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NONLINEAR FILTERING OF PARTIALLY OBSERVED SYSTEMS ARISING IN

SINGULAR STOCHASTIC OPTIMAL CONTROL

ALESSANDRO CALVIA AND GIORGIO FERRARI

Abstract. This paper deals with a nonlinear �ltering problem in which a multi-dimensional signal process
is additively a�ected by a process ν whose components have paths of bounded variation. The presence of
the process ν prevents from directly applying classical results and novel estimates need to be derived. By
making use of the so-called reference probability measure approach, we derive the Zakai equation satis�ed by
the unnormalized �ltering process, and then we deduce the corresponding Kushner-Stratonovich equation.
Under the condition that the jump times of the process ν do not accumulate over the considered time
horizon, we show that the unnormalized �ltering process is the unique solution to the Zakai equation, in
the class of measure-valued processes having a square-integrable density. Our analysis paves the way to the
study of stochastic control problems where a decision maker can exert singular controls in order to adjust
the dynamics of an unobservable Itô-process.

Keywords: Stochastic �ltering; singularly controlled systems; reference probability measure; Zakai equa-
tion; Kushner-Stratonovich equation.
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1. Introduction

This paper studies a stochastic �ltering problem on a �nite time horizon [0, T ], T > 0, in which the
dynamics of a multi-dimensional process X = (Xt)t∈[0,T ], called signal or unobserved process, are additively
a�ected by a process having components of bounded variation. The aim is to estimate the hidden state
Xt, at each time t ∈ [0, T ], using the information provided by a further stochastic process Y = (Yt)t∈[0,T ],
called observed process; said otherwise, we look for the conditional distribution of Xt given the available
observation up to time t. This leads to derive an evolution equation for the �ltering process, which is a
probability measure-valued process satisfying, for any given bounded and measurable function ϕ : Rm → R,

πt(ϕ) :=

∫
Rm

ϕ(x)πt(dx) = E
[
ϕ(Xt)

∣∣ Yt], t ∈ [0, T ],

where (Yt)t∈[0,T ] is the natural �ltration generated by Y and augmented by P-null sets. The process π

provides the best estimate (in the usual L2 sense) of the signal process X, given the available information
obtained through the process Y .

Stochastic �ltering is nowadays a well-established research topic. The literature on the subject is vast and
many di�erent applications have been studied: the reader may �nd a fairly detailed historical account in the
book by Bain and Crisan [2]. Classic references are the books by Bensoussan [5], Kallianpur [26], Liptser and
Shiryaev [32] (cf. also Brémaud [6, Chapter 4] for stochastic �ltering with point process observation); more
recent monographs are, e.g., the aforementioned book by Bain and Crisan [2], Crisan and Rozovski�� [15], and
Xiong [37] (see also Cohen and Elliott [13, Chapter 22]). Recently, di�erent cases where the signal and/or
the observation processes can have discontinuous trajectories (as in the present work) have been studied
and explicit �ltering equations have been derived: see, for instance, Bandini et al. [4], Calvia [8], Ceci and
Gerardi [11, 12], Ceci and Colaneri [9, 10], Confortola and Fuhrman [14], Grigelionis and Mikulevicius [23].

The main motivation of our analysis stems from the study of singular stochastic control problems under
partial observation. Consider a continuous-time stochastic system whose position or levelXt at time t ∈ [0, T ]
is subject to random disturbances and can be adjusted instantaneously through (cumulative) actions that, as
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functions of time, do not have to be absolutely continuous with respect to Lebesgue measure. In particular,
they may present a Cantor-like component and/or a jump component. The use of such singular control
policies is nowadays common in applications in Economics, Finance, Operations Research, as well as in
Mathematical Biology. Typical examples are, amongst others, (ir)reversible investment choices (e.g., Riedel
and Su [36]), dividends' payout (e.g., Reppen et al. [35]), inventory management problems (e.g., Harrison
and Taksar [24]), as well as harvesting issues (e.g., Alvarez and Shepp [1]). Suppose also that the decision
maker acting on the system is not able to observe the dynamics of the controlled process X, but she/he can
only follow the evolution of a noisy process Y , whose drift is a function of the signal process. Mathematically,
we assume that the pair (X,Y ) is de�ned on a �ltered complete probability space (Ω,F ,F := (Ft)t∈[0,T ],P)
and that its dynamics are given, for any t ∈ [0, T ], by the following system of SDEs:{

dXt = b(t,Xt) dt+ σ(t,Xt) dWt + dνt, X0− ∼ ξ ∈ P(Rm),

dYt = h(t,Xt) dt+ γ(t) dBt, Y0 = y ∈ Rn.
(1.1)

Here: ξ is a given probability distribution on Rm; W and B are two independent F-standard Brownian
motions; coe�cients b, σ, h, γ are suitable measurable functions; ν is a càdlàg, Rm-valued process with
(components of) bounded variation, that is adapted to the previously introduced observation �ltration
(Yt)t∈[0,T ].

Clearly, the decision maker might want to adjust the dynamics of X in order to optimize a given perfor-
mance criterion. Since X is unobservable, this leads to a stochastic optimal control problem under partial
observation, which can be tackled by deriving and studying the so-called separated problem, an equivalent
problem under full information (see, e.g., Bensoussan [5]), where the signal X is formally replaced by its
estimate provided by the �ltering process π. However, to e�ectively solve the original optimization problem
by means of the separated one, a �rst necessary step concerns the detailed study of the associated �ltering
problem.

To the best of our knowledge, the derivation of explicit �ltering equations in the setting described above
has not yet received attention in the literature. In this paper we provide a �rst contribution in this direction.
Indeed, the recent literature treating singular stochastic control problems under partial observation assumes
that the observed process, rather than the signal one, is additively controlled (cf. Callegaro et al. [7],
De Angelis [16], Décamps and Villeneuve [17], and Federico et al. [22]). Clearly, such a modeling feature
leads to a �ltering analysis that is completely di�erent from ours.

By making use of the so-called reference probability measure approach, we derive the Zakai stochastic
partial di�erential equation (SPDE) satis�ed by the so-called unnormalized �ltering process, which is a
measure-valued process, associated with the �ltering process via a suitable change of probability measure.
Then, we deduce the corresponding evolution equation for π, namely, the so-called Kushner-Stratonovich
equation or Fujisaki-Kallianpur-Kunita equation. Furthermore, we show that the unnormalized �ltering
process is the unique solution to the Zakai equation, in the class of measure-valued processes having a
square-integrable density. The latter result is proved under the technical requirement that the jump times
of the process ν a�ecting X in (1.1) do not accumulate over the considered time-horizon. Although such a
condition clearly poses a restriction on the generality of the model, we also acknowledge that it is typically
satis�ed by optimal control processes arising in singular stochastic control problems. It is important to
notice that establishing conditions under which the unnormalized �ltering process possesses a density paves
the way to recast the separated problem as a stochastic control problem in a Hilbert space, as we will brie�y
explain in the next section.

The rest of the introduction is now devoted to a discussion of our approach and results at a more technical
level.

1.1. Methodology and main results. In this paper we are going to study the �ltering problem described
above through the so-called reference probability approach, that we brie�y summarize here. To start, let us
notice that the model introduced in (1.1) is somewhat ill-posed. In fact, the dynamics of the signal process
X depend on the (Yt)t∈[0,T ]-adapted process ν while, simultaneously, the dynamics of the observed process
Y depend on X. Otherwise said, it is not clear how to de�ne ν, which has to be given a priori, and circularity
arises if one attempts to introduce the partially observed system (X,Y ) as in (1.1).

A possible way out of this impasse is to de�ne Y as a given Gaussian process independent of X (see
(2.2)). In this way, it makes sense to �x a (Yt)t∈[0,T ]-adapted process ν and to de�ne the dynamics of the
signal process X as in the �rst SDE of (1.1) (see also (2.8)). Finally, under suitable assumptions, there
exists a probability measure change (cf. (2.12)) that allows us to recover the dynamics of Y as in the second
SDE of (1.1) (see also (2.13)). It is important to notice that the resulting probability depends on the initial
law ξ of X0− and on ν.
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To derive the associated Kushner-Stratonovich equation there are two main approaches in the literature:
The Innovations approach and the aforementioned reference probability approach. Although it might be
possible to derive the �ltering dynamics in our context by using the former approach, we follow the latter
method.

Our �rst main results is Theorem 3.4, where we deduce the Zakai equation veri�ed by the unnormalized
�ltering process (see (3.3) for its de�nition). From this result, as a byproduct, we deduce in Theorem 3.6
the Kushner-Stratonovich equation satis�ed by the �ltering process. It is worth noticing that, given the
presence of the bounded-variation process ν in the dynamics of X, Theorem 3.4 cannot be obtained by
invoking classical results, but novel estimates need to be derived (cf. Lemma A.1 and Proposition A.2). In
particular, we employ a change of variable formula for Lebesgue-Stieltjes integrals.

It is clear that in applications, for instance to optimal control problems, establishing uniqueness of the
solution to the Zakai equation or to the Kushner-Stratonovich equation is essential. In the literature there are
several approaches to tackle this problem, most notably the following four: The �ltered martingale problem
approach, originally proposed by Kurtz and Ocone [31], and later extended to singular martingale problems
in [29] (see also [28]); the PDE approach, as in the book by Bensoussan [5] (see also [2, Section 4.1]); the
functional analytic approach, introduced by Lucic and Heunis [33] (see also [2, Section 4.2]); the density
approach, studied in Kurtz and Xiong [30] (see also [2, Section 7] and [37]).

The �rst three methods allow to prove uniqueness of the solution to the Zakai equation in a suitable
class of measure-valued processes. However, they do not guarantee that the unique measure-valued process
solution to the Zakai equation admits a density process, a fact that has an impact on the study of the
separated problem. Indeed, without requiring or establishing conditions guaranteeing existence of such a
density process, the separated problem must be formulated in an appropriate Banach space of measures
and, as a consequence, the Hamilton-Jacobi-Bellman (HJB) equation associated to the separated problem
must be formulated in such a general setting as well. As a matter of fact, only recently some techniques
have been developed to treat this case, predominantly in the theory of mean-�eld games (an application to
optimal control problems with partial observation is given in [3]).

A more common approach in the literature considers, instead, the density process as the state variable for
the separated problem. If it is possible to show that such a density process is the unique solution of a suitable
SPDE in L2(Rm), the so-called Duncan-Mortensen-Zakai equation, then this L2(Rm)-valued process can
be equivalently used as state variable in the separated problem. This is particularly convenient, since for
optimal control problems in Hilbert spaces a well-developed theory is available, at least in the regular case
(see, e.g., the monograph by Fabbri et al. [21]). Therefore, in view of possible future applications to singular
optimal control problems under partial observation, we adopted the density approach to prove that, under
suitable assumptions, the unnormalized �ltering process is the unique solution to the Zakai equation in the
class of measure-valued processes admitting a density with respect to Lebesgue measure.

We show this result, �rst, in the case where ν is a continuous process (cf. Theorem 4.6) and, then, in the
case where the jump times of ν do not accumulate in the time interval [0, T ] (see Theorem 4.7). As we already
observed, although this assumption prevents to achieve full generality, it has a clear interpretation and it is
usually satis�ed by the examples considered in the literature. From a technical side, it seems that a direct
approach using the method proposed by [30] is not feasible to treat the case of accumulating jumps, due to
di�culties in estimating crucial quantities in the arguments used, that are related to the jump component
of �ltering process. A possible workaround might consists in approximating the process ν by cutting away
jumps of size smaller than some δ > 0 and then, provided that a suitable tightness property holds, pass to
the limit, as δ → 0, in the relevant equations. However, this is a delicate and lengthy reasoning, which is
left for future research.

