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Abstract

During the last decades, the active development of high-throughput methods led to the
discovery of numerous associations between biomolecules and human diseases. This is
a great advance for science and medicine since it helps to unravel the mechanisms of the
diseases and gives clues for new treatment approaches. At the same time, a tremendous
amount of raw experimental data and biomedical knowledge became a great challenge for the
researchers. This stimulated the development of automatic solutions for discovery, storage,
retrieval, integration, and analysis of biological data.

Associations between genes and diseases have attracted a special interest of researchers.
To date, thousands of rare inheritable diseases caused by disruptions of individual genes are
described. At the same time, the most widespread disorders are multifactorial, i.e. develop
in the result of complex interactions between multiple genetic and environmental factors.
Such multifactorial diseases are therefore called complex, and their mechanisms remain
far from being understood in our days. To achieve a complete mechanistic picture of a
complex disease, it is first necessary to establish a comprehensive list of all pathological
changes. This task is complicated by the fact that complex disease may be heterogeneous, i.e.
symptomatically similar, but caused by distinct molecular lesions.

The investigation of complex diseases not only brings us closer to the understanding of
their mechanisms but also yields a number of useful intermediate results, e.g. the discovery
of clinically relevant biomarkers and disease subtypes. This thesis starts from the discussion
of the approaches for the discovery and prioritization of gene-diseases associations, and their
relevance for complex and heterogeneous diseases. It further focuses on biclustering methods
which seem to be very promising in the context of disease heterogeneity. They are capable
of identifying genes with a similar expression pattern in a previously unknown subset of
samples.

After an overview of existing biclustering methods, this thesis presents a novel biclus-
tering method called DESMOND. Two factors distinguish DESMOND from most of the
related works. First, it searches for differentially expressed biclusters, rather than biclusters
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with co-expression. Second, it performs a network-constrained search when the majority of
biclustering methods are unconstrained.

DESMOND and nine previously published biclustering methods have been applied to
simulated data and real breast cancer expression profiles. All the evaluated methods produced
very diverse but biologically meaningful biclusters. On the breast cancer datasets DESMOND
tended to produce more biologically singnificant gene clusters than the competitors. Com-
pared to baselines, DESMOND and QUBIC identified more similar OS-associated biclusters
in two independent breast cancer studies than other methods, possibly owing to their ability
to consider gene interactions. Interestingly, these replicated biclusters found by DESMOND
and QUBIC were composed of different genes and samples. Such OS-associated biclusters
replicated in independent datasets may represent clinically different disease subtypes and are
promising biomarker candidates.
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Chapter 1

Introduction

Since the development of any disease is the result of the dysregulation of a certain biological
process, the detection of molecular entities participating it is necessary for understanding
its pathogenesis. During the last decades, the progress in high-throughput technologies
led to the aggregation of a large amount of data on the diversity and dynamics of multiple
molecular entities. By analogy with genomics, fields of science that study large spectra of
these molecular entities were called transcriptomics, epigenomics, proteomics, metabolomics
etc. The shared suffix of these terms “omics” began to be used for collective designation of
studies, dealing with multidimensional molecular profiles. Investigation of omics profiles in
the context of human diseases led to the discovery of many diseases biomarkers – measurable
indicators associated with certain features of the disease, e.g. predisposition, disease subtype,
severity, prognosis, or treatment response.

The discovery of biomarkers has great importance not only for molecular medicine but
also for fundamental research. Since genes encode functional units of cellular machinery,
researchers paid special attention to biomarkers reflecting gene functions. Various alterations
affecting functions of genes or gene products are shown to trigger diseases, or at least to
be involved in their development. Chapter 2.1 of this thesis discusses the approaches for
establishing gene-disease associations.

Rapid accumulation of data necessitated the creation of comprehensive databases on
gene-disease associations. This, in turn, stimulated the development of computational tools
for automatic search and retrieval of the most relevant associations (chapter 2.2, based on
[299]). So why are the mechanisms of most diseases still unresolved despite the large number
of gene-disease associations discovered? The identification and correct interpretation of key
molecular players participating in the diseases are complicated by multiple problems, two of
which are in the main focus of this thesis:
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• some diseases are complex, which means that multiple genetic and environmental
factors contribute to their development (chapter 2.3);

• diseases may be heterogeneous, when the same symptoms manifest in the result of
different molecular lesions (chapter 2.4).

Both of these problems motivated the researchers to analyze molecular profiles as a whole
in addition to the discovery of isolated gene-disease associations.

The signs of disease heterogeneity and complexity are observed on multiple molecular
levels [24, 181, 216]. Recent multi-omics studies demonstrated that gene expression data
makes the main contribution to the performance of the models for patient stratification
and drug response prediction [61, 99]. This observation makes gene expressions the most
promising data type for investigation of disease heterogeneity and complexity, which are in
the focus of this thesis.

The methods of gene expression profiling and the ways of downstream analysis are
discussed in chapters 2.5 and 2.6 respectively. Briefly, the output of any high-throughput
expression profiling method results in a 2D matrix comprising profiles of n genes measured
in m samples. The most important steps of the gene expression analysis pipeline include
mapping of measured signals to genes or transcripts, and further quantification and nor-
malization [56]. The further analysis depends on the research question posed and on the
availability of sample class labels. The most widespread experiment design includes the
search of genes significantly differentially expressed between two known groups of samples.
Some workflows include an additional step of dimensionality reduction before the detection
of differentially expressed genes. The expressions of multiple genes may be collapsed into a
single feature using various clustering techniques [148], or based on prior knowledge about
their functional relationships [257]. Such dimensionality reduction helps to decrease the risk
of overfitting and improve reproducibility of the results.

When class labels are unavailable, one may perform clustering of samples in order to
find unknown but biologically relevant subgroups. However, clustering of samples also may
not work well in the case when multiple patterns appear in distinct subspaces of expression
profiles.

Biclustering methods search for subsets of genes demonstrating similar expression pat-
terns in a subset of samples in gene expression matrix. In contrast with conventional
clustering, biclustering methods are able to address disease heterogeneity and therefore are
in the focus of this thesis. To date, more than 50 biclustering methods aimed at various
expression patterns are published [206, 223]. However, many of them are aimed at the de-



3

tection of biclusters composed of differentially co-expressed genes rather than differentially
expressed. These two patterns of dysregulation represent perturbations with distinct biologi-
cal significance. Differential expression reflects induction or inhibition of a certain pathway
or its downstream. In turn, differential co-expression points to a gain (loss) of co-regulation
and highlights regulatory network rewiring in a certain subgroup of samples. Both of these
dysregulation types have a great significance for researchers. However, co-expression of two
or multiple genes can be only calculated when a group of samples is specified. For a single
expression profile, drawing a conclusion about the correlations between gene expressions
is impossible, but one can compare gene expressions with the reference values. Therefore,
biomarkers based on differential expression appear to be more suitable for clinical use. Given
this consideration and the fact that not many biclustering methods are aimed at differentially
expressed biclusters, we decided to focus on this specific type of bicluster. Chapter 3 of
this thesis provides an overview of biclustering approaches, discusses their applicability for
the detection of differentially expressed biclusters, and gives detailed descriptions of nine
state-of-the-art biclustering methods.

Since biclustering is a much more complex problem than conventional clustering due
to the much larger size of the search space, many biclustering methods put additional
constraints on the input data or the biclustering result, e.g. they assume a hidden checkerboard
structure [108, 268] of the data, discretize or binarize expression values [227, 242], or
incorporate additional data supporting functional relationships of genes [114, 228]. Indeed,
taking into account known interactions between the genes may reduce the complexity of
the problem. Instead of considering all possible gene subsets, we suggested performing a
network-constrained biclustering, i.e., to search for subsets of up- or down-regulated genes
that form a connected component in the interaction network [298]. This constrained problem
may be also represented as an unsupervised version of active subnetwork detection problem
[118], when the groups of samples are unknown.

To solve the formulated problem, a new method for identification of Differentially
ExpreSsed gene MOdules iN Diseases called DESMOND has been developed [298]. Chapter
4 of this thesis describes in deep detail the method previously published in Bioinformatics

[298] and also presents its second version. The ability of DESMOND to incorporate prior
knowledge about gene interactions directs the search towards biologically meaningful sets of
genes and promises to improve the quality of the results. In contrast with the other methods,
instead of setting a hard binarization threshold on gene expressions, DESMOND uses flexible
thresholds to determine sample groups where genes are differentially expressed. To identify
these thresholds, DESMOND analyses expressions of gene pairs connected in the network.



4 Introduction

In the second version of DESMOND thresholds are defined for each individual gene using
mixture models.

Chapter 5 reports the results of both DESMOND versions and their competitors on
synthetic data and on real expression profiles from two large breast cancer datasets comprising
more than 3000 tumor samples in total. Breast cancer is one of the most frequent cancer
types, more than 2 millions new cases were diagnosed in 2018 worldwide [28]. It is a fatal
disease, which course and treatment response is hard to predict. The understanding that
cancer mechanisms lie mostly at the molecular and cellular levels motivated the scientist to
investigate molecular profiles of tumors.

It has long been known that tumors with distinct molecular features are amenable to
treatment in varying degrees [74, 207]. Given that most current anti-cancer treatments cause
severe side effects [146, 201], selection of the optimal treatment plan has a great clinical
significance. Many recent studies have demonstrated that gene expression profiles of tumors
allow stratifying patients according to disease prognosis [209, 216, 226, 267] or predict
potential drug response [64, 87, 246, 245, 253].

Current classifications of breast tumors are based on various tumor characteristics and
propose different numbers of clinically distinct breast cancer subtypes. In particular, two
widely used classifications consider gene expressions: one is based on ER, PR, and Her2
expression [93], and the other distinguishes four [216] (later five [102, 226]) intrinsic subtypes
defined by the expressions measured by the PAM50 gene panel [209]. However, these well-
established classifications only partially explain molecular heterogeneity of breast tumor and
appear to be insufficient for precise prognosis and prediction. The discovery of unknown
molecular subtypes may advance optimal therapy selection and give a clue for the design of
new treatments, and therefore is of great importance for modern medicine.



Chapter 2

Background

2.1 Associations between genes and diseases

Same as other phenotypic traits, predispositions to many human diseases, from inborn
disorders [8] to infectious diseases [38], are inheritable at least partially. Identification
of genetic markers, correlated with disease status became one of the primary goals of
medical genetics. These markers represented sequence variants, altering gene function,
which eventually leads to the development of the disease. Over the past few decades, first
genetic mapping and later genome-wide association studies (GWAS) allowed establishing
a large number of associations between genes and diseases [5]. Comprehensive databases
of genetic associations have been created to facilitate access to this data [6, 59, 147, 173].
These databases are actively replenished and frequently used as starting points for biomedical
research projects.

Besides the correlation between the presence of a certain genetic variant and disease-
related phenotypes, there are numerous ways to establish a gene-disease association. For
example, alterations of amount, localization, structure, or modifications of a transcript or a
protein in the disease may be the result of the dysfunction of a corresponding gene. Moreover,
novel gene-disease associations may be computationally predicted using known similarities
between genes (e.g. functional or sequence similarity) and diseases (e.g. symptom similarity).

The investigation of molecular mechanisms has shown that disease manifestations are
accompanied by multiple changes at various molecular levels [53, 58, 86]. However, this
does not mean that all of these changes are equally important in the context of a given disease.
The identification of essential molecular players is a necessary step towards understanding
pathogenesis. To determine genes are most likely to play a central role in a specific disease,
the researchers consider orthogonal data which can support or contradict tested associations.
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Given the huge number of genetic associations and the volume of prior knowledge about
genes and diseases, automatization of this task is of great relevance.

2.2 Methods for prioritization of genes and their limita-
tions

Modern high-throughput experiments produce hundreds or thousands of potential associations
between genes and diseases requiring further exploration. In parallel with the simplification of
the candidate gene search, the amount of available information about genes, their associations
with other biological entities, increased. The emergence of various biological databases and
the explosive growth of relevant scientific publications further complicated manual evaluation
of candidate genes and stimulated the development of computational methods and tools for
gene prioritization. This section reviews and classifies the existing gene prioritization tools
and discusses their limitations. It is adapted from [299] published by Journal of Integrative

Bioinformatics (Walter de Gruyter GmbH).
Gene prioritization problem could be formulated as follows: rank candidate genes

in decreasing order of probability to be truly associated with the disease based on prior
knowledge about these genes and the disease. A typical gene prioritization tool is composed
of two parts: a collection of evidence sources (i.e. databases of associations between genes,
diseases and other biological entities) and a prioritization module (Fig. 2.1). Prioritization
module takes two inputs: training data, which is used to define a phenotype of interest
and testing data, a set of user-defined candidate genes to prioritize. After that, it extracts
information about given genes or terms from evidence sources and calculates a score that
reflects the ”likelihood” of each gene to be responsible for the phenotype. Training data could
be represented either by genes that were previously linked with a phenotype (seed genes).
Alternatively to seed genes, some tools, e.g. PolySearch2 [165] or PhenoRank [60], accept
phenotype or disease terms defining relevant gene-disease associations. The second part of
the input is a set of candidate genes to prioritize or in some cases, the whole genome. The
output of the program is a list of candidate genes arranged according to calculated scores or
p-values. Every gene prioritization tool represents a unique combination of evidence sources,
prioritization strategy and input requirements.

At the moment, hundreds of research papers on gene prioritization have been published
and about a hundred of them describe computational tools [299]. Gene prioritization tools
were extensively applied for prediction of genes involved in human diseases [1, 77, 140, 154,
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175, 217, 263, 286], and other polygenic traits [252, 271]. In addition to the evaluation of
gene relevance for single diseases, gene prioritization was used for the selection of genes
potentially responsible for the comorbidity between two complex diseases – asthma and
hypertension [238]. Moreover, taking into account the predicted importance of candidate
genes, i.e. score assigned in the result of prioritization, improved the results of pathway
enrichment analysis [217, 252, 271], enhanced models for drug response [75], and disease
outcome predictions from gene expression profiles [31].

Fig. 2.1 The scheme of a gene prioritization tool. Gene prioritization tool extracts information
about specified candidates and seed genes or phenotype terms defining the phenotype from
evidence sources and calculates a score that reflects the "likelihood" of each gene to be
responsible for the development of a phenotype. In this example, genes which have alleles
causing an early-onset autosomal dominant familial form of Alzheimer’s disease [20] are
used as seeds. Candidate genes were obtained from GWAS Catalog [173]. Each candidate
gene has at least one variant associated with Alzheimer’s disease. The output of the program
is a ranked list of candidate genes arranged according to calculated scores. The figure is
reprinted from [299].

In previous works, gene prioritization tools have been classified based on the scope of
their application (generic or disease-specific) [220], types of evidence sources used [70],
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approaches (filter-based selection or ranking) [192, 220] and method types (network analysis,
similarity profiling or text-mining) [90, 192]. We proposed two non-exclusive classifications
of gene prioritization tools according to the assumptions they rely and data representation
they use.

2.2.1 Assumptions behind prioritization strategies

Gene prioritization strategies rely on two major assumptions. First, genes may be directly
associated with a disease, if they are systematically altered in the disease compared to controls
(e.g. carry a disease-specific variant). Although various associations may have different
strengths and qualities, it is assumed that association, supported by multiple independent
studies is more likely to be true. Second, genes can be associated with a disease indirectly,
via guilt-by-association principle, assuming that the most probable candidates are somehow
linked with genes or other biological entities that were previously shown to impact the
disease.

Two types of prioritization strategies can be distinguished, depending on the assumption
they rely on and, consequently, on the kind of prior knowledge used to solve the prioritization
problem. Strategies of the first type integrate all associations of each candidate with the
disease of interest and into the overall association score. Such tools require the user to
provide keywords or ontology terms specifying the disease and then integrate gene-disease
associations of various kinds.

Approaches of the second type reduce the gene prioritization problem to the task of
finding genes closely related to known disease genes. They accept a set of seed genes,
implicitly defining the disease, instead of specifying the disease explicitly. These tools
consider direct and indirect associations between genes, and prioritize candidates by their
similarity and/or proximity to a set of seeds.

The majority of tools utilize exclusively one of these two strategies, some tools implement
a both of them at different stages. For example, PhenoRank [60] and Phenolyzer [287] accept
disease keywords, automatically construct a scored list of seed genes, and rank the rest of
genes such that genes associated with high-scored seeds also get higher ranks. Another
example is NetworkPrioritizer, which retrieves genes associated with a query disease, builds
disease-specific network and identifies the most relevant genes based on the network topology
[130].
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2.2.2 Data representation

The structure of evidence sources utilized by a gene prioritization tool can be either relational
(Figure 2.2A), when data sources are represented by a collection of tables, containing an
association of a particular kind, or network (Figure 2.2B), where nodes correspond to genes
(or other entities) and edges represent relationships between them. Although these two
data representations models are interchangeable, organization of evidence sources is always
consistent with the prioritization algorithm. Accordingly, most of the existing approaches can
be classified as score aggregation or network analysis methods, or represent their combination
[185, 284].

Fig. 2.2 Data representation models utilized by gene prioritization tools. A. Relational data
structure. The first and the third evidence sources provide relationships between genes
labeled with G (seeds) or g (candidates) and diseases (d), the second source provides gene
membership in pathways (p) and the last two evidence sources contain different kinds of
interactions between genes. Vector representation of seed and candidate genes are shown on
the left. The similarity between colorings of gene g7 and seed genes shows that g7 seems
to be a promising candidate. B. Network data structure. Nodes depict genes, edges show
relationships between genes. Seed genes are shown red. The figure is reprinted from [299].

Network analysis.

Network is a natural representation of pairwise entity relationships, widely used to describe
similarities or interactions between biological objects. Many independent studies agree that
disease-associated proteins are located close to each other on the PPI network [92, 119, 184].
This observation became the basis for many prioritization approaches assuming that proteins,
encoded by unknown disease genes and more tightly connected with known disease proteins
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than irrelevant proteins. Moreover, disease proteins demonstrate special network properties
(see section 2.8). This observation is used in network-based gene prioritization workflows
[27, 130, 205, 237] including also those omitting seed genes [31, 238]. Briefly, these methods
retrieve all genes associated with a query disease, build disease-specific interaction network
and determine the essentiality of all nodes considering the network topology. Similarly,
NetworkPrioritizer [130] ranks candidates according to various network centrality measures,
e.g. betweenness and closeness centralities for a set of seed nodes and provides tools for
aggregation and comparison of obtained rankings.

