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Abstract

A prominent hypothesis holds that by speaking to infants in infant-directed speech (IDS) as

opposed to adult-directed speech (ADS), parents help them learn phonetic categories. Specifically,

two characteristics of IDS have been claimed to facilitate learning: hyperarticulation, which

makes the categories more separable, and variability, which makes the generalization more robust.
Here, we test the separability and robustness of vowel category learning on acoustic representa-

tions of speech uttered by Japanese adults in ADS, IDS (addressed to 18- to 24-month olds), or

read speech (RS). Separability is determined by means of a distance measure computed between

the five short vowel categories of Japanese, while robustness is assessed by testing the ability of

six different machine learning algorithms trained to classify vowels to generalize on stimuli spo-

ken by a novel speaker in ADS. Using two different speech representations, we find that hyperar-

ticulated speech, in the case of RS, can yield better separability, and that increased between-

speaker variability in ADS can yield, for some algorithms, more robust categories. However, these

conclusions do not apply to IDS, which turned out to yield neither more separable nor more robust

categories compared to ADS inputs. We discuss the usefulness of machine learning algorithms run

on real data to test hypotheses about the functional role of IDS.
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1. Introduction

The way in which infants spontaneously build their phonetic categories from noisy and

variable speech input is still a scientific puzzle. A popular, although controversial,

hypothesis is that this daunting task is made easier by the fact that parents speak to their

children using a special register, called infant-directed speech (IDS). While the character-

istics of IDS at the lexical and syntactic levels are, arguably, of a facilitatory nature (e.g.,

Ferguson, 1978), there is still no agreement regarding the helpfulness of IDS for phonetic

category learning. One reason for the controversy may be that the phonetic characteristics

of IDS are complicated and have been associated to two, somewhat antagonistic, claims.

The first claim is that IDS is a form of hyperarticulated speech, whereby the phonetic

targets are exaggerated compared to adult-directed speech (ADS; although some adult-di-

rected registers also show hyperarticulation characteristics—e.g., read speech [RS]). For

instance, Kuhl et al. (1997) reported increased phonetic distance between the corner vow-

els (/i/, /a/, /u/) in IDS, in three languages. All other things equal, such expansion of the

phonetic space should provide a facilitating effect on learning (see Hartman, Ratner, &

Newman, 2017; Kalashnikova & Burnham, 2018; Liu, Kuhl, & Tsao, 2003; for studies

showing positive correlations between IDS vowel space measures and language outcome),

by making the category means more distant from one another, resulting in better category

separability. Although the vowel expansion effect has been replicated in other studies

(e.g., Andruski, Kuhl, & Hayashi, 1999; Burnham, Kitamura, & Vollmer-Conna, 2002;

Liu et al., 2003, but see, e.g. & Benders, 2013; Dodane & Al-Tamimi, 2007; Englund &

Behne, 2006; for a different account), it may not apply to the non-corner vowels (Cristia

& Seidl, 2014; McMurray, Kovack-Lesh, Goodwin, & McEchron, 2013), limiting the

generality of the putative facilitatory effect.

The second claim is that IDS phonetic categories are more variable than ADS (e.g., de Boer

& Kuhl, 2003; Kuhl et al., 1997; McMurray et al., 2013; Miyazawa, Shinya, Martin, Kikuchi,

& Mazuka, 2017). This effect is antagonistic to hyperarticulation: While hyperarticulation

affects the means of the phonetic categories and makes them more separable, variability affects

their standard deviation and makes them more overlapping, hence, less separable.

How do these two effects balance out in practice? One way to test this is to use a mea-

sure that combines means and standard deviations (Miyazawa et al., 2017) or to measure

category discriminability (Guevara-Rukoz et al., 2018; Martin et al., 2015; McMurray

et al., 2013). Both types of studies have concluded that the increase in variability for IDS

is stronger than the effect of expansion, resulting in a null or slightly negative effect on

separability.

However, while recognizing that variability may be detrimental to some aspects of

learning (separability), some authors have pointed out that increased phonetic variability

could help other learning aspects, such as building more robust phonetic categories.

Mothers addressing infants also increase the variety of exemplars they use, behaving in

a way that makes mothers resemble many different talkers, a feature shown to assist

category learning in second-language learners. (Kuhl, 2000, p. 11855)
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Considering the counteracting roles of hyperarticulation and variability on phonetic

category realization and learning, we aim to investigate here the separability of phonetic

categories and the robustness of phonetic category learning, by taking into account the

effect of these two phenomena.

1.1. Experimental evidence on the impact of variability on robust category learning

Could it be that the detrimental effect of variability for category separability is com-

pensated by increased robustness, once the categories are learned? We review here the

adult and infant experimental literature for proof of the impact of variability on robust-

ness in phonetic learning. Solid evidence exists in the learning of non-native phonemic

contrasts in adults (e.g., /r/-/l/ for Japanese adult learners of English) that phonetic vari-

ability during training yields robust category formation (Lively, Logan, & Pisoni, 1993).

This is illustrated by the fact that when trained with multiple speakers, participants can

generalize the learned contrast to novel words or novel speakers, but not when trained

with a single speaker. In this latter case, even though the participants did improve on the

training examples, learning failed to generalize to novel speakers. The effectiveness of

high variability for phonetic training has been replicated in several studies and is now

deployed in practical applications (see a review in Barriuso & Hayes-Harb, 2018). Note,

though, that there are at least two differences between these experimental results in adults

and the learning situation of infants in their ecological setup.

The first difference is that high-variability studies have focused on between-speaker

variability, whereas in the case of IDS, we are dealing with within-speaker variability.

These two types of variability could yield different patterns of generalization, although to

our knowledge, no adult study has addressed specifically this point.

The second difference is that the aforementioned adult studies trained participants with

explicit label categories that were associated with the speech sounds, and they received

feedback for their incorrect response, a situation called supervised learning. In the case

of infants instead, it has been claimed that they learn the categories spontaneously, with

weaker or no supervision (unsupervised or self-supervised statistical learning, e.g., Kuhl,

2000; Romberg & Saffran, 2010; or using word-level knowledge, e.g., Feldman, Myers,

White, Griffiths, & Morgan, 2011; Yeung & Werker, 2009). It could be that the effect of

variability differs between the former and the latter two types of learning conditions.

Few of the experimental paradigms employed with infants can be compared to those

used with adults. Conditioned head turning (Kuhl, 1979) trains infants to respond specifi-

cally to one class of sounds by turning their head toward it and ignoring the another one.

Feedback is provided during the training phase. With this paradigm, Kuhl showed that

training a vowel discrimination with stimuli of one speaker can generalize to a different

speaker, showing a form of robust response despite low variability input. We are not

aware of a study looking at the effect of variability during training with this paradigm. In

the switch paradigm (Werker, Cohen, Lloyd, Casasola, & Stager, 1998), infants are habit-

uated to the pairing between a word and the image of an object, and then tested on their

“surprise” reaction to a mismatch between the word and the image. Assuming the images
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count as a sort of “label,” this would be similar to supervised training, but without any

feedback during training. Rost and McMurray (2009) found that when a single speaker

was used during training, infants fail to distinguish between the minimal pairs associated

with pictures. Training with a single speaker failed to induce a minimal pair discrimina-

tion but training with multiple speakers succeeded (see also Rost & McMurray, 2010).

Other studies showed a similar positive effect of variability for the visual referent of

words, rather than its phonetic form (e.g., Gentner & Namy, 1999; Perry, Samuelson,

Malloy, & Schiffer, 2010). In experiments with less supervision, the evidence for a posi-

tive effect of phonetic variability is scarcer. For instance, Houston and Jusczyk (2000)

used an attention paradigm whereby infants were familiarized with words in isolation and

presented passages containing or not these words. They found that 7.5 month olds would

generalize to a novel speaker only if the speaker was of the same gender as the one

whose speech was used in the familiarization step, suggesting initial limits to generaliza-

tion across speakers in early learners. Yet Houston (2000) found that increasing the vari-

ability of speakers during training did facilitate the generalization to novel speakers,

consistent with the outcomes of adult high-variability experiments.

