
UNIVERSITY OF BIELEFELD

TECHNICAL FACULTY

Design of an
Interactively Parametrizable
Robot Skill Architecture
for the KUKA iiwa

Hendrik Oestreich

MASTER THESIS

INTELLIGENT SYSTEMS

supervised by

Dr. Sebastian WREDE

and

Michael WOJTYNEK

May 2017

Statement of authorship

I hereby certify that this thesis has been composed by me and is based on my
own work, unless stated otherwise. No other person’s work has been used
without due acknowledgement in this thesis. All references and verbatim ex-
tracts have been quoted, and all sources of information, including graphs and
data sets, have been specifically acknowledged. This thesis has not been presen-
ted to an examination office in the same or a similar form yet.

Bielefeld, 22nd May 2017

Hendrik Oestreich

i

Acknowledgement

I am grateful for the supervision of this thesis by Dr.-Ing. Sebastian Wrede and
M.Sc. Michael Wojtynek. Both of them always supported my work through
valuable discussions and concrete advice.

A very special gratitude goes out as well to the other members of the Cognitive
Systems Engineering group for all the support and collaboration during the
last months. It was great sharing the laboratory and time with you. Thanks
especially to M.Sc. Johannes Wienke who took some of the photos and was a
great help for improving the code.

Furthermore I would like to thank the company HARTING and their employees
for their trust, all the insights and for providing the hardware which made a
concrete application of my work possible.

Finally, last but by no means least, I would like to thank my family and my
friends for all their support during the writing of this thesis. I do not take this
for granted and I hope I can make up for everything in the future. I really deeply
appreciate all your help, good words and all the sacrifices you made for me.

iii

Abstract

This thesis presents a new approach for a skill framework which is based on
BPMN. Graphical modelling of complex processes simplifies their understand-
ing and opens up new possibilities for robot programming.
Interactive parametrization combines human robot interaction and traditional
interface based configuration to provide a good usability.
The skill framework consists of three layers with different abstraction levels that
support reuse, scalability and modularity.
A real industrial assembly task is used for application of the framework and
to evaluate strengths and weaknesses. Embedding the skill framework in an
unified automation environment shows its potential to be used in production
environments with steadily changing requirements for a flexible production.
The skills were tested on a lightweight robot especially designed for collaborat-
ive robotics, the KUKA iiwa. As a consequence fundamentals for a basic safety
level for human robot collaboration have been considered and implemented.

v

vi

Contents

1 Introduction 1
1.1 General introduction . 1
1.2 FlexiMiR project description . 2
1.3 Goals . 3

2 Related Work 5
2.1 History and Origins . 5
2.2 Skill Frameworks . 6
2.3 Proprietary Implementations . 7

3 Concept 9
3.1 Skill Primitives . 10
3.2 Skills . 12
3.3 Tasks . 13
3.4 Composition of Skills and Tasks 13
3.5 Concept for Realization . 14

3.5.1 BPMN . 15
3.5.2 Camunda . 16
3.5.3 AWAre Framework . 16
3.5.4 Kuka iiwa . 16
3.5.5 Kuka Sunrise.OS . 18

3.6 Interactive Parametrization . 18
3.7 Task Frames . 20

4 Implementation 23
4.1 Framework Architecture . 23
4.2 Skill primitives - Kuka specific 26

4.2.1 SkillProvider - RoboticsAPIApplication 26
4.2.2 Skill Callbacks . 27
4.2.3 Skill Implementation . 28

4.3 Skill primitives - Generic implementation (AWAre Plugin) 28
4.3.1 Skill Delegate . 28
4.3.2 Pre- and Postconditions 29
4.3.3 Robot Skill Plugin . 29

4.4 Skill and Task Composition . 30

vii

Contents

4.5 Task Frames . 31
4.5.1 Kuka Scene Graph . 31
4.5.2 Neo4J - Persistent Storage 32

4.6 Interactive Parametrization . 33
4.6.1 Teach Skill . 33
4.6.2 Teaching Task Frames . 34
4.6.3 Teaching Trajectories . 35

5 Application 37
5.1 Production Environment and Components 37
5.2 Modelled Assembly Process . 39

5.2.1 Exemplary Task composition 40
5.3 Plug and Produce . 40

5.3.1 Localization of Objects . 41
5.4 Simulation and Motion Planning 46
5.5 Safety . 47

5.5.1 Risk Assessment . 47
5.5.2 Kuka Safety . 48

6 Discussion 53
6.1 Parametrization . 53
6.2 Robustness . 54
6.3 Composition . 55
6.4 World Model . 55
6.5 Safety . 56
6.6 Potentials and Limitations . 56
6.7 Summary . 57

7 Conclusion and Outlook 59
7.1 Conclusion . 59
7.2 Outlook . 59

A Appendix 61
A.1 Camunda Modeler . 61
A.2 AWAre GUI - Robot Control Center 62
A.3 SICK Safety Designer . 63
A.4 Kuka iiwa . 64

B BPMN Diagrams 65
B.1 Skill example 1 . 65
B.2 Skill example 2 . 65
B.3 Task example 1 . 66
B.4 Task example 2 . 66

viii

Contents

C Code 67
C.1 Repositories . 67

C.1.1 AWAre Skill Implementation 67
C.1.2 Kuka Skill Implementation 67
C.1.3 FlexiMiR Application Project 67

C.2 Skill Callback Example . 68
C.3 Skill Delegate Example . 70
C.4 Skill Condition Example . 73
C.5 Teach Skill . 74
C.6 RST Examples . 75
C.7 Class Diagram . 78
References . 80

ix

Contents

x

List of Figures

1.1 Interactive Robotics . 2

2.1 Intera Studio IDE - Graphical Programming 8

3.1 Skill Concept (Pedersen et al., 2016) 10
3.2 Conceptual Skill Hierarchy . 14
3.3 The Kuka iiwa (KUKA, 2016) . 17
3.4 Interactive Parametrization . 19
3.5 Task Frame Hierarchy and Transformations 20
3.6 HARTING Production Cell . 21

4.1 Software Architecture . 23
4.2 UML Class Diagram . 25
4.3 Task Frame Hierarchy in Neo4j View of AWAre GUI 32
4.4 Joint Angle Collections in Neo4j View of AWAre GUI 35

5.1 HARTING Production Cell . 38
5.2 HARTING Han variants . 39
5.3 Assembly Task . 40
5.4 Measurement Order and Resulting Orientation 41
5.5 Measurements for Localization . 42
5.6 Translations and Rotations . 45
5.7 Calculated Trajectory from Carrier to IFM Component 46

A.1 Screenshot of the Camunda Modeler - General Tab 61
A.2 Screenshot of the Camunda Modeler - Field Injections Tab 61
A.3 Screenshot of the AWAre GUI . 62
A.4 Configured Safety Zone of Laser Scanner 1 63
A.5 Configured Safety Zone of Laser Scanner 2 63
A.6 Kuka iiwa with Mounted Tools . 64
A.7 Kuka iiwa Interactive Teaching . 64

B.1 Pick Skill . 65
B.2 Open Frame Skill . 65
B.3 Assembly Process . 66
B.4 Pick, Place and Open Frame . 66

xi

List of Figures

C.1 Genric Part of the Implementation 78
C.2 Kuka-specific part of the Implementation 79

xii

List of Tables

3.1 Cartesian PTP Movement Skill Primitive 11

5.1 Measurements Localization . 44
5.2 Collaborative Operations . 48
5.3 Safety Configuration Kuka . 52

xiii

List of Tables

xiv

Listings

5.1 Safety Override . 50

C.1 Callback for a Cartesian PTP Movement 68
C.2 Delegate for a Cartesian PTP Movement 70
C.3 Gripper Closed Condition . 73
C.4 Teach Skill . 74
C.5 Cartesian Movement Datatype . 75

xv

Listings

xvi

1 Introduction

1.1 General introduction

In 1983 Lozano Perez1 noticed that robot programming always needed an ex- 1Lozano-Perez
(1983, p. 821)pert. Back then, he already pointed out that this is a significant drawback be-

cause it is though not feasible for the normal shop floor worker to adapt the
robot behaviour.

Nowadays, especially in Germany, Industrie 4.0 is a very popular topic and
and experts presume that production systems have to be adaptive to fulfil the
quickly changing requirements for production. In a guideline for Industrie 4.0
it is said, that “the benefit of Industrie 4.0 unfolds with a clever combination
of already existing technologies”2. Since 1983 different kinds of frameworks 2Anderl et al.

(2015, p. 7)for robot programming were developed and tested in a variety of scenarios.
The problem persists that most of those frameworks are not well integrated in
automation environments. In the final report about Industrie 4.0 it is explained
that machines in smart factories should communicate with human beings in a
natural way3. This leads to the requirement that also robots as a production 3Kagermann,

Wahlster and
Helbig (2013,
p. 19)

component have to be easy to program.

The approach of this thesis is to design and implement a robot skill framework
which enables the shop floor worker to design complex robot behaviours based
on a simple graphical notation. As a result, the shop floor worker is able to
react to flexible production environments and consequently adapts the robot
behaviour. The term skill describes a capability or behaviour that the robot is
able to execute. It might be adapted by parametrization, but each “skill” has its
own characteristics which define the boundaries to separate it from other skill
variants. Additionally other requirements for robot skills will be integrated,
like force-based movements, persisting task frames and safety precautions for
human robot interaction.

The thesis is resided in the context of the it’s owl project FlexiMiR. it’s owl is
an abbreviation for “Intelligent Technical Systems Ostwestfalen-Lippe (a region
in Germany)”. This Leading-Edge Cluster encourages cooperations between
companies and universities through various projects. FlexiMiR is one of the 34
innovation projects and the identifier is an abbreviation for “Flexible Assembly
with integrated and interactive Robotics”.

1

1 Introduction

1.2 FlexiMiR project description

The FlexiMiR project is a cooperation between the Bielefeld University and the
company HARTING. One goal of the project was to develop an architectural
approach which continuously considers the requirements of interaction and
(re)configuration of robots in the whole automation context and in combination
with other components.

Another goal of the project was the exploration and integration of the Plug and
Produce concept4. Intelligent components should be easily integrated into the4cf. Naumann,

Wegener and
Schraft (2007)

production process and the robot should be used to localize those components
in the production environment. Furthermore a modelling of the components is
required and is a necessary prerequisite to allow collision free path planning for
the robot in the production process.

The company was responsible for developing models and software assistant
systems which allow production oriented workforce planning and calculate the
possible benefit through intelligent planning functions. Another aspect of the
developed concepts is the changing of employee roles in the production. Today
the machine setter is the person who configures a production machine and in-
tegrates all the components needed for the production process. Following the
new approach, it will be more and more the task of the shop floor worker to
adapt the machine to the production and integrate new components when ne-
cessary. This has to be evaluated in the future but will not be part of this thesis.

Figure 1.1: Interactive Robotics

2

1.3 Goals

1.3 Goals

The scope of my thesis will not include the modelling and simulation of the
automation components. This as well as the path planning algorithms will be
contributed by other collaborators and is only integrated through previously
defined interfaces.

The thesis will focus on the design, implementation and application of the skill
framework. Considering the actual requirements and goals of the framework,
the following six topics are the most important ones:

Modularization: Skills should be modular. This allows reuse of skills in vari-
ous contexts and improves the maintainability of the soft-
ware.

Parametrization: The parametrization of skills protects the developer from
designing too tailored skills for specific problems. Skills
should be general and flexible, only their parametrization
makes them distinct for the special context they are used in.
Furthermore to provide a good usability, parametrization
should be interactive. During the process modelling, the
user should be guided through the parametrization by in-
teractive teaching of positions and by being asked to provide
other parameters like control modes, acceleration or velo-
city for a movement.

Sequencing: One robot movement will not be sufficient to realize a mean-
ingful behaviour of the robot. Skills have to be sequenced
after each other, the order must be easily and obviously
definable by the user. Parallel execution must also be eval-
uated and should be supported by the framework.

Hierarchies: To support combination of skills to more complex beha-
viours, skill hierarchies must be supported. This means
instances of skill primitives are combined to a skill and
instances of skills can be combined to tasks. This allows
the generation of skill library to simplify the design of pro-
cesses for the user.

World Model: As soon as the robot interacts with its environment, the
world is changed by the robot and the robot must be able to
recognize changes in the environment. Without vision and
active recognition of the world, there must be ways to in-
form the robot about positions and orientations of objects,
to allow interaction with those.

3

1 Introduction

Safety: Last but not least the safety is an important concern if the
robot should be used in cooperation with the human or the
other way around. Safety mechanisms have to be imple-
mented to reduce the risks during interaction with the hu-
man, this can be reduced speeds, reduced allowed external
forces or at least making the robot compliant in case of col-
lisions.

4

2 Related Work

2.1 History and Origins

Before the invention of robot skill frameworks, robots were either programmed
through guiding, at robot-level or at task-level1. Influenced by new require- 1cf.

Lozano-Perez
(1983, p. 821)

ments like compliant motions2, in 1992 Hasegawa et. al presented a frame-

2cf. Mason
(1981, p. 419),
Schutter and
Brussel (1988,
p. 3)

work which proposed to describe tasks “as a sequence of skills”3. One year

3Hasegawa,
Suehiro and
Takase (1992,
p. 535)

later, Archibald and Petriu4 also published a paper about SKORP, which is an

4Archibald and
Petriu (1993,
p. 104)

abbreviation for ’SKills ORiented Programming’ and already presented an ap-
proach for graphical programming and sequencing of skills. This was extended
in Archibalds PhD Thesis5 which contained a generic skill template (cf. p. 34)

5Archibald
(1995)

but also considered low-level controller logic for sensors and actuators, similar
to Morrows Thesis6. 1996 Bruyninckx and De Schutter formalized the concept

6Morrow (1997)

of compliant motions and the task frame formalism7. They also defined that

7cf. Bruyninckx
and De Schutter
(1996)

a “task continues until a stop condition, or termination condition, is fulfilled”.
Morrow and Khosla delivered a first list of compliant motion primitives in 1997
and also emphasized the importance of task composition8. A few years later in

8cf. Morrow and
Khosla (1997)

2004 the task frame formalism got popular again and Kröger et al. demanded
the development of a robot control architecture which is capable of executing
the primitives with hybrid position / force control9.

9cf. Kröger,
Finkemeyer and
Wahl (2004),
Kröger,
Finkemeyer,
Thomas and
Wahl (2004)

Other research was more focused on task planning, automatic decomposition
or autonomous skill acquisition, which is not in the focus of this thesis. The
work of Ekvall et al. was pioneering, they combined the concepts of graphical
programming, skill modelling and programming by demonstration in 200610.

10cf. Ekvall,
Aarno and
Kragic (2006)

The combination of these topics was also the foundation for this thesis: The
development of a skill framework which could be graphically programmed, in-
teractive parametrized and easy to extend and use.

All of the previously mentioned research also built the foundation for the more
comprehensive skill frameworks developed since 2010. More details about those
approaches can be found in the following section.

5

2 Related Work

2.2 Skill Frameworks

Robot programming is described on a general level by Haun and divided into
different categories11. Based on these categories, the goal that should be reached11cf. Haun

(2007,
p. 173-180)

with the development of a skill framework would be to support direct teach-in
which is part of the online programming category. This means directly guid-
ing the robot to goal positions or even recording trajectories. Additionally the
programming would be a mixture of robot oriented and task oriented program-
ming. At least on lower levels of the skill hierarchy, robot movements are dir-
ectly defined. More generic skills would fall into the task oriented program-
ming section, because they only need few parameters which are defined by the
special task the skill should be used for.

In 2011 Björkelund et al. released their work about skill frameworks which
should increase productivity in production processes12. They widened the fo-12cf. Björkelund

et al. (2011) cus from looking at the robot to also regarding the other automation compon-
ents that might be part of a production process. Their approach was to use
Model-Driven Engineering to create composable components and separate con-
figuration to allow better reuse.