The majority of network-based tools require seed genes for input and rank candidates
according to their proximity in the network to seeds. The distance from a node to a group
of nodes in the network may be defined in numerous ways. MaxLink [94, 204] ranks first
neighbours of known genes according to a number of direct links to them. In order to reduce
hub bias, it takes into account only candidates which have significantly more connection
with seed genes than expected by chance. Similarly with MaxLink, DIAMOnD [89] applies
hypergeometric test to detect candidates enriched by seed genes among their first neighbours.
In contrast, DIAMOnD ranks genes according to significance of seed overrepresentation
among the first neighbours. In every iteration, DIAMOnD includes the most significant
candidate into a set of seeds and recalculates p-values for the remaining candidates regarding
the updated set of seeds. However, MaxLink considers only first neighbours of seeds and
DIAMOnD ignores indirect interactions on every iteration. Gentrepid [88] ranks candidates
conforming to the shortest path distance to a seed node. NetShort method implemented in
GUILD framework [96] down-weights edges connected to genes with a high score when
computing shortest path length. The disadvantage of this measure is that not all the pathways
are equally informative, e.g. a path going through promiscuous hub nodes may be short
but unspecific to the disease mechanism. In order to address this problem, various network
propagation methods, modeling information flow over the network have been developed.
ToppNet [42], GeneWanderer [141], PhenoRank [60] and many others [78, 125, 152, 153,
161, 169, 170] apply random walk-based algorithms [281, 139, 283] in order to assess relative
importance of a node to a group nodes considering the global network topology. Other
methods mathematically related [62] with random walk, modelling diffusion [81, 193, 274]
or electric current flow [259] through the network have been used successfully in gene
prioritization. GeneMANIA [194] implements Gaussian field label propagation algorithm
[297], which redistributes seed gene scores to their neighbors, minimizing differences
between both scores of neighboring genes and initial and assigned scores of seed genes.
PRINCE [274] uses conceptually similar approach to smooths influence of disease genes
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over the network. It simulates the exchange of flows between genes in the network, where
every node produces outcoming flows to neighbors, proportional to its score, and computes a
new score summarizing incoming flows. The process starts from disease genes and stops
after many iterations. In the result, candidates connected with many disease genes gain
higher income flow and thus a higher score. eQED [259] represents the network as an electric
circuit where seeds are current sources, edges are conductances, candidates are drains, and
rank candidates by current flowing through them. Köhler et al., 2008 [141], Navlakha and
Kingsford 2009 [199], and Shim et al., 2015 [249] have shown that methods considering
global network topology demonstrate higher overall performance than methods based only
on local network information. At the same time, methods using local network topology, e.g.
direct interactions or shortest path distances, rank true top-ranked candidates higher [95, 249]
and therefore are more successful for diseases with few associated genes, tightly connected
in the network [249].

Another important feature determining the performance of the network analysis tool is
the network type used, its quality and completeness [96]. Some network-based prioritization
tools use homogeneous networks modeling only one type of interactions [42, 46, 129, 165].
However, recent studies demonstrate that composite networks, composed of many various
kinds of interactions and relationships, outperform any single network, possibly because
individual networks contain complementary information [112, 159]. Therefore, many gene
prioritization tools use functional protein interaction networks such as GeneMania [280],
FunCoup [240], STRING [124] or integrate several networks of different types [89, 287].
Moreover, in previous works gene prioritization is performed on heterogeneous networks
including multiple types of biological entities [104, 125, 161, 169, 178, 293].

Score aggregation.

This group includes tools implementing various strategies of aggregating all found associa-
tions into a total score. For example, Polysearch [46, 165] recognizes sentences supporting
gene-disease associations, weights them according to their reliability and summarizes weights
into the total relevancy score. When relevancy scores computed for all genes, Polysearch
standardizes them and uses them for prioritization. Similarly, DisGeNET [15, 218, 219]
and Open Targets [142] integrate data from multiple evidence sources. For each gene, they
compute a weighted sum over all individual gene-disease association scores. Each weighting
coefficient is determined by the reliability of association and the type of data source it came
from. Thus, strong genetic associations discovered in humans make a bigger impact into
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the overall gene score, than less reliable associations inferred from animal models or text
mining.

Tools operating with seed genes employ similar ideas to summarize gene-gene associ-
ations. Initially, they score each candidate by its similarity with seeds, considering each
evidence source independently, and then combine all data source-specific scores into a
final score. GPS [185] follows the most straightforward way to integrate multiple rank-
ings: for each gene, it calculates a simple rank average over seven independent rankings.
ToppGene [42, 43] and Endeavour [1, 265, 264] realize more sophisticated approaches to
obtain the overall ranking. They convert data source-specific scores into p-values and apply
meta-analysis-based techniques to compute the overall p-value for each gene.

Score aggregation approaches described above have at least two drawbacks. First, these
tools favor genes top-ranked in a maximal number of evidence sources. Meanwhile, they
may not consider various reliability and potential dependency of evidence sources. Second,
tools from this category do not take into account the fact that the impact of independent
rankings into the total score may not be additive.

These deficiencies have been partly overcome with the development of machine learning
methods. Similar to ToppGene and Endeavour, machine learning-based methods represent
genes as n-dimensional feature vectors, use seed genes as positive training exemplars,
genes other than seeds or candidates as negative exemplars, and then classify candidates.
Machine learning methods such as multiple linear [44, 144, 284] and logistic [276, 287]
regressions, kernel-based approaches [54, 200, 291], neural networks [85] and others [121]
were successfully applied for gene prioritization. Recent works have demonstrated that
machine learning-based methods tend to outperform other score aggregators [191, 276, 290],
possibly owing to their ability to capture unknown or non-linear feature relationships and
tuning model parameters.

2.2.3 Limitations

Despite the popularity of gene prioritization tools, almost all of them have two important
drawbacks:

• All candidate genes are ranked separately, what suits the case of monogenic diseases,
but for polygenic disorders may be disadvantageous.

• Possible disease heterogeneity is not taken into consideration. The disease may com-
prise several latent subclasses, phenotypically similar but caused by distinct molecular
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alterations. Taking into account disease heterogeneity requires the analysis of patient-
level experimental data.

The above problems are discussed in the next sections of this thesis.

2.3 Mendelian and Complex diseases

The impact of the individual genetic constitution on the development of the disease varies
widely. Some diseases are caused by rare dysfunctional variants of a certain gene and are
highly heritable. Therefore, although such diseases are rarely seen in the population, they
frequently occur in some families. The distribution of affected individuals in these families
follows Mendel’s law therefore such monogenic diseases are called Mendelian. This group of
diseases includes, for example, sickle-cell anemia (OMIM:#603903) or Duchenne muscular
dystrophy (OMIM:#310200). In most cases, the disease is caused by a single mutation
leading to the loss of gene function [241] or its modification [172].

To date, more than six thousand human diseases caused by the dysregulation of a single
gene are known [7]. Because unrelated individuals may carry different variants affecting
the same gene, precise diagnostics usually require whole exome or even whole genome
sequencing of the affected individuals and their parents. Disease variants are searched
among rare variants with a strong effect on gene function, e.g. complete loss of function, or
modifying crucial gene regions.

Unlike Mendelian diseases, complex diseases e.g. cancers, Alzheimer’s disease, or asthma
are multifactorial. These diseases cannot be explained by a single mutation with a strong
effect but thought to be the result of interactions between multiple genetic and environmental
factors. Genome-wide association studies aimed to discover single nucleotide polymorphisms
(SNPs), which allelic states significantly correlate with disease status. Compared to variants
causing Mendelian diseases, SNPs are much more frequent in the population. NHGRI-EBI
GWAS Catalog [173] provides a curated and regularly updated lists of published GWAS,
and contains over sixty thousand of SNP-trait associations. The effects of such risk variants
identified in GWAS are much weaker than the effects of Mendelian variants. Moreover,
linking an associated variant with its effect on a certain gene may be not straightforward.
Unlike Mendelian disease variants, only a small fraction of GWAS variants has an obvious
effect on the protein, e.g. missense substitution, premature stop gain, or frameshift. Most of
the significant GWAS hits are located in intronic or intergenic regions [106]. Mapping them
to the closest gene may not always be correct, and considering regulatory annotations for
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Mendelian diseases Complex diseases

causes abnormal function of certain gene

due to a pathogenic mutation

complex interactions between genetic,

epigenetic and environmental factors

penetrance high low

heritability high low

number of genetic associations one or several variants

affecting the same gene
many in multiple loci

types of associated variants non-silent mutations with a strong

effect on protein

all kinds of variants, including

intronic and intergenic

distribution of associated
variants in populations

extremely rare variants frequent, infrequent, and rare variants

Table 2.1 Comparison of Mendelian and complex diseases.

mapping of silent GWAS variants to genes appears to be a better strategy [73]. Joehanes et
al. 2017 [126] have shown that about half of GWAS variants lay in expression quantitative
trait loci (eQTL) – genome regions with markers correlated with expression levels of one or
several genes. Recently, it has been shown by Li et al., 2018 [158] and independently by our
group [300], that comorbidity of some complex diseases is more likely to be explained by
the overlap of eQTL-controlled genes, rather than a direct genetic overlap.

Summarizing the above, complex and Mendelian diseases are intrinsically different
(2.1) and therefore the investigation of their causes and underlying mechanisms requires
different approaches. The primary cause of a Mendelian disorder is relatively easy to find,
and after that, the mechanism of disease development becomes more or less clear. Having
sequencing data of an individual, the development of Mendelian disease can be predicted
with a high degree of confidence. In contrast, the primary causes of complex diseases remain
hypothetical to date. The attempts to predict complex traits including disease predisposition
given genomic data had limited success [17, 123, 128], because the individual effect of each
associated variant is very small.

2.4 Disease Heterogeneity

Molecular heterogeneity of the disease implies that similar clinical manifestations may be
caused by different molecular lesions. Sometimes genetically distinct disease subtypes
may be hardly clinically distinguishable [136]. In other cases, molecular heterogeneity
may result in wide phenotypic heterogeneity. A group of mechanistically distinct diseases,
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but characterized by similar symptoms might be historically united under a single name
[145, 197].

Molecular heterogeneity was shown for many human diseases, complex and monogenic
[181, 211]. The most famous examples of such diseases are cancers, demonstrating a
tremendous molecular and phenotype heterogeneity [107]. For a long time, cancer was
classified only by the tissue of origin. The choice of anti-cancer treatment depended only on
the cancer type and general health condition of the patient. With the accumulation of data
on incredibly high heterogeneity within each type of cancer, the paradigm shifted towards
tailoring the treatment to target weaknesses of each specific tumor [37, 207]. At the same
time, the investigation of cancer subtypes leads to a more detailed understanding of some of
the mechanisms of its development [107]. During the last years, the search for new subtypes
and subtype-specific biomarkers with prognostic or predictive power became one of the
hottest areas of modern biology.

Fig. 2.3 A toy example of the expression matrix, genes are shown in rows and patients are
in columns. The top row depicts class labels, e.g. disease (orange) and controls (green).
Some genes are altered only in a specific subgroup of disease samples. These genes can be
missed in a case-control study, if the corresponding group is not big enough or expression
fold change is small.

Evidence of disease heterogeneity is observed at different molecular levels, e.g. genomic
[11], transcriptomic [216], epigenomic [179], and metabolic [212]. The presence of het-
erogeneity complicates the discovery of biomarkers and further development of predictive
models. In the case of heterogeneity, a biomarker may be relevant only for a subgroup of
patients representing a certain subtype (Figure 2.3). For example, if a gene or a group of
genes is differentially expressed only by a small subgroup of samples, it may be missed if
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a standard case-control design is chosen. Moreover, the discovery of rare disease subtypes
requires larger sample sizes [278]. Besides that, if a specific disease subtype is characterized
by differential expression of a small group of genes, it might not be visible after dmentionaly
reduction, e.g. at PCA plot.

Breast cancer was chosen for this thesis, because

• it is well known to be molecularly heterogeneous and has many characterized subtypes;

• it is a frequent cancer type diagnosed in more than 2 million women worldwide
annually [28];

• several large breast cancer expression datasets with detailed annotations are publicly
available.

In 2001 Perou et al. [216], proposed the first molecular classification of breast tumors based
on their expression profiles distinguishing four molecular subtypes:

• Luminal-like tumors highly express ER and keratins 8 and 18. The latter are known to
be makres of luminal epithelial cells, what points to their cell type of origin. Luminal-
like tumors are split into Luminal A and Luminal B subtypes, which differ in the level
of tissue differentiation and survival prognosis [254].

• Basal-like subtype got its name owing to high express keratines 5,6, and 17, intrinsic
of the basal layer of epithelium. Most of basal-like tumors actively proliferate and
demonstrate low expression of ER, PR, and HER2, i.e. are triple-negative.

• Her2 subtype is characterized by elevated expression and frequent amplification of
Her2 (also known as ERBB2), which encodes human epidermal growth factor receptor
2. Signaling through this receptor with tyrosine kinase domain suppresses apoptosis
and induces cell proliferation. Patients with Her2/ERBB2-positive tumors have the bad
survival prognosis, but better respond to trastuzumab, an antibody binding Her2 [215].

• Normal breast-like group includes tumors with expression profiles more similar to
normal breast tissues samples, rather than tumors and therefore not falling to any of
the above subtypes.

Later in 2007, Herschkowitz et al. [102], defined yet another subtype called Claudin-low
and characterized by suppressed expression of claudines, E-cadherine, and other genes,
responsible for cell adhesion. Another feature of the claudin-low subtype is high lymphocyte
infiltration [226].
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The above molecular, however, takes into account far from all expressed genes. It does
not reflect the whole spectrum breast tumor heterogeneity and seems to be insufficient for
precise prognosis and prediction. The discovery of unknown molecular subtypes remains the
direction of further research.

2.5 Gene expression profiling

Gene expression is a multistage process of realization of information encoded by this gene
in the form of its product, transcript, or protein. Expression of genes is necessary for their
functioning, therefore it is strictly regulated by the cell. The increase (up-regulation) and
decrease (down-regulation) of gene expression mean an increase and decrease in the amount
of gene product respectively.

Various changes in gene expressions point to alterations of gene functions. Although
the final result of protein-coding gene expression is the creation of protein molecules, the
expression profile most commonly implies a transcriptome profile. In humans and other
eukaryotes, a gene can encode several variants of a transcript (isoforms) owing to the excision
of certain transcript subsequences (splicing). To identify genes which functions are altered
under a specific condition, e.g. in disease compared to control, researchers search for
alterations of

• expression levels of genes, transcripts, isoforms [149]

• splicing sites [176]

• localizations [113]

Two types of expression patterns related to the level of expression should be distinguished:
differentially expressed and differentially co-expressed groups of genes (Figure 2.4). These
two patterns represent perturbations with distinct biological significance. The differential
expression reflects the induction or inhibition of a certain pathway or its downstream. Differ-
ential co-expression points at gain or loss of co-regulation and highlights regulatory network
rewiring.

To date, several methods for investigation of gene expression exist [198]. The abundances
of selected transcripts can be measured by various quantitative PCR-based protocols or North-
ern blotting. However, if the aim is to find new candidates, rather than test a small number
of previously known, the researchers use high-throughput methods, such as microarrays or
RNA sequencing (RNA-seq). Both methods allow simultaneous profiling of thousands of
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transcripts in a single experiment. High-throughput gene expression profiling provides a
detailed snapshot of gene activities and therefore is widely used in the studies of disease
heterogeneity [216].

Fig. 2.4 A toy example of two gene expression patterns. A. Differential expression. Three
genes are up-regulated in patients 1-6 compared to the other ones. B. Differential co-
expression. Expression levels of three genes are correlated in patients 1-10 but not in patients
11-22.

Microarrays

Microarray is a solid chip with attached oligonucleotide probes complementary to sequences
of known transcripts. Modern microarrays developed for human transcriptome contain up
to several hundreds of thousands of probes complementary to the regions of most human
transcripts. The process of expression profiling with one-color microarray includes the
following steps [229]:

1. total RNA is extracted from the samples and purified. If necessary, the desired se-
quences may be enriched (e.g. poly-A pooling of mRNA) and undesired depleted (e.g.
depletion of ribosomal RNA)

2. reverse transcriptase produces cDNA which is more stable on the matrix of RNA

3. cDNA is amplified via PCR
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4. cDNA fragments are labeled with a fluorescent dye

5. the mixture is added to the microarray. cDNA fragments hybridize with probes on the
chip

6. the abundance of cDNA complementary to each of the probes is defined according to
the intensity of fluorescence, recorded by the machine

The procedure is slightly different for two-color microarrays, which simultaneously
hybridize cDNA from two samples labeled by different markers. It shows relative abundances
of expressions in case and control samples [243].

Sequencing of RNA

With the advent of high-throughput sequencing methods, the popularity of expression mi-
croarrays is declining. The main advantage of RNA-seq over microarray technology is
that the former allows not only quantification of known transcripts, but also detection and
sequencing of the unknown ones. Besides that, RNA-seq more correctly measures weakly
expressed transcripts than microarrays [295]. The beginning of the sample preparation
protocol for RNA-seq is the same as for microarrays: RNA is extracted, purified, converted
into cDNA, and amplified. This is followed by a library preparation step which depends
on the sequencing platform chosen by researchers. To date, several sequencing platforms
present on the market, of which Illumina is the most commonly used [177].

Sequencing results in a large number of short reads – fragments of transcript subse-
quences determined, (i.e. read) by the machine. Every base in a read is accompanied by
a quality score reflecting the probability of a wrong base call. To obtain gene expression
reads are mapped to the reference transcriptome sequences and quantified [56]. To make
gene/transcript expression abundances comparable within and between samples, they are
subject to normalization procedures [79, 230, 233].

2.6 Identification of differentially expressed genes and gene
sets

Correlation of gene expression level with any disease features may be a sign of the possible
involvement of this gene in the disease mechanism. This consideration stimulated the devel-
opment of approaches for the identification of genes differentially expressed in disease and
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control groups [167, 180, 231]. However, the reproducibility of differentially expressed gene
lists obtained in independent studies was rather low [260, 292]. To improve reproducibility
and consistency of differential expression analysis results, genes demonstrating a similar
pattern of dysregulation may be grouped together. Working with gene sets instead of single
genes is beneficial because it reduces the dimensionality of the data and makes aggregated
expression less prone to noise [118]. Moreover, the resulting smaller groups of coordinately
altered genes are easier to interpret than the whole list of dysregulated genes. Such groups of
functionally related disease-associated genes also called gene modules [188, 236].

Similar to individual genes participating in the development of the disease, the genes
of a disease-associated module must demonstrate a specific pattern of dysregulation in the
disease samples compared to controls. Consequently, some clustering methods group genes
into modules based on the dependency of their expression profiles without considering any
prior knowledge about these genes [148, 236]. Alternatively, genes can be grouped using
predefined gene sets representing known pathways or functional groups of genes either before
[14] or after [257] testing for dysregulation. The reference gene sets can be obtained from a
specialized gene set [162, 288] or pathway [133, 134] databases.

However, expert-curated pathways and gene sets are limited by the current knowledge and
cover only a small part of the whole interactome [184]. On the other hand, computationally
predicted pathways and gene interactions provide a more complete view of interactome but
they might be inaccurate. Moreover, due to cell type specificity and the dynamic nature of
cellular circuits, even valid pathways or gene sets may be irrelevant to the object of research
and absent in a given dataset. Therefore, instead of using a priori defined gene sets, some
methods predict novel gene modules through integrative analysis of gene expression profiles
and protein-protein interactions (PPI). These methods require dysregulated genes to cluster
in gene networks derived from PPI networks, forming so-called active subnetworks. This
network constraint is valid because functionally related genes are likely to be co-regulated,
to interact and act together. jActiveModules [118], BioNet [16] and other methods [50, 65]
map differentially expressed genes to a PPI network and search for minimal connected
components containing as many dysregulated genes as possible. These methods accept
differentially expressed genes scored by effect size or p-value or define them before the
network search [52, 269]. Some more sophisticated methods such as OptDis [66] or CoSINE
[171], take normalized expression profiles as input and determine dysregulated genes while
discovering active subnetworks.

All the above methods search for differentially expressed gene modules in a supervised
manner, when class labels, e.g. disease and control or disease subtypes, are known. However,
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in many real-world scenarios, class labels may be unavailable. Moreover, even when
class labels are provided, the compared sample groups may demonstrate high internal
heterogeneity and consist of several unknown molecular subtypes [25, 40, 181]. Identification
of genes, under- or overexpressed only in a certain unknown group of samples, is especially
challenging when such a group is small. This problem of the detection of between-sample
heterogeneity may be addressed by clustering and biclustering methods. Biclustering methods
[206, 223, 285] are searching for subsets of genes demonstrating similar expression patterns
in a subset of samples, given a matrix of genes profiled in these samples. The third chapter
of this thesis is entirely devoted to biclustering methods and explains their advantage over
conventional clustering.