To summarize, the experimental evidence regarding the effect of increased variability

on phonetic learning is inconclusive, since overall, the strongest evidence of a beneficial

effect comes from adult studies with between-speaker variability, supervision, and feed-

back during learning. When conditions become closer to what infants may experience

(within-speaker variability, weak, or no supervision during learning), the evidence that

variability helps becomes scarcer or not available. More generally, while experimental

studies in infants and adults are useful in that they point to potential learning effects, the

applicability of such effects to real life is limited by the necessarily simplified training

regime used during the experiment. Here, we suggest that additional evidence can be

obtained through a computational modeling approach by asking a slightly different ques-

tion: Does increased variability in IDS help or hinder phonetic category learning for a
particular algorithm? We intend to address the inconclusiveness of the current state of

knowledge by considering both supervised and unsupervised learning models and by sep-

arating between within-speaker and between-speaker variability. To the extent that the

algorithm is a good model of the infant learner, the results can inform what could happen

in infants confronted with similar inputs. Based on the findings of the aforementioned

studies, we would expect an increased generalizability for supervised models as well as a

positive effect of inter-speaker variability on robustness.

1.2. Computational studies of the impact of IDS on phonetic learning

Although there is a fairly substantial amount of literature devoted to the computational

modeling of phonetic learning (Adriaans & Swingley, 2012; Coen, 2006; de Boer &

Kuhl, 2003; Eaves, Feldman, Griffiths, & Shafto, 2016; Feldman, Griffiths, Goldwater, &

Morgan, 2013; Feldman, Griffiths, & Morgan, 2009; Kirchhoff & Schimmel, 2005; Lake,

Lee, Glass, & Tenenbaum, 2014; Martin, Peperkamp, & Dupoux, 2013; McMurray et al.,

2013; Miyazawa, Kikuchi, & Mazuka, 2010; Toscano & McMurray, 2010; Vallabha,
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McClelland, Pons, Werker, & Amano, 2007), only a handful of them have looked at the

impact of IDS specifically (Adriaans & Swingley, 2012; de Boer & Kuhl, 2003; Eaves

et al., 2016; Kirchhoff & Schimmel, 2005; McMurray et al., 2013; Vallabha et al., 2007).

Kirchhoff and Schimmel (2005) trained an automatic hidden Markov model-based

word recognition model, using Gaussian mixture components, on IDS and ADS. While

no information was given on the age of the infants to which the IDS is addressed, the

data contained the same words and was recorded at the same institute as the data used in

de Boer and Kuhl (2003), suggesting they were part of the same dataset (thus, 2- to 5-

month-old infants). They employed Mel Frequency Spectral Coefficients, extracted using

a 25-ms window, from several English minimal pair words, and obtained better within-

register recognition results for ADS than for IDS, consistent with a negative effect of

increased variability in IDS on the separability between categories (see a similar result in

McMurray et al., 2013, obtained with a different learning algorithm—logistic regression

and different features—the values of the first three formants, on speech addressed to 9- to

13-month olds). They also found worse performance when the registers were crossed dur-

ing training and test. Even though the authors do not present the results in this light, this

is actually evidence against the helpfulness of IDS, as the learner is worse off in ADS

processing if it was trained in IDS than in ADS. Although both previously mentioned

studies compare ADS and IDS learning, they used supervised learning algorithms which,

as pointed out above, may not be the best model of the infant learner.

Adriaans and Swingley (2012) employed an unsupervised learning algorithm (based on

expectation maximization—EM, with a fixed number of Gaussians) on the values of the

first two formants of vowels in IDS, and found that the vowels that had acoustic focus

(higher pitch, duration, or pitch change) yielded better learning than the ones that did not.

In this case, data from one mother in a longitudinal study were employed (age of infant

between 8 and 14 months). Vallabha et al. (2007) investigated phonetic learning in Eng-

lish and Japanese IDS (addressed to 12-month-old infants), by using two types of algo-

rithms and by taking in input the values of the first two formants and the vowel duration.

Both the EM-based learning algorithm, as well as the completely unsupervised one (hav-

ing no knowledge of the number of phonetic categories it is supposed to learn), similar to

self-organizing maps (SOM), were successful in learning the four categories considered

in each of the two investigated languages, although with different performances. While

these studies employed models which are more plausible from the point of view of the

infant learner than those examined by Kirchhoff and Schimmel (2005) and McMurray

et al. (2013), neither of them compared IDS to ADS.

de Boer and Kuhl (2003) used the same unsupervised learning algorithm as Adriaans

and Swingley (2012), EM, considering in input the values of the first two formants. The

studied IDS data were the one analyzed by Kuhl et al. (1997), containing speech

addressed to 2- to 5-month-old infants. They found that the means of Gaussians trained

with IDS speech corresponded more closely to the three corner vowels than Gaussians fit-

ted with ADS. This suggests that IDS provides a better model to learn ADS categories

than ADS itself, consistent with the report of exaggerated means in IDS. However, no
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quantitative analysis of how the IDS-trained Gaussians would actually perform on ADS

data was performed.

Eaves et al. (2016) formulated an explicit model of “teaching,” that is, constructing a

training sample optimally suited to yield good learning of the ADS categories through an

unsupervised learning algorithm (Dirichlet process Gaussian mixture model [DPGMM]),

based on a parameterization consisting of the values of the first three formants. They

noted that the optimal training sample has similar properties to IDS, as reported in the lit-

erature (corner vowel hyperarticulation, some non-corner vowel hypoarticulation,

increased variability). The study considered both supervised and unsupervised models,

tested the generalization to (generated) ADS data, and compared performance obtained

on the ADS data with that obtained on their IDS-like distribution. Yet no quantitative

comparisons were made with actual IDS data, the study being conducted with recon-

structed, idealized, distributions rather than raw data.

Here again the evidence in favor of the usefulness of IDS for phonetic learning is

somewhat mixed, and it does not always match the conditions likely to apply to the learn-

ing infant. It should also be noted that none of the previous studies have really tested the

robustness of the phonetic categories, defined as the ability of the system to generalize to

a novel, untrained, speaker. We intend to fill this gap, by testing the generalization to

novel ADS speakers on actual audio data.

Our approach is presented in Fig. 1. The two axes represent the two main claims

regarding the effect of IDS on phonetic learning. The vertical axis represents the claim

that hyperarticulated speech yields better separation than standard speech. We test this in

Fig. 1. Hypothesis space tested in this study. ADS and RS inputs are assumed to have low acoustic variabil-

ity, IDS and ADSmulti (multi-speaker ADS) inputs high variability. RS and IDS are assumed to be hyperartic-

ulated, but not ADS. Experiment 1 tests the hypothesis that more hyperarticulation yields better category

separation. Experiments 2 and 3 test the hypothesis that more variability yields better generalization. *The
variability in ADSmulti is between-speaker; in IDS, it is within-speaker.
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Experiment 1 by measuring separability in ADS (which is not hyperarticulated), on the

one hand, and IDS and RS (which, supposedly, are), on the other. The horizontal axis

represents the claim that high variability yields better generalization. We first test this

claim for between-speaker variability, in Experiment 2, by manipulating the number of

speakers during the learning phase. Then, in Experiment 3, we compare the generalization

in ADS and RS (which are considered to have low variability) versus IDS (which has,

presumably, high variability). In the following section, we detail and motivate the design

choices we made in our computational modeling study.

1.3. Design choices for the present study

Any computational approach to learning has to specify two key components of the

model. The first one is the data used to train the model, and the second one is the learn-

ing algorithms used for modeling.