Bøgh et al. released two papers in 201213 which included models for the skill13cf. Bøgh,
Nielsen,
Pedersen,
Krüger and
Madsen (2012)

concept, an analysis of skills14 relevant for a robot in industrial production and

14see also
Bøgh, Hvilshoøj,
Kristiansen and
Madsen (2012)

an overview on the implementation layers and roles. This work was continued
and extended by Petersen et al. in 2013 in which they defined exemplary pick
and place skills with pre- and postconditions and execution steps15. They also

15cf. Pedersen,
Nalpantidis,
Bobick and
Krüger (2013)

note that they implemented the task frame formalism (TFF) as a skill primitive,
but it is not a real time TFF controller. Weidauer et al. presented a more focused
approach for the TFF which was based on place transition nets and seemed
more formalized but less applicable for industrial scenarios16.

16cf. Weidauer,
Kubus and Wahl
(2014)

In his master thesis Zeiß 2014 also developed a skill framework which was
based on motion nets (finite state machines) but dealt with the topic on a lower
level with very formulized descriptions of skills, preconditions, completition
and quality criterias and motion descriptions17.

17cf. Zeiß
(2014)

Another approach that should also be mentioned as a reference, is the work
from Pfrommer et al. who also classified robot skills in a broader automation
context but used a different model to integrate skills in the context of product,
process and resource where skills and transformation were combined to de-
scribe an action18. This differs from the more common model of skill primit-18cf. Pfrommer

et al. (2015) ives, skills and tasks. Other interesting aspects of this work include the Plug and
Produce concept and formalization via AutomationML.

6

2.3 Proprietary Implementations

More connected to the compliant motion and TFF focus, Butting et al.19 released 19cf. Butting,
Rumpe,
Schulze,
Thomas and
Wortmann
(2015)

a paper in 2015 which describes in a very descriptive way how they implemen-
ted their skills based on UML/P Statechart language.

2.3 Proprietary Implementations

Obviously the interactive and simple ways for robot programming also found
their way into proprietary solutions offered by some of the robot manufacturers
today. Most of those approaches also rely on the skill concept which allows the
user to parametrize the skills during the modelling of the production process.
The following list provides a short insight of the current state that the manufac-
turers offer:

• Rethink Robotics - Sawyer
With their 7 degrees of freedom (DOF) arm and an interactive touch display,
Rethink Robotics offers a robot which is specially designed for human robot
interaction. At the flange of the robot there is a cuff with various buttons
that can be used for direct interaction. For programming, a specialized IDE
called Intera Studio is provided (see figure 2.1) which allows graphical pro-
gramming based on abstract icons and 3D visualization / simulation.

• Kuka - iiwa
The iiwa is also a 7 DOF arm which is designed for human robot interaction.
Force-Torque sensors in each joint can measure external forces to detect con-
tacts and react accordingly. The robot can be ordered with a hand-guiding
flange which offers one input button. For their programming environment
Sunrise.OS Kuka announced a graphical programming environment. The in-
teraction should be realized through the smartPAD which has various input
buttons and a touch display.

• Franka - Emika
As a quite new manufacturer on the market, Franka also offers a 7 DOF arm
with lots of input elements at the end effector. The development environ-
ment called Franka Desk is based on visual programming and interactive
teaching and parametrizing.

• FP Robotics - P-Rob
The P-Rob is a 6 DOF arm which already looks a bit different than the other
industrial robots which are made of metal or plastic. This robot arm has a
housing made of leather which interferes safety for interaction directly. The

7

2 Related Work

programming environment called myP-Interface also allows interactive devel-
opment based on skills and teach-in.

• ABB - YuMi
The dual arm robot has also been designed for interaction between robot and
human. An IDE is called RobotStudio Online YuMi is freely available and also
offers teaching possibilities for the process modelling.

Figure 2.1: Intera Studio IDE - Graphical Programming

8

3 Concept

Pedersen et al. describe robot skills as high level building blocks from which a
task can be composed1. Furthermore they formalize a skill to be object-centred 1cf. Pedersen et

al. (2016,
p. 284)

rather than being connected to 3D coordinates. Following their argumentation,
on the one hand this might provide a higher usability, but on the other hand it
makes the skills more complex and less robust. To allow object-centred skills,
a robot must be able to identify the objects in its environment which would
require a vision framework and complex strategies and algorithms for gripping.
In my concept, skills are position-based which allows the users to directly teach
the coordinates needed for a certain task. This will require more user interaction
when setting up complex processes, but it will also lead to more robustness and
it also enables precise interactions.

Furthermore Pedersen et al.1 say that a skill must be self-sustained which is
explained by the following three requirements. Each skill should be:

• “parametric in its execution, so it will perform the same basic operation re-
gardless of input parameter,

• able to estimate if the skill can be executed based on the input parameter and
world state, and

• able to verify whether or not it was executed successfully.”

Even though there were differences in the skill design (object/coordinates), this
skill concept was used as the base concept for my implementation and is visu-
alized in Fig. 3.1.

As an input, the skill receives a set of parameters. Which parameters are needed
will be defined by the skill itself and it may contain required and optional para-
meters. In case of optional parameters not specified by the user, default values
will be chosen to ensure a basic practicability. Some of the parameters might
be defined during design time of the process, others will be taught interactively
(see section 4.6) Another input would be the current state of the world, which
could be for example the actual joint configuration / cartesian position of the ro-
bot tool center point (TCP) or other global parameters like the operation mode
of other components in the environment.

The skill itself is subdivided into four main parts:
The preconditions check whether it is ensured that the skill may be executed
(see section 4.3.2 for more information).

9

3 Concept

The execution itself will mostly be controlled by a robot controller which should
abstract the control logic so that low level implementations should not be needed.
This means in case of movements, the robot controller offers simple, configur-
able interfaces to execute those. Other examples can be tool operations which
would be e.g. open gripper or close gripper.
The continuous evaluation gets important when using compliant motions, for
example where a force should be tracked. Also other parameters can be tracked,
like distance from start / goal position, execution time and so on. They might
be used to trigger other actions or stop the execution.
Finally the postconditions check should verify whether the execution of the skill
was successful and its outcome might influence the further execution of the task
(see section 4.3.2 for more information).
The output of a skill is always a change in the world state. Maybe the robot has
moved to a different position, did something with its attached tools or the skill
sets some variables which describe the changes caused by the skill execution.

Figure 3.1: Skill Concept (Pedersen et al., 2016)

3.1 Skill Primitives

To allow composition of skills, they should be organized hierarchically and may
be sequenced in the higher hierarchy layers as needed. The lowest layer should
implement the skill primitives which are not composed from other primitives.
They implement their full functionality and can only be parametrized to adjust
their execution.

My implementation is based on the Kuka Sunrise API and the skill primitives en-
capsulate all motion primitives offered by the API. Furthermore, skill primitives
have been implemented to control the attached grippers. They are controlled by
simple IO port settings which are also offered through the Kuka API.

10

3.1 Skill Primitives

The skill primitives used so far are: Cartesian PTP movement, Linear PTP move-
ment, Relative Linear PTP movement, Joint PTP movement, Cartesian PTP Batch
movement, Joint PTP Batch movement, Open Gripper, Close Gripper and Teach
Position. These primitives are robot-centred because they offer the different
movement functionalities that the robot can execute. The developer who im-
plements skills from those primitives needs to know how they vary in their
execution and input parameters.

Representative for the other skills, the Cartesian PTP movement is presented in
detail in the table 3.1:

Cartesian PTP Movement
Preconditions 1. Robot at defined Pre-Position

2. Robot ready to execute movement

Execution

Required Parameters 1. X-Coordinate
2. Y-Coordinate
3. Z-Coordinate
4. A-Orientation
5. B-Orientation
6. C-Orientation
7. Status-Parameter
8. Turn-Parameter
9. E1-Parameter
10. Motion Frame
11. Execution Mode

Optional Parameters 1. Max. Relative Velocity
2. Max. Relative Acceleration
3. X-Force Threshold
4. Y-Force Threshold
5. Z-Force Threshold
6. X-Torque Threshold
7. Y-Torque Threshold
8. Z-Torque Threshold
9. Measure Frame

Continuous
Evaluation

1. Force / Torque Monitoring

Postconditions 1. Robot at defined Goal-Position

Table 3.1: Cartesian PTP Movement Skill Primitive

The preconditions could be extended: If the safety should be enhanced, the ro-
bot should not only check whether it is ready to execute the movement, but
maybe check as well whether the environment is ready for execution. In a pro-

11

3 Concept

duction environment a higher control component (e.g. PLC2) might be reques-2cf.
Programmable
Logic Controller

ted for that.

The first nine required parameters can be consolidated to a separate data struc-
ture which defines the cartesian position and redundancy parameters to reach
this position (see also section 3.7). The motion frame defines with which part
of the robot the position should be reached, e.g. the flange, a TCP or even an
attached workpiece. Another important parameter is the control mode: This
could be either position based or impedance mode.

As already mentioned before, if the optional parameters are not specified, they
will be set to a default value. If no force or torque thresholds are specified, they
will not be monitored during execution. The measure frame can be stated if the
force/torque measurements should be executed at a special TCP, by default the
motion frame will also be used for the measurements. During execution, the
force/torque values are continuously evaluated and the movement is stopped
if one of the specified threshold is reached or exceeded.

At the end of the execution the current cartesian position can be compared to
the goal position inside the postcondition. This can help to evaluate whether
the motion was successful or whether it might have been stopped by one of the
force conditions earlier than expected.

3.2 Skills

Skills are compositions of skill primitives or other skills. When composing a
skill, the skill developer defines the sequence of actions that should be executed.

As an example the Pick Skill can be seen as a sequence of motions and gripper
commands: The first action would be a movement (e.g. Cartesian PTP Move-
ment) to a pre-position. The second action would be to open the gripper if
not already opened. Then the third action would be a movement to the actual
goal-position (e.g. Cartesian Linear Movement), where the gripper is closed
(action four). And the fifth and final action would be to move the robot to a
post-position which can be individually parametrized or the same as the pre-
position (e.g. Cartesian Relative Linear Movement). In this example all used
actions would be skill primitives.

If the skill developer combines the pick skill with an implementation of a place
skill because this might often be used in combination, he simply uses both skills
and creates a new skill where they are sequenced after each other. This is a
good example for modular skills. They are kept small so each unit can be re-
used. In other scenarios, maybe something should happen between the pick
and place which would not be possible if there would only be a pick-and-place
skill without the modular design.

12

3.3 Tasks

Combining Skills might allow pre-parametrization which can allow better usab-
ility because less parameters for the end user always mean a simplification and
a better error tolerance.

3.3 Tasks

Tasks can use skills and skill primitives to reach a certain goal or world state.
While skills and skill primitives should always stay more generic, tasks are nor-
mally more concrete and embedded in a specific context.

Thinking in a broader context, tasks might also include other components, inter-
actions and maybe also demand more logic in the execution flow. While other
approaches often only regard the robotic system in the skill execution, the in-
teraction with other components and the user and especially the integration in
an overall process is often neglected. In my concept, the task level is the place
where this integration happens which offers many benefits in usability and sim-
plifies the adaption/reconfiguration of whole processes.

The task-level programming would require the least knowledge or experience
from the process designer. While skill primitive implementation will still re-
main the task of a robotic expert, the design of tasks should provide as much
abstraction as possible and may be supported by an interactive guide. The skill
composition also involves more parametrizing of skill primitives which also
requires a profound understanding of robot behaviour. An interactive guide
would enable the shop floor worker to adapt processes including the robot be-
haviour without a deep robotic knowledge.

3.4 Composition of Skills and Tasks

The composition based on BPMN3 allows graphic modelling of the hierarchies 3Abbr. for
Business
Process
Modelling and
Notation

and the borders between the different levels are quite fluent. This makes a con-
sistent use of notation important. Skill primitives are not composable further
more, they are one function block, providing different interfaces by being con-
figurable through parameters and pre- and post conditions.

This means skill primitives are noted as BMPN Tasks. Skills are modelled in sep-
arate processes which can be saved as *.bpmn files and may be included in other
processes through the use of BPMN Call Activities. Tasks are higher level process
models which make use of skills, skill primitives and other logic. The differenti-
ation between skills and tasks is more conceptual than it can be closely coupled
to BPMN notation. Tasks also include the integration of other components, dy-

13

3 Concept

namic changes of the user interface and further aspects (see section 3.5.3). The
different layers and their notations are shown in figure 3.2.

A pick-and-place skill can for example be used in an assembly scenario where
the skill is just one action which is enriched by other movements or interactions
with other components. Tasks however can be sequenced for complex scenarios
and processes. By this sequencing and hierarchical ordering of skill primitives,
skills and composed skills, complex behaviours can be established and used in
flexible ways.

Figure 3.2: Conceptual Skill Hierarchy

3.5 Concept for Realization

To set up a skill framework different components are required: To model the
skills, compose and sequence them, create a hierarchy and allow parametriza-
tion, a comprehensive framework is required. To reduce development effort on
the one hand and to allow embedding the skill framework in a unified envir-
onment on the other hand, BPMN (see section 3.5.1) was chosen as the graph-
ical modelling language and the Camunda Framework was chosen to execute the
modelled plans directly (see section 3.5.2). Furthermore the AWAre Framework
was used (see section 3.5.3), which is an extension of the Camunda Framework.

14

3.5 Concept for Realization

As a testing environment for application of the skill framework, a Kuka iiwa was
used (see section 3.5.4) which is programmed in a Java environment and makes
use of the Kuka Sunrise.OS (see section 3.5.5). This allows programming the
robot on a higher level, provides abstraction and makes the implementation of
the skill primitives relatively easy.

3.5.1 BPMN

BPMN is a graphical modelling language used to model and design processes
which can then be automatically executed. It has a broad set of symbols which
allow to model complex flows with branching of processes, hierarchical com-
position, combining automated and manual tasks and connecting various ac-
tions with the tasks as well as explicit error modelling and handling. The cur-
rent version 2.0 was released in 2011 by the OMG4. 4Abbr. for

Object
Management
Group

The most important symbols and notations are the following:

Tasks: They can be used in various manifestations: Service Tasks
are used to execute code that can be defined in Java classes
or Expressions. User Tasks are used to model interaction
with a user (through any kind of interface) and Script Tasks
are used to execute inline scripts or scripts that are defined
in external files (various scripting languages are suppor-
ted). Subprocesses allow structuring code into functional
units and Call Activities allow to include processes defined
in separate files.

Events: Events are used to start and end processes. Intermediate
Catch Events can also be used to wait for specific actions,
Intermediat Throw Events can be used to trigger the sending
of different events. Additionally it is also possible to attach
event catching to tasks which is then called Boundary event.
Most important Event types are: Message, Signal, Cancel and
Timer.

Gateways: Gateways allow to implement logical sequence flows. Ex-
clusive Gateways are used to fork a process and to join it
together. Conditions can be used to define which Sequence
Flow is chosen after a fork. Parallel Gateways can be used
for modelling parallel execution, but since one execution is
normally single threaded in Camunda, the execution is not
really parallel.

Pools: Pools with Lanes are used to structure processes and order
them by responsibility or belonging.

15

3 Concept

3.5.2 Camunda

The Camunda Framework uses the BPMN description of processes to automatic-
ally execute them using the process logic defined by the language. It allows
to integrate scripts and code into various tasks and extend other tasks through
code to implement process logic and extend process functionality. Processes can
be executed by building standalone applications or by building and deploying
web applications to a web server (e.g. Apache Tomcat).

The Process Engine is the core of the framework and responsible for deploying
and executing processes. Functionalities like process querying, process modific-
ations and execution manipulations are just some additional features. To allow
tracking states and logging results, Process Variables can be used. They can be
created and updated by BPMN Tasksand through Expressions. Each variable has
a specific scope and variables can be accessed globally or locally.