2.7 Biological networks

A network is a natural representation of pairwise entity relationships, widely used to describe
similarities or interactions between biological objects. The methods of network biology
advanced the understanding of biological phenomena including complex diseases [13, 117,
296]. Disease genes were shown to possess special network properties. For example, it has
been shown that disease-associated proteins tend to cluster on the PPI networks [92, 119, 184].
The researchers pay special attention to two types of nodes, which are likely to play important
roles in biological networks [92, 289]:

• hubs – nodes with the highest degree;

• bottlenecks – nodes with the highest betweenness centrality, i.e. those through which
the passes the maximal number of shortest paths.

"Importance" here means that these nodes are crucial for many biological processes and too
important to be dysfunctional. Therefore, disease genes are less likely to be found among
hubs or bottleneck genes, although some examples of essential and disease-specific genes
are known [13]. At the same time, the most influential disease genes tend to be central in the
disease-specific networks [155, 205]. Identification of these and other relationships between
functional properties of genes and network topology motivated the invention of network-
based algorithms for the discovery of genome-wide associations [279], gene prioritization
[42, 60, 130, 141, 205], and determination of drivers in cancer [251, 273].

The researchers created and analyzed numerous kinds of biological networks, from ho-
mogeneous, including only one type of objects and interactions, to composite heterogeneous
networks [105, 124, 250], demonstrating relationships between various biological entities.
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Types of biological networks widely used in molecular biology and medicine and some of
their properties are reviewed in the next section and were previously published in [299].

2.7.1 Types of biological networks

Physical protein-protein interactions

Physical protein-protein interactions (PPI) point to a potential functional interaction between
these proteins and subsequently, to the association between corresponding genes. Physical
PPI can be experimentally identified using high-throughput methods, such as yeast two-
hybrid assay, affinity purification with mass spectrometry or confirmed in single experiments,
e.g. X-ray crystallography. Primary PPI databases obtain data from curation of published
literature, e.g. DIP [239], HPRD [225], BioGRID [39], InnateDB [29] or MatrixDB [150]
or from single large-scale experiments [115, 116]. Other PPI databases, such as IntAct
[203], MINT [163], MENTHA [33], HitPredict [166], integrate protein interaction data from
multiple primary databases and assign interaction reliability scores according to the level
of supporting evidence. In order to facilitate access to a large number of redundant PPI
databases, a standardized query interface PSIQUIC was created.

In addition to direct physical contacts, proteins can also interact indirectly, collectively
performing their function. For example, since a protein complex functions as a whole, all its
members, including those non-interacting directly, are strongly functionally related. CORUM
[235] and Complex Portal [183] provide curated human and animal protein complexes, their
subunit composition, structure, and functions.

Pathways and regulation

Proteins participating in consequent steps of a biological pathway are also considered to
be functionally related. In a broad sense, a biological pathway is a chain of molecular
events, such as chemical reactions, conformational changes, binding or dissociation, etc.,
which leads to certain changes in the cell. Pathguide [10] is a comprehensive catalog
comprising of 702 resources related to pathways and molecular interactions in human and
other organisms. Pathways are classified according to prevailing interaction type as metabolic,
signaling, and regulatory. Metabolic pathways, representing chains of chemical reactions
catalyzed by enzymes, can be found in MetaCyc [35], which is a part of BioCyc, including
pathway-related information for more than 13000 species. Signalling databases, such as
OmniPath [266], Signor [214], SignaLink [82], PhosphoSite [109], contain literature-curated
information on cellular signal transduction via post-translational modifications, relocation,
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binding or conformational changes. Genetic regulation databases contain manually curated
and computationally inferred relationships between genes and transcriptional factors (TFs),
e.g. JASPAR [138] and TRANSFAC [282], or miRNA, e.g. miRTarBase [49]. Large
pathway databases, such as KEGG [135], Reactome [80] and ConsensusPathDB [132] are
not specialized on a particular type of pathway or process and provide biological interaction
of multiple types for human and other organisms, while the other resources have a certain
focus, e.g. innate immunity [29] or a specific disease [131, 189].

Predicted interactions

Since biological pathways are mediated by gene products, proteins or RNAs, pathway data is
the invaluable source of functional relationships between genes. However, known pathways
cover only a small part of all the existing interactions and not all human genes are fully
functionally annotated. Unknown gene functions and interactions can be computationally
predicted on the basis of gene co-expression [270], sequence similarity [55] or interactions
[156, 275] with well-annotated genes. Genes or proteins with expression levels correlated
across different conditions are likely to be co-regulated and may share functions [270].
Sequence similarity and domain composition can also give a clue about the function of
an unannotated protein and help to identify its interaction partners. Recent paralogs may
have the same function [160], but later their functions tend to diverge. Orthologs are more
functionally conservative [262] and therefore functional annotations of genes from related
species and PPI [277] may be transferred on their human orthologs.

Functional similarity

The amount of knowledge regarding gene and protein roles in the cell is diverse, enormous
and continuously growing. The unification and formalization of this knowledge are crucial
to ensure its computational processing and analysis. Gene Ontology (GO) consortium [9]
created in 1999, develops and maintains a controlled vocabulary of concepts describing gene
functions, localizations and participation in biological processes. GO consortium provides
regularly updating [57] whole-genome annotations, either supported by experimental evi-
dence or computationally predicted, for multiple species, from human to bacteria, which
allows within and between-species comparisons of gene functions. GO term enrichment anal-
ysis became a community standard for functional annotation of gene sets and interpretation
of the experiment results. Since genes sharing GO terms are considered to be functionally
related, many gene prioritization tools utilize GO as an additional source of evidence.
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Text mining

Yet another way of establishing putative associations between genes, diseases and other
biological entities is text mining of biomedical literature. Many gene prioritization tools
utilize the results of co-occurrence based text mining, assuming that frequent colocalization
of two entities in biomedical texts points to their possible interaction. More sophisticated
pattern-based text-mining methods use advanced weighting schemes to assign qualities to
predicted associations [46, 165]. Other text-mining systems, e.g. ANDsystem [122], apply
natural language processing (NLP) algorithms allowing to differentiate between various
kinds of biological entities and associations between them. The major drawbacks of the
networks built on the results of text mining are the high rate of false positives and the lack
of accuracy in the detection of associations and determination of their types. Despite that,
text mining remains the only way to absorb the whole volume of relevant scientific literature,
impossible to handle manually.

2.7.2 Properties of biological networks

Biological networks are not random and possess several characteristic properties [13], of
which two are in the focus of this thesis: scale-free property and modularity.

The first was proposed in 1999 by Barabasi and Albert [12] who demonstrated that
degrees of nodes in natural networks are distributed according to the power law, i.e. the
probability of a node with degree n is proportional to n−γ . They have also shown that
values of γ lay between 2 and 3 for most biological networks. The authors proposed that a
scale-free network is formed in the result of the process with a preferential attachment when
the probability of a new node to attach to one of the network nodes is proportional to the
node degree [4].

Currently, it is debated at which extent the scale-free property is fulfilled in real-world
networks [30]. Broido and Clauset analyzed almost a thousand various natural networks,
including biological, sociological, and information networks and demonstrated that in many
cases node degree distribution is better fitted by log-normal, than power law.

Another feature inherent of biological networks, and other aspects of living organisms
organization, was formulated by Hartwell et al., 1999 [98]. Structural modularity has long
been known, but Hartwell et al. emphasized functional modularity. They proposed to study
functional modules – groups of biological molecules united by a common function and
separated from the other such groups. This idea stimulated the research in the field of
network biology and led to the emergence of many works aimed at the identification and
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interpretation of modules in biological networks [3, 48, 91, 188, 236]. Speaking of modules
in biological networks, three interrelated concepts should be distinguished (Figure 2.5):

• Topological communities represent a set of nodes [91] or edges [3] more connected
with each other, than with nodes (edges) outside it. Densely connected communities
found in PPI networks represent protein complexes [255]. In co-expression networks
communities correspond to clusters of co-expressed genes, representing downstream of
a certain pathway [236]. Many methods for community detection have been developed
[84], for example, Markov Cluster algorithm [72] or Louvain method [22]. densely
connected regions of the networks. Community is defined as

• Functional modules are topological communities of interacting biomolecules united
by a common function. Functional modules are not necessarily so densely connected
as protein complexes or clusters of co-expressed genes. Depending on the network,
functional modules may represent metabolic pathways, signaling cascades, epigenetic
regulation, etc.

• Disease modules may be understood as a subset of functional modules. Disease
modules are fully composed of genes involved in the process of disease development
or enriched by such genes [92]. In 2016, Choobdar et al. organized a community
competition on the identification of disease modules at dreamchallenges.org. They
attracted more than 400 teams and published the benchmark of 75 methods on PPI,
gene co-expression, signaling, homology, and cancer gene essentiality networks [48].

Fig. 2.5 Three types of network modules. The figure is reprinted from [13].
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2.8 Network analysis for medical bioinformatics

Besides homogeneous networks, including only one type of objects and interactions, the
researchers created and analyzed numerous kinds of composite heterogeneous networks
[105, 124, 250], modeling various relationships between multiple kinds of biological entities.
An example of such study is our recent work aimed at unraveling molecular-genetic reasons
of frequent co-occurence of asthma and hypertension [300].

In many patient cohorts, asthma and hypertension coincide more frequently than would
be expected by chance [51, 69, 83, 101, 127]. Such correlation of two or several diagnoses
is called comorbidity. It is shown for many human disorders, complex and Mendelian
[21, 103, 111, 182]. Comorbidity and may point to causal relationships between two diseases,
e.g. shared susceptibility loci. However, this does not seem to be the case of asthma and
hypertension [202]. At the same time, isolated asthma and hypertension have inheritable
components, which means the presence of some shared molecular-genetic mechanisms.
This observation motivated us to search for genetic overlap considering multiple kinds of
molecular evidence in addition to genetic associations. From public databases we extracted
genes which:

• carried at least one non-silent variant associated with any of diseases in GWAS;

• had a variant or variants causing familial forms of hypertension or asthma, or a
mendelian disease characterized by hypertension or asthma among other symptoms;

• were regulated by eQTL variants matching with GWAS hits for asthma or hypertension;

• demonstrated differential expression in tissues of patients with asthma or hypertension,
compared to healthy controls;

• were targeted by drugs used to treat asthma or hypertension;

• were targeted by drugs worsening or asthma or hypertension;

• frequently co-occurred in texts with asthma or hypertension;

In total, 330 genes were associated with both diseases through the associations of various
kinds. These shared genes were further projected on the PPI network obtained via Cytoscape
[244] version 3.6.1 stringApp [71] version 1.3.0. Genes not connected with any other shared
genes were excluded from consideration. Applying the EAGLE algorithm [248] on the
resulting network of 257 nodes revealed six modules which were further characterized
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according to overrepresented pathways, GO terms, and tissue-specific gene sets. The scheme
of the study workflow is shown on Figure 2.6.

Fig. 2.6 Identification and characterization of gene modules associated with asthma and
hypertension. Network nodes represent genes and are colored according to membership in a
module. Nodes not assigned to clusters are shown in grey. Size of each node is proportional
to the number of evidence sources supporting the association of corresponding gene with
asthma or hypertension. The figure is adapted from [300].

The description of each of the modules and the discussion of their possible role in asthma
and hypertension is given in [300]. Interestingly, testing of the whole set of shared genes
would give a smoothed picture of overrepresented GO, pathway, and tissue-specific labels,
similar to the largest module. This result demonstrates that considering gene interactions
enables a more detailed view of biological processes implicated in asthma and hypertension
and potentially responsible for their comorbidity.
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Fig. 2.7 Evidence sources supporting gene associations with asthma and hypertension. In
this figure, a node style similar to Figure 1B in [247] was used. Here, nodes represent genes
associated with both asthma and hypertension, edges correspond to gene interactions. Genes
are colored according to evidence sources (see figure legend) from which associations came
from. The size of each node is proportional to the number of evidence sources supporting its
association with asthma and hypertension. The figure is reprinted from [300].

Module 4 contained several genes targeted by drugs indicated or contraindicated in asthma
and hypertension. Since several drugs had opposite effects on asthma and hypertension, we
hypothesized that drug side effects may also contribute to the developemt of comorbidity. For
example, drugs used against one disease could make patients more prone to another disease
and thus increasing risks of comorbidity. To evaluate this hypothesis, drugs that influence
asthma or hypertension were classified into four groups:

• drugs used to treat asthma or relieve its symptoms

• drugs decreasing blood pressure and used against hypertension

• drugs contraindicated for patients with asthma or worsening or inducing its symptoms

• drugs elevating blood pressure and/or contraindicated for patients with hypertension

Eight non-selective beta-blockers used to treat hypertension (timolol, nadolol, sotalol,
pindolol, carvedilol, labetalol, propranolol) were not recommended for asthma patients due
to the risk of asthma exacerbations [190]. At the same time, seven anti-asthmatic drugs
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classified as beta-agonists or corticosteroids were in the list of drugs that may elevate blood
pressure: triamcinolone, prednisolone, methylprednisolone, dexamethasone, hydrocortisone,
and epinephrine, ephedra, ephedrine.

Since drugs from the same class affected the same target genes, to identify all targets that
may potentially mediate drug effects on asthma and hypertension, target overrepresentation
analysis has been carried out for each of four drug groups. It revealed 96 genes significantly
overrepresented among targets of at least one of four drug groups (summarized in Figure
2.8 ), but only 16 of them were in the asthma-hypertension network. As expected, ADRB1

and ADRB2 were targeted by drugs from all four groups, since activation and inhibition
of beta-adrenoreceptors had opposite effects on asthma and hypertension. NR3C1 which
encodes glucocorticoid receptor, was activated by drugs indicated in asthma but potentially
harmful for hypertension. Yet another target of corticosteroid drugs, ANXA1 mediates the anti-
inflammatory effect via inhibition of phospholipase A2 [208]. PTGS1 was overrepresented
among targets of drugs contraindicated in asthma, while inhibition of its paralog PTGS2

potentially promoted both diseases.
Taken together, our findings suggest that genes targeted by prescribed drugs may con-

tribute to pathophysiologic mechanisms of comorbidities. Moreover, this particular case
of asthma and hypertension leads to the conclusion that drug side effects may be used to
connect genes and diseases and advance the understanding of disease mechanisms.

To facilitate further analysis of the data on associations relevant for asthma and hyper-
tension comorbidity, a Neo4j database called GenCoNet has been created [250]. GenCoNet
describes relationships between four types of biological entities: genes, diseases, drugs, and
gene variants (Fig. 2.9).

GenCoNet allows the user to answer research questions using Cypher query language,
for example:

• find drugs indicated for one disease, but contraindicated for the other;

• find all genes, targeted by drugs used to treat the disease and differentially expressed
in this disease;

• find all genes, which are controlled by eQTL variants associated with a disease;

In contrast with other databases of gene and disease relationships such as DisGeNET
[15, 218, 219], Open Targets [142], or TargetMine [45], GenCoNet contains more reliable
manually curated data on asthma and hypertension. One important limitation of this work is
the absence of a gold standard for direct validation of the resulting gene sets. Experimental
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validation of gene roles in comorbidity is strongly desired but remains beyond the scope for
this thesis.
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Fig. 2.8 Relationships between genes and drugs indicated and contraindicated in asthma and
hypertension. All target genes significantly overrepresented in one of four drug groups are
shown. Drugs influencing both diseases and target genes overrepresented in more than one
group are shown with bold frames. The figure is reprinted from [300].

Fig. 2.9 The scheme of the GenCoNet database reprinted from [250].



Chapter 3

Overview of Biclustering Methods

3.1 Introduction to Biclustering

The term biclustering introduced by B. Mirkin in 1996 [186] designates the methods per-
forming simultaneous clustering of rows and columns of a 2-dimensional data matrix. The
result of biclustering is a set of submatrices demonstrating a specific pattern and called
biclusters. Fig. 3.1 illustrates the general concept of biclustering on the example of an
artificial real-valued matrix of 50 rows and 25 columns with five implanted biclusters.

In order to understand the concept of biclustering, one may compare it with conventional
clustering. Let us consider a 2-D matrix, which columns represent the objects, (e.g. expres-
sion profiles of samples) and rows correspond to the features of these objects (e.g. genes).
Conventional clustering methods group the objects in a way such that the objects from one
group are more similar to each other than to the objects from the other groups. To solve this
problem, clustering methods operate on similarities computed in the space of all features.

In contrast with conventional clustering, biclustering methods search for multiple indepen-
dent groupings of objects, such that each grouping is supported by a local pattern. Locality
here means that these patterns manifest only in certain subspaces of features, e.g. subsets of
genes. These relevant subspaces may overlap and vary in size. The ideas behind biclustering
agree with the understanding of phenotype heterogeneity and complexity discussed in chapter
2. Complexity implies that multiple genes or even functional groups of genes are involved
in the development of phenotype of interest, e.g. a disease. Heterogeneity implies that the
desired pattern may present only in a small subgroup of genes and samples. Moreover, there
may present multiple such subgroups and they can overlap in genes and samples.

Biclustering is particularly useful when the data contain local patterns independent from
each other and relatively small compared to the total number of features. Fig. 3.2 A shows a
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data matrix with 5 biclusters overlapping in rows or columns. Rows of the bottom half of this
matrix do not belong to any bicluster and contain random values drawn from the standard
normal distribution. For example, hierarchical clustering applied independently on rows
and columns of this matrix splits almost all the biclusters. Fig. 3.2B demonstrates a similar
matrix, but its bottom rows are correlated. In this case, the clustering of columns will be
driven by the largest pattern in this matrix. The appropriate biclustering approach would also
detect the largest pattern, but along with smaller ones.

biclustering

-2-4 0 2 4

Fig. 3.1 The concept of biclustering. Dashed frames highlight biclusters which became
visible in the matrix after the rearrangement of columns and rows.

The main challenge of biclustering is the size of search space which is much larger than
for conventional clustering on columns and rows. Moreover, it is often the case that neither
the number of biclusters (i.e. relevant groupings), nor their sizes are known, which makes
biclustering problems extremely computationally complex and cannot be solved by a simple



3.1 Introduction to Biclustering 33

clustering of 
rows and
columns
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correlated rows

bic 3

bic 1

bic 2

bic 1

bic 3

bic 2
bic 4

bic 5

A

B

clustering of 
rows and
columns

Fig. 3.2 The examples demonstrate the advantage of biclustering over conventional clustering. Both
panels show matrices before and after hierarchical clustering with average linkage in a space of
euclidean distances. Colored bars and dashed frames highlight membership in biclusters. A. The
input matrix contains five implanted biclusters highlighted by dashed frames. Because these biclusters
overlap in rows or columns, hierarchical clustering mixes them up. B. The input matrix contains three
biclusters overlapping in columns. Approximately half of all rows outside biclusters are correlated
(marked by grey bars and the frame). This group of rows is larger than any of the biclusters and
therefore makes the major impact on the clustering of columns.
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brute force in a reasonable time. Some biclustering problems were proven to be NP-complete
[261, 174]. Briefly, the simplest problem definition of binary biclustering can be reformulated
in terms of graph theory as the problem of finding a maximum edge biclique in a bipartite
graph, which is NP-complete [210]. Other problem definitions consider non-binary data
and/or searching for more complex patterns must have higher complexity. To reduce the
complexity and find suboptimal solutions in a shorter time, many methods apply various
heuristics or solve restricted versions of the problem.

Since the pioneering work by Hartigan published in 1972 [97], dozens of various biclus-
tering problem definitions and approaches to solve them have been proposed [223]. Because
the ideas behind biclustering agree with the understanding of phenotype heterogeneity and
complexity, it has been widely used in bioinformatics for the analysis of data of various
kinds: genomic, transcriptomic, epigenomic, etc. [285].