Regarding the data, we use a large and carefully annotated dataset of speech, the

RIKEN Mother-Infant Conversation Corpus (Mazuka, Igarashi, & Nishikawa, 2006),

where the same parents have been recorded in three speech registers: ADS (talking to an

experimenter), IDS (playing with or reading a book to their 18- to 24-month-old tod-

dlers), and RS (reading a text; RS). The reason we selected this corpus is that it contains

high-quality audio recordings of spontaneous IDS which are entirely manually annotated

at the segmental level. In addition, the corpus includes recordings also of ADS and RS

from the same mothers, which was crucial for the purpose of the present study—to exam-

ine the effect of hyperarticulation and variability on the learnability of phonetic cate-

gories. To our knowledge, this is the only dataset that allows a direct comparison among

IDS, ADS, and RS by the same speakers. A series of studies have already established that

Japanese IDS presents the main characteristics of IDS documented in various languages

(Ferguson, 1964): shorter sentences, repeated words, and exaggerated intonation (e.g.,

Amano, Nakatani, & Kondo, 2006; Andruski et al., 1999; Fernald et al., 1989), while

exhibiting also language-specific properties, such as different vocabulary structure (Fer-

nald & Morikawa, 1993). The IDS characteristics shared with other languages were found

also for the age range (18–24 months) present in the RIKEN corpus, in particular that

IDS has higher pitch (Igarashi, Nishikawa, Tanaka, & Mazuka, 2013), shorter utterances

(Martin, Igarashi, Jincho, & Mazuka, 2016), and an expanded vowel space (Miyazawa

et al., 2017) compared to ADS. We focus here on the five short vowels of Japanese,

which enables comparison with other computational modeling work on phonetic learning

(e.g., McMurray, Aslin, & Toscano, 2009; Vallabha et al., 2007; among others). More-

over, as evidence from other languages shows no change in the size of the mother’s

vowel space with the age of the addressee (and, this, for a larger age range, overlapping

the one present in the RIKEN corpus—Burnham et al., 2015; Liu, Tsao, & Kuhl, 2009),

we would expect similar findings also for different age ranges.

Regarding the algorithm, there is a wide variety of views regarding how infants

achieve phonetic learning, and each of these views can be implemented in a variety of

ways, yielding different algorithms. Computational studies have typically used a narrow
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range of such algorithms, making it difficult to know whether the results are general or

specific to the chosen algorithms. Here, our strategy was to (a) cover some of the most

popular algorithms used in previous studies (for comparability), and (b) organize them

systematically in terms of their basic assumptions (for interpretability). We sorted the

algorithms according to two dimensions.

The first one regards the amount of innate constraints or inductive biases that the learn-

ing model brings to the task. Many studies have used parametric algorithms, which

assume that the underlying phonetic categories have particular shapes, typically Gaussian

distributions over the input dimensions (see de Boer & Kuhl, 2003; McMurray et al.,

2009; Vallabha et al., 2007). Other studies have used nonparametric algorithms, which

make no such assumptions and can accommodate categories of different shapes (such as

the SOM of Kohonen, 1988; as in Gauthier, Shi, & Xu, 2007; or in Vallabha et al.,

2007).

The second dimension relates to the amount of top-down information available to

infants. At one extreme, supervised models assume that the learner is presented for each

speech instance with a category label. This is the case for many second language learning

paradigms where adults are taught to label or discriminate non-native speech sounds

(Lively et al., 1993). We consider this a control condition, as it is highly implausible that

infants have access to such systematic information. At the other extreme, unsupervised

algorithms assume that the learner has no top-down information at all: just the speech

input. This hypothesis has been proposed under the name of “distributional learning,” and

has been tested both in infants with artificial categories (Maye, Werker, & Gerken, 2002)

and in models with more or less natural speech inputs (McMurray et al., 2009; Vallabha

et al., 2007). In between these two cases, there is a continuum of algorithms that use

varying amount of top-down information in the shape of already learned words (Jansen &

Niyogi, 2007; Thiolliere, Dunbar, Synnaeve, Versteegh, & Dupoux, 2015) or algorithms

performing joint word and category learning (Feldman et al., 2009). Here, we chose a

class of algorithms which is basically unsupervised but uses top-down knowledge to

inform the number of speech categories to be found (see Fourtassi, Schatz, Varadarajan,

& Dupoux, 2014 for a mechanism for finding such numbers without assuming perfect

word segmentation nor perfect word categorization). Such a class of algorithms was used

in previous computational studies (Adriaans & Swingley, 2012; de Boer & Kuhl, 2003).

These two dimensions are crossed in a factorial design, resulting in six different

machine learning algorithms (three parametric: naive Bayes [NB], EM, DPGMM, and

three nonparametric: nearest neighbor [NN], hierarchical clustering [HC], SOM; two

supervised: NB, NN, two partially unsupervised: EM, HC, and two unsupervised:

DPGMM, SOM), as displayed in Table 1. Since EM and DPGMM have been previously

employed for phonetic learning modeling, we made use of them in this study. Moreover,

we chose the supervised algorithm of the same class (the underlying probabilistic model

being as in the other two, a mixture of Gaussian) most similar to them, NB. Similarly,

SOM have been employed in modeling studies and we chose for the other two nonpara-

metric models the simplest algorithms that could represent this particular crossing of
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factors. Thus, NN and HC, two algorithms based on the distance between points, with no

underlying assumption about the shape of the categories, were chosen.

Finally, for computational modeling, it is important to note that the input (the type of

information taken to represent each input token) to the algorithm may matter almost as

much as the algorithm itself. We run our six algorithms on two commonly used input

representations: high-level language-specific parameters (the values of the first two for-

mants, as in Adriaans & Swingley, 2012; Coen, 2006; McMurray et al., 2009; Vallabha

et al., 2007) and low-level acoustic features derived from spectrograms and used in

speech recognition (Mel Filter Cepstrum Coefficients—MFCC, as in de Boer & Kuhl,

2003; Guevara-Rukoz et al., 2018; Kirchhoff & Schimmel, 2005; Martin et al., 2016;

Miyazawa et al., 2010).

To sum up, we ran six learning algorithm (two levels of inductive biases, three levels

of supervision) crossed by two input representations (formants and MFCCs), on the short

Japanese vowels spoken in three registers (ADS, IDS, and RS). In Experiment 1, we ver-

ify that our stimuli have similar characteristics regarding hyperarticulation and variability

to those described previously for IDS, ADS, and RS, as well as the effect of these two

phenomena on the phonetic category separability. That is, we predict that IDS should

both be more hyperarticulated and more variable than ADS, whereas RS should be more

hyperarticulated, but probably less variable than ADS. With respect to separability, taking

into account previous work, we expect a small negative or no effect on IDS, compared to

ADS. In Experiment 2, we investigate the claim that variability can help generalization

by manipulating the number of speakers present in the training data. We train our six

algorithms on two speech representations, using ADS data, and we test the generalizing

to novel ADS speakers. Based on the findings of previous studies, one would expect that

training on data from multiple speakers would give a better generalization than training

on a single speaker only. In Experiment 3, we test how each speech register, at training

time, helps generalizing to novel ADS speakers, at test time. If IDS variability somehow

mimics speaker variability and if this helps generalization, we expect IDS training to

yield better performance than ADS training. The predictions regarding RS are less

Table 1

Summary properties of the six algorithms in this study

Type of

Supervision

Known

Labels

Known

Number

of Categories

Type of Model

Gaussian Non-Gaussian

Supervised Yes Yes Naive Bayes (NB) Nearest neighbor (NN)

Partially

Unsupervised

No Yes Expectation Maximization

(EM)a
Hierarchical clustering

(HC)

Unsupervised No No Dirichlet process Gaussian

mixture model (DPGMM)b
Self-organizing maps

(SOM)c

ade Boer and Kuhl (2003); Adriaans and Swingley (2012); Eaves et al. (2016); bFeldman et al. (2009); Eaves

et al. (2016); close variants were used in Vallabha et al. (2007); Toscano and McMurray (2010); Lake et al.

(2014); cCoen (2006); Vallabha et al. (2007); Miyazawa et al. (2010).
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straightforward. On the one hand, the higher degree of hyperarticulation would suggest

that RS training will yield good category learning. On the other hand, if variability helps

robustness, we predict less robust categories after RS training, to the extent that RS is

indeed less variable than ADS.

2. Experiment 1

In this experiment, we conduct two sets of analyses. The first set investigates the two

properties attributed to IDS categories, namely hyperarticulation and variability. Based on

past work (Miyazawa et al., 2017), we expect IDS to be both hyperarticulated and more

variable than ADS. RS, in contrast, should be hyperarticulated, but less variable than

ADS. Compared to the analysis conducted in Miyazawa et al. (2017), we employ two

new metrics, relying on F1–F2 measures and low-level spectral features, respectively. We

operationalize hyperarticulation as the average distance between category centers, and

variability as the average distance within category. Even though the speech corpus is the

same as in the Miyazawa et al. (2017) study, it is important to check that our particular

selection of stimuli shows the expected characteristics.