3.5.3 AWAre Framework

The AWAre5 Framework was developed at the University of Bielefeld to extend5Abbr. for
Assistive
Workflow
Architecture

the Camunda Framework with more functionality and the ability to develop plu-
gins for various components. This in turn makes integration of those compon-
ents into BPMN processes possible. It allows a unified modelling and commu-
nication through the same interfaces.

To get access to the process engine, the AWAre Framework provides an interface.
It allows to develop plugins which can be loaded by the process engine and
may provide delegates to enrich the BPMN process with functionality.

Another feature is the graphical user interface which can be started together
with the processes and can be connected to directly interact with the process,
the process engine or other components. On the one hand the GUI is capable
of controlling the overall process execution, on the other hand it can be used
to react to events from the process or provide an interface for user interaction
through User Tasks.

The AWAre plugin structure should be used to develop a robot skill plugin that
provides delegates for each skill primitive. This allows parametrization at the
time of designing the process or even later through parametrization processes
and the graphical user interface mentioned before (see also section 3.6).

3.5.4 Kuka iiwa

The Kuka iiwa is a 7 DOF robot, meaning that it has seven joints that can be used
to reach a position with various joint configurations (see figure 3.3a). This re-

16

3.5 Concept for Realization

dundancy makes it more flexible than other conventional robots with less joints.
For the application tests a Kuka iiwa 7 R800 has been used, which is capable of
moving up to 7kg at its end effector and has a radius of 800mm maximum reach.
One thing that makes this robot arm special and allows the interaction with it,
is that force-torque sensors were integrated into every joint. This makes it pos-
sible to detect external forces at every part of the robot and it is even possible to
calculate the direction from where they acted upon the robot. It can be used for
user interaction which can be established through a zero gravity mode, where
the robot only reacts to gravity in the first place and keeps its current position
stable. Secondly the robot reacts to additional external forces and is compliant,
so it can be moved wherever it is led by the user (in range of the joint limits).
But the force measurements can also be used for the tasks that the robot should
establish: Forces can be increased until a certain threshold is reached and then
the robot can stop the movement and continue the execution without damaging
parts through forces which were to high.

In figure 3.3b the hardware can be seen that belongs to the robot. Number 3
shows the robot arm itself, 5 denotes the robot controller (Kuka Sunrise Cabinet)
which runs a Windows CE environment extended by a real time kernel. Number
2 shows the SmartPAD which can be used to control the robot, execute applica-
tions, monitor parameters and also stop the robot in case of failures. The robot
controller provides a number of interfaces like Ethernet, EtherCAT, IO ports and
furthermore.

(a) 7 joints (b) Hardware

Figure 3.3: The Kuka iiwa (KUKA, 2016)

17

3 Concept

Additionally two grippers were installed on a Y-Mount which was attached to
the flange. More details can be found in section 5.1 and 5.2.

3.5.5 Kuka Sunrise.OS

Besides a low level interface for programming (FRI6), Kuka also offers the Sun-6Abbr. for Fast
Research
Interface

rise.OS as a java framework to program the robot arm and include further logic
and safety mechanisms. The Sunrise API is a good starting point to implement
skill primitives: The different motion commands can be encapsulated as prim-
itives and it is possible to integrate a middleware to allow communication with
other software components. All information regarding the programming cap-
abilities of the framework can be found in the official manual for system integ-
rators7.7KUKA (2016)

3.6 Interactive Parametrization

Skill Parametrization is an important aspect of a skill framework. In 2013 Schou
et al.8 wrote that if a robot “is to be programmed by an operator with limited8 Schou,

Damgaard,
Bogh and
Madsen (2013,
p. 2)

robotics knowledge at the shop floor during production runtime, the program-
ming interface must be easier and faster to use, than conventional robot pro-
gramming interfaces.” They propose that the programming has to be done at a
higher level of abstraction and that it might be divided into two phases: Phase 1
is called Specification phase where the sequence of skills is modelled and skills are
partly parametrized. This phase is also called Offline specification phase9. Phase 29 Schou,

Andersen,
Chrysostomou,
Bøgh and
Madsen (2016,
p. 5)

is called Online teaching phase and in the phase the interaction between human
worker and robot is important. Locations can be trained through kinaesthetic
teaching13, sometimes also called Programming by Demonstration (PbD)10(see also

10 cf. Ekvall et
al. (2006,
p. 399),
Skoglund (2009,
p. 2)

figure A.7). 2016 Steinmetz and Weitschat presented an approach to integrate
the parametrization process explicitly in a skill11. In their example of a screw

11 cf. Steinmetz
and Weitschat
(2016, p. 282)

skill, a check whether the screw pose has already been taught is always executed
and if this is not the case, the process automatically forks into a branch where
the pose is taught interactively and confirmed by the user.

Embedded in the BPMN concept, parametrization can be done through Input/Out-
put Variables and Field Injection on BPMN Tasks. Through this, it is possible to im-
plement the phase 1 as mentioned above: Parametrization during specification.
Depending on the parameters, some can be taught interactively, e.g. positions
and trajectories. This can be modelled explicitly in the skill as shown in figure
3.4b. The idea is based on Steinmetz’s approach but my concept tries to gener-
alize the parametrization so it can easily be included in every skill. The concept
shown in figure 3.4a is simple, the framework checks whether all variables are

18

3.6 Interactive Parametrization

already configured. Therefore it is able to request the database, process vari-
ables and maybe even use communication with other components. If paramet-
ers are missing, the user will be asked for help with the graphical user interface
of the AWAre framework. Maybe some skills can be parametrized through GUI
elements directly, for others direct interaction with the robot might be needed,
which will then be triggered directly and can return its results to the process. If
the user decides that the parametrization is finished (supported by the assistant
interface), a second check will occur and normally the interactive parametriza-
tion process will be finished and the skill might be executed.

(a) Concept Interactive Parametrization

(b) Interactive Parametrized Skill

Figure 3.4: Interactive Parametrization

19

3 Concept

3.7 Task Frames

The concept of task frames was first introduced by De Schutter and Van Brus-
sel in 198812 and formally defined by Bruyninckx and De Schutter in 199613 to12cf. Schutter

and Brussel
(1988, p. 4)

13cf. Bruyninckx
and De Schutter
(1996, p. 581)

describe tasks with compliant motions. In 2004 Kröger et al. presented an ap-
proach for a notation and representation of task frames and their relations14.

14cf. Kröger,
Finkemeyer and
Wahl (2004,
p. 5219) and
Kröger,
Finkemeyer,
Thomas and
Wahl (2004,
p. 2)

Another paper was published by Blumenthal et al. in 2013 which deals with
similar topics but has a broader focus and introduces the concept of a scene
graph15.

15cf.
Blumenthal,
Bruyninckx,
Nowak and
Prassler (2013,
p. 453)

In the skill framework positions have to be stored somehow to allow different
robot programs and other components to access them. This is done in the world
model which is realized as a graph database (see section 4.5.2). Inside the data-
base different objects can be stored as nodes and relations between them can be
added and removed as necessary. This allows a dynamic capturing of the world
and follows roughly the requirements as mentioned by Blumenthal et al15.

Figure 3.5: Task Frame Hierarchy and Transformations

Figure 3.5 shows some exemplary task frames and their relations. Base of all
coordinate systems is the World task frame. It defines the orientation of all world
coordinates. Through a transformation from world to robot the Robot Base is
defined. A transformation consists of a translation and rotation. The kinematic
forward transformation is able to determine the position of the robot flange at
any time. Relative to the flange further task frames like a gripper can be defined
through transformations. An ongoing chain can describe the root of the gripper,
then the tip of the gripper and maybe even an inserted workpiece.

20

3.7 Task Frames

Other components are also placed in the robot environment and normally their
position is related to the world as well. The transformation may be determined
through manual measurement or measurements with the robot. Sometimes it
may also just be virtual for simulation purposes. Each component can also de-
liver its own task frames which are normally fixed to the base frame of the
component. As an example some task frames are visualized in the simulation
shown in figure 3.6. In the upper left corner of the production cell the WorldRoot
task frame is defined. The robot RootFrame is located at its base and the other
components show some exemplary positions called M1 and the according pre-
positions for robot movements called PreM1. As well the frame FlangeFrame is
shown between the mounted tool and the robot flange. The frames Gimatic_Tip
and Afag_Tip are placed at the center points of the two grippers.

Figure 3.6: HARTING Production Cell

21

3 Concept

22

4 Implementation

To implement the skill concept described in chapter 3, a distributed architecture
was chosen. Existing technologies and frameworks are extended and integrated
to set up a framework which is modular and scalable.

4.1 Framework Architecture

The description of the framework architecture should give an overview on the
particular components and afterwards the skill implementation will be explained
in more detail in section 4.2 and 4.3.

Figure 4.1: Software Architecture

The software architecture mainly consists of two separate frameworks which
communicate through a middleware (see Fig. 4.1). On the left side the spe-
cific robot implementation is shown (orange box). The Kuka Sunrise API de-

23

4 Implementation

termines that there can only be one RoboticsAPIApplication running at the same
time. The skill primitives are implemented in own classes and their execution is
triggered by the application which handles the communication with the other
components. On the right side the AWAre framework is drawn (blue box) which
is an extension of the Camunda Framework, a BPMN process engine (see also
section 3.5.3). The Robot Skill Plugin contains the delegates which are used to
parametrize the skill primitives and then communicate with the Kuka Controller
to trigger the skill execution. Pre- and Postconditions are also defined within
the plugin and can also be reused for various skills (through parametrization).
BPMN Service Tasks then connect the skill delegates and pre- and postconditions
and allow the usage inside the BPMN world. Complex Skills and Tasks can be
modelled by sequencing BPMN Tasks and hierarchically composing them. The
execution logic of Camunda guarantees a sequential execution of precondition,
execution and postcondition and of course of BPMN Tasks as well.

Additionally, a database called Neo4J is used to store the positions and traject-
ories which are used for the robot skills. The database is based on a graph
structure which means that entities may have attributes and are connected to
other entities through relationships. This allows a hierarchical storing of the
positions which will be explained more specific in section 4.5.

Another component in the architecture is the simulation (green box) which is
based on Visual components, a 3D simulation framework. The simulation offers
functionalities for collision avoidance and path planning which are crucially
important as soon as the environment for the robot gets more complex. It even
allows a better usability because the user does not have to teach every trajectory
for the process any more, as they can automatically be calculated by the simu-
lation. Although it is part of the framework and has been integrated, it was not
focus of this thesis and in this context is regarded as an external component.

The detailed software architecture is shown in figure 4.2. As in the other figure
(4.1), the left side shows the robot specific part and the right side shows the
AWAre part. More detailed figures with all methods and fields can be found in
the appendix (C.1 and C.2).

For the robot specific implementation, the SkillProvider class is the center which
invokes the execution and initializes the communication infrastructure. There-
fore it has instances of all skill callbacks which are registered for remote pro-
cedure calls at the startup of the application. It also has an instance of the
DoubleGripper class which gives access to a number of defined task frames be-
low the flange and also defines the load data of the gripper construction which
is needed for controller calculations of the Kuka API. The Callbacks themselves
extend the DataCallback class provided by the RSB middleware. They have in-
stances of the skills they function as a callback for. For the parametrization pro-
cess some utility classes have been implemented (MotionFrameMaster, SkillCon-

24

4.1 Framework Architecture

figurator, ControlModeFactory). The skills extend from the SkillPrimitive class
which centralizes the parameters all skills have in common and defines some
abstract methods the specific skills have to implement.

Figure 4.2: UML Class Diagram

The results of the AWAre development are shown at the right side of the fig-
ure. The distributed software structure is clearly visible through the packet

25

4 Implementation

structure and the packets also belong to different software packages which are
all developed independently. The aware.datamodel package provides a centrally
defined structure for the data types that can be used throughout the various
parts of the framework and especially for persistent storage in a database. The
aware.plugin.neo4j is an AWAre plugin which provides a simplified database in-
terface. Storage, retrieval and updating of the data types in the specific Neo4J
database is possible through this. The fleximir.aware.hmi.widgets package con-
tains a controller class for a JavaFX view which can be used for teaching and
parametrization of the robot. It is application specific and therefore not part of
the AWAre framework itself but it is based on it and uses the interfaces and GUI
capabilities.

The main part which is directly implementing the skill framework, is embedded
in the subpackages underneath the aware.plugin.robot.skills package. The plugin
package itself contains the AWAre specifc realization of the plugin capabilities
and the TaskFrameHierarchy which simplifies the usage of relative task frames.
The delegates which allow the integration of skill primitives into the BPMN
world are organized in the same-named package and all extend from the For-
ceTorqueDelegate to centralize parameters. They also implement the JavaDeleg-
ate interface which is provided by the Camunda Framework. The conditions by
contrast implement the ExecutionListener interface which is used in Camunda to
attach listeners for start and end events of a task.

4.2 Skill primitives - Kuka specific

The before mentioned separation of the skill implementation into a robot spe-
cific part and the higher level part, complies with the three layer model presen-
ted by Pedersen et al.1 They propose to have a hardware abstraction between1cf. Pedersen et

al. (2013, p. 2) skill primitives and skills which is realized through the independent robot im-
plementation that is used.

4.2.1 SkillProvider - RoboticsAPIApplication

The Kuka Sunrise Framework only allows one application to be active and loaded
at the same time. Background tasks can be implemented as well, but they do not
have access to the robot movement commands and though they should only be
used for logging, monitoring and other background tasks. Every RoboticsAPIAp-
plication should implement three methods: initialize(), run() and dispose().

Since all the skills are implemented in distinct classes and their parametrization
and execution is triggered by callbacks, the initialize() method is used to set up
the whole middleware communication. A remote procedure call (RPC) server

26

4.2 Skill primitives - Kuka specific

is initialized and methods with callbacks for every skill are registered. Addi-
tionally some informers are instantiated which publish current robot sensor val-
ues (like joint angle configuration, forces, etc.) on specific scopes, following
the publish-subscribe pattern. The whole middleware is based on RSB2, which 2Abbr. for

Robotics
Service Bus

is developed and maintained by the CoR-Lab institute from the University of
Bielefeld. Furthermore the gripper is attached to the robot to be considered in
the robot controller and some input output mappings are initialized which al-
low controlling of Beckhoff IO modules over EtherCAT through the Kuka Sunrise
framework.

The run() method is kept quite short and only triggers the publishing of the
sensor data and keeps the communication channels open, to receive remote pro-
cedure calls from the outside.

In the dispose() method all communication end points are deactivated and the
application is shut down. To ensure the functionality of other programs, the
ESM state is reset as well. More information on ESM states and safety can be
found in section 5.5.

To have access to the Kuka Sunrise framework classes, dependency injection is
used. This way the class instances do not have to be passed to each class through
the constructors or getter and setter methods. This is also shown in lines 20-29
of the example code in the appendix section C.2.

4.2.2 Skill Callbacks

As shown in the example code in the appendix section C.2, callbacks for each
skill primitive have been implemented. Their invoke() method is called when
a RPC is received and the payload is delivered as a parameter. The payload
contains the parameter set for the skill primitive and is encapsulated into a RST3 3Abbr. for

Robotics
Service Types

data type.

Since the skill instance is also injected (see l. 24-25 in C.2) at first, a method is
called (l. 39) which resets all parameters of the skill to ensure that no parameters
from an old execution remain set. Afterwards the control mode is set for the skill
(l. 41) and the force conditions are added (l. 44). Next in case of the cartesian
movement the defined goal position for the skill is retrieved from the payload,
set and all the other necessary parameters accordingly.

At the end of the invoke() method, the execution is triggered (l. 62) and its result
is obtained and returned by the RPC. This is similar for all skill callbacks: The
skill specific payload is analysed and the values are set for the skill instance.
Afterwards the skill execution is triggered and its result is returned.

