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Decentralization and Hierarchical Organization for Control of 
Adaptive and Cognitive Behavior in Autonomous Robots
Cognition—understood as a form of planning ahead—complements adaptive behavior. It leverages 
knowledge about performing a specific behavior into a novel context while minimizing any harm to the 
behaving system itself as it is using an internal simulation to predict possible outcomes. In this thesis, I 
propose a minimal cognitive system that integrates these two kinds of processes in one control system 
for a six-legged robot. 

On the one hand, adaptive behavior emerges from interaction of simple local control modules which 
allows the system to react quickly when facing disturbances. Detailed experimental findings in insects 
suggests that this evolved flexibility results from a hierarchical and decentralized architecture. While a 
lower control level coordinates muscle activation patterns and joint movements on a short timescale, a 
higher level handles action selection on longer timescales.

On the other hand, following a bottom-up approach this is extended towards a cognitive system that is 
able to invent new behaviors and to plan ahead. Using a grounded internal body model planning is 
realized as a form of internal simulation of possible actions which are applied out of their original context. 
Exploiting the decentralized architecture, this cognitive expansion allows to test and predict properties of 
newly invented behaviors, while the body is decoupled from the control system.

The thesis introduces the minimal cognitive system as it is applied on the robot Hector in a climbing task. 
It consecutively introduces the underlying control characteristics and relates these to findings from 
biology and neuroscience. First, hierarchical organization can be found in many animals and it structures 
control into parsimonious modules. Second, this is complemented by research on stick insects in 
particular which offers an even more detailed neuronal and behavioral level for analysis. This emphasizes 
decentralization of control structures and the importance of an embodied perspective which integrates 
bodily properties into the concurrent control process exploiting, for example, elasticities of muscles for 
simplifying the control problem. Third, internal representations are introduced in a bottom-up manner as 
grounded internal models—realized as recurrent neural networks—that are at first considered in the 
context of serving a specific behavior. Fourth, as a consequence, cognitive processing is realized as 
recruitment of the already existing flexible internal models in an internal simulation. The underlying 
architecture is applied on the hexapod robot Hector and analyzed in detail in simulation. Furthermore, 
learning is considered for this approach.
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Abstract

Cognition—understood as a form of planning ahead—complements adaptive be-
havior. It leverages knowledge about performing a specific behavior into a novel
context while minimizing any harm to the behaving system itself as it is using an
internal simulation to predict possible outcomes. In this thesis, I propose a minimal
cognitive system that integrates these two kinds of processes in one control system
for a six-legged robot. On the one hand, adaptive behavior emerges from interaction
of simple local control modules which allows the system to react quickly when
facing disturbances. Detailed experimental findings in insects suggests that this
evolved flexibility results from a hierarchical and decentralized architecture. While
a lower control level coordinates muscle activation patterns and joint movements on
a short timescale, a higher level handles action selection on longer timescales. On
the other hand, following a bottom-up approach this is extended towards a cognitive
system that is able to invent new behaviors and to plan ahead. Using a grounded
internal body model planning is realized as a form of internal simulation of possible
actions which are applied out of their original context. Exploiting the decentralized
architecture this cognitive expansion allows to test and predict properties of newly
invented behaviors, while the body is decoupled from the control system.

The thesis introduces the minimal cognitive system as it is applied on the
robot Hector in a climbing task. It consecutively introduces the underlying control
characteristics and relates these to findings from biology and neuroscience. First,
hierarchical organization can be found in many animals and it structures control
into parsimonious modules. Second, this is complemented by research on stick
insects in particular which o�ers an even more detailed neuronal and behavioral
level for analysis. This emphasizes decentralization of control structures and the
importance of an embodied perspective which integrates bodily properties into
the concurrent control process exploiting, for example, elasticities of muscles for
simplifying the control problem. Third, internal representations are introduced in
a bottom-up manner as grounded internal models—realized as recurrent neural
networks—that are at first considered in the context of serving a specific behavior.
Fourth, as a consequence, cognitive processing is realized as recruitment of the
already existing flexible internal models in an internal simulation. The underlying
architecture is applied on the hexapod robot Hector and analyzed in detail in
simulation. Furthermore, learning is considered for this approach.
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Preface

This habilitation thesis presents the author’s selected findings on the organization,
realization, and learning of motor control structures and cognitive function applied
on a six-legged walking robot. It is written as a cumulative thesis which consists
of two parts. The main scientific contributions have been published in 15 papers.
Two articles have been recently submitted, all other articles were accepted following
peer-review. Seven have been published as a journal publication (mean impact
factor of 5.65) and six have been published at international conferences (either high
ranked CORE A conferences or specialized conferences on specific topics). For all 15
articles, I am the first author (further detailed declaration of author contributions
are given in the specific chapters and have been acknowledged by the other authors).
These articles constitute the second and major part of the thesis (further related
publications are pointed out in the chapters as well).

The first part of the thesis introduces the main findings. It is meant as a
self-contained text which, on the one hand, summarizes the articles and, on the
other hand, puts these into the broader context of my research program pointing
out how each article contributes to our understanding of adaptive behavior and
cognitive function in autonomous systems. As a consequence, this first part draws
on the content of the published articles: figures, results, and arguments are selected
from the original publications and explained with respect to the overarching line
of thought. Further used sources are mentioned accordingly.
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I used to think that the brain was the most wonderful organ in my body.
Then I realized who was telling me this.

— Emo Philips





We believe that the basic function of cognition is
control of action. From an evolutionary perspective,
it is hard to imagine any other story.

— Glenberg & Gallese (2012, p. 918)
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Introduction

Contents
1.1 Adaptive Behavior . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cognitive Behavior . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dual Process Perspective . . . . . . . . . . . . . . . . . . 5
1.4 Overview of Control Architecture . . . . . . . . . . . . 7

In animals, adaptivity characterizes a form of behavior that shows a robustness
even when facing varying environmental conditions. Adaptive behavior allows
a system to deal flexibly with the unpredictability of the environment, but it is
tied to a specific context. Cognition—understood as a form of planning ahead—
complements adaptive behavior (McFarland & Bösser, 1993) as a form of dealing
with novel contexts. It is leveraging existing knowledge on performing a behavior
into a novel context, minimizing any harm to the system itself as it is using an
internal prediction of possible outcomes.

These two kinds of behaviors—that are widely spread in humans and animals—
are assumed to rely on two distinct types of processes subserving behavior. On the
one hand, automatic and e�ortless processes allow to quickly adapt to changes in
the environment and, on the other hand, a reflective and controlled process deals
with planning ahead as a form of internal simulation. One important question
concerns how these processes are associated. In this thesis, we address the nature of
these two types of processes from the perspective of Embodied Cognition (Barsalou,
2008) which assumes that these processes are highly intertwined. The thesis will
analyze control characteristics of adaptive behavior and cognitive behavior as well
as how these are interlinked. Overall, the goal is to understand these characteristics
and defining control principles. This is approached through a constructive modeling
approach that starts from detailed findings in neuroscience, biology, and cognitive
science and aims at realizing a functioning minimal cognitive system. Following
such a bottom-up approach the detailed goals of this thesis are:

1



2 1.1. Adaptive Behavior

• Delineate key characteristics of adaptive behavior and the underlying control
system from experiments and analysis on walking of stick insects.

• Realize hierarchical organization and decentralized organization as such key
mechanisms in an artificial control system that can be simulated and run on
a real robot which showcases the e�ectiveness of these mechanisms.

• Establish decentralization as an advantageous principle for emergent adaptive
behavior in a comparative (deep reinforcement) learning study.

• Show how internal models—as a key component of cognition—are grounded
in adaptive behavior making them a necessary condition for certain types of
coordinated adaptive behavior.

• Describe cognitive behavior as a form of internal simulation and provide
an overview of the neuroscientific findings supporting such an Embodied
Cognition view.

• Extend the existing adaptive control structure towards a cognitive system that
allows to recruit the grounded internal models in a form of mental simulation.
This will provide a proof of concept for how an adaptive system can leverage
its’ existing control structure towards novel situations and establish a transfer
towards novel contexts. Such a system constitutes a minimal cognitive system.

The introduction will briefly introduce characteristics of adaptive and cognitive
behavior as well as relate these towards dual process theories. The goal is to
give the reader a broad overview of topics covered. This thesis will mostly deal
with locomotion as an example which will be motivated before an outline of the
developed control architecture will be given.

1.1 Adaptive Behavior
Adaptive behavior in animals deals with reacting to broad variations imposed by
the particular environmental niche. Consider, for example, an insect that is able
to climb through a twig even though there is only very limited information on
possible footholds and it is impossible to predict the movements of the substrate.
Following Beer and colleagues (Beer, 1990; Beer et al., 1990) adaptive behavior
can be broadly defined as

“behavior [that] is continuously adjusted to meet the ever changing
internal and external conditions of the interaction.” (Beer et al., 1990,
p. 171) or from a more functional perspective: “in other words,
adaptive behavior is the result of the continuous interaction between
the nervous system, the body and the environment, each of which have
rich, complicated, highly structured dynamics.” (Chiel & Beer, 1997, p.
555)
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Figure 1.1: Hierarchical organization in motor control. A general hierarchical structure
of motor control is shared in humans and animals (Dickinson et al., 2000). This is shown
in a); colors signify di�erent levels of this motor hierarchy: higher level is shown in blue,
an intermediate (and decentralized) control level is shown in green. Interactions with the
environment (including preflexes and properties of muscles) are shown in orange. Color
coding applies to the whole thesis. b) shows a simple schematic of this organization.
Research on humans mostly focus on the higher levels shown in blue (Magill & Anderson,
2017) and is rarely extended towards the intermediate level (Arber & Costa, 2018).
This is nicely complemented by work on animals and insects, in particular, that adds
complementary findings on an embodied level (shown in orange) that highlights interaction
with the environment (Dickinson et al., 2000). The simplified schematic combines these
approaches which is a starting point for the considerations of the presented architecture
(for a complete schematic see Fig. 1.4).

Such traits of adaptivity are tried to be captured and exploited in technical systems.
But even today most technical systems appear brittle in this regard as they follow
an automation paradigm (Lipson, 2019; Hauser, 2019). Technical systems still
have di�culties facing noisy environmental settings and cannot handle even slight
changes in the appearance or configuration of an environment. This includes many
of the current reinforcement learning approaches that aim to solve a specific problem
in a static context (for review see (Neftci & Averbeck, 2019); or see (Finn et al.,
2017) highlighting problems when quick adaptations are required). In contrast,
biologically-inspired control approaches try to address these problems and mimic
how animals deal with such disturbances. These approaches aim to uncover the
underlying structure of the variability or to characterize it in probabilistic terms.
Such forms of adaptivity allow for optimization of a controller with respect to a given
natural environment as a typical test and target domain, which has led to stable
control approaches for di�erent behaviors (Billard & Kragic, 2019; Cully et al., 2015;
Fazeli et al., 2019; Hwangbo et al., 2019). While this form of adaptivity leads to
approaches that are well tuned to specific (narrow) contexts and the characteristics
of these environments, such approaches are often prone to overfitting, too. It still
does not allow to adapt towards broader variations of the environment.



4 1.2. Cognitive Behavior

One approach to deal with changing environmental conditions is to explicitly
distinguish between di�erent contexts and use specific control structures for each
di�erent situation. This induces a form of hierarchical organization (Binder
et al., 2009; Botvinick, 2008) in which behaviors that are realized as lower level
control primitives are selected at a higher level (Flash & Hochner, 2005; Schaal &
Schweighofer, 2005). Such control hierarchies have been inspired by the organization
of motor control systems in humans and animals (Fig. 1.1). Importantly, there is
a considerable di�erence between adaptivity at the di�erent levels of the control
hierarchy. The lower level allows for gradual fine-tuning and optimization because
the relationship between changes in the control parameters and defined performance
metrics can be assumed to stay more or less smooth in a given context. This is
ideal for (gradient-based) learning approaches. In contrast, the higher level deals
explicitly with switching between di�erent behaviors, and we cannot expect smooth
transitions between these behaviors. This complicates learning and realizing of
such hierarchical control approaches. Furthermore, the di�erent levels operate
on di�erent timescales. While on the lower level motor control tasks require fast
reactions and adaptations, higher level selection of behaviors depending on the
current context should be more stable (Namikawa et al., 2011).

As selection of behaviors explicitly aims at executing a behavior in a specific
context, it implicitly induces a conceptualization of the space of possible contexts
and applicable behaviors (Hay et al., 2018). Adaptivity on this longer timescale
allows for dealing with di�erent forms of environments and selecting an appropriate
response. Such a control approach is based on the notion that environments can di�er
in a way that requires understanding them di�erently and that requires di�erentially
behaving control systems. Assuming that it is beneficial to distinguish environments
that appear distinctively di�erent to a system, this introduces the possible problem
that an animal or system is encountering a novel environmental situation for which
there is no appropriate and optimized adaptive behavior as it was never experienced
before. One solution is to always resort to one behavior (that could be considered a
default behavior). This appears to be a solution we find in many biological systems
and which has been transferred to robots as well (Shamsuddin et al., 2011).

1.2 Cognitive Behavior
Cognition o�ers another, additional solution. While action selection tries to narrow
down which selection appears most applicable (from experience or as an evolved
trait), cognition carries the notion of becoming ‘creative’ (Bongard & Lipson, 2014).
This means, that during cognitive selection of an action the scope of possibly
applicable behaviors is widened and behaviors are tested outside their original,
defining niche. Such a trial-and-error approach entails risks as a behavior is applied
in a novel context and the consequences have not been experienced before. But
the consequences of applying the behavior are not necessarily random. In the case
of body movements, for example, they are predictable. Evaluating predictions of
consequences of behaviors beforehand is what constitutes an internal simulation—it
provides a ‘what-if’ mechanism (Lake et al., 2017).

In this context, cognitive behavior is meant in the following way:
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Cognition can be understood as the ability to plan ahead (McFarland
& Bösser, 1993) by means of an internal simulation (Hesslow, 2002)
relying on an internal representation (Glenberg, 1997; Lake et al., 2017;
McNamee & Wolpert, 2019)—starting with a model describing the
spatial and dynamic relations (Acosta-Calderon & Hu, 2005) of the
own body (Cruse, 1999)—which is grounded in embodied experiences
(Gallese & Lako�, 2005; Steels, 2003).

From such a perspective, cognition as a mechanism aims in a di�erent direction
than fitting better and better to a certain niche. Internal simulation as a principle
allows to react when there is no more stationary niche, but it becomes necessary to
constantly reevaluate potential behavioral alternatives when facing novel contexts
(Broekens, 2005; Hassabis et al., 2017).

1.3 Dual Process Perspective
There is a long tradition for such a distinction into two qualitatively di�erent kinds
of systems or processes with complementary advantages (Schneider & Chein, 2003)
which can be traced back to Schneider & Shi�rin (1977). Many dual process or dual
system theories have been proposed (for a review see (Stanovich & West, 2000; Evans
& Stanovich, 2013)) which usually distinguish between automatic and controlled
processing. Most prominently this has been formulated as a two systems theory
by Kahneman (2011). Here, we will use the notion of types of processes following
Evans (2008) who pointed out that there can be a multitude of such processes and
that many of these theories address or highlight di�erent characteristics and not
deal with distinct systems (this notion is in general in agreement with Kahneman
& Frederick (2002) who understand a system as a collection of processes). Evans
(2008) distinguishes type 1 processes that are fast and automatic in contrast to type
2 processes that are slow and e�ortful. The two di�erent types of processes are
linked to explain more habit-based behavior (well learned acts (Norman & Shallice,
1986)) respectively cognitive behavior (Schneider et al., 2020).

Automatic type 1 processes have been originally defined as activation of behavior
that “becomes active in response to a particular input configuration” and that “is
activated automatically without the necessity for active control or attention by the
subject” (Schneider & Shi�rin, 1977, p. 2). Such processes are assumed to be
autonomous (Dickinson, 1985; Evans & Stanovich, 2013) and allow to act as well
as react on a fast timescale (for further characteristics see Fig. 1.2 which details
characteristics of the two types of processes). Importantly, a fast response is widely
assumed to rely on parallel processing (Evans, 2008). Therefore, this is assumed
as one defining characteristic for type 1 processes which fits well to what we find
in biology. Parallel processing is not only found in the brain, but extends over
the whole nervous system in which, furthermore, processing often occurs locally,
for example, in reflex-like behavior.

In contrast, type 2 processes are defined by the ability of flexibly decoupling
internal models outside of their original context (Evans & Stanovich, 2013). Together



6 1.3. Dual Process Perspective
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Figure 1.2: Dual process characteristics: Overview of features associated with the two
di�erent types considered in dual process or dual system theories. Higher level, type
2 process characteristics are shown again in blue. Type 1 process characteristics are
shown in green. Defining characteristics and process features follow largely Evans &
Stanovich (2013) which provides an overview of dual process accounts that originated
from (Schneider & Shi�rin, 1977; Shi�rin & Schneider, 1977). This is extended by a
perspective on contents on which these processes operate on and their relation to internal
modeling. The nature of these internal models is based on Kahneman & Frederick (2002).

with predictive capabilities this flexible use (Schneider et al., 2020) of internal models
constitutes an internal simulation (and for Evans & Stanovich (2013) represents
a key feature of working memory). More broadly speaking and going back to
the original definition, type 2 processes are related to behavior “under control
of, and through attention” which is “tightly capacity limited, but the costs of this
capacity limitation are balanced by the benefits deriving from the ease with which
such processes may be set up, altered, and applied in novel situations for which
automatic sequences have never been learned” (Schneider & Shi�rin, 1977, p. 2,
3). For more details on the distinction see Fig. 1.2.

Type 2 processes are used in cognitive behavior dealing with a novel situation.
But while the two di�erent types of processes address di�erent types of tasks,
it is important to note that these are tightly interconnected (Schneider et al.,
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2020). Cognitive behavior involves recruitment of underlying type 1 processes in
a mental simulation (Anderson, 2010). This notion of recruitment is also present
in dual process approaches. For example, in Norman & Shallice (1986) a type 2
cognitive control system acts as a ‘supervisory attentional system’ that activates
and recruits the underlying type 1 habit-based system during cognitive behavior.
A further connection between the systems is given through learning: cognitive
behavior that has been used in a novel context can be entrained as a skill into
system 1 (Kahneman & Frederick, 2002).

Often, type 2 processes—or a system 2—have been related to higher level
competencies as are language or consciousness and which are unique to humans.
But importantly, there is broad support for many of the characteristics of both
types of processes in many animals—including insects (Menzel et al., 2007; Giurfa
& Menzel, 2013)—that includes as well a distinction into these two di�erent types
of processes (Evans, 2008).

Such a distinction into two types of processes is advantageous (Schneider & Chein,
2003) as it allows, on the one hand, for fast, robust, and adaptive behavior. On the
other hand, a higher level for controlled processes extends this to cognitive behavior
that allows to safely plan and apply a behavior outside of its original context and
transfer skills between situations. This is a prerequisite for a form of social learning
through observation of others or through instruction using language which both
rely on a controlled reactivation of underlying processes and representation. A dual
process view is also well supported by neuroscientific findings on two types of system
involved in behavioral decisions (Daw et al., 2005) which are tightly connected to
reinforcement learning and the distinction of model-free and model-based learning
(Niv, 2019; Neftci & Averbeck, 2019; Botvinick et al., 2019; Lee et al., 2019).

1.4 Overview of Control Architecture
Both types of processes will be integrated in the derived architecture which follows
a constructive bottom-up approach. The goal is to apply biologically-inspired
principles in a functioning control architecture for a robot. The application in a
real technical system in simulation and on a real robot demonstrates the reach
and e�ectiveness of these principles as well as it provides opportunities for detailed
analysis on di�erent levels, as on a behavioral or neurophysiological level. Specifically,
we focus on six-legged walking as an example. Locomotion provides a prime example
for adaptive behavior as there are rich interactions with the environment that require
fast reactions and coordinated movements of a large number of actuators (Dickinson
et al., 2000). Animals excel at walking and running behavior as they can adjust to
complex terrains, cluttered environments and all kinds of disturbances, including
injuries. These properties make animals interesting models for control approaches
as they show a working system that can handle variability and produce stable as
well as adaptive behavior (Hwangbo et al., 2019).