The rest of this paper is organized as follows. Section 1.2 provides notation used throughout this work.
Section 2 introduces the �ltering problem. The Zakai and Kushner-Stratonovich equations are then derived
in Section 3, while the uniqueness of the solution to the Zakai equation is proved in Section 4. Finally,
Appendix A collects the proof of technical results.

1.2. Notation. In this section we collect the main notation used in this work. Throughout the paper the
set N denotes the set of natural integers N = {1, 2, . . . }, N0 = {0, 1, . . . }, and R is the set of real numbers.

For any m × n matrix A = (aij), the symbol A∗ denotes its transpose and ‖A‖ is its Frobenius norm;

i.e., ‖A‖ = (
∑m
i=1

∑n
j=1 a

2
ij)

1/2. For any x, y ∈ Rd, ‖x‖ denotes the Euclidean norm of x and x · y = x∗y

indicates the inner product of x and y. For a �xed Hilbert space H, we denote its inner product by 〈·, ·〉
and by ‖·‖H its norm.

The symbol 1C denotes the indicator function of a set C, while 1 is the constant function equal to 1. The

symbol
∫ b
a
denotes

∫
[a,b]

for any −∞ < a ≤ b < +∞.
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For any d ∈ N and T > 0, we denote by C1,2
b ([0, T ] × Rd) the set of real-valued bounded measurable

functions on [0, T ] × Rd, that are continuously di�erentiable once with respect to the �rst variable and
twice with respect to the second, with bounded derivatives. For any such function, the symbol ∂t denotes
the derivative with respect to the �rst variable, while Dx = (∂1, . . . , ∂d) and D2

x = (∂2ij)
d
i,j=1 denote,

respectively, the gradient and the Hessian matrix with respect to the second variable. Furthermore, we simply
write C2

b(Rd), when we are considering a real-valued bounded function on Rd that is twice continuously
di�erentiable with bounded derivatives.

For any d ∈ N we indicate by L2(Rd) the set of all square-integrable functions with respect to Lebesgue
measure and for all k ∈ N we denote by W 2

k (Rd) the Sobolev space of all functions f ∈ L2(Rd) such that the
partial derivatives ∂α exist in the weak sense and are in L2(Rd), whenever the multi-index α = (α1, . . . , αd)
is such that α1 + · · ·+ αd ≤ k.

For a �xed metric space E, endowed with the Borel σ-algebra, we denote by P(E),M+(E), andM(E)
the sets of probability, �nite positive, and �nite signed measures on E, respectively. If µ ∈ M(E), then
|µ| ∈ M+(E) is the total variation of µ.

For any given càdlàg stochastic process Z = (Zt)t≥0 de�ned on a probability space (Ω,F ,P), we denote
by (Zt−)t≥0 the left-continuous version of Z (i.e., Zt− = lims→t− Zs, P-a.s., for any t ≥ 0), and by ∆Zt :=
Zt−Zt− the jump of Z at time t ≥ 0. If Z has �nite variation over [0, t], for all t ≥ 0, |Z| (resp. Z+, Z−) is
the variation process (resp. the positive part process, the negative part process) of Z, i.e., the process such
that, for each t ∈ [0, T ] and ω ∈ Ω, |Z|t(ω) (resp. Z+

t (ω), Z−t (ω)) is the total variation (resp. the positive
part, the negative part) of the function s 7→ Zs(ω) on [0, t]. It is useful to remember that Z = Z+ − Z−,
|Z| = Z+ + Z−, and that Z+, Z− are non-decreasing processes.

Finally, with the word measurable we refer to Borel-measurable, unless otherwise speci�ed.

2. Model formulation

Let T > 0 be a given �xed time horizon and (Ω,F ,F := (Ft)t∈[0,T ],P) be a complete �ltered probability
space, with F satisfying the usual assumptions.

De�ne on (Ω,F ,F,P) two independent F-adapted standard Brownian motions W and B, taking values
in Rd and Rn, respectively, with d, n ∈ N. Let then γ : [0, T ] → Rn×n be a measurable function such that,
for each t ∈ [0, T ], γ(t) is symmetric, with γij(t) ∈ L2([0, T ]), for all i, j = 1, . . . , n, and uniformly positive
de�nite; that is, there exists δ > 0 such that for all t ∈ [0, T ] and all x ∈ Rm

γ(t)x · x ≥ δ‖x‖2. (2.1)

These requirements guarantee in particular that the observed process Y = (Yt)t∈[0,T ], de�ned as

Yt = y +

∫ t

0

γ(t) dBt, t ∈ [0, T ], y ∈ Rn, (2.2)

is an Rn-valued F-adapted martingale, of which we take a continuous version. Clearly, it holds

dYt = γ(t) dBt, t ∈ [0, T ], Y0 = y ∈ Rn. (2.3)

Remark 2.1. It is not restrictive to require that γ is symmetric (and uniformly positive de�nite). Indeed,
suppose that B is an Rk-valued F-adapted standard Brownian motion and that γ : [0, T ] → Rn×k is such
that γγ∗(t) := γ(t)γ∗(t) is uniformly positive de�nite. Then, we can obtain an equivalent model de�ning

the Rn-valued F-adapted standard Brownian motion B̃ = (B̃t)t∈[0,T ] through:

dB̃t :=
(
γγ∗(t)

)−1/2
γ(t) dBt, t ∈ [0, T ].

In fact, in this case (2.3) becomes:

dYt =
(
γγ∗(t)

)1/2
dB̃t, t ∈ [0, T ], Y0 = y ∈ Rn,

and clearly
(
γγ∗(t)

)1/2
is symmetric (and uniformly positive de�nite).

We indicate with the symbol Y the completed natural �ltration generated by Y , i.e., Y := (Yt)t∈[0,T ],
with Yt := {Ys : 0 ≤ s ≤ t} ∨ N , where N is the collection of all P-null sets.

Remark 2.2. Notice that since γ is invertible, Y coincides with the completed natural �ltration generated
by B and is, therefore, right-continuous. These facts will be useful in the sequel.

Next, we consider a probability distribution ξ on Rm; measurable functions b : [0, T ] × Rm → Rm and
σ : [0, T ] × Rm → Rm×d, with m ∈ N; a Y-adapted, càdlàg, Rm-valued process ν whose components have
paths of �nite variation. We introduce the following requirements, that will be in force throughout the paper.
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Assumption 2.1.

(i) There exist constants Cb and Lb such that for all t ∈ [0, T ]

‖b(t, x)− b(t, x′)‖ ≤ Lb‖x− x′‖ and ‖b(t, 0)‖ ≤ Cb, ∀x, x′ ∈ Rm. (2.4)

(ii) There exist constants Cσ and Lσ such that for all t ∈ [0, T ]

‖σ(t, x)− σ(t, x′)‖ ≤ Lσ‖x− x′‖ and ‖σ(t, 0)‖ ≤ Cσ, ∀x, x′ ∈ Rm. (2.5)

(iii) The probability law ξ ∈ P(Rm) satis�es∫
Rm

‖x‖2 ξ(dx) < +∞. (2.6)

(iv) The Rm-valued process ν is Y-adapted, càdlàg, with ν0− = 0. Its components have paths of �nite
variation, which in particular satisfy

|νi|T ≤ K, ∀i = 1, . . . ,m, (2.7)

for some constant K > 0.

Under Assumption 2.1, for any such ν, the following SDE for the signal process X = (Xt)t∈[0,T ] admits
a unique strong solution:

dXt = b(t,Xt) dt+ σ(t,Xt) dWt + dνt, t ∈ [0, T ], X0− ∼ ξ ∈ P(Rm). (2.8)

It is important to bear in mind, especially in applications to optimal control problems, that the solution
to (2.8) and all the quantities that are related to it depend on the the probability distribution ξ and on ν.
However, for the ease of exposition, we will not stress this dependence in the sequel.

Remark 2.3. Conditions (2.4) and (2.5) ensure that SDE (2.8) admits a unique strong solution for any ν. If
we assume, in addition, that (2.6) and (2.7) hold, then we have that, for some constant κ depending on T ,
b, σ, and ν,

E[ sup
t∈[0,T ]

‖Xt‖2] ≤ κ(1 + E[‖X0−‖2]) < +∞, (2.9)

since E[‖X0−‖2] =
∫
Rm‖x‖2 ξ(dx). Proofs of these statements are standard and can be found, for instance,

in [13, 34].

We �nally arrive to the model we intend to analyze via a change of measure. Let h : [0, T ] × Rm → Rn
be a measurable function satisfying the following condition, that will stand from now on.

Assumption 2.2. There exists a constant Ch such that for all t ∈ [0, T ]

‖h(t, x)‖ ≤ Ch(1 + ‖x‖), ∀x ∈ Rm. (2.10)

For all t ∈ [0, T ] de�ne then:

ηt := exp

{∫ t

0

γ−1(s)h(s,Xs) dBs −
1

2

∫ t

0

‖γ−1(s)h(s,Xs)‖2 ds

}
. (2.11)

By Proposition A.2, η is a (P,F)-martingale, under Assumptions 2.1 and 2.2. Therefore, we can introduce

the probability measure P̃ on (Ω,FT ) satisfying

dP̃
dP

∣∣∣∣
FT

= ηT . (2.12)

By Girsanov's Theorem, the process B = (Bt)t∈[0,T ] given by Bt := Bt −
∫ t
0
γ−1(s)h(s,Xs) ds, t ∈ [0, T ], is

a (P̃,F)-Brownian motion, and under P̃ the dynamics of the observed process are provided by the SDE:

dYt = h(t,Xt) dt+ γ(t) dBt, t ∈ [0, T ], Y0 = y ∈ Rn. (2.13)

We see that equations (2.8) and (2.13) are formally equivalent to model (1.1). Observe, however, that
the Brownian motion driving (2.13) is not a source of noise given a priori, but it is obtained through a
probability measure change; moreover, our construction implies that it depends on the initial law ξ and on
process ν. This formulation is typical in optimal control problems under partial observation (see, e.g., [5,
Chapter 8]) and has the advantage of avoiding the circularity problem discussed in the Introduction.

Remark 2.4. If the partially observed system de�ned by (2.8) and (2.13) describes the state variables
of a singular optimal control problem, where ν is the control process, then condition (2.7) implies that
the singular control is of �nite fuel type (see El Karoui and Karatzas [19], Karatzas et al. [27] for early
contributions).
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Remark 2.5. It is worth noticing that all the results in this paper remain valid if we allow b to depend also
on ω, as long as the map (ω, t) 7→ b(ω, t, x) is Y-adapted and càdlàg, for each x ∈ Rm, and condition (2.4)
holds uniformly with respect to ω (i.e., Lb and Cb do not depend on ω). To extend our subsequent results
to this case, it su�ces to apply the so-called freezing lemma whenever necessary.

This modeling �exibility is important when it comes to treating controlled dynamics where b is a de-
terministic function, depending on an additional parameter representing the action of a regular control
α = (αt)t∈[0,T ]. Clearly, this control must be càdlàg and Y-adapted, i.e., based on the available information.
The measurability requirement above ensures that the map (ω, t) 7→ b(t, x, αt(ω)) is Y-adapted.