The second set of analyses tests the effect of register on the separability of vowel cate-

gories. Separability, or its converse—category overlap, is a function of both hyperarticu-

lation (helpful) and variability (detrimental). Miyazawa et al. (2017) used an inter-class

distance, which assumes a parametric shape to the categories, to measure separability,

while Martin et al. (2015) used the machine ABX discrimination score, which is nonpara-

metric. Both found that IDS was less separable than ADS. Here, we adopt the method

employed by Miyazawa et al. (2017), computing the same distance between vowel

classes. Based on previous studies, we expect IDS vowels to be harder to separate than

ADS vowels, with RS vowels being the most separable.

2.1. Methods

2.1.1. Dataset
The data used in this study belong to the RIKEN Mother-Infant Conversation Corpus

(Mazuka et al., 2006). The corpus consists of speech uttered by 22 Japanese mothers to

their 18- to 24-month-old toddlers, while interacting with them either through the use of

toys or by reading a book. The same mothers have been recorded also talking to an adult

experimenter about topics related to child-rearing. The resulting datasets contain over

11 h of IDS and around 3 h of ADS. Besides the IDS and ADS recordings, we also con-

sidered a third dataset, comprising RS. Twenty out of the total of 22 mothers in the

RIKEN Corpus were recorded reading a set of sentences having the same phoneme distri-

bution as Japanese ADS. The recordings contained in this corpus can be seen as a more

formal and carefully pronounced speech register, further called RS in this paper. All three

datasets have been fully transcribed and annotated at the segmental level.

10 of 31 B. Ludusan, R. Mazuka, E. Dupoux / Cognitive Science 44 (2021)



We computed the number of occurrences of each of the five Japanese short vowels (/a/,

/e/, /i/, /o/, /W/), for each speaker in our three datasets. Then, we considered only the

speakers which had, for each of the five vowel categories and across the three registers,

at least 100 vowel instances, resulting in 15 speakers. For these speakers, we randomly

selected, from each register and vowel category, a number of examples equal to the mini-

mum number of examples in any vowel class (107). Thus, our final dataset had, for each

register and speaker, 5 × 107 vowel instances, totaling 24,075 vowel tokens.

As high-level representations, we used the first two formants (F1 and F2) values of

each vowel, obtained using Praat (Boersma, 2002), a software for phonetic analyses. The

first five formants were extracted, considering as maximum value for the formant search

range 5,500 Hz and applying preemphasis to frequencies above 50 Hz. The values of the

first two formants extracted from the center of each 25-ms analysis frame (with a 10-ms

frame shift) were employed. Thus, for each frame we had a feature vector composed of

two values.

Additionally, low-level audio representations (MFCCs) were extracted from each

vowel. They were computed as follows. Fist, a short-term power spectrum was computed

every 10 ms over a window of 25 ms (modeling the frequency decomposition in the

cochlea). The different frequencies were then averaged over a mel scale (corresponding

to the auditory critical bands), and a logarithmic compression was applied (reducing the

dynamic range). The resulting log spectrum was converted back into the time domain via

a discrete cosine transform, and only the first 12 coefficients (plus the signal energy) were

retained. Up to and including the log compression, these steps are similar to those used

in models of auditory processing. The discrete cosine transform is a technique to make

the different components statistically independent, and is similar to running a principal

component analysis over the log spectrum. We employed the Python package spectral1

for the extraction of the MFCC features.

2.1.2. Analysis
In order to determine the hyperarticulation and variability measures, we represent each

vowel by the feature values (two formants or 13 MFCCs) extracted from the central

frame of the vowel. For calculating the hyperarticulation, we define the category center

as being its centroid (the vowel closest, on average, to all the other vowels of that cate-

gory) and the average Euclidean distance between category centers is reported. Variability

is computed as the average Euclidean distance between all vowel pairs from the same

category.

To compute separability, we calculated the normalized Euclidean distance between

each vowel class pair, for each register and speaker separately, employing the same mea-

sure as in Miyazawa et al. (2017). The distance between two vowel classes i and j is
defined in Eq. 1, where K represents the size of the feature vector, μik the mean, and σik
the standard deviation of the kth element of the feature vector for the class i. It represents
the distance between the means of the classes, normalized by their standard deviation.

Thus, for equal mean values, a lower standard deviation would return a higher distance.

Similar to the hyperarticulation and variability measures, the distance used for
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determining separability was computed on the features extracted from the central frame

belonging to the selected vowels.

Dij¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∑K

k¼1ðμik�μjkÞ2
∑K

k¼1σ
2
ikþ∑K

k¼1σ
2
jk

vuut : (1)

For each of these measures, ANOVAs and paired two-tailed t tests were applied to the per-

speaker results in order to check the statistical significance of the differences between

registers.

2.2. Results and discussion

We illustrate in Fig. 2 the results for hyperarticulation and variability (see Fig. S1 for

a more detailed illustration, showing individual speaker values). A two-way ANOVA, with

distance as dependent variable, register as independent variable, and speaker as random

variable was run, separately, for each type of distance (between-category for hyperarticu-

lation and within-category for variability). For the formant features, it showed significant

register effects for both variability (F(2, 42) = 17.37, p = 3.2e−6, η2 = 0.453) and hyper-

articulation F(2, 42) = 10.57, p = 1.9e−4, η2 = 0.335. Analyzing hyperarticulation with t
tests revealed a similar pattern to the one reported by Miyazawa et al. (2017): more

hyperarticulation for RS than for ADS (t = −6.01, df = 14, p = 3.2e−5), for IDS than for

ADS (t = −3.40, df = 14, p = .004), as well as for RS than for IDS (t = −2.51, df = 14,

p = .025). We then investigated the hypearticulation of the three corner vowels (defined

as the average of the /a/-/i/, /a/-/W/ and /i/-/W/ distances) observing, also in this case, a

larger distance between these categories in IDS than in ADS (t = −4.14, df = 14,

p = .001). However, the hyperarticulation effect observed for the corner vowel categories

Fig. 2. Between-category distance (hyperarticulation) versus within-category distance (variability) averaged

across the five Japanese vowels and across speakers, for formant features (a) and MFCCs (b). Displayed are

the p-values of uncorrected paired t tests (*p < .05, **p < .01, ***p < .001).

12 of 31 B. Ludusan, R. Mazuka, E. Dupoux / Cognitive Science 44 (2021)



was not more enhanced, compared to the overall hyperarticulation (t = 1.99, df = 14,

p = .066). In terms of variability, our results further replicate the findings of Miyazawa

et al. (2017): a high variability for IDS, followed by ADS (ADS-IDS: t = −4.22, df = 14,

p = 8.6e−4) and the lowest variability for RS (ADS-RS: t = 2.37, df = 14, p = .033;

IDS-RS: t = 7.33, df = 14, p = 3.7e−6). We then examined whether the age of the infant

has an effect on the hyperarticulation or variability present in IDS. For this, we fitted two

linear regression models, with the infant’s age (in days) as continuous independent vari-

able. None of the ANOVA performed on the models showed a significant effect of age on

our variables of interest ([F(1, 13) = 1.14, p = .305, η2 = 0.081] for hyperarticulation

and [F(1, 13) = 2.37, p = .148, η2 = 0.154] for variability).

For MFCCs, the ANOVA revealed significant register effects for both variability [F
(2, 42) = 96.16, p < 2e−16, η2 = 0.821] and hyperarticulation [F(2, 42) = 6.34, p = .004,

η2 = 0.232]. Post hoc t tests revealed a similar pattern to the one obtained with formant

features: more hyperarticulation for RS than for ADS (t = −5.89, df = 14, p = 3.9e−5)

and for IDS than for ADS, but no difference between IDS and RS (t = −1.76, df = 14,

p = .1). Although the ADS-IDS contrast was found to be only marginally significant

(t = −1.95, df = 14, p = .071), no previous study that found hyperarticulation in IDS

looked at the entire speech spectrum. It might be that the phonetic enhancement is limited

to or more pronounced in the lower part of the spectrum, where the first two formants are

found. When looking at the average distance between the three corner vowels, we see no

difference in hyperarticulation between ADS and IDS (t = −1.44, df = 14, p = .172) and

no difference between the hyperarticulation of all the vowels versus that of the corner

vowels (t = −0.36, df = 14, p = .724). Also for variability, the results are similar to the

ones attained with formants: the highest variability for IDS, followed by ADS and then

RS (t = −2.8, df = 14, p = .014 for ADS-IDS; t = −9.82, df = 14, p = 1.2e−7 for ADS-

RS; t = 14.43, df = 14, p = 8.5e−10 for IDS-RS). Repeating the same analyses as for for-

mant features revealed no significant effect of the infant’s age on either hyperarticulation

([F(1, 13) = 0.74, p = .406, η2 = .054]) or variability ([F(1, 13) = 0.47, p = .504,

η2 = .035]).

