction hypothesis in

the second, time-homogeneity in the third, and the Markov property in the last:

RA(µt+1) =
∑

.B4A

T ABRB(µt) =
∑

.B4A

P[Σ1 = B | Σ0 = A]E[RΣt
(µ) | Σ0 = B]

=
∑

.B4A

P[Σ1 = B | Σ0 = A]E[RΣt+1
(µ) | Σ1 = B] =

∑

.B4A

E[RΣt+1
(µ) | Σ0 = A].

This proves the statement for t+ 1.

Note that the duality function used here is vector-valued. This is a slight extension of the

standard notion, since the duality function is usually assumed to take values in R; see also

Remark 4.16.

To get used to this probabilistic way of thinking, we now take advantage of the stochastic

representation from Theorem 5.9 to construct an explicit solution formula in the case of two

sites. When evaluating the expectation, we distinguish two cases. Either, the two sites have

not been separated until generation t, which happens with probability rt
1. In this case, both

sites have the same ancestor who comes, with probability (M t)αγ , from location γ. If, on the

other hand, the sites have been separated, we denote by τ the smallest t such that |Σt| = 2.

In this case, the letters come from two different parents. Their origins are determined by

performing independent random walks on L for the remaining time t− τ + 1. Summing over

all possible values for τ and the label of the block upon splitting (which is β with probability

(M τ−1)αβ) , we see that

µt(α) = rt
1(M tµ0)α +

∑

β∈L

t∑

τ=1

rτ−1
1 r0(M τ−1)αβ(M t−τ+1µ0)

{1}
β ⊗ (M t−τ+1µ0)

{2}
β . (5.8)

In the case without migration (i.e, when ignoring the labels), the LPP reduces to the parti-

tioning process mentioned already at the end of Chapter 2. More precisely, the (unlabelled)

partitioning process (Σt)t>0 is simply the base of the LPP (Σt)t>0, and couples to it in a

natural way. Likewise, an explicit description of its transition matrix T is obtained from T

by marginalising over the labels. Thus, T has the entries (compare Eq. (2.11))

TAB =





0, if B 64 A,

∏
A∈A r

A
B|

A
, if B 4 A,

(5.9)

and the transition rates for the LPP factorise as

T AB = TAB
∏

(A,λ)∈A

∏

(B,γ)∈B|
A

M(λ, γ),

compare Lemma 5.6. Note that (Σt)t>0 is a process of progressive refinement, which never
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1

3→ 2

1→ 3
1→ 2

2→ 4 2→ 1

Figure 5.2. An illustration of the LPP starting from 1
1, the trivial partition consisting of

a single block with label 1; the set of locations is L = {1, 2, 3, 4}. Backward time runs from
bottom to top. In each generation, the blocks of the partition are first subject to individual
splitting and we trace back the ancestral lines of each fragment; compare Remarks 5.5 and 5.3.
The fragments provided by each ancestor are labelled with their locations and we write α→ β
to indicate migration from α to β. Recall that in the forward-time model, recombination
occurs after migration. Thus, when looking backward in time, splitting (or branching) due to
recombination occurs before the reassignment of the labels due to migration. In particular,
the first event in this example is a splitting of our sequence located in deme 1.

returns to a state 64 the current state. This is due to the absence of coalescence events in the

law of large numbers regime, which means that the ancestral recombination graph is actually

a tree.

Remark 5.6. The LPP can be interpreted as a multitype branching random walk (BRW) on

L, with the types given by the subsets of S. The particles move according to the transition ker-

nel M , and, as evident from the product structure of the transitions in Eq. (5.9) and undergo

independent branching that is the same at every location; each individual of type A branches

with probability rA
A into |A| individuals of types A1, . . . , A|A|, where A = {A1, . . . , A|A|}. ♦

5.6 Limiting and quasi-limiting behaviour of the LPP

We assume now that M is primitive (that is, irreducible and aperiodic), which guarantees the

existence of and convergence to a unique stable stationary distribution q =
(
q(α)

)
α∈L
∈ R

L

such that

q
T

= q
T

M, (5.10)

where T denotes the transpose operation. This convergence is uniform in the initial condition.