3. The Zakai and Kushner-Stratonovich equations

In this section we will deduce the Zakai equation satis�ed by the unnormalized �ltering process, de�ned
in (3.3). As a byproduct, we will deduce the Kushner-Stratonovich equation satis�ed by the �ltering process
(see (3.1) for its de�nition). As anticipated in the Introduction, we will use the reference probability approach
to achieve these results. The reference probability will be precisely P, under which the observed process is
Gaussian and satis�es (2.2). However, the probability measure that matters from a modelization point of

view is P̃, which de�ned in (2.12). Indeed, we will de�ne the �ltering process under this measure. It is

important to bear in mind that P̃ and P are equivalent probability measures. Hence, any result holding

P-a.s., holds also P̃-a.s., and we will write only the �rst of these two wordings.
The following technical lemma is needed. Its proof is a consequence of the facts highlighted in Remark 2.2

and it is omitted (the reader may refer, for instance, to [2, Prop. 3.15]). In what follows we will denote
Y := YT .
Lemma 3.1. Let Z be an Ft-measurable, P-integrable random variable, t ∈ [0, T ]. Then

E[Z | Yt] = E[Z | Y].

As previously anticipated, the �ltering process π = (πt)t∈[0,T ] is a P(Rm)-valued process providing the
conditional law of the signal X at each time t ∈ [0, T ], given the available observation up to time t. It is
de�ned for any bounded and measurable ϕ : [0, T ]× Rm → R as:

πt(ϕt) := Ẽ
[
ϕ(t,Xt)

∣∣ Yt], t ∈ [0, T ], (3.1)

where ϕt(x) := ϕ(t, x), for any (t, x) ∈ [0, T ]×Rm. Since Rm is a complete and separable metric space, π is
a well-de�ned, P(Rm)-valued and Y-adapted process.1 Moreover, π admits a càdlàg modi�cation, since X
is càdlàg (see, e.g. [2, Cor. 2.26]). Hence, in the sequel we shall consider π as a Y-progressively measurable
process.

We recall the useful Kallianpur-Striebel formula, which holds thanks to Proposition A.2 for any bounded
and measurable ϕ : [0, T ]× Rm → R and for any �xed t ∈ [0, T ] (for a proof see, e.g., [2, Prop. 3.16])

πt(ϕt) =
E
[
ηtϕ(t,Xt)

∣∣ Y]
E
[
ηt
∣∣ Y] , P-a.s. (3.2)

This formula allows us to de�ne the measure-valued process ρ = (ρt)t∈[0,T ], called unnormalized con-
ditional distribution of X, or unnormalized �ltering process, de�ned, for any bounded and measurable
ϕ : [0, T ]× Rm → R, as:

ρt(ϕt) := E
[
ηtϕ(t,Xt)

∣∣ Yt], t ∈ [0, T ]. (3.3)

Given the properties of π and of η it is possible to show (see, e.g., [2, Lemma 3.18]) that ρ is càdlàg and
Y-adapted, hence Y-progressively measurable. Moreover, the Kallianpur-Striebel formula implies that for
any bounded and measurable ϕ : [0, T ]× Rm → R and for any �xed t ∈ [0, T ]:

πt(ϕt) =
ρt(ϕt)

ρt(1)
, P-a.s., (3.4)

where 1 : Rm → R is the constant function equal to 1.
To describe the local dynamics of the signal process X, let us introduce the operator A, de�ned for any

ϕ ∈ C1,2
b ([0, T ]× Rm) as:

Aϕ(t, x) := Dxϕ(t, x) · b(t, x) +
1

2
tr
(
D2
xϕ(t, x)σσ∗(t, x)

)
, (t, x) ∈ [0, T ]× Rm. (3.5)

We can also de�ne the family of operators At, t ∈ [0, T ], given by:

Atϕ(x) = Dxϕ(x) · b(t, x) +
1

2
tr
(
D2
xϕ(x)σσ∗(t, x)

)
, x ∈ Rm, ϕ ∈ C2

b(Rm).

1Without any particular assumptions on Y, the �ltering process is adapted with respect to the right-continuous enlargement
of Y. However, as previously observed, in our model Y is already right-continuous.
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To obtain the Zakai equation we need, �rst, to write the semimartingale decomposition of the process(
ϕ(t,Xt)

)
t∈[0,T ]

. For any ϕ ∈ C1,2
b ([0, T ]× Rm) we have, applying Itô's formula:

ϕ(t,Xt) = ϕ(0, X0−) +

∫ t

0

[
∂s +A

]
ϕ(s,Xs) ds+

∫ t

0

Dxϕ(s,Xs−) dνs

+
∑

0≤s≤t

[
ϕ(s,Xs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

]
+Mϕ

t , t ∈ [0, T ]. (3.6)

Here, Mϕ
t :=

∫ t
0

Dxϕ(t,Xt)σ(t,Xt) dWt, t ∈ [0, T ], is a square-integrable (P,F)-martingale, thanks to con-
ditions (2.4) and (2.5) (see also Remark 2.3).

We need the following two technical Lemmata. Up to minor modi�cations, their proofs follow that of [2,
Lemma 3.21].

Lemma 3.2. Let Ψ = (Ψt)t∈[0,T ] be a real-valued (P,F)-progressively measurable process such that

E
[∫ T

0

Ψ2
s ds

]
< +∞.

Then, for any j = 1, . . . , k we have

E
[∫ t

0

Ψs dB
j

s

∣∣∣∣ Y] =

∫ t

0

E[Ψs | Y] dB
j

s, t ∈ [0, T ].

Lemma 3.3. Let Ψ = (Ψt)t∈[0,T ] be a real-valued (P,F)-progressively measurable process satisfying2

E
[∫ T

0

Ψ2
s d〈Mϕ〉s

]
< +∞.

Then,

E
[∫ t

0

Ψs dMϕ
s

∣∣∣∣ Y] = 0, t ∈ [0, T ].

We are now ready to state the main result of this section, namely, to provide the Zakai equation.

Theorem 3.4. Suppose that Assumptions 2.1 and 2.2 are satis�ed and, moreover, that∫
Rm

‖x‖3 ξ(dx) < +∞. (3.7)

Then, for any ϕ ∈ C1,2
b ([0, T ]×Rm), the unnormalized conditional distribution ρ satis�es the Zakai equation:

ρt(ϕt) = ξ(ϕ0) +

∫ t

0

ρs
([
∂s +As

]
ϕs
)

ds+

∫ t

0

ρs−
(
Dxϕs

)
dνs +

∫ t

0

γ−1(s)ρs(ϕshs) dBs

+
∑

0≤s≤t

[
ρs−
(
ϕs(·+ ∆νs)− ϕs −Dxϕs ·∆νs

)]
, P-a.s., t ∈ [0, T ], (3.8)

where ξ(ϕ0) :=
∫
Rm ϕ(0, x) ξ(dx) and, for all t ∈ [0, T ], ht(·) := h(t, ·),∫ t

0

ρs−
(
Dxϕs

)
dνs :=

m∑
i=1

∫ t

0

ρs−
(
∂iϕs

)
dνis,∫ t

0

γ−1(s)ρs(ϕshs) dBs :=

n∑
i=1

n∑
j=1

∫ t

0

γ−1ij (s)ρs(ϕsh
j
s) dB

i

s.

Proof. Fix t ∈ [0, T ] and ϕ ∈ C1,2
b ([0, T ]× Rm). Let us introduce the constants

Cϕ := sup
t,x
|ϕ(t, x)|, C ′ϕ := sup

t,x
‖Dxϕ(t, x)‖, C ′′ϕ := sup

t,x
‖D2

xϕ(t, x)‖,

where the suprema are taken over [0, T ]× Rm. The proof is organized in several steps.

Step 1. (Approximation) For any �xed ε > 0, de�ne the bounded process ηε = (ηεt )t∈[0,T ]:

ηεt :=
ηt

1 + εηt
, t ∈ [0, T ], (3.9)

where η is de�ned in (2.11). Both η and ηε have continuous trajectories and this fact will be used in what
follows without further mention.

2If M is any (P,F)-square integrable martingale, 〈M〉 denotes its (P,F)-predictable quadratic variation.
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Applying Itô's formula we obtain

ηεt =
1

1 + ε
−
∫ t

0

εη2s
(1 + εηs)3

‖γ−1(s)h(s,Xs)‖2 ds+

∫ t

0

ηs
(1 + εηs)2

γ−1(s)h(s,Xs) dBs.

Denoting by [·, ·] the optional quadratic covariation operator, thanks to the integration by parts rule and
recalling (3.6) we get

ηεtϕ(t,Xt) =
ϕ(0, X0−)

1 + ε
+

∫ t

0

ηεs− dϕ(s,Xs) +

∫ t

0

ϕ(s,Xs−) dηεs +

∫ t

0

d
[
ηε, ϕ(·, X)

]
s

=
ϕ(0, X0−)

1 + ε
+

∫ t

0

ηεs−
[
∂s +A

]
ϕ(s,Xs) ds+

∫ t

0

ηεs−Dxϕ(s,Xs−) dνs

+
∑

0≤s≤t

ηεs−
[
ϕ(s,Xs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ∆νs

]
+

∫ t

0

ηεs− dMϕ
s

−
∫ t

0

εη2sϕ(s,Xs−)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2 ds+

∫ t

0

ηsϕ(s,Xs−)

(1 + εηs)2
γ−1(s)h(s,Xs) dBs. (3.10)

Step 2. (Projection onto Y) Notice that Xt = Xt− + ∆νt, P-a.s., t ∈ [0, T ], and that, since Y0− = Y0 =
{∅,Ω}, we have

E[ϕ(0, X0−) | Y0− ] =

∫
Rm

ϕ(0, x) ξ(dx) = ξ(ϕ0).

Therefore, taking conditional expectation with respect to Y, we have (rearranging some terms)

E[ηεtϕ(t,Xt) | Y] =
ξ(ϕ0)

1 + ε
+ E

[∫ t

0

ηεs−
[
∂s +A

]
ϕ(s,Xs) ds

∣∣∣∣ Y]
+ E

[∫ t

0

ηεs−Dxϕ(s,Xs−) dνs

∣∣∣∣ Y]+ E
[∫ t

0

ηsϕ(s,Xs−)

(1 + εηs)2
γ−1(s)h(s,Xs) dBs

∣∣∣∣ Y]
+ E

[ ∑
0≤s≤t

ηεs−
[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣∣ Y]

+ E
[∫ t

0

ηεs− dMϕ
s

∣∣∣∣ Y]− E
[∫ t

0

εη2sϕ(s,Xs−)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2 ds

∣∣∣∣ Y]. (3.11)

We analyze now each of the terms appearing in (3.11). For any bounded Y-measurable Z, thanks to condi-
tions (2.4) and (2.5), there exists a constant C1, depending on Z, ε, ϕ, b, and σ such that

|Zηεt
[
∂t +A

]
ϕ(t,Xt)| ≤ C1(1 + ‖Xt‖2), t ∈ [0, T ],

which implies, using the estimate given in (2.9),

E
[∫ t

0

Zηεs
[
∂s +A

]
ϕ(s,Xs) ds

]
≤ CE

[∫ t

0

(1 + ‖Xs‖2) ds

]
≤ C1T [1 + κ(1 + E[‖X0−‖2])] < +∞.