Turning now to the results obtained for separability, a two-way ANOVA, with the nor-

malized Euclidean distance as dependent variable and register as independent variable,

showed a significant effect of register [F(2, 42) = 13.55, p = 2.9e−5, η2 = 0.392] for for-

mant features. The best separability was obtained with the RS dataset, followed by ADS

and IDS. Post hoc t tests showed that the difference in separability between ADS and

IDS was not significant (t = −0.38, df = 14, p = .71), whereas the difference between

RS and ADS was significant (t = −3.75, df = 14, p = .002) (the IDS-RS difference was

significant: t = −5.63, df = 14, p = 6.2e−5). An identical ANOVA revealed a significant

effect of register [F(2, 42) = 168.7, p < 2e−16, η2 = 0.889] also when spectral representa-

tions were employed. Similar to the formant feature set, the best separability was reached

with the RS dataset, followed by ADS and IDS (ADS-IDS: t = 0.07, df = 14, p = .94;

ADS-RS: t = −16.32, df = 14, p = 1.7e−10; IDS-RS: t = −13.18, df = 14, p = 2.8e−9).

No effect of infant’s age on separability was observed for either formants

([F(1, 13) = 0.47, p = .147, η2 = 0.155]) or MFCCs ([F(1, 13) = 0.47, p = .368,
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η2 = 0.063]). Fig. 3 shows the results obtained for separability, employing the two feature

sets.

These findings are in line with those one would expect based on the results for within-

and between-category distance: RS, being both hyperarticulated and not very variable,

yields the best separability results. IDS tends to be hyperarticulated, but also more vari-

able, with no overall positive effect on separability (an ANOVA restricted to ADS and IDS

revealed no effect of register: [F(1, 28) = 0.13, p = .72, η2 = 0.005] for formants and [F
(1, 28) = 0.006, p = .94, η2 = 0.0002] for MFCCs), results which are congruent with

those of Miyazawa et al. (2017). The counteracting effects of hyperarticulation and vari-

ability for IDS compared to ADS and the net lack of positive effect on separability are

also similar to those observed in Guevara-Rukoz et al. (2018), despite a very different

analysis method. Overall, RS comes across as an unequivocal case of clear speech, with

both hyperarticulation and reduced variability, giving a much better separability than the

other two registers. IDS, on the other hand, does not qualify as clear speech, at least as

far as learning of phonetic categories is concerned.

3. Experiment 2

In this experiment, we test the role of between-speaker variability on the learning of

phonetic categories and its generalization to a new speaker in ADS. For this, we train

each of the algorithms to categorize the five Japanese vowels on a subset of the tokens

(the training set) and compute the classification error rate on a different subset (the held

out test set). We consider two conditions: in the mono-speaker condition the “infant” is

trained with a single “parent,” while in the multi-speaker case, the training is done with a

Fig. 3. Normalized Euclidean distance (within-speaker separability) for the five Japanese short vowels,

assessed in three registers (ADS, IDS, RS), for formant features (a) and MFCCs (b). The computed distance

is averaged across all vowel pairs of a speaker. Displayed are the p-values of uncorrected paired t tests

(*p < .05, **p < .01, ***p < .001).
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large “family” of 14 speakers. In both cases, the amount of exposure (number of vowel

tokens) is kept the same. If robustness is helped by variability, one should obtain better

generalization in a large, rather than in a small “family setting.” In both conditions, the

testing is always done on a novel speaker.

3.1. Methods

3.1.1. Learning algorithms
Six different learning algorithms were employed in this study: NB, NN, EM clustering,

HC, DPGMM, and SOM. The first two are supervised (assuming that the category labels

are available during training), the last two are unsupervised (no information besides the

speech representation), and the middle two we call partially unsupervised, as the only

supervision comes from knowing the number of phonetic categories. Half of these algo-

rithms (NB, EM, DPGMM) assume that categories are Gaussian, and half do not. For the

first five algorithms we used the implementation offered by the scikit-learn machine

learning library (Pedregosa et al., 2011), while the last algorithm was part of the SOM-

brero package (Villa-Vialaneix et al., 2018).

The NB algorithm is a probabilistic parametric supervised classifier, which assumes

that each input feature is independent from one another and follows a different Gaussian

distribution given a class value. In other words, the categories are assumed to be Gaus-

sians with a diagonal covariance matrix, whose optimal parameters are estimated by the

classifier during training. At test time, the posterior probability of each class is computed

by decomposing it using Bayes’ formula and predicting the class label having the highest

probability.

The NN classifier is an instance-based nonparametric supervised learning method. It

does not assume that the categories have any particular shape. Instead of deriving statis-

tics from the training example, it stores each training example (with their class label) and

uses them directly at prediction time. At test time, the algorithm computes the Euclidean

distance between the given instance and the instances stored during training, and assigns

to the new instance the same class as its closest training instance.

The EM algorithm employs an unsupervised parametric learning paradigm. It makes

the same assumptions about the shape of the categories as NB, but it does not use any

class label at training time. It tries to fit n Gaussian distributions to the training data, by

means of the EM algorithm, where n is the expected number of categories. At test time,

the algorithm will return the probability of each instance of belonging to each of the clus-

ters. The system was given the number of vowel classes, five, and it was run for a maxi-

mum of 100 iterations, with a convergence threshold of 1E – 3 and using full covariance

matrices.

Hierarchical clustering is an unsupervised nonparametric method which builds a hierar-

chy of clusters. We employ here the “bottom-up” approach, also called agglomerative

clustering, in which each observation starts in its own cluster. Then, moving up in the

hierarchy, new clusters are created by merging existing ones, such that the sum of
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squared differences within the clusters is minimized. Since this method creates a tree

structure based on the training data, in order to be able to predict cluster labels for unseen

data, we use the predicted labels on the training set to train an NN classifier. Thus, for

each test instance, the classifier will return the cluster label of the closest (in terms of

Euclidean distance) training observation. The number of clusters, five, was given as a

parameter to the model.

Dirichlet process Gaussian mixture model is an unsupervised Bayesian learning

method. It represents an extension of Gaussian Mixture Model used in the EM algorithm,

as it allows an infinite number of components, while being able to automatically deter-

mine the number of clusters from the data. Here, we limit the number of components to

37, with each component using a full covariance matrix. The number 37 was chosen as it

represents the maximum number of vowels (excluding long and nasal vowels) that can be

produced by the vocal apparatus, as illustrated by the IPA vowel chart (IPA Chart, 2015)

and including the diacritic vowels. The model was run for a maximum of 2,000 iterations,

with a convergence threshold of 1E – 3. The hyperparameters were set to their default

values, since it has been previously shown that they have a reduced effect on phoneme

class learning (Chen, Leung, Xie, Ma, & Li, 2015).

The SOM algorithm is an unsupervised nonparametric method based on artificial neu-

ral networks that uses competitive learning to map the input space into a lower dimen-

sional representation. This representation has the property that more similar observations

are mapped closer together than less similar observations. We used a 6 × 6 grid (giving

36 nodes, similar to the number of components used for DPGMM, 37) with a square

topology. The algorithm was run for a maximum of 500 iterations, employing a Gaussian

neighborhood with a Euclidean distance and a hard affectation.

3.1.2. Analysis
To compute generalization, all six learning algorithms were run using the same experi-

mental setting: The sampled vowel instances, for each register and speaker, were ran-

domly split into a train and a test set, respectively, with the train set containing 87

instances of each vowel and the test set the remaining 20 instances. The models were

trained and tested separately for each of the three registers and 15 speakers. The training

and test sets were used in a mismatched condition (e.g., testing on one speaker while hav-

ing trained on another speaker). In the mono-speaker case, 210 tests (14 train speak-

ers × 15 test speakers) were run using ADS data, averaged within speaker and then the

average across the speakers reported. For the multi-speaker case, a train set was created

for each speaker, containing randomly sampled vowels from the mono-speaker condition

train sets of all the other 14 speakers, except the one on which we tested. The distribution

of speakers was uniform, while keeping the amount of training instances constant (87

instances × 5 vowels). Thus, we tested on one ADS speaker, while having trained on a

set containing vowels from the remaining 14 speakers and we computed the average

across the 15 speakers.