We turn towards insects as these provide good model systems to study general
motor control principles in detail (Webb, 2020). Insects have accessible and tractable
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Figure 1.3: Decentralized motor control structure: a) neuroanatomic organization in
the stick insect. b) schematic of the decentralized organization of the stick insect control
system which is used as a model for the six-legged robot. Colors signify di�erent levels
of the motor hierarchy: higher level is shown in blue (as, for example, information on
walking direction). Local leg control level is shown in green (Front, Middle, Hind leg
on Right and Left side) with coordination influences between neighboring legs shown as
arrows. Interaction with the environment (including preflexes and properties of muscles)
are shown in orange. Behavior emerges as a result of decentralized and locally interacting
concurrent control structures (Schilling et al., 2013a).

nervous systems, yet they produce complex motor behaviors that they adjust to
changing environmental conditions (Krakauer et al., 2017; Ritzmann & Büschges,
2007; Tuthill & Wilson, 2016). Walking with six legs itself already poses a quite
hard problem. Typically, an insect leg consists of three main joints producing the
movement of a leg. Each leg pair is connected to one body segment, and even
if the possible movements between body segments are restricted, this leads to 18
degrees of freedom overall that have to be controlled by the system. Therefore, the
system is highly redundant as the movement of a single joint is influenced by the
movements of all joints of the other (standing) legs (Bernstein, 1967). Coordination
of the single joint movements of the standing legs through one monolithic system
appears problematic and only for specific joint configurations tractable at all.

The goal for the control system (shown in Fig. 1.4) is to demonstrate adaptive
behavior—as in walking through uneven terrain—and to allow for cognitive behavior
when facing novel problems, for example, crossing a gap that requires adjusting
foot positions of the robot. We follow a bottom-up approach starting from the
lower level and working upwards towards the higher levels. The following chapters
will contribute to the overall architecture:

2. Decentralization and Modularization – Motor Control Hierarchies:
The next chapter will introduce a decentralized control system for a hexapod
walking system. It will summarize detailed findings from biology on walking in
insects and derive principles that are implemented in the Walknet system (see
Fig. 1.3). The focus is on two key characteristics that can be found throughout
the animal kingdom: a hierarchical organization of motor control systems and
decentralization. A decentralized organization allows for fast reactions and
local behavioral decisions. Such a structure is inherently processing in parallel
and allows for fast actions and reactions. The overall behavior emerges out of
the interaction of the local processing modules. In this way, the presented
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Figure 1.4: Overview of the motor control architecture: The architecture realizes
adaptive and cognitive behavior. a) provides an abstract and simplified schematic that
visualizes processes between di�erent levels of hierarchies in adaptive behavior (for more
details see the following chapter). This realizes type 1 processes (shown on the left).
On the right part of a), the connection towards internal models is visualized. This
highlights how in a type 2 process internal models are recruited and utilized for internal
simulation while the real body is decoupled from the control system. b) shows an
overview of the motor control hierarchy and how decoupling of the body allows to realize
a form of planning ahead as mental simulation. This constitutes cognitive behavior as a
type 2 process. Importantly, there are highly parallel connections which highlight the
concurrent and decentralized structure of the system. On the right, in light shaded colors,
underlying internal models are shown that serve behavior. Gray dashed arrows between
the two columns signify that internal models are grounded and recruited in motor control.
The single green arrow to the right indicates that during mental simulation the motor
control information is rerouted towards these predictive internal models starting a mental
simulation. This schematic will be derived in detail throughout this thesis.

system realizes type 1 processes on this level (Fig. 1.4 a) shows an abstract
processing schematic).

The system consists of a hierarchical organization (see Figures 1.1 1.3, 1.4:
higher levels will be—throughout this thesis—color coded in blue, an inter-
mediate and more decentralized level in green) which is in agreement with
neuroscientific findings on the organization of the motor system in animals
and humans (Dickinson et al., 2000; Botvinick, 2007).

Following the paradigm of Embodied Cognition, we are interested in a real
system interacting through its body with the environment: it is embodied.
As an advantage this allows to exploit mechanical properties of the body as,
for example, elasticities of muscles. While the notion of embodiment is not
considered in theoretical accounts of dual systems, it has to be integrated
in a real control architecture and is now considered as an integral challenge
for robotics (Yang et al., 2018). This will be further laid out in the second
chapter.

Overall, the second chapter introduces the Walknet architecture and demon-
strates the adaptivity of the system in di�erent locomotion tasks.
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3. Learning of Adaptive Behavior in a Decentralized Fashion: The
third chapter will analyze in particular the influence of a decentralized
organization on learning. While hierarchical organization is now employed in
first Deep Reinforcement Learning approaches in simple, game-like scenarios,
this chapter will show how a local and decentralized structure of the motor
control architecture facilitates learning of adaptive behavior: it leads to faster
convergence and better performance when applied for a simulated hexapod
robot. This appears as a promising direction in general for application of
Deep Reinforcement Learning in motor control tasks and leverages biological
principles into such learning approaches (Hassabis et al., 2017).

4. Hierarchical Internal Body Models: Central to cognitive behavior is the
notion of internal models. As mentioned above, we assume that in cognitive
behavior higher level control processes (type 2) recruit underlying processes
and internal models which are grounded in lower levels (Barsalou, 2008). The
fourth chapter introduces a flexible and hierarchical internal body model as a
recurrent neural network. While the size of this recurrent neural network model
is still quite small, it can be employed in motor control serving coordination
of leg movements during walking. In addition, it is predictive and allows to
be utilized in internal simulation for planning ahead. The chapter briefly
summarizes the function of internal models in motor control in general and
introduces the recurrent neural network approach for such a body model
which is extended towards a hierarchical model.

5. Internal Simulation as Planning Ahead: The fifth chapter will extend
the Walknet architecture towards a cognitive architecture that allows for
planning ahead realized as a form of mental simulation. In mental simulation,
the body of the system will be decoupled from the (intermediate and higher
level) controller and instead a behavior will be tested out of its original context
using predictions of the internal body model. These predictions allow the
system to determine if a behavior provides a non-dangerous and suitable
solution to the problem at hand. The higher level processing realizes a type 2
process and in particular fulfills the defining characteristics discussed above
(Fig. 1.4 a) shows an abstract processing schematic highlighting the decoupling
and mental simulation loop during planning ahead). The cognitive expansion
will be introduced in detail and the whole system will be, on the one hand,
applied on the real robot Hector and, on the other hand, systematically tested
in dynamic simulations showing the adaptivity and flexibility of this approach
for a task as climbing through an environment with uncertain footholds.

6. Discussion and Conclusion: The thesis will conclude with a summary of
key characteristics of adaptive and cognitive control systems and provide an
outlook on how such a minimal cognitive system might be further extended to-
wards a cooperative and learning system that could handle complex sequential
tasks even when requiring collaboration.
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The whole architecture represents a minimal cognitive system. Overall, behavior
emerges from the interplay between the physical realization of the system embedded
in the environment, decentralized local mechanisms—especially on the lower level—
and higher level mechanisms in selection of behavior or planning of cognitive
behavior. One particular focus is on the complementary role of internal models that
span both type of processes as they are grounded in lower level adaptive behavior
and recruited for planning ahead in mental simulation by higher level processes.





Biorobots are becoming important scientific tools
and can be used to investigate locomotion and to test
hypotheses about the underlying interactions of body,
control, and environment.

— Ijspeert (2014, p. 196)
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Adaptive behavior allows animals to produce stable behavior in broad contexts.
They flexibly adapt to changing specific environmental conditions and can deal with
variations under these conditions even when facing uncertainty. This robustness to
uncertainty still sets animal behavior apart from current engineering and learning
solutions. In this chapter, we will motivate our architecture for hexapod walking
and summarize the main contributions of our work described in the accompanying
publications. The goal is to highlight control principles found in biology and
transfer these into a technical system that can be used to control a six-legged robot.
Following a bottom-up approach, first, the notion of embodiment is introduced
and shown how exploiting physical properties can simplify motor control. Next,
we will take inspiration from the organization of motor control in animals with
a focus on two key insights: On the one hand, hierarchical organization—actions
can be decomposed into sub-actions on di�erent levels of a hierarchy which allows

13
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for flexible recombination and induces temporal abstraction (Binder et al., 2009;
Mengistu et al., 2016; Uithol et al., 2012; Haruno et al., 2003). On the other
hand, and as a key characteristic setting this approach apart, we focus on the
modular and decentralized structure of the motor control system. Modularity
of a network is understood as an organization in which a network consists of
“multiple densely connected clusters, each with only a limited connection to other
clusters” (Ellefsen et al., 2020, p. 3). With respect to biological and brain-inspired
approaches, we specifically use the term decentralization which explicitly points out
that this control structure encompasses the whole nervous system and control is
distributed to local control modules. Decentralization describes the general idea of
concurrent modules that allow for fast, local computations realizing, for example,
reflex-pathways (Clune et al., 2013) as found in animals and humans (Alon, 2006;
Mountcastle, 1997). Overall behavior emerges from the interaction of the parallel
and distributed processing of information along the motor control hierarchy, tying
these two characteristics tightly together. These principles will be applied in our
Walknet system. Finally, we will demonstrate the adaptivity of this system.

2.1 Embodiment
Exploiting Properties of the Body

Adaptive behavior not only depends on neural circuits, but also on the interaction
of the body and the environment (Chiel & Beer, 1997; Chiel et al., 2009; Nishikawa
et al., 2007). This has been well demonstrated in insects (see Figure 2.1 a) and b)):
Legged locomotion in insects spans a behavioral continuum from slow walking to
fast running. On the one hand, during slow walking—which will be the main focus
of this chapter—insects place their legs accurately in space based on detailed sensory
information about the body and the environment (Niven et al., 2012; Theunissen
et al., 2014). This is critical when traversing cluttered environments such as canopies,
in which secure footholds are sparse. During fast running, on the other hand, the
e�ectiveness of sensory feedback might be constrained by sensorimotor delays (More
& Donelan, 2018). For example, at top running speed, a cockroach lifts each of its
six legs 20 times per second, corresponding to a step period of only 50 ms (Full &
Tu, 1991). This might not leave enough time for sensory feedback to adjust leg
movements on a step-by-step basis (Jindrich & Full, 2002; Zill & Moran, 1981).
Therefore, it is assumed that fast running in insects is driven predominantly by
central oscillating units (Figure 2.1 b) shown in green) in a feed-forward fashion
(Bidaye et al., 2018). A shift towards more feedforward control in (fast) locomotion
is assumed in other animals as well (Clancy et al., 2019) (Fig. 2.1 c)) and such
feedforward control has been applied to multiple legged robots (Ijspeert, 2008).
Importantly, insects can still recover from perturbations such as uneven terrain
during fast running (Jindrich & Full, 2002; Sponberg & Full, 2008). This is enabled
by passive forces from the musculo-skelatal system (Ache & Matheson, 2013; Dudek
& Full, 2006), which act more quickly than sensory reflexes as mechanical “preflexes”
(Brown & Loeb, 2000) (shown in orange in Figure 2.1 a) and b).



2. Decentralization and Modularization – Motor Control Hierarchies 15

Execution

Ground

Leg musculo-
skeletal system

Central Nervous 
System

mech. preflex
Sensory

Feedback 

motor commands

movements

Em
bodim

ent

biom
echanics

Re
sp

ec
tiv

e 
Ro

le
in

 m
ot

or
 c

on
tro

l

Sensory Feedback

Musculo-Skeletal System

Executive Circuits

Descending Modulation

“Complexity”
of specieshu

manca
t

ins
ec

t
sa

la-

man
der

b)a) c)

Figure 2.1: Contributions to hierarchical motor control: On the one hand, shown for
insects (Grillner, 2003) as such simpler model systems allow for more detailed analysis of
interaction between body and the environment. Experiments in insects have stressed the
importance of very fast and local reflex activity which is controlled directly on the lowest
level or even realized by passive properties as are muscle elasticities or preflexes (shown
in orange). Figure a) and b) are adapted from (Dickinson et al., 2000), with a) showing a
fast running cockroach highlighting sensors and actuators that are in interaction with the
environment (in orange). In b) a general scheme is given, highlighting that neural and
mechanical feedback play roles in the control of locomotion: on the shown intermediate
level (green), the central nervous system produces motor commands. These activate the
musculo-skeletal system of the animal which acts on the external environment. Sensory
input from multiple modalities is routed back to the central nervous system and modulates
motor commands. In parallel, mechanical preflexes directly act to resist perturbations.
While this is visualized for insects here, it represents a general model for locomotor control
and such structures are shared with other invertebrates and mammals (for more details see
(Dickinson et al., 2000)). This is visualized in c) in a schematic of di�erential roles of four
components that underly locomotion across animals (following and adapted from (Ijspeert,
2018)). The schematic is not meant as a quantitative characterization, but should point
out the shared and common characteristics between animal species. Complexity is as well
only a rough ordering of animal species, it could be related to the number of neurons in
the respective nervous systems (for more details see (Ijspeert, 2018)).

Dickinson (Dickinson et al., 2000) pointed out that such properties of embodiment
are an important part of adaptive behavior and interacting with an environment for
all animals (Figure 2.1 b) shows a sketch of his conceptualization and c) adds an
overview by (Ijspeert, 2018) on contributions of di�erent factors across a spectrum
of animals). Exploiting mechanical properties of the body (e.g., muscles) and
mechanical preflexes can facilitate fast running and can compensate for small
disturbances (for another example see (McGeer, 1993), passive walkers). Including
characteristics as elastic properties into robots has already shown to be advantageous
(Kim & Wensing, 2017; Schmitz et al., 2008) and this integration is recognized as
one of the major challenges for more adaptive robots (Yang et al., 2018).

2.2 Hierarchical Organization
in Biological Motor Control

One advantage of legged locomotion is that it allows animals to deal with quite
di�cult and uneven terrain. But this requires an adaptive motor system and control
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Figure 2.2: Overview of hierarchical control as assumed in humans: a) Sketch of
motor control systems in human (corresponding to Fig. 2.1 a) for insects). Higher level
control is color-coded in blue, central nervous system processing in green, and lower-level
(sensory systems and embodied actuation) in orange. b) Schematic for hierarchical motor
control and circuits for body movements in humans (adapted from (Arber & Costa,
2018)): Movements require coordinated activation of di�erent neuronal populations across
di�erent parts of the nervous system. Higher centers project onto sensorimotor cortex
which broadcasts to basal nuclei, brain stem, and spinal cord. On a high level (blue),
an action is selected. These circuits transmit information concurrently for movement
control to brainstem command lines (Graziano, 2006). Descending command lines from
the brainstem activate executive circuits in the central nervous system (shown in green),
e.g., for the control of high-speed locomotion or forelimb movement. On the lowest level
(shown in orange), executive circuits control actuators that govern body movements.
While this schematic is shown here for humans at the one end of the complexity spectrum,
it is known as a general control strategy for vertebrate locomotion (Grillner, 2003) and
the overall structure is assumed for other animals as well (Dickinson et al., 2000). One
di�erence between the hierarchical organization schematics for humans shown here in b)
and the schematic shown for insects in 2.1 b) is the di�erent and complementary focus.
While research on vertebrates and humans puts a focus on higher level processing in the
brain and descending commands, this is nicely complemented by research on embodiment
and the contribution of mechanical properties in insects (see 2.1). The importance of these
contributions is in general acknowledged for all animals (Arber & Costa, 2018; Graziano,
2006; Dickinson et al., 2000).

structures that allow to deal with unpredictable environments, for example, during
climbing or fast running. Such control structures have to coordinate fast movements
of the animal as it is interacting with the environment. None-the-less, locomotion
is a widespread trait that can be found across di�erent animals, ranging from
mammals to simple systems as are insects (Dickinson et al., 2000).

The di�cult task of controlling a complex system is addressed in many animals
(including insects) through hierarchical organization and modularization of the
control system in which the complexity is distributed onto di�erent levels of a
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motor hierarchy (Botvinick, 2008; d’Avella et al., 2015) and split into functional
modules (Alon, 2006) (see Fig. 2.2). A highest level deals with selecting goal-
directed behaviors. In our case, we are dealing with walking which is assumed
an automatic behavior that is not planned in detail on a higher level and doesn’t
require attention. On an intermediate level, actions are selected (Arber & Costa,
2018) depending on context (Fig. 2.2 b) shown in blue). This leads to an internal
competition between di�erent actions that is context dependent.

The lower level realizes motor control primitives (or synergies) (Giszter et al.,
1993; Hart & Giszter, 2010) that are modulated by the higher levels through
descending commands (Fig. 2.2 b), lower level shown in green with the higher levels’
projections shown as descending commands). The lower level motor primitives
allow for fast, sensory-guided adaptation towards disturbances. These describe how
di�erent muscles are working in concert for performing a specific action. Importantly,
as a result of this distribution of complexity, the lower level is focused on small
groups of muscles which leads to a decentralized organization and concurrent
operation of multiple such lower level motor primitives. Such a modularization
can be found in vertebrates and invertebrates (Flash & Hochner, 2005; Pearson,
1995). In vertebrates and higher animals the research focus is usually on the higher
levels (Fig. 2.2 b) provides a good summary of such a state-of-the-art view (Arber
& Costa, 2018), and similar ones can be found, e.g., in textbooks as (Magill &
Anderson, 2017); higher levels shown in blue). Such a high level view is nicely
complemented by work in invertebrates (Fig. 2.1) that demonstrates the importance
of embodiment and mechanical properties (shown in orange in Fig. 2.2 a) and
Fig. 2.1) as well as the importance of the lower-level motor primitives that are
modulated by sensory inputs and descending commands from higher levels (shown
in green in Fig. 2.2 and Fig. 2.1).

2.3 Hierarchical Organization
in Technical Approaches

A hierarchical organization of motor control has been transferred to many robot
control architectures. In general, this is realized as a distinction between selection
of actions and execution of actions on two di�erent levels of such a control hierarchy.
For example, impressive work on dealing with walking on rough terrain comes from
the area of quadruped robots (Carlo et al., 2018). There, the problem is divided
onto di�erent control levels of a hierarchy. While on a lower level the detailed
movements of joints and motors have to be controlled, a higher level coordinates
movements between di�erent legs and mainly selects lower level control primitives.

In many cases of locomotion control, on a higher level fixed gait patterns are
assumed (Ijspeert, 2008). As one example, Kalakrishnan et al. (2010) used the
LittleDog robot by Boston Dynamics to deal with challenging terrain. Spatial
coordination is realized as a search for footholds: First, possible footholds are
identified and a rough path is planned using a pre-trained ranking function and a
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scanned three dimensional terrain map. During locomotion, the detailed path is
executed depending on the current posture as well as the preplanned schedule. This
approach produced quite stable walking over rough terrain. A similar approach
has been applied recently by Bellicoso et al. (2018) on the robot ANYmal. But
importantly, they argue that di�erent environmental situations also a�ect temporal
coordination of legs on a higher control level. Therefore, they introduce a gait
switching module that plans how to switch phases between fixed gaits.

2.4 Decentralization in Biological Motor Control
In contrast, behavioral results from insect walking studies show a wide diversity of
walking behavior and not just a small number of fixed gait patterns (DeAngelis et al.,
2019; Bidaye et al., 2018). Temporal coordination of locomotion appears better
characterized as free gaits in which temporal relations emerge from the interaction
with the environment. This allows to constantly adapt locomotion to unpredictable
environments and to adjust the temporal coordination as required. A decentralized
control structure appears to be crucial and beneficial for adaptivity of walking.
Such an organizational structure of motor control in insects is well described and
characterized by decentralization (Dürr et al., 2004; Bidaye et al., 2018). On the
one hand, this agrees with a hierarchical organization as there is a higher level
producing decisions which behaviors to perform. On the other hand, these findings
further point out that biological control acts in a concurrent and modular fashion.
Motor control for walking in insects is assumed to be constituted of local control
modules. There exists one individual controller for each leg that switches local
behaviors depending on current sensory signals (Schilling et al., 2013b). These
controllers coordinate their behavior through, on the one hand, local coordination
rules that influence the switching behavior (see Fig. 2.3 b). On the other hand,
the di�erent controllers are coupled through the body and the interactions with
the environment. Actions of one leg a�ect other legs and can be sensed by those
without requiring explicit information exchange (at least to a certain degree). In
this way, the system exploits the loop through the environment (Brooks, 1991).