Therefore, applying the tower rule and Fubini-Tonelli's theorem,

E
[
Z E

[∫ t

0

ηεs
[
∂s +A

]
ϕ(s,Xs) ds

∣∣∣∣ Y]] = E
[
Z

∫ t

0

E[ηεs
[
∂s +A

]
ϕ(s,Xs) | Y] ds

]
,

whence

E
[∫ t

0

ηεs
[
∂s +A

]
ϕ(s,Xs) ds

∣∣∣∣ Y] =

∫ t

0

E[ηεs
[
∂s +A

]
ϕ(s,Xs) | Y] ds. (3.12)

Similarly, for any bounded Y-measurable Z we have that

‖ZηεtDxϕ(t,Xt−)‖ ≤
|Z|C ′ϕ
ε

< +∞, dP⊗ dt-a.e.

This fact will allow to use Fubini-Tonelli's theorem in formula (3.13) below. We need to introduce the
changes of time associated to the processes νi,+ and νi,−, i = 1, . . . ,m, de�ned as

Ci,+t := inf{s ≥ 0: νi,+s ≥ t}, Ci,−t := inf{s ≥ 0: νi,−s ≥ t}, t ≥ 0, i = 1, . . . ,m,

where νi,+ (resp. νi,−) denotes the positive part (resp. negative part) process of the i-th component of
process ν (see the list of notation in Section 1.2 for a more detailed de�nition).
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For each t ≥ 0 and i = 1, . . . ,m, Ci,+t and Ci,−t are Y-stopping times (see, e.g., [18, Chapter VI, Def.
56] or [25, Proposition I.1.28]). Hence, applying the change of time formula (see, e.g., [18, Chapter VI,
Equation (55.1)] or [25, Equation (1), p. 29]) and Fubini-Tonelli's theorem, we get

E
[
Z E

[∫ t

0

ηεsDxϕ(s,Xs−) dνs

∣∣∣∣ Y]] = E
[∫ +∞

0

1s≤tZη
ε
sDxϕ(s,Xs−) dνs

]
=

m∑
i=1

E
[∫ +∞

0

1s≤tZη
ε
s∂iϕ(s,Xs−) dνi,+s

]
−

m∑
i=1

E
[∫ +∞

0

1s≤tZη
ε
s∂iϕ(s,Xs−) dνi,−s

]

=

m∑
i=1

E
[∫ +∞

0

1Ci,+
s ≤tZη

ε
Ci,+

s
∂iϕ(Ci,+s , X(Ci,+

s )−)1Ci,+
s <+∞ ds

]

−
m∑
i=1

E
[∫ +∞

0

1Ci,−
s ≤tZη

ε
Ci,−

s
∂iϕ(Ci,−s , X(Ci,−

s )−)1Ci,−
s <+∞ ds

]

=

m∑
i=1

∫ +∞

0

E
[
1Ci,+

s ≤tZE
[
ηε
Ci,+

s
∂iϕ(Ci,+s , X(Ci,+

s )−)
∣∣ Y]1Ci,+

s <+∞

]
ds

]

−
m∑
i=1

∫ +∞

0

E
[
1Ci,−

s ≤tZE
[
ηε
Ci,−

s
∂iϕ(Ci,−s , X(Ci,−

s )−)
∣∣ Y]1Ci,−

s <+∞

]
ds

]

=

m∑
i=1

E
[∫ +∞

0

1s≤tZE[ηεs ∂iϕ(s,Xs−) | Y] dνi,+s

]
−

m∑
i=1

E
[∫ +∞

0

1s≤tZE[ηεs ∂iϕ(s,Xs−) | Y] dνi,−s

]
= E

[∫ +∞

0

1s≤tZE[ηεs Dxϕ(s,Xs−) | Y] dνs

]
= E

[
Z

∫ t

0

E[ηεs Dxϕ(s,Xs−) | Y] dνs

]
, (3.13)

whence

E
[∫ t

0

ηεsDxϕ(s,Xs−) dνs

∣∣∣∣ Y] =

∫ t

0

E[ηεs Dxϕ(s,Xs−) | Y] dνs. (3.14)

Next, using (A.4) we obtain

E
[∫ t

0

(
ηεs

1 + εηs
ϕ(s,Xs−)‖γ−1(s)h(s,Xs)‖

)2

ds

]
≤
C2
ϕ

ε2
E
[∫ t

0

‖γ−1(s)h(s,Xs)‖2 ds

]
< +∞,

hence, by Lemma 3.2 we have:

E
[∫ t

0

ηsϕ(s,Xs−)

(1 + εηs)2
γ−1(s)h(s,Xs) dBs

∣∣∣∣ Y] =

∫ t

0

E
[
ηsϕ(s,Xs−)

(1 + εηs)2
γ−1(s)h(s,Xs)

∣∣∣∣ Y] dBs. (3.15)

Recalling that |ν|iT ≤ K, P-a.s., and hence |∆νit | ≤ K, for all t ∈ [0, T ] and all i = 1, . . . ,m, P-a.s., for
any bounded Y-measurable Z we have that∑

0≤s≤t

E
∣∣∣∣Zηεs[ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ∆νs

]∣∣∣∣ ≤ |Z|ε C ′′ϕ
2

∑
0≤s≤t

E
[
‖∆νs‖2

]
=
|Z|
ε

C ′′ϕ
2

E
[ ∑
0≤s≤t

∆ν∗s∆νs

]
≤ |Z|

ε

C ′′ϕ
2

m∑
i=1

E
[∫ t

0

|∆νis|d|νi|s
]
≤ |Z|

ε

C ′′ϕ
2
mK2 < +∞.

Therefore, using once more Fubini-Tonelli's theorem

E
[
Z E

[ ∑
0≤s≤t

ηεs

[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣∣ Y]]

= E
[
Z
∑

0≤s≤t

E
[
ηεs

[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣ Y] ],
and hence

E
[ ∑
0≤s≤t

ηεs

[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣∣ Y]
=
∑

0≤s≤t

E
[
ηεs

[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣ Y]. (3.16)
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Finally, being ηε bounded, Lemma 3.3 entails E
[∫ t

0
ηεs dMϕ

s

∣∣ Y] = 0, and, using the same rationale of
the previous evaluations,

E
[∫ t

0

εη2sϕ(s,Xs−)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2 ds

∣∣∣∣ Y] =

∫ t

0

E
[
εη2sϕ(s,Xs−)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2

∣∣∣∣ Y] ds. (3.17)

Taking into account (3.12), (3.14), (3.15), (3.16), and (3.17), Equation (3.11) becomes

E[ηεtϕ(t,Xt) | Y] =
ξ(ϕ0)

1 + ε
+

∫ t

0

E[ηεs
[
∂s +A

]
ϕ(s,Xs) | Y] ds

−
∫ t

0

E
[
εη2sϕ(s,Xs)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2

∣∣∣∣ Y]ds

+

∫ t

0

E
[
ηsϕ(s,Xs)

(1 + εηs)2
γ−1(s)h(s,Xs)

∣∣∣∣ Y] dBs +

∫ t

0

E[ηεs Dxϕ(s,Xs−) | Y] dνs

+
∑

0≤s≤t

E
[
ηεs

[
ϕ(s,Xs− + ∆νs)− ϕ(s,Xs−)−Dxϕ(s,Xs−) ·∆νs

] ∣∣∣ Y]. (3.18)

Step 3. (Taking limits) It remains to show that all the terms appearing in (3.18) converge appropriately
to give (3.8). As ε→ 0, we have that ηεt → ηt, E[ηεtϕ(t,Xt) | Y] −→ ρt(ϕ), for all t ∈ [0, T ], and

E[ηεt
[
∂t +A

]
ϕ(t,Xt) | Y] −→ ρt

([
∂t +At

]
ϕt
)
, dP⊗ dt-a.e.

Using boundedness of ϕ and (2.4), (2.5), we get that

|E[ηεt
[
∂t +A

]
ϕ(t,Xt) | Y]| ≤ C2E[ηt(1 + ‖Xt‖2) | Y], t ∈ [0, T ],

for some constant C2, depending on ϕ, b, and σ. The r.h.s. of this inequality is dP⊗dt integrable on Ω×[0, t],
since (apply again the tower rule and Fubini-Tonelli's theorem)

E
[∫ t

0

C2E[ηs(1 + ‖Xs‖2) | Y] ds

]
≤ C2T

{
1 + κ(1 + Ẽ[‖X0−‖2])

}
< +∞,

where we used (2.9) (which holds also under P̃ because the dynamics of X does not change under this

measure), and the fact that Ẽ[‖X0−‖2] = E[‖X0−‖2] < +∞.
Using the conditional form of the dominated convergence theorem, we have that, for all t ∈ [0, T ],

E
[∫ t

0

E[ηεs
[
∂s +A

]
ϕ(s,Xs) | Y] ds

∣∣∣∣ Y] −→ E
[∫ t

0

ρs
([
∂s +As

]
ϕs
)

ds

∣∣∣∣ Y], P-a.s.,

as ε→ 0, whence, noticing that the integrals are Y-measurable random variables,∫ t

0

E[ηεs
[
∂s +A

]
ϕ(s,Xs) | Y] ds −→

∫ t

0

ρs
([
∂s +As

]
ϕs
)

ds, P-a.s., ∀t ∈ [0, T ].

We consider, now, the term on the second line of (3.18). We have that, for all t ∈ [0, T ],

E
[
εη2tϕ(t,Xt)

(1 + εηt)3
‖γ−1(t)h(t,Xt)‖2

∣∣∣∣ Y] −→ 0,

as ε→ 0, and that

E
[
εη2tϕ(t,Xt)

(1 + εηt)3
‖γ−1(t)h(t,Xt)‖2

∣∣∣∣ Y] ≤ CϕE[ηt‖γ−1(t)h(t,Xt)‖2 | Y].

The r.h.s. of the last inequality is dP⊗ dt integrable on Ω× [0, t], since

E
[∫ t

0

CϕE[ηs‖γ−1(s)h(s,Xs)‖2 | Y] ds

]
≤ nCϕChCγT [1 + κ(1 + Ẽ[‖X0−‖2])] < +∞,

where we used (A.4), that holds also under P̃ (again, because the dynamics of X does not change under this

measure), and the fact that Ẽ[‖X0−‖2] = E[‖X0−‖2] < +∞.
Hence, reasoning as above, after applying the conditional form of the dominated convergence theorem

we obtain that, for all t ∈ [0, T ], as ε→ 0,∫ t

0

E
[
εη2sϕ(s,Xs)

(1 + εηs)3
‖γ−1(s)h(s,Xs)‖2

∣∣∣∣ Y]ds −→ 0, P-a.s.

Looking at the third line of (3.18), the next step is to show that∫ t

0

E
[
ηsϕ(s,Xs)

(1 + εηs)2
γ−1(s)h(s,Xs)

∣∣∣∣ Y] dBs −→
∫ t

0

γ−1(s)ρs(ϕshs) dBs, P-a.s.
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The proof of this fact is standard (see, e.g., [2, Theorem 3.24 and Exercise 3.25.i] or [5, Theorem 4.1.1]). It
is important to notice that condition (3.7) intervenes here.

Next, we examine the other integral in the third line of (3.18). We have that

E[ηεt Dxϕ(t,Xt−) | Y] −→ ρt−
(
Dxϕt

)
, P-a.s.,

as ε→ 0, for all t ∈ [0, T ]. Notice that, for any t ∈ [0, T ],

‖E[ηεt Dxϕ(t,Xt−) | Y]‖ ≤ C ′ϕE[ηt | Y].