Same as clustering problems, the exact definitions of the problems solved by biclustering
methods may greatly differ in details, in particular:

• in patterns characterizing the desired biclusters

• input data type: binary, discrete or real

• whether the number of biclusters is known

• whether the overlap of biclusters is allowed

• the exhaustiveness towards columns and rows

• whether any additional data about rows and columns are considered

Characterization of the existing methods according to the above characteristics is provided
below in this chapter. A special emphasis is placed on the applicability of the methods for
the purpose of gene expression data analysis.

3.2 Classification of biclustering methods

3.2.1 Input data type

The exact definitions of biclustering problems vary in assumptions about the input data. The
majority of computational tools of biclustering are capable of handling any real-valued matrix,
e.g. a matrix of gene expressions. However, before biclustering, some tools can automatically
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perform all necessary data transformations in order to satisfy method requirements. Basically,
input data types required by the methods reviewed in this thesis may be split into three
groups:

• Real. In most cases, expression data represent a matrix of floats, each corresponding
expression levels of genes in samples. Some methods are suitable to handle non-
normalized inputs (although normalization is almost always recommended), while the
others perform some mandatory data transformations before biclustering. For example,
NMF-based methods, such as nsNMF [34], require all values to be positive. The
real-valued matrix provides a more realistic expression data representation that allows
more flexibility in pattern discovery. However, this data presentation does not simplify
the task in any way, as compared to binarization or discretization of the data.

• Discrete. Some methods, e.g. xMOTIFs [196] and QUBIC [157], approximate
expression values by a small set of integers. For example, in the simplest case, gene
expression may be split into three bins, e.g. 1 if it is up-regulated, -1 is down-regulated
and 0 otherwise. The number of such bins is usually determined by the user and may
vary, although it must remain less than the number of samples. The boundaries of bins
may be determined based on the quantiles of the distribution of the expression levels
for each gene. The results of Eren et al. have demonstrated the choice of discretization
level affects the results [76]. On the one hand, discretization simplifies and unifies
input data thus helping to reduce the complexity of the problem. On the other hand,
such data transformation may lead to the smoothing or even the loss of dependencies
between genes, especially when the number of bins is small. This can make the method
less appropriate for some patterns, e.g. those which are related to gene co-expression
(see subsection 3.2.2).

• Binary. There are different types of biological data for which, in contrast to expression,
the binary format is naturally most suitable. These include, for instance, mutation data,
e.g. profiles of single nucleotide alterations, which are frequently presented as binary
vectors, where every component contains 1 is the gene is mutated or 0 otherwise (see
our recent works for the examples [246, 253]). Therefore, some biclustering methods,
such as e.g. BicBin [272], were initially developed for handling sparse mutational
data.

Since binarization significantly simplifies the problem, binary biclustering was also
applied to the expression data preceded by the binarization procedure [227, 234, 242].
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For binarization of expression data, BiMAX [227] applies a cutoff equal to the mean
between the minimum and maximum values of a whole dataset. DeBi [242] assigned
ones to all the samples where a certain gene is above (below) of a user-defined fold-
change cutoff, set the same for all genes. All the above binarization methods have
important drawbacks: they all apply a threshold, same for all genes, regardless of
the shape of the distribution, which may vary. Moreover, after the binarization, one
has no clue about how well separated the groups labeled with 0 and 1. Finally,
some relationships between gene expressions, e.g. correlation, may be lost after the
binarization procedure, which makes binary biclustering methods not suitable for the
detection of differential co-expression.

3.2.2 Patterns

The definition of a pattern characterizing the desired biclusters is a key part of a biclustering
problem. Most methods are aimed at the detection of a specific pattern and may not perform
well when the actual data contains biclusters of a different kind [76, 206]. This must be taken
into account when choosing the most appropriate methods for a given research question. If
the type of the desired pattern is unknown, it is worth trying several methods designed for
the discovery of different bicluster types.

In agreement with the previous reviews, the patterns aimed by biclustering methods
can be divided into three classes: constant values, coherent values, and coherent evolutions
[223]. The examples of these patterns, as well as functions used to measure their quality, are
described below in this chapter. The relationships of these patterns to biologically meaningful
phenomena of differential expression and co-expression are also discussed below. Here and
below B(G′,S′) denotes a bicluster B in the matrix with expressions of G genes and S samples
which include genes G′ ∈ G and samples S′ ∈ S.

Constant values on rows and/or columns. Constant values on rows and/or columns.
This class includes biclusters with constant values on rows, columns, or both (Fig. 3.3). As
quality function for biclusters with constant values on rows and columns. Hartigan [97]
proposed to use bicluster variance defined as:

Var(B(G′,S′)) = ∑
g∈G′

∑
s∈S′

(bgs −bG′S′)
2, (3.1)
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where bG′S′ is the average over all elements of B(G′,S′):

bG′S′ =
∑g∈G′ ∑s∈S′ bgs

|S′||G′|
. (3.2)

If all elements bgs of B(G′,S′) are close to a constant value C, bicluster variance will be close
to 0.

The definition of a constant value bicluster says nothing about the difference between
values within the bicluster and outside it. If values within the bicluster are higher or lower
than background values, this pattern corresponds to differential expression.

Coherent values on rows or columns. This type of biclusters implies that each of its
elements bgs combines the effects of g-th gene and s-th sample in an additive or multiplicative
way. Addition and multiplications give rise to shifting and scaling patterns, which may present
separately or together. Thus, three types of biclusters with coherent values are distinguished
(Fig. 3.4):

• Shifting:

bgs =C0rg +C1cs (3.3)

• Scaling:

bgs =C0rgC1cs (3.4)

• Shifting and scaling:

bgs =C0rgC1cs +C2cs, (3.5)

where rg and cs are the effects of row and column corresponding gene g and sample s,
and C0, C1, C2 are constants.

The method by Cheng and Church [47] aimed at finding biclusters with shifting pattern
utilizes Mean Squared Residue (MSR):

MSR(B(G′,S′)) =
1

|S′||G′| ∑
g∈G′

∑
g∈S′

(bgs −bgS′ −bG′s +bG′S′)
2, (3.6)

where bG′s and bgS′ are row (gene) and column (sample) means of B(G′,S′), respectively.
For biclusters with a perfect shifting pattern, MSR equals 0. However, in independent
benchmarks carried out by Eren et al. and Padilha et al. the method demonstrated the higher
performance on constant biclusters (which is a special case of shift pattern), rather than on
biclusters with shift pattern.
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A B C

Fig. 3.3 The example of biclusters with constant values on columns and rows (A), only on
rows (B) and only on columns (C). The bottom panel of each plot shows genes in parallel
coordinates. Red color highlights genes that belong to the bicluster.

A B C

Fig. 3.4 The example of biclusters with coherent values. A. Shifting pattern. B. Scaling
pattern. C. Shifting and scaling pattern.

Mukhopadhyay et al. [195] proposed a measure similar to MSR for the detection of
shifting patterns, called Scaling MSR (SMSR):

SMSR(B(G′,S′)) =
1

|S′||G′| ∑
g∈G′

∑
s∈S′

(bgS′bG′s −bgsbG′S′)
2

b2
gS′b

2
G′s

, (3.7)

MRS and SMRS measures are not capable of identifying patterns combining shifting and
scaling. This problem was later solved by Pontes et al., 2013 [222] and Ahmed et al., 2014
[2]. The first proposed Evolutionary biclustering method Evo-Bexpa and a developed new
evaluation measure called Virtual Error [68] (VE):
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V E =
1

|S′||G′| ∑
g∈G′

∑
s∈S′

|b̂gs − b̂gS′|, (3.8)

where b̂gs and b̂gS′ are standardized values of bgs and bgS′ . Owing to standardization,
more similar shapes of g patterns would give lower VE.

A year later Ahmed et al. [2] published the Intensive Correlation Search (ICS) algorithm
which uses Shifting and Scaling Similarity (SSSim) measure. SSSim measure defines the
pairwise similarity between patterns of two genes g1 and g2 in k = |S′| samples.

SSSim(g1,g2) = 1− 1
k−2

k−1

∑
i=2

bg1si+1 −bg1si

bg12 −bg11
−

bg2si+1 −bg2si

bg22 −bg21
×

1

2max(lmeani −
bg1si+1−bg1si
bg1s2−bg1s2

, lmeani −
bg2si+1−bg2si
bg2s2−bg2s2

)
,

(3.9)

where

lmeani =



mean(
bg1si+1−bg1si

bg12−bg11
,

bg2si+1−bg2si
bg22−bg21

,
bg1si+2−bg1si+1

bg12−bg11
,

bg2si+2−bg2si+1
bg22−bg21

), if i = 2,

mean(
bg1si−bg1si−1

bg12−bg11
,

bg2si−bg2si−1
bg22−bg21

,
bg1si+1−bg1si

bg12−bg11
,

bg2si+1−bg2si
bg22−bg21

), if i = k−1,

mean(
bg1si−bg1si−1
bg1s2−bg1s2

,
bg2si−bg2si−1

bg22−bg21
,

bg1si+1−bg1si
bg12−bg11

,
bg2si+1−bg2si

bg22−bg21
,

bg1si+2−bg1si+1
bg12−bg11

,
bg2si+2−bg2si+1

bg22−bg21
),

otherwise
(3.10)

SSSim(g1,g2) = 1 when g1 and g2 demonstrate a perfect scaling and shifting pattern. ICS
searches for maximal subspaces for which SSSim exceeds the user defined threshold.

Coherent evolutions. This group includes biclusters, whose rows and columns demon-
strate a similar tendency not described by any of the above models. For example, biclusters
composed of genes accordingly up- and/or down-regulated in a subset of samples, i.e. dif-
ferentially expressed biclusters (Fig. 3.5). Biclusters, whose rows or columns demonstrate
a higher pairwise correlation compared to the background also fall into this group. The
difference of this group from biclusters with coherent values is that a perfect pattern of such
bicluster is not formalized. It is important to note that biclusters with coherent evolutions
may be a good approximation for biclusters with shifting, scaling and shifting-and-scaling
patterns. For example, in synthetic benchmark [206] CPB [26] and OPSM [18] aimed at
biclusters with coherent evolutions showed a good performance on shifting and scaling
patterns.
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A B

Fig. 3.5 The example of biclusters with coherent evolutions. A. Up-regulation. B. Down-
regulation.

3.2.3 The usage of additional data sources

Although most of the biclustering methods require input only expression (or multi-omics
[137]) data matrix, some of them can additionally incorporate orthogonal biological data to
improve biclustering results. For example, COALESCE can optionally accept sequences of
gene regulatory regions and perform de novo motif search jointly with biclustering [114].
It searches for biclusters composed of genes whose regulatory regions are enriched by the
same motifs. Another biclustering method, cMonkey2, in addition to motif enrichment data,
considers functional associations between genes in its scoring function [228]. However,
as well as many other biclustering methods, cMonkey2 is more suitable for searching for
differentially co-expressed biclusters, rather than differentially expressed. A novel version
of QUBIC can utilize the data on known gene relationships when it ranks gene pairs before
constructing biclusters [157].

The usage of orthogonal data about gene relationships drives the solution towards more
biologically reliable biclusters. However, in isolation from the concrete task, it’s hard to say
how useful such biological constraints are. In any case, each method takes into account only
a fixed data set, which may be far from complete and correct. For instance, the network may
miss existing connections between poorly annotated genes and contain false connections
between well-studied ones. Moreover, some connections may be true, but irrelevant to the
studied tissue or cell type. Finally, biclusters observed into expression data may be explained
by the third reason not related to the chosen data. Summarizing the above, using additional
biological constraints may bias the results and lead to a systematic loss of some correct
solutions.
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3.2.4 Other constraints

In order to find a solution in a shorter time, some methods apply other constraints on biclusters
or on the whole biclustering result. It is necessary to consider them when comparing
biclustering methods because the usage of these restrictions also simplifies the problem
definition and biases the results towards certain solutions.

• Number of biclusters

• Size of biclusters

• Row and column exhaustiveness

• Whether the method assumes any global data structure, e.g. checkerboard

3.3 Related works

As it was already mentioned above, biclustering methods differ first of all in the desired
pattern they are searching for. Not all biclustering methods are suitable for the detection of
differentially expressed biclusters. Since the differential expression is in the focus of this
thesis, eleven state-of-the-art biclustering methods [19, 47, 108, 114, 151, 157, 196, 234, 242]
were chosen based on their good performance on synthetic datasets with differentially
expressed biclusters in a recent benchmark by [206]. However, SAMBA [261] failed to be
installed and BiMAX [227] did not return any result on the real-world dataset after a week of
running. Of the nine remaining methods, only QUBIC was able to take into account network
data. Therefore, in addition to these methods, yet another tool able to perform network-
constrained, called cMonkey2 [228] method was initially added to the baselines. However,
the experiments on real data have shown that cMonkey2 was not successful in the detection
of bicluster with pronounced differential expression and therefore it was not included in
the benchmark. Table 3.1 compares nine selected computational tools for biclustering. The
descriptions of the approaches used by the selected methods are also provided below.

3.3.1 Cheng and Church

In 2000 Cheng and Church became the first who applied biclustering for the analysis of
gene expression data [47]. The proposed algorithm was aimed at maximal biclusters with
Mean Squared Residue (see equation 3.6) below a user-defined threshold. It was shown to be
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method output data
transformation deterministic prior

knowledge

requires to
specify
the number
of biclusters

theoretical
runtime complexities

Cheng &
Church

biclusters with
constant values none yes not used yes O(|G||S|)

xMOTIFs coherent and
constant biclusters discretization no not used no O(|G|nsnd)

QUBIC nonzero constant
columns biclusters discretization yes

network
(optional) yes O(|G|3|S|)

Plaid additive biclusters
with coherent values none no not used yes O(|G||S|Kniter)

FABIA multiplicative biclusters
with coherent values none no not used yes O(|G||S|p2niter)

ISA2
biclusters with row and
columns averages higher
than Tc and Tr

none no not used no O(nseeds|G||S|niter)

DeBi differentially expressed
biclusters binarization yes not used no

COALESCE up- and down-regulated
biclusters none no

motifs
(optional) no O(|G|2(|G|+ |S|)nbics)

BiBit binary biclusters binarization no not used
max. number
(optional) O(|G|2|S|)

Table 3.1 Comparison of nine tested biclustering methods.

efficient only for biclusters with constant value [76, 206]. To date, the method received more
than 2500 citations and remains a popular baseline for novel biclustering methods.

In addition to the expression matrix, the algorithm requires three input parameters: upper
MSR threshold δ , scaling factor α and the expected number of biclusters n. The algorithm
performs n iterations, each including three steps:

1. Multiple node deletion. At the initialization, the algorithm assigns the whole matrix
to B(G′,S′) and computes its MSR. If MSR(B(G′,S′)) ≤ δ , B(G′,S) it is returned;
otherwise the algorithm iterates through all genes G′ and samples S′ and removes those
whose MSR exceeds α ×MSR(B(G′,S′)), where α > 1.

2. Single node deletion. Either row or columns with the largest MSR are deleted, until
MSR(B(G′,S′))≤ δ .

3. Node addition. All non-bicluster rows and columns with MSR not exceeding δ are
joined to B one by one.

At every iteration, the algorithm detects one bicluster and overwrites the bicluster with
random values at the end of the iteration, thus removing it from the matrix.
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3.3.2 Plaid

Plaid assumes that the observed expression matrix results from the sum of biclusters and
background effects [151]. The value of each element egs from the expression matrix E is
assumed to be composed of background expression and the effects of K biclusters:

êgs = θgs0 +
K

∑
k=1

θgskρgkκsk, (3.11)

where θgs0 is the background expression, ρgk and κsk are binary indicators of column and
row membership, and θgsk is the impact of bicluster, defined as θgsk = agk +bsk +mk, where
agk, bsk, and mk denote row, column and background impacts of the biclsuter k.

Plaid is aimed to minimize the sum of squared errors between the observed and modeled
expressions, assuming K biclusters in the data:

MSE =
G

∑
g

S

∑
s
(egs −θgs0 −

K

∑
k=1

θgskρgkκsk,)
2. (3.12)

To solve this problem, plaid employs an iterative procedure, where it identifies one layer
at time and removes it from E at the end of iteration. For each layer k, plaid fixes ρgk, and
κsk and finds θgsk corresponding minimum squared error. Next, it similarly identifies ρgk,
fixing κsk and θgsk and κsk fixing ρgk and θgsk. For each layer, plaid performs n steps of
optimization of ρ , κ and θ . Initial values for ρik, and κ jk were set to 0.5 plus a small random
number (distribution was not specified). Optimizations are performed until either

• k reaches Kmax, or

• the importance of k-th layer defined as σ2
k = ∑n ∑p θ 2

gskρgkκsk does not exceed σ̃2
k –

the maximal importance of the layer obtained in r shuffled versions of E.

3.3.3 xMOTIFs

The method by Murali et al. [196] is based on the assumption that observed gene expression
values may be interpreted as a small number of gene states. To reduce search space, the
authors suggest considering only those intervals, which contain significantly more samples
than expected by chance, assuming a uniform distribution of samples over all intervals. They
determine such intervals using a one-sided hypergeometric test.

In their paper, Murali et al. introduced a term conserved gene expression to designate the
cases when expression values of a gene are bound to a certain narrow interval in a subgroup
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of samples. They represented expression profiles of samples as points in |G|-dimensional
space and suggested to find xMOTIFs – maximal hyperrectangles in this multidimensional
space. These rectangles are bound in the dimensions of conserved genes and open in all
others. In other words, the definition xMOTIF may be also understood as an approximation
of a bicluster B(G′,S′) with coherent evolutions.

The searched xMOTIF must cover not less than α-fraction of all samples and to be
maximal in terms of genes. Maximality in genes means that none of G \G′ genes of the
xMOTIF is not conserved in more than β samples from S′. Besides α and β , the user must
specify the number n ≥ 2 of equal-sized bins used to discretize all gene expressions, and
three algorithm parameters ns, nd and sd explained below.

When expressions are discretized, the algorithm randomly chooses ns seed samples and
performs nd attempts to grow a xMOTIF from each sseed:

• Randomly selects S′ samples from S, |S′|= sd;

• Finds all G′ genes, which expressions fall into the same bin as sseed in all S′ samples;

• Extends xMOTIF by all samples from S\S′ with the same pattern;

• If the resulting xMOTIF includes less than α|S| samples, it is discarded; otherwise, it
is extended in genes and returned.

3.3.4 ISA

The first version of the Iterative Signature Algorithm (ISA) was published by Bergmann et al.
[19] in 2003. ISA searches for Transcriptional Modules (TMs) – subsets of genes and samples,
such that column and row averages of corresponding submatrices in normalized expression
matrices would exceed user-defined thresholds TG and TS respectively. Normalization is
performed independently for rows and columns of E. ISA centers and rescales to unit length
gene and sample vectors of expression matrix E resulting in two matrices EG and ES. As the
reader can see from the definition, TM corresponds to an up-regulated bicluster. Similarly,
ISA can also find down-regulated biclusters requiring row and column averages to be below
given thresholds.

ISA grows TMs from nseeds randomly chosen sets of genes. Each TM may be described
as a pair of gene and sample sets, e.g. G′0 and S′0 at initialization. Equivalently, it can be
represented as a pair of binary vectors of gene and sample memberships g0 and s0:
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g0
i =

1, if gi ∈ G′0,

0, otherwise
s0

i =

1, if s j ∈ S′0,

0, otherwise

ISA randomly chooses G′0 from G and computes g1 and s1 for given g0:

s1 = f (ET
G ∗g0,TG), g1 = f (ES ∗ s1,TS), where f (x,T ) = w(x)Θ(x−T ) (3.13)

Here x is centered and scaled x, Θ is a function, which sets 0 to all non-positive compo-
nents of a vector, and w(x) is a weight function. By default, weights of all genes (samples)
are simply set to 1, although they can be changed if the user wants to incorporate prior knowl-
edge, e.g. add weight to some important genes. Iterations performed until the convergence
when the g change becomes smaller than tolerance ε during n last steps. The vector g∗ to
which the system is converged and corresponding vector s∗ are termed in the paper “fixed
point” and defines a TM candidate.