Decentralization constitutes a key characteristic of motor control and is one
focus of this thesis: The first article (Schilling et al., 2013a, see article A.1 in
the appendix, page 94) provides a detailed overview on behavioral findings in
stick insects and introduces the decentralized control architecture Walknet for
six-legged walking in which each leg is controlled concurrently by an individual
controller. In (Schilling & Cruse, 2020, see article A.2, page 118) complementing
neuroscientific results are presented and the control architecture is realized using a
more detailed and biologically realistic neuron-type, showing temporal characteristics
and addressing control on the joint level.
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Figure 2.3: Decentralization as an important characteristic for motor control:
a) provides an overview schematic of our motor control perspective. First, motor control
is hierarchically organized, integrating di�erent levels of neural organization as assumed
in animals (as detailed in Fig. 2.2) and complementing work on, for example, insects
highlights the importance of musculo-skeletal properties as well as the interaction with
the environment (as detailed in Fig. 2.1). Second, there is a decentralized organization
operating on di�erent timescales. Behavior emerges as a result of decentralized and
locally interacting concurrent control structures. Note, that there are multiple, parallel
arrows connecting di�erent levels. Such a concurrency is well established in insects
(Schilling et al., 2013a), but is also present in vertebrates (Graziano, 2006, see Fig. 2.2
b)) which, unfortunately, is only rarely explicitly pointed out. In b), this is shown for
the decentralized Walknet system for the control of six-legged walking which reflects a
control architecture as found in stick insects (Schilling et al., 2013a).

2.5 Walknet – a Decentralized Control Architec-
ture

Decentralization and hierarchical organization have been realized as control princi-
ples in the Walknet system that has been applied in simulation and on di�erent
robots (Dürr et al., 2019; Schilling et al., 2013a). While Walknet is structurally
quite a simple system it is adaptive and can deal with severe disturbances as for
instance loss of a leg. In Walknet, control is distributed hierarchically onto di�erent
levels. Each leg has its own controller (Fig. 2.4 shows arrangement of six such leg
controllers) that locally decides which action to perform depending on the sensed
context (Fig. 2.5). For locomotion, it is distinguished between two basic actions on
a leg level, protraction and retraction (stance and swing movement, respectively).
In forward walking, switching from a swing movement to the front towards a stance
action is initiated after the leg touches the ground and starts carrying weight.
During stance mode, the leg contributes to carrying the body and propels the body
forward. The transition from stance to swing is determined by the position of the
leg. Swing is started when the leg moves behind a posterior extreme position (PEP).

Each leg controller consists of competing motivation units (Fig. 2.5) that are
associated with the di�erent possible behaviors. Each action is connected with one
such unit that represents the activation of that action and the units form a local
winner-take-all network that decides which action is active. As mentioned, action
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Figure 2.4: Schema of the morphological arrangement of the leg controllers and the
coordination influences (1–6) between legs (adapted from (Schilling et al., 2013b)). Legs
are marked by L for left legs and R for right legs and numbered from 1 to 3 for front,
middle, and hind legs, respectively. The question mark indicates that there are ambiguous
data concerning these influences.

selection is mostly sensory-driven and depends on the current state of the controller
and of that particular leg. Furthermore, the six leg controllers coordinate their
action, but rely on local information: Neighboring legs are connected through local
coordination influences (Fig. 2.4) that are derived from behavioral experiments
on stick insects. Legs influence when neighboring legs starts to produce swing
movements by translation of the PEP. This local coordination is su�cient to prevent
that, for example, two neighboring legs are lifted from the ground at the same time.

Details on the Walknet control approach are given in the first article in the
appendix (Schilling et al., 2013a, A.1, page 94) which also provides a review
on behavioral experiments from which the coordination influences were derived.
The Motivation Unit architecture is provided in a further publication (Schilling
et al., 2013b, see A.3, page 168), explaining the network organization in detail and
showing results for application on a hexapod robot. Finally, this has been further
extended towards a detailed decentralized architecture that acts on the joint level
in neuroWalknet (Schilling & Cruse, 2020, see article A.2, page 118).
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Figure 2.5: Local leg controller (shown for a single leg). Green units represent the
intermediate local leg level on which actions are selected. These units are called motivation
units and each one is connected to a motor primitive which is modulated by the activation of
the motivation unit that drives the behavior (SwtoF is a swing movement directed towards
the front, SttoB a stance movement that is moving the leg to the back). Competition
between behaviors (shown are swing and stance in two directions) is realized through
mutual inhibition. Global information is indicated again in blue (in this case only walking
direction is provided as global information). Sensory information (orange) drives switching
of behaviors in context-dependent manner. On the one hand, detected ground contact
(GC) inhibits swing movements and starts stance. On the other hand, the leg position
(Pos) is compared to an assumed posterior extreme position (PEP) which determines when
to initiate a swing movement. Coordination influences modulate the PEP, facilitating
early swing movements or prolonging stance phase.

2.6 Results Overview
Results from the three publications on local control can be summarized as, first, free
gaits emerge from the decentralized control structure which allows to continuously
adapt on a short timescale to changing environmental conditions. Second, on a
neural level, activation of neurons reproduces experimental findings from insects.
These characteristics are visualized in Fig. 2.6 to 2.8.

First, a continuum of di�erent free gaits emerges (Schilling et al., 2013a)—
depending on the velocity of walking—from the interaction of the concurrent
local control modules (Fig. 2.6). Importantly, such a system is quite adaptive:
Such temporal coordination patterns converge towards stable gaits in undisturbed
environmental setting, but excel in di�cult and disturbed experimental scenarios
(Schilling et al., 2013b). When dealing with disturbances the temporal coordination
emerges directly from the interaction between the concurrent controllers as needed.
For example, in curve walking there are no clear-cut phase relations between di�erent
legs (Fig. 2.7) which poses a problem for centralized control approaches (see (Dürr
et al., 2019)) or in the case of climbing, adjusting and searching for footholds
requires time which directly a�ects temporal coordination between di�erent legs.
Insects adapt to these challenges and show flexible walking behavior. Therefore,
such a decentralized control structure appears beneficial as well for robots which
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Figure 2.6: Simulated robot Hector walking straight for di�erent velocities (Schilling
et al., 2013b): a) high velocity leading to emergence of a tripod gait, b) moderate velocity
leading to tetrapod gait, and c) low velocity leading to a wave gate pattern. Black bars
indicate swing movement of the respective leg: left front, middle and hind leg, right
front, middle and hind leg, from top to bottom. Abscissa is simulation time. The lower
horizontal bars indicate 500 iterations corresponding to 5 s real time.

has been demonstrated in numerous dynamic simulations and on real robots as
well (Dürr et al., 2019; Schmitz et al., 2008).

Second, the proposed control structure allows to analyze neural activity inside
the controller in detail. Intrinsic rhythmic behavior is often assumed to be caused
by Central Pattern Generators (CPG) (Ijspeert, 2008; Orlovsky et al., 1999). The
recognition of CPGs as a basic building block in control is based on experimental
findings in studies of dea�erented animals (Pearson, 1995; Orlovsky et al., 1999).
In dea�erentation, sensory input and motor output is operationally interrupted.
During the experiment the neural system is artificially stimulated by, for example,
application of pilocarpine (Büschges et al., 1995). In such experiments, observed
temporal coordination in the dea�erented animals shows an in-phase coupling
between neighboring legs. While such an in-phase coordination between contralateral
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Figure 2.7: Example of curve walking in stick insects. a) Shows a sequence of a free
walking, blindfolded stick insect on a horizontal plane (Dürr et al., 2019). Black line
segments and red dots show body axis and head every 200 ms (overall duration: 106 s;
median speed was 35 mm s≠1 at the beginning (lower left) and 25 mm s≠1 at the end).
Green line highlights the part shown in the footfall pattern shown in b) on the right.
b) Footfall pattern with black lines showing swing episodes of all six legs (L1 to L3: left
front to hind legs; R1 to R3: right front to hind legs) and corresponding yaw rotation of
the body axis. Blue lines show median rotational velocity per 60 ms window (thin dark
blue) and per 1 s window (thick light blue). c) Footfall pattern for simulated robot Hector
walking a turn to the right (Schilling et al., 2013b). The complete run shown corresponds
to a turn of about 180°. Starting positions (in m, origin is position of coxa): L1: 0.20,
R1: 0.05, L2: -0.04, R2: -0.14, L3: -0.02, R3: -0.22.

legs may corresponds to behavior for the case of swimming or flying, it doesn’t
match to walking behavior which is characterized mostly by anti-phase coupling of
neighboring legs (Graham, 1972; Wosnitza et al., 2013). None-the-less, CPGs are
often generalized to control locomotion even though the coordination of dea�erented
leg controllers is quite di�erent, eventually even opposite to that of normal walking.
The decentralized Walknet approach challenges such a CPG-based perspective as in
Walknet action selection is not driven by rhythmic oscillations, but sensory driven
(Schilling et al., 2013a). Whereas the original Walknet couldn’t account for findings
of neural in-phase oscillations—as it operated on a more abstract intermediate level of
action selection and used a simpler neuron model—, in an extension, neuroWalknet
now introduced a detailed neuron model that shows temporal behavior on the
neuronal level and can reproduce these findings (Schilling & Cruse, 2020). Note,
this is not meant to neglect the general existence of slow CPGs to control rhythmic
behavior. We only show that a sensory-driven control approach can show similar
activation patterns without the need of explicit CPG structures.

As one example, the simulations in Fig. 2.8 show that results of Knebel et al.
(2017) can be reproduced. In experiments on dea�erented locusts, these authors
found in-phase coupling between neighboring legs if all three thoracic ganglia were
treated with pilocarpine, which again contrasts to normal walking behavior, but
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Figure 2.8: Neural activity of depressor activation over time (s) during chemical
activation (Schilling & Cruse, 2020): Shown is a simulation of experiments of dea�erented
locusts (Knebel et al., 2017). Black bars show activation of depressor muscle output (>
0 mV). The main results are that all six hemiganglia oscillate with a period of about
5 s and show in-phase coupling (recordings from depressor motor neurons), if all three
thoracic ganglia were treated with pilocarpine. Note that influences from rules 1-3 were
not e�ective in this situation as sensory input concerning leg position is fixed (and leg
controllers were assumed to be in stance mode during the application of pilocarpine).
Therefore, the critical e�ects resulted from rule 5 influences plus the extension assuming
a contralateral inhibitory connection between the hind leg controllers.

can be observed in swimming (Ikeda & Wiersma, 1964) and flying (Pearson, 1995).
Such a rhythmic neural activity could be reproduced in neuroWalknet even though
the leg controller does not contain any explicit CPG that triggers the rhythmic
movement during normal walking, i.e., controls patterns characterized as pentapod,
tetrapod or tripod (Schilling & Cruse, 2020). When all three ganglia in the di�erent
body segments were treated with pilocarpine, all six hemiganglia oscillated in-phase.
These results raise questions concerning the contribution of the role of oscillatory
systems in the control of walking.

2.7 Conclusions
This chapter highlighted complementing findings from biology that provides insights
into the structure of control systems in animals and showed how these can be
applied for motor control on robots (for a schematic see Fig. 2.3).

1. Embodiment: Adaptive behavior exploits mechanic properties as are elas-
ticities of muscles. Furthermore, kinematic interaction with the environment
can simplify and replace the need of costly internal computation and repre-
sentation.

2. Hierarchical Organization: In animals, motor control problems are dis-
tributed onto di�erent levels and into di�erent modules. There is ongoing
competition within these levels, for example, in action selection. Further,
there is interaction between the di�erent modules, for example, higher levels
modulate lower levels through descending commands. This allows to focus
on specific contexts and situations as well as dealing with di�erent temporal
scales. While the higher level deals with goal selection, lower levels deal with
sequential action selection and on the even lower levels with control of muscles.
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3. Decentralization and Concurrent Processing: Motor control on the
lower level is not only driven by descending commands from higher levels.
A lower level is constituted by local, decentralized control circuits or motor
primitives that allow for fast, sensory-guided adaptation towards disturbances.
This complements the higher levels that deal with action selection on a longer
timescale and modulate the lower levels. Importantly, these decentralized
control structures process information concurrently.

These control characteristics have been applied on a hexapod walking robot in our
Walknet control approach. As each leg is controlled by an individual, decentralized
controller, overall behavior emerges from the interaction of these concurrent and
hierarchically organized controllers. Coordination between controllers is realized
through, on the one hand, local coordination influences acting only between
neighboring legs. On the other hand, there is an implicit, embodied coordination as
e�ects of the other legs are mediated through the loop through the world (Brooks,
1989). This control structure produces quite adaptive behavior and can deal with
disturbances acting on di�erent timescales (which will be discussed in the following
chapter), for example, dealing with quite severe interventions after the loss of a leg
or when it becomes necessary to continuously adapt as during climbing through a
twig. But as one disadvantage, the resulting control structures were handcrafted,
which requires a high level of expertise (as can be seen for the detailed schematic
of the neuroWalknet (Schilling & Cruse, 2020)). Scaling such designed approaches
further to more varied real world environments appears di�cult due to an increasing
number of required neural units and sensory inputs that have to be integrated
and the possible interactions between all the di�erent concurrent control parts. It
appears better to turn towards a learning approach that allows to self-improve
over time, as will be introduced in the next chapter.

2.8 List of Publications
This chapter gave a brief introduction and summary of three publications that are
part of this thesis and can be found in the appendix.

2.8.1 Contributions to the Thesis
• Schilling, M., Hoinville, T., Schmitz, J. and Cruse, H. (2013), “Walknet, a

bio-inspired controller for hexapod walking”. Biological Cybernetics, 107(4),
pages 397–419.
Appendix A.1, page 94: Provides a review on behavioral findings in insects
and details on the Walknet control approach (Schilling et al., 2013a, A.1,
page 94). This was published in Biological Cybernetics (Impact Factor 1.76)
and is now established as a reference for decentralized organization of motor
control in insects (cited 129 times).
Author Contributions: MS and HC laid out the concept, designed the model
and analyzed the data. MS carried out the implementation. MS and HC
wrote the manuscript. Writing review and editing all authors.
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Learning from scratch can be overwhelming, as it
involves relations between motor and perceptual skills,
resulting in an extremely large dimension search
problem.

— Montesano et al. (2008, p. 16)
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In the previous chapter, hierarchical organization and decentralization were
introduced as biological characteristics of motor control and were applied in the
Walknet structure for six-legged walking. We have seen how free gaits emerge in
these local control systems depending on the velocity of walking and the current
environmental settings. Such temporal coordination patterns converge towards
stable gaits in undisturbed environmental settings, but the system excels in di�cult
and disturbed experimental scenarios. In such cases, for example, consider the
loss of a leg or constant adaptation of footholds as required during climbing, such
controllers produce walking behavior by continuously adapting to the changing
environmental conditions which has shown to produce robust and stable behaviors.
But in this approach—as well as in many other biological inspired approaches—
control structures are often handcrafted. While this allowed to show how such

29
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systems can deal with—often quite challenging—disturbances, these systems are
tested only in a small number of quite specific experiments that are lacking the
general adaptivity as found in animals. Scaling such designed approaches to real
world environments simply appears impossible due to the increasing number of
required sensory inputs that have to be integrated and the increasing number of
possible interactions between di�erent concurrent control parts (Aljalbout et al.,
2020). Therefore, such approaches are usually not tested for generalization, for
example, when climbing in di�cult terrain. Here, learning-based approaches o�er
the advantage of avoiding handcrafted modules, but rather the details of the
control structure evolve over time.

In this chapter, we will use a Deep Reinforcement Learning (DRL) approach
on an embodied—currently simulated—robot. As a scientific question, we are
interested in how the biological characteristic of decentralization a�ects, on the one
hand, the learning process, and, on the other hand, performance of learned control
structures. Does a decentralized control structure allow to learn usable control
structures and how does the performance of these learned controllers compare to
a baseline approach? Learning of the parameters of the decentralized control—as
well as the baseline—structure (the policies) is reward driven from interaction with
di�erent environmental conditions. We hypothesize that a decentralized architecture
of six local leg controllers—that each control the behavior of a single leg relying
only on local information—is su�cient to produce adaptive locomotion behavior in
di�cult and changing environmental settings. This is tested through comparing
learned decentralized controllers with a centralized approach as a baseline on a
six-legged robot and shows that the decentralized approach performs at least as well,
if not even better. The chapter is organized in the following way: first, we briefly
give an example for the current state-of-the-art in DRL of locomotion. Current
DRL approaches already advocate hierarchical organization (Merel et al., 2019a),
but in the second section we will argue why such a representational approach to
hierarchical organization appears not su�cient to explain adaptive walking behavior,
but only can deal with—however quite severe—disturbances on a long timescale.
Third, the decentralized learning system is introduced followed by a summary of
the results. Last, the conclusion gives an outlook on learning in a hierarchical
and decentralized control structure.

3.1 Towards Learning Hierarchical Representa-
tion in Current Robotic Approaches

Learning based approaches o�er the advantage of not requiring handcrafted modules.
Recently, Deep Reinforcement Learning (DRL) was established as one promising
approach (Arulkumaran et al., 2017). But while it has shown to become more
sample-e�cient and stable with respect to variability of experimental settings
during training (Fujimoto et al., 2018), high dimensionality of a control problem
still imposes a di�cult problem. Even more when turning towards application on
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Figure 3.1: Visualization of influences for the biological inspired approach: On the left (a)
the standard view of interaction with the environment in reinforcement learning (Sutton &
Barto, 2018) is extended to a hierarchical perspective (Kulkarni et al., 2016) as advocated,
for example, in (Merel et al., 2019a). For higher level control (shown in blue) this is in
agreement with what we know on the structure of motor control in mammals (Arber &
Costa, 2018) about descending pathways and modulation of lower level control centers
(shown in green) in the spinal cord. Such structures are shared not only in mammals, but
also in invertebrates and insects (Dickinson et al., 2000), see b). Work in such simpler
model systems allows a more detailed analysis of interaction with the environment which
has stressed the importance of very fast and local reflex activity controlled directly on
the lowest level or that are even realized by passive properties as muscle elasticities or
preflexes (shown in orange). One important characteristic emphasized by this work is
the emergence of behavior as a result of decentralized and locally interacting concurrent
control structures (bottom part of b). An example is given by the decentralized control
structure found in stick insects (Schilling et al., 2013a), but this concurrency is as well
assumed in primates (Graziano, 2006).

robots. In that case, learning appears di�cult or simply infeasible if no additional
structure for the control system is given (Hwangbo et al., 2019). Therefore, a lot
of this work has only been realized in simulation or uses at first simulation before
transferring a learned controller onto a real robot. For example, Hwangbo et al.
(2019) used DRL for, first, training a policy network in simulation which, in a
second step, was successfully transferred to the real robot system. As one limitation
the authors point out that the learned behaviors tended to overfit (Lanctot et al.,
2017) and did not show adaptivity as found in animal systems. As a possible
solution the authors proposed that a hierarchical organization of the controller
might help to alleviate this problem.

Hierarchical Deep Reinforcement Learning (HDRL) has become more and more
prominent (Merel et al., 2019a; Arulkumaran et al., 2017) and has been applied
to locomotion in simulation as well (Frans et al., 2018; Heess et al., 2016). HDRL
(see Fig. 3.1) provides a biologically inspired solution which can be traced back to
the early options framework which is described on di�erent time scales realizing a
form of temporal abstraction and hierarchical representation (Sutton et al., 1999).
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Current approaches turn towards how to self-discover options on the higher level
(Kulkarni et al., 2016; Vezhnevets et al., 2017). This has lead to some early results
and the introduction of more stable learning approaches (Fujimoto et al., 2018;
Nachum et al., 2018) is assumed to further leverage such approaches towards more
and more real world problems. But most of these approaches maintain the notion of
fixed timing patterns between the di�erent levels (as one example for an exception
see (Han et al., 2020)), i.e., the higher level policy is only evaluated after a fixed
number of steps of the lower level to enforce a form of behavioral stability. This
works well in some scenarios, but when turning towards scenarios in which there
is a large variation concerning the duration of di�erent behaviors or actions, this
fixed stepping on the di�erent levels might cause problems.

To summarize, current Deep Reinforcement Learning approaches start to incor-
porate a hierarchical organization. This shows to be beneficial as such approaches
can deal with a wider variety of contexts. Hierarchical organization for locomotion
control has already been tested in simulation and is seen as a promising approach
for real robot application. But mostly this success is connected to transfer learning
and the ability to switch between di�erent contexts which allows to exploit a
control structure of a similar context. This has shown to work well in the above
examples were di�erent low-level motor primitives are used for walking behaviors
and are combined on a higher level for navigation. Such approaches also tend to
work well when dealing with severe intervention, for example, the loss of a leg
which is often used as an application scenario. But such an intervention presents a
singular event which might require adaptation of the control structure (our Walknet
approach can deal with loss of leg without introducing specific structures (Schilling
et al., 2007)). This is in contrast to adaptivity as found in insects, for example,
considering climbing through a twig or even simply negotiating a curve. In this case,
behavior is continuously adapted to the unpredictable environment as it is sensed
in real-time. This appears to require other mechanisms as well that act on a much
faster timescale. Along this line, we argue that decentralization is an important
characteristic and we believe that a dynamical systems perspective of temporal
coordination—as introduced in the previous chapter—illustrates this point nicely.
This view has recently been supported by Peng et al. (2019) who provided a similar
argument in their hierarchical approach of learning compositionable (concurrently
executed) skills that allowed for better transfer between tasks.