Since η is non-negative, a Y-optional version of {E[1t≤T ηt | Yt]}t≥0 is given by the Y-optional projection of

{1t≤T ηt}t≥0 (see, e.g., [13, Corollary 7.6.8]). Therefore, applying [18, Chapter VI, Theorem 57] and using

Lemma 3.1 we get that for all t ∈ [0, T ], and all i = 1, . . . ,m,

E
[∫ T

0

C ′ϕE[ηt | Y] d|νi|t
]

= C ′ϕE
[∫ +∞

0

E[1t≤T ηt | Yt] d|νi|t
]

= C ′ϕE
[∫ T

0

ηt d|νi|t
]
< +∞,

where �niteness of E[
∫ T
0
ηt d|νi|t] can be established with a reasoning analogous to the proof of (A.10).

Therefore, we can apply the conditional form of the dominated convergence theorem, to obtain that, for all
t ∈ [0, T ], as ε→ 0,

E
[∫ t

0

E[ηεs Dxϕ(s,Xs−) | Y] dνs

∣∣∣∣ Y] −→ E
[∫ t

0

ρs−
(
Dxϕs

)
dνs

∣∣∣∣ Y], P-a.s.

Since the integrals are Y-measurable random variables, this implies that, for all t ∈ [0, T ], as ε→ 0,∫ t

0

E[ηεs Dxϕ(s,Xs−) | Y] dνs −→
∫ t

0

ρs−
(
Dxϕs

)
dνs, P-a.s.

Finally, looking at the fourth line of (3.18), we have that, for all t ∈ [0, T ], as ε→ 0,

Λεt := E
[
ηεt

[
ϕ(t,Xt− + ∆νt)− ϕ(t,Xt−)−Dxϕ(t,Xt−) ·∆νt

] ∣∣∣ Y]
−→ ρt−

(
ϕt(·+ ∆νt)− ϕt −Dxϕt ·∆νt

)
, P-a.s.

Observe that, for any t ∈ [0, T ], Λεt is bounded by 1
2C
′′
ϕE[ηt‖∆νt‖2 | Y], which is positive and integrable

with respect to the product of measure P and the jump measure associated to ν, since:

E
[ ∑
0≤s≤t

1

2
C ′′ϕE[ηs‖∆νs‖2 | Y]

]
=

1

2
C ′′ϕ

∑
0≤s≤t

E[ηs‖∆νs‖2] =
1

2
C ′′ϕE

 ∑
0≤s≤t

ηs∆νs ·∆νs


≤ 1

2
C ′′ϕ

m∑
i=1

E
[∫ t

0

ηs|∆νis|d|νi|s
]
≤ 1

2
C ′′ϕK

m∑
i=1

E
[∫ t

0

ηsd|νi|s
]
< +∞.

By the conditional form of the dominated convergence theorem, we have that, for all t ∈ [0, T ], as ε→ 0,

E
[ ∑
0≤s≤t

Λεs

∣∣∣ Y] −→ E
[ ∑
0≤s≤t

ρs−
(
ϕs(·+ ∆νs)− ϕs −Dxϕs ·∆νs

) ∣∣∣ Y], P-a.s.

and since the sums are Y-measurable random variables, this implies that, for all t ∈ [0, T ], as ε→ 0,∑
0≤s≤t

Λεs −→
∑

0≤s≤t

ρs−
(
ϕs(·+ ∆νs)− ϕs −Dxϕs ·∆νs

)
, P-a.s. �

Remark 3.1. If the jump times of the process ν do not accumulate over [0, T ], then the Zakai equation can
be split into successive linear SPDEs between the jumps of ν (i.e., of X). Set T0 = 0, denote by (Tn)n∈N the

sequence of jump times of ν and indicate by νc the continuous part of ν. Then, for any ϕ ∈ C1,2
b ([0, T ]×Rm)

and any n ∈ N0 we have P-a.s.
dρt(ϕt)=ρt

([
∂t+At

]
ϕt
)
dt+ ρt−

(
Dxϕt

)
dνct + γ−1(t)ρt(ϕtht)dBt, t∈ [Tn∧T, Tn+1∧T ),

ρ0−(ϕ0) = ξ(ϕ0),

ρTn(ϕ) = ρTn
−
(
ϕTn(·+ ∆νTn)

)
.

(3.19)

We are now ready to deduce, from the Zakai equation, the Kushner-Stratonovich equation, i.e., the
equation satis�ed by the �ltering process π, de�ned in (3.1). The proof of the following two results follows
essentially the same steps of [2, Lemma 3.29 and Theorem 3.30], up to necessary modi�cations due to the
present setting (see, also, [5, Lemma 4.3.1 and Theorem 4.3.1]).
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Lemma 3.5. Under the same assumptions of Theorem 3.4, the process
(
ρt(1)

)
t∈[0,T ]

satis�es for all t ∈
[0, T ]

ρt(1) = exp

{∫ t

0

γ−1(s)πs(hs) dBs −
1

2

∫ t

0

‖γ−1(s)πs(hs)‖2 ds

}
, P-a.s.

Theorem 3.6. Under the same assumptions of Theorem 3.4, the process
(
πt(ϕ)

)
t∈[0,T ]

satis�es for all

t ∈ [0, T ] and all ϕ ∈ C1,2
b ([0, T ]× Rm) the Kushner-Stratonovich equation

πt(ϕt) = π0−(ϕ0) +

∫ t

0

πs
([
∂s +As

]
ϕs
)

ds+

∫ t

0

πs−
(
Dxϕs

)
dνs

+

∫ t

0

γ−1(s)
{
πs
(
ϕshs

)
− πs(ϕs)πs(hs)

} [
dBs − γ−1(s)πs(hs) ds

]
+
∑

0≤s≤t

[
πs−

(
ϕs(·+ ∆νs)− ϕs −Dxϕs ·∆νs

)]
, P-a.s. (3.20)

Remark 3.2. It is not di�cult to show (see, e.g., [2, Proposition 2.30] or [5, Theorem 4.3.4]), that

It := Bt − γ−1(t)πt(ht), t ∈ [0, T ],

is a (P̃,Y)-Brownian motion, the so-called innovation process. This allows to rewrite the Kushner-Stratonovich
equation in the (perhaps more familiar) form

πt(ϕt) = ξ(ϕ0) +

∫ t

0

πs
([
∂s +As

]
ϕs
)

ds+

∫ t

0

πs−
(
Dxϕs

)
dνs

+

∫ t

0

γ−1(s)
{
πs
(
ϕshs

)
− πs(ϕs)πs(hs)

}
dIs

+
∑

0≤s≤t

[
πs−

(
ϕs(·+ ∆νs)− ϕs −Dxϕs ·∆νs

)]
, P̃-a.s., t ∈ [0, T ].

Notice, however, that in this setting the innovation process is not a Brownian motion given a priori , because
it depends (through the density process η, and hence through X), on the initial law ξ of the signal process
and on process ν.

Remark 3.3. Similarly to what stated in Remark 3.1, if the jump times of the process ν do not accumulate
over [0, T ], then the Kushner-Stratonovich equation can be split into successive nonlinear SPDEs between the

jumps of ν (i.e., of X). Using the same notation of the aforementioned Remark, for any ϕ ∈ C1,2
b ([0, T ]×Rm)

and any n ∈ N0 we have P-a.s.

dπt(ϕt) = πt
([
∂t +At

]
ϕt
)

dt+ πt−
(
Dxϕt

)
dνct

+ γ−1(t)
{
πt
(
ϕtht

)
− πt(ϕt)πt(ht)

}[
dBt − γ−1(t)πt(ht)dt

]
, t ∈ [Tn∧T, Tn+1∧T ),

π0−(ϕ0) = ξ(ϕ0),

πTn(ϕ) = πTn
−
(
ϕTn(·+ ∆νTn)

)
.

(3.21)

4. Uniqueness of the solution to the Zakai equation

In this section we will address the issue of uniqueness of the solution to the Zakai equation (3.8), under
the requirement that the jump times of the process ν do not accumulate over [0, T ]. Proving uniqueness is
essential to characterize completely the unnormalized �ltering process ρ, de�ned in (3.3), and is crucial in
applications, e.g., in optimal control. Indeed, having ensured that (3.8) (or, equivalently, (3.20)) uniquely
characterizes the conditional distribution of the signal given the observation, the �ltering process can be
employed as a state variable to solve the related separated optimal control problem (cf. [5]).

We follow the approach in [30] (see, also, [2, Chapter 7] and [37, Chapter 6]). The idea is to recast the
measure-valued Zakai equation into an SPDE in the Hilbert space H := L2(Rm) and, therefore, to look for
a density of ρ in this space. To accomplish that, we will smooth solutions to (3.8) using the heat kernel,
and we will then use estimates in L2(Rm) in order to deduce the desired result. An important role in the
subsequent analysis is played by the following lemma, whose proof can be found, e.g., in [2, Solution to
Exercise 7.2].

Lemma 4.1. Let {ϕk}k∈N be an orthonormal basis of H such that ϕk ∈ Cb(Rm) for any k ∈ N, and let
µ ∈M(Rm) be a �nite measure. If ∑

k∈N
[µ(ϕk)]2 < +∞,
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then µ is absolutely continuous with respect to Lebesgue measure on Rm and its density is square-integrable.

Let ψε be the heat kernel, i.e., the function de�ned for each ε > 0 as

ψε(x) :=
1

(2πε)m/2
e−
‖x‖2
2ε , x ∈ Rm,

and for any Borel-measurable and bounded f and ε > 0 de�ne the operator

Tεf(x) :=

∫
Rm

ψε(x− y) f(y) dy, x ∈ Rm.

We also de�ne the operator Tε : M(Rm)→M(Rm) given by

Tεµ(f) := µ(Tεf) =

∫
Rm

f(y)

∫
Rm

ψε(x− y)µ(dx)︸ ︷︷ ︸
:=Tεµ(y)

dy =

∫
Rm

f(y)Tεµ(y) dy.

The equalities above imply that for any µ ∈ M(Rm) the measure Tεµ always possesses a density with
respect to Lebesgue measure, that we will still denote by Tεµ.

Remark 4.1. It is important to notice that, by [2, Exercise 7.3, point ii.], Tεµ ∈W 2
k (Rm), for any µ ∈M(Rm),

ε > 0, and k ∈ N.

Further properties of these operators that will be used in the sequel are listed in the following Lemma
(for its proof see, e.g., [2, Solution to Exercise 7.3] and [37, Lemma 6.7, Lemma 6.8]).

Lemma 4.2. For any µ ∈M(Rm), h ∈ H, and ε > 0 we have that:

i. ‖T2ε|µ|‖H ≤ ‖Tε|µ|‖H , where |µ| denotes the total variation measure of µ;
ii. ‖Tεh‖H ≤ ‖h‖H ;
iii. 〈Tεµ, h〉 = µ(Tεh);
iv. If, in addition, ∂ih ∈ H, i = 1, . . . ,m, then ∂iTεh = Tε∂ih (with the partial derivative understood

in the weak sense).
v. If ϕ ∈ C1

b(Rm), then ∂iTεϕ = Tε(∂iϕ).