Finally, when many candidate TMs generated from multiple runs of the method, similar
TMs are united. Two TMs are considered similar if correlations between their row and
column vectors exceed a threshold (the authors suggested the threshold of 0.8 [120]). ISA
restarts from the average of all the same TMs in order to merge them into a single one.

Later in 2010, Csardi et al. [63] published ISA2, a reimplementation of ISA in R, which
is used in this thesis. In contrast with the first version, it applies z-score for normalization
of expression matrix and uses slightly different thresholds Tgσg and Tsσs, where σ denotes
standard deviation for gene g and sample s.

3.3.5 COALESCE

Huttenhower et al. 2009 [114], proposed a new method for the detection of regulatory
modules, given expression and sequence data, called COALESCE (Combinatorial Algorithm
for Expression and Sequence-based Cluster Extraction). In contrast with many other bi-
clustering methods, COALESCE is able to perform biclustering jointly with motif search
and enrichment analysis. It searches for biclusters formed of co-expressed genes and can
optionally consider regulatory sequences of these genes. If sequences are provided, it favors
biclusters composed of genes whose regulatory sequences are enriched by regulatory motifs.

COALESCE requires a matrix E of expression z-scores and can optionally accept a list of
regulatory sequences associated with genes from E. If sequences are provided, COALESCE
builds a matrix M of frequencies for the detected motifs before biclustering. COALESCE
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extracts one bicluster at a time and therefore requires the user to specify the expected number
of biclusters. Each round starts from a pair of genes with the highest correlation across
all the samples. First, COALESCE determines samples whose expressions of both genes
significantly different from the background. For that COALESCE applies Z-test and includes
samples whose p-values do not exceed the threshold pe. This results in a seed bicluster
B(G′,S′), thus far composed of two genes G′ and S′ samples. If sequence data is provided,
COALESCE identifies sequence motifs and tests the hypothesis of their enrichment in
sequences regulating genes from the bicluster.

COALESCE applies Bayesian integration to define the probability of each of the remain-
ing genes to be a part of this bicluster, conditioned on the observed expression and motif
enrichment data:

P(g ∈ G′|E,M) ∝ P(E|g ∈ G′)P(M|g ∈ G′)P(g ∈ G′), (3.14)

where M and E are expression and motif enrichment data, and priors are set proportional
to |G′|. Genes with P(g ∈ G′|E,M) exceeding probability threshold pg join the bicluster.
Thus S′ and G′ are iteratively updated until the convergence. Finally, the profile of the
resulting bicluster (average of columns) is subtracted from E before a new round of search.

3.3.6 QUBIC

Li et al. [157] published a graph-based method for QUalitative BIClustering (QUBIC),
performing in two phases. First, QUBIC discretizes input expression data and represents it as
an edge-weighted network of genes. In this network, weights of edges correspond to the size
of a sample subset in which expression profiles are similar. Second, it searches for heavy
connected subgraphs in the network, one at time.

Discretization. For each gene, QUBIC converts its expression levels to 2r+1 integers:
−r, ...,0, ...,r. First, it determines samples in which expressions of genes are not altered
(i.e. belong to background) and sets their expressions to 0. For that, QUBIC arranges all
expression values in ascending order and calculates the size 2d of the background group,
which is controlled by a user-defined parameter 0 < q < 0.5:

d = min(Egsc −Egss,Egs|S|−s+1 −Egsc), (3.15)

where c is the index of the median sample, and s = |S|q+1. A gene g is considered to be
not altered in a sample s if its expression value Egs belongs to the interval Egsc −d,Egsc +d).
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Gene expression values exceeding Egsc +d are considered to be up-regulated. QUBIC
splits into r equal-sized bins and encodes them as r, ...,1. Gene expressions below Egsc −d

are discretized similarly and encoded as −1, ...,−r.
QUBIC considers gene expressions similar if they fall into the same bin. The similarity

of two gene profiles simply is the number of samples with similar expressions, except those
set to 0. At the end of this phase, expression data is represented as a network of genes with
edges weighted according to the number of samples with the same expressions.

Identifying biclusters. Heavy subnetworks in the resulting network may define promis-
ing bicluster candidates. However, as the authors noted, such subgraphs do not necessarily
define good biclusters. For example, two pairs of genes may share patterns manifesting in
two different groups of samples. To avoid finding subnetworks composed of heavy, but incon-
sistent edges, the authors introduced a consistency threshold 0 < c ≤ 1. The consistency of a
bicluster B(G′,S′) equals a minimum fraction of matching expressions among all columns
(samples).

QUBIC performs multiple rounds of search and tries to identify one heavy subnetwork at
time. Since the method is aimed at maximal biclusters, at each round, QUBIC starts from the
edge with the highest weight and grows the subnetwork in four steps, until joining new genes
is possible without violation of the consistency condition.

1. QUBIC selects a pair of genes g1,g2 with the highest weight. At the first round of
search, when no biclusters are detected, all edges are considered as seeds. Later,
when some biclusters are detected, seeds are additionally checked for the following
conditions

• at least one of its genes g1 or g2 is not in any bicluster, or

• g1 and g2 are in different biclusters B(G′
1,S

′
1) and B(G′

2,S
′
2) not overlapping in

genes and the weight of this pair exceeds max(|G′
1|, |G′

2|).

For a chosen pair of seed genes G′ = g1,g2, a set of samples S′ with matching non-zero
expressions is determined.

2. Iteratively adds to G′ all genes, such that the consistency of a bicluster does not
decrease. When g is added to G′ resulting in a new gene set G

′′
= G′∪{g}, a new set

of samples S
′′

preserving perfect consistency of B(G
′′
,S

′′
) is identified. The joining of

a new gene g is only allowed if the minimal dimension of a bicluster does not decrease:
min(|G′′ |, |S′′ |)≥ min(|G′|, |S′|).
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3. Adds new samples to S′ starting from those, whose joining results in maximal consis-
tency of B. Stops when joining new samples is no longer possible without dropping
the consistency below the threshold of c.

4. If the user is interested in finding biclusters with genes demonstrating inverse patterns,
step (3) is repeated considering the same expressions with opposite signs.

In the paper by Li et al. published in 2009 provides the implementation of QUBIC
in C. In 2017 Zhang et al. [294] released a new version of QUBIC implemented in R.
Besides functions for data discretization, heatmap visualization and building of co-expression
network, the new version of QUBIC allows the user to incorporate prior knowledge in the
form of the weighted gene network. This query-based version of QUBIC sums edge weights
of the input network with the network obtained at the first step, thus increasing the weights
of gene pairs considered to be more relevant.

3.3.7 FABIA

Hochreiter et al., 2010 [108], proposed the biclustering method called FABIA (Factor
Analysis for Bicluster Acquisition). Given the normalized expression matrix, FABIA searches
for biclusters with a scaling pattern, which is modeled as a product of two sparse vectors λ

and z (Fig. 3.6).
Different from other methods, FABIA assumes that all background genes not participating

in any bicluster are deleted from the input data, which may be hard to achieve in practice.
Same as plaid, FABIA tries to decompose the input expression matrix into a sum of p+1
layers, where p layers correspond to biclusters and one is the noise ε:

E =
p

∑
i=1

λizT
i + ε. (3.16)

Thus, the biclustering problem is reduced to the task of learning all zi and λi resulting in
maximum a posteriori. FABIA sets Laplace distributions as priors for z and λ and applies
variational EM to find the maximum of the posterior. The estimated zi and λi defines the
fuzzy gene and sample membership in the i-th bicluster. If necessary, FABIA applies a
threshold to identify crisp memberships of genes and samples in a bicluster.
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Fig. 3.6 The product of gene and sample effect vectors λ and z resulting in a bicluster with a
scaling pattern. From Hochreiter et al., 2010 [108].

3.3.8 BiBit

Rodriguez-Baena et al. [234] proposed a binary biclustering method called BiBit (Fig. 3.7).
BiBit accepts a binary matrix, and two parameters minr and minc determining minimal
numbers of rows and columns in a bicluster. For binarization, the authors use a two-step
approach. First, all gene expressions were standardized and those which laid outside the
interval [-3;3] were set to -3 or 3. Then, expressions were split into 12 equal-sized bins
and those which fall into the first six bins considered to be down-regulated and the rest –
up-regulated.

In order to compress the data, Rodriguez-Baena et al. suggest grouping columns by nbits

and encode every row as an integer and perform a further search on the encoded matrix.
After the encoding phase, the method iterates over all pairs of rows and forms a seed

pattern applying logical “AND” operation on their integer representations. Further, this seed
pattern is compared with all remaining rows in the same way. If the result of “row AND
pattern” again matches that pattern, the row is included in the bicluster. The authors also
provided an extended version of BiBit, able to tolerate a specified proportion of zeros in the
resulting bicluster.

3.3.9 DeBi

In 2011 Serin and Vingron [242] proposed a method for the discovery of differentially
expressed biclusters called DeBi. The method binarizes the expression matrix and utilizes
the Frequent Itemset Approach (MAFIA) [32] algorithm to detect maximal binary biclusters.
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Fig. 3.7 A scheme of BiBit workflow. From [234].

According to the choice of the user, DeBi can search for up-regulated, down-regulated
biclusters, or biclusters combining both patterns. For binarization of expression data, DeBi
applies a fold-change threshold on expression values. Given a binary matrix, where 1 reflects
expressions matching the desired pattern, DeBi enumerates all maximal binary biclusters in
three steps:

1. Finding seed biclusters. At the first step, DeBi is aimed at finding maximal perfect
binary biclusters. This task is equivalent to finding maximal c-frequent gene sets.
Gene set G′ is c-frequent if its support is larger. The support of a gene set is just
the proportion of samples, in which expressions of all genes are ones. If no superset
of G′ is c-frequent, G′ is called maximal. Given that each subset of a c-frequent
gene set is also at least c−frequent, instead of enumeration of all possible gene sets,
DeBi iteratively applies MAFIA algorithm with varying support thresholds arranged
in descending order. At each iteration, MAFIA searches for maximally frequent gene

sets with support exceeding a given threshold. Initially, the support threshold c is set
equal to the maximal support among all individual genes. c is further decreased by 1

|S|
per iteration until it reaches minimal support specified by the user.

2. Expanding seed biclusters. The first step of DeBi results in a set of perfect binary
biclusters. Given that it uses an arbitrary threshold for binarization, some genes might
be binarized incorrectly, and therefore missing in biclusters. To recover such genes,
DeBi tests all genes for association with each of seed biclusters. All genes for which
the significance of the overlap of non-zero samples and S′ exceeds a p-value threshold
of α , are joined to the bicluster. To reduce computations, DeBi precomputes the sizes
of overlaps that yield a p-value higher than α .
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3. Removal of overlapping biclusters. Finally, starting from the largest bicluster, DeBi
removes all biclusters which overlap in more than 0 < o < 1-fraction of its area with a
bigger one.

3.4 Validation approaches

Validation approaches can be classified as supervised when ground truth is available and
unsupervised when it is not. In the first case, method performance may be calculated directly,
comparing a set of found biclusters with a set of known biclusters. For the evaluation
of biclustering results, many similarity measures suitable for comparison of two sets of
biclusters have been developed [110]. The choice of an optimal metric depends on the task,
such as the tolerance to first and second type errors, redundancy of the results, etc. In this
thesis, Relevance and Recovery scores proposed by Prelic et al. [227] and used in previous
benchmarks [76, 258] were chosen (see subsection 4.5.1).

Direct performance evaluation is complicated by the fact that ground truth data may be
unavailable or not reliable. Breast cancer chosen for this thesis is known to have several
well-characterized subtypes, distinguishable at the level of gene expression. However, even
if some molecular subtypes of breast cancer are specified based on gene expressions, we
cannot refer to them as absolute ground truth, because:

• unknown disease subtypes determined by expressions of different genes may exist
along with known;

• these known subtypes may be defined imprecisely. Indeed, some recent works sug-
gested the extensions [224, 226] of PAM50 molecular classifications [209, 216].

Similar considerations may concern almost every biological dataset. This means that the
evaluation of biclustering on real data may result in a biased performance estimate.

An alternative way of supervised evaluation in the absence of ground truth is a benchmark
on synthetic data. This approach also allows the direct computation of performances and
therefore is widely used by the community for the evaluation of biclustering methods. In
this setting, the experimenter has full control of the data. This allows investigating the
dependence of various data properties such as the number of biclusters, overlap, level of
noise, etc. on the method performance. The results of benchmarks performed by Bozdag et al.
[26], Eren et al. [76], and Padilha et al. [206] have demonstrated that method performances
may vary widely depending on these characteristics of the data.
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The main disadvantage of this approach is that simulated data may not reflect the com-
plexity of real-world data or miss some of its important aspects. This may lead to the over-
or underestimation of method performances (see the discussion in chapter 5 for the details).

In the absence of reliable ground truth, the indirect validation of the results obtained on
real data is still possible. Genes falling into the same bicluster are demonstrating a similar
pattern of expression are expected to be functionally related. Therefore to obtain indirect
evidence of method performance, the resulting biclusters are tested for biological significance.
Almost all of the above methods discussed in this chapter test gene sets for overlap with
Gene Ontology (GO) categories. GO is a controlled vocabulary of gene attributes, providing
annotations of genes with molecular functions they perform, biological processed they
participate and cellular components in which they work. Overrepresentation of genes labeled
with the same GO term in a bicluster compared to background genes points to their functional
coherence and supports the reliability of this bicluster.

A similar idea can be applied for the evaluation of patients groupings obtained in the
result of biclustering. They can be tested for associations with various biological variables
like known disease subtypes or survival. Of course, the absence of association of bicluster
with any functional group or clinical variable result does not necessarily mean that it is
defined incorrectly.



Chapter 4

Methods

The lack of biclustering methods specifically aimed at the detection of differentially expressed
biclusters motivated the development of a novel biclustering method called [298]. To reduce
search space and obtain more robust biclusters, we suggested adding gene network to the
problem definition and searching for network-constrained differentially expressed biclusters.
This chapter starts from the formal problem definition (section 4.1, published in [298]),
represents the first version of DESMOND (section 4.2, published in [298]), and introduces
the second version of the method (section 4.3). Theoretical analyzes of runtime complexity
for both versions of DESMOND are provided in section 4.4. Sections 4.5, and 4.6 (also
adapted from [298]) explain data preprocessing and validation approaches respectively. The
details on the implementation of the methods are provided in section 4.7.

4.1 Problem definition

The problem addressed in this thesis is the discovery of connected groups of genes differen-
tially expressed in an unknown subgroup of samples, given a network of gene interactions
and a matrix of gene expression profiles (Fig. 4.1). This problem can be classified as network-
constrained biclustering, or, alternatively, as unsupervised active subnetwork detection, when
the desired sample subgroups are unknown.

Formally speaking, given expressions of genes in G measured in the samples of set S,
and an undirected and unweighted graph N = (G, I), representing I interactions between the
G genes, the aim is to find subsets of G′ ⊂ G genes and S′ ⊂ S samples, such that genes G′

are differentially expressed in a subset of samples S′ compared to the background samples
S′ = S\S′; and G′ forms a connected component in the network N. Such pairs (G′,S′) are
called modules which is a synonym of bicluster in the context of this thesis. A gene g is
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differentially expressed in a set of samples S′ ⊂ S compared to S′ = S\S′, if µg,S′ , its median
expression in S′, is different from the median expression µg,S′ in S′. Since the aim of this
thesis is the discovery of gene subsets that differentiating putative disease subtypes, it is
important to find biomarkers which expressions in S′ would be well-separated from the
background. To control how well the expression of the gene g distinguishes the group of
samples S′ from the background, one can employ the signal-to-noise ratio (SNR) [100, 187].
The SNR for expression of gene g in S′ samples is defined as

SNR(g,S′) =
µg,S′ −µg,S′

σg,S′ +σg,S′
, (4.1)

where µ and σ denote mean and standard deviation of gene expression in a subgroup of
samples.

Similarly, a set of genes G′ is also called differentially expressed in the samples of set S′

if ∀ gene g ∈ G′, g differentially expressed in S′. The average of absolute SNR over all genes
G′ is used as a measure of differential expression of a bicluster B(G′,S′):

avg.|SNR(B(G′,S′))|= 1
|G′| ∑

g∈G′
|SNR(g,S′)| (4.2)

A higher average absolute SNR value indicates that a subset of samples S′ is well-
separated from the background in a subspace of G′. Such gene sets are promising biomarker
candidates for distinguishing unknown but biologically relevant subtypes of samples.

In the standard setting of differential expression analysis, all genes are tested in two
given groups, e.g. disease vs control. In contrast, in the biclustering problem, the groups
of samples are undefined and are to be discovered. If genes are up-regulated in more than
half of all samples, the remaining samples also form a down-regulated module and vice

versa. Therefore, it makes sense to search for groups of samples of size not bigger than |S|/2.
Furthermore, the desired module should not be too small in terms of samples, because a
smaller module has a higher probability to appear just by chance. To avoid finding too small
modules, the user can select an appropriate smin value based on the size of the dataset and
intended downstream analysis.

4.2 DESMOND Algorithm

To solve the problem formulated above, a new method for identification of Differentially
ExpreSsed gene MOdules iN Diseases (DESMOND) has been developed. The first version of
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Fig. 4.1 The scheme illustrating the searched network-constrained biclusters on the example
of a toy gene network (on the left, nodes represent genes, edges connect functionally related
gene) and expression matrix (on the right, rows, and columns correspond genes and samples
respectively). Genes connected in the network and differentially expressed (up-regulated) in
subgroups of samples are shown bold. Biclusters including the up-regulated and connected
genes and samples, in which these genes are overexpressed, are highlighted by green frames
in the expression matrix.

DESMOND is published in [298] and described in deeper detail below. To identify network-
constrained biclusters, potentially representing disease modules, DESMOND performs three
phases (Fig. 4.2):

1. Identifying samples, in which genes demonstrate an altered level of expression
compared to the background. A similar problem is faced by other biclustering
methods, such as BiMAX [227], BiBit [234], or DeBi [242]. As discussed in subsection
3.2.2, the disadvantage of the binarization approaches utilized by these methods is that
they apply the same cutoff on all genes, regardless of the distribution of expression.
This approach may not work well, for example, when genes dysregulated in groups of
samples of different sizes. To avoid this obstacle, DESMOND searches for a group
of samples, in which a pair of genes are concordantly (both up- or down-regulated).
In contrast with other methods, for each pair of genes, DESMOND identifies an
individualized pair of binarization thresholds, such that

• the overlap between samples demonstrating concordantly altered expressions is
significantly larger than random;

• differential expression is pronounced, i.e. average SNR computed for the bicluster
and the background is high.
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Fig. 4.2 Three phases of the DESMOND algorithm. 1. For each connected gene pair,
identifying sample groups, in which genes demonstrate concordantly altered expressions.
2. Grouping of gene pairs (edges) which are dysregulated in similar sets of samples into
subnetworks and identifying biclusters in the subspaces of these subnetworks. 3. Post-
processing – merging biclusters overlapping in samples and removing biclusters with too few
genes or too low SNR.

To reduce computations, DESMOND considers only connected pairs of genes at this
phase.

2. Grouping pairs of genes that are dysregulated in similar sets of samples. On the
second step, DESMOND performs probabilistic clustering of edges, associated with a
non-empty set of samples. Edges are assembled into subnetworks, composed of edges
associated with similar sets of samples. Each subnetwork gives rise to a bicluster,
obtained when samples are split into two groups in a subspace of subnetworks.