3.2 The Advantage of Decentralized Control
In this section, we want to motivate our argument for the importance of de-
centralization in motor control. From our point of view, current hierarchical
approaches take a representational stance (for a detailed discussion on emergence
of representation in neural networks see (Brette, 2019)), i.e., the hierarchical
organization in the respective approaches is reflected as a hierarchical representation.
Such an organization is tied towards specific contexts and problems. Using
navigation in a maze as a task (see Fig. 3.2),Lehman & Stanley (2011) illustrated
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Figure 3.2: Deceptive Problems: a) Showing a simple maze navigation task (black bars
represent obstacles/ walls inside the maze) with the goal at the top left (following Lehman
& Stanley (2011)). When using a distance based objective function, all points on a circle
are conflated and share the same reward value even though they clearly di�er in how
well they provide a path towards the goal location. This explains the idea of deceptive
problems: the objective function is not informative for solving the problem as in many
instances one has to move towards locations that appear worse before improving towards
a global optimum. As a consequence, in such problems optimization often ends up in
local minima. b) visualizes the introduction of a suitable hierarchical representation, in
this case a grid-based map structure. Each square of this higher level structure is assigned
a reward value based on experience (this still requires exploration) and transitions inside
the grid are learned. During exploitation this map structure allows to follow the gradient
along possible transitions even though this might result in moving away from the goal
location at first as is shown for the example when recovering from a dead end.

nicely that a simple objective as distance towards the goal is not always helpful to
bootstrap learning for finding a route towards a goal (Fig. 3.2 a)). Instead, they
showed (Fig. 3.2 b)) that introducing a higher level map-like representation helps
to solve the problem: On this higher level a grid like structure is mapped onto
the original maze. Following a reinforcement learning-based approach values and
actions are learned for each of these grid cells from real routes passing towards
that subarea and integrating the accumulated rewards. This representation can
afterwards be exploited to make higher level decisions for the agent as he is selecting
actions leading into neighboring grid areas that have a higher expected reward.
The associated lower level carries out the respective action. This has shown as a
powerful approach for spatial problems, for example, see Kulkarni et al. (2016) on
learning di�cult delayed rewards in computer games through intrinsic motivation by
using a hierarchical map-like representation. But, importantly, this requires finding
such a suitable intermediate representational layer. Here, we want to argue that
in many application areas it is not straight-forward to find such a representation.
Ideally, such a representation is induced by the given task and can be derived
from outside. In spatial cases, we can even observe activations that reflect such a
spatial organization in the brain of animals (Moser et al., 2008). But there is a
di�erent possible point of view, that there are no fixed representations, but that
we merely observe an epiphenomenon while the regularity appears as an e�ect of
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Figure 3.3: Visualization of behavioral space (a) and b) are reproduced from (Cully
et al., 2015)): a) Overall behavior is represented in an abstract, six-dimensional space
(one dimension for each leg). Each dimension is the portion of time that each leg is in
contact with the ground (see explanation of gait cycle visualized in red in the top of c)).
Arrangements of the six dimensions in order to produce two dimensional color coded
plots. The space is discretized at five values for each dimension. b) Behavioral map that
stores one optimal behavior for each point in the six-dimensional behavioral space. Each
colored pixel represents the highest performance for an associated behavior which were
pretrained over the full six dimensional space for a simulated robot (shown in bottom of
a)). c) shows, top part, a typical footfall pattern for a straight walking insect as produced
by our Walknet architecture. In red it is shown for one leg (hind right leg) how the gait
cycle is determined as the portion of the leg in swing compared to the complete stepping
cycle. On the bottom, curve walking is shown as an example highlighting that in a
realistic—still quite simple—context footfall patterns might be highly irregular and there
appears neither a fixed stepping cycle nor a fixed length for swing or stance movements
which makes this appear as an improbable space for motor control in such a setting.

the regularity of the context instead of being intrinsic or encoded in the neural
structure (Such an epiphenomenal view is argued for by Brette (2019) for the case
of spatial neural codes as found in place cells.).

To explain this in more detail, we will turn towards the impressive evolutionary
approach by Cully et al. (2015) who argue that there is a behavioral space organizing
behavior. They used an evolutionary algorithm to evolve locomotion behaviors for
all kind of possible situations and build an exhaustive map of possible behaviors.
Importantly, they used a representational approach, too. While the original learning
problem is very high dimensional and appears intractable, they introduced an
intermediate (lower dimensional) representational layer as a behavioral space. Their
approach aims at finding a cover of optimal solutions across this behavioral space
which is realized through a specific evolutionary algorithm that performs a broadened
search (Mouret & Clune, 2015). The behavioral space describes temporal relations
(in their case duty cycles of individual legs) and the authors were able to show
that this intermediate representation could be used as stepping stones (Lehman &
Stanley, 2011) for adaptive control. Following this approach, the robot was able to
cope with leg damages. It could simply switch towards other behaviors using the
previously derived behavioral space, for which they used a form of trial-and-error
search across the low dimensional behavioral space. But while this has shown to
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work e�ciently when experiencing drastic changes (as losing a leg), such a fixed
temporal coordination scheme does not show the form of adaptivity we find in
walking animals. The authors assume that animals have an understanding of the
space of all possible behaviors. In Cully et al. (2015), central to their approach is
how the behavioral space factorizes a current situation describing temporal relations.
While temporal patterns are traditionally used in order to describe how animals
move, we, in contrast, believe that this only provides a good observational space,
but not one used as a substrate for motor control as indicated by the huge variability
found in many studies in (slow) walking insects (Bidaye et al., 2018; DeAngelis
et al., 2019; Schilling et al., 2013a). Adaptive walking or climbing appears hard to
be described by phase relations between di�erent legs as those are changing all the
time. Current approaches that employ fixed gait patterns run into problems when
environmental conditions are changing (e.g., during acceleration or deceleration)—
control approaches using fixed gaits actually produce poor results in these instances.
The approach presented by Cully et al. (2015) appears well equipped to adjust leg
patterns after a strong change, but this type of representation appears not well
suited for moderating continuous change. As one example, we want to point out
the temporal pattern observed when an insect negotiates a curve (see Fig. 3.3, for
more details on curve walking in insects see Fig. 2.7): during curve walking, inner
and outer legs as well as the di�erent legs on one side of the animal, are walking
with very di�erent and constantly changing stepping frequencies as the legs are
contributing di�erentially (e.g., inner hind legs are standing still in narrow turns
and provide an anchor point). The underlying temporal relations emerge and while
there is some structure to the phase relations, there is huge variability between
trials and it appears implausible that a higher level control system is planning
these temporal relations in detail (Schilling et al., 2019).

Instead, it might help to reconsider the behavioral space of animals’, not taking it
as one specific type of static representation, but more as an observation of invariances
that stem from the underlying—lower level—systems. Instead of enforcing a
particular representation scheme, the interaction between the di�erent (simple)
dynamical systems span a behavioral space that can be exploited for adaptive
behavior in di�erent ways. It might, therefore, be a better approach to understand
how the behavior emerges from interactions of di�erent decentralized and concurrent
low-level control modules as proposed in our system (Shenoy et al. (2013) argued
for such a shift towards a dynamical system perspective to better understand the
neural basis for grasping.). While such concurrent control circuits and their dynamic
interactions appear more di�cult to analyze and understand, this might be a better
starting point to approach adaptivity and might be required to allow for a flexible
hierarchical organization. Such a modular organization of the nervous system of
animals has been linked to adaptivity (Kashtan & Alon, 2005; Lipson et al., 2002).

This argument is discussed in more detail in the appendix (Schilling et al.,
2019, B.1, page 188).
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a)a) b)

Figure 3.4: Visualization of the simulated PhantomX robot. a) shows the uneven terrain
condition in comparison to the robot. b) shows a walking sequence on flat terrain.

3.3 Decentralized Deep Reinforcement Learning
In the previous chapter, we presented a decentralized dynamical systems approach.
Here, we want to leverage this principle of decentralization and show that working
with local control modules that only have access to local information is su�cient
for learning stable walking behavior. The controller for the six legged robot should
be learned using Deep Reinforcement Learning.

3.3.1 Reinforcement Learning
Reinforcement learning aims to solve optimization problems where an agent (here
a simulation of the six-legged PhantomX robot, Fig. 3.4) takes actions in an
environment in order to maximize an external reward. The goal is to find a policy
fi(S) for the Markov Decision Process that returns a probability distribution over
the possible actions in such a way that the expected long-term return is maximized.
This is realized through interacting with the environment and directly learning from
this interaction an estimator, for example, for this policy fi(S).

In the case of motor control, we are dealing with a given continuous state
space which is spanned by the sensory signals and with a continuous action space
which corresponds to direct motor signals. Therefore, learning operates over high
dimensional continuous spaces which makes it impossible to learn an exhaustive
list matching all possible states to optimal actions. Instead, in Deep Reinforcement
Learning deep neural networks are used as non-linear function approximators for
the policy (Arulkumaran et al., 2017). The deep reinforcement learning algorithm
used in our approach was Proximal Policy Optimization (PPO) (Schulman et al.,
2017) as it has shown to work well on a variety of problems without the need
of intensive hyperparameter tuning. We used the baseline implementation of
PPO provided by OpenAI Gym (Dhariwal et al., 2017). It is connected using
ROS2Learn (Nuin et al., 2019) which enables communication between OpenAI
Gym and ROS 2 enabled robots.

As a reward function, we simply used the traveled distance over a fixed time
span (an episode) in order to avoid any bias due to reward shaping (Heess et al.,
2017). During training, the agent uses the experienced reward Rt+1 it received
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Figure 3.5: Overview of the decentralized control architecture, shown for the middle
left leg (ML): a) Schematic showing local inputs to the controller. These are sensory
information (blue) from the leg and its’ two neighbors and last actions of the neighboring
controllers to provide context. Control output (joint activations for only the respective
leg) are shown in green. For each leg there is an individual controller in the decentralized
structure. b) View of decentralized policy network: a neural network with two hidden
layers (64 hidden units in each hidden layer). Sensory input is given as information from
leg. Output is mapped to joint actions (for the decentralized approach, six such networks
are used which each produce joint activations for a single leg and only receives partial
sensory inputs).

from executing an action At in state St in order to optimize its’ policy fi. The
neural network that acts as an approximator for the optimal policy is trained on
these experiences. Afterwards, it should generalize and be able to infer which
action leads to the highest external reward for a novel state. Updating the neural
networks’ weights is called an epoch.

3.3.2 Decentralized Motor Control Architecture
The decentralized architecture (shown in Fig. 3.5 a)) actually consists of six
individual controllers, one for each leg. This local structure is biologically inspired
from the organization of motor control systems as found in insects (Schilling et al.,
2013a). The approach is comparable to multi-agent reinforcement learning as each
of these leg controllers individually controls the actions of this particular leg. As
inputs (which define the controllers’ observation space) each controller receives all
the information of that particular leg (positions of the three leg segments, ground
contact). But in addition, each controller gets local information from the two
neighboring legs which di�ers from a multi-agent reinforcement learning approach
in which all information would be decentralized and information from other agents
would not be available (note, that in some multi-agent approaches this restriction
is weakened and only during training all information might be accessed (Lowe
et al., 2017; Foerster et al., 2018)). In the decentralized approach this information
is structured following the body topology of the robot and taking inspiration
from what we know about how information between controllers is shared in motor
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control in insects (currently we are simply taking a broad approach o�ering all
local information to the learning procedure).

Furthermore, information on the orientation of the body is provided as a six-
dimensional input following (Zhou et al., 2019) and the last joint actions from the
two neighboring legs. As a consequence, each of the six decentralized controller
receives a 42-dimensional input to its policy control network.

3.3.3 A Centralized Approach as a Baseline
This approach is compared to a standard DRL single-agent approach in which a
central holistic motor control structure is provided with all the information which
has to come up with actions and motor control for all 18 joints of all six legs
simultaneously. The input space in this case is 84 dimensional. Therefore, in
the case of the centralized approach, it is guaranteed that all sensed and known
information is available to the control system to make reasonable decisions. But as
a disadvantage the input space is much higher dimensional which makes it more
di�cult for reinforcement learning to uncover on which information decisions should
be based and how these should influence action.

3.3.4 Policy Network
The policy networks were setup using a similar architecture for both conditions: a
policy network consisted of two hidden layers each with 64 units and using tanh
as activation functions (see Fig. 3.5). The major di�erence were the input and
output spaces: for the centralized approach a single network was trained with 84
input dimensions and 18 output dimensions. For the decentralized architecture six
individual networks (one for each leg) were trained with each 42 input dimensions
and 3 output dimensions.

Details on learning the decentralized control architecture are given in the
appendix (Schilling et al., submitted, 2020a, B.2, page 196). The article further
provides detailed results for application on a simulated hexapod robot that we
will briefly summarize in the next section.

3.4 Results Overview
Results on DRL of a decentralized control architecture can be summarized as,
first, the decentralized approach produces viable solutions for motor control even
though there is only limited information available. Second, comparing multiple
learning runs shows that decentralized learning leads to control structures with a
significantly better performance. Third, as DRL is a form of explorative learning,
the smaller observation space of the decentralized approach helps to speed up
learning considerably. Last, decentralized controllers transfer well to di�erent
terrains. These results will be briefly explained in the following.
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Figure 3.6: Comparing performance over training time in epochs: mean reward over all
decentralized controllers is shown in blue and mean reward for the baseline centralized
approach is shown in orange (shaded areas show standard deviation). Performance is
measured as reward per episode (distance travelled in a single direction). Seeds were
only measured up to 5000 epochs as learning appears to have converged by then. The
horizontal red dashed line visualizes the maximum of the centralized approach at the
end of training. The vertical red dashed line indicates when this performance level was
reached by the decentralized approach (after around 2200 epochs already).

First, we consider learning to walk on flat terrain during training. As a baseline,
we took a single-agent (centralized) control architecture that has access to all
available sensory information and information on the last actions. Both, the baseline
and decentralized approach, were trained 15 times using di�erent random seeds.
Performance over learning is shown in Fig. 3.6. Both learning approaches learned
good walking behavior with quite a high velocity that looked well coordinated.

The trained controllers from the last epoch were afterwards evaluated. For each
controller for over 100 individual episodes the performance (mean velocity over the
episode) was evaluated. For the centralized baseline approach the mean reward
was 546.70 (standard deviation 131.23). The proposed decentralized architecture
consisting of six local control modules reached a performance of 657.11 (std.dev.
68.07). We performed a two-tailed Welch t-test (following Colas et al. (2019) with the
null hypothesis that the two approaches perform equally well). The null hypothesis
could be rejected (p-value of .011) and we could conclude that the decentralized
architecture performs significantly better (relative e�ect size was large at 1.02).

The learned architectures were trained for 5000 epochs as initial tests showed
that at this point controller performance was already converged for both cases.
Learning progressed in several stages from simple crawling towards walking lifted
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Figure 3.7: Comparison of the (approximated) performance distribution for the
controllers (taken from 15 seeds per condition). Shown are violin plots for four evaluation
conditions, from left to right: evaluation of walking on flat terrain; evaluation on three
di�erent height maps of maximum height of 0.05 m, 0.10 m, and 0.15 m. Inside the four
evaluations, it is further distinguished between controllers trained on the flat terrain
(left side) and controllers trained on the height map (right side). The violin plots
show approximated distributions (and the quartiles are given inside): orange shows the
centralized baseline approach and blue shows the decentralized architecture. Performance
for the di�erent seeds for each condition was measured as mean reward per episode
(indicates mean velocity over simulation time).

from the ground. Comparing the two di�erent architectures, the decentralized
architecture reached a higher reward level earlier and appears to learn much faster.
Compared to the mean reward of the centralized approach at the end of training,
the decentralized approach reached such a level already after around 2200 epochs.

Last, we evaluated performance on uneven terrain. For this evaluation, con-
trollers at the end of training were used. These controllers were evaluated on di�erent
types of uneven terrain for 100 episodes (using height-maps of height 0.05 m, 0.10 m
and 0.15 m m that were generated using the diamond-square algorithm Miller
(1986)). Pooled data for two conditions is given in table 3.1 and Fig. 3.7.

First, reward went down for uneven terrain compared to walking on flat terrain
which is to be expected. For comparison, we trained controllers directly on uneven
terrain (table 3.1) which shows a similar performance. Therefore, we can conclude
that the controllers transfer well to novel terrains. The decentralized approach still
appeared to perform better, but di�erence was not significant (p = .10).

3.5 Conclusions
The long term goal of our approach is to show how decentralized control as
found in animals contributes to adaptivity of locomotion. In this chapter, we
discussed results showing that Deep Reinforcement Learning of a decentralized
control architecture for a simulated hexapod robot produced stable and robust
walking behavior. Importantly, for the decentralized architecture mean performance
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Table 3.1: Comparison of rewards between the di�erent control architectures during
evaluation. Data was collected during evaluation for 100 episodes for each
controller. Given are mean rewards (and standard deviation in brackets) for
each group of controllers (each group consisted of fifteen individually trained
controllers). There were two di�erent controller architectures, decentralized
and centralized approaches, and two di�erent training conditions, trained on
flat terrain or on uneven terrain (using a height map with maximum height
of 0.10 m). A Welch t-test was performed to compare the two controller
conditions (decentralized and centralized controller) which showed signifi-
cant di�erences between the decentralized architecture and the centralized
approach in two of the three cases: For walking on flat terrain with a p-value
of .011. For both approaches trained and tested on uneven terrain (expert
policies, last line in the table), again there was a significant di�erence in
favor of the decentralized approach (p-value of .023). For generalization of
controllers that were trained on flat terrain and evaluated on uneven terrain,
we only found a trend (p-value of .10) which might be explained through the
much higher standard deviation.

Condition Decentralized Arch. Centralized Arch.

Reward Std.Dev. Reward Std.Dev.

Evaluation on flat terrain 657.11 68.07 546.70 131.23
Generalization to uneven terrain 397.91 83.87 334.06 112.94

Expert policies that were trained 424 .30 40 .09 382 .42 51 .23
and tested on uneven terrain

was significantly better and learning was much faster compared to a common
centralized baseline approach.

As discussed in the previous chapter, decentralization and hierarchical orga-
nization appear as two fundamental characteristics of adaptive behavior. In a
hierarchical organization, actions can be decomposed into sub-actions on di�erent
levels of abstraction. Decentralization in particular emphasizes that the control
structure encompasses the whole nervous system and control is distributed to
local control modules. There is already quite some work showing the benefits of
hierarchical organization in the area of DRL and this has been argued to improve
walking controllers (Hwangbo et al., 2019; Frans et al., 2018). In contrast, our
approach for a decentralized architecture in a single agent is a first application of
decentralization. It appears beneficial to combine both characteristics. We have
introduced the concept of such a hierarchical and decentralized architecture (see
article in the appendix (Schilling & Melnik, 2018, B.3, page 206)) for a reinforcement
learning setting. From our point of view, this has the promise to show broad
adaptivity as it further introduces the ability of switching between di�erent types
of behavior. This would allow a system to switch between di�erent environmental
settings and shows a type of transfer which currently already produces a viable
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solution in hierarchical approaches. In addition, the decentralized structure would
(hopefully) lead to higher robustness and adaptivity on a very fast time scale. This
requires further research and analysis of how a decentralized approach can cope
with unpredictable and more diverse environments. Furthermore, application on a
real robot should further test how well a decentralized architecture can deal with
noise and changing body properties as well as environments.

3.6 List of Publications
This chapter gave a brief introduction and summary of three articles that were
published at relevant conferences. These articles can be found in the appendix.

3.6.1 Contributions to the Thesis
• Schilling, M., Ritter, H., and Ohl, F.W. (2019), “From Crystallized Adaptivity

to Fluid Adaptivity in Deep Reinforcement Learning — Insights from Biologi-
cal Systems on Adaptive Flexibility”. In 2019 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Bari (I).
Appendix B.1, page 188: Discusses in detail learning on di�erent timescales
as a form of fluid adaptivity that allows to continuously adapt to changing
environments and contrasts this with approaches that learn how to switch
between di�erent types of behaviors. Introduces deceptive problems in more
detail. This was published at IEEE SMC (ranking: CORE B).
Author Contributions: Conceptualization and writing original draft – MS.
Investigation, writing review and editing – MS, FWO, HR.