In this section we will work under the following hypotheses, in addition to Assumptions 2.1 and 2.2,
concerning coe�cients b, σ and h appearing in SDEs (2.8) and (2.13). In what follows we will use the
shorter notation

a(t, x) :=
1

2
σσ∗(t, x), t ∈ [0, T ], x ∈ Rm. (4.1)

Assumption 4.1. There exist constants Kb, Kσ, Kh, such that, for all i, j = 1, . . . ,m, all ` = 1, . . . , n, all
t ∈ [0, T ], and all x ∈ Rm,

|bi(t, x)| ≤ Kb, |aij(t, x)| ≤ Kσ, |h`(t, x)| ≤ Kh.

In the next section, we obtain the uniqueness result for the solution to the Zakai equation when the
process ν has continuous paths. This will be then exploited in Section 4.2 in order to obtain the uniqueness
claim when ν has jump times that do not accumulate over [0, T ].

4.1. The case in which ν has continuous paths. We start our analysis with the following Lemma,
which will play a fundamental role in the sequel. Its proof can be found in Appendix A.

Lemma 4.3. Suppose that Assumption 4.1 holds. Let ζ = (ζt)t∈[0,T ] be a Y-adapted, càdlàg, M+(Rm)-
valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). If ν is continuous, then for any ε > 0

E[ sup
t∈[0,T ]

‖Tεζt−‖2H ] < +∞.

The next result is a useful estimate.

Proposition 4.4. Suppose that Assumption 4.1 holds. Let ζ = (ζt)t∈[0,T ] be a Y-adapted, càdlàg,M(Rm)-
valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). De�ne the process

At := t+

m∑
i=1

|νi|t, t ∈ [0, T ]. (4.2)

If ν is continuous and if, for any ε > 0, E[supt∈[0,T ]‖Tε|ζ|t−‖2H ] < +∞, then there exists a constant M > 0

such that, for each ε > 0 and all F-stopping times τ ≤ t, t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤ ‖Tεζ0−‖2H +M

∫ τ−

0

E[‖Tε|ζ|s−‖2H ] dAs. (4.3)
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Proof. To ease notations, for any ε > 0 denote by Zε the process Zεt := Tεζt, t ≥ 0. Fix ε > 0 and consider
an orthonormal basis {ϕk}k∈N of H such that ϕk ∈ C2

b(Rm), for any k ∈ N. Writing the Zakai equation for
the function Tεϕk (recall that ν is continuous by assumption) we get:

ζt(Tεϕk) = ξ(Tεϕk) +

∫ t

0

ζs
(
AsTεϕk

)
ds+

∫ t

0

ζs−
(
DxTεϕk

)
dνs +

∫ t

0

γ−1(s)ζs(Tεϕkhs) dBs, (4.4)

for all t ∈ [0, T ]. Notice that, for any ϕ ∈ C2
b(Rm) and any t ∈ [0, T ], we can write:

Atϕ(x) =

m∑
i=1

bi(t, x)∂iϕ(x) +

m∑
i,j=1

aij(t, x)∂ijϕ(x), x ∈ Rm,

where a is the function de�ned in (4.1). For any i, j = 1, . . . ,m, ` = 1, . . . , n, and t ∈ [0, T ], we de�ne the
random measures on Rm:

bitζt(dx) := bi(t, x)ζt(dx), aijt ζt(dx) := aij(t, x)ζt(dx), γh`tζt(dx) :=

n∑
p=1

γ−1`p (t)hp(t, x)ζt(dx).

These measures are P-almost surely �nite, for any t ∈ [0, T ], thanks to Assumption 4.1 and to (A.3) (see
also (A.19) for the last measure).

Applying Lemma 4.2 and the integration by parts formula we get:

ζt
(
AtTεϕk

)
=

m∑
i=1

∫
Rm

bi(t, x)∂iTεϕk(x) ζt(dx) +

m∑
i,j=1

∫
Rm

aij(t, x)∂ijTεϕk(x) ζt(dx)

=

m∑
i=1

∫
Rm

bi(t, x)Tε∂iϕk(x) ζt(dx) +

m∑
i,j=1

∫
Rm

aij(t, x)Tε∂ijϕk(x) ζt(dx)

=

m∑
i=1

bitζt(Tε∂iϕk) +

m∑
i,j=1

aijt ζt(Tε∂ijϕk)

=

m∑
i=1

〈Tε(bitζt), ∂iϕk〉+

m∑
i,j=1

〈Tε(aijt ζt), ∂ijϕk〉 =

m∑
i,j=1

〈ϕk, ∂ijTε(aijt ζt)〉 −
m∑
i=1

〈ϕk, ∂iTε(bitζt)〉.

In a similar way, we obtain ζt
(
∂iTεϕk

)
= −〈ϕk, ∂iTεζt〉, and

n∑
j=1

γ−1ij (t)ζt
(
Tεϕkh

j
t

)
= 〈ϕk, Tε(γhitζt)〉, i = 1, . . . , n.

Putting together all these facts, we can rewrite (4.4) as

〈ϕk, Zεt 〉 = 〈ϕk, Zε0−〉+

m∑
i,j=1

∫ t

0

〈ϕk, ∂ijTε(aijs ζs)〉ds−
m∑
i=1

∫ t

0

〈ϕk, ∂iTε(bisζs)〉ds

−
m∑
i=1

∫ t

0

〈ϕk, ∂iTεζs−〉dνis +

n∑
i=1

∫ t

0

〈ϕk, Tε(γhisζs)〉dB
i

s, P-a.s., t ∈ [0, T ].

Applying Itô's formula we get that, for all t ∈ [0, T ], P-a.s.,

〈ϕk, Zεt 〉2 = 〈ϕk, Zε0−〉
2 +

m∑
i,j=1

∫ t

0

2〈ϕk, Zεs 〉 〈ϕk, ∂ijTε(aijs ζs)〉ds

−
m∑
i=1

∫ t

0

2〈ϕk, Zεs 〉〈ϕk, ∂iTε(bisζs)〉ds+

n∑
i=1

∫ t

0

〈ϕk, Tε(γhisζs)〉2 ds

−
m∑
i=1

∫ t

0

2〈ϕk, Zεs−〉〈ϕk, ∂iTεζs−〉dν
i
s +

n∑
i=1

∫ t

0

2〈ϕk, Zεs 〉〈ϕk, Tε(γhisζs)〉dB
i

s.

Using Assumption 4.1 and (A.3), it is possible to show that the stochastic integral with respect to
Brownian motion B is a P-martingale. By the optional sampling theorem, this stochastic integral has zero
expectation even when evaluated at any bounded stopping time. Therefore, picking an F-stopping time
τ ≤ t, for arbitrary t ∈ [0, T ], summing over k up to N ∈ N, and taking the expectation, by Fatou's lemma
we have that

E
[
‖Zετ−‖

2
H

]
= E

[
lim
N→∞

N∑
k=1

〈ϕk, Zετ−〉
2

]
≤ lim inf

N→∞
E
[ N∑
k=1

〈ϕk, Zετ−〉
2

]
≤ ‖Zε0−‖

2
H
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+ lim inf
N→∞

{
m∑

i,j=1

E
[∫ τ−

0

N∑
k=1

2〈ϕk, Zεs 〉 〈ϕk, ∂ijTε(aijs ζs)〉ds
]

−
m∑
i=1

E
[∫ τ−

0

N∑
k=1

2〈ϕk, Zεs 〉〈ϕk, ∂iTε(bisζs)〉ds
]

+

n∑
i=1

E
[∫ τ−

0

N∑
k=1

〈ϕk, Tε(γhisζs)〉2 ds

]

−
m∑
i=1

E
[∫ τ−

0

N∑
k=1

2〈ϕk, Zεs−〉〈ϕk, ∂iTεζs−〉dν
i
s

]}
, (4.5)

where we used the fact that, since Zε0− ∈ H, lim
N→∞

N∑
k=1

〈ϕk, Zε0−〉
2 = ‖Zε0−‖

2
H . More generally, since Zεt ∈ H,

for all t ∈ [0, T ], P-a.s. (cf. Remark 4.1), we have that

N∑
k=1

〈ϕk, Zεt 〉2 ≤
∞∑
k=1

〈ϕk, Zεt 〉2 = ‖Zεt ‖2H , t ∈ [0, T ]. (4.6)

We want now to estimate the quantities appearing inside the limit inferior, in order to exchange the limit
and the integrals in (4.5). First of all, let us notice that, thanks to Assumption 4.1, the following estimates
hold P-a.s., for all i, j = 1, . . . ,m, all ` = 1, . . . , n, and all t ∈ [0, T ]:

‖∂ijTε(aijt ζt)‖2H ≤ K1‖Tε|ζ|t‖2H , ‖∂iTε(bitζt)‖2H ≤ K2‖Tε|ζ|t‖2H ,

‖Tε(γh`tζt)‖2H ≤ K3‖Tε|ζ|t‖2H , ‖∂iTεζt‖2H ≤ K4‖Tε|ζ|t‖2H ,

where K1 = K1(ε,m, σ), K2 = K2(ε,m, b), K3 = K3(n, h, γ), K4 = K4(ε,m). They can be proved following
a reasoning analogous to that of [2, Lemma 7.5] (see also [37, Chapter 6]).

Recalling that 2|ab| ≤ a2 + b2, for all a, b ∈ R, using the estimates provided above, Lemma 4.2, and (4.6),
we get that, for all N ∈ N, all i, j = 1, . . . ,m, and all s ∈ [0, T ],

1s<τ

N∑
k=1

2〈ϕk, Zεs 〉 〈ϕk, ∂ijTε(aijs ζs)〉 ≤
N∑
k=1

〈ϕk, Zεs 〉2 +

N∑
k=1

〈ϕk, ∂ijTε(aijs ζs)〉2

≤ ‖Zεs‖2H + ‖∂ijTε(aijs ζs)‖2H ≤ (1 +K1)‖Tε/2|ζ|s‖2H .

With analogous computations, we get, for all i = 1, . . . ,m, all N ∈ N, and all s ∈ [0, T ],

1s<τ

N∑
k=1

2〈ϕk, Zεs 〉〈ϕk, ∂iTε(bisζs)〉 ≤ (1 +K2)‖Tε/2|ζ|s‖2H ,

1s<τ

N∑
k=1

2〈ϕk, Zεs−〉〈ϕk, ∂iTεζs−〉 ≤ (1 +K4)‖Tε/2|ζ|s‖2H ,

and, for all N ∈ N and all s ∈ [0, T ],

n∑
i=1

1s<τ

N∑
k=1

〈ϕk, Tε(γhisζs)〉2 ≤ nK3‖Tε|ζ|s‖2H .

The terms appearing on the r.h.s. of these estimates are dt ⊗ dP- and d|νi|t ⊗ dP-integrable on [0, T ] × Ω,
for all i = 1, . . . ,m, since, for any ε > 0,

E

[∫ T

0

‖Tε|ζ|s‖2H ds

]
≤ TE[ sup

s∈[0,T ]

‖Tε|ζ|s‖2H ] < +∞,

E

[∫ T

0

‖Tε|ζ|s‖2H d|νi|s

]
≤ KE[ sup

s∈[0,T ]

‖Tε|ζ|s‖2H ] < +∞.