27

4 Implementation

4.2.3 Skill Implementation

All skills extend from the abstract SkillPrimitive class. This class defines the ab-
stract methods clear() and prepareMotion() which have to be implemented for
each concrete skill. The class also defines a set of parameters which is similar
for all skills like force/torque thresholds which may be used for each movement
to make it compliant. The execute() method is implemented in the SkillPrimitive
class directly and calls the prepareMotion() method at first, to configure the mo-
tion that should be executed by the concrete instance. Afterwards the motion
itself is executed on the robot in a synchronous manner and the result is re-
turned. Generic error handling methods and break conditions for movements
are also defined in the SkillProvider class.

The specific skill implementations are held rather simple. Basically, they define
additional fields which are necessary to parametrize the skill and provide get-
ter and setter methods to access those fields. Besides and as mentioned before
they have to implement the clear() method which just resets the fields and the
prepareMotion() method. This methods takes all parameters from the fields of
the class and configures the desired motion with them. Therefore the Kuka API
specific motions are instantiated and setter methods are called for configuration.
If force thresholds have been configured for the movement, additionally break
conditions are added to the motion and the ESM state is set accordingly.

4.3 Skill primitives - Generic implementation
(AWAre Plugin)

The idea of the skill framework is that the user does not have to deal with code
any more but is able to specify the whole robot behaviour graphically through
sequencing the skills in a BPMN diagram. This can be realized through sequen-
cing BPMN Service Tasks which have a skill specific delegate attached and which
define the parameters for the skill through field injection (also a Camunda BPMN
feature).

4.3.1 Skill Delegate

Service Tasks can have Java classes attached which execute code and can read and
write variables from / to BPMN processes. In listing C.3 an exemplary delegate
is shown which is used to trigger a cartesian PTP movement. The delegates also
extend from a generic class (ForceTorqueDelegate) that implements methods for
encapsulation of force/torque thresholds. They also implement the interface
JavaDelegate which is part of the Camunda Framework. The Expression variables

28

4.3 Skill primitives - Generic implementation (AWAre Plugin)

(l. 23) define fields which can be used for the field injection and though allow
parametrization of the skills from the outside. So at first all the parameters from
the local variables are encapsulated into the RST datatype (l. 42-118). In case
of the cartesian PTP movement two possible ways of parametrizing the goal-
position have been realized: Either a framePath can be provided, which has to
be a unique identifier for the task frame stored in the database (l. 54-70). Or the
other option is to specify the goal-position manually by passing transformation,
rotation and redundancy parameters to the delegate (l. 74-87). When the RST
datatype is correctly filled and configured, a remote procedure call is made to
trigger the movement on the robot (l. 124). Finally the variables are reset (l.
129-130) since Camunda instantiates the delegates only once and not for every
service task individually.

4.3.2 Pre- and Postconditions

Since some conditions might be used as pre- and as postconditions, they were
defined in a general conditions package inside the robot skills plugin. An ex-
ample for such a condition can be found in section C.4. The condition classes all
implement the ExecutionListener interface which is also provided by Camunda.
This also allows to access process variables, to use field injection for paramet-
rization and it makes it possible to throw BPMN errors which can then be ex-
plicitly modelled and handled by the BPMN logic. The provided example (see
appendix section C.4) shows the checking of a gripper state. Theoretically this
could be used to check whether a gripper is already closed and therefore avoid
to trigger closing it again or it can also be used to check the outcome of a close
gripper skill as an postcondition.

Preconditions should therefore be used to check whether it is possible, safe an-
d/or necessary to execute a certain skill. Postconditions can be used to check
whether the skill execution led to the intended outcome or if it might have
failed.

Camunda allows to add ExecutionListeners to each Service Task. During process
design the user can define whether the listener has to be executed at the start of
the task (precondition) or at the end (postcondition). Since Camunda guarantees
that the listeners are called sequentially after each other, this allows to use the
conditions and skill delegates as explained before.

4.3.3 Robot Skill Plugin

The delegates for the skill primitives and the conditions are all packaged within
the robot skill plugin. As described in section 3.5.3 the AWAre Framework allows

29

4 Implementation

to implement plugins which extend the Plugin class and are annotated with
the @AwarePlugin Annotation. The plugins have to override the initialize(), the
activate() and the deactivate() method. In case of robot skill plugin, the RSB com-
munication is set up in the initialize() and activate() methods and torn down in
the deactivate() method.

Furthermore the plugins can be used to implement functionality that is required
at various other parts in the code. The goal positions for the movements are
stored persistently in a database but during runtime they are loaded into a
SceneGraph which is provided by the Kuka API. This allows to handle relative
transformations between positions in a comfortable way (see also section 3.7).
Such functionality is implemented within the plugin so it can be accessed from
the skill delegates and other parts of the framework.
As indicated in the paragraph above, the RSB communication for the skill deleg-
ates is also centralized here. Computational overhead for instantiation of com-
munication endpoints is avoided this way.

The plugins can always be retrieved through the PluginLoader, a singleton class
within the AWAre Framework which manages all plugin instances during runtime.
This makes them accessible for other plugins, delegates and the graphical user
interface.

4.4 Skill and Task Composition

In the appendix in figure B.1 and B.2 skill compositions are shown which solely
are based on skill primitives. The notation is BPMN and the annotations at the
tasks show the most important parameters. The error handling is also shown ex-
emplary at the “Open Gripper” and “Close Gripper” tasks in both figures. The
flash symbols represent the catching of a thrown BPMN error within that task
and the attached sequence flow defines where to continue if the error happened.
The gear wheel symbols in the upper left corner define that the tasks are Service
Tasks. Service Tasks are used in BPMN to execute custom code within a process.
In case of the skill framework, this code invokes robot movement or it triggers
actions of the attached tools of the robot.

The figures B.3 and B.4 in the appendix show more complex processes which
use skills to realize a desired outcome. The process shown in figure B.4 is encap-
sulated in the second box of figure B.3. This is an example to show hierarchical
composition of tasks to model complex processes. In figure B.4 the bold out-
lined boxes represent robot skills, the second box encapsulates the skill shown
in figure B.1 and the right bold outlined box encapsulates the skill shown in
detail in figure B.1.

30

4.5 Task Frames

Because Camunda also allows scripting for parameter definitions, the paramet-
ers can be created dynamically considering process variables or loop counters.
Generally variables can always be passed from one process to another, so vari-
ables which are available in a top level task can be passed down to a low level
skill primitive. For results, the other way around is also possible.

4.5 Task Frames

There are two main requirements regarding the task frames:
1. The task frames should be stored persistently. They must be accessible for dif-
ferent processes and parts of the framework and most important, they should
not be lost, if the application is restarted.
2. They should be stored in a relative manner, related to a world coordinate
reference system.

Unfortunately the Kuka Sunrise API does not give free access to the frame hier-
archy that can be used from RoboticsAPIApplications and updated through the
Sunrise Workbench or interactively through teaching with help of the Kuka Smart-
PAD. Updating positions from an application or adding and removing task
frames programmatically is currently not supported. To work around this is-
sue, a combination of persistent storage and relative transformation retrieval
has been implemented. The Kuka API at least gives access to a SceneGraphOb-
ject class which automatically calculates the transformations given the relative
dependencies (see section 4.5.1). The same relations of task frames can also be
stored in the Neo4J Database which is perfectly suited for this through its under-
lying graph structure (see section 4.5.2).

4.5.1 Kuka Scene Graph

The storage inside the database only helps to guarantee a persistent storage.
During runtime, the task frames are loaded from the database into a local scene
graph which is provided by the Kuka Sunrise API. This has the nice benefit that
the relative transformations are automatically resolved and complete chains of
transformations do not have to be calculated manually. It is even possible to
store task frames relative to the world if the world has been measured as a base
frame before.

The Scene Graph is instantiated, filled and maintained through the robot skill
plugin. All methods for interaction have been implemented inside the TaskFrame-
Hierarchy class. Supported actions are similar to the CRUD4 schema. The imple- 4Abbr. for

Create, Read,
Update and
Delete

31

4 Implementation

mentation always keeps the temporary scene graph and the database synchron-
ous and consistent. This way it is ensured that changes are always updated in
the database as well and information can be read from both sources similarly.

4.5.2 Neo4J - Persistent Storage

As a part of the AWAre framework, a datamodel has been implemented which
defines datatypes centrally so different components can work with them in the
same way. Instances of those datamodel classes can be stored and retrieved
from the database.

The instances of the datamodel TaskFrame class are the entities of the graph
and they are connected through directed relationships. Except of the root node
which corresponds to the world task frame, every task frame should have an
incoming relationship called “PARENT_OF” that comes from the parent and
is directed towards the child. Since the root does not have a parent itself, it
does not have any relationships like that. Similarly, except of the root node,
every entity should have an outgoing relationship called “CHILD_OF”. Those
relationships allow to traverse the graph in both directions, depending on the
action that should be realized.

Every entity can also be retrieved by an unique identifier. For the task frames
this is the path concatenating all task frame names separated by a "/", beginning
at the root frame. For example: "/Root/ComponentX/PositionA".

Figure 4.3: Task Frame Hierarchy in Neo4j View of AWAre GUI

32

4.6 Interactive Parametrization

Since the robot positions are changed dynamically, they are not stored inside
the database. The current position of one of the mounted tools, or the flange
can always be requested through a RPC from the robot directly.

Additionally the database is also used as a storage for trajectories. Comparable
to the task frames, classes were also added to the AWAre datamodel to model
the fields that are necessary for that purpose. Since the trajectories are stored as
joint configurations, each trajectory element though consists of the seven joint
values and the collection which forms the trajectory has an unique identifier to
make it obtainable from the outside (see also figure 4.4).

4.6 Interactive Parametrization

In a first approach the implementation was realized according to the two phase
concept mentioned before. A robot program was modelled by creating a BPMN
process in a graphical editor, the Camunda Modeler (see figure A.1 and A.2).
The skills can be partly parametrized inside the editor. For example velocit-
ies, movement modes and others can be added in the Field Injection tab of the
editor when the BPMN task is currently selected which represents the skill. For
each movement skill which requires a goal-position, also the unique identifier
has to provided. This is used for a database lookup of the task frame for the
goal position.

4.6.1 Teach Skill

In listing C.5 the TeachFrameSkill class is shown that allows the hand guiding of
the robot. It implements the same methods as every other SkillPrimitive even
though there is nothing to be cleared (l. 16) or prepared (l. 19) every time.
The execute() method is also overwritten which is not done for the other skills.
Normally the hand guiding should be possible by only calling the command
seen in line 39. But because we do not use the official hand guiding flange from
Kuka, a little more implementation was necessary.

The first thing to notice is the setting in the StationConfig of each Kuka Sunrise Ap-
plication. Two options exist called “Hand guiding allowed in test mode”(1) and
“Hand guiding allowed in automatic mode”(2). Option 1 defines the behaviour
if execution mode T1 or T2 is chosen on the Kuka SmartPAD. Option 2 is relevant
for all applications that should be executed in AUT mode. This option has to
be configured to the value “false” which may at first be a little irritating. This
has the effect that it does not start the internal hand guiding mode which can
always be started if the robot is in an idle state and the hand guide switch is ac-

33

4 Implementation

tivated. Instead it only allows the hand guiding to be activated, if the command
lbr.move(handGuiding()) is called by a program.

Since the official solution is not used to activate the hand guiding, the following
steps were necessary to integrate the interactivity into the skill framework:
1. The ESM state is set to 2. This enables the activation of the handguide through
the switch in the safety configuration (l. 27, see also section 5.5).
2. A while-loop is started which is only left if the hand guide switch has at least
been activated once (l. 30-36).
3. As soon as the user presses one of the buttons at the robot flange which ap-
prove the hand guide, the code after the while-loop is executed and the execution
is resumed (l.38). This is necessary through the unofficial implementation.
4. The hand guiding is officially started when the motion in line 39 is executed
which sets the robot to a gravity compensation mode. The robot reacts to all
external forces compliantly which makes it possible to move the robot to the
desired location and also change its joint configuration as needed.
5. Once the user releases the button, the interaction is automatically finished
and the robot gets stiff again. No further movements are possible, if the skill is
not restarted.
6. To allow normal movements again which have special force limits for human
robot interaction defined, the ESM state is set to 1 again (l. 41).

The teaching skill can be repeated as often as needed directly. Currently after the
teaching, the RoboticsAPIApplication has to be resumed with the Kuka SmartPAD.
The command from line 38 could also do this automatically, but this would
pose a possible thread since the user might not be fully aware, that a motion
might be triggered directly afterwards. This might be the case if the teaching
is fully integrated into a process and maybe only some positions have to be
taught and other movements can be executed directly because they are already
fully parametrized.

4.6.2 Teaching Task Frames

As soon as the process is started, which includes skills, a graphical user inter-
face is started as well which is directly connected to the BPMN process engine
and is part of the AWAre Framework (see figure A.3). To teach the positions that
are needed for the skills, the user has to select a special tab which allows inter-
action with the robot. To teach a task frame, the user first has to click the button
“Activate Handguiding”. This triggers a remote call to the robot which then ac-
tivates the handguide skill. Afterwards the user is able to interact with the Kuka
iiwa by pressing one of the buttons in the flange (see figure A.6). This can be
repeated as often as needed until the user is satisfied with the pose of the robot.
Then the user has to select the task frame for which he wants to store the current

34

4.6 Interactive Parametrization

position from the list on the left (see A.3). If the task frame is selected, the user
can press the “Save frame to database” button. The values are automatically
updated in the database, the scene graph (see section 4.5.1 and 4.5.2) and the
GUI. By pressing the floating button in the lower right corner of the list view a
new task frame can be created on the same level in the hierarchy or by pressing
the “+” button next to a task frame in the list, a TF is created as a child of the
frame directly. A name for the new task frame always has to be specified in a
pop up window which is automatically opened.

4.6.3 Teaching Trajectories

To teach a trajectory the same view of the AWAre GUI can be used, the necessary
control elements can be found in the column on the right. Similar to the teach-
ing of a task frame, the handguide always has to be activated through the click
of the related button. If the position is satisfying, the button “Teach Joint Config-
uration” can be used to store the joint configuration in a temporary ordered list.
The storing of joint positions instead of task frames for a trajectory is caused
by the redundancy of the 7 DOF robot. Since the robot can reach the same po-
sition with different joint configurations, it would not be sufficient to store the
cartesian positions of the flange or end effectors. If the user has taught all inter-
mediate steps of the trajectory (including start and goal position), he can enter a
unique identifier in the related text field and press the button to finish teaching
and store the trajectory afterwards.

Figure 4.4: Joint Angle Collections in Neo4j View of AWAre GUI

35

4 Implementation

This procedure allows the user to execute a movement along the taught traject-
ory afterwards, which might be helpful if a direct PTP movement would cause
a collision with another component. Therefore simply the skill JointPTPBatch-
Movement has to be added to the process and parametrized with the assigned
unique identifier. The number of intermediate trajectory points is only limited
through the maximum number of PTP movements that can be added to Mo-
tion Batch which is part of the Kuka API. Currently the limit is 500 (Kuka Sunrise
Version 1.115).5(KUKA, 2016)

36

5 Application

The skill framework has been applied to an assembly process which was chosen
as a reference because currently the assembly is done manually by hand. The
process is characterized by a high variance in the product itself (can be as-
sembled with different specifications) and the process has the potential for dy-
namic extensions and adaptation. These requirements make the process quite
suitable for the skill framework because the focus is not only on efficiency and
speed but rather on flexibility of the process and simplified reconfiguration.

5.1 Production Environment and Components

HARTING provided a production cell (see figure 5.1) which was constructed to
allow modularized production processes and the combination of different cells
with varying functionality. The cell itself provides the skeleton to install other
components and to connect them with each other. The following list gives an
overview of the components that are installed and what function they contrib-
ute to the overall production system:

Conveyor belt: Transports the carriers along the processing stations.

Carrier: Holds the product to allow processing in a fixed posture. Is
moved along the conveyor belt. Each carrier has a RFID tag
installed which may carry information about the product
or at least allows identifying it precisely.