• Schilling, M., Konen, K., Ohl, F.W., and Korthals, T. (submitted to IROS
conference), “Decentralized Deep Reinforcement Learning for a Distributed
and Adaptive Locomotion Controller of a Hexapod Robot”.
Appendix B.2, page 196: Application of decentralized controllers in a DRL
setting. Showing detailed results that such a decentralized architecture learns
robust controllers that even perform better compared to a baseline approach.
Author Contributions: Conceptualization, writing original draft and data
curation – MS. Methodology, formal analysis – KK, TK, MS. Investigation
and software – KK. Writing review and editing – MS, KK, FWO, TK.

• Schilling, M. and Melnik, A. (2018), “An Approach to Hierarchical Deep
Reinforcement Learning for a Decentralized Walking Control Architecture”.
In: Samsonovich A. (eds.) Biologically Inspired Cognitive Architectures 2018.
Advances in Intelligent Systems and Computing, vol 848. Springer, Cham.
Appendix B.3, page 206: Introduces how to extend the decentralized archi-
tecture towards a hierarchical approach in a DRL setting (implementation is
future work).
Author Contributions: Conceptualization and writing original draft – MS.
Methodology, investigation, writing review and editing – MS, AM.
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3.6.2 Further Related Publications
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Z., Zhang, Z., Chen, J., Shi, J., Zheng, Z., Yuan, C., Lin, Z., Michalewski,
H., Mio, P., Osiski, B., Melnik, A., Schilling, M., Ritter, H., Carroll, S.,
Hicks, J., Levine, S., Salath, M., Delp, S. (2018). “Learning to run challenge
solutions: Adapting reinforcement learning methods for neuromusculoskeletal
environments.” In: S. Escalera, M. Weimer (eds.) The NIPS 2017 Competition:
Building Intelligent Systems. Springer, Springer (2018), p. 121–154.

• Schilling, M., Konen, K., and Korthals, T. (accepted at BioRob 2020 confer-
ence), “Modular Deep Reinforcement Learning for Emergent Locomotion on
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A model is valuable not because it veridically captures
some ground truth, but because it can be e�ciently
leveraged to support adaptive behavior.

— Botvinick et al. (2017, p. 27)
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4.1 From Adaptive to Cognitive Behavior
In the previous two chapters, the focus was on adaptive control of behavior.
Two key characteristics that were introduced were hierarchical organization and
decentralization which allow for fast motor control. First, we addressed these
aspects from a detailed biological perspective in insects that includes behavioral
findings in restricted—but still broad—contexts and neuroscientific research. These
studies shed light on the modular organization of the underlying motor system and
showed that these properties allow to adapt to disturbances. Importantly, dealing
with uncertainty often requires a quick response which doesn’t allow for planning
or even neural transmission to higher levels might be already too slow. Here, local
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mechanisms show an advantage as they can act on a very fast timescale. In a
second step, we showed how to scale these organizational principles up using a
reinforcement learning approach in order to learn novel behaviors and entrain these.

As pointed out in the introduction, we are following a dual process approach
(Kahneman, 2011; Evans & Stanovich, 2013), i.e., there is one type of fast, habit-like
processes that can automatically deal with control and execution of behavior (type
1). Secondly, there is another type of processes that deals with cognitive control
of behavior which is assumed to be slower but takes higher level processes into
account (type 2). Recently, this approach has been extended towards a mechanism
level in the area of reinforcement learning in the distinction between model-free
mechanisms—an adaptation to a specific niche—and model-based learning (Niv,
2019; Neftci & Averbeck, 2019). Until now, our focus was on model-free mechanisms
that allow for fast actions (see previous chapters). Now, we are turning to model-
based mechanisms, acting on longer timescales. The general underlying idea is
to exploit a model of the external environment in planning as a form of mental
simulation. In reinforcement learning, both, model-free and model-based approaches,
are forms of trial-and-error learning: In model-free learning, control is shaped over
time to evolve adaptive, fast reflex-based behaviors. In contrast, model-based
learning o�ers a flexible way to mentally enact di�erent possibilities. This has
the advantage that a system can test a behavior out of its original context and
apply a behavior when facing a novel situation. In this way, such model-based
control complements adaptive behavior. Following our definition of cognition in
the introduction, this constitutes cognitive selection of behavior. Importantly, this
approach requires a form of adaptivity on the lower level to allow application of
behaviors out of their original context.

Here, we are not starting from a learning-based approach. Instead, following a
bottom-up approach our focus is on already existing early internal models. These
are assumed to be grounded in an embodied system (Barsalou, 2008) and—following
Steels (2003)—have co-evolved in service for action. One early example is an
internal model of the own body (Cruse, 1999). In this chapter, we will briefly
summarize the function of internal models in motor control laying the foundation
for a grounded internal body model. Second, briefly introduce our recurrent neural
network approach for such a body model and extend it towards a hierarchical
model. Last, we will briefly summarize results showing how such a hierarchical
internal body model serves reactive behaviors.

4.2 Internal Body Models
An internal model of the own body can be assumed a fundamental and evolutionary-
early representation that can be found in many animals (McNamee & Wolpert, 2019).
Such functional models are, on the one hand, required in motor control, for example,
solving the inverse kinematic or dynamic task in goal-directed movements or a
forward task in ballistic movements. On the other hand, such models are recruited
in cognitive tasks as are planning ahead or observation of actions of a conspecific.
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Usually, one distinguishes di�erent types or functions of such internal models
in the context of action. These di�erent types of internal models can be found
throughout the animal kingdom, even in insects (Menzel et al., 2007; Dürr &
Schilling, 2018). First, inverse models deal with transformations from a Cartesian
three-dimensional space—as, for example, visually perceived—into an actuator or
action space like joint values or muscle activations (Wolpert & Kawato, 1998). A
typical example can be found in grasping and reaching movements in humans and
animals (Shadmehr & Wise, 2005). This includes mechanisms in insects, for example,
targeted leg movements in stick insects that are used to mediate information of
footholds between neighboring legs (Cruse, 1979; Dürr & Schilling, 2018) and other
goal directed movements (Page et al., 2008; Honegger, 1981). For complex kinematic
structures such inverse problems become quite hard or intractable. In particular,
for redundant manipulators there are more degrees of freedom than required and as
a consequence there are often multiple possible solutions (Bernstein, 1967). Second,
forward models predict a position in space when current joint values or muscle
activations are given. Such models are, for example, used in fast and ballistic
reaching movements for which sensory feedback is too slow to modulate motor
control and instead the predicted outcome of the movement is utilized (Wolpert
& Flanagan, 2001). Again, such models can be found already in insects that use
dynamic models for prediction (for example, expectation on a moving stimulus
(Strauss & Pichler, 1998) or for capturing prey in dragon flies (Mischiati et al.,
2015); for review see (Webb, 2004)). A third type of models exploits redundancy of
sensory systems which requires internal modeling capabilities for sensory integration
(Wolpert et al., 1995) (for examples in insects see (Wessnitzer & Webb, 2006)).

In motor control it is usually distinguished between the inverse and forward
functions. This leads to very specific internal models serving one specific behavior
and one specific function. A good example is the influential MOSAIC approach
(Wolpert & Kawato, 1998; Haruno et al., 2003), in which each behavior consists
of a pairing of an inverse and a forward model. Such an approach has some
drawbacks as it is not very e�cient and as there are duplicate representations.
Adaptation of such models seems quite problematic—when the body changes it has
to alter the connected individual models for each behavior. Therefore, there is the
longstanding notion of a single internal body representation (Acosta-Calderon & Hu,
2005; Ho�mann et al., 2010; Arcaro et al., 2019) that might subserve these functions
in the context of di�erent behaviors and tasks. There is a large body of literature on
how such a body schema might be neuronally encoded in humans and animals. In
general, it is assumed that configurations of body parts are encoded in a distributed
and somatotopic fashion in distinct areas in the brain and that there are redundant
representations (Andersen & Mountcastle, 1983; Georgopoulos et al., 1988).
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4.3 Mean of Multiple Computation Principle
One example for a functional internal body model is realized by our Mean of
Multiple Computations (MMC) network Schilling (2011b). An MMC network is a
recurrent neural network which can be used as an inverse model, forward model or
for sensor integration. The general structure of the neural network is not learned,
but setup following the MMC principle. The model encodes geometric and kinematic
constraints in a recurrent neural network. This shapes an attractor space that
represents valid configurations of the encoded manipulator structure. Importantly,
diverse tasks can be given to the network as an input which initially act as a
disturbance on a previous state of the network. As this disturbance spreads through
the network, the encoded constraints will force all the activations to settle in a new
valid attractor state. For example, an inverse kinematic problem can be solved by
injecting a new position for the end e�ector into the network which requires the
individual segments of the controlled structure to adapt towards new positions.

The Mean of Multiple Computations principle consists of two key ideas: first,
the overall complexity of the controlled structure is broken down. As an example,
we will use a three-segmented robotic arm (Fig. 4.3). When the whole kinematic
chain is expressed as one single equation, the problem becomes quite di�cult for
traditional control approaches. In the inverse kinematic task there are multiple
possible configurations in order to reach a certain target position. Instead, the
MMC principle breaks this down into multiple computations that consist of local
relationships between variables. While the individual equations become trivial
to solve (they only consist of three variables), we end up with multiple of such
computations. As the second key idea, the MMC principle exploits this redundancy.
As each variable appears in multiple computations, it depends on multiple of these
equations. The MMC network works in an iterative fashion: an update for a
variable is calculated using all the equations that a�ect this variable. The di�erent
multiple computations are integrated towards a new value—this is realized as a
simple weighted mean calculation.

The MMC principle has been already introduced in (Cruse et al., 1998; Schilling,
2011b). In the following, we will explain how such a model can be scaled up towards
complex body configurations as given in the case of a hexapod walker and how to
apply it when dealing with revolute joint representations. A detailed introduction
can be found in the article in the appendix (Schilling & Cruse, 2012, C.2, page 228,
see in the article Material and Methods and Appendix).

4.4 Extension towards a Hierarchical Body Model
An MMC model is constituted of simple local relationships. As an advantage, such
a model is easy to setup and derive. But with an increasing complexity of the body
structure, the number of possible local relationships increases exponentially. As it
doesn’t appear reasonable to consider all possible relations between all kinematic
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target position of the leg and are implemented as recurrent neural networks. –, —, and “
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variables, we used a hierarchical organization as a solution which introduces a form
of abstraction between levels and utilizes detailed local information (Fig. 4.1).

As an example, we will consider application of such a hierarchical internal
body model in the control of six-legged walking (Schilling et al., 2012). For the
hexapod robot, all legs that are in stance mode are coupled through the substrate.
This requires a form of spatial coordination during walking. While in straight
walking this requires only very little central information that are shared between
all leg controllers (Schmitz et al., 2008), in curve walking in stick insects legs
contribute di�erently (see Fig. 2.7): in a narrow turn, the inner (with respect to
the curve) hind leg is barely moving at all and, in contrast, the outer front leg
aims in the direction of the curve, pulling the body sideways (Dürr & Ebeling,
2005). Experiments in simulation and on robots point out that this requires some
form of explicit coordination and central information.

We employed a hierarchical body model that allows to distribute the computa-
tional task on two levels (Fig. 4.1 and for the network Fig. 4.2). The lower level
is the leg level which comprises the detailed kinematics of a single leg (shown in
green in Fig. 4.2). The higher level is the body level (blue), which comprises the
description of the main body segments, e.g., the three thorax segments of an insect,
and its relation to the subordinate instantiations of multiple legs. At the body
level, there is no detailed information about joints. Instead, the leg is represented
as a three-dimensional vector that captures the leg’s contribution to support the
body (this is shown by vectors connecting the main body segments (s0 to s2) to the
feet of the six legs (l0 to l5), i.e., the ground contact locations. The two levels are
connected through shared representations that are present in both levels (indicated
by the white arrow in Fig. 4.2). Essentially, this leg target vector ‘summarizes’
the kinematics of the entire leg while, at the body level, it may be regarded as
the desired relation between the body and substrate.
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Concerning the MMC model at the lower level, each leg is described by a set
of three joints and three segments. The first joint is attached to the body, while
the other two connect the two distal leg segments (the trochantero-femur and tibia,
see also Fig. 4.1). As a result, each leg is described by a kinematic chain with
a single degree of freedom per joint on the leg level. At the body level, all legs
with ground contact and all body segments are represented as three-dimensional
vectors. The body model is used di�erently in the control of swing and stance. As
a consequence, only the legs that potentially contribute to propulsion, balance and
steering through body-substrate interactions are considered at this upper level of
the body model. With regard to the legs in swing, all corresponding equations
within the MMC network are disregarded, as if being inhibited.

4.4.1 Application for Hexapod Locomotion
The stance movement is induced into the model in the form of a passive movement,
as if the body was pulled into a given direction. Computationally, this is done by
displacing the front segment of the body into the direction of the intended movement.
This disturbance of the body model network a�ects all variables contained in the
equations for the connected segments. As a result, these variables are adjusted
in a way which complements the enforced movement. Hence, the corresponding
adjustments include three to six leg vectors (those that are currently contributing to
stance). As these leg vectors are shared by the body level and the leg level networks,
the induced changes ‘spread’ down into the leg level networks to adjust the variables
of individual legs (Fig. 4.2). Thus, all joint angles are adjusted in a cooperative way,
supporting the overall body movement. The procedure of making these adjustments
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Figure 4.3: Illustration of the hierarchical body model. Shown is in a) an illustration
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shown. Shared between those levels are the two end e�ector positions (solid blue arrows).

lasts for multiple iterations, as the network converges into a stable state and the
resulting leg and segment vectors can be applied to control the actuators.

This internal hierarchical body model has been successfully implemented in
Hector. First, in dynamic simulations the body model was used in straight and
curve walking (Schilling et al., 2012). It allowed Hector to navigate quite narrow
curves. The stance movement of the legs was controlled through the body model.
When the model was pulled at the front and forced into tight curves, the higher
level came up with the complementing leg target vectors required for such tight
curves. In this set of simulations the planned inter-segment drives of Hector were
already realized and it showed that the additional active control of these drives
provides an important contribution to negotiate tight curves. The lower level leg
networks have shown to provide a robust and stable solution for calculation of
the inverse kinematic function for the given target leg posture. Furthermore, the
internal model has been used on the robot and has been extended for situations in
uneven and rough terrain which requires an additional mechanism to deal with the
control of the distance between body and the ground (Paskarbeit et al., 2015).

Details on the setup of the hierarchical internal body model for the case of a six-
legged robot and how this model coordinates the joint movements during locomotion
are given in the article in the appendix (Schilling et al., 2012, C.1, page 220). The
article further explains processing between the di�erent levels of the hierarchies and
the solution of the inverse kinematic task as well as provides results for application
in simulation. Furthermore, predictive capabilities of this model and coordination
in a targeted reaching task are shown in (Schilling & Cruse, 2012, C.2, page 228).
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4.4.2 Application in Bimanual Reaching Task
As a second example, a hierarchical internal body model has been applied in a
bimanual reaching task for a human like body structure. In the case of the insect
model, the leg level can be described by three joints each only having one degree of
freedom and all working in a single plane, therefore describing a planar manipulator.
The structure of a human arm as a manipulator is much more complex as there
are overall seven degrees of freedom in three joints. This requires a di�erent type
of representation to describe the configuration of such a manipulator. Still, the
MMC approach can be applied using in this case a dual quaternion representation
of homogenous transformations instead of the vector description of triangular
relationships (Schilling, 2011b; Schilling et al., 2012). Such a detailed model for a
human arm has been integrated into a hierarchical model following the same ideas
as described above: using a detailed representation on the lower level that shares
with the higher level only the target vector of the whole arm which summarizes the
posture. These target representations constitute the higher level. Such a hierarchical
body model and the lower level dual quaternion representation are introduced in the
last article for this section in the appendix (Schilling, 2019a, C.3, page 248). This
further shows results for a series of simulation for the case of a simple bimanual
task that required computation of forward and inverse kinematics.

4.5 Conclusions
This chapter summarized the main ideas of the Mean of Multiple Computation
principle. First, the body model is constituted by local relationships representing the
kinematics. While in the previous chapters decentralization and local computation
allowed for fast, reflex-like actions and reactions, for the body model local com-
putations of kinematic equations—that are reduced to three variables—simplifies
the control problem and makes it tractable. From a biological perspective, such
local computations appear as an important part in the control of movements. One
example can be found again in the locomotion of stick insects: when climbing
through a twig an insect faces the di�cult task of finding footholds for the legs.
As a solution, information about found footholds is shared between legs starting
from the front. Posterior legs are aiming at the current position of the anterior leg
which guarantees a foothold as the anterior leg is already in contact with the twig
(Dürr & Schilling, 2018). The position of the anterior leg a�ords (Gibson, 1977) a
possible foothold to the posterior leg. We analyzed the computational properties of
such a�ordance spaces and in particular the complexity of the mappings between
di�erent legs. It showed that these mappings from one three-dimensional joint
angle space of the anterior leg towards the joint space of the posterior leg can be
realized by a simple neural network requiring only a very small hidden layer (Dürr
& Schilling, 2018). Such local computations between legs could be considered as
building blocks for constituting an internal model of the whole body.

The Mean of Multiple Computation principle is based on integrating many simple
local and redundant relationships. While there has been much more research in the
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area of encodings of spatial information of the environment, neuroscientific findings
point out that there exist redundant forms of representation—and transformations—
of the body which are assumed to happen in the same brain areas (Tingley &
Buzsáki, 2018). One drawback of the MMC principle is that the number of the
possible relations increases exponentially. As a main contribution, this chapter
introduced a hierarchical organization that distributed the complexity onto multiple
levels addressing this problem. This allows to deal with complex structures as given
in the case of controlling two human-like arms or a hexapod walker. Application on a
human-like arm required to introduce a dual-quaternion representation that allows to
express joints with many degrees of freedoms. An alternative and more biologically
plausible representation can be realized through population-based representation
(Georgopoulos et al., 1988; Morasso et al., 2015; Yoo & Kim, 2017). The MMC
approach has been transferred to such a form of representation as well (Baum
et al., 2015). Such a population-based encoding might be exploited in the future
to encode noisy or faulty information in a probabilistic way.

One further drawback of the original MMC approach concerns the dynamics
of the network: initially, an MMC network produces very fast movements that
afterwards subsequently slow down. As one solution, MMC networks can be
extended towards including dynamic relations and equations which leads to more
realistic movement profiles (Schilling, 2019b).

To summarize: The hierarchical MMC approach provides an internal body
model that is completely realized as a recurrent neural network. It allows to
address inverse and forward kinematic function as well as being extended towards
sensor integration. Importantly, such an internal model can be used in di�erent
contexts. This chapter detailed how such a body model serves behavior and is
grounded in motor control. In the next chapter, the predictive capabilities of the
internal body model will be exploited for planning ahead (Schilling & Cruse, 2017)
realized as a form of internal simulation.

4.6 List of Publications
This chapter gave a brief introduction and summary of three publications that are
part of this thesis and can be found in the appendix.

4.6.1 Contributions to the Thesis
• Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., and Cruse, H. (2012),

“Grounding an Internal Body Model of a Hexapod Walker—Control of Curve
Walking in a Biological Inspired Robot”. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2012,
pages 2762-2768.
Appendix C.1, page 220: Details on the setup and processing of the hierarchical
internal body model for the case of a six-legged robot. Shown are results for
the control of the stance movement in forward and curve walking in simulation.
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Cognition is the ability to relate di�erent unconnected
pieces of information in new ways and apply the
resulting knowledge in an adaptive manner.

— Limongelli et al. (1995, p. 18)
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5.1 Recruitment of Grounded Internal Models
In understanding cognition as realizing a form of planning ahead (McFarland
& Bösser, 1993), internal representation play a key role. In this view, internal
models are recruited in internal simulation (Hesslow, 2002) which constitutes a
central mechanism that can be employed in many high level tasks, for example, in
observation and anticipation of somebody’s actions. In internal simulation predictive
internal models are used decoupled from the body and the environment to predict
what will happen. Planning ahead can be realized in this way as an anticipation of
e�ects of possible behaviors followed by an evaluation of the anticipated outcomes.
Such an internal simulation requires predictive internal models for planning ahead.