3. Post-processing. Merging biclusters overlapping in samples and discarding biclusters
with less than three genes or weakly differentially expressed.

4.2.1 Step 1. Assigning sample sets to edges

In the first step, for each interaction edge i connecting genes u and v, DESMOND identifies a
maximal set of samples Sshared

i = {s1...sn} in which both u and v are differentially expressed
compared to S \ Sshared

i . For that, it employs a modification of the Rank-Rank Hypergeo-
metric Overlap (RRHO) method [221] (Figure 4.3), originally developed for comparison
of differential expression profiles obtained in two experiments. It searches for a group of
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Fig. 4.3 Modified RRHO method used to find the maximal set of samples, in which two
interacting genes g1 and g2 are up-regulated. A. Input network and expression matrix, red
and blue respectively indicate higher and lower expressions. B. Two lists of samples arranged
in decreasing order of the expression values of g1 and g2. Two thresholds t1 and t2 move
from |S|

2 to smin with step size 2. The intensity of the cell color shows overlap significance for
corresponding thresholds. For the case of down-regulation, the same procedure applies, but
gene profiles are sorted in ascending order. C. A set of samples Sshared assigned to the edge
connecting g1 and g2. From [298].

genes significantly enriched in the tops or bottoms of two ranked lists. Basically, this method
finds an optimal pair of thresholds, for which the enrichment in tops (bottoms) of the ranked
list is the most significant and returns a set of genes with expressions above both thresholds.
For two ranked lists of genes, the method creates a 2D-heatmap of the one-sided Fisher’s
exact test p-values showing the significance of every pair of threshold values tu, tv, picking a
combination corresponding to the most significant overlap.

DESMOND uses a modification of the RRHO method to find for a given connected pair
of genes u and v a group of samples of size between smin and |S|

2 , such that both genes are
concordantly dysregulated in that sample group. Different from the original RRHO method,
DESMOND moves the thresholds from the middle of the lists to the top and stop when
achieving the first significant overlap and averaged |SNR| value above SNRmin. This SNRmin

threshold value could be explicitly defined by the user or estimated based on the data. A
maximal set of samples Sshared

i in whose expressions of u and v are both above the thresholds
and whose avg.|SNR| > SNRmin is assigned to the edge i. If no significant overlap bigger
than smin found, the edge is excluded from further consideration.
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4.2.2 Step 2. Probabilistic edge clustering

In the result of the first step, every edge is assigned a set of samples in which the pair of
genes connected by this edge is up-regulated (or down-regulated). In step two, the algorithm
groups edges into connected components, such that each component contains edges with
similar sets of samples.

The output of the first step may be also represented as a binary matrix X = [x ji]n×m for n

edges and m samples, such that x ji = 1 if sample i is assigned to edge j and x ji = 0 otherwise.
For clustering the rows of this matrix (i.e. edges) into expression modules, DESMOND
models constrained Bayesian mixture of Bernoulli distributions. The underlying distributions
of the mixture model are as follows:

x ji|θic,s j ∼ Bernoulli(x ji|θis j),

θic|α ∼ Beta(θic|α/2,α/2),

s j|π ∼Categorical(s j|π),

π|β ∼ Dirichlet(π|β/K, ...,β/K︸ ︷︷ ︸
K of them

)

(4.3)

In the above model, the assignments of samples to the edges are modeled as a Bernoulli
distribution with parameter θic and a Beta prior, for each sample 1 ≤ i ≤ m and module
1 ≤ c ≤ K. The number of modules is set to K, equal the number of non-empty edges of the
network resulting from step 1. s j, 1 ≤ s j ≤ K, indicates the module to which edge j belongs
and follows a categorical distribution with parameter π and a Dirichlet prior. The model
initializes with each edge assigned to a separate module.

Further, DESMOND performs collapsed Gibbs sampling for parameter learning. Each
iteration of Gibbs sampling goes over all edges and samples the edge indexes s j(1 ≤ j ≤ n).
The Gibbs sampling includes two phases: (1) burn-in, consisting of several consecutive
iterations for initialization of s j, and (2) sampling, which consists of several iterations
throughout which the values of s j are recorded for further analysis for identification of
modules.

At each Gibbs sampling iteration (either in the burn-in or in the sampling phase), to
sample the value of s j, DESMOND first computes the marginal conditional probability of
each s j belonging to a module k as follows:
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P(s j = k|X ,s− j,α,β ) ∝ P(X ,s j = k,s− j,α,β ) =∫
π

∫
θ

[P(X |θ ,s j = k,s− j)P(θ |α)dθ ]P(s j = k,s− j|π)P(π|β )dπ
(4.4)

where s− j indicates the current assignment of all edges except edge j to the modules.
Because the method uses conjugate priors (Beta and Dirichlet) the products are in closed
form and integrations over π and θ are straightforward. Keeping the terms that vary with k,
conditional probability is expressed as follows:

P(s j = k|X ,s− j,α,β ) ∝

∏
i:x ji=1

[
α/2+∑l:sl=k,l ̸= j xli

α + |{l : sl = k, l ̸= j}|

]
× ∏

i:x ji=0

[
α/2+∑l:sl=k,l ̸= j(1− xli)

α + |{l : sl = k, l ̸= j}|

]
×|{l : sl = k, l ̸= j}|+β/K

n−1+β
(4.5)

No information is stored about s j during the burn-in phase. During the sampling phase,
which consists of the last 20 iterations before the convergence, the values of s j are recorded.
We assume convergence when edge transition probabilities stabilize. Specifically, edge
transition probability matrices Pi from the previous 20 model states are computed starting
from i+1-th iteration. Sampling stops when RMS(Pi,Pi+1) reaches a plateau. Achieving
the plateau is detected based on the slope of a line fitting the curve. When the slope remains
between −t and t during the last r iterations. By default, t and r are set to 0.1 and 5
respectively, although the user has an opportunity to change these parameters. The example
on Fig. 4.4 shows the dynamics of the number of oscilating edges and RMS(Pi,Pi+1) during
DESMOND run. The final modules are computed as the most frequent value of s j for each j

in the last 20 iterations.
Candidate modules obtained in the result of probabilistic edge clustering contain from

zero to many edges and can overlap in genes and samples. Each non-empty module represents
a subnetwork, defining a subspace of genes in which samples could be split into two groups
differentially expressing these genes. To split all samples into the aforementioned two groups,
DESMOND performs 2-means clustering of samples in a subspace of genes representing
each module.
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Fig. 4.4 The convergence of the model build for TCGA-micro dataset (see subsection 4.4.2)
with α = 0.5, β

K = 1.0 and p = 0.005 on step 31. The dynamics of the total number of
edges changing their module membership during the last 20 steps (A), and RMS(Pi,Pi+1)
(B). Dashed lines show the border between the burn-in and sampling phases.

4.2.3 Step 3. Post-processing

Since DESMOND aims to discover subnetworks of differentially expressed genes distin-
guishing unknown disease subtypes, all the modules with less than two edges and too low
avg.|SNR| must be removed. The user can either explicitly define the SNRmin threshold
or draw a certain quantile q from the distribution of avg.|SNR| values computed for 1000
“minimal” biclusters – randomly chosen network edges.

Finally, to find more complete gene modules, DESMOND merges interconnected mod-
ules, dysregulated in the same samples. This is necessary because

• reference biological networks are incomplete [168],

• local structure of the network, e.g. changes of network connectivity, may force the
method to detect parts of a large bicluster as separate smaller biclusters.

Therefore, DESMOND recursively merges modules, starting from the pair with the most
significant overlap in samples (Bonferroni-adjusted p-value < 0.05). The merge is only
allowed if avg.|SNR| of the resulting bicluster exceeds SNRmin. The procedure is repeated
until no merge is possible.
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4.3 DESMOND2

After the implementation of the first version of DESMOND, another idea of how to binarize
gene expressions came up. This problem may be solved by fitting the observed distributions
of gene expressions with a mixture of two distributions, e.g. two Gaussians. Based on this
idea, the second version of DESMOND was developed. In contrast with the first version,
which must be run independently for the detection of up- and down-regulated biclusters,
DESMOND2 can also detect biclusters mixing up- and down-regulated genes.

Same as the first version, DESMOND2 performs three steps, of which only first is
changed. In the first step, DESMOND2 models the distribution of expression of each
individual gene as a mixture of two Gaussians. For that, it uses GaussianMixture function
from the python library scikit-learn v 0.19.1, which implements expectation-maximization
(EM) algorithms to learn model parameters from the data. The initial distribution of sample
memberships was obtained from the results of 2-means clustering of expressions. The
maximal number of iterations was restricted to 300 and the other parameters were set to
default values.

After fitting the model, each sample was assigned to one of the two components. Depend-
ing on the expression pattern, chosen by the user, DESMOND2 determines background and
bicluster samples:

• Mixed pattern. Samples from the component including less than |S|
2 samples are

assigned to the bicluster and marked as 1, and the rest are assigned to the background.

• Up-regulation. Samples from the component with a higher median are assigned to
the bicluster and marked as 1, and the rest are assigned to the background.

• Down-regulation. Samples from the component with a lower median are assigned to
the bicluster and marked as 1, and the rest are assigned to the background.

Same as in the first version, genes with an average SNR between bicluster and background
groups or less than smin samples were excluded.

On the second step, DESMOND2 clusters connected genes instead of gene pairs, using
the same approach as the first version. This is advantageous at least for computational
complexity because the number of edges is 1-2 orders of magnitude greater than the number
of nodes. The third step of the algorithm remained unchanged compared to the first version
of DESMOND.
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dataset
(genes x samples

interactions)

para-
meters

Simulated data
(2000x200,

14863)

TCGA-micro
(11959x529,

179514)

TCGA-RNAseq
(11959x1081,

179514)

METABRIC
(11959x1904,

179514)
DeBi D 49.4 26928 87575 NA
DeBi O 57.8 12953 7228 16714
COALESCE D 21.2 38819 85498 44309
COALESCE O 15.8 5260 32552 2430
FABIA D 47.6 180 391 610
FABIA O 39.6 2971 6062 9860
ISA D 58.1 380 357 734
ISA O 79.8 267 500 659
QUBIC D 36.1 7299 9332 7523
QUBIC O 50.8 8890 7488 7713
DESMOND O 35.5 10229 74841 49465
DESMOND2 O 76.9 1449 2553 2964

Table 4.1 Algorithm runtimes in seconds.

4.4 Analysis of the runtime complexity

Table 4.1 reports runtimes demonstrated by both versions of DESMOND and their competi-
tors measured on a synthetic dataset of 200 samples, 2000 genes connected by 14863 edges,
with 10 implanted 100x100 biclusters, and three real datasets of almost 12 thousand genes
connected by 179514 interactions and 529 – 1904 samples (see the details in subsections 4.5.1
and 4.5.2 respectively). All runtimes were estimated on Dell Latitude E5470 laptop with
Intel core i5 vPro, and 16GB RAM for methods run with default and optimized parameters
(see subsection 4.6.1).

The current implementation of DESMOND demonstrates one of the longest runtimes
among the compared methods. Its second version was much faster and showed the best
runtime among network-based methods on large real-world datasets.

Theoretical analysis of DESMOND and DESMOND2 runtime complexities, assuming
input with G genes, S samples, and I interactions, are provided below.

4.4.1 DESMOND

Step 1. The complexity of the first step depends on the number of edges and the number
of samples. The direct approach would require ( |S|2 )2 computations of average SNR and
exact Fisher’s test p-values for each of |I| edges. Instead, the current implementation of
DESMOND uses several approximations: DESMOND does not check every possible pair of
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thresholds but creates a “grid” of thresholds at the distance max(1,0.01×|S|). This makes
the number of Fisher’s exact tests independent from |S|. Fisher’s exact test is not computed
for every pair of thresholds. Instead, in the beginning DESMOND precomputes a table of
critical overlap sizes for each pair of threshold positions, given a p-value cutoff. It uses a
precomputed table for every edge and thus avoids running multiple exact Fisher’s tests for
each edge. Computing average SNR linearly depends on the number of samples. With the
above approximation, total complexity of the first step is O(|I||S|).

Step 2. Input of the second step is a binary matrix of size |I|× |S| reflecting whether each
sample is dysregulated for each edge. Every of Gibbs Sampler rounds includes iteration over
all the edges, and sampling of a new module for an edge. The latter requires computation of
joining probabilities for all neighbouring edges, if their modules were changed. Computing
the probability of merging an edge with a module requires an iteration over samples and
costs O(|S|). It does not depend on module size because the number of ones for each patient
in a module are stored in a separate matrix and updated when the module is changed.

The number of neighbours of each edge may vary widely depending on the network
topology. A fully connected undirected network of |G| genes without duplicated edges has
|G|(|G|−1)

2 edges, although constraining on a fully connected network would make no sense.
Therefore the complexity of one round of sampling is upper bounded by O(|S||I||G|). In real
biological networks, e.g. in PPI networks, the actual number of neighbours is much smaller
than the total number of nodes. Moreover, the majority of nodes are located on network
periphery and have a small degree.

Step 3. In the third step, DESMOND tests overlap all of K modules with at least 2 edges,
resulting in a previous step. In the worst case, if all edges grouped in modules by two
K = |I|/2, although in reality K is smaller. Module merging is performed iteratively, starting
from the pair with the most significant overlap in samples, until no pair can be merged without
dropping avg.|SNR| below SNR threshold. For that, K2 comparisons are needed for each
iteration and there may be K −1 merges in the worst case. Every attempt of merging require
running 2-means of samples, which complexity is O(2niter|S|). The total complexity of Step
3 therefore is limited by O(|S||K|3) which equals O(|S||I|3) in the worst case. Considering
that |I| is not less than |G|−1, and in most real biological networks |I| > |G|, the overall
worst-case complexity of the algorithm is defined by the complexity of the third step and is
cubic of |I|.
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4.4.2 DESMOND2

Step 1. On this step, a mixture of two Gaussians is fitted for the distribution of expressions
of each individual gene. It is done by EM algorithm, which runtime linearly depends on the
number of data points |S|, therefore the whole step take O(|S||G|).

Steps 2 is nearly unchanged compared to the first version. The main difference is that
DESMOND2 clusters genes instead of edges, and |G| is much less than |I|. Therefore the
complexity of step 2 is upper bounded by O(|S||G|2), by analogy with step 2 in the first
version. It results in a smaller K, than the second step of DESMOND. The third step remains
unchanged. This step is the most expensive For DESMOND2 and determines overall runtime
complexity of the method.

As one can see from theoretical analysis, DESMOND2 has lower complexity than
DESMOND and must be faster. This agrees with running times observed on three real
datasets, but not on the synthetic dataset Table 4.1. On the synthetic dataset, running time
of DESMOND2 is approximately twice longer, than running time of DESMOND. This is
explained by the fact that, besides |G|,|S|,|I|, the actual runtime is strongly influenced by α .
High values of alpha facilitate faster convergence and favour a quick formation of large and
unspecific modules. DESMOND achieves the convergence faster than DESMOND2 on this
dataset.

4.5 Datasets

4.5.1 Generation of synthetic datasets

A strategy similar to the described in literature [76, 206] was chosen for synthetic expression
data generation. For every gene, its expression value was sampled from normal distribution
N (2,1) if the gene and sample belonged to a bicluster, or from N (0,1) otherwise. Since
no assumption of the prevailing bicluster sizes in real data is made, 20 expression matrices
with implanted biclusters of varying shapes were generated. Each matrix subjected to the
insertion of 10 biclusters with the size of 5, 10, 20, 50 or 100 genes and 10, 20, 50 or 100
samples in every matrix. For each implanted bicluster, gene and sample sets were chosen
randomly from all genes and samples, i.e. overlaps in genes and samples were allowed.

For each synthetic expression dataset, a scale-free network of 2000 nodes was created
using scale_free_graph function from Networkx 1.10 python package, implementing the
procedure proposed by [23]. Setting the parameters β = 0.9, and α = γ = 0.05 resulted in a
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scale-free networks with the exponent equal 2.44. Gene labels were assigned to the network
nodes in a way so that genes from the same bicluster would be connected in two steps:

1. Initially, genes belonging to exclusively to each bicluster were assigned to the network,
adopting the approach proposed by Ghiassian et al., 2015 [89]. They have shown that
disease-associated genes form compact but not densely connected components on PPI
and developed DIAMOnD, a disease module detection method based on this idea. A
subnetwork corresponding to an exclusive part of each bicluster was initialized from a
random unlabelled node. Further, on every step, a node adjacent to the subnetwork with
the highest connectivity was added to the growing subnetwork. Connectivity p-value
of a neighbor node g was computed applying hypergeometric test on the observed
numbers of nodes (i) connected with g and already included in the subnetwork, (ii)
connected with g but not included in the subnetwork, (iii) not connected with g and
included in the subnetwork, and (iv) neither connected with g nor included in the
subnetwork. Fig. 4.5 illustrates three consequent iteration of the DIAMOnD algorithm.

2. Next, genes shared by multiple biclusters were assigned to the network, randomly
choosing unlabelled nodes from the set of all unlabelled nodes connecting the desired
biclusters. Finally, background genes were assigned to unlabelled nodes.

Fig. 4.5 Three iterations of the DIAMOnD algorithm. Red highlights the nodes already
included in the subnetwork (e.g. disease module), grey shows candidate nodes. Green
highlights the best candidate with the lowest connectivity p-value. N is the total number of
nodes in the network, s is the number of genes included in the network at the corresponding
iteration. From [89] with changes.
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4.5.2 Obtaining and preprocessing of real data

Normalized gene expression profiles from TCGA and METABRIC cohorts were downloaded
from cBioPortal [36] (http://www.cbioportal.org/). Only genes expressed in more than 5%
of samples in the cohort were kept. The expressions of the remaining genes were log2-
transformed and standardized. Samples from both cohorts were annotated with patient
age at diagnosis, stage of the tumor, and molecular subtype. All clinical information was
downloaded from cBioPortal and converted into the same format.

A human gene network derived from the BioGRID [256] published by Huand et al. [112]
was used in this thesis. This network consisted of 258,257 interactions between 16,702
genes. BioGRID was chosen for this thesis because it is one of the most comprehensive
and frequently updated gene interaction networks for Homo sapiens. It comprises curated
genetic and protein interactions which are more reliable than composite networks, containing
computationally predicted interactions. While it provides good coverage of human genes,
BioGRID is not too dense and resembles the scale-free property, which characterizes many
natural networks [12]. Although most of the edges in this network represent protein interac-
tions, BioGRID still suits our problem because genes with interacting protein products are
functionally related.

4.6 Experiments

4.6.1 Evaluation with synthetic data and the choice of parameters

Previous studies have shown the importance of appropriate parameter setting for method
performance [76, 258]. Therefore each method was applied on all 20 simulated datasets
multiple times with different combinations of parameter values to find an optimal, i.e.
resulting in maximal performance on average. Table 4.2 reports parameter values tested for
each method, which were chosen based on recommendations of method developers and the
results of [76] and [258]. All possible combinations of these parameters listed in the table
were tested and all other parameters were set to default. The expected number of biclusters
was set to 10 when possible.