Intelligent Stop stations: Are installed at the conveyor belt to stop the carriers for
various purposes. Based on a Raspberry PI they implement
an own intelligence which allows automatic collaboration
of all connected stop stations.

Frame storage: A specially constructed storage component which main-
tains supplies of Han-hinged frames. Pneumatic appliances
separate the frames so they can be picked by the robot.

Plug storage: A specially constructed storage component which main-
tains supplies of Han plugs.

37

5 Application

IFM component: A visual inspection component that allows quality checks
based on image processing and checking for defined fea-
tures.

RFID Reader: HARTING RFID reader to identify the RFID Tag that is in-
stalled on each carrier.

HARTING Mica: Small industry suitable computer that allows installation of
linux containers for various applications. Used containers
are: RFID identification, Discovery and Plug and Produce
editor.

SICK Laser Scanners: Two laser scanners are installed at the diagonally opposite
side. Each one has a range of 270 degrees and serves for
detection of humans inside the workspace of the robot.

Kuka iiwa: The 7 DOF robot that is used to execute the assembly and
which allows human robot interaction.

Gimatic gripper: Gripper installed at a Y-mount underneath the robot flange.
The gripper jaws are specially designed to pick Han plugs.

Afag gripper: Gripper installed at a Y-mount underneath the robot flange.
The gripper jaws are specially designed to pick Han hinged
frames and allow opening and closing the frames inside the
carrier.

Figure 5.1: HARTING Production Cell

38

5.2 Modelled Assembly Process

5.2 Modelled Assembly Process

The task for the robot is to assemble a Han-modular hinged frame with different
plugs. Figure 5.2 shows four exemplary frame sizes with various plug configur-
ations. The abstract process is shown in figure 5.3 in the appendix. Its detailed
modelling happened in sub-processes in separate files (e.g. figure B.4).

To assemble the frame the robot first has to pick up the frame from a storage
and place it on a carrier which is fixed at a stop station on a conveyor belt. Since
the frame is closed, when taken from the storage, the next step is to open the
frame inside the carrier. This is done through a force based movement where
the Afag gripper pushes one of the edges downwards which releases a clamp.
Afterwards the frame is opened inside the mount of the carrier. Next the robot
uses the Gimatic gripper to pick a plug from from a plug storage that should be
installed at the first position. Since the plugs are different in shape and length
and some have barbs, the force that is needed to push them into their position
is always different and the position must be very precise. The pick and place
of the plugs has to be repeated x-times, dependent on the size of the frame.
To minimize the number of task frames that have to be taught, only the first
position is taught and the other positions are calculated through an offset. If
all plugs have been installed, the hinged frame has to be closed with the Afag
Gripper. Therefore again a force based movement was used together with some
compliance to lower the needed forces to a minimum and to avoid damages
from the gripper against the frame. Afterwards the assembled frame can be
picked from the carrier and either be put to a storage box directly or it might be
moved to a quality inspection component first and afterwards to the box.

Figure 5.2: HARTING Han variants

39

5 Application

5.2.1 Exemplary Task composition

The skill framework has been used to model the complete assembly process (in-
cluding all variances: e.g. different plugs for different orders, different frame
sizes, etc.). As an example how the skill framework was used and integrated,
figure 5.3 shows how the assemble frame task is composed and hierarchically
structured. The rectangles visualize the skill primitives, the rounded rectangles
show the skills, the ellipse illustrates a task and the octagon represents an-
other component which is part of the assembly process but not controlled by
or through the robot.

Figure 5.3: Assembly Task

5.3 Plug and Produce

The flexibility of the assembly process should be enhanced through a Plug and
Produce architecture. Pfrommer et al. already drew the connection between
skill based modelling and reconfigurable production in their article from 20151.1cf. Pfrommer

et al. (2015) Since the Plug’n’Produce concept was also one focus of the FlexiMiR project it
was obvious that the developed skill framework could also be used to support
the concept.

The basic idea of the Plug and Produce concept can be described in the following
way: The user wants to integrate a new component into his production pro-
cess. Therefore he simply connects the component to the production cell. The
production cell recognizes and registers the new component with help of the
Discovery container, installed on the HARTING Mica. Afterwards the user will
be asked to integrate the component which will be supported through a wizard
that is shown in the AWAre GUI. The wizard will contain an important step that

40

5.3 Plug and Produce

involves the robot: The localization of the new component within the working
environment (see section 5.3.1 for details). Additionally if the component is act-
ively involved in the production process, it may be necessary to teach positions
that are related to the component. This has to be supported through the self
description, that each component has to provide. The self description may only
contain a defined collection of task frames that have to be taught to interact
with it or it may even provide a number of task frames which are relative to
its base. This would lead to a better usability because the process possesses a
higher automation and less user interaction. Another part of the wizard should
be the motion planing of the robot because the placement of the component in-
side the workspace of the robot might lead to collision in various movements
included in the process (see section 5.4 for details).

5.3.1 Localization of Objects

To determine the position of a component inside the workspace of the robot, it
can be approached at three different points which lay in the same plane. Be-
cause the robot knows its own position inside the world (see section 3.7), it is
able to determine the precise location of its mounted tool. To enhance the meas-
urement precision, a measurement tip is inserted into one of the grippers and
then the three points have to be approached interactively by the user. The integ-
ration wizard (see section 5.3) will lead the user through this process (see figure
5.5) and allows to activate the hand guide mode and to store the approached
positions. The measurement order is important because an algorithm that cal-
culates the orientation declares the orientation of the X-Axis from the first to the
third measured point (see figure 5.4).

Figure 5.4: Measurement Order and Resulting Orientation

41

5 Application

After the three points have been determined and stored, the algorithm imple-
mented in the robot skills plugin of the AWAre framework is able to calculate the
orientation of the component. The position will be defined through the first ap-
proached point. This is the base frame of each component. Other positions can
be provided in the self description of the component relative to this task frame.

(a) Measurement Tip (b) Measure TF 1 (c) Measure TF 2 (d) Measure TF 3

Figure 5.5: Measurements for Localization

The necessary steps to calculate the orientation of a plane in 3D space is shown
in Algorithm 1. Equation 5.1 shows the definition of the three points that define
the plane. They are constructed from the input of the three measurements which
result in three task frames. In equation 5.2 the two vectors are shown which
span up the plane. The orientation of the plane is defined in equation 5.3 where
the three axes are constructed. The x-axis is simply defined to face into direc-
tion of point ~P3. The z-axis can be defined by the cross product of the vectors
~v1 and ~v2 because since they span up the plane, the resulting vector of the cross
product has to be orthogonally aligned. The same mathematical law is applied
for the construction of the y-axis which is the result of the cross product of vec-
tor ~x and ~z. For the algorithm it is important whether the second measurement
point is located above or below the vector between ~P1 and ~P3. Currently the im-
plementation specifies that the y-axis is facing upwards, away from the second
measurement point. The z-axis is facing in the direction from where the meas-
urements have been done so normally out of the component (see figures 5.4 and
5.6b).

Combined together the three vectors form the rotation matrix shown in equa-
tion 5.4 from which the angles can be calculated through the three equations
shown in 5.5. This calculation assumes that the angles are based on the Tait-

42

5.3 Plug and Produce

Bryan Euler Angles definition. This defines that alpha =̂ yaw =̂ rotation around
z, beta =̂ pitch =̂ rotation around y and gamma =̂ roll =̂ rotation around x.

~P1 =

xTF1

yTF1

zTF1

, ~P2 =

xTF2

yTF2

zTF2

, ~P3 =

xTF3

yTF3

zTF3

 (5.1)

~v1 = ~P2 − ~P1

~v2 = ~P3 − ~P1

(5.2)

~x = ‖ ~P3 − ~P1‖
~z = ‖~v1 × ~v2‖
~y = ‖~x× ~z‖

(5.3)

~R =

x1, y1, z1
x2, y2, z2
x3, y3, z3

 (5.4)

α = arctan 2(x2, x1)

β = arcsin(−x3)
γ = arctan 2(y3, z3)

(5.5)

Algorithm 1: Determine Orientation of a Plane in R3

To verify the functionality 7 Measurements of the IFM and a storage component
have been made which results are documented in table 5.1. Figure 5.6 first visu-
alizes the three measurements points of the IFM component which is placed in
a 45 degree angle in the corner of the production cell (subfigure 5.6a). The cal-
culated coordinate system for the component is then shown in figure 5.6b. The
goal of the localization is to find the transformation between the world coordin-
ate system and the local coordinate system. Figure 5.6c shows the four different
test positions for the IFM component. The translation is based on the first meas-
urement point and the rotation has been calculated correctly. The last figure
(5.6d) additionally shows the three storage components that have been meas-
ured. It is important to note that the rotation of the coordinate systems is a little
bit different since the frame storage components have the second measurement
point located above the x-axis. This results in the y-axis facing downwards and
the z-axis facing towards the component. This is a little drawback which can be
solved by offering different measurement methods with according algorithms
or determining a fixed alignment of the measurement points.

43

5 Application

IFM 45 Degrees Corner X Y Z
Point 1 178.93 68.99 340.75
Point 2 155.23 90.12 251.21
Point 3 107.12 140.08 341.74
Correct Rotation 91.05 -0.56 135.28

IFM 45 Degrees Robot X Y Z
Point 1 138.79 384.49 342.89
Point 2 157.68 406.71 251.71
Point 3 207.78 456.62 340.05
Correct Rotation 91.08 1.63 46.27

IFM 90 Degrees Window X Y Z
Point 1 2.82 181.69 341.09
Point 2 0.10 213.32 253.48
Point 3 1.46 284.45 341.94
Correct Rotation 91.50 -0.47 90.76

IFM 90 Degrees Hanning X Y Z
Point 1 216.80 0.26 336.48
Point 2 185.51 -0.67 248.20
Point 3 117.12 -1.83 339.68
Correct Rotation 90.18 -1.84 -178.80

Frame Storage Mounted X Y Z
Point 1 857.34 339.89 99.05
Point 2 753.42 257.80 138.55
Point 3 668.42 340.71 101.46
Correct Rotation -155.17 -0.73 179.75

Frame Storage Operator X Y Z
Point 1 751.87 666.96 116.09
Point 2 812.80 570.85 142.98
Point 3 752.17 476.29 114.93
Correct Rotation -155.68 0.35 -89.91

Frame Storage Carrier X Y Z
Point 1 866.08 433.62 112.57
Point 2 962.03 495.93 142.71
Point 3 1057.12 435.50 112.14
Correct Rotation -153.68 0.13 0.56

Table 5.1: Measurements Localization

44

5.3 Plug and Produce

(a) Measurement Points IFM Comonent
45 Degrees

(b) Calculated Local Coordinate Orient-
ation

(c) Different Placements of IFM Component

(d) All Placements of IFM and Storages

Figure 5.6: Translations and Rotations

45

5 Application

5.4 Simulation and Motion Planning

Section 4.6.3 treated the topic of teaching trajectories to manually define mo-
tions between two task frames. Soon, if the number of movements exceeds a
certain threshold, the manual teaching of motions can become quite expensive.
It makes sense to automate the motion planing between task frames not least
because each motion of the production process would have to be checked for
collisions if a new component is integrated into the workspace of the robot.

The motion planning is not part of the skill framework itself and was developed
by other collaborators. It is provided by the simulation and can be triggered
through RPC calls based on the middleware RSB. The simulation is based on
Visual components and contains models of all components as well as a model
of the production cell itself. The idea behind the self descriptions of the com-
ponents is that they would also provide 3D models of themselves which can be
integrated in the simulation after the component has been localized.

The simulation offers interfaces to check paths for collisions and to plan new
paths based on a start and end position. The path planing was integrated into
the wizard and is supported by the skill framework. Therefore the task frames
from the start and end position are send from the robot skills plugin to the robot
controller. With help of its inverse kinematic, the robot is able to determine the
joint configuration for the cartesian position and sends it back to the plugin. The
plugin then sends the two joint configurations encapsulated in a RST datatype
to the simulation which receives them and starts a path planing between them
(see figure 5.7 for one possible result). Theoretically the simulation could use
different path planning algorithms but in an first approach, OMPL2 was used.2Abbr. for Open

Motion Planning
Library

Based on a given time threshold it tries to find a solution and either returns the
the trajectory in form of a joint configuration collection or it returns null if no
solution could be found in the given time.

Figure 5.7: Calculated Trajectory from Carrier to IFM Component

46

5.5 Safety

5.5 Safety

By the time skill frameworks should be deployed to real industrial scenarios
and not only be used for research purposes, lots of standards, regulations and
laws have to be considered. Kagermann et al.3 claim that safety also plays 3cf. Kagermann

et al. (2013,
p. 46-50)

an important role in implementing Industrie 4.0. The operational safety has to
ensure that a system itself is safe to use and at the same time it has to implement
robustness and low fault rates (which stop the production for a longer period of
time). Safety is also a criterion which is crucial for acceptance of a production
system. So besides a good usability it is important for a user to be confident
when interacting with the system.

5.5.1 Risk Assessment

To determine the safety of a robot or even a whole production system, a risk
assessment should be done by a trained expert. The risk assessment should
be based on the Machinery Directive4 and ISO 10218, part 1 and 25. Require- 4Europäsches

Paralament /
Europäischer
Rat (2006)

5cf. Bélanger-
Barrette (2016,
p. 7)

ments for the risk assessment itself can be found in ISO 12100. Furthermore
ISO / TS 15066 has been released which is not yet a standard but should also be
considered in designing the safety of collaborative systems6. The ISO standard

6cf. Robotiq
(2016)

13849-1 defines 5 safety performance levels (a-e which reach from a: negligible
to e: very high)7.

7cf. Matthias
(2017, p. 28,36)

There are two basic hazard types that can be distinguished for collaborative pro-
cesses:
1. Free and transient contact. (Bumping into a human who can escape the situ-
ation.) Appropriate risk reduction can be resolved by reducing the speed of the
robot and using a collision detection based on external force monitoring in all
axes.
2. Quasi-static Contact (Clamping of a human body part between the robot and
another object.) In this case appropriate risk reduction can be resolved only
through limiting the speed to rather small values because the stopping distance
is short. Monitoring functions can be collision detection and force monitoring.
A list of maximum forces allowed for different regions of the body (biomech-
anical thresholds) can be found in a paper from the german statutory accident
insurance8. 8cf.

Fachbereich
Holz und Metall
der DGUV
(2017, p. 7-8)

The risk assessment should identify, describe and list all hazards, that can occur
in the desired manufacturing process. Afterwards each hazard can be classified
and a risk estimation and evaluation can be done. If the result shows, that the
risk can not be tolerated, measures have to be taken to reduce the risk. After-
wards the risk sources have to be identified, estimated and evaluated again5.

47

5 Application

Furthermore four different types and possible risk reductions have been identi-
fied and defined in ISO 10218-1 (see. table 5.2).

Collaborative Operation: Explanation:

Safety Monitored Stop: As soon as a human enters the workspace of
the robot (the collaborative workspace), the
robot stops its motions. This does not mean
that it went into an emergency stop and needs
manual recovery.

Hand Guiding: Based on a sensed input force from a human
collaborator, the robot gets compliant and can
be directed to any position in its workspace.

Speed and Separation
Monitoring:

Through the definition of different safety zones
and adaptive behaviour can be realized: The
robot moves at full speed if any human is out-
side of any safety zone, it may slow down if
a person enters a first safety zone and it may
stop completely if the human enters a second
safety zone.

Power and Force Limiting: If the robot hits something in its environment
it will either be stopped, be compliant or auto-
matically move in the opposite direction. The
forces are also limited if a human is involved in
the process and they would pose a risk other-
wise.

Table 5.2: Collaborative Operations

5.5.2 Kuka Safety

The Kuka iiwa is certified for Category 3 and Performance Level d following EN
ISO 13849-19. This means that the robot poses a high risk and must be extended9cf. KUKA

(2016, p. 26) by further safety mechanisms to allow a collaborative work.
Category 3 also means that the safety architecture of the robot controller imple-
ments dual-channel, monitoring & cross monitoring and uses proven compon-
ents.