We also assume that ∧
{A ∈ P (S) : rA > 0} = 0. (5.11)

That is, the coarsest common refinement of all partitions with positive recombination prob-

ability is the trivial partition 0 of S into singletons. This is only a matter of technical

convenience; otherwise, we could simply reconsider any set of sites that are not separated

by any partition A with rA > 0 as a single site. Note that Eq. (5.11) implies that 0 is the

unique absorbing state of the (unlabelled) partitioning process. We can now explicitly state

Frederic
Notiz
LPP



94 5 The migration-recombination equation and the labelled partitioning process

the asymptotic behaviour of the MRE.

Theorem 5.10. Under the above assumptions, one has

lim
t→∞

µt = µ∞ =
(
µ∞(α)

)
α∈L

,

where

µ∞(α) =
n⊗

i=1

µ{i}∞ (α) (5.12)

and
µ{i}∞ (α) :=

∑

β∈L

q(β)µ
{i}
0 (β) (5.13)

for α ∈ L. The convergence is geometric, i.e. there is a γ ∈ (0, 1) such that

µt = µ∞ +O(γt)

as t→∞, uniformly in µ0.

This is in line with [Bür09, Theorem 3.1], which states that the solution of (5.4) approaches

(at a uniform geometric rate) the submanifold defined by spatial stationarity and linkage

equilibrium. Spatial stationarity means that

µ(α) =
∑

β∈L

q(β)µ(β)

with q of (5.10); and, under the assumption (5.11), linkage equilibrium means that µ(α) is

the product of its one-dimensional marginals, as in Eq. (5.12). However, like the explicit time

evolution in Theorem 5.7, the explicit expression in Eq. (5.13) seems to be new.

In view of Theorem 5.9, this result is highly plausible: almost surely (at a uniform geo-

metric rate), the partitioning process will enter its unique absorbing state where all blocks

are singletons. Subsequently, the distributions of the independent migration processes (i.e,

random walks on L with transition matrix M) associated with each block will converge to

the unique stationary distribution q, again at a geometric rate and uniformly in the initial

condition. This behaviour is also clear in terms of the BRW picture. At some point, the type

of each particle is a singleton, whence the particles stop branching and just keep performing

independent random walks; see Remark 5.6.

For the formal proof, note that the uniform convergence of the migration processes follows

directly from the primitivity of M via standard theory [KT75, Thm. 2.3, Appendix]. That

the partitioning process enters its absorbing state at a uniform geometric rate is the content

of the following result.

Lemma 5.11. Let
η := max

A∈P (S)\{0}
TAA < 1

Frederic
Notiz
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be the maximal sojourn probability of the (unlabelled) partitioning process and let

τ := min{t ∈ N0 : Σt = 0}

be its time to absorption. Then, uniformly in the initial distribution,

P(τ > t) = O
(
(η + ε)t

)

for any ε > 0 as t→∞.

Proof. Since the state space is finite and the partitioning process never returns to a state 64

the current state, this Markov chain may jump at most a finite number of times, say m times,

before it is absorbed in 0. Thus, for any fixed γ > η,

P(τ > t) 6 P(the chain has performed at most m jumps up to time t)

6

m∑

j=0

(
t

j

)
(1− η)jηt−j 6

m∑

j=0

(1− η

η

)j

tmηt = C ′tmηt 6 Cηt
(η + ǫ

η

)t

= C(η + ǫ)t,

where C ′ =
∑m

j=0

(
1−η

η

)j

and C is chosen sufficiently large.

Next, we investigate the asymptotic behaviour of the LPP.

Proposition 5.12. There exists a γ ∈ (0, 1) such that

P
(
Σt =

{
({1}, α1), . . . , ({n}, αn)

})
=

n∏

i=1

q(αi) +O(γt)

as t → ∞, uniformly in α1, . . . , αn ∈ L and the initial distribution of the LPP. For any
A ∈ LP (S) with A 6= 0,

P(Σt = A) = O
(
(η + ε)t

)

for all ε > 0, again uniformly in the initial distribution.

Proof. Let τ be as in Lemma 5.11. The second statement follows immediately from Lemma 5.11

by noting that

P(Σt = A) 6 P(τ > t).