To compare the set of biclusters Bpred obtained in the result of each run with the ground
truth set Btrue, Relevance and Recovery scores proposed by Prelic et al. [227] were calculated:

Relevance(Bpred,Btrue) =
1

|Bpred| ∑
Bp∈Bpred

max
Bt∈Btrue

J(Bp,Bt) (4.6)
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method parameters tested optimal parameters

DeBi b =[0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5]
o = [0.5, 0.75, 1.0]

b=1.5;
o=0.5

ISA2
no.seeds = [2,5,10, 20, 30, ..., 100, 125, 150, 200]
thr.row* = [0.5, 1.0, 1.5, 2.0]
thr.column* = [0.5, 1.0, 1.5, 2.0]

no.seeds=20

xMOTIFs

discr_levels = [2, 3, 5,10,15, 20, 30, 40, 50]
α = [0.001, 0.01, 0.05, 0.10, 0.15]
ns = [5, 10, 25, 50, 100]
nd = [10,100,1000]
sd = [5,10,20,100]

discr_levels=5;
α=0.1;
ns=100

Cheng & Church α =[1.0, 1.1, 1.2, 1.3, 1.4, 1.5]
δ = [0.1,0.2, ... , 1.0]

α=1.4;
δ=1.0

Plaid

row.release = [0.5, 0.55, 0.60, 0.65, 0.7]
col.release = [0.5, 0.55, 0.60, 0.65, 0.7]
back_fit_values = [0,10,100]
iter_startup_values = [5, 10,100,1000]
iter_layer_values = [10,100,200,500,1000]

row_release=0.5;
col_release=0.55;
back_fit=10;
iter_startup=100;
iter_layer=100

FABIA
α = [ 0.005, 0.01, 0.05, 0.1, 0.5]
spl = [0, 0.5, 0.75, 1.0, 1.5, 2.0]
spz = [0, 0.5, 0.75, 1.0, 1.5, 2.0]

α=0.05;
spl=0.5;
spz=0.75

COALESCE

prob_gene = [0.99, 0.95, 0.9]
pvalue_cond = [0.01, 0.05, 0.1]
pvalue_correl = [0.01, 0.05, 0.1, 0.2]
zscore_cond = [0.005, 0.01, 0.05, 0.1]

prob_gene=0.95;
pvalue_cond=0.1;
pvalue_correl=0.5;
zscore_cond=0.05

QUBIC

r = [1, 2, 3, 4, 5, 7,10]
q = [0.05,0.06, 0.1, 0.25, 0.5]
c = [0.5, 0.65, 0.70, 0.75, 0.8, 0.85, 0.9, 0.95]
P = [TRUE, FALSE]
with or without network

r=1;
q=0.25;
c=0.65;
P=FALSE

BiBit
max_n_bics=[0,10,15,100]
pattern_bitsize=[8,16,32]
max_discr_value=[0.5,1.0,1.5,2.0]

max_n_bics=100
pattern_bitsize=16
max_discr_value=1.0

DESMOND

α = [5.0,1.0,0.5,0.1,0.05]
β

K = [10000,1.0,0.0001]
p = [0.001,0.005,0.01,0.05]
q = [0.25,0.5,0.75]

α = 0.5;
p = 0.01;
q = 0.5

DESMOND2
α = [10.0,5.0,2.5,1.0,0.5]
β

K = [108,106,105,104,103,102,10,10−4]
SNRmin = [0.5,0.75,1.0]

α = 5.0;
β

K = 104;
SNRmin = 0.75

Table 4.2 The results of hyperparameter tuning on ten synthetic datasets. In case of ties
(e.g. for DeBi and BiBit), parameter combination closer to the default is reported. Default
parameter values are highlighted by bold text font. ISA2 accepts several row and columns
thresholds column thresholds and automatically determines the most appropriate combination
of parameters marked by (*).
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Recovery(Bpred,Btrue) =
1

|Btrue| ∑
Bt∈Btrue

max
Bp∈Bpred

J(Bp,Bt) (4.7)

where J(Bp,Bt) denotes Jaccard similarity of two biclusters Bp(G′
p,S

′
p) and Bt(G′

t ,S
′
t):

J(Bp,Bt) =
|Bp ∩Bt |
|Bp ∪Bt |

=
|G′

p ∩G′
t |× |S′p ∩S′t |

|G′
p ∪G′

t |× |S′p ∪S′t |
(4.8)

As seen from the above equations, relevance and recovery scores are very similar and
aimed at the quantification of type I and type II errors. Relevance score reflects how well the
predicted biclusters match with the biclusters from the ground truth set. It is high if, for each
of the predicted biclusters, there is the best match among the true biclusters with a strong
overlap. However, relevance score will be still high, in the case when all predicted biclusters
match some but not all of the true biclusters. Recovery score shows to what extent true
biclusters are recovered by the set of predicted biclusters and becomes high when each of
true biclusters strongly with at least one of the predicted. Since none of the error types takes
precedence over the other, the overall performance score combines Relevance and Recovery
taking their geometric mean:

Per f ormance(Bpred,Btrue) =
√

Relevance(Bpred,Btrue)×Recovery(Bpred,Btrue) (4.9)

A combination of parameters was considered optimal if it resulted in the highest Perfor-
mance score, averaged over all 20 synthetic datasets. For non-deterministic methods, average
Performance scores in 10 runs were compared, since their results vary from run to run.

4.6.2 Evaluation with breast cancer data

DESMOND and baseline methods were evaluated on the data collected in two large breast
cancer studies, TCGA-BRCA [164] and METABRIC [213]. In METABRIC cohort, all
1904 gene expression profiles were measured by microarray technology. TCGA-BRCA data
comprised of two datasets: 1081 expression profiles were measured by RNA-Seq (TCGA-
RNAseq) and 529 by microarrays (TCGA-micro). TCGA-micro and TCGA-RNAseq cohorts
were not independent: 517 expression profiles were obtained from the same samples. Since
microarray and RNA-seq platforms employ different technologies to estimate gene expression
levels, their measurements in the same samples and genes may differ [232]. This may affect
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the results of biclustering, therefore biclustering was performed independently on TCGA-
RNAseq and TCGA-micro datasets.

For evaluation purposes, only 11959 genes presented in all three expression datasets
and in the BioGRID network were kept. Also, the nodes corresponding to genes absent in
expression profiles and their adjacent edges were removed from the network before using it
(179514 edges remained).

The discovered biclusters were tested for associations with Gene Ontology [57] (GO)
terms and known cancer subtypes using the one-sided exact Fisher’s test, to evaluate their
biological significance. All gene sets used in this thesis were downloaded from the EnrichR
[143] website (http://amp.pharm.mssm.edu/Enrichr/). Overall survival (OS) analysis was
performed using the Cox proportional hazards model implemented in Lifelines v0.23.0 [67]
with age at diagnosis and stage as covariates. All other statistical tests were performed in
python using Scipy 1.1.0. Benjamini and Hochberg’s procedure implemented in the gseapy
0.9.9 [41] python library was applied for multiple testing correction.

4.7 Code Availability

The latest version of DESMOND is implemented in python 3.8 and available at
https://github.com/ozolotareva/DESMOND/. This repository also provides the code for the
generation of artificial expression and network data and for the preprocessing of real data.
Both versions of DESMOND used in this thesis were implemented in python 2.7.15 and
remain available at
https://github.com/ozolotareva/DESMOND/DESMOND_py2.

R package biclust (https://cran.r-project.org/web/packages/biclust/) version 2.0.1 was
used to run the method by Cheng & Church, xMOTIFs, QUBIC, Plaid, and FABIA. ISA2
was available as a separate R package of the same name (https://cran.r-project.org/web/
packages/isa2/, version 0.3.5). DeBi, COALESCE, and BiBit were run via JbiclustGE

wrapper (https://jbiclustge.github.io/).

https://github.com/ozolotareva/DESMOND/
https://github.com/ozolotareva/DESMOND/DESMOND_py2
https://cran.r-project.org/web/packages/biclust/
https://cran.r-project.org/web/packages/isa2/
https://cran.r-project.org/web/packages/isa2/
https://jbiclustge.github.io/




Chapter 5

Results and Discussion

This chapter presents and discusses the results of experiments introduced in section 4.6.
Parts of the results concerning the first version of DESMOND and five baseline methods are
originally published in Bioinformatics (Oxford University Press) [298].

5.1 Evaluation on synthetic data

Method performances varied widely among tools and different bicluster shapes (Fig. 5.1).
Almost all methods benefited from parameter optimization. DeBi, FABIA, COALESCE, and
QUBIC greatly improved their average performances (Fig. 5.2, Table 5.1).

Interestingly, classic and query-based versions of QUBIC demonstrated similar perfor-
mances, despite the fact that the later took into account network information. Although
no method outperformed others in all cases, COALESCE had the best overall performance
in this benchmark (on average, 0.63 (the third) with default and 0.72 (the first) with tuned
parameters). DESMOND and DESMOND2 were the second and the fourth top-performing
methods with an average performance of 0.64 and 0.58.

DESMOND outperformed all other methods for biclusters of sizes 100x100, 50x100
and with α = 0.5, RRHO p-value threshold p = 0.01 and q = 0.5. The first version of
DESMOND was not sensitive to changes of β/K (Wilcoxon signed-rank test p-values 0.11
and 0.67 for comparison of performances obtained with β/K set to 1.0 versus 104 and 10−4

and other parameters fixed) and therefore β/K was set to 1.
DESMOND2 demonstrated the best performance with α = 5.0, β/K = 104 and SNRmin =

0.75 and beaten all the other methods on biclusters of shapes 5x50 and 5x100.
Both versions of DESMOND did not perform well on biclusters with a small number of

samples. When considering only datasets with biclusters of 20 or more samples, DESMOND
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on average outperforms all methods including COALESCE. Therefore, given that both
versions of DESMOND could not accurately detect the biclusters small in terms of samples,
we set smin to 10% of the whole cohort size in all subsequent experiments.

(5
,1

0)

(5
,2

0)

(5
,5

0)

(5
,1

00
)

(1
0,

10
)

(1
0,

20
)

(1
0,

50
)

(1
0,

10
0)

(2
0,

10
)

(2
0,

20
)

(2
0,

50
)

(2
0,

10
0)

(5
0,

10
)

(5
0,

20
)

(5
0,

50
)

(5
0,

10
0)

(1
00

,1
0)

(1
00

,2
0)

(1
00

,5
0)

(1
00

,1
00

)
Bicluster sizes (genes, samples)

DeBi-O

DeBi-D

ISA2-O

ISA2-D

xMOTIFs-O

xMOTIFs-D

Cheng&Church-O

Cheng&Church-D

Plaid-O

Plaid-D

FABIA-O

FABIA-D

COALESCE-O

COALESCE-D

QUBIC-O

QUBIC-D

BiBit-O

BiBit-D

DESMOND-O

DESMOND2-O

M
et

ho
ds

 a
nd

 P
ar

am
et

er
s

0.12 0.18 0.17 0.2 0.36 0.3 0.28 0.21 0.43 0.4 0.35 0.27 0.41 0.45 0.26 0.21 0.39 0.31 0.18 0.12

0.03 0.05 0.04 0.04 0.06 0.08 0.08 0.08 0.1 0.1 0.1 0.12 0.13 0.13 0.11 0.14 0.19 0.15 0.13 0.18

0.01 0.03 0.06 0.05 0.06 0.12 0.16 0.14 0.22 0.31 0.35 0.3 0.61 0.65 0.48 0.43 0.84 0.89 0.5 0.4

0.01 0.05 0.08 0.06 0.1 0.12 0.15 0.14 0.22 0.25 0.3 0.29 0.52 0.46 0.38 0.38 0.71 0.7 0.42 0.34

0 0.01 0.3 0.41 0 0.03 0.2 0.26 0.01 0.04 0.12 0.12 0.01 0.03 0.05 0.03 0.01 0.02 0.02 0.01

0 0.01 0.1 0.28 0 0.01 0.09 0.18 0 0.01 0.07 0.09 0.01 0.01 0.03 0.02 0 0.01 0.01 0.01

0 0.01 0.02 0.08 0 0.01 0.02 0.1 0 0 0.02 0.1 0 0 0.02 0.13 0 0.01 0.01 0.11

0 0.01 0.02 0.08 0 0.01 0.02 0.08 0 0 0.02 0.08 0 0.01 0.02 0.1 0 0.01 0.01 0.13

0 0 0 0 0 0 0 0.02 0.01 0.05 0.15 0 0.01 0.22 0.31 0.02 0.23 0.35 0.26 0

0 0 0 0 0 0 0 0 0 0 0.01 0 0.02 0.07 0.01 0 0.07 0.04 0.01 0

0 0.02 0.22 0.54 0.03 0.25 0.81 0.94 0.23 0.66 0.97 0.89 0.45 0.8 0.82 0.76 0.43 0.7 0.62 0.6

0 0 0.02 0.05 0 0.02 0.18 0.4 0.02 0.22 0.8 0.66 0.23 0.75 0.98 0.49 0.63 0.97 0.97 0.25

0 0.84 0.85 0.12 0.6 1 0.98 0.25 0.89 0.99 1 0.41 0.94 1 0.92 0.6 0.96 1 0.62 0.36

0 0.61 0.81 0.11 0 1 0.98 0.21 0 1 1 0.4 0.9 1 0.96 0.6 0.96 1 0.65 0.41

0 0.07 0.45 0.07 0.01 0.46 0.5 0.09 0.01 0.73 0.75 0.06 0.22 0.92 0.58 0.04 0.22 0.92 0.6 0.02

0.05 0.19 0.1 0 0.07 0.09 0.05 0 0.04 0.06 0.03 0 0.02 0.03 0.01 0 0.01 0.02 0.01 0

0 0 0.01 0.02 0.01 0 0.01 0.01 0 0.01 0.01 0.01 0 0 0 0.01 0 0 0 0.01

0 0 0.01 0.01 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0

0 0.54 0.82 0.92 0.12 0.75 0.91 0.9 0.21 0.78 0.93 0.85 0.23 0.68 0.89 0.8 0.24 0.64 0.8 0.7

0 0.5 0.86 0.96 0 0.66 0.93 0.9 0.05 0.71 0.93 0.87 0.11 0.59 0.83 0.78 0.08 0.52 0.74 0.66
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Fig. 5.1 Performance scores demonstrated by DESMOND and baseline methods on 20
synthetic datasets containing biclusters of different shapes. For non-deterministic methods,
average performance in 10 runs is reported. For each of baselines, performance scores for
default (D) and optimized (O) parameters are reported.
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with optimized parameters with default parameters

Relevance Recovery Performance Biclusters
on average

Relevance Recovery Performance Biclusters
on average

DeBi 0.214 0.374 0.28 51.5 0.026 0.426 0.102 614.0

ISA2 0.222 0.522 0.33 58.9 0.147 0.586 0.284 203.7

xMOTIFs 0.088 0.08 0.084 9.1 0.051 0.046 0.084 10.0

Cheng & Church 0.032 0.034 0.033 4.9 0.028 0.032 0.03 4.8

Plaid 0.148 0.052 0.082 1.5 0.028 0.005 0.011 0.4

FABIA 0.536 0.539 0.537 10.2 0.38 0.383 0.382 10.0

COALESCE 0.722 0.720 0.716 11.0 0.633 0.63 0.629 10.5

QUBIC 0.351 0.322 0.336 10.0 0.05 0.031 0.039 10

BiBit 0.004 0.011 0.006 100 NA NA NA NA*

DESMOND 0.616 0.669 0.635 8.2 NA NA NA NA

DESMOND2 0.628 0.557 0.584 7.1 NA NA NA NA

Table 5.1 Average Relevance, Recovery, Performance, and the number of reported biclusters
computed for the results obtained by each method on synthetic data with the default and
optimized parameters. COALESCE with optimized parameters demonstrated the highest
Relevance, Recovery, and Performance. For ISA and DeBi, parameter combination resulting
in the highest performance had decreased Recovery, compared to default parameters.
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Fig. 5.2 Average performance scores demonstrated by DESMOND, DESMOND2 and nine
baseline methods on 20 synthetic datasets with the default and optimal parameters.
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Fig. 5.3 Characteristics of differentially expressed biclusters produced by DESMOND,
DESMOND2 and baseline methods on TCGA and METABRIC data with default (A) and
optimized (B) parameters. Since QUBIC produced less than 10 biclusters on all real datasets
with optimized parameters, its results are represented by dots instead of boxplots.

5.2 Evaluation on real breast cancer data

Five baselines (COALESCE, DeBi, ISA, FABIA, and QUBIC) demonstrated their ability to
detect differentially expressed biclusters in synthetic data were chosen and applied on three
real-world datasets: TCGA-micro, TCGA-RNAseq, and METABRIC. Each method was run
twice: with default parameters and with parameters optimized on synthetic data. Since we
were interested in differentially expressed biclusters, we excluded from further analyses all
biclusters with avg.|SNR|< 0.5 (this corresponds to SNR between N (0,1) and N (1,1))
and less than 2 genes or 10 samples.

All methods produced different numbers of biclusters, demonstrating diverse distributions
of bicluster shapes and avg.|SNR| values (Fig. 5.3). FABIA run with default parameters
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Fig. 5.4 Distributions of bicluster redundancies computed for the output of each method.

identified no biclusters with average |SNR| above 0.5. DeBi did not finish after a week of
running with default parameters on the METABRIC dataset and therefore was run on the
subset of 500 randomly chosen samples. In contrast, QUBIC identified biclusters with weaker
differential expressions, when running with optimized parameters than with defaults. Only 8,
2 and 3 biclusters found with optimized parameters in TCGA-micro, TCGA-RNAseq, and
METABRIC respectively passed SNR threshold of 0.5. Given that the effect of parameter
tuning was controversial, the results obtained with default and optimized parameters are
reported here and below.

DESMOND identified 390, 763, and 442 biclusters in TCGA-micro, TCGA-RNAseq,
and METABRIC respectively. DESMOND2 found much fewer biclusters than the first
version: 39, 49, and 25 in TCGA-micro, TCGA-RNAseq, and METABRIC datasets. This
difference is explained by the higher redundancy of the biclusters found by DESMOND
Fig. 5.4. Redundancy of each individual bicluster Bp from a set of biclusters Bpred was
calculated as Jaccard similarity of B and its best match from Bpred . Since DESMOND
clusters edges, it returns many biclusters overlapping in genes and samples. The second
version of DESMOND clusters genes, and therefore outputs a small number of non-redundant
biclusters.

Biclusters produced by both versions of DESMOND tended to be smaller in terms of
genes and bigger in terms of samples than biclusters found by other methods. DESMOND,
DESMOND2, QUBIC with default and DeBi with optimized parameters identified biclusters
with more pronounced differential expression, compared to the other methods.
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In contrast with the synthetic data benchmark, no ground truth was available for real-
world breast cancer datasets. Therefore, to evaluate the results of all methods, gene and
sample sets defined by the produced biclusters were further tested for biological significance.

5.2.1 Associations with GO terms

To demonstrate the identified biclusters are composed of functionally coherent genes, the ob-
tained gene sets were tested for overlap with known functionally related gene sets from Gene
Ontology (GO) and pathways from KEGG. Most of the biclusters identified by DESMOND
and DESMOND2 were significantly enriched with at least one GO term. Owing to network
constraints, the proportion of DESMOND biclusters significantly overlapping with KEGG
pathways was higher than for all other methods. The proportion of GO-enriched DESMOND
biclusters was also high, although it was slightly lower than the proportion of significant
biclusters found by ISA2 on TCGA-RNAseq and by QUBIC on METABRIC (Fig. 5.5).