Regarding the collaborative operations listed in table 5.2, the last three opera-
tions were implemented. The first operation seemed to be too strict and dis-
ruptive for an industrial assembly process. A full risk assessment would still be
necessary to investigate whether all possible hazards have been found and are
covered by the implementation.

48

5.5 Safety

On the one hand the Kuka Sunrise API already offers a lot of functionality to
implement safety mechanisms and to activate and deactivate specific parts as
needed. On the other hand additional safety mechanisms were introduced: The
production cell itself has a safety system that monitors the functionality of all
the other automation components. It also has an emergency shutdown button
which stops all components immediately, including the robot. Two laser scan-
ners have been installed as well to be able to monitor the complete surrounding
of the cell (see screenshot of SICK Safety Designer in appendix A.4 and A.5). With
them it is possible to define safety zones which can trigger different behaviours
of the robot. They are integrated through the IO mappings of the Kuka Control-
ler so their state can directly be monitored in the RoboticsAPIApplication. Kuka
Sunrise supports the cartesian monitoring of workspaces and protected spaces.
The workspace monitoring can be used to constrain the space where the robot
is allowed to move. For the assembly task, the workspace has been defined
through the production cell which means that the robot should not be allowed
to leave the cell with any part (neither mounted tools nor single joints). The
protected spaces have to be defined in the safety configuration (see table 5.3)
which can only be changed through the Kuka Sunrise Workbench. This makes it
rather unflexible for changes in production environment since each change in
the safety configuration results in a restart and explicit reactivation of the con-
figuration through the operator with help of the Kuka SmartPAD. The protected
spaces have not been used in the implementation for that reason.

Bänziger et al. propose to extend skill frameworks with an behaviour concept
to integrate safety functions and different movement modes10. Although the 10cf. Bänziger,

Kunz and
Wegener (2017,
p. 78)

idea seems quite attractive, for example to even change the execution mode
from position to impedance during a skill execution, this is not easy to realize
and is currently not supported by the Sunrise API. At the moment, specifications
like e.g. control mode (position/impedance) are implemented as parameters for
each skill and will be valid till the skill execution has been finished. To allow
Speed and Seperation Monitoring even though, the possibility of the Kuka API to
override the commanded speeds has been used (see listing 5.1).

The ek11group allows to read the current values of the analogue inputs. The
port called “Eing_0” is connected to the safety system which sets the port to
low (=̂false) if a person is detected in the range of the laser scanners or to high
(=̂true) if no person is detected. So the BooleanIOCondition will be enabled if the
signal at port “Eing_0” is changed to false (see l. 34). The ConditionObserver is
configured to trigger the IAnyEdgeListener (l. 9) if the condition is enabled (l. 35).
Inside the onAnyEdge() method it is checked whether the application is not in
reduced speed mode (which would mean the program is executed in T111 mode) 11T1 mode is

meant for
manual
movements and
testing not for
production

and whether the condition was enabled. If this is the case, something is detected
by the safety system and the for-loop (l. 15-19) reduces the execution speed of

49

5 Application

all movements by stepwise lowering the application override to 0.2. In case
the condition was not enabled the other for-loop is triggered, which increases
the override stepwise back to 1 which means the full speeds defined for the
executed movements will be used. Currently this is all done in the initialize()
method of the SkillProvider class.

1 [...]
2 private EK1100IOGroup ek11group;
3 private ConditionObserver overrideReduction;
4 [...]
5 @Override
6 public void initialize () {
7 [...]
8 ek11group = new EK1100IOGroup(getController("KUKA_Sunrise_Cabinet_1"));
9 IAnyEdgeListener overrideListener = new IAnyEdgeListener () {

10

11 @Override
12 public void onAnyEdge(ConditionObserver conditionObserver , Date time ,
13 int missedEvents , boolean conditionValue) {
14 if (conditionValue && !lbr.getOperationMode ().isReducedSpeedTestMode ()){
15 for (double override = 1; override >= 0.2; override = override - 0.1)
16 {
17 ThreadUtil.milliSleep (2);
18 getApplicationControl ().setApplicationOverride(override);
19 }
20

21 }
22 else if (! conditionValue)
23 {
24 for (double override =0.2; override <= 1; override = override + 0.1)
25 {
26 ThreadUtil.milliSleep (2);
27 getApplicationControl ().setApplicationOverride(override);
28 }
29

30 }
31 }
32 };
33

34 BooleanIOCondition input = new BooleanIOCondition(ek11group.getIO("Eing_0",
false), false);

35 overrideReduction = getObserverManager ().createConditionObserver(input ,
NotificationType.OnEnable , overrideListener);

36 overrideReduction.enable ();
37 }
38 [...]

Listing 5.1: Safety Override

50

5.5 Safety

5.5.2.1 PSM and ESM Configuration

Besides the override solution to adjust the speed of the robot movements, the
safety configuration shown in table 5.3 gives more information about the taken
efforts to allow a safe user interaction. The configuration works the following
way: The Kuka PSM and the User PSM are always active and monitor the con-
figured AMFs12. The ESMs13 can be activated from the programming code of an 12Abbr. for

Atomic
Monitoring
Function
13Abbr. for
Event-Driven
Safety
Monitoring

application. This means, only one at a time will be active.

The ESM state 1 is used for normal movements during the process. It monit-
ors the external force to detect collisions and has a maximum cartesian speed
defined. If one of the conditions is violated, the robot stops on its calculated
path and the application can be resumed manually, if the violation has been
eliminated.

ESM state 2 is necessary if hand guiding should be used. It has to be activated
before the handGuiding() command in the code is triggered. If the hand guiding
switch is released, the approval for the hand guiding is no longer given and a
path maintaining stop is initiated.

For movements where higher forces are needed, e.g. force-based skills, ESM
state 3 has been configured. It defines that a maximum force of 150 Newton
is allowed to act upon the tool center point (TCP). This state should only be
activated if the safety for the user is ensured. At best this means that no person
is in range of the robot, in other cases it might be a solution to only activate
the state if a person can not physically enter the space between the robots end
effector and the object on which the force should act upon. The skill architecture
ensures, that the ESM state is always reset to 1 after the movement has been
finished.

51

5
A

pplication

State
Descriptor:

Safety Functions:

Category AMF1 AMF2 AMF3 Reaction

Kuka PSM
Emergency
Stop Local

Emergency Stop SmartPAD Stop 1
(path-maintaining)

Approval Approval Hand Guiding inactive Operation Mode Test Approval smartPAD inactive Stop 1
(path-maintaining)

Speed
Monitoring

Approval Hand Guiding active Cartesian Speed Monitoring,
First Kinematic = 1000 mm/s

Stop 1
(path-maintaining)

User PSM
Emergency
Stop External

Input Signal(1) Stop 1
(path-maintaining)

Operator
Safety

Input Signal (2) Time Delay (1) = 100ms Cartesian Velocity Monitoring =
2500mm/s

Stop 1
(path-maintaining)

Space
Monitoring

Cartesian Workspace Monitoring
First Kinematic, Robot and Tool,
X = -750mm, Y = -280mm, Z = -245mm,
A = 315◦, B = 0◦, C = 0◦,
Length=1400mm, Width=1400mm,
Height=1850mm

Stop 1
(path-maintaining)

ESM 1 Collision Detection,
First Kinematic,
Max. external Moment: 25Nm

Stop 1
(path-maintaining)

Cartesian Velocity Monitoring = 1000mm/s Stop 1
(path-maintaining)

ESM 2 Approval Hand Guiding inactive Stop 1
(path-maintaining)

ESM 3 TCP Force Monitoring,
First Kinematic,
Max. TCP Force = 150N

Stop 1

Table 5.3: Safety Configuration Kuka

52

6 Discussion

The goal of this thesis was to design and implement a robot skill framework
based on BPMN which meets all of the following requirements: Modulariza-
tion, Parametrization, Sequencing, Hierarchies, World Model and Safety. The
possibility to interactively parametrize the skills through human-robot interac-
tion and manual configuration was an important focus. A concept for the skill
framework has been developed, implemented and applied to a real industrial
production scenario. This has been demonstrated at the it’s owl booth at Han-
nover Messe 2017.

6.1 Parametrization

Through the dependence on BPMN, parametrization of skill primitives, skills
and tasks is possible and mechanisms for parameter forwarding and processing
are part of the Camunda Framework. Especially the scripting possibility for para-
meters allows to develop flexible parametrization and complex sequences with
little effort. The only drawback regarding this feature is that basic programming
knowledge is required.

During the process design phase, the tasks and skills were modelled with the
tool Camunda Modeler. The tool offers a good support and nearly covers the com-
plete BPMN scope, but it is still too complex for the normal shop floor worker
which should be enabled to design and adapt production without much effort
and previous knowledge. A customized user interface for skill parametriza-
tion and sequencing could be developed based on the BPMN capabilities but
abstracting from them in the interface. The user would be guided through the
process of modelling a production scenario where he would start from scratch.
The interface would transform the input into BPMN models, so the user could
focus on the modelling and would not have to take care of BPMN logic or other
distractions.

The requirement for interactive parametrization has been realized through a
two phase approach. Some parameters are added during the design process
(specification phase), interactively taught positions are added afterwards in a
teaching phase. If all positions are available, the BPMN process and all con-
tained skills can be executed. The concept for interactive paramterization (see

53

6 Discussion

figure 3.4a) has to be further examined and approaches have to be developed
how this process can be generalized for easier integration into all kinds of skills.

Another advancement would be to include a pre execution step which parses
the plan to check whether all necessary parameters are available. Currently
the plan would execute until a skill is reached which is missing some required
parameter. Since some parameters are dynamic and depend on the configured
process, the checking for all possible parameter inputs gets complex quite fast.
Strategies have to be developed and tested in context of the available frame-
work.

6.2 Robustness

One of the main requirements for industrial applications is their robustness. Re-
lated to a skill framework this means that skills have to be executed a number
of times without producing errors which would stop the process and require
manual fixing. Also other demands like precision and efficiency would have to
be fulfilled in a successful integration.

One advantage of BPMN is the integrated error modelling capability. Within
the scope of this thesis error handling has been used exemplary for precondi-
tions and in the application phase error handling was also introduced at higher
task levels. Future work could include investigation in error handling strategies
to improve robustness and provide information where the process failed to sup-
port the operator in fixing the error. The implementation based on BPMN sup-
ports this quite well because different types of errors can be defined, their con-
sequences can be explicitly modelled and error handling can also be separated
for different layers to allow decent reactions.

The implementation based on position related skills rather then object-centred
skills proofed good results in the investigated assembly task. A high precision
is needed for the assembly which would have been harder to achieve through
object-centred skills which rely on vision and image processing. Even though
the skill framework itself would also allow to develop skills which are based
on visual feedback. Since the demonstrated assembly task required precision in
sub millimetre range, the interactive teaching of positions was also brought to
its limits. Skills including strategies to avoid the necessity of precision by using
force sensing and other mechanism might be integrated in the framework as
well and offer a solution to improve the robustness even further.

54

6.3 Composition

6.3 Composition

Composition condenses the requirements of sequencing, modularization and
hierarchies. The chosen modelling framework BPMN supports all of these de-
mands quite well. Complex logic flows exceed the basic requirements for skill
sequencing and offer even more possibilities.

One drawback of the implementation using the Camunda Framework is the paral-
lel execution of skills and tasks. By default the framework uses a concept called
Optimistic-locking and therefore only allows Exclusive jobs which means that only
one BPMN Task will be executed at a time. This is done for consistency reasons
and might be configured differently, but this is a edge case of the framework
and would have to be examined in depth.

Parallel executions can be an interesting topic if multiple robot arms should be
used, but the current framework would not support easy to implement syn-
chronization. Especially real time monitoring and collision avoidance during
execution of two skill primitive movements were not in the scope of this thesis.

Since the skill primitives have been implemented as Java Delegates only depended
on the middleware, in the broader sense also a hardware abstraction layer was
established. The application of the framework onto another robot would though
be possible, assuming that the required callbacks can be implemented on the ro-
bot architecture and would need the same set of parameters. The effort would
depend on the programming framework that the robot can be controlled with.

The fluent borders between the modelling of tasks, skills and primitives can be
seen as a drawback because they might lack a little formalization. Nevertheless
the possibilities to combine the different hierarchy levels in processes without
additional extensions offer many advantages and flexibility.

Another important aspect to mention is the unified modelling with BPMN. It
allows the composition of robot skills and other automation components in the
same environment which is a huge advantage compared to other skill frame-
works. The usage of a industrial business standard allows integration into real
world scenarios and enhances acceptance of such an approach in the field.

6.4 World Model

The world model is currently stored in the Neo4j database. The graph struc-
ture of this database offers a lot of potential for future development. Following
the Plug and Produce concept, components can be integrated easily into a pro-
cess. Therefore standardized information can be added to the database if a com-
ponent is plugged into the system. For example components can provide task

55

6 Discussion

frames which can be added to the hierarchy through simply adding relations
and those task frames can then be used to parametrize skills which are added
to integrate the component in the production process.

Future research would have to investigate into the standardized self descrip-
tions of the components, storing BPMN processes inside the world model and
then using relationships to connect BPMN processes and parameters stored in
the same database. This would enhance the skill architecture integration into
the whole automation process and the Plug and Produce concept.

6.5 Safety

To allow human robot interaction at least a base level of safety should be guar-
anteed. Since the robot itself is categorized as a high risk, safety enhancements
have been implemented and integrated on different levels. Most of it is located
on the robot specific implementation. This includes the integration of the laser
scanners, dynamic changing of safety states and hand guiding rules. One could
argue that this is a responsibility of the skill primitive programmer, meaning
that he has to ensure that the skill primitives can be used in a safely manner. It
might be interesting to evaluate whether an approach similar to the one presen-
ted by Bänzinger et. al1 can be realized meaning the extension of the skill frame-1cf. Bänziger et

al. (2017) work with behaviours. Those behaviours can enhance the safety and provide a
more flexible way of controlling execution modes, but it might be necessary to
program the skills on a lower level which would be more controller focused.

If force based movements are used, the user designing the process must be
aware of the possible thread that will arise through their usage. The user must
be specially trained to have a fundamental understanding of the skills and their
behaviour. If an interface will be realized like proposed above, it should also
indicate the risks to improve the safety.

6.6 Potentials and Limitations

Generally the assembly task that the skill framework has been applied to in-
volves only a small number of skills. Four skills have been implemented: The
pick and the place skill, the skill to open and the skill to close the frame (both
basically force-based movements with pre and post positions). To test the ap-
plicability, the framework has to be used in more scenarios. This will show
which further skills are missing and how much effort it will cost to integrate
these.

56

6.7 Summary

Currently the measurements for the localization of a component are controlled
by the user interface. This might be generalized to a skill which can be used for
all components and in different contexts. Furthermore skills can be developed
which implement strategies for solving problems like the peg-in-hole problem.
They can then be integrated into the production process as error handling pro-
cedures in case the robot could not install one of the plugs at the designated
position. Again, also for this approach it can be evaluated how much effort this
would take and if it is practical to model such strategies in the skill framework
itself.

The approach of this skill framework still considers the human as an important
part of the production and design process. While other research aims on auto-
matic task decomposition and task planning, this was not considered for the de-
veloped framework of this thesis. It must be investigated how much potential
the modelling in BPMN offers to optimize and automate planning. Furthermore
parametrization can maybe be improved through machine learning algorithms
with different focusses like efficiency, speed, quality and so on.

6.7 Summary

The developed skill framework builds a good foundation for further research
and extensions. It is based on task-level programming and can be interactively
parametrized through teaching positions and even trajectories. Based on BPMN
it implements a hierarchy of three layers with increasing abstraction from skill
primitives over skills to tasks. The integration of other components is easy
and the framework scales from small processes to complex automation envir-
onments.