Now, assume that A is of the form

A =
{
({1}, α1), . . . , ({n}, αn)

}
.
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Then, for all γ1 > η,

P(Σt = A) = P

(
Σt = A | τ 6

⌊ t
2

⌋)
P

(
τ 6

⌊ t
2

⌋)
+ P

(
Σt = A | τ >

⌊ t
2

⌋)
P

(
τ >

⌊ t
2

⌋)

= P

(
Σt = A | τ 6

⌊ t
2

⌋)
+O(γt

1)

(5.14)

as t→∞, where we used Lemma 5.11 in the last step. Furthermore,

P

(
Σt = A | τ 6

⌊ t
2

⌋)
= P

(
Λ

(i)
t = αi for all 1 6 i 6 n | τ 6

⌊ t
2

⌋)

=
n∏

i=1

P

(
Λ

(i)
t = αi | τ 6

⌊ t
2

⌋)
.

(5.15)

Here, the
(
Λ

(i)
t

)
t∈N>τ

for i ∈ L are the labels of the (singleton) blocks from time τ onwards;

they are given by independentL-valued Markov chains with transition matrixM . By standard

theory, we can be sure that, regardless of the initial value, there is a γ2 ∈ (0, 1) so that

P

(
Λ

(i)
t = αi | τ 6

⌊ t
2

⌋)
= q(αi) +O(γt

2),

uniformly in αi. Combining this with Eqs. (5.14) and (5.15) proves the theorem.

Proof of Theorem 5.10. By Theorem 5.9, Proposition 5.12, and Definition 5.2, we have for

some γ ∈ (0, 1), independently of µ0,

µt(α) = E[RΣt
(µ0) | Σ0 = 1

α]

=
∑

β1,...,βn∈L

( n∏

i=1

q(βi)
)
E[RΣt

(µ0) | Σ0 = 1
α,Σt = {({1}, β1), . . . , ({n}, βn)}] +O(γt)

=
∑

β1,...,βn∈L

n⊗

i=1

q(βi)µ
{i}
0 (βi) +O(γt)

=
n⊗

i=1

∑

β∈L

q(β)µ
{i}
0 (β) +O(γt) =

n⊗

i=1

µ{i}∞ (α) +O(γt) = µ∞(α) +O(γt)

with µ∞ as in Theorem 5.10.

Since the asymptotic behaviour of the LPP is so simple, we now go one step further and

inquire about its quasi-limiting behaviour; that is, its asymptotic behaviour, conditioned on

non-absorption. Recall that the partitioning process is a process of progressive refinement,

and never returns to a state finer than the current state. This is very different from the

situation considered in [CMS13], where the focus is on irreducible chains.

Unlike the limiting distribution, the quasi-limiting distribution will generally depend on the

initial distribution. For convenience of notation, we let the LPP start from a maximal labelled
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partition 1
α. However, the following discussion can easily be adapted to the more general

setting. In what follows, we will exclude the pathological case of r0 = 1, where the probability

of non-absorption is zero, and the conditional distribution we are interested in is not well

defined.

We start by recalling the quasi-limiting behaviour of the unlabelled partitioning process

(Σt)t∈N0 , which was already investigated in [Mar17]. We posit throughout that Σ0 = 1.

To state the result, we need some additional notation. First, we define the set of states

P
↓(S) := {A ∈ P (S) : ∃ℓ ∈ N s.t.

(
T ℓ
)

1A
> 0}

that are reachable by (Σt)t∈N0 when starting in 1 = {S}. As before, η denotes the maximal

sojourn probability of (Σt)t∈N0 (cf. Lemma 5.11). We will also need the set

F := {A ∈ P
↓(S) : TAA = η}

of reachable states with maximal sojourn probability. Note that our assumption r0 6= 1

guarantees that η > 0. Finally, we define the first hitting time of any given A ∈ P (S),

τA := min{t ∈ N0 : Σt = A},

we write τF := minA∈F τA for the first hitting time of F , and, as before, τ = τ0 for the time

to absorption. The following result is known; see [Mar17, Thm 5.5].

Theorem 5.13. For all A ∈ F , one has

0 < E[η−τA ; τA <∞] 6 E[η−τF ; τF <∞] <∞.

Further, for all A ∈ P (S), the limit

P
Σ
qlim(A) := lim

t→∞
P(Σt = A | τ > t)

exists and is equal to
E[η−τA ; τA <∞]

E[η−τF ; τF <∞]
1A∈F .

Thus defined, PΣ
qlim is a probability measure on P (S), called the quasi-limiting distribution of

(Σt)t>0 (starting from 1).