Fig. 5.5 Percent of gene clusters significantly (BH-adjusted p-value<0.05) overlapping with
at least one functionally related gene set from GO Biological Process (GOBP), GO Molecular
Function (GOMF), GO Cellular Component (GOCC) and KEGG pathways. Results obtained
with default (A) and tuned (B) parameters. Only overlaps including more than one gene were
taking into account.
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GOBP GOCC GOMF KEGG
DESMOND DESMOND2 DESMOND DESMOND2 DESMOND DESMOND2 DESMOND DESMOND2

TCGA-RNAseq 0.78 (0.56±0.02) 0.73 (0.62±0.06) 0.49 (0.27±0.01) 0.39 (0.3±0.07) 0.55 (0.34±0.02) 0.53 (0.39±0.07) 0.5 (0.24±0.02) 0.33 (0.28±0.06)
TCGA-micro 0.84 (0.55±0.03) 0.69 (0.65±0.07) 0.61 (0.26±0.02) 0.41 (0.33±0.07) 0.63 (0.33±0.03) 0.54 (0.42±0.07) 0.65 (0.23±0.02) 0.49 (0.3±0.07)
METABRIC 0.8 (0.57±0.02) 0.56 (0.63±0.08) 0.58 (0.27±0.02) 0.36 (0.3±0.08) 0.62 (0.35±0.02) 0.4 (0.39±0.09) 0.56 (0.24±0.02) 0.32 (0.28±0.08)

Table 5.2 The proportion biclusters found by DESMOND and DESMOND 2 significantly
overlapping with at least one gene set from GO. Values in brackets represent the mean
and standard deviation for the proportion of randomly chosen subnetworks, significantly
overlapping with any GO gene set.

To prove that DESMOND performance in this test was superior not only due to network
constraints, we generated 100 sets of random subnetworks of the same sizes as DESMOND
biclusters. Percent of enriched gene sets was always much higher for DESMOND biclusters
than for any random set of subnetworks (empirical p-value<0.01) (Table 5.2).

For DESMOND2, the percentage of enriched biclusters was lower than for biclusters
produced by the first version. It was almost always the second or the third. However, in half
of all tests, the percentage of enriched DESMOND2 biclsuters was not significantly higher
than the null model.

Surprisingly, the percentage of GO-enriched biclusters in QUBIC with default parameters
was significantly higher from random subnetworks only on the METABRIC dataset (all
p-values are < 0.01). In contrast, its results on TCGA-RNAseq and TCGA-micro contained
even less GO-enriched biclusters, than expected by chance.

It is important to add, that gene set libraries of EnrichR [143] used in this thesis include
only GO terms of level four or higher. Less specific GO terms were removed from these
databases. Using the whole GO database would give much higher percentage of GO term-
associated biclusters in all cases.

5.2.2 Reproducibility of found biclusters

Yet another way to prove that the methods identify similar biclusters would be demonstrating
that their findings reproduce on independent datasets with the same biology. To check,
whether the methods identify the same biclusters on different datasets, two questions were
formulated:

• Do the methods identify biclusters composed of the same genes in different datasets?

• How similar are biclusters found in TCGA-RNAseq and TCGA-micro datasets, which
share 517 patients?
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Fig. 5.6 Gene similarities of biclusters found in different breast cancer datasets. (A) The total
number of matched pairs of biclusters. The transparent part of the bar shows biclusters for
which no best match was found. (B) Distributions of log-transformed fold-enrichments of
Jaccard similarity, computed for best matches.

To answer the first question, pairwise comparisons of biclusterings obtained on TCGA-
micro, TCGA-RNAseq, and METABRIC have been done. For every pair of biclusterings,
non-reciprocal best matches in genes were identified. A bicluster was marked as “unmatched”,
if no bicluster from the target set shared any gene with it. In the result of matching of two
biclusterings B1 and B2 maximal of |B1|+ |B2| pairs of biclusters were established. Since
the size of biclusters in genes varied greatly, instead of Jaccard similarities of best matches,
the ratios of observed to expected overlaps were compared.

Figure 5.6 shows the number of unmatched biclusters in every comparison (A), and the
distributions of log-fold enrichment computed for observed Jaccard similarities compared
to the expected given bicluster sizes (B). DESMOND2, FABIA, and DESMOND produce
a certain proportion of unmatched biclusters, but the matched biclusters tend to overlap
stronger than matched biclusters found by other methods. Other methods produce no or
nearly no unmatched biclusters, but fold enrichments for the Jaccard similarities were lower.

On one hand, the presence of unmatched biclusters may point to the high rate of false
findings and therefore a poor agreement between the results. DESMOND2 and (at lesser
extent) FABIA produce a much higher fraction of unmatched biclusters than the other
methods and what raises concerns about the reliability of their results. On the other hand, the
unmatched biclusters may reflect the existing variation between datasets.

In the above experiment, biclusters were compared in genes, but not in samples. Given
that TCGA-RNAseq and TCGA-micro datasets share 517 patients, the biclusters may be
also compared considering both genes and samples. In this experiment, the same approach
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Fig. 5.7 Similarities of biclusters found in TCGA-BRCA datasets profiled by RNA-seq and
microarrays, computed considering genes and samples. (A) Total number of biclusters tested.
Transparent part of the bar represents biclusters without any best match. (B) Distributions of
log-transformed fold-enrichments computed for best matches.

is used, but best matches were identified based on maximal Jaccard similarity in genes and
samples.

DESMOND, FABIA with optimized parameters, and QUBIC with default, demonstrated
the highest gain of the observed overlap size compared to random overlap (Figure 5.7).
DESMOND2 on average, found less similar biclusters on TCGA-micro and TCGA-RNAseq
datasets. Again, this may be explained by either lower robustness of DESMOND2 predictions,
or its ability to detect the true platform-specific variation.

5.2.3 Associations with clinical variables

Breast cancer subtypes

All methods were able to identify many biclusters, significantly (BH-adjusted hypergeometric
p-value<0.05) enriched by samples annotated with known breast cancer subtypes (Fig. 5.8).
However, although many biclusters were significantly associated with one or several subtypes,
only a few of them demonstrated a strong overlap with the associated subtype in terms of
the Jaccard similarity. All the methods except QUBIC with optimized parameters found
biclusters overlapping Luminal A (LumA) subtype in TCGA (Jaccard similarities about
0.5-0.9). ISA2 and both versions of DESMOND found biclusters strongly overlapping with
Basal subtype in TCGA datasets (Jaccard similarity above 0.8). ISA2 applied with default
but not with optimized parameters identified biclusters strongly (Jaccard similarity about 0.5)
overlapping with Her-2 subtype in TCGA. For all other subtypes in TCGA and all subtypes
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in METABRIC, overlaps with the most significantly enriched biclusters were even weaker.
DESMOND managed to find biclusters with stronger overlaps with LumA, LumB, and Basal
subtypes in TCGA than its competitors. Although DESMOND2 found much fewer biclusters
than DESMOND, its most strongly overlapping biclusters had the same or just a bit smaller
overlap with LumA, LumB, and Basal subtypes.

Almost all biclusters found by DESMOND were associated with at least one molecular
subtype of breast cancer. Only 0.5-3.3% of DESMOND biclusters showed no significant
over- or under-representation of any molecular subtype. In contrast, COALESCE and DeBi
produced larger fractions of biclusters not associated with any subtype, up to 68% and 91%
of all reported biclusters.
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Fig. 5.8 Distributions of Jaccard similarities of known breast cancer subtypes and sample
sets defined by biclusters produced by each method. For each bicluster, over- and under-
representation of each subtype was evaluated using the hypergeometric test. Each bicluster
was annotated with the subtype based on a minimal adjusted p-value passing threshold
of 0.05. The results obtained with default parameters and with parameters optimized on
synthetic data are shown in figures A and B respectively. When the group contains less than
10 biclusters, the results are shown as dots instead of a boxplot. Claudin-low subtype was
annotated only in METABRIC dataset and therefore biclusters found in TCGA data sets were
not tested for overlap with this subtype.
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Overall survival

All identified biclusters were further tested for association with overall survival (OS) using
Cox proportional hazards model. DESMOND detected 47 and 96 OS-associated biclusters
in TCGA-RNAseq and METABRIC. It produced more biclusters significantly associated
with overall survival on TCGA-RNAse and METABRIC datasets compared to the other
methods (Figures 5.9). DeBi was the only method managed to identify any OS-associated
biclusters in TCGA-micro data. It also found 37 and 11 biclusters in TCGA-RNAseq and
METABRIC with default parameters and 24 and 5 with optimized. However, the similarity
between OS-associated biclusters found by DeBi on TCGA-micro and TCGA-RNAseq was
not high: pairs of biclusters with the strongest overlap in genes never shared more than two
samples.
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Fig. 5.9 Association of biclusters found by DeBi, QUBIC, DESMOND, and DESMOND2
with overall survival. Every circle represents a bicluster, with size and color intensity
proportional to avg.|SNR|. The X and Y axes show a negative logarithm of adjusted p-values
and coefficients (logarithm of Hazard Ratio) of Cox regression models fitted for patient sets
defined by biclusters. The best biomarkers have higher avg.|SNR| and larger positive or
negative regression coefficients.

Of all methods, only DESMOND, DeBi and QUBIC identified OS-associated biclusters
in both TCGA-RNAseq and METABRIC. OS-associated biclusters found by each method in
these two cohorts were tested for similarity in genes.

DeBi and DESMOND identified multiple OS-associated biclusters in TCGA-RNAseq
and METABRIC. Although DeBi identified biclusters with higher HR than DESMOND,
the latter produced more similar OS-associated biclusters in TCGA and METABRIC. To
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demonstrate this, for each bicluster found in one dataset, its best match in another was
identified based on the maximum Jaccard similarity of their gene sets. Distributions of
Jaccard similarities for all pairs of best matches are shown in Fig. 5.10.
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Fig. 5.10 A. The number of OS-associated biclusters tested. Transparent part of each
bar corresponds to unmatched biclusters. B. The number of genes shared between the
best matches in genes between OS-associated biclusters found in TCGA-RNAseq and
METABRIC. C. Logarithms of observed Jaccard similarities divided by expected Jaccard
similarities.

QUBIC applied with default parameters found one at each bicluster in TCGA-RNAseq
and METABRIC. QUBIC found several isolated OS-associated biclusters in TCGA-RNAseq
and METABRIC (one at each with default settings and one and three with optimized). All of
the OS-associated biclusters found by QUBIC strongly overlapped each other in genes and
samples and were associated with the Basal subtype. QUBIC and DESMOND, thus identify
different but reproducible biclusters between TCGA and METABRIC. Such biclusters might
be promising biomarker candidates and potentially define uncharacterized subgroups within
known subtypes of breast cancer.

Nine of 25 biclusters found by DESMOND2 in METABRIC were significantly OS-
associated. Unfortunately, in two other datasets, none of the biclusters found were signifi-
cantly associated with OS. COALESCE and FABIA found only isolated biclusters either in
TCGA-RNAseq or METABRIC.

The better reproducibility of OS-associated biclusters found by DESMOND and QUBIC
may be explained by the network constraints applied to the modules. Higher stability is
desirable for the discovery of gene signatures reproducible in independent studies, regardless
of the expression profiling method used.





Chapter 6

Conclusions

This thesis is devoted to the development of a novel method for network-constrained biclus-
tering of gene expressions. The new method called DESMOND is aimed at the detection of
the differentially expressed gene modules – connected groups of genes up- or down-regulated
in unknown subgroups of samples. The formulated problem has a great significance for
biomedical research, in particular, for the identification of previously unknown disease
subtypes and subtype-specific biomarkers.

This thesis presents two versions of DESMOND, which differ in a way they determine
and represent differentially expressed genes. Two factors distinguish DESMOND from
most biclustering methods: (i) it searches for differentially expressed biclusters, rather than
biclusters with co-expression, (ii) it performs a network-constrained search when the majority
of biclustering methods are unconstrained. Both versions of DESMOND were applied to
synthetic and real-world datasets. Their performances were compared with state-of-the-art
biclustering methods.

Another contribution of this thesis besides the development of new methods is the creation
of a synthetic dataset with differentially expressed network-constrained biclusters. In contrast
to the previous benchmarks, in this thesis biclusters were modeled with less prominent, but
more realistic differential expression and had more diverse shapes.

The experiment results demonstrated the capability of all evaluated methods to identify
biclusters representing biologically meaningful subsets of genes and samples. Interestingly,
all methods produced very diverse biclusters. None of the tested methods outperformed all
others in all experiments. DESMOND was on average the second of the best performing on
synthetic datasets and was inferior only to COALESCE. However, the advantage of COA-
LESCE over the other methods was not confirmed in experiments on real data. DESMOND,



86 Conclusions

in turn, tended to produce more GO-enriched gene clusters on the breast cancer datasets than
the competitors, owing to its ability to consider gene interactions.

Yet another important outcome of this thesis is the identification of several OS-associated
biclusters in TCGA and METABRIC, which were similar in genes. This may point to the
presence of new molecular subtypes, characterized by differential expression of these genes.
Replication of such expression patterns in independent cohorts confirms that they are less
likely to be false findings. Although all such biclusters demonstrated the same OS with
known molecular subtypes and significantly overlapped with them, they did not match well.
Instead, replicated biclusters represented distinguishable subgroups within known subtypes,
suggesting the presence of molecular heterogeneity within known PAM50 subtypes. These
promising biomarker candidates are subject to further investigation, validation, and evaluation
of clinical significance.

The main disadvantage of DESMOND is its running time. Motivated by the necessity to
simplify the method and reduce runtime, the second version called DESMOND2 has been
developed. DESMOND2 was much faster than the first version, but demonstrated inferior
performance compared to DESMOND and therefore needs to be improved.

It is important to note that this thesis has several limitations, discussed in this chapter
below. These limitations can be split into two groups: limitations of the methods and
limitations of the experimental design. Addressing these limitations highlights the direction
of future research.

6.1 Limitations

6.1.1 Limitations of the methods

The main weakness of the DESMOND algorithm is its high computational complexity, which
results in a long runtime when input is large. It took more than a day for DESMOND to
process the largest dataset in this study, comprising almost 2,000 samples and more than
13,000 genes. QUBIC, which also considers gene interactions, processes the same data in
hours. Although runtime demonstrated by DEMOND is comparable to some other methods,
like DeBi (unconstrained) or cMonkey2 (network-constrained), its reduction remains one of
the main priorities for future development.

Similar to some other biclustering methods, DESMOND produced many modules over-
lapping in their gene sets. This happens because DESMOND clusters pairs of interacting
genes, and tends to produce strongly overlapping but different gene clusters from densely
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connected regions of the network. To partially address this issue, DESMOND merges
strongly overlapping modules in the post-processing step. However, further reduction of the
redundancy between modules in the first steps of DESMOND remains a direction for future
development.

DESMOND2 clusters genes instead of gene pairs, and therefore the resulting biclusters
never overlap in genes. On the one hand, obtaining a lesser amount of non-redundant
biclusters is advantageous, because it simplifies their downstream analysis and interpretation.
On the other hand, biclusters overlapping in genes may be not rare in real-world data. On the
contrary, some genes participate in multiple biological processes and may be dysregulated
under various conditions. Therefore, changing the algorithm in a way that each gene may
be assigned to multiple biclusters on the second phase may be advantageous. For example,
instead of assigning a gene to the most probable module, the gene can be assigned to any
module it visited in the sampling phase. Since not many genes oscillate after the burn-in, the
redundancy of the resulting biclusters will not be high.

Unfortunately, compared to the first version, DESMOND2 tends to demonstrate lower
performance on real and synthetic data. There are at least three possible reasons for this
performance decline:

• As was already mentioned above, real biclusters indeed overlap in genes, and biclusters
non-overlapping at all might be not realistic.

• The network may become a too strict constraint when single genes are clustered instead
of gene pairs

• The current version of DESMOND2 models gene expression as a mixture of Gaussians,
when expression distributions may be better described by a mixture of heavy-tailed
distributions.

6.1.2 Limitations of the experimental design

Three important limitations of the proposed experimental design should be noted:

• First, synthetic expression and network data created in this thesis still do not reflect all
the aspects of real-world data. For example, we did not model correlations between
background genes, although in reality multiple nested co-expression modules present
in the data [148]. This simplified the task for methods using gene correlations for
the initialization of biclusters, e.g COALESCE. Besides that, the effect of noise and
variation in the level of differential expression was not investigated.
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• Second, the effect of the gene network on the results of biclustering was not investigated.
In this thesis, both versions of the method were tested only with synthetic networks and
the BioGRID network. The method, however, may not perform well on a regulatory
network, in which co-regulated genes are not connected directly. Also, the network
should not be too dense, e.g. like composite functional networks. If dysregulated
genes already form a connected component, adding more edges to this component
would only increase runtime. On the other hand, the network should not be too sparse,
otherwise many biclusters may be lost due to the network constraint.

• Third, the methods were tested only on the expression profiles of breast tumors.
Although no reason to think that the methods will not perform well on the data from a
different biological context, this must be checked experimentally. In the future, I am
going to apply biclustering on data from the other cancer type (e.g. prostate) and for
the search of drug response biomarkers in cell line expression profiles. Yet another
intriguing experiment in the context of cancer would be testing biclusters discovered
in expression data for association with genomic alterations (e.g. SNA, CNA) and drug
response. Besides cancer, DESMOND is suitable for any other heterogeneous disease
or phenotype. For example, as a follow-up of the project on the comorbidity of asthma
and hypertension, DESMOND can be applied on expression data relevant for these
diseases and disease-specific networks described in section 2.8. However, for this
experiment appropriate expression datasets are necessary.

6.2 Future Work

Besides the improvements of DESMOND method proposed above, the conclusion of this
thesis also highlights some thoughts about possible directions of development of the biclus-
tering field. At the end, this section summarizes the ideas applicable to a broader list of
computational approaches for investigation of complex and heterogeneous disease on the
example of gene prioritization methods.

6.2.1 Development of biclustering

Since 1972 and to date, biclustering remains a developing field and one or several new
methods get published every year. However, biclustering seems to be less popular than
conventional clustering among the researchers whose major task is the application of existing
tools rather than the development of novel methods. This may be partly explained by the
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fact that the majority of works presenting biclustering methods do not discuss the connection
between the patterns they aimed (e.g. shift-scale or constant) and the patterns searched by
biologists (e.g. differential expression and differential co-expression). Another problem
confusing and repelling potential users may be the large number of non-obvious parameters,
which alterations affect the result. Finally, high computational cost of biclustering must
be justified on multiple examples demonstrating a clear advantage of biclustering over
conventional or two-way clustering.

Considering the above, an important direction of the field development may be the
popularization of biclustering methods among the target audience. The rise of confidence
and interest in biclustering methods may be achieved by

• demonstration that biclustering methods are capable to achieve the comparable perfor-
mance in the detection of differential expression and differential co-expression patterns
as conventional methods;

• the development of tools for consensus biclustering;

• evaluation of biclustering as a dimensionality reduction technique, alternative to clus-
tering, gene set enrichment-based approaches, and autoencoders.

6.2.2 Investigation of complex diseases

By definition, complex diseases develop in the results of interactions between multiple
molecular genetic and non-genetic factors. The effects of these factors may be weak and
non-additive, which complicates the detection of individual factors and analysis of their
impacts. Despite this, some works still utilize the same approaches for the search and analysis
of associations in Mendelian and complex disorders. For instance, this concerns some gene
prioritization methods discussed in section 2.2. Such methods usually lose the competition
with more advanced ones, which can model known or unknown interactions and borrow the
evidence of associations between interacting partners.

Heterogeneity is another intrinsic feature of non-Mendelian phenotypes and in particular
of complex diseases and is taken into account less often. This thesis and many other works
demonstrate high heterogeneity of breast tumors beyond known molecular subtypes. Never-
theless, to date, many fundamental questions on disease heterogeneity remain unanswered.
How frequently complex diseases are composed of distinct subtypes? How many mechanisti-
cally distinct subtypes are hidden in the guise of every single diagnosis? How large are the
differences between them?
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The creation of large well-annotated datasets of patient-specific omics profiles and the
development of computational tools for the investigation of disease heterogeneity will shed
light on these questions. In the future, knowledge about disease subtypes and subtype-specific
biomarkers may improve diagnostics, guide the choice of the most appropriate treatments, and
therefore maintain health and even save lives for many patients. Besides that, investigation
of individual disease subtypes with minimal molecular heterogeneity may give a more clear
picture of disease mechanism than joint analysis of all disease cases taken together.
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