57

6 Discussion

58

7 Conclusion and Outlook

7.1 Conclusion

The goal of this thesis was to design and implement a robot skill framework.
At first, the beginnings of robot skill programming were shortly summarized
and current approaches from research and business were mentioned. Then the
concept of the skill framework was presented which showed that the realization
is based on the graphical modelling language BPMN and the implementation
allows to model skills on three abstraction layers: The skill primitives, basic
and complex skills and tasks. The parametrization of the skills was realized in
two phases: Some parameters are provided during the process modelling and
others are taught interactively. Afterwards the implementation was described
which included the chosen architecture and a detailed specification of the robot
and BPMN related development results. Next, the application of the skill frame-
work onto an assembly task was presented and finally a discussion pointed out
the strengths and weaknesses of the current results.

More than nine skill primitives have been implemented and were tested in a
real world industrial assembly task. The combination of the skills and a cus-
tomized user interface was used to parametrize a process. A reconfiguration
scenario with an additional component and integrated path planning could also
be demonstrated. Various safety mechanisms were integrated to establish a col-
laborative behaviour of the robot.

The presented approach for a skill framework is perfectly suitable for industrial
scenarios. The foundation on BPMN also allows the integration of other com-
ponents which in turn supports a unified process model and avoids isolated
applications. The scalability of the framework allows its usage from small tasks
to complex scenarios.

7.2 Outlook

The results of this thesis offer a lot of potential for extensions and further re-
search. First steps can be the development of an assisted process to design a
robot behaviour from scratch and of course the application of the framework to

59

7 Conclusion and Outlook

other industrial tasks. The creation of a skill library would support the usability
of the framework because less development would be necessary for every new
scenario. In the ideal case a simple combination, sequencing and parametriza-
tion of available skills would be sufficient to realize most scenarios.

Other areas of future investigations can include tests of parallelization, applica-
tion to different robot types, integration of machine learning and other optimiz-
ation strategies.

User studies which examine the usability and practicability of the concept have
to be conducted. Benchmarks could also be interesting to measure the econom-
ical value of such a framework. Socially it has to be investigated how the em-
ployee roles change through the new concept.

60

A Appendix

A.1 Camunda Modeler

Figure A.1: Screenshot of the Camunda Modeler - General Tab

Figure A.2: Screenshot of the Camunda Modeler - Field Injections Tab

61

A Appendix

A.2 AWAre GUI - Robot Control Center

Figure A.3: Screenshot of the AWAre GUI

62

A.3 SICK Safety Designer

A.3 SICK Safety Designer

Figure A.4: Configured Safety Zone of Laser Scanner 1

Figure A.5: Configured Safety Zone of Laser Scanner 2

63

A Appendix

A.4 Kuka iiwa

Figure A.6: Kuka iiwa with Mounted Tools

Figure A.7: Kuka iiwa Interactive Teaching

64

B BPMN Diagrams

B.1 Skill example 1

Figure B.1: Pick Skill

B.2 Skill example 2

Figure B.2: Open Frame Skill

65

B BPMN Diagrams

B.3 Task example 1

Figure B.3: Assembly Process

B.4 Task example 2

Figure B.4: Pick, Place and Open Frame

66

C Code

C.1 Repositories

C.1.1 AWAre Skill Implementation

Branch: master
Tag: masterthesisHO
URL:
https://fleximon.cor-lab.de/git/fleximir.aware-plugin-robot-skills.git

C.1.2 Kuka Skill Implementation

Branch: master
Tag: masterthesisHO
URL: https://fleximon.cor-lab.de/git/fleximir.fleximir-kuka.git

C.1.3 FlexiMiR Application Project

Branch: master
Tag: masterthesisHO
URL: https://fleximon.cor-lab.de/git/fleximir.git

67

https://fleximon.cor-lab.de/git/fleximir.aware-plugin-robot-skills.git
https://fleximon.cor-lab.de/git/fleximir.fleximir-kuka.git
https://fleximon.cor-lab.de/git/fleximir.git

C Code

C.2 Skill Callback Example

1 package skillCallbacks;
2

3 import javax.inject.Inject;
4

5 import rsb.patterns.DataCallback;
6 import rst.skillprimitives.CartesianMovementType.CartesianMovement;
7 import skillFramework.CartesianPTPMovementTFFSkill;
8 import skillFramework.MotionFrameMaster;
9 import skillFramework.OperationStateInformer;

10 import skillFramework.utilities.SkillConfigurator;
11

12 import com.kuka.roboticsAPI.deviceModel.LBR;
13 import com.kuka.roboticsAPI.deviceModel.LBRE1Redundancy;
14 import com.kuka.roboticsAPI.executionModel.ExecutionState;
15 import com.kuka.roboticsAPI.geometricModel.Frame;
16 import com.kuka.task.ITaskLogger;
17

18 public class CartesianPTPMovementCallback extends DataCallback <String ,
CartesianMovement > {

19

20 @Inject
21 private LBR lbr;
22 @Inject
23 private ITaskLogger logger;
24 @Inject
25 private CartesianPTPMovementTFFSkill cartesianPTPMovementTFFSkill;
26 @Inject
27 private MotionFrameMaster motionFrameMaster;
28 @Inject
29 private SkillConfigurator skillConfigurator;
30

31

32 @Inject
33 private CartesianPTPMovementCallback (){}
34

35 @Override
36 public String invoke(CartesianMovement parameters) throws Exception {
37

38 logger.info("CartesianPTPMovementCallback␣was␣invoked.");
39 cartesianPTPMovementTFFSkill.clear ();
40

41 cartesianPTPMovementTFFSkill = (CartesianPTPMovementTFFSkill)
skillConfigurator.configurateControlMode(cartesianPTPMovementTFFSkill ,
parameters.getControlMode (),

42 parameters.getCartesianImpedianceControlMode (), parameters.
getPositionControlMode ());

43

44 cartesianPTPMovementTFFSkill = (CartesianPTPMovementTFFSkill)
skillConfigurator.configurateForceTorqueConditions(
cartesianPTPMovementTFFSkill , parameters.getForceTorqueMovement ());

45

46 Frame frame = new Frame(parameters.getFrame ().getX(), parameters.getFrame
().getY(), parameters.getFrame ().getZ(),

47 parameters.getFrame ().getA(), parameters.getFrame ().getB(), parameters.
getFrame ().getC());

48

49 LBRE1Redundancy newRedundancyInformation = new LBRE1Redundancy ();

68

C.2 Skill Callback Example

50 newRedundancyInformation.setStatus(parameters.getFrame ().
getStatusParameter ());

51 newRedundancyInformation.setTurn(parameters.getFrame ().getTurnParameter ())
;

52 newRedundancyInformation.setE1(parameters.getFrame ().getE1Parameter ());
53

54 frame.setRedundancyInformation(lbr , newRedundancyInformation);
55

56 cartesianPTPMovementTFFSkill.setRelAcceleration(parameters.getAcceleration
());

57 cartesianPTPMovementTFFSkill.setRelVelocity(parameters.getVelocity ());
58 cartesianPTPMovementTFFSkill.setFrame(frame);
59 cartesianPTPMovementTFFSkill.setMotionFrame(motionFrameMaster.

getMotionFrame(parameters.getMotionFrame ()));
60

61 logger.info("CartesianPTPMovementCallback:␣CartesianPTPMovementSkill␣was␣
built.");

62 final ExecutionState result = cartesianPTPMovementTFFSkill.execute ();
63 logger.info("Skill␣exectuion␣state:␣" + result);
64 return result.toString ();
65 }
66

67 public void setOperationStateInformer(OperationStateInformer
operationStateInformer) {

68 cartesianPTPMovementTFFSkill.setOperationStateInformer(
operationStateInformer);

69 }
70

71 }

Listing C.1: Callback for a Cartesian PTP Movement

69

C Code

C.3 Skill Delegate Example

1 package aware.robot.skills.delegates;
2

3 import org.camunda.bpm.engine.delegate.BpmnError;
4 import org.camunda.bpm.engine.delegate.DelegateExecution;
5 import org.camunda.bpm.engine.delegate.ExecutionListener;
6 import org.camunda.bpm.engine.delegate.Expression;
7 import org.camunda.bpm.engine.delegate.JavaDelegate;
8 import org.slf4j.Logger;
9 import org.slf4j.LoggerFactory;

10

11 import aware.core.plugin.PluginLoader;
12 import aware.datamodel.robotics.kuka.iiwa.TaskFrame;
13 import aware.robot.skills.plugins.RobotPlugin;
14 import rst.skillprimitives.CartesianMovementType.CartesianMovement;
15 import rst.skillprimitives.ControlModeType.ControlMode;
16 import rst.skillprimitives.ForceTorqueMovementType.ForceTorqueMovement;
17 import rst.skillprimitives.FrameType.Frame;
18 import rst.skillprimitives.PositionControlModeType.PositionControlMode;
19

20

21 public class CartesianPTPMoveDelegate extends ForceTorqueDelegate implements
JavaDelegate {

22 private static final Logger LOGGER = LoggerFactory.getLogger(
CartesianPTPMoveDelegate.class);

23 private Expression x, y, z, a, b, c, status , turn , e1, framePath ,
relVelocity , relAcceleration;

24

25 private double relVelocityValue , relAccelerationValue;
26

27 @Override
28 public void execute(DelegateExecution execution) throws Exception {
29

30 RobotPlugin robotPlugin = (RobotPlugin) PluginLoader.getInstance ().
getPlugin("robotPlugin");

31 if(robotPlugin == null){
32 LOGGER.info("Plugin␣Instance␣could␣not␣be␣retrieved␣in␣Delegate!");
33 return;
34 }
35

36 LOGGER.info("\n\n␣␣...␣CartesianPTPMoveDelegate␣invoked␣by␣" + "
processDefinitionId="

37 + execution.getProcessDefinitionId () + ",␣activtyId="
38 + execution.getCurrentActivityId () + ",␣activtyName=’"
39 + execution.getCurrentActivityName () + "␣\n\n");
40

41

42 ForceTorqueMovement forceTorqueMove = createForceTorqueMovement(execution)
;

43

44 if(relVelocity != null){
45 relVelocityValue = Double.parseDouble ((String) relVelocity.getValue(

execution));
46 } else { relVelocityValue = 0.25; }
47 if(relAcceleration != null){
48 relAccelerationValue = Double.parseDouble ((String) relAcceleration.

getValue(execution));
49 } else { relAccelerationValue = 0.25; }
50

70

C.3 Skill Delegate Example

51 CartesianMovement cartMove = null;
52

53 if(framePath != null){
54 String framePathString = framePath.getValue(execution).toString ();
55 TaskFrame taskFrame = robotPlugin.getTaskFrameHierarchy ().getTaskFrame(

framePathString);
56

57 cartMove = CartesianMovement.newBuilder ()
58 .setFrame(
59 Frame.newBuilder ()
60 .setX(taskFrame.getX())
61 .setY(taskFrame.getY())
62 .setZ(taskFrame.getZ())
63 .setA(taskFrame.getA())
64 .setB(taskFrame.getB())
65 .setC(taskFrame.getC())
66 .setStatusParameter(taskFrame.getStatus ())
67 .setTurnParameter(taskFrame.getTurn ())
68 .setE1Parameter(taskFrame.getE1())
69 .build())
70 .buildPartial ();
71

72 } else {
73

74 cartMove = CartesianMovement.newBuilder ()
75 .setFrame(
76 Frame.newBuilder ()
77 .setX(Double.parseDouble ((String) x.getValue(execution)))
78 .setY(Double.parseDouble ((String) y.getValue(execution)))
79 .setZ(Double.parseDouble ((String) z.getValue(execution)))
80 .setA(Double.parseDouble ((String) a.getValue(execution)))
81 .setB(Double.parseDouble ((String) b.getValue(execution)))
82 .setC(Double.parseDouble ((String) c.getValue(execution)))
83 .setStatusParameter(Integer.parseInt ((String) status.getValue(execution)

))
84 .setTurnParameter(Integer.parseInt ((String) turn.getValue(execution)))
85 .setE1Parameter(Double.parseDouble ((String) e1.getValue(execution)))
86 .build())
87 .buildPartial ();
88 }
89

90 if(controlMode != null){
91 String controlModeString = (String) controlMode.getValue(execution);
92 if(controlModeString.equals("Impedance")){
93 cartMove = cartMove.toBuilder ()
94 .setCartesianImpedianceControlMode(createCartesianImpedanceControlMode

(execution))
95 .setControlMode(ControlMode.newBuilder ()
96 .setControlModeOption(ControlMode.ControlModeOption.

CARTESIANIMPEDIANCECONTROLMODE).build())
97 .buildPartial ();
98 } else if(controlModeString.equals("Position")){
99 cartMove = cartMove.toBuilder ()

100 .setControlMode(ControlMode.newBuilder ()
101 .setControlModeOption(ControlMode.ControlModeOption.

POSITIONCONTROLMODE).build())
102 .setPositionControlMode(PositionControlMode.newBuilder ().build())
103 .buildPartial ();
104 }
105 } else {
106 cartMove = cartMove.toBuilder ()

71

C Code

107 .setControlMode(ControlMode.newBuilder ()
108 .setControlModeOption(ControlMode.ControlModeOption.POSITIONCONTROLMODE)

.build())
109 .setPositionControlMode(PositionControlMode.newBuilder ().build())
110 .buildPartial ();
111 }
112

113 cartMove = cartMove.toBuilder ()
114 .setAcceleration(relAccelerationValue)
115 .setVelocity(relVelocityValue)
116 .setMotionFrame(getMotionFrame(execution))
117 .setForceTorqueMovement(forceTorqueMove)
118 .build();
119

120 LOGGER.info("CartesianMovement␣Type␣built");
121

122 if(cartMove != null) {
123 LOGGER.info("CartesianMovement␣Type␣built ,␣sending␣command␣to␣robot");
124 robotPlugin.makeRemoteCall("cartesianPTPMove", cartMove , 120);
125 } else {
126 throw new BpmnError("CartesianMovement␣was␣not␣built␣correctly.");
127 }
128

129 clearLocalVariables ();
130 clearGlobalVariables ();
131 }
132

133 private void clearLocalVariables () {
134 x = null;
135 y = null;
136 z = null;
137 a = null;
138 b = null;
139 c = null;
140 status = null;
141 turn = null;
142 e1 = null;
143 framePath = null;
144 relVelocity = null;
145 relAcceleration = null;
146 relVelocityValue = 0.0;
147 relAccelerationValue = 0.0;
148 }
149

150 }

Listing C.2: Delegate for a Cartesian PTP Movement

72

C.4 Skill Condition Example

C.4 Skill Condition Example

1 package aware.robot.skills.conditions;
2

3 import org.camunda.bpm.engine.delegate.BpmnError;
4 import org.camunda.bpm.engine.delegate.DelegateExecution;
5 import org.camunda.bpm.engine.delegate.ExecutionListener;
6 import org.camunda.bpm.engine.delegate.Expression;
7 import org.slf4j.Logger;
8 import org.slf4j.LoggerFactory;
9

10 import aware.core.plugin.PluginLoader;
11 import aware.robot.skills.plugins.RobotPlugin;
12

13 public class GripperClosed implements ExecutionListener {
14

15 private static final Logger LOGGER = LoggerFactory.getLogger(GripperOpen.class
);

16 private Expression gripperName;
17

18 @Override
19 public void notify(DelegateExecution execution) throws Exception {
20 RobotPlugin robotPlugin = (RobotPlugin) PluginLoader.getInstance ().

getPlugin("robotPlugin");
21 if(robotPlugin == null){
22 LOGGER.info("Plugin␣Instance␣could␣not␣be␣retrieved␣in␣Delegate!");
23 throw new BpmnError("Plugin␣Instance␣could␣not␣be␣retrieved");
24 }
25

26 boolean gripperClosed = robotPlugin.makeRemoteCallBoolean("gripperClosed",
(String) gripperName.getValue(execution));

27

28 if(gripperClosed){
29 LOGGER.info("[GripperClosed␣Condition]:␣Gripper␣was␣closed␣-␣Condition␣

fulfilled!");
30 return;
31 }
32

33 throw new BpmnError("GripperWasNotClosed");
34 }
35

36 }

Listing C.3: Gripper Closed Condition

73

C Code

C.5 Teach Skill

1 package skillFramework;
2

3 import static com.kuka.roboticsAPI.motionModel.HRCMotions.handGuiding;
4 import javax.inject.Inject;
5 import skillFramework.SkillExecutionState.SkillExecutionStateValue;
6 import com.kuka.roboticsAPI.controllerModel.sunrise.ResumeMode;
7 import com.kuka.roboticsAPI.controllerModel.sunrise.SunriseSafetyState;
8 import com.kuka.roboticsAPI.executionModel.ExecutionState;
9

10 public class TeachFrameSkill extends SkillPrimitive{
11

12 @Inject
13 private TeachFrameSkill () {}
14

15 @Override
16 public void clear() {}
17

18 @Override
19 public void prepareMotion () {}
20

21 @Override
22 public ExecutionState execute () throws Exception {
23 appControl.registerMoveAsyncErrorHandler(errorHandler);
24 appControl.setApplicationOverride (0.1);
25 logger.info("Starting␣TeachFrameSkill␣execution ...");
26 SkillExecutionState.getInstance ().setState(SkillExecutionStateValue.ACTIVE

);
27 lbr.setESMState("2");
28 logger.info("ESM␣State␣set␣to␣2.");
29 logger.info("Waiting␣for␣the␣handguiding␣switch␣to␣be␣activated ...");
30 while(lbr.getSafetyState ().getEnablingDeviceState () != SunriseSafetyState.