Recall that the labels of the different blocks evolve conditionally independently. Thus, we ex-

pect the quasi-limiting distribution of the LPP to be similar to the quasi-limiting distribution

from Theorem 5.13, garnished with the stationary distribution q of the migration process.

More explicitly, we are going to prove the following result.
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Theorem 5.14. For all A ∈ LP (S),

lim
t→∞

P(Σt = A | τ > t) =
( ∏

(A,λ)∈A

q(λ)
)
P

Σ
qlim(A),

where q is the unique stationary distribution (5.10) of the migration process.

Remark 5.7. In Theorem 5.10, we have approximated the solution of the MRE (5.4) by

approximating the distribution of the labelled partitioning process by its limiting distribution,

given in Proposition 5.12. We can try to improve on this rather coarse estimate by also taking

the quasi-limiting distribution into account; at least in principle, the disintegration

P(Σt = A) = P(Σt = A | τ 6 t)P(τ 6 t) + P(Σt = A | τ > t)P(τ > t)

allows us to express the error term in Theorem 5.10 via the quasi-limiting distribution, at

least when migration is strong compared to recombination. Acquiring precise asymptotics,

however, would require more detailed knowledge about the probability P(τ > t) and the

rate of convergence of the conditional distribution P(Σt = A | τ > t) to the quasi-limiting

distribution. ♦

At the heart of the proof is the observation that any further refinement of any A ∈ F

immediately leads to absorption; this was also one of the crucial ingredients in the proof of

Theorem 5.13, see [Mar17, Thm 5.5] for the original reference1.

Lemma 5.15. For all A ∈ F , we have

TAA + TA0 = 1. (5.16)

Proof. We show that, for all A ∈ P
↓(S) with TAA + TA0 6= 1, one has A /∈ F . Indeed, for

any such A, there is a B /∈ {0,A} with TAB > 0. Now, B 6= 0 means that there is at least one

block B ∈ B with |B| > 1 and the partition

B′ := {B} ∪
{
{i} : i ∈ S \B

}
4 A

is reachable by Assumption (5.11) (with S replaced by individual blocks of A). We then have

TB′B′ = rB
{B} > rÃ

{Ã}

∏

A∈A
A 6=Ã,|A|>1

rA
{A} =

∏

A∈A

rA
{A} = TAA,

where Ã is the block in A that contains B. The inequality holds for the following reason.

Either, |{A ∈ A : |A| > 1}| > 1, which implies that the constrained product is not empty

and hence smaller than 1; note that rA
{A} < 1 for A with |A| > 1. Otherwise, if Ã is the only

1 Unfortunately, the proof of this lemma does not seem to have been addressed in the corresponding corri-

gendum; that is why we decided to give an independent proof here.

Frederic
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block of A with more than one element, there must be some C ∈ P (S) with rC > 0 such that

B ∈ C|
Ã

and thus, rB
{B} > rÃ

{Ã}
+ rC > rÃ

{Ã}
.

Remark 5.8. One might be tempted to assume that the sojourn probability is non-decreasing

along every path

1 < A1 < A2 < . . . < 0

from the maximal partition to the absorbing state. To illustrate that this is not true in general,

consider the following setup. Let n = 4 and assume the recombination distribution given by

r0 = 1
2 , r{{1,2},{3,4}} = 1

10 , r1 = 2
5 and rA = 0 otherwise. Then, the sojourn probability of the

state 1 is r1 = 2
5 , while the (finer) state {{1, 2}, {3, 4}} has the smaller sojourn probability

r
{1,2}
{1,2}r

{3,4}
{3,4} = (1− r0)2 =

1

4
.

♦

The idea of the proof of Theorem 5.14 is simple. First, notice that Lemma 5.15 implies that

conditional on non-absorption, (Σt)t>0 remains constant after τF . From then on, the labels

keep on evolving according to independent random walks with transition matrix M , and their

distributions converge to q. To make this rigorous, we just need to make sure that, conditional

on non-absorption at time t, t− τF is large enough.

Lemma 5.16. (a) There exists c > 0 such that P(τ > t) > cηt for all t ∈ N.

(b) Let η′ := maxA∈P (S)\(F∪{0}) TAA. Then, for all η′′ > η′, there exists C > 0 such that
P(τF ∧ τ > t) 6 C(η′′)t for all t ∈ N.

