Block-Wise Model Fit for Structural Equation Models with Experience Sampling Data

Julia Norget, Bielefeld University, Germany

Simon Columbus, University of Copenhagen, Denmark

Axel Mayer, Bielefeld University, Germany

SEM for Experience Sampling Data

Starting point: Research questions regarding the (in)stability of psychological constructs

 \Rightarrow Latent state trait (LST) theory

```
Y_{11} = \lambda_{T11} \cdot \theta + \lambda_{O11} \cdot \zeta_1 + \epsilon_{11}
```

Stable Situation-specific measurement influence influence error

 \Rightarrow Very large models with experience sampling data:

Block-Wise Fit for SEM with Experience Sampling Data Julia Norget | julia.norget@uni-bielefeld.de | 19.05.2021

Fakultät für Psychologie und Sportwissenschaft

UNIVERSITÄT BIFLEFELD

Fit evaluation for Experience Sampling SEMs

Problem: Common fit indices in SEM are less reliable for models with many manifest variables

- $-\chi^2$ estimated are inflated
- CFI and TLI tend to get worse
- RMSEA improves with more manifest variables

(e.g. Moshagen, 2012; Shi et al., 2019; Kenny & McCoach, 2003)

Alternative: Block-wise fit evaluation

- (Co)Variances of entire SEM are estimated together
- Smaller blocks of the covariance matrix (for each day) are used to calculate block-wise fit indices
- Advantages:
 - Model restrictions across days can be included
 - We can use common cut-offs to evaluate model fit

	day 1	day 2	day 3	
day1	χ^2_1 RMSEA ₁ , CFI ₁ , TLI ₁			
day2		$\chi^2_2,$ RMSEA ₂ , CFI ₂ , TLI ₂		
day3			$\chi^2_3,$ RMSEA ₃ , CFI ₃ , TLI ₃	
:				·

Fakultät für Psychologie und Sportwissenschaft

Block-wise Fit Evaluation

(1) Overall Model is estimated (with ML)

(2) K blocks are extracted from the model-implied and empirical (co)ovariance Matrices $\hat{\Sigma}$ and S.

- K = Number of blocks, e.g. days in an Experience Sampling Study
- (3) Common fit indices are calculated with adjusted formulas for common indices

$$\chi^{2} = (\log |\hat{\Sigma}| + \operatorname{tr}(\hat{\Sigma}^{-1}S) - \log |S| - q + (\bar{x} - \hat{\mu})^{\mathrm{T}} \hat{\Sigma}^{-1} (\bar{x} - \hat{\mu})) \cdot N$$

$$\chi^{2}_{k} = (\log |\hat{\Sigma}_{k}| + \operatorname{tr}(\hat{\Sigma}_{k}^{-1}S_{k}) - \log |S_{k}| - q_{k} + (\bar{x}_{k} - \hat{\mu}_{k})^{\mathrm{T}} \hat{\Sigma}_{k}^{-1} (\bar{x}_{k} - \hat{\mu}_{k})) \cdot N$$

 q_k = number of observed variables per block

$$\text{RMSEA}_{k} = \frac{\sqrt{\chi_{k}^{2} - \text{df}_{k}}}{\sqrt{\text{df}_{k} \cdot N}}$$

Block-wise Fit Evaluation

Degrees of freedom = observed parameters – estimated parameters

Easy to split between blocks Unclear how to split between blocks

Alternative: simulate block-wise df_k

df = E(χ^2) \Rightarrow Under H₀, the mean χ^2 -value should be equal to the df \Rightarrow We can compute block-wise χ^2_k \Rightarrow with many simulated datasets: df_k = M(χ^2_k) \Rightarrow simulation study: χ^2_k are χ^2 distributed with df_k degrees of freedom

Multistate-Singletrait model with autoregressive paths

Simulation Study 1: Method

Can block-wise fit evaluation better identify correctly specified models than global fit evaluation? Design:

- 2 model sizes: 2 days (28 manifest variables), 7 days (98 manifest variables)
- 2 sample sizes: 200, 1000
- 2 models: day-specific traits LST model, singletrait LST model

Simulation Study 1: Results

fittype
block-wise
global

Most likely experience sampling scenario: 7 days, N = 200

- \Rightarrow global indices reject perfect models
- \Rightarrow block-wise fit correctly identifies perfect models

Simulation Study 2: Method

Can block-wise fit evaluation correctly identify misspecified models?

Design: 2 (model size) x 2 (sample size) x 2 (model) x 6 (misspecifications)

residual correlations within days (r = .15; r = .40)

 $\begin{array}{c} 1 \\ OCC_{1} \\ 1 \\ Y_{11} \\ F_{21} \\ F_{21} \\ F_{21} \\ F_{21} \\ F_{21} \\ F_{21} \\ F_{12} \\ F_{14} \\ F_{14} \\ F_{24} \\ F_{24$

residual correlations between days (r = .15; r = .40)

Structural misspecification (r = .90; r = .60)

BIELEFELD

Simulation study 2: Results

Global χ^2 and block-wise χ^2_k

- High rejection rates
- No effect of the number of days

Block-wise χ_k^2 (and other indices)

• Cannot detect misspecification between days

Simulation Study 2: Results

Global CFI and TLI

- Strongly affected by number of days (d = 0.87) •
- values for 7 days and N = 200 systematically lower

Block-wise CFI_k and TLI_k

• Not affected by numbers of days (p = .51)

TLI values

Block-Wise Fit for SEM with Experience Sampling Data Julia Norget | julia.norget@uni-bielefeld.de | 19.05.2021

Global RMSEA

• Would let us conclude that (strongly) misspecified models are acceptable

Block-wise RMSEA_k

Generally indicates worse fit •

For typical experience sampling data (e.g. 7 days, N = 200), block-wise fit

- can better identify well-fitting models than global evaluation
- is not affected by the number of days, i.e. manifest variables

 \Rightarrow For LST models (and other SEM) with experience sampling data, we recommend block-wise fit evaluation

Limitations and Future Research

- Block-wise fit cannot detect misspecification purely between days
- Missing data is common, FIML should be implemented for block-wise fit calculation

Thank you for your attention!