EnablingDeviceState.HANDGUIDING){
31 try {
32 Thread.sleep (100);
33 } catch (InterruptedException e) {
34 e.printStackTrace ();
35 }
36 }
37 logger.info("Handguidswitch␣enabled␣trying␣to␣resume␣execution␣

automatically.");
38 this.controller.getExecutionService ().resumeExecution(ResumeMode.OnPath);
39 lbr.move(handGuiding ());
40 this.logger.info("Handguiding␣finished.");
41 this.lbr.setESMState("1");
42 SkillExecutionState.getInstance ().setState(SkillExecutionStateValue.IDLE);
43 operationStateInformer.publishDone ();
44 operationStateInformer.publishIdle ();
45

46 return ExecutionState.Finished;
47 }
48 }

Listing C.4: Teach Skill

74

C.6 RST Examples

C.6 RST Examples

1 syntax = "proto2";
2

3 package rst.skillprimitives;
4

5 import "rst/skillprimitives/Frame.proto";
6 import "rst/skillprimitives/CartesianImpedanceControlMode.proto"←↩

;
7 import "rst/skillprimitives/PositionControlMode.proto";
8 import "rst/skillprimitives/ForceTorqueMovement.proto";
9 import "rst/skillprimitives/ControlMode.proto";

10

11 option java_outer_classname = "CartesianMovementType";
12

13 /**
14 * Contains the all information to specify a cartesian movement.
15 * Can also be used for relative movements.
16 *
17 * @author Hendrik Oestreich <hoestreich@techfak.uni -bielefeld.de←↩

>
18 */
19 // @create_collection
20 message CartesianMovement {
21

22 /**
23 * Goal Position of the movement.
24 */
25 required Frame frame = 1;
26

27 /**
28 * Motion Frame identifier
29 */
30 required string motion_Frame = 2;
31

32 /**
33 * Maximum velocity for the movement.
34 */
35 // @unit(millimeter/sec)
36 required double velocity = 3;
37

38 /**
39 * Maximum acceleration for the movement.
40 */
41 // @unit(millimeter/sec^2)
42 required double acceleration = 4;
43

44 /**
45 * Desired ControlMode for the Movement.
46 */

75

C Code

47 optional ControlMode control_mode = 5;
48

49 /**
50 * PositionControlMode
51 */
52 optional PositionControlMode position_control_mode = 6;
53

54 /**
55 * CartesianImpedanceControlMode
56 */
57 optional CartesianImpedanceControlMode ←↩

cartesian_impediance_control_mode = 7;
58

59 /**
60 * Reference frame of the movement (will only be used for ←↩

relative linear movements).
61 */
62 optional Frame reference_frame = 8;
63

64 /**
65 * Force / Torque Thresholds to allow Task -Frame -Formalism like←↩

movements
66 */
67 optional ForceTorqueMovement force_torque_movement = 9;
68

69 }

Listing C.5: Cartesian Movement Datatype

76

C.6 RST Examples

77

C Code

C.7 Class Diagram

Figure C.1: Genric Part of the Implementation

78

C.7 Class Diagram

Figure C.2: Kuka-specific part of the Implementation

79

C Code

References

Anderl, P. D.-I. R., Picard, A., Wang, Y., Dosch, S., Klee, B., Bauer, J. & Metten,
D. B. (2015). Guideline Industrie 4.0 (Tech. Rep.). Frankfurt am Main:
VDMA Verlag GmbH.

Archibald, C. C. (1995). A computational model for skills-oriented robot programming
(Unpublished doctoral dissertation). University of Ottawa.

Archibald, C. C. & Petriu, E. (1993). Skills-Oriented Robot Programming. In Ias
3 - intelligent autonomous systems (pp. 104–113). Pittsburgh, Pennsylvania:
IOS Press.

Bänziger, T., Kunz, A. & Wegener, K. (2017). A Library of Skills and Behaviors
for Smart Mobile Assistant Robots in Automotive Assembly Lines. In Hri
’17 (pp. 77–78). Vienna, Austria.

Bélanger-Barrette, M. (2016). COLLABORATIVE ROBOTS RISK ASSESSMENT
, AN INTRODUCTION UPDATED (1.1 ed.). Quebec City, Canada: Ro-
botiq. Retrieved from http://robotiq.com/wp-content/uploads/2015/
08/eBook-V2-VF-Risk-Assessment-Collaborative-Robots.pdf (Ac-
cessed: 2017-05-19 20:33)

Björkelund, A., Edström, L., Haage, M., Malec, J., Nilsson, K., Nugues, P., . . .
Bruyninckx, H. (2011). On the integration of skilled robot motions for
productivity in manufacturing. In Proceedings - 2011 ieee international sym-
posium on assembly and manufacturing, isam 2011.

Blumenthal, S., Bruyninckx, H., Nowak, W. & Prassler, E. (2013). A scene graph
based shared 3D world model for robotic applications. In Icra - proceed-
ings - ieee international conference on robotics and automation (pp. 453–460).
Karlsruhe, Germany.

Bøgh, S., Hvilshoøj, M., Kristiansen, M. & Madsen, O. (2012, jul). Identifying
and evaluating suitable tasks for autonomous industrial mobile manipu-
lators (AIMM). International Journal of Advanced Manufacturing Technology,
61(5-8), 713–726.

Bøgh, S., Nielsen, O. S., Pedersen, M. R., Krüger, V. & Madsen, O. (2012). Does
your Robot have Skills? Proceedings of the 43rd International Symposium on
Robotics, 6.

Bruyninckx, H. & De Schutter, J. (1996). Specification of force-controlled actions
in the "Task frame formalism" - A synthesis. IEEE Transactions on Robotics
and Automation, 12(4), 581–589.

Butting, A., Rumpe, B., Schulze, C., Thomas, U. & Wortmann, A. (2015). Model-
ing Reusable, Platform-Independent Robot Assembly Processes. In Work-
shop on domain specific languages (dslrob15).

Ekvall, S., Aarno, D. & Kragic, D. (2006). Task learning using graphical pro-
gramming and human demonstrations. In Proceedings - ieee international
workshop on robot and human interactive communication (pp. 398–403).

80

http://robotiq.com/wp-content/uploads/2015/08/eBook-V2-VF-Risk-Assessment-Collaborative-Robots.pdf
http://robotiq.com/wp-content/uploads/2015/08/eBook-V2-VF-Risk-Assessment-Collaborative-Robots.pdf

References

Europäsches Paralament / Europäischer Rat. (2006). Maschinenrichtlinie. Re-
trieved from www.maschinenrichtlinie.de (Accessed: 2017-05-19 20:33)

Fachbereich Holz und Metall der DGUV. (2017). Kollaborierende Robotersysteme
(Tech. Rep.). Mainz, Germany: Deutsche Gesetzliche Unfallversicherung
- Fachbereich Holz und Metall. Retrieved from http://www.dguv.de/
medien/fb-holzundmetall/publikationen-dokumente/infoblaetter/
infobl{_}deutsch/080{_}roboter.pdf (Accessed: 2017-05-19 20:33)

Hasegawa, T., Suehiro, T. & Takase, K. (1992). A Model-Based Manipulation
System with Skill-Based Execution. IEEE Transactions on Robotics and Auto-
mation, 8(5), 535–544.

Haun, M. (2007). Handbuch Robotik. Berlin, Heidelberg, New York: Springer.
Kagermann, H., Wahlster, W. & Helbig, J. (2013). Recommendations for implement-

ing the strategic initiative INDUSTRIE 4.0 (Tech. Rep.). Frankfurt/Main.
Kröger, T., Finkemeyer, B., Thomas, U. & Wahl, F. M. (2004). Compliant Motion

Programming: The Task Frame Formalism Revisited. Mechatronics and
Robotics, 1029–1034.

Kröger, T., Finkemeyer, B. & Wahl, F. M. (2004). A task frame formalism for
practical implementations. In Icra - ieee international conference on robotics
and automation 2004 (Vol. 5, pp. 5218–5223). New Orleans, LA.

KUKA. (2016). KUKA Sunrise.OS 1.11, KUKA Sunrise.Workbench 1.11, Bedien-
und Programmieranleitung für Systemintegratoren (KUKA Sunrise.OS 1.11 SI
V1 ed.; Tech. Rep.). KUKA Roboter GmbH.

Lozano-Perez, T. (1983). Robot programming. In Proceedings of the ieee (Vol. 71,
pp. 821–841).

Mason, M. T. (1981). Compliance and Force Control for Computer Controlled
Manipulators. IEEE Transactions on Systems, Man and Cybernetics, 11(6),
418–432.

Matthias, B. (2017). Human-robot collaboration - Industrial Applications and
Open Challenges. In Dagstuhl seminar on "computer-assisted engineering for
robotics and autonomous systems". Dagstuhl, Germany: ABB.

Morrow, J. (1997). Sensorimotor primitives for robotic assembly skills (Doctor of
Philosophy, Carnegie Mellon University).

Morrow, J. & Khosla, P. (1997). Manipulation task primitives for composing ro-
bot skills. Proceedings of International Conference on Robotics and Automation,
4(April), 3354–3359.

Naumann, M., Wegener, K. & Schraft, R. D. (2007). Control Architecture for
Robot Cells to Enable Plug ’ n ’ Produce. In Fraunhofer IPA (Ed.), Ieee in-
ternational conference on robotics and automation (pp. 287–292). Roma, Italy.

Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bøgh, S., Kröger,
V. & Madsen, O. (2016). Robot skills for manufacturing: From concept to
industrial deployment. Robotics and Computer-Integrated Manufacturing, 37,
282–291.

81

www.maschinenrichtlinie.de
http://www.dguv.de/medien/fb-holzundmetall/publikationen-dokumente/infoblaetter/infobl{_}deutsch/080{_}roboter.pdf
http://www.dguv.de/medien/fb-holzundmetall/publikationen-dokumente/infoblaetter/infobl{_}deutsch/080{_}roboter.pdf
http://www.dguv.de/medien/fb-holzundmetall/publikationen-dokumente/infoblaetter/infobl{_}deutsch/080{_}roboter.pdf

C Code

Pedersen, M. R., Nalpantidis, L., Bobick, A. & Krüger, V. (2013). On the Integra-
tion of Hardware-Abstracted Robot Skills for use in Industrial Scenarios.
2nd International IROS Workshop on Cognitive Robotics Systems: Replicating
Human Actions and Activities.

Pfrommer, J., Stogl, D., Aleksandrov, K., Escaida Navarro, S., Hein, B. & Beyerer,
J. (2015). Plug & produce by modelling skills and service-oriented orches-
tration of reconfigurable manufacturing systems. Automatisierungstechnik,
63(10), 790–800.

Robotiq. (2016). ISO / TS 15066 Explained (Tech. Rep.). Quebec City, Canada. Re-
trieved from http://robotiq.com/wp-content/uploads/2016/05/ebook
-ISOTS15066-Explained.pdf (Accessed: 2017-05-19 20:33)

Schou, C., Andersen, R. S., Chrysostomou, D., Bøgh, S. & Madsen, O. (2016).
Skill Based Instruction of Collaborative Robots in Industrial Settings. Ro-
botics and Computer-Integrated Manufacturing.

Schou, C., Damgaard, J. S., Bogh, S. & Madsen, O. (2013). Human-robot inter-
face for instructing industrial tasks using kinesthetic teaching. In Isr - 44th
international symposium on robotics.

Schutter, J. D. & Brussel, H. V. (1988). Compliant Robot Motion I. A Formalism
for Specifying Compliant Motion Tasks. The International Journal of Robotics
Research, 7(4), 3–17.

Skoglund, A. (2009). Programming by Demonstration of Robot Manipulators (Tech.
Rep.). Örebro: Örebro University.

Steinmetz, F. & Weitschat, R. (2016). Skill Parametrization Approaches and
Skill Architecture for Human-Robot Interaction. In Case - ieee international
conference on automation science and engineering (pp. 280–285). Fort Worth,
TX, USA.

Weidauer, I., Kubus, D. & Wahl, F. M. (2014). A hierarchical extension of manip-
ulation primitives and its integration into a robot control architecture. In
Icra - ieee international conference on robotics and automation (pp. 5401–5407).
Hong Kong, China.

Zeiß, S. (2014). Manipulation Skill for Robotic Assembly (Master Thesis). Technis-
che Universität Darmstadt.

82

http://robotiq.com/wp-content/uploads/2016/05/ebook-ISOTS15066-Explained.pdf
http://robotiq.com/wp-content/uploads/2016/05/ebook-ISOTS15066-Explained.pdf

	Introduction
	General introduction
	FlexiMiR project description
	Goals

	Related Work
	History and Origins
	Skill Frameworks
	Proprietary Implementations

	Concept
	Skill Primitives
	Skills
	Tasks
	Composition of Skills and Tasks
	Concept for Realization
	BPMN
	Camunda
	AWAre Framework
	Kuka iiwa
	Kuka Sunrise.OS

	Interactive Parametrization
	Task Frames

	Implementation
	Framework Architecture
	Skill primitives - Kuka specific
	SkillProvider - RoboticsAPIApplication
	Skill Callbacks
	Skill Implementation

	Skill primitives - Generic implementation (AWAre Plugin)
	Skill Delegate
	Pre- and Postconditions
	Robot Skill Plugin

	Skill and Task Composition
	Task Frames
	Kuka Scene Graph
	Neo4J - Persistent Storage

	Interactive Parametrization
	Teach Skill
	Teaching Task Frames
	Teaching Trajectories

	Application
	Production Environment and Components
	Modelled Assembly Process
	Exemplary Task composition

	Plug and Produce
	Localization of Objects

	Simulation and Motion Planning
	Safety
	Risk Assessment
	Kuka Safety

	Discussion
	Parametrization
	Robustness
	Composition
	World Model
	Safety
	Potentials and Limitations
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Camunda Modeler
	AWAre GUI - Robot Control Center
	SICK Safety Designer
	Kuka iiwa

	BPMN Diagrams
	Skill example 1
	Skill example 2
	Task example 1
	Task example 2

	Code
	Repositories
	AWAre Skill Implementation
	Kuka Skill Implementation
	FlexiMiR Application Project

	Skill Callback Example
	Skill Delegate Example
	Skill Condition Example
	Teach Skill
	RST Examples
	Class Diagram
	References