Therefore, by the dominated convergence theorem, we can pass to the limit in (4.5), as N →∞,

E
[
‖Zετ−‖

2
H

]
≤ ‖Zε0−‖

2
H +

m∑
i,j=1

E
[∫ τ−

0

2〈Zεs , ∂ijTε(aijs ζs)〉ds
]
−

m∑
i=1

E
[∫ τ−

0

2〈Zεs , ∂iTε(bisζs)〉ds
]

+

n∑
i=1

E
[∫ τ−

0

‖Tε(γhisζs)‖2H ds

]
−

m∑
i=1

E
[∫ τ−

0

〈Zεs− , ∂iTεζs−〉dν
i
s

]
, (4.7)
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We �nally get the claim, bounding the terms on the r.h.s. of (4.7) by using the following results: for the
second one, apply [37, Lemma 6.11]; for the third and the last one, apply [37, Lemma 6.10]; for the fourth
one, use the fact that the constant K3 above does not depend on ε. �

Proposition 4.4 allows to deduce that anyM+(Rm)-valued solution of the Zakai equation (3.8) admits a
density with respect to Lebesgue measure.

Proposition 4.5. Suppose that Assumption 4.1 holds. Let ζ = (ζt)t∈[0,T ] be a Y-adapted, càdlàg,M+(Rm)-
valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). If ν is continuous and if ξ admits a square-integrable density
with respect to Lebesgue measure on Rm, then there exists an H-valued process Z = (Zt)t∈[0,T ] such that,
for all t ∈ [0, T ],

ζt(dx) = Zt(x)dx, P-a.s.
Moreover, Z is Y-adapted, continuous, and satis�es E[‖Zt‖2H ] < +∞, for all t ∈ [0, T ].

Proof. As a consequence of Lemma 4.3, the assumptions of Proposition 4.4 hold and we have that for each
ε > 0 and all F-stopping times τ ≤ t, t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤ ‖Tεζ0−‖2H +M

∫ τ−

0

E[‖Tεζs−‖2H ] dAs.

Therefore, we can apply Lemma A.1 and get that, for all t ∈ [0, T ],

E[‖Tεζt−‖2H ] = E[‖Tεζt‖2H ] ≤ ‖Tεζ0−‖2HeM(T+mK), (4.8)

where we used the fact that ζ is continuous, since ν is, and that At ≤ AT ≤ T + mK, for all t ∈ [0, T ].
Notice that, denoting by Z0− the density of ξ with respect to Lebesgue measure on Rm,

Tεζ0−(y) =

∫
Rm

ψε(x− y) ξ(dx) =

∫
Rm

ψε(x− y)Z0−(x) dx = TεZ0−(y), y ∈ Rm.

By point ii. of Lemma 4.2 and since the constants appearing in (4.8) do not depend on ε, we get

sup
ε>0

E[‖Tεζt‖2H ] ≤ ‖Z0−‖2HeM(T+mK), t ∈ [0, T ].

Taking, as in the Proof of Proposition 4.4, an orthonormal basis {ϕk}k∈N of H such that ϕk ∈ C2
b(Rm), for

any k ∈ N, the dominated convergence theorem entails that, for all k ∈ N,

lim
ε→0
〈Tεζt, ϕk〉 = lim

ε→0

∫
Rm

{∫
Rm

ψε(x− y)ϕk(y) dy

}
ζt(dx) =

∫
Rm

ϕk(x) ζt(dx) = ζt(ϕk).

Applying Fatou's Lemma we get that, for all t ∈ [0, T ],

E

[ ∞∑
k=1

ζt(ϕk)2

]
= E

[ ∞∑
k=1

lim
ε→0
〈Tεζt, ϕk〉2

]
≤ lim inf

ε→0
E

[ ∞∑
k=1

〈Tεζt, ϕk〉2
]

≤ sup
ε>0

E[‖Tεζt‖2H ] ≤ ‖Z0−‖2HeM(T+mK) < +∞, (4.9)

and hence, from Lemma 4.1 we deduce that, P-a.s., ζt is absolutely continuous with respect to Lebesgue
measure on Rm, for all t ∈ [0, T ]. Moreover, its density process Z = (Zt)t∈[0,T ] takes values in H and, by
standard results, is Y-adapted and continuous (because ν is).

Finally, since ζt(ϕk) =
∫
Rm ϕk(x)Zt(x) dx = 〈ϕk, Zt〉, for all k ∈ N, and all t ∈ [0, T ], we get

E[‖Zt‖2H ] = E

[ ∞∑
k=1

〈ϕk, Zt〉2
]

= E

[ ∞∑
k=1

ζt(ϕk)2

]
< +∞, t ∈ [0, T ]. �

We are now ready to state our �rst uniqueness result for the solution to the Zakai equation, in the case
where ν is continuous.

Theorem 4.6. Suppose that Assumptions 2.1, 2.2, 4.1, and (3.7) hold. If ν is continuous and if ξ ∈ P(Rm)
admits a square-integrable density with respect to Lebesgue measure on Rm, then the unnormalized �ltering
process ρ, de�ned in (3.3), is the unique Y-adapted, continuous, M+(Rm)-valued solution to the Zakai
equation (3.8).

Moreover, there exists a Y-adapted, continuous, H-valued process p = (pt)t∈[0,T ] satisfying, for all t ∈
[0, T ], E[‖pt‖2H ] < +∞ and ρt(dx) = pt(x)dx, P-a.s.



FILTERING OF SINGULARLY CONTROLLED SYSTEMS 17

Proof. Clearly, the unnormalized �ltering process ρ, de�ned in (3.3), is a Y-adapted, continuous (since ν
is), M+(Rm)-valued solution to (3.8). Therefore, the second part of the statement follows directly from
Proposition 4.5.

Uniqueness can be established as follows. Let ζ(1), ζ(2) be two Y-adapted, càdlàg,M+(Rm)-valued solu-
tions to (3.8). De�ne ζ := ζ(1) − ζ(2) ∈ M(Rm) and let Z := Z(1) − Z(2) ∈ H be its density process, where
Z(1) and Z(2) are the density processes of ζ(1) and ζ(2), respectively, which exist thanks to Proposition 4.5.

Standard facts from measure theory show that, for all non-negative, bounded, measurable functions

ϕ : Rm → R and all t ∈ [0, T ], |ζ|t(ϕ) ≤ ζ
(1)
t (ϕ) + ζ

(2)
t (ϕ). From this fact, applying Lemma 4.3 we deduce

that

E[ sup
t∈[0,T ]

‖Tε|ζ|t−‖2H ] ≤ 2E[ sup
t∈[0,T ]

‖Tεζ(1)t− ‖
2
H ] + 2E[ sup

t∈[0,T ]

‖Tεζ(2)t− ‖
2
H ] < +∞.

Therefore, from Proposition 4.4 we get that for all ε > 0 and all F-stopping times τ ≤ t, t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤M
∫ τ−

0

E[‖Tε|ζ|s−‖2H ] dAs,

where A is de�ned in (4.2). An application of the dominated convergence theorem shows that ‖Tε|ζ|t−‖2H −→
‖Zt‖2H , as ε→ 0, for all t ∈ [0, T ], and hence, by Fatou's lemma

E[‖Zt‖2H ] = E[ lim
ε→0
‖Tεζτ−‖2H ] ≤ lim inf

ε→0
E[‖Tεζτ−‖2H ]

≤ lim inf
ε→0

M

∫ τ−

0

E[‖Tε|ζ|s−‖2H ] dAs = M

∫ τ−

0

E[‖Zs−‖2H ] dAs.

Finally, Proposition 4.5 ensures that

E[‖Zt−‖2H ] ≤ 2E[‖Z(1)
t− ‖

2
H ] + 2E[‖Z(2)

t− ‖
2
H ] < +∞, for all t ∈ [0, T ],

This allows us to use Lemma A.1 to get that, for all t ∈ [0, T ], E[‖Zt−‖2H ] = E[‖Zt‖2H ] = 0, whence we
obtain ‖Zt‖2H = 0, P-a.s., and therefore uniqueness of the solution to the Zakai equation. �

4.2. The case in which the jump times of ν do not accumulate. Exploiting the recursive structure
of (3.19), we can prove uniqueness of the solution to the Zakai equation (3.8), also in the case where the
jump times of ν do not accumulate.

Theorem 4.7. Suppose that Assumptions 2.1, 2.2, 4.1, and (3.7) hold. If the jump times of ν do not
accumulate over [0, T ] and if ξ ∈ P(Rm) admits a square-integrable density with respect to Lebesgue measure
on Rm, then the unnormalized �ltering process ρ, de�ned in (3.3), is the unique Y-adapted, càdlàg,M+(Rm)-
valued solution to the Zakai equation (3.8).

Moreover, there exists a Y-adapted, càdlàg, H-valued process p = (pt)t∈[0,T ] satisfying, for all t ∈ [0, T ],

E[‖pt‖2H ] < +∞ and ρt(dx) = pt(x)dx, P-a.s.

Proof. Let us denote by ρ the unnormalized �ltering process associated with the initial law ξ and process ν,
and by p0− the density of ξ with respect to Lebesgue measure on Rm. Let T0 = 0 and de�ne the sequence
of jump times of ν

Tn := inf{t > Tn−1 : ∆νt 6= 0}, n ∈ N,
with the usual convention inf ∅ = +∞. Recall that also T0 can be a jump time of ν. Moreover, since the jump
times of ν do not accumulate over [0, T ], we have that Tn ≤ Tn+1, P-a.s., and Tn < +∞ =⇒ Tn < Tn+1,
for all n ∈ N0.

We start noticing that the formula ρTn(ϕ) = ρTn
−
(
ϕTn(·+ ∆νTn)

)
, n ∈ N0, appearing in (3.19) holds for

all ϕ ∈ Cb(Rm). Indeed, continuity of the observation �ltration Y implies that

Ẽ[ϕ(XT−n
) | YTn

] = Ẽ[ϕ(XT−n
) | YT−n ] = πT−n (ϕ).

Using continuity of process η, Kallianpur-Striebel formula (3.2), and the freezing lemma, we get

ρTn(ϕ) = Ẽ[ϕ(XTn) | YTn ]E
[
ηTn

∣∣ Y] = Ẽ[ϕ(XT−n
+ ∆νTn) | YTn ]E

[
ηT−n

∣∣ Y]
= πT−n (ϕ(·+ ∆νTn

))E
[
ηT−n

∣∣ Y] = ρT−n (ϕ(·+ ∆νTn
)),

for all ϕ ∈ Cb(Rm) and all n ∈ N0. This, in turn, entails that if ρT−n admits a density pT−n with respect to
Lebesgue measure, then∫

Rm

ϕ(x) ρTn
(dx) = ρT−n (ϕ(·+ ∆νTn

)) =

∫
Rm

ϕ(x+ ∆νTn
)pT−n (x) dx =

∫
Rm

ϕ(x)pT−n (x−∆νTn
) dx.
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Therefore, since Cb(Rm) is a separating set (see, e.g., [20, Chapter 3, Section 4]), we have the equivalence
of measures ρTn

(dx) and pT−n (x − ∆νTn
) dx, implying that ρTn

admits density with respect to Lebesgue

measure on Rm, given by pT−n (· −∆νTn).