(c) There is a γ ∈ (0, 1) such that limt→∞ P(τF > γt | τ > t) = 0.

Proof. First, we show (a). By definition, F ⊆ P
↓(S). Thus, there exists a t0 ∈ N such that

P(τF = t0) > 0. Then, we have for all t > t0 that

P(τ > t) > P(τ > t, τF = t0) = P(τ > t | τF = t0)P(τF = t0) = c′ηt−t0 = (c′η−t0)ηt

with c′ = P(τF = t0). Note that we used Lemma 5.15 in the second-last step. Now, simply

choose

c := min
{P(τ > t)

ηt
: 0 6 t 6 t0

}
∪
{
c′η−t0

}
.

For the proof of (b), we couple (Σt)t∈N0 to another process (Nt)t∈N0 with values in N0 ∪ {∞}

and N0 = 0. Its dynamics is described as follows. When Σt+1 = Σt, then Nt+1 := Nt; when

Σt+1 ∈ F ∪ {0}, we set Nt+1 := ∞. In all other cases, we perform a Bernoulli experiment

with success probability
1− η′

1− TΣtΣt

.
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Upon success, we set Nt+1 := Nt + 1; otherwise, Nt+1 := Nt. Note that the marginal

(Nt)t∈N0 of the coupling (Σt, Nt)t∈N0 stochastically dominates yet another stochastic prococess

(Kt)t∈N0 , which has independent Bernoulli increments with parameter 1− η′.

As we have argued before, the partitioning process can only jump a finite number of times

before hitting either 0 or F . Thus, there is a positive integer m such that, for all t ∈ N,

τ ∧ τF > t implies Nt 6 m. Thus,

P(τ ∧ τF > t) 6 P(Nt 6 m) 6 P(Kt 6 m) =
m∑

k=0

(
t

k

)
(1− η′)k(η′)t−k = P (t)(η′)t < C(η′′)t,

where P (t) is a polynomial with degree 6 m, and C and η′′ are as stated.

Finally, (c) is a straightforward consequence of (a) and (b); after fixing η′′ ∈ (η′, η), choose γ

such that (η′′)γ < η.

After these preparations, the proof of Theorem 5.14 is not difficult.

Proof of Theorem 5.14. Choose γ as in (c) of Lemma 5.16. We split

P(Σt = A | τ > t) = P(Σt = A, τF > γt | τ > t) + P(Σt = A, τF 6 γt | τ > t),

The first probability tends to zero as t → ∞, due to our choice of γ. The second can be

rewritten as

P(Σt = A | τ > t, τA 6 γt) · P(Σt = A, τF 6 γt | τ > t),

where we have used that Lemma 5.15 implies {τ > t, τF 6 γt,Σt = A} = {τ > t, τA 6 γt}.

Here, the second factor converges to P
Σ
qlim(A) by the choice of γ and Lemma 5.16 (c).

Now consider the first factor. Together with τ > t and Lemma 5.15, τA 6 γt implies that

Σs = A for all s between γt and t. During this period, the labels of the blocks of A evolve

independently, and by the uniform convergence to the stationary distribution q, we obtain

lim
t→∞

P(Σt = A | τ > t, τA 6 γt) =
∏

(d,λ)∈A

q(λ),

which completes the argument. For additional details, see the proof of Proposition 5.12.

5.7 Recombination and migration in continuous time

Let us close by briefly discussing how our results carry over from the discrete-time to the

continuous-time setting. We consider the deterministic migration-recombination equation in

continuous time,

ω̇t(α) =
∑

β∈L

N(α, β)ωt(β) +
∑

δ∈S([n])

(
Rδ − id)ωt(α). (5.17)
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This is just Eq. (2.5) for each local type distribution, together with an additional migration

term. Instead of the stochastic backward migration matrix, we use a Markov generator N on

L; its meaning is that between time t and t+ dt and for α 6= β, an individual at location α is

replaced by an individual from location β, with probability N(α, β) dt; we assume that this

happens independently of recombination.