In our bottom-up approach, we extend the behavior-based system towards a
system capable of using internal simulation to plan ahead. When the system runs
into a novel problematic situation, it does not get stuck or use a behavior that might
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have dangerous consequences. Instead, the system tries a new behavior, at first,
using internal simulation in order to anticipate consequences. Only then should
a behavior be selected that has shown to be non harmful. Taking this ability as
one holistic planning module sounds like a big developmental step which appears
implausible from an evolutionary perspective. Instead, as we have discussed and
shown in the preceding chapter, internal models are already required in a behaving
system and can be grounded in service for action (Glenberg, 1997). Such existing
internal models only require to be flexible enough and predictive to allow for internal
simulation. Therefore, it is not the existence of internal models which allows for
a system to become cognitive. Instead, it is the flexible recruitment of already
present internal models in internal simulation that exploit predictive capabilities of
the model. The neural network model introduced in the previous chapter is such a
predictive model which originally subserves coordination of walking behavior. Even
though this MMC model is quite a simple model, it is still flexible enough to fulfill
multiple function and it can be used as a predictor in internal simulation. Such a
model is not meant as providing implementational details or being realized directly
in the brain. Instead it should be understood as a lower bound on the complexity,
showing that already very simple recurrent neural networks can address di�erent
functions in a single model which includes predictive capabilities.

The extension of the existing behavior-based system is explained in the following
section which will give a brief overview of the added structure (for details see the
publications in the appendix). While the cognitive expansion realizes higher level
cognitive processes, this system is still tightly connected to the underlying behaving
system and recruits the adaptive motor control system in internal simulation. The
structure will be motivated considering a guiding example. The result section
will provide an overview of results on how the robot can solve novel locomotion
problems avoiding instabilities.

5.2 Structure of the Cognitive Expansion
As an example for a novel situation, we will consider a situation in which the robot
would become unstable and topple over. Such a problem can occur during climbing
through twigs when, first, searching movements disturb temporal coordination as
the swing movement is considerably prolonged for the searching leg (for an example
see Fig. 5.1). Secondly, as a result of a searching movement, a leg is repositioned and
moved further to the front which disturbs spatial coordination. As a consequence
this can lead to brief instabilities as distribution of weight for the legs changed and
the coordination is disturbed. At the end, we will provide a systematic analysis
of such cases that can’t be handled by the adaptive system as such. Importantly,
such situations should not be problematic for a climbing insect which uses its’ tarsi
to attach to the ground. But for the robot static instabilities are dangerous as
they could lead to damage to the system.

In order to cope with such a novel situation which does not trigger activation
of a particular motor memory, the model has to rely on a di�erent functionality.
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Figure 5.1: Sketch of climbing sequence which requires search for foothold and planning
ahead. Lower part: System walks on narrow walkway (shown is a stylized insect figure
at di�erent points in time). Note that time is running from left to right, and robot is
walking from right to left (see left most image). When a hole is encountered (image 2),
a searching movement for the middle left leg is required leading to a longer step (not
shown). Afterwards, lifting the hind leg causes an instability (image 2, black dashed
arrow). Cognitive expansion takes over and tests di�erent movements in simulation (third
insect figure, showing an imagined movement of the middle left leg to the back). Last, this
is applied on the robot (rightmost insect figure, image 4) which afterwards can continue
normal walking. Upper panel shows part of the control system: Left figure visualizes
detection of an instability (when trying to lift the hind left leg, HL, orange lines). Right
part shows the middle left leg controller (units outlined in green), parts of the central
system (blue unit, forward, ‘fwd’) and part of the cognitive expansion (grey units on top).
First, an alternative behavior is searched for—this is induced by the problem detected in
the hind left leg (shown as orange arrow), which induces activity in units marked by red
shading. The three layers on top (grey units) narrow the search down to a single behavior
that has not been tested before. This behavior is applied to the control system. During
internal simulation motor output is routed to the predictive internal model (see lower left
part, blue and green shaded arrow which shall indicate that this prediction involves local
and global parts of the body model). The body model returns sensory predictions (joint
and leg positions as well as problem detector signals) which allow the cognitive expansion
to decide if the behavior solves the problem. If this is the case, the switch guides the
output to the robot (grey arrow).
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First, a predictive internal model is required. Importantly, this is already present
in the current walking controller as used in the control of the stance movement as
detailed in the previous chapter. Planning using such an internal model is realized
as internal simulation (Hesslow, 2002). This means that instead of carrying out a
novel behavior in reality, it is at first only applied on the internal body model. The
body model predicts consequences of an applied behavior and these predictions can
be used to decide if the intended behavior is suitable to overcome a given problem
or if it should be deemed harmful. Planning ahead therefore does not rely on novel
internal representation but it exploits the predictive capabilities of the internal
model to infer consequences. The body itself is decoupled from the system during
that time (Wilson, 2008) (see Fig. 5.1, switch). Such a form of planning ahead using
an internal simulation that recruits an internal body model has been proposed by
Bongard et al. (Bongard & Lipson, 2014; Bongard et al., 2006). As a key di�erence,
in our architecture searching for novel behaviors recruits the underlying motor
control system. In the following, we will briefly describe how this can be realized in
the neural architecture (for more details see original publications in the appendix).

As planning ahead becomes necessary whenever a novel problem arises, such
problems have to be detected: A problem detector is used in two ways. On the one
hand, it stops the execution of the behavior and operates the switch decoupling the
body from the control process and switches towards searching for another behavior
to overcome the problem. Therefore, the behavior causing the problem is stopped,
too. On the other hand, the problem detector is steering the search for a solution.
A search process is initiated which can be tested in internal simulation (see top
part of Fig. 5.1, search and selection layer). While the current active behaviors
and motivation units are excluded from the search (inhibiting connections from the
green motivation units towards the corresponding units in the search layer), each
problem detector is connected to at least one unit of the search layer, initiating
the spreading of activation in this layer.

Finding a behavior that helps to deal with the current situation is realized
in multiple stages:

• search for novel—currently not used and not associated to the current sensed
context—behaviors,

• select a single alternative behavior,

• test the selected behavior in internal simulation,

• and apply the selected behavior on the real robot.

The system runs through the di�erent stages (Fig. 5.2) each of which is associated
with a motivation unit representing that processing stage (not shown here). First,
the basic function of the search layer is the spreading of activation that originated
from the problem detector (activate the unit in the search layer, shown as a red
circle, top of the figure). When a problem has been detected, for a short period
of time the activation can spread through this layer. The idea of the search layer
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Figure 5.2: Illustration of the sequential changes of activation of units in the search layer
(spreading of activation layer – SAL), selection layer (using a winner-take-all connectivity
– WTA), and the selection memory layer (remember tested behaviors – RTB). When a
problem occurs, the problem detector, on the one hand, stops the execution of current
behavior (not shown). On the other hand, it induces search activity in the search layer
(SAL, red) which indicates where the problem occurred. The activation is spreading
vertically in this layer and each unit excites its corresponding unit in the selection layer
(WTA, green). Importantly, currently active motivation units (yellow) inhibit these units.
The selection units compete among each other producing one winning unit which in turn
activates the corresponding motivation unit and behavior. The units in the selection
memory layer (RTB, blue) represent which behavior has been active before and will
inhibit a future activation during the selection process. Note, in this figure, color coding
is used to distinguish the di�erent layers of the cognitive expansion which deviates from
the general color coding schemes of di�erent hierarchical levels.

is that neighboring units become activated. The topology of this layer therefore
determines the order in which behaviors might be selected for internal simulation.
In our case, we simply assumed the structure for the walking controller as flat
and organized following the body topology. After some units of the search layer
became activated, a single one shall be selected in a next step in the winner-take-all
selection layer. The two layers are connected in a one to one fashion. For each
unit in the search layer there is a corresponding unit in the selection layer. And,
as long as the spreading activation is active, the search units’ activations transfer
directly to the corresponding selection unit (this connection is modulated by the
unit representing the search stage, modulation is not shown in the figure). In the
selection (winner-take-all) network only the one unit with the highest activation
stays active and inhibits all other activations after the network has converged for
some time (about 10 to 20 iteration steps). When the WTA has converged, it has
selected a new behavior which is close to the origin from the problem and should now
be applied in internal simulation (convergence of the search and selection is shown
in Fig. 5.3). The active unit of the selection layer is activating the corresponding
motivation unit and, in this way, initiates the behavior. This activation of a behavior
will most likely a�ect not only the explicitly selected behavior, but will have direct
e�ects on the selection of other behaviors. Crucially, the behavior is not carried
out on the agent itself, instead it is applied on the internal model and the model
predicts the consequences of the simulation of this behavior.
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Figure 5.3: Convergence of search and selection process. Illustration of the local part
of the cognitive expansion that consists of three units for each behavior (sensory-motor
memory) of the control network. On the right, the corresponding temporal activations
(between 0 and 1) of units of the network are shown during a run of the cognitive expansion
(time from left to right). Red lines show activity of the search unit, green of the selection
unit. Solid parts of the lines indicate activity during the respective stage, dashed lines
show background activity of the network that does not a�ect the behavior of the system
(time of internal simulation is not shown in figure). Blue area indicates activity of the
selection memory unit after the specific behavior (shown in one row) had been selected.
This inhibits the subsequent reselection (shown in green) of this action. Note, in this
figure, color coding is used to distinguish the di�erent layers of the cognitive expansion
which deviates from the general color coding schemes of di�erent hierarchical levels.

Internal simulation is only run for a prespecified time (we chose a time window
that allowed for a couple of steps) and only if it is not aborted because a problem
was detected in internal simulation. The internal model is equipped with problem
detectors as given in the real agent. Only in this way the internal model can decide
if the problem is still present or if the search has to be started again by letting the
spreading activation start over. After a successful internal simulation, the selected
and successfully simulated behavior is applied on the real robot in a test stage,
before the robot switches back to normal walking behavior.

Detailed explanation on the cognitive extension and the overall employed
architecture can be found in three publications in the appendix: Recently, we
submitted an article that shows application on the real robot Hector and summarizes
the work. This is provided as the first article in the appendix (Schilling et al.,
submitted, 2020b, D.1, page 260) which also provides a systematic analysis on
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postural variations and shows how adaptive system and cognitive system complement
each other. The second article (Schilling & Cruse, 2017, see D.2, page 276) introduces
the cognitive extension and shows application on a simulated robot. Finally, the
mentioned process stages coordinating internal simulation are explained and a
detailed analysis of convergence is given in the third publication (Schilling, 2017,
see article D.3, page 300).

5.3 Results Overview
The cognitive expansion has been applied in dynamic simulation and recently on
the robot Hector. This section gives a brief overview of the results. On the one
hand, a solution found by the cognitive expansion for the example task will be
explained. On the other hand, a systematic analysis of possible postures will show
how adaptive and cognitive processes are complementing each other in order to
produce robust and stable behavior.

First, we are considering the exemplary situation as described before in simulation
(for details see appendix (Schilling & Cruse, 2017, see D.2, page 276)). The agent is
standing in an awkward posture which was induced by performing long steps far
to the front for the middle left leg and hind right leg (Fig. 5.4 shows positions of
the legs along the body axis over time). Its left hind leg is far to the back and has
arrived at the end of the working range. Therefore, in the next moment it has to
produce a swing movement and shall be lifted from the ground. But as the other
hind leg and the middle left leg are moved far to the front, the hind left leg can not
be lifted without the agent toppling over backwards (similar to the posture shown
at the bottom of Fig. 5.1). This problem could be detected by a problem detector
in di�erent ways. A walking system could be equipped with an internal stability
sensor which checks for the stability of the system at all time. Such a detector can
be easily realized in the internal body model and most real robotic walking systems
use similar systems for safety reasons. There are other solutions possible which are
more biologically plausible, e.g., insects possess multiple load sensors and when an
insect tries to lift a particular leg it could recognize that this leg is not unloaded as
it has to support the body. In our case, we used a simple stability detector in the
internal model as through this solution the problem detector is already present in the
internal model and can be accessed as well during internal simulation. As the agent
recognized in this situation that he had ran into a problem, the current behaviors
were stopped, the robot was slowed down and the body itself was decoupled from the
control process. In addition, the problem detector activated the corresponding swing
movement unit of the hind leg in the search layer and the whole control network
entered the spreading activation stage. Neighboring units became activated and
through the WTA structure one was chosen. The corresponding selected behavior
was then tested in internal simulation. Fig. 5.4 shows leg positions over time with
internal simulation shown as red and green shaded area. While the first chosen
movement (shown in red area) didn’t help to re-coordinate the leg positions, for
the second internal simulation a swing movement backwards for the middle left
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Figure 5.4: Cognitive solution to an unstable posture for a simulated robot: Position
(y-axis) of the individual legs over time (x-axis). Green lines show the position of each
leg over time—positive values are towards the front of the walker. Ordinate is given in
cm with the origin in an intermediate leg position. The blue dashed lines indicate the
average extreme positions: The Anterior Extreme Position (AEP) is the target position
for the swing movement and is fixed during forward walking. The Posterior Extreme
Position (PEP) indicates the position at which a leg controller initiates a swing movement
on average and switches from stance to swing (note that the coordination rules act on
the PEP and shift the PEP forward or rearward to organize the overall behavior which
is not shown in the figure). Shortly after the left middle and right hind leg performed
swing movements that pointed very far to the front of the working range (1), the walker
became unstable (2) when trying to lift the left hind leg. Therefore, internal simulations
was started (highlighted in green and red) during which motor commands were routed to
the internal body model, the leg positions of which are shown. First (highlighted red),
an unsuccessful behavior was tested: a stance movement which had initially no e�ect
as the agent was stopped. But when the agent accelerated again (after 100 iterations)
the problem was still present and the agent became unstable (3). As a second trial,
a backward swing movement of the middle left leg was tested via internal simulation
(green highlighted area; the swing movement in the unusual direction is plotted as a red
line). Afterwards (5) the solution found was tested on the real robot (highlighted in blue)
showing that walking continued successfully.

leg was selected (green shaded area, movement is highlighted as red line). This
unloaded the hind left leg and allowed to continue with normal walking afterwards.
It is important to note that such a selection of a behavior out of context disturbs
the coordination of all legs. But this does not pose a problem for the whole system
as lower and higher levels are tightly interconnected and behavior emerges out of
this interaction. The lower level adapts to this disturbance of coordination and a
coordinated leg pattern emerged again already during the next two steps. Last, the
tested behavior was applied on the robot and solved the awkward posture.

A similar problem was applied on the real robot, but in a real behavioral context
as found during climbing (details see appendix, (Schilling et al., submitted, 2020b,



5. Embodied Internal Simulation as Planning Ahead 65

0. 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22. 24.

FL

ML

HL

FR

MR

HR

⊗

⊗

1.96 4.32 8.36 14.88 18.44 22.28

12.40

10.36

a) b)

c)

b c

1 2 3 4 5 6

Figure 5.5: Robot climbing over a hole in a walkway, reestablishing stable walking
through internal simulation. Robot Hector walks on a walkway (from right to left, vel
= 0.016, fast tetrapod gait) that contains a hole (black rectangle): Upper panel shows
a perspective view (images 1–6). Lower panel shows footfall pattern, swing movements
are indicated as black (or red) bars for the six legs (given on y-axis) over time (x-axis,
running from left to right, in seconds). While the front left leg (FL) performs a swing
movement over the hole (image 2, time = 4.32 s), the second swing movement of the
middle left leg (ML) was reaching into the hole followed by a searching movement of
the swinging leg (at about 6 ≠ 7 s, not shown). As a consequence, the middle left leg
was moved far to the front. When the hind left leg had to be lifted (image 3, time =
8.36 s), the robot got unstable. Therefore, the robot was stopped and started the search
procedure (grey area in footfall pattern). The internal simulation (light red area) showed
that this attempt was unsuccessful and was therefore aborted. In the second attempt
(grey and green area), the middle left leg performed a step backwards, marked by red bar
for indicating back swing in footfall pattern). This action is also illustrated in subfigure
(b) (shown is a top view of the body model and the movement of the middle left leg,
orange dashed arrow). It unloaded the hind leg, which could then perform a normal swing
(illustrated in subfigure (c), black dashed arrow). Then (simulated) normal walking is
resumed (still green area). As internal simulation turned out to be successful this action
was performed out of context on the robot (blue area, image 4) and the robot continued
normal walking (white area, and images 5, 6).

D.1, page 260)). In this case, the robot Hector was walking on a walkway with a hole.
When a leg stepped into the hole during a swing movement, a search movement
was automatically triggered and the leg searched for a foothold by moving the
leg further to the front. In the specific case shown in Fig. 5.5, the middle left leg
stepped into the hole which required repositioning of that leg to the front. As
a consequence the robot ended up in a similar configuration as explained above.
Processing progressed the same way as described before: when the system tried to
lift the hind left leg, the robot became unstable and would have toppled over. A
problem detector recognized the problem and safely stopped the walking behavior.
In addition, the cognitive expansion took over, first, searching and selecting a
di�erent behavior out of context (shown in grey areas) and afterwards testing
behaviors in internal simulation (red and green shaded areas). In this case, the
system found the same solution as described above (in other cases, repositioning
of the hind right leg was used as a solution). Last, this was applied on the real
robot (shown in blue shaded area in Fig. 5.5).
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Figure 5.6: Instabilities of the control architecture (without using the cognitive extension)
when forced into systematically varied starting postures. Abscissa: number of robot steps.
Light Blue: duration of instabilities between 10 ms and 100 ms; blue: duration longer
than 100 ms, but only appearing during a single step cycle of that particular leg; dark
blue: long instabilities (longer than 100 ms) and found in subsequent steps of the walking
robot. Shown for high velocity (0.020).

Further runs on the robot are described in the original article and can be
summarized: for small disturbances the system was not a�ected and stable walking
patterns emerged. For larger disturbances the robot became unstable and the
cognitive expansion had to take over. As the problem detector induces a search
close to where the problem occurred, usually, a preferred solution was found and
only seldom another solution was selected. Importantly, applying an action out of
context necessarily breaks the coordination pattern that has emerged up to that
point in time. In most cases, this was not problematic as the system converged very
quickly again towards a coordinated walking pattern that allowed for stable walking.
This is due to the adaptivity of the underlying decentralized control architecture.
For other cases this required further intervention later-on.

Last, we tested systematic variations of the starting posture, at first for the
decentralized architecture without using the cognitive expansion to obtain a coarse
estimate of how many di�erent starting positions lead to a stable walking pattern.
In a second step, we compared this to the architecture that includes the cognitive
expansion and analyzed how the cognitive expansion dealt with the problematic
cases. For each leg four di�erent starting postures were assumed that were equally
spaced from the front (anterior extreme position) towards the back (directly in front
of the posterior extreme position). This poses a quite challenging task for a controller,
as in many cases phases between leg controllers initially di�ered substantially from
a typical, stable walking pattern. Overall, we ended up with 2080 di�erent starting
postures (46 minus all symmetric configurations with respect to the body axis). The
simulated robot was subsequently initialized adopting the di�erent starting postures.
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Table 5.1: Overview of occurrence of instabilities resulting from 2080 di�erent starting
postures. These were counted with respect to step cycles (after initialization)
and we distinguished very brief instabilities that (on inspection of simulation
run) did not require any intervention and longer instabilities that required
the cognitive expansion.

Step number 1 2 3 4 5 6
Duration of instability
10 ≠ 90 ms, light blue 82 103 29 23 26 23
Instability Ø 100 ms (but single step), blue 370 171 63 16 14 11
Instability spanning mult. steps, dark blue 37 25 27 16 15 8

Afterwards, the controller were started with the defined high velocity and the robot
started to walk. A posture was determined unstable when the center of gravity left
the polygon spanned by the standing legs. To illustrate the di�culty of the task:
in normal walking (at a fast velocity) neighboring controllers are assumed to be in
anti-phase relation. In contrast, from the 2080 initial postures, 1216 are defined
with in phase relations between neighboring legs (even when excluding middle leg
symmetries still 928 initial postures are characterized by phase relations that would
cause instabilities when maintained during walking). The number of instabilities,
and correspondingly the durations of instabilities decreased strongly during the
first couple of steps (Fig. 5.6 and table 5.1; data from 2080 di�erent starting
configurations). After three steps, mostly only brief static instabilities could be
observed. For an intermediate walking velocity, there were less frequent instabilities,
but the same trend was observed: over time the controller emerged towards stable
gaits. Importantly, when applied on the complete system that includes the cognitive
expansion, the cognitive expansion took over in unstable situations. It allowed to
search in a safe way in internal simulation for a behavior that lead to a di�erent
posture in which load was better distributed between legs. In this way, the cognitive
expansion facilitated stable walking and resolved unstable postures.

Detailed results on the robot and systematic variation of starting postures are
given in the appendix (Schilling et al., submitted, 2020b, D.1, page 260). First results
in simulation are shown in detail in (Schilling & Cruse, 2017, see D.2, page 276).