The same feature vectors were used to represent each speech frame as in the previous

experiment (F1/F2 values or 13 MFCCs). Different from the analysis in Experiment 1,
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which considered only the central frame of each vowel to compute hyperarticulation,

variability, and separability, we use here all the frames of a vowel. For example, if a

vowel has a length of 15 frames, the machine learning algorithms will classify each of

the 15 frames individually. As the classifiers take a frame-based decision, returning class

probabilities (or binary 0/1 decision values, in the case of NN, HC, and SOM) for each

frame, and wanting to perform per-phoneme evaluations, we summed the class probabili-

ties across all frames belonging to a vowel instance and the class having the highest sum

was considered to be the predicted one. For the evaluation of the unsupervised algorithms

(EM, HC, DPGMM, and SOM), the obtained clusters were first mapped to the five pho-

neme classes, by minimizing the classification error on the training set, and then the same

evaluation as for supervised methods was applied. The results were evaluated using the F
score, a standard evaluation measure for classification tasks. It represents the harmonic

mean of precision (the proportion of correctly classified instances out of the total number

of instances classified as belonging to that class) and recall (the proportion of correctly

classified instances out of the total number of instances belonging to that class). It takes

values between 0 and 1, the latter value representing a perfect classification. Because the

unsupervised algorithms (DPGMM and SOM) may classify vowels into a sixth class

(containing all instances not being assigned to one of the five gold classes), we use the

micro-averaged F score, which computes the true positives, false positives and false nega-

tives over the entire five classes. Each speaker contributed one data point to the statistical

analyses, the classification F score obtained for the test set corresponding to that speaker.

3.2. Results and discussion

The results obtained are illustrated in Fig. 4.2 We investigated the role of number of

speakers in the train set condition, the type of feature used, the supervision type, and the

inductive bias of the models, by fitting a linear model with these factors as independent

variables and the classification F score as the dependent variable. A subsequent ANOVA

revealed significant main effects of the following predictors: supervision type [F
(2, 336) = 288.6, p < 2.2e−16, η2 = 0.432], inductive bias [F(1, 336) = 65.4,

p < 1.1e−14, η2 = 0.049], and feature type [F(1, 336) = 146.7, p < 2.2e−16, η2 = 0.110],

as well as significant interactions between supervision type and feature type [F
(2, 336) = 75.3, p < 2.2e−16, η2 = 0.113] and between supervision type, inductive bias,

and feature type [F(2, 336) = 23.1, p < 4.1e−10, η2 = 0.034]. The two-way interaction

between number of speakers and supervision type [F(2, 336) = 2.3, p < .099,

η2 = 0.003], as well as between number of speakers and inductive bias [F(2, 336) = 3.4,

p < .067, η2 = 0.003], were found to be marginally significant.

The analysis shows that increasing the number of speakers present in the training set

has little or no effect on the overall generalizability. For formant features, the effect is

not uniform across classes of algorithms, partially unsupervised algorithms being helped

by an increased number of speakers in the train set (a post hoc t test showed a significant

effect for both EM: t = −3.59, df = 14, p = .003, and HC: t = −2.44, df = 14,

p = .029), and little change for the other classes of algorithms. For MFCCs, the direction
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of the effect depends on the class of algorithms, a positive one for supervised algorithms

(only NB reached significance, t = −9.72, df = 14, p = 1.3e−7), and a negative one for

unsupervised algorithms (only SOM significant, t = 2.43, df = 14, p = .029).

This result is interesting. It shows that the idea that high variability is beneficial to

induce robust learning is not logically warranted. Only when the number of phonetic cate-

gories is known (supervised and partially unsupervised algorithms) does a higher number

of speakers bring a small significant improvement in the learning performance. In con-

trast, when the learning algorithm is completely unsupervised, high variability has either

no effect or a detrimental one. The net result of speaker variability is therefore dependent

on the learning strategy employed by infants. A pure bottom-up infant would be hurt by

high variability, but an infant relying on some sort of lexical feedback might gain some

benefit from it (to the extent that the high variability does not, itself, impede lexical

learning).

4. Experiment 3

In this experiment, we test whether exposure to the phonetic variability of IDS could

help build more robust categories that generalize to a new speaker in ADS.3 We compare

this to a putative infant who would be trained on ADS or RS. If robustness is helped by

IDS variability, one should obtain better generalization when training on this register than

with ADS or RS data. The tests are conducted on each speaker separately, resulting in a

generalization score for each speaker.

Fig. 4. Within-register generalization to novel ADS speakers for the classification of the five Japanese short

vowels by six learning algorithms, trained with ADS data from one speaker (mono) or 14 speakers (multi),

on formant features and MFCCs. The scores represent average F scores cross-validated on a held out test set

of one novel speaker. Displayed next to each point are the p-values of uncorrected paired t tests (*p < .05,

**p < .01, ***p < .001). The gray line represents the equal performance line. Note that the points corre-

sponding to NN, for the two feature types, are overlapping.
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4.1. Methods

The same format of train and test sets was used as in the mono-speaker condition of

Experiment 2. Separate train sets were created for each register and speaker, while the

test sets were identical as in the previous experiment (ADS data). Then, for each register,

210 tests were run, within-speaker average classification performance computed, and the

average across the 15 speakers presented. The same evaluation was performed as done

previously.

4.2. Results and discussion

Fig. 5 illustrates the detailed findings, with the ADS-IDS comparison in the left panel

and the ADS-RS comparison in the right panel.4 The interaction between register, the

characteristics of the learning algorithms (type of supervision and inductive bias), and the

feature type were analyzed by fitting a linear model with F score as the response variable

and the previously mentioned variables as predictors. An ANOVA of the model fitted with

the ADS-IDS data revealed significant main effects of all the predictors: register [F
(1, 336) = 17.2, p < 4.2e−5, η2 = 0.011], supervision type [F(2, 336) = 376.5,

p < 2.2e−16, η2 = 0.467], inductive bias [F(1, 336) = 81.5, p < 2.2e−16, η2 = 0.051] and

feature type [F(1, 336) = 192.4, p < 2.2e−16, η2 = 0.119], as well as significant interac-

tions between register and supervision type [F(2, 336) = 4.6, p < .011, η2 = 0.006],

between supervision type and feature type [F(2, 336) = 90.8, p < 2.2e−16, η2 = 0.113],

and between supervision type, inductive bias, and feature type [F(2, 336) = 11.9,

Fig. 5. Generalization to novel ADS speakers for the classification of the five Japanese short vowels by six

learning algorithms, in either ADS, IDS, or RS. Comparisons between ADS and IDS (a) and between ADS

and RS (b), respectively, are illustrated when formants or MFCC features were used. The scores represent

average F scores cross-validated on a held-out test set of one novel speaker. Displayed next to each point are

the p-values of uncorrected paired t tests (*p < .05, **p < .01, ***p < .001). The gray line represents the

equal performance line.
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p < 9.7e−6, η2 = 0.015]. The four-way interaction of the predictors was found to be mar-

ginally significant [F(2, 336) = 2.9, p = .054, η2 = 0.004].

Running the same analysis on the ADS-RS data showed similar results to the ADS-

IDS comparison: a significant main effects of all the predictors, register [F
(1, 336) = 14.2, p < 2.0e−4, η2 = 0.012, supervision type [F(2, 336) = 277.8,

p < 2.2e−16, η2 = 0.458], inductive bias [F(1, 336) = 35.3, p < 7.1e−9, η2 = 0.029] and

feature type [F(1, 336) = 113.0, p < 2.2e−16, η2 = 0.093], as well as significant interac-

tions between register and supervision type [F(2, 336) = 5.0, p = .007, η2 = 0.008],

between supervision type and feature type [F(2, 336) = 50.4, p < 2.2e−16, η2 = 0.083],

between inductive bias and feature type [F(1, 336) = 5.7, p = .018, η2 = 0.005], and

between supervision type, inductive bias, and feature type [F(2, 336) = 15.4, p = 3.9e−7,

η2 = 0.025].