The backward view can be easily adapted as follows. Again, we have an LPP (this time

in continuous time) Σ
c = (Σc

t)t>0. It evolves as follows. At rate ̺B for all B ∈ P (S),

each labelled block A of Σ
c
t is split (conditionally) independently into the blocks of the

induced partition B|A; each of these fragments inherits the label from A. In addition and

independently, for every α ∈ L, the label of each block with label α is relabelled β at rate

N(α, β). Somewhat more formally, Σ
c is a Markov chain in continuous time with generator

Q, defined by its nondiagonal elements

QAB =





̺A
A|A

, if B = (A \ {(A,λ)}) ∪ B|d × {λ} for some A ∈ A,

N(α, β), if B = (A \ {(A,α)}) ∪ {(A, β)} for some A ∈ A,

0, otherwise,

where the marginal recombination rates ̺A
A|A

are defined in Theorem 2.4.

Note that, in the case without migration and with recombination restricted to single crossovers

(that is, partitions of the form {{1, . . . , i}, {i+1, . . . , n}} for some 1 6 i 6 n), the continuous-

time dynamics has a simple explicit solution, which is due to the fact that crossover events

‘rain down’ on sequences in an independent Poissonian fashion. See also [LPS] for the (much

more involved) extension to the case with (a small amount of) coalescence in the limit of an

infinitely large sequence.

But let us return to the full Equation (5.17). As before (compare Theorem 5.9), we have the

duality relation

RB(ωt) = E[RΣ
c
t
(ω0) | Σc

0 = A],

whence we obtain the solution

ωt(α) =
∑

A∈LP (S)

(etQ)1
αARA(ω0) (5.18)

by solving the associated (linear) Kolmogorov backward equation, in perfect analogy to The-

orem 5.7. The duality relation can be proved by a straightforward adaptation of the techniques

in [BB16]. Indeed, [BB16] shows that the recombination part of Equation (5.17) is dual to the

splitting (or branching) part of Σ
c. Showing that the migration part is dual to the random

walk defined by N is a standard exercise.

Because Equation (5.18) is not very concrete, let us derive a more explicit solution formula for

the special case n = 2. We give a probabilistic argument, analogous to Equation (5.8). First,
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{1, 2, 3}

{2, 3}

{1} {2} {3}

{1, 2, 3}

{1} {2} {3}

Figure 5.3. The two different tree topologies associated with recombination of three sites; on
the left, first one site is separated, before the remaining block of size two is split. On the right,
all sites are separated in one recombination event with three parents. It is not difficult to see
that the corresponding contributions to the solution would consist of two iterated integrals
for the left topology, and only one, as in Equation (5.19), for the right topology. Note that
by permuting the sites, the left topology actually corresponds to three distinct contributions.

note that with probability e
−̺0t

, both sites are not separated until time t, that is, Σc
t = 1;

the single block has performed a random walk with transition kernel N for the duration t.

Hence, in this case, ωt(α) = (etNω0)α. On the other hand, if the blocks have been split at time

τ ∈ [0, t], then both sites have performed independent random walks, starting at time τ and at

the location γ where the split took place. In that case, ωt(α) = (e(t−τ)Nω0)
{1}
γ ⊗(e(t−τ)Nω0)

{2}
γ .

Integrating over all possible values for τ (keeping in mind that τ is exponentially distributed

with mean 1
̺0

) and γ (keeping in mind that, at the moment of splitting, the block has label

γ with probability (eτN )αγ), we obtain

ωt(α) = e
−̺0t

(etNω0)α + ̺0

∑

γ∈L

∫ t

0
e
−̺0τ

(eτN )αγ(e(t−τ)Nω0){1}γ ⊗ (e(t−τ)Nω0){2}γ dτ. (5.19)

For more than two loci, one can proceed in a similar fashion, disintegrating the solution con-

ditional on the waiting time(s) between splitting events. However, this becomes cumbersome

very quickly as the number of contributions, coming from the different realisations of the jump

chain of Σc, grows quickly in the number of sites. In addition, the form of these contributions

varies qualitatively, depending on the associated tree topology; see Figure 5.3.

Remark 5.9. It is not difficult to adapt the partitioning process for finite populations as well

as in the diffusive limit, as described in [BEP16], to the setting with migration. Put simply,

stochastic resampling in the forward process leads to coalescences of blocks in the paritioning

process. In the LPP, we have the additional condition that two blocks can only coalesce if

they share the same label. However, an exhaustive treatment of the LPP with coalescence is

beyond the scope of this work. ♦



6 Summary and Outlook

6.1 Summary

We have seen how probabilistic techniques can yield deep insight into the dynamics of determ-

inistic models of population genetics with recombination. A recurring theme in our analysis

was the interplay between the differential (or difference) equation models, forward in time,

and their related genealogical processes, backward in time. This generalised the previously

observed connection between the deterministic recombination equation and a stochastic par-

titioning process [BB16].