5.4 Conclusions
Following a bottom-up approach, we extended our system towards a minimal
cognitive system that is capable of planning ahead realized as internal simulation
(Schilling & Cruse, 2017). This enabled the hexapod robot to, first, still show
adaptive behavior and produce robust walking behavior across quite a spectrum of
di�erent walking contexts. Secondly, when the robot was forced into a dangerously
unstable posture, the cognitive expansion was able to take over. A suitable solution
was found in readjusting the posture by choosing an alternative behavior outside
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of its’ original context which was initially only tested in a safe internal simulation.
As a last step, this behavior was applied on the real robot.

While the system shows a robustness towards variations in the environment,
there are still some limitations. Currently, the cognitive controller is only searching
and considering a single behavior as a solution to a given problem and not chaining
multiple behaviors towards a sequence. This has shown to resolve unstable postures.
But for climbing in an environment with very sparse footholds, the system should
be extended and should become able to handle more complex variations allowing for
sequences of behavior. Scaling towards more di�cult problems would also require
learning of found solutions which is future work.

It is important to note that the details of the cognitive extension of the control
system are not based on assumptions on the structure of an insect control system.
There is only little research on planning capabilities in insects (Giurfa & Menzel,
2013; Menzel et al., 2007) which addresses how predictive memories are employed
for guiding goal-directed movements (Card & Dickinson, 2008) or for generalization
of behaviors (Loukola et al., 2017). Instead, the extension is motivated from the
broad behavioral and neuroscientific support for the flexible recruitment of internal
models in cognitive tasks in other animals including humans (Anderson, 2010;
Chersi et al., 2013; Ólafsdóttir et al., 2015). In this context, Embodied Cognition
identified internal simulation as a key mechanism that allows to exploit existing
internal models in cognitive tasks: ranging from observation over planning ahead
to use of language (Gallese & Lako�, 2005; Pulvermüller, 2018).

5.5 List of Publications
This chapter gave a brief introduction and summary of three publications that are
part of this thesis and can be found in the appendix.

5.5.1 Contributions to the Thesis
• Schilling, M., Paskarbeit, J., Ritter, H., Schneider, A., and Cruse, H. (submit-

ted), “From Adaptive Locomotion to Predictive Action Selection—Cognitive
Control for a Six-Legged Walker”.
Appendix D.1, page 260: Summary of the structure of the cognitive expansion
and application on the real robot Hector in a climbing task (Schilling et al.,
submitted, 2020b, D.1, page 260). In addition, provides a systematic analysis
on postural variations and shows how adaptive system and cognitive system
complement each other.
Author Contributions: M.S. and H.C. designed and performed research as
well as analyzed the data. M.S. wrote simulation software and developed
concept of the model. Simulation experiments were performed by M.S. and
experiments on robot were performed by J.P and M.S. M.S. wrote the paper
and H.C., H.R., and A.S. contributed to the writing.
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• Schilling, M. and Cruse, H. (2017), “ReaCog, a Minimal Cognitive Controller
Based on Recruitment of Reactive Systems”. Frontiers in Neurorobotics 11(3).
doi: 10.3389/fnbot.2017.00003
Appendix D.2, page 276: Introduces the cognitive expansion and demonstrates
the application for the case of an awkward posture on a simulated robot
(Schilling et al., submitted, 2020b, D.2, page 276). This was published in
Frontiers in Neurorobotics (Impact Factor 3.00).
Author Contributions: MS and HC laid out the concept, designed the model
and analyzed the data. MS carried out the implementation. MS and HC
wrote the manuscript. Writing review and editing all authors.

• Schilling, M. (2017), “Old Actions in Novel Contexts — a Cognitive Archi-
tecture for Safe Explorative Action Selection”. Proceedings of the Artificial
Intelligence and Simulation of Behaviour Conference (AISB 2017), Bath (UK).
Appendix D.3, page 300: Analyzes in detail the stages coordinating cognitive
processing and shows their convergence (Schilling, 2017, see article D.3,
page 300).

5.5.2 Further Related Publications
The work detailed in this chapter has lead to further publications.

Peer-reviewed Journal Papers:

• Schilling, M. (2016), “Lose a leg but not your head – a cognitive extension of
a biologically-inspired walking architecture”. Procedia Computer Science 88,
pp. 102-106.

• Schilling, M., Rohlfing, K., and Cruse, H. (2012), “Prediction as internal
simulation: Taking chances in what to do next”. Frontiers in Psychology,
3(405). doi:10.3389/fpsyg.2012.00405

Book Chapters:

• Cruse, H. and Schilling, M. (2018), “Getting cognitive”. In B. Bläsing, M.
Puttke and T. Schack (Eds.), The Neurocognition of Dance, second edition.)

• Cruse, H., and Schilling, M. (2015), “The Bottom-up Approach: Benefits
and Limits”. In: Open Mind, Metzinger, T., Windt, J. (eds.); Frankfurt/M.:
MIND Group Frankfurt/M.





[The] flexible, combinatorial aspects of planning will
form a critical underpinning of what is perhaps the
hardest challenge for AI research: to build an agent
that can plan hierarchically, is truly creative, and can
generate solutions to challenges that currently elude
even the human mind.

— Hassabis et al. (2017, p. 253)
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With the recent success of Artificial Intelligence (AI) methods in some tasks—
often in quite restricted areas as are game playing or image recognition (Arulkumaran
et al., 2017; LeCun et al., 2015; Mnih et al., 2015)—there is now as well a growing
interest in applying such methods in real-world settings and in artificial agents.
But broadening the scope of approaches—towards more diverse application areas,
introducing other agents that make the environment more unpredictable and allowing
for noise on sensory as well as other levels of processing—dramatically increases
the di�culty of the problem and requires qualitatively di�erent approaches. Here,
again natural systems can provide inspiration and are starting to influence current
research (Hassabis et al., 2017; Neftci & Averbeck, 2019; Ullman, 2019; Storrs &
Kriegeskorte, 2019). In one recent perspective, Merel et al. (2019a) in particular
provided a view on the hierarchical organization of motor control in mammals
and how this can influence the design of artificial systems (Merel et al., 2019b).
They provide a set of characteristics which we will use in this chapter to analyze
our proposed architecture. First, their key principles will be briefly introduced.
Secondly, following their distinction on three di�erent levels of processing we will
discuss our architecture with respect to these three levels and their characteristics.

71
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This will, on the one hand, highlight how our system realizes key characteristics
with respect to hierarchical organization which is in agreement with their argument.
As our architecture follows detailed neuroscientific findings from insects this further
demonstrates that such a structure constitutes basal organizational principles and
insects o�er here an ideal model system as they allow for analysis on di�erent
levels of detail. Our work adds and complements the characteristics of Merel et al.
(2019a), in particular with respect to decentralization and embodiment. On the
other hand, as they turn towards higher levels of control, they directly provide
a sketch of how to further extend our system.

6.1 Key Principles of Hierarchical Control
Merel et al. (2019a) provide a perspective on research in motor control and artificial
control systems. Their goal is to point out how such a view can be mutually
beneficial for both research fields. In motor neuroscience, focus on single behaviors
and movements has allowed to develop and validate theories as optimal feedback
control (Todorov & Jordan, 2002). Optimal feedback control has become an
influential general paradigm in which a movement can be described with respect to
a specific objective or cost function. Similarly, optimization became influential over
the last years in the area of deep reinforcement learning. As one example, Heess
et al. (2017) trained simple feedback controllers for locomotion of a simple simulated
walking agent in an end-to-end fashion. While a single feedback controller showed
a specialized behavior, the overall system became robust through a hierarchical
organization in which—on a higher level—switching of controllers was realized.
Merel et al. (2019a) focus in their perspective on such hierarchical organization
of motor control systems in animals and artificial systems. They specify key
characteristics of motor control across di�erent levels of such a control hierarchy.
As current Artificial Intelligence approaches still struggle to scale towards more
complex systems, real world scenarios, and more diverse as well as noisy situations,
they propose that artificial control approaches can benefit from following these core
principles. We will provide a brief overview of their principles:

• Temporal abstraction: As there are di�erent levels in a hierarchy, each
level is operating on a di�erent temporal scale (Sutton et al., 1999). This
simplifies specification of behavior as it can be composed on a higher level
out of more fine-grained building blocks on the lower level.

• Multi-joint coordination: In animals, muscles and joints can be grouped
together that move in a coordinated fashion (Flash & Hochner, 2005; Latash
et al., 2007). Such motor synergies introduce another form of abstraction that
simplifies learning or exploration of new skills.
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• Information factorization: Di�erent levels of a control hierarchy are
as well associated with di�erent levels of representation. Information is
factorized di�erently on the di�erent levels. As higher levels use, for example,
pre-processed information stemming from sensory inputs and processing,
information becomes summarized and more abstract.

• Partial autonomy: Elements on the lower level can function autonomously
without requiring the need of top-down input driving these modules. This
relates to our explicit notion of decentralization and the general idea that
local control mechanisms can respond quickly. Lower level modules are acting
concurrently and overall control is mediated between the di�erent levels
(Brooks, 1986): in the bottom-up direction information is factorized for higher
levels while, in the top-down direction, higher level control modulates lower
levels which addresses details of control.

• Modular objectives: A crucial distinction in cognitive systems di�erentiates
between processes and representation. This is addressed by Merel et al. (2019a)
in their modular view: on the one hand, information is factorized in modular
representation and, on the other hand, processes operate in a concurrent
manner. One particular focus in motor neuroscience and AI approaches to
motor control is on objective functions for which Merel et al. (2019a) extend
their modular view. As there are di�erent modular processes acting on specific
(partial) information, these should—in their view—be considered to serve
di�erent specific objectives.

• Amortized control: Often repeated execution of specific movements should
be realized computationally e�cient, for example, through caching successful
solutions for a given context.

Merel et al. (2019a) put a focus on hierarchical organization and broadly di�erentiate
three levels. While they review work on mammals, they discuss general principles
which—at least for lower and intermediate levels—apply for other animals as well
(Dickinson et al., 2000; Webb, 2020). These will be discussed in the following in
relation to our architecture and how this relates to their proposed characteristics.

6.1.1 Lower Level Motor Control
Merel et al. (2019a) highlight the modular structure of motor control on the lower
level. Spinal circuits in mammals are directly responsive to sensory feedback
without higher level inputs (Bizzi et al., 1991), as shown in decerebrated cats
(Grillner & Zangger, 1979; Whelan, 1996). This general notion of distributed motor
control is reflected in our approach (Fig. 6.1) as decentralization constitutes a main
organizational principle: local control clusters on the lower level (shown in green)
act on local information. This local information is directly factorized based on the
availability of only nearby sensory inputs. These decentralized control modules are
partially autonomous as they are driven by local signals, but can be modulated by



74 6.1. Key Principles of Hierarchical Control

Ground

Higher Level Control
Brain

reflex
activity

Leg musculo-
skeletal system

Local Level Control
Decentralized

mech.
preflex

mechano-
receptors

Sensory
Feedback 

Context
Signals

Local Leg

Body Model

Models

Mental Simulation Loop

Figure 6.1: Overview of the motor control architecture: The architecture realizes
adaptive and cognitive behavior. On the left, the di�erent control levels are shown and
how these interact. Importantly, there are highly parallel connections which highlights the
concurrent and decentralized structure of the system. On the right, underlying internal
models that serve behavior are shown in light shaded colors. Gray dashed arrows between
the two columns signify that internal models are grounded and recruited in motor control.
The single green arrow to the right indicates that during mental simulation the motor
control information is rerouted towards these predictive internal models starting a mental
simulation.

higher levels. Overall behavior emerges from the interaction of the autonomous
control mechanisms. In our robotic experiments we could show how such a system
produces robust behavior which further strengthens the argument that modularity
directly benefits adaptivity (Clune et al., 2013; Lipson et al., 2002).

From a dual process perspective (Kahneman, 2011; Evans & Stanovich, 2013)
the lower levels realize an automatic process that allows for fast responses. Such
a solution is computationally e�cient and allows without much e�ort execution
of stereotypic movements and behaviors—it amortizes control. Learning in a dual
process theory is assumed as entraining a novel behavior—that required e�ort
and higher level processing—on the lower automatic level. Memorizing of found
solutions is not addressed currently in our architecture and will be future work.

We are using the notion of decentralization throughout this thesis as it further
highlights that there is not an arbitrary division in modules, but that this follows
embodied constraints. As transduction times delay sensory information, local
control has to be responsible for fast responses. This leads to decentralized modules
that correspond to the body structure as realized in our leg controllers. Such an
organization relates and integrates close-by sensory information as well as actuators
forming multi-joint coordination patterns. In our architecture, we have seen this
on the processing side in the distribution of control onto the leg level. But this is
as well reflected in a representational perspective—relating back to information
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factorization—in which for the proposed internal body model representation the
detailed coordination of the multiple joints of a leg is realized on the lowest level
of the internal body model. The higher level of representation summarizes these
information and hides details unnecessary for action selection.

Finally, Merel et al. (2019a) ask for models of animal behavior in physical
realistic environments which should include more diverse contexts as well as noise
when interacting with the real world. We agree with the importance of applying
control approaches on real robots and in real settings. But we think it is important
to explicitly acknowledge the need and possible advantage of embodiment. In an
embodied perspective motor control not only includes control principles as described
by Merel et al. (2019a), but extends to bodily properties and the interaction between
all these. These bodily properties can simplify control problems or directly solve
them. For example, elastic properties of muscles allow to instantaneously deal
with small disturbances and protect joint actuators. Detailed work on insects—as
discussed in this thesis and applied as control principles in our architecture—has
highlighted the contribution of such embodied properties in locomotion. This
further complements hierarchical control on the lower levels.

6.1.2 Mid-level Action Control
An intermediate level of action control is used by Merel et al. (2019a) in order to
highlight the classical distinction between execution of movements and selection
of di�erent actions. Importantly, their disambiguation of three di�erent levels is
not meant to propose that there is such a strict order and that there are exactly
three levels. Rather there are qualitatively di�erent levels and processes that
show a specific form of abstraction. One such qualitative di�erence is that on an
intermediate level, low level motor primitives are subsumed (amortized control) that
share a common objective (modular objectives). As mentioned above, these are
partially autonomous and the intermediate level selection process is sensory driven.
Our adaptive architecture adheres to these principles of hierarchical organization.
Action selection is realized in the Motivation Unit network as a local competition
of possible behaviors on an intermediate level. It is depending on the current state
of the system and driven by sensory inputs, for example, in switching from swing
to stance when a leg touches the ground. Merel et al. (2019a) point out that the
intermediate level of action selection and the lower level of detailed execution can
realize complex patterns without the need of higher levels (which would correspond
to cortical areas in mammals). The Walknet approach shows such an emergence of
complex adaptive behavior that can deal with quite diverse situations. It is driven
and modulated by simple higher level signals as are movement direction or walking
velocity. One di�erence compared to the view proposed by Merel et al. (2019a) is
that in our approach action selection is realized on multiple di�erent levels and
explicitly implemented as a simple Winner-take-all structure (for example, there
is a competition on the leg level for selecting a swing or stance movement, but
in the extension towards forward and backward walking this selection is already
represented as a hierarchy on the leg level and there is a further local competition
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Figure 6.2: Overview of the motor control architecture: The architecture realizes
adaptive and cognitive behavior. a) provides an abstract and simplified schematic that
visualizes processes between di�erent levels of hierarchies in adaptive behavior. b) shows
how decoupling of the body allows to realize a form of planning ahead as mental simulation
which constitutes cognitive behavior.

on a higher level between di�erent behaviors). Furthermore, one open question for
Merel et al. (2019a) is how di�erent levels and modules interact and share (factorized)
information. In the Walknet approach there is information flow realized between
levels. But in addition, there is local coordination between modules on the same
level: the leg controllers are not coordinated through a higher level synchronization
signal, but instead coordination emerges out of simple local coordination influences.

6.1.3 Higher Level Control – Planning
Merel et al. (2019a) describe the goal of higher control levels as to provide flexibility
for unrehearsed movements. They connect this to Bernstein’s notion of dexterity
that aims at “finding a motor solution for any situation and in any condition”
(Bernstein, 1996, p. 21). In their view, higher level control overrides automatic
responses of the lower level in such scenarios. This fits well with the distinction
in dual process types (Evans & Stanovich, 2013) we have used in the introduction:
automatic lower level control processes are in our architecture complemented by
reflective controlled processes (see Fig. 1.2 for an overview of characteristics of
the two types of processes). In both views, this introduces an e�ortful search
for solutions to a given problem which is realized as a mental simulation in our
architecture (Fig. 6.2). Merel et al. (2019a) put a particular focus on sensory input
to higher level control. Their notion of information factorization that induces a
form of abstraction in the bottom-up processing of sensory input can be found in
how sensory input is processed in our hierarchical control architecture and is made
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explicit in the internal body model. Furthermore, they point out that higher level
control receives a multitude of sensory inputs and, in particular, this extends to more
distant information. They use visual information and how this can guide motion
as an example. While in general their examples mostly focus on manipulation
tasks, this extends as well towards locomotion. In biological motor control, visual
guidance modulates lower levels. Currently, there is no visual input used in our
system. But high level motor control in the architecture is realized as a modulation
of—and projection onto—the lower levels as these are recruited in tasks. This
grounding of higher levels in lower control levels is a key characteristic of our
approach. It is our goal for future work to extend our model towards, on the one
hand, visual—pre-processed—input that can be integrated across di�erent levels
of motor control, and, on the other hand, towards more distal information that
would extend the internal model of the own body towards a representation of the
environment (for example, in navigation (Hoinville & Wehner, 2018)).

6.2 Conclusion
We have devised a decentralized and hierarchical control model in this thesis which
we applied for locomotion on the six-legged robot Hector. The organization of
the architecture is based on key principles of motor control as found in animals:
In particular, a hierarchical and decentralized structure is realized. Control is
distributed onto di�erent levels and processed concurrently which allows to respond
on di�erent time scales. On the one hand, this allows for very fast reactions. In
our embodied approach this includes bodily properties that can directly absorb
disturbances. In this view, motor control encompasses body, control system,
and interaction between these. The lower control levels are based on detailed
experimental findings of walking in stick insects. We demonstrated that this leads
to adaptive behavior as the robot can quickly and automatically react to disturbances
and stable behavioral patterns emerge from interaction with the environment. On
the other hand, on a much longer timescale, the system is extended towards a
minimal cognitive system that is able to handle novel, problematic situations. For
this purpose, we have extended the system towards a cognitive system that allows as
an additional mechanism to come up with changed behaviors in novel contexts. The
cognitive system exploits the predictive capabilities of an internal body model that
was already required in the behavior-based approach for spatial coordination during
curve walking. In a form of internal simulation, existing behaviors are applied
out of context in unstable, problematic situations and routed to the internal body
model while being decoupled from the body. The body model that is realized as
a recurrent neural network provides predictions of the behavioral outcomes. This
allows the system to test potential behaviors in a safe way and only apply those
that appear non-harmful. But such a reflective and controlled approach requires
e�ort and time. Importantly, higher levels are grounded in the lower level control
system and the overall system showed both kinds of behavior: On the one hand,
the system showed again to be robust and adaptive as stable gait patterns emerged.
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On the other hand, when the system was forced into an unstable situation, the
cognitive extension intervened and found successful solutions through recruiting
lower level behaviors out of context on a longer timescale.

Therefore, the system realizes a minimal cognitive system as it shows two modes
of operation. In the introduction, we introduced a dual process view and the
presented system fits to the two types of processes distinguished. This architecture
is still minimal. In particular with respect to type 2 (higher level) processes, the
realized function matches qualitatively posed requirements (controlled processing,
e�ortful, reflective, decoupling and a form of mental simulation), but treatments of
such type 2 processes are often more far reaching and include much more higher
level knowledge (abstract and domain general knowledge). On the one hand, we
purposefully focussed on such a very restricted set of behavior that is accessible
on di�erent levels of inquiry. This allows to come up with models that are broadly
grounded in experimental findings and provide a realization on a computational
and algorithmic level (Marr, 1982). Such minimal cognitive systems o�er ideal
tools for further investigation as their structure is interpretable and their function
can be analyzed in detail (which is further helped by the modular and hierarchical
structure). As one example, we analyzed in detail how and what kind of higher
level mental states emerged in our architecture (Cruse & Schilling, 2015a,b). It is
important to note that relating such an architecture towards attention, intention,
or emotion was not a goal for producing such an architecture. But, interestingly,
characteristics of emerging mental states match well functional descriptions of these
higher level mental states. The organizing principles of our system appear su�cient
to explain, on a functional level, the emergence of such mental states (For further
details see the original publications (Cruse & Schilling, 2015a,b, 2013). Furthermore,
we add a brief discussion article of higher mental states in the appendix (Schilling
& Cruse, 2016, see E.1, page 310). This article was a reply towards a perspective
that connected description of higher mental capabilities to insects. As a main
point, we advised caution in interpretation of such findings. From our point of view,
insects—and animals in general—provide ideal models for quantitative analysis
of mechanisms on a functional and an algorithmic level. But such models should
then only be used in this way. One should refrain from relating models to purely
descriptive approaches, but should try to o�er functional application that will be
much more clear-cut and, as found in our case, can provide a clear decomposition
in characteristics or key principles.).