The previous analyses show that the higher variability present in IDS does not make it

good for generalization. We can actually see that in a majority of cases, IDS-trained mod-

els are worse than ADS-trained models. In fact, RS, which is less variable than ADS,

manages to yield better generalization than ADS itself, both in the case of formant fea-

tures (for two of the six algorithms) as well as in the case of spectral representation (for

four of the six algorithms). In other words, RS is not only a typical case of hyperarticu-

lated speech, but it can also help learning (despite its lack of variability).

5. General discussion

Compared to ADS, IDS has been claimed to be simultaneously hyperarticulated (the

target categories are farther apart from one another; e.g., Burnham et al., 2002; Kuhl

et al., 1997) and more variable (the tokens of a single category are more distinct from

one another; e.g., Cristia & Seidl, 2014; Kirchhoff & Schimmel, 2005; McMurray et al.,

2013). These two properties, in turn, have been claimed to help phonetic learning for the

following reasons: Hyperarticulation makes the categories more separable, hence more

easily learnable (Kuhl et al., 1997). Variability helps to build more robust categories, pre-

sumably by providing more extreme examples making the categories more distinguishable

(Eaves et al., 2016) and enabling to generalize better to novel speakers (Kuhl, 2000). Put-

ting these two properties together would, therefore, attribute to IDS an overall facilitatory

effect for robust phonetic category learning. In this paper, we set out testing each of these

premises separately, and then exploring their overall predicted effect on category robust-

ness, which we operationalized through the ability of machine learning algorithms to gen-

eralize to a novel ADS speaker. We compared the learning performance obtained using

ADS and IDS data, with that obtained with RS, a register displaying an increased hyper-

articulation, similar to IDS, and a lower variability, such as ADS. By using a register

with these characteristics, we attempted to better untangle the effects of hyperarticulation

and variability on phonetic learning.

In Experiment 1, we first found in our dataset modest evidence of hyperarticulation in

IDS compared to ADS (as measured with a between-category distance), with this effect
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reaching significance only for the formant representation, but not for MFCCs. Using the

same metric, we found a stronger effect for RS, which was significantly hyperarticulated

when compared to standard ADS, in both formant and MFCC representations. Second,

we observed, as expected, that IDS is more variable than ADS, which is itself more vari-

able than RS (all contrasts significant for both representations). Third, when we measured

separability, we saw that the two opposite effects of hyperarticulation and higher variabil-

ity counteracted each other, resulting in a null effect, with IDS not being more separable

than ADS.

This is consistent with previous findings on the same dataset, but using different met-

rics (Guevara-Rukoz et al., 2018; Martin et al., 2015; Miyazawa et al., 2017). Unsurpris-

ingly, we found that separability was strongest for RS, which is both hyperarticulated and

less variable. As the hyperarticulation phenomenon does not affect all vowel categories

equally (Cristia & Seidl, 2014), a larger effect on the corner vowels might suggest a

learning mechanism similar to the one proposed by Adriaans and Swingley (2017), by

which the IDS hyperarticulated tokens support infants’ categorical learning. Employing

the formant feature set, we have indeed noticed significantly larger distances between the

point vowels. It remains to be seen whether the marginal advantage observed for these

vowel classes over all the classes is exploited by infants and whether it has an impact on

the whole learning process. Further experimental studies would be required to test such

hypotheses.

In Experiment 2, we directly tested the claim that inter-speaker variability during

learning can be beneficial for category robustness. Specifically, we manipulated the num-

ber of speakers in the training set, reasoning that, all other things equal, more speakers

during training should yield more speaker-robust categories. This was done by means of

six machine learning algorithms covering a large range of possible theories of category

learning (from supervised to unsupervised, with Gaussian categories or not). Robustness

was measured by generalization to a novel speaker. We found that although some super-

vised or partially unsupervised learning algorithm benefits from increased speaker vari-

ability, fully unsupervised algorithms can be impaired by such variability. Taking into

account the fact that, at least initially, the infant’s learning algorithms may be unsuper-

vised, it should therefore not be expected that variability is systematically beneficial.

Our results show similar trends to those found in the literature with regard to inter-

speaker variability. Even if the differences were not significant for all models, the super-

vised and partially unsupervised approaches showed a more robust generalization to a

novel speaker when trained on data coming from multiple speakers, mirroring the findings

of adult (Lively et al., 1993) and infant experimental studies (e.g., Houston, 2000; Rost

& McMurray, 2009). Since all the speech materials used in this study represent record-

ings of mothers interacting with their infants, the results in support of multi-speaker train-

ing are also consistent with those obtained for younger infants in Houston and Jusczyk

(2000). These studies, including ours, stand in contrast to the conclusions of Kuhl (1979),

that low-variability training is sufficient for robust generalization. However, the age of

the infants considered in those studies differed, with Kuhl (1979) testing 6-month olds,

while the age range in the rest of the studies varied between 7.5 and 15 months. Since
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different outcomes were obtained with younger infants, it would be appropriate to extend

our analyses also to speech addressed to younger infants. Regarding the type of variabil-

ity, among the experimental studies investigating learning in infants, only Rost and

McMurray (2010) have compared both types of variation sources considered here. Similar

findings were reported, with intra-speaker variability not helping generalization and inter-

speaker variability giving a better generalization (but see Trainor & Desjardins, 2002 for

a study showing that intra-speaker variation of another acoustic parameter, pitch range,

may help vowel acquisition).

In Experiment 3, we turned to measuring category robustness in different conditions of

intra-speaker variability. Our results show that despite being more variable than the other

two registers, IDS yields consistently worse, not better, generalization than ADS. This

means that the type of within-speaker variability exhibited in the IDS register does not

represent a good preparation for the between-speaker variability exhibited in the general-

ization tests. However, and somewhat surprisingly, we found that RS can be a good

preparation for ADS categories despite being less variable. This could point to a possible

useful role of book reading in language learning (actually documented in vocabulary

development; see Dickinson et al., 2018).

The analysis of our generalization results showed important effects of the model (both

supervision type and inductive bias), of the feature types employed, as well as of their

interactions (supervision–feature and supervision–feature–inductive bias). This has impli-

cations for future computational modeling studies comparing inter-register performance,

and also for a better understanding of the outcomes of previous works. Future modeling

experiments may take into account the observations made here, such as the importance of

input features. Although register differences were not affected by feature type, the latter

did interact significantly with both supervision type and inductive bias. Regarding the

previous literature, for instance, McMurray et al. (2013) and de Boer and Kuhl (2003)

used the same type of representations (formants) and obtained very different conclusions

—an ADS gain in the former (supervised learning, speech addressed to 9- to 13-month

olds) and an IDS advantage in the latter (partially unsupervised, speech addressed to 2-

to 5-month olds). Our results are more in line with the former, although the interaction

goes in the direction of the latter (except that, in our case, the partially unsupervised

algorithms showed, on average, no difference between ADS and IDS). They are consis-

tent also with other studies employing supervised approaches (Kirchhoff & Schimmel,

2005), indicating an ADS advantage for generalization. Lastly, our results do not reflect

those of Eaves et al. (2016), since our DPGMM model employing formant features

returned a better performance in ADS than in IDS. However, one must note the contrast-

ing goals of the two studies (“teaching” vs. learning) and the subsequent, dissimilar, eval-

uations (more on this later).

Although we did not find an overall learning advantage for IDS as opposed to ADS,

our experiments revealed intriguing patterns when considering the effect of supervision.

Supervised models gave overall better results than partially unsupervised models, but this

effect was larger in ADS than in IDS. The smaller supervision advantage in IDS might

indicate some kind of cognitive advantage—while less could be learned overall, more
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could be learned without access to the labels. This hypothesis, however, is not supported

by the differences between partially unsupervised and unsupervised models. Here again

partially unsupervised models fare generally better than unsupervised models, but the dif-

ference is stronger in IDS than ADS. This finding may suggest that IDS might be detri-

mental when trying to infer categories (including their number) directly from the speech

signal. Therefore, the final decision on whether IDS is really worse than ADS (unsuper-

vised case) or just as good (partially unsupervised case) may hinge on the availability of

other linguistic levels which could provide additional information (Feldman et al., 2009),

including the number of phonetic categories of the language (Fourtassi et al., 2014).