In Chapter 3, we saw that the pure recombination equation can —for finite sets of alleles— be

understood as the law of mass action for a strongly reversible network of chemical reactions;

in particular, it can be understood as a generalised gradient system. Regarding the backward-

time perspective, we have seen how the monotonicity of the partitioning process implies the

gradient-like evolution of its law. Finally, we have identified the nonlinear system of equations

in [BBS16] for the coefficients in a suitable ansatz function with the law of mass-action for

a network of reactions between partitions of the set of sequence sites; this network, however,

turned out to be irreversible.

In Chapter 4, we presented a recursion for the solution of the selection-recombination equa-

tion with single-site selection. Starting from the solution of the pure selection equation, this

recursion proceeds by successively adding in single crossovers, until we arrived at the full

system. The proof was based on a variant of the ASRG [GM96; GM97], without coales-

cences. We boiled this —rather complex— process down to a weighted partitioning process,

a variant of the partitioning process (WPP) with an integer weight signed to each block

that represents the number of potential ancestors of the loci in that block. We then fur-

ther simplified the matter by encoding the WPP as a collection of independent Yule (binary

branching) processes with inititation and resetting (YPIR), by exploiting the assumption of

single-crossover. The YPIR is a simple Markov chain in continuous time whose transition

semigroup is available in closed form, yielding in turn a closed expression for the solution

of the selection-recombination equation. For technical reasons, and to further elucidate the

underlying structure, we introduced the initiation process which records the amount of time

the selection term has acted on each site since the last recombination event. As another

important tool , we introduced a non-commutative variant of the measure product, reflecting

the different roles played by different parts of the sequence. Last not least, we applied our

results to help clarify some issues regarding the time-evolution of linkage disequilibria in the
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context of genetic hitchhiking. [SSL06].

Finally, in Chapter 5, we expressed the solution of the migration-recombination equation

in terms of a labelled partitioning process (LPP), thus generalising the results in [BB16].

We analysed the long-term behaviour of the LPP, which in turn gave us information about

the asymptotic behaviour of the deterministic equation, providing a new perspective on and

strengthening a result from [Bür09]. We closed by computing the quasi-limiting distribution

of this Markov chain.

6.2 Outlook

We have seen (compare Remark 4.2) that the recursive solution formula for the selection-

recombination equation in Chapter 4 and the related duality result ultimately hinged on the

right-multiplicativity of the selection term with respect to the aforemtioned non-commutative

version of the measure product; this is a precise mathematical formulation of the idea that all

sites other than the single selected site are ‘inert’ with respect to selection. We thus expect

that our results carry over to the case with mutation and/or frequency dependent selection.

It will be interesting to explore the corresponding dual processes, as well as their connections

to properties of the forward model.

While deterministic models are an important part of population genetics, the bulk of recent

research has been focussing on stochastic models. It would therefore be desirable to incor-

porate stochastic resampling into our approach. This will be major challenge to overcome as

coalescences destroy the conditional independence of the ancestral lines on which our present

approach relies. A possible starting point might be the regime where selection and recombin-

ation are strong compared to resampling. In this setting, a number of results [JFS15; BS16;

JS12] establish the leading terms in an asymptotic expansion of the sampling distribution; it

seems worthwhile to investigate if our methods can provide additional insight, in particular for

the case with selection which was treated by Jenkins and Song [JS12], based on computations

with the generator of the diffusion process forward in time.

Regardless of its connection via duality to the solution of the recombination equation, the

partitioning process is an interesting object in its own right; recently, Schertzer et al. [LPS]

considered a variant of this process on the positive half line. The authors derived an approx-

imation of the stationary distribution, again in the strong coalescence regime. An intriguing

feature is the formation of clusters of ancestral material; however, both the fine-scale struc-

ture of these clusters as well as the mechanism behind their formation does not seem to be

well understood, and deserve further investigation. Last not least, the amount of trapped

material, that is, non-ancestral material enclosed between segments of ancestral material, is

of considerable interest in genetics.
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