On the other hand, the minimal cognitive system is minimalistic with respect to
internal representation and how these support cognitive function. While planning
ahead is realized as internal simulation, this only shows one specific example
of recruitment of grounded internal models. A key advantage of the notion of
recruitment is that it is, first, parsimonious to reuse models for di�erent cognitive
function, and, secondly, that concepts are actually constituted in their connections
to di�erent modalities. This idea found support in the findings of mirror neurons
(Rizzolatti et al., 1996) and the mirror neuron system (Cook et al., 2014; Rizzolatti,
2005) which shows activation of motor control related areas in the brain during
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observation of actions. We are currently working towards extending our system in
order to recruit the existing internal body model during observation. As knowledge
on the body structure and the dynamics of possible movements is encoded inside the
internal body model, this can be used as a prior during observation of movements and
can guide—without the need for explicit supervision—finding correlations between
visual inputs during observation and own observed movements (A simplified example
was already used as a first proof of concept and is added in the appendix (Schilling,
2011a, E.2, page 312). It addresses findings in humans that show an advantage in
an observational task for exploiting their own internal model (Loula et al., 2005).).

Currently, our model does not address abstract or domain general knowledge. It
is future work to extend the existing internal models to integrate, first, knowledge
on distal information. Importantly, this should follow an embodied perspective.
Further information should be incorporated in relation to the system itself, i.e.,
what something a�ords to the system (Gibson, 1977, 1979). One straight forward
example is navigation as found in insects as well (Hoinville & Wehner, 2018). This
might ground a spatial organization for conceptual spaces as found in animals
(Moser et al., 2008; Burgess, 2014). Spatial representations appear as one key
conceptual space that is related to bodily representations (Romano et al., 2017). It
is furthermore involved in a form of mental simulation as replay activation of spatial
representations corresponds to imagination of possible choices in navigational tasks
(Ólafsdóttir et al., 2015; Wu et al., 2017).

Second, in our approach the cognitive expansion is only concerned with the
selection of a single behavior out of context. As future work, we are interested in
planning complex behaviors that consist of concurrent and sequential activation of
behaviors. This requires a form of compositionality (Lake et al., 2017; Cangelosi
et al., 2010). Following our bottom-up approach, we are interested in the structure
of action representation for more complex behaviors. As one key characteristic, such
action representations appear schematic (Binder & Desai, 2011). This has been
well studied for a long time from a high level perspective in linguistics (Johnson,
1987; Fillmore, 1976) and has converged now with the idea of recruitment that
language recruits such underlying schematic action representations (Pulvermüller,
2018; Gallese & Lako�, 2005). There is now more and more evidence showing
activation of neural areas associated with motor control that are di�erentially
activated in language processing and imagination of semantics (Wang et al., 2018;
Desai et al., 2013; Boulenger et al., 2008) (Recently, we discussed the schematic
organization and how this is recruited in language in an article which for further
details is part of the appendix (Schilling et al., 2020, E.3, page 322). Furthermore,
we laid out a principal connection of our bottom-up approach to such a high level
schematic view as a process model in (Schilling & Narayanan, 2013).).

One important capability to extend our system—in particular with respect to
expanding information that can be used by the system—is learning. Current work—
presented in the third chapter—addresses already Deep Reinforcement Learning
on the lower levels. The goal is to extend this towards more complex actions and
towards a broader range of behaviors, for example, using the two front legs for
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grasping objects and moving them around in an environment. This will require to
introduce more hierarchical structures and di�erent temporal scales into the learning
framework. For the higher levels, Deep Reinforcement Learning (and in particular
hierarchical DRL) appears as well as a natural extension to our system, as we are
already realizing a simple form of trial-and-error learning on the action selection
level during cognitive processing. While this would change (or even replace) the
structure of the out-of-context action selection neural network, such an approach
would benefit from the particular characteristics that would be maintained:

• a modular local structure on the lower level that allows for fast adaptations,

• decentralized action selection that is coordinated through local rules,

• and exploiting predictive capabilities of an internal body model for planning
actions to deal with novel situations (we have proposed such a formulation of
a decentralized learning system in Schilling & Melnik (2018)).

Such a system could provide a basis for analysis of interactions between di�erent
levels of decentralized concurrent control that integrates internal models and could
be used for learning on longer timescales.

6.3 List of Publications
As this chapter gave an outlook on further extensions and application of the proposed
model, there are three articles that provide further discussion on the process of
mental simulation and the structure of underlying representation.

6.3.1 Contributions to the Thesis
• Schilling, M., and Cruse, H. (2016), “Avoid the hard problem: Employment

of mental simulation for prediction is already a crucial step”.

Appendix E.1, page 310: Discussion on importance of mental simulation as a
central mechanism, and relating this to findings in insects. This was published
in Proceedings of the National Academy of Sciences (PNAS, Impact Factor
9.58).
Author Contributions: M.S. and H.C. devised the main conceptual ideas, laid
out the concept and wrote the paper.

• Schilling, M. (2011), “Learning by seeing—associative learning of visual
features through mental simulation of observed action”. Proceedings of the
European Conference on Artificial Life 2011, Paris.

Appendix E.2, page 312: Provides a proof of concept for recruitment of the
internal body model in an observational task.
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• Schilling, M., Chang, N., Rohlfing, K.J., Spranger, M. (in press), “Simulation
across Representation: The Interplay of Schemas and Simulation-Based
Inference on Di�erent Levels of Abstraction”.

Appendix E.3, page 322: Discussion on the schematic structure of action
representation from a neuroscientific and linguistic perspective. This was
recently accepted for publication in the journal Behavioral and Brain Sciences
(Impact Factor 15.07).
Author Contributions: M.S., N.C., K.J.R., and M.Sp. devised the project,
the main conceptual ideas, and wrote the paper. M.S. prepared the original
draft of the paper.

6.3.2 Further Related Publications
There are further related publications that relate to the structure of representation,
higher level function in cognitive systems, and recently turning towards interaction
as well as interactive systems.

Peer-reviewed Journal Papers:

• Schilling, M., Burgard. W., Muelling, K., Wrede, B. and Ritter, H. (2019),
“Shared Autonomy— Learning of Joint Action and Human-Robot Collabora-
tion”. Frontiers in Neurorobotics 13:16. doi:10.3389/fnbot.2019.00016

• Nomikou, I., Schilling, M., Heller, V. and Rohlfing, K. J. (2016), “Language
at all times. Action and interaction as contexts for enriching representations”.
Interaction Studies, 17(1), pp. 128–153.

• Cruse, H. and Schilling, M. (2013), “How and to what end may consciousness
contribute to action? Attributing properties of consciousness to an embodied,
minimally cognitive artificial neural network”. Frontiers in Psychology, 4(324).
doi: 10.3389/fpsyg.2013.00324

Book Chapters:

• Cruse, H. and Schilling, M. (2016), “Mental states as emergent properties.
From walking to consciousness”. In: Open Mind, Philosophy and the Mind
Sciences in the 21st Century. Vol 1. Metzinger T, Windt JM (Eds); Cambridge,
Mass.: The MIT Press: 349-386.

• Schilling, M. (2012), “Grounded internal body models for communication:
Integration of sensory, motor and visual spaces for mediating conceptualiza-
tion”. In L. Steels and M. Hild (Eds.), Language Grounding in Robots. Berlin:
Springer (pages 131–150).
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Reviewed Conference Proceedings:

• Schilling, M., Kopp, S., Wachsmuth, S., Wrede, B., Ritter, H., Brox, T., Nebel,
B., Burgard, W. (2016). “Towards A Multidimensional Perspective on Shared
Autonomy”. Proceedings of the AAAI Fall Symposium Series 2016, Stanford
(USA).

• Schilling, M. and Narayanan, S. (2013), “Communicating with Executable
Action Representations”. In Proceedings of AAAI Spring Symposium Series
2013, Stanford.

• Cruse, H., and Schilling, M. (2011), “From egocentric systems to systems
allowing for theory of mind and mutualism”. In R. Doursat (Ed.), Proceedings
of the ECAL 2011, Paris: MIT Press, pp. 184–191.

• Schilling, M. (2011), “Integrating multi-sensory input in the body model – a
RNN approach to connect proprioception, visual features and motor control”.
Proc. of the International Joint Conference on Neural Networks 2011, San
Jose (CA).
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Overview Articles

This habilitation thesis presents the author’s selected findings on the organization,
realization, and learning of motor control structures and cognitive function applied
on a six-legged walking robot. It is written as a cumulative thesis. This appendix
contains the main scientific contributions that have been published in 15 papers.
While two articles are submitted, all other articles have been peer-reviewed. Seven
articles have been published as a journal publication (mean impact factor of 5.65) and
the other six have been published at international conferences (either high ranked
CORE A conferences or specialized conferences on specific topics). These articles
constitute the second and major part of the thesis—further related publications
are pointed out in the chapters as well.

Appendix A – Biological-inspired Locomotion Control
• Schilling, M., Hoinville, T., Schmitz, J. and Cruse, H. (2013), “Walknet, a

bio-inspired controller for hexapod walking”. Biological Cybernetics, 107(4),
pages 397–419.

Appendix A.1, page 94: Provides a review on behavioral findings in insects
and details on the Walknet control approach (Schilling et al., 2013a, A.1,
page 94). This was published in Biological Cybernetics (Impact Factor 1.76)
and is now established as a reference for decentralized organization of motor
control in insects (cited 129 times).
Author Contributions: MS and HC laid out the concept, designed the model
and analyzed the data. MS carried out the implementation. MS and HC
wrote the manuscript. Writing review and editing all authors.

• Schilling, M. and Cruse, H. (2020), “Decentralized control of insect walk-
ing - a simple neural network explains a wide range of behavioral and
neurophysiological results”. PLOS Computational Biology 16(4): e1007804.
https://doi.org/10.1371/journal.pcbi.1007804

Appendix A.2, page 118: Extension towards a detailed decentralized architec-
ture that acts on the joint level. This was recently accepted for publication in
PLOS Computational Biology (Impact Factor 4.43).
Author Contributions: Conceptualization, methodology, investigation, and
writing – MS and HC. Software, simulation, and data curation – MS. Formal
analysis – HC.

87



88

• Schilling, M., Paskarbeit, J., Hü�meier, A., Schneider, A., Schmitz, J., and
Cruse, H. (2013), “A hexapod walker using a heterarchical architecture
for action selection”. Frontiers in Computational Neuroscience 7:126. doi:
10.3389/fncom.2013.00126.
Appendix A.3, page 168: Introduces the hierarchical Motivation Unit archi-
tecture and shows results for application on a hexapod robot. The article was
published in Frontiers in Computational Neuroscience (Impact Factor 3.57).
Author Contributions: Conceptualization and writing – MS and HC. Method-
ology and investigation – MS, HC, JS, and AS. Software and simulation – JP,
AH, and MS.

Appendix B – Decentralized Learning
• Schilling, M., Ritter, H., and Ohl, F.W. (2019), “From Crystallized Adaptivity

to Fluid Adaptivity in Deep Reinforcement Learning — Insights from Biologi-
cal Systems on Adaptive Flexibility”. In 2019 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Bari (I).
Appendix B.1, page 188: Discusses in detail learning on di�erent timescales
as a form of fluid adaptivity that allows to continuously adapt to changing
environments and contrasts this with approaches that learn how to switch
between di�erent types of behaviors. Introduces deceptive problems in more
detail. This was published at IEEE SMC (ranking: CORE B).
Author Contributions: Conceptualization and writing original draft – MS.
Investigation, writing review and editing – MS, FWO, HR.

• Schilling, M., Konen, K., Ohl, F.W., and Korthals, T. (submitted to IROS
conference), “Decentralized Deep Reinforcement Learning for a Distributed
and Adaptive Locomotion Controller of a Hexapod Robot”.
Appendix B.2, page 196: Application of decentralized controllers in a DRL
setting. Showing detailed results that such a decentralized architecture learns
robust controllers that even perform better compared to a baseline approach.
Author Contributions: Conceptualization, writing original draft and data
curation – MS. Methodology, formal analysis – KK, TK, MS. Investigation
and software – KK. Writing review and editing – MS, KK, FWO, TK.

• Schilling, M. and Melnik, A. (2018), “An Approach to Hierarchical Deep
Reinforcement Learning for a Decentralized Walking Control Architecture”.
In: Samsonovich A. (eds.) Biologically Inspired Cognitive Architectures 2018.
Advances in Intelligent Systems and Computing, vol 848. Springer, Cham.
Appendix B.3, page 206: Introduces how to extend the decentralized archi-
tecture towards a hierarchical approach in a DRL setting (implementation is
future work).
Author Contributions: Conceptualization and writing original draft – MS.
Methodology, investigation, writing review and editing – MS, AM.
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Appendix C – Hierarchical Internal Model
• Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., and Cruse, H. (2012),

“Grounding an Internal Body Model of a Hexapod Walker—Control of Curve
Walking in a Biological Inspired Robot”. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2012,
pages 2762-2768.
Appendix C.1, page 220: Details on the setup and processing of the hierarchical
internal body model for the case of a six-legged robot. Shown are results for
the control of the stance movement in forward and curve walking in simulation.
This was published in the main track of the IROS conference, one of the three
leading conferences in the field of robotics (CORE A ranking).
Author Contributions: Conceptualization, methodology, investigation, analysis
– MS. Software, simulation – MS, JP. Writing – MS, JP, JS, AS, HC.

• Schilling, M., and Cruse, H. (2012), “What’s next: Recruitment of a grounded
predictive body model for planning a robot’s actions”. Frontiers in Cognition,
3(383). doi:10.3389/fpsyg.2012.00383
Appendix C.2, page 228: Provides an introduction into the MMC principle
and shows predictive capabilities of this model and coordination in a targeted
reaching task for an insect-like body structure. This was published in Frontiers
in Cognition (Impact Factor 2.13).
Author Contributions: Conceptualization, methodology, software, simulation,
investigation, and writing – MS. Writing, review and editing as well as funding
acquisition – HC.

• Schilling, M. (2019), “Hierarchical Dual Quaternion-Based Recurrent Neural
Network as a Flexible Internal Body Model”. Proc. of the International Joint
Conference on Neural Networks 2019, Budapest (Hungary), pp. 1–8.
Appendix C.3, page 248: A hierarchical body model for more complex
manipulators. Introduces the dual quaternion representation for joints with
multiple degrees of freedom and the extension towards a hierarchical model.
Shows results for a series of simulations for a simple bimanual task that
required computation of forward and inverse kinematics. This was published
at IJCNN (ranking: CORE A).

Appendix D – Planning Ahead in a Cognitive Architecture
• Schilling, M., Paskarbeit, J., Ritter, H., Schneider, A., and Cruse, H. (submit-

ted), “From Adaptive Locomotion to Predictive Action Selection—Cognitive
Control for a Six-Legged Walker”.
Appendix D.1, page 260: Summary of the structure of the cognitive expansion
and application on the real robot Hector in a climbing task (Schilling et al.,
submitted, 2020b, D.1, page 260). In addition, provides a systematic analysis
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on postural variations and shows how adaptive system and cognitive system
complement each other.
Author Contributions: M.S. and H.C. designed and performed research as
well as analyzed the data. M.S. wrote simulation software and developed
concept of the model. Simulation experiments were performed by M.S. and
experiments on robot were performed by J.P and M.S. M.S. wrote the paper
and H.C., H.R., and A.S. contributed to the writing.

• Schilling, M. and Cruse, H. (2017), “ReaCog, a Minimal Cognitive Controller
Based on Recruitment of Reactive Systems”. Front. Neurorobot. 11(3). doi:
10.3389/fnbot.2017.00003

Appendix D.2, page 276: Introduces the cognitive expansion and demonstrates
the application for the case of an awkward posture on a simulated robot
(Schilling et al., submitted, 2020b, D.2, page 276). This was published in
Frontiers in Neurorobotics (Impact Factor 3.00).
Author Contributions: MS and HC laid out the concept, designed the model
and analyzed the data. MS carried out the implementation. MS and HC
wrote the manuscript. Writing review and editing all authors.

• Schilling, M. (2017), “Old Actions in Novel Contexts — a Cognitive Archi-
tecture for Safe Explorative Action Selection”. Proceedings of the Artificial
Intelligence and Simulation of Behaviour Conference (AISB 2017), Bath (UK).

Appendix D.3, page 300: Analyzes in detail the stages coordinating cognitive
processing and shows their convergence (Schilling, 2017, see article D.3,
page 300).

Appendix E – Further Perspective Articles
• Schilling, M., and Cruse, H. (2016), “Avoid the hard problem: Employment

of mental simulation for prediction is already a crucial step”.

Appendix E.1, page 310: Discussion on importance of mental simulation as a
central mechanism, and relating this to findings in insects. This was published
in Proceedings of the National Academy of Sciences (PNAS, Impact Factor
9.58).
Author Contributions: M.S. and H.C. devised the main conceptual ideas, laid
out the concept and wrote the paper.

• Schilling, M. (2011), “Learning by seeing—associative learning of visual
features through mental simulation of observed action”. Proceedings of the
European Conference on Artificial Life 2011, Paris.

Appendix E.2, page 312: Provides a proof of concept for recruitment of the
internal body model in an observational task.
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• Schilling, M., Chang, N., Rohlfing, K.J., Spranger, M. (in press), “Simulation
across Representation: The Interplay of Schemas and Simulation-Based
Inference on Di�erent Levels of Abstraction”.
Appendix E.3, page 322: Discussion on the schematic structure of action
representation from a neuroscientific and linguistic perspective. This was
recently accepted for publication in the journal Behavioral and Brain Sciences
(Impact Factor 15.07).
Author Contributions: M.S., N.C., K.J.R., and M.Sp. devised the project,
the main conceptual ideas, and wrote the paper. M.S. prepared the original
draft of the paper.
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Decentralization and Hierarchical Organization for Control of 
Adaptive and Cognitive Behavior in Autonomous Robots
Cognition—understood as a form of planning ahead—complements adaptive behavior. It leverages 
knowledge about performing a specific behavior into a novel context while minimizing any harm to the 
behaving system itself as it is using an internal simulation to predict possible outcomes. In this thesis, I 
propose a minimal cognitive system that integrates these two kinds of processes in one control system 
for a six-legged robot. 

On the one hand, adaptive behavior emerges from interaction of simple local control modules which 
allows the system to react quickly when facing disturbances. Detailed experimental findings in insects 
suggests that this evolved flexibility results from a hierarchical and decentralized architecture. While a 
lower control level coordinates muscle activation patterns and joint movements on a short timescale, a 
higher level handles action selection on longer timescales.

On the other hand, following a bottom-up approach this is extended towards a cognitive system that is 
able to invent new behaviors and to plan ahead. Using a grounded internal body model planning is 
realized as a form of internal simulation of possible actions which are applied out of their original context. 
Exploiting the decentralized architecture, this cognitive expansion allows to test and predict properties of 
newly invented behaviors, while the body is decoupled from the control system.

The thesis introduces the minimal cognitive system as it is applied on the robot Hector in a climbing task. 
It consecutively introduces the underlying control characteristics and relates these to findings from 
biology and neuroscience. First, hierarchical organization can be found in many animals and it structures 
control into parsimonious modules. Second, this is complemented by research on stick insects in 
particular which offers an even more detailed neuronal and behavioral level for analysis. This emphasizes 
decentralization of control structures and the importance of an embodied perspective which integrates 
bodily properties into the concurrent control process exploiting, for example, elasticities of muscles for 
simplifying the control problem. Third, internal representations are introduced in a bottom-up manner as 
grounded internal models—realized as recurrent neural networks—that are at first considered in the 
context of serving a specific behavior. Fourth, as a consequence, cognitive processing is realized as 
recruitment of the already existing flexible internal models in an internal simulation. The underlying 
architecture is applied on the hexapod robot Hector and analyzed in detail in simulation. Furthermore, 
learning is considered for this approach.
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