In brief, while some of the claims regarding the facilitatory effects of hyperarticulation

and variability hold for certain combination of algorithms, register and input representa-

tion, the particular mixture of acoustic properties present in IDS addressed to 18- to 24-

month olds does not, generally, result in a net facilitatory effect as regards phonetic cate-

gory learning (for a similar account for consonants, see Ludusan, Jorschick, & Mazuka,

2019). If anything, IDS tends to have a small detrimental effect across most algorithms.

This seems to contradict the idea that the primary function of IDS is to boost language

learnability. More analyses are needed to confirm these results on speech addressed to

younger infants.

However, our findings do not contradict some of the evidence that hyperarticulation

helps language learnability, based on positive correlations between vowel space measures

and later language outcome (Hartman et al., 2017; Kalashnikova & Burnham, 2018; Liu

et al., 2003). Indeed, RS, a register exhibiting a high degree of hyperarticulation, gives

the best separability and generalizability in our experiments. We found, though, that vari-

ability can counteract the beneficiary effect of hyperarticulation. Thus, it would be impor-

tant that future studies measure both hyperarticulation and variability, in order to be able

to disentangle their effects on language outcomes in infants.

In addition, the conclusion that IDS does not help learning might be moderated by the

following four considerations.

First, our study is limited by the characteristics of the corpus that we used. Japanese is

only one of the many languages in which an IDS register has been documented, and it

could be that the acoustic characteristics of IDS and their impact on learnability are lan-

guage dependent. For instance, English has more vowels than Japanese and some of them

display hypoarticulation instead of hyperarticulation (Cristia & Seidl, 2014; McMurray

et al., 2013). Although this particular phenomenon would seem unlikely to boost learn-

ability for English IDS, the point remains that the present study should be extended to

more languages. Another property of our dataset is that it contains IDS addressed to

infants between 18 and 24 months of age, who already have knowledge about the pho-

netic categories of their native language. While some IDS properties seem to undergo

age-related changes (e.g., pitch: Kitamura & Burnham, 2003; Stern, Spieker, Barnett, &

MacKain, 1983), evidence exists suggesting that vowel pronunciation by caregivers is not

modulated by the age of the infant. Longitudinal studies overlapping with the age range

of the infants addressed in our study have shown that neither Mandarin (Liu et al., 2009)

nor American mothers (Burnham et al., 2015) modify the size of their vowel space with
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the age of the addressee. These results are consistent with the analyses carried out in

Experiment 1, showing no age effect on our measures of hyperarticulation, variability,

and separability. However, it might be that the infants’ age could have an effect on the

variability and on the degree of category separability in IDS, with speech addressed to

younger infants exhibiting different characteristics. Further experimental work is needed

to establish such effects. Moreover, although no change in the vowel space of speech

addressed to infants was observed, other IDS features that might not be entirely indepen-

dent from vowel hyperarticulation might be adjusted as infants grow older. These could

have influences on the acoustic realization of IDS and the usefulness of these properties

for early language acquisition. Therefore, extending our study to new languages and dif-

ferent age groups, especially younger infants, would only help to better establish the gen-

eralization of our present findings. In order for this to be done, however, comparable

high-quality audio and carefully annotated speech corpora as the RIKEN Corpus should

be created in other languages and for younger age groups.

Second, IDS affects the whole hierarchy of linguistic structures. Even admitting that

IDS has a null or detrimental effect on phonetic category learning, this register could

have a positive effect at some other levels (lexical, prosodic, syntactic, semantic), result-

ing in an overall positive effect on language learnability. To have a fuller assessment of

the learnability impact of IDS, it is therefore important to extend the present work to the

entire language learning problem. For this, though, computational algorithms able to learn

these higher levels of linguistic structures from raw speech should be developed and

tested (see Bernard et al., 2020; Ludusan, Mazuka, Bernard, Cristia, & Dupoux, 2017, for

some preliminary results on the lexical level; and Ludusan, Cristia, Martin, Mazuka, &

Dupoux, 2016 for the prosodic level).

Third, Eaves et al. (2016) found that, under certain circumstances, a high variability

training set can improve unsupervised learning algorithms. This indicates that the detri-

mental effect of variability that we found in Experiment 3 for unsupervised learning is

not a mathematical necessity. Note, though, that Eaves et al. (2016) constructed this high

variability training set using strong informational coupling between teacher and learner:

In this setting, the teacher monitors the effect of input stimuli on the learner’s perfor-

mance and adjusts the stimuli accordingly. Even though we found that parental IDS stim-

uli do not help generic learning algorithms, it could be that each infant has a slightly

different learning algorithm—with different weighting of the input dimensions, learning

speed, random seed (for stochastic algorithms), etc., for which their parent would provide

uniquely tuned IDS stimuli. In other words, parent A could output a specific IDS

uniquely tuned for infant A but not for infant B. More research is needed to study this

hypothesis, including computational models that estimate the amount and nature of moni-

toring feedback needed to yield an optimal “teaching” regime and checking this against

real data. Incidentally, there is some evidence that parents do modulate their IDS charac-

teristics as a function of the child’s linguistic maturity (Newport, Gleitman, & Gleitman,

1977), or based on their feedback (Lam & Kitamura, 2012; Smith & Trainor, 2008), or

on their speech perception and processing abilities (Kalashnikova, Goswami, & Burnham,

2018), but that the correlations with measures of child language are not very strong,
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suggesting some limits on parent’s abilities to use this fine-grained monitoring feedback

(Newport et al., 1977).

Fourth, even an overall detrimental effect on learnability would not be in contradic-

tion with the fact that infants do pay more attention to IDS than ADS (Cooper & Aslin,

1994; Fernald, 1985; Werker, Pegg, & McLeod, 1994), and that language learning is pre-

dicted by the amount of IDS in the environment (Huttenlocher, Waterfall, Vasilyeva,

Vevea, & Hedges, 2010; Weisleder & Fernald, 2013). Indeed, IDS has emotional and

social qualities (Trainor, Austin, & Desjardins, 2000) which may facilitate learning

through increased attention and social motivation (Singh, Morgan, & Best, 2002; Thies-

sen, Hill, & Saffran, 2005), over and beyond information content and learnability consid-

erations. To take this into account, computational models would have to be equipped

with attentional or social filters, instead of assuming that they give equal weight to all

input stimuli. This also raises the intriguing possible existence of optimal child-friendly

registers combining the learnability benefits of RS and the emotional/attentional benefits

of IDS.

To conclude, our study illustrates the general point made in Dupoux (2018) about

the importance of computational models run on realistic data, instead of idealized or

model-reconstructed data, for shedding light onto unresolved questions concerning infant

language development. Such computational studies are a useful complement to experi-

mental studies as they can ascertain the functional role of laboratory measured variables

or mechanisms from a learnability point of view. Vice versa, such models can also sug-

gest new experiments. For instance, we found that speaker variability can impair certain

learning algorithms (supervised algorithms) but help other ones (unsupervised algo-

rithms). This makes the prediction that as infants develop and become more able to

exploit top-down information, speaker variability should have a progressively facilita-

tory effect. Another prediction is that the RS register should be much more potent than

informal registers like IDS or ADS to trigger phonetic learning in infants. All these

predictions can, then, be investigated by means of experimental or observational infant

studies.
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Notes

1. https://github.com/mwv/spectral

2. We report here the results obtained when running each algorithm once, with a more

detailed analysis included in the Supplementary Materials, Section S2. While three

of the employed models (EM, DPGMM, SOM) are stochastic, the deviation across

100 runs was low (in the majority of cases, it was lower than 0.005, with a maxi-

mum obtained deviation of 0.016 for the DPGMM MFCC multi-case). An analysis

of the results taking into account all 100 runs is presented in the same section of

the Supplementary Materials.

3. For an experiment testing the generalizability to a novel IDS speaker, the reader is

invited to see Section S4 of the Supplementary Materials.

4. The standard deviation across the 100 runs of the three stochastic models was very

low (<0.005 in all cases). An analysis of the results taking into account all 100

runs and other detailed results are presented in the Supplementary Materials, Sec-

tion S3.
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