We can now use the recursive structure of (3.19) to get the claim. De�ne the process

ν
(1)
t := νt1t<T1

+ νT1
1t≥T1

, t ∈ [0, T ],

and the random measure ξ(1)(dx) := p0−(x − ∆ν0) dx, on Rm. Consider, for all ϕ ∈ C2
b(Rm), the Zakai

equation

ρ
(1)
t (ϕ) = ξ(1)(ϕ) +

∫ t

0

ρ(1)s
([
∂s +As

]
ϕ
)

ds

+

∫ t

0

ρ
(1)
s−

(
Dxϕ

)
dν(1)s +

∫ t

0

γ−1(s)ρ(1)s (ϕhs) dBs, P-a.s., t ∈ [0, T ]. (4.10)

Since ν(1) satis�es point (iv) of Assumption 2.1, we have that (4.10) is the Zakai equation for the �ltering
problem of the partially observed system (2.8)�(2.13), with initial law ξ(1) and process ν(1), which is contin-
uous on [0, T ]. Therefore, by Theorem 4.6, ρ(1) is its unique solution and admits a density p(1) with respect

to Lebesgue measure on Rm, with E[‖p(1)t ‖2H ] < +∞, for each t ∈ [0, T ]. It is clear that, since νt = ν
(1)
t on

{t < T1}, we have that ρt = ρ
(1)
t on the same set, and hence ρt admits density p

(1)
t on {t < T1}.

Next, let us de�ne the process

ν
(2)
t := νt+T11t<T2−T1 + νT21t≥T2−T1 , t ∈ [0, T ],

and the random measure ξ(2)(dx) = pT−1
(x − ∆νT1

) dx, on Rm. Consider, for all ϕ ∈ C2
b(Rm), the Zakai

equation

ρ
(2)
t (ϕ) = ξ(2)(ϕ) +

∫ t

0

ρ(2)s
([
∂s +As+T1

]
ϕ
)

ds

+

∫ t

0

ρ
(2)
s−

(
Dxϕ

)
dν(2)s +

∫ t

0

γ−1(s+ T1)ρ(2)s (ϕhs+T1
) dBs+T1

, P-a.s., t ∈ [0, T ]. (4.11)

Since ν(2) satis�es point (iv) of Assumption 2.1, we have that (4.11) is the Zakai equation for the �lter-
ing problem of the partially observed system (2.8)�(2.13), with initial law ξ(2) and process ν(2), which is
continuous on [0, T ]. Therefore, by Theorem 4.6, ρ(2) is its unique solution and admits a density p(2) with

respect to Lebesgue measure on Rm, with E[‖p(2)t ‖2H ] < +∞, for each t ∈ [0, T ]. It is clear that, since

νt = ν
(2)
t−T1

on {T1 ≤ t < T2}, we have that ρt = ρ
(2)
t−T1

on the same set, and hence ρt admits density p
(2)
t−T1

on {T1 ≤ t < T2}.
Continuing in this manner, we construct a sequence of solutions (ρ(n))n∈N and corresponding density

processes (p(n))n∈N. We deduce that the unnormalized �ltering process is represented by

ρt =

∞∑
n=1

ρ
(n)
t−Tn

1Tn−1≤t<Tn
, t ∈ [0, T ],

and hence is the unique Y-adapted, càdlàg,M+(Rm)-valued solution to the Zakai equation (3.8), admitting
a Y-adapted, càdlàg, H-valued density process p, given by

pt =

∞∑
n=1

p
(n)
t−Tn

1Tn−1≤t<Tn , t ∈ [0, T ].

The fact that E[‖pt‖2H ] < +∞, for all t ∈ [0, T ], follows from the analogous property for each of the processes

p(n), n ∈ N. �

Appendix A. Techincal results

Let us recall that if A (de�ned on a given �ltered complete probability space) is a càdlàg, adapted, non-

negative process, with A0− = 0, and H is an optional process, satisfying
∫ t
0
|Hs|dAs < +∞, for all t ≥ 0,

P-a.s., then for any stopping time τ we have that∫ τ−

0

Hs dAs :=

∫ +∞

0

Hs1s<τ dAs.
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Lemma A.1. Let (Ω,F ,F,P) be a given �ltered complete probability space, �x T > 0, and let A and H be
two càdlàg, F-adapted real-valued processes. Suppose that A is non-decreasing, with A0− = 0 and AT ≤ K,
P-a.s., for some constant K > 0, and that H satis�es one of the following:

a. E[supt∈[0,T ] |Ht− |] < +∞;

b. H is non-negative and such that E[Ht− ] < +∞, for all t ∈ [0, T ].

Assume, moreover, that for any F-stopping time τ ≤ T we have

E[Hτ− ] ≤M + E

[∫ τ−

0

Hs− dAs

]
, (A.1)

for some constant M . Then E[HT− ] ≤MeK .

Proof. The following reasoning is inspired by the proof of [25, Lemma IX.6.3]. Let us de�ne

Ãt := At1t<T +K1t≥T , t ≥ 0.

Ã is still a càdlàg, F-adapted and non-decreasing process, with Ã0− = 0. Moreover, for any stopping time
τ ≤ T , random measures 1s<τ dAs and 1s<τ dÃs agree, therefore (A.1) implies

E[Hτ− ] ≤M + E

[∫ τ−

0

Hs− dÃs

]
. (A.2)

Next, de�ne Ct := inf{s ≥ 0: Ãs ≥ t}, t ≥ 0, which (see, e.g., [18, Chapter VI, Def. 56] or [25, Proposi-

tion I.1.28]) is an F-stopping time for all t ≥ 0, satisfying Ct ≤ T , thanks to the de�nition of Ã.
We now �x t ∈ [0,K]. Using (A.2), we get

E[H(Ct)− ] ≤M + E
[∫ +∞

0

Hs−1s<Ct
dÃs

]
= M + E

[∫ +∞

0

H(Cu)−1Cu<Ct
du

]
.

Since C is a non-decreasing process, we have that {Cu < Ct} ⊂ {u < t}, and hence 1Cu<Ct
≤ 1u<t.

Therefore

E[H(Ct)− ] ≤M + E
[∫ t

0

H(Cu)− du

]
.

If H satis�es condition b. we can directly apply Fubini-Tonelli's theorem as below. If, instead, condition a.
holds, since Cu ≤ T and, for each �xed ω ∈ Ω, the image of the map u 7→ Cu(ω) is a subset of [0, T ], we
have that supu∈[0,K] |H(Cu)− | ≤ sups∈[0,T ] |Hs− |, so

E
[∫ t

0

|H(Cu)− |du
]
≤ K E[ sup

s∈[0,T ]

|Hs− |] < +∞.

Therefore, we can apply Fubini-Tonelli's theorem and get

E[H(Ct)− ] ≤M +

∫ t

0

E[H(Cu)− ] du,

whence we obtain, from the usual Gronwall's lemma, E[H(Ct)− ] ≤ Met. Thanks to the de�nition of Ã, we
have that CK = T and the claim follows letting t = K in the last inequality. �

Proposition A.2. Under Assumptions 2.1 and 2.2, the process η, de�ned in (2.11), is a (P,F)-martingale.

Proof. Let us notice, �rst, a fact that will be useful in this proof. It can be easily shown that condition (2.1)
implies, for some constant Cγ ,

‖γ−1(t)‖ ≤ Cγ , ∀t ∈ [0, T ]. (A.3)

Let us de�ne, for all t ∈ [0, T ],

Zt :=

∫ t

0

γ−1(s)h(s,Xs) dBs.

Thanks to condition (2.10) and using (A.3) and (2.9), we easily get

E

[∫ T

0

‖γ−1(s)h(s,Xs)‖2 ds

]
≤ nE

[∫ T

0

‖γ−1(s)‖2‖h(s,Xs)‖2 ds

]

≤ nChCγE

[∫ T

0

(1 + ‖Xs‖2) ds

]
≤ nChCγT [1 + κ(1 + E[‖X0−‖2])] < +∞. (A.4)
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Therefore, Z is an (F,P)-martingale, and hence η, which is the Doléans-Dade exponential of Z, is a non-
negative local (F,P)-martingale (see, e.g., [13, Lemma 15.3.2]). Thus, to prove the claim it is enough to show
that E[ηt] = 1 for all t ∈ [0, T ].

We start proving, �rst, that E[ηt‖Xt−‖2] ≤ C, for all t ∈ [0, T ], where C is an appropriately chosen
constant. For the sake of brevity, let us write bs := b(s,Xs), σs := σ(s,Xs), and hs := h(s,Xs). Applying
Itô's formula we get

‖Xt‖2 = ‖X0−‖2 +

∫ t

0

[
2X∗s−bs + ‖σs‖2

]
ds+ 2

∫ t

0

X∗s−σs dWs

+ 2

∫ t

0

Xs− dνs +
∑

0≤s≤t

{‖Xs‖2 − ‖Xs−‖2 − 2Xs− ·∆νs},

and using the integration by parts rule we have

ηt‖Xt‖2 = ‖X0−‖2 +

∫ t

0

[
2ηs−X

∗
s−bs + ηs−‖σs‖2

]
ds+ 2

∫ t

0

ηs−X
∗
s−σs dWs

+

∫ t

0

‖Xs−‖2ηsγ−1(s)hs dBs + 2

∫ t

0

ηs−Xs− dνs

+
∑

0≤s≤t

ηs−{‖Xs‖2 − ‖Xs−‖2 − 2Xs− ·∆νs}.

Therefore, for any �xed ε > 0, we obtain

ηt‖Xt‖2

1 + εηt‖Xt‖2
=

‖X0−‖2

1 + ε‖X0−‖2
+

∫ t

0

ηs−

[1 + εηs−‖Xs−‖2]2
[
2X∗s−bs + ‖σs‖2

]
ds

−
∫ t

0

εη2s−

[1 + εηs−‖Xs−‖2]3
[
4‖X∗s−σs‖

2 + ‖Xs−‖4‖γ−1(s)hs‖2
]

ds

+

∫ t

0

2ηs−

[1 + εηs−‖Xs−‖2]2
Xs− dνcs +

∫ t

0

2ηs−

[1 + εηs−‖Xs−‖2]2
X∗s−σs dWs

+

∫ t

0

ηs−‖Xs−‖2

[1 + εηs−‖Xs−‖2]2
γ−1(s)hs dBs +

∑
0≤s≤t

{
ηs‖Xs‖2

1 + εηs‖Xs‖2
− ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2

}
, (A.5)

where νc denotes the continuous part of the process ν.
With standard estimates (see, e.g., [2, Solution to Exercise 3.11]) it is possible to show that the stochastic

integrals with respect to Brownian motions W and B are (F,P)-martingales. This implies, thanks to the
optional sampling theorem, that these stochastic integrals have zero expectation even when evaluated at
any bounded stopping time. Fixing a F-stopping time τ ≤ t, for arbitrary t ∈ [0, T ], taking the expectation
and noticing that the third term in (A.5) is non-negative, we get

E
[

ητ−‖Xτ−‖2

1 + εητ−‖Xτ−‖2

]
≤ E

[
‖X0−‖2

1 + ε‖X0−‖2

]
+E
[∫ τ−

0

ηs−
[
2X∗s−bs + ‖σs‖2

]
[1 + εηs−‖Xs−‖2]2

ds

]
+ E

[∫ τ−

0

2ηs−Xs−

[1 + εηs−‖Xs−‖2]2
dνcs

]
+E
[ ∑
0≤s<τ

{
ηs‖Xs‖2

1 + εηs‖Xs‖2
− ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2

}]
. (A.6)

We proceed, now, to �nd suitable estimates for the terms appearing in (A.6).
Notice that, thanks to conditions (2.4) and (2.5), we have that for some constant C1∣∣2X∗s−bs + ‖σs‖2

∣∣ ≤ C1(1 + ‖Xs−‖2), P-a.s., s ∈ [0, T ],

Recalling that η is non-negative and that E[ηt] ≤ 1, for any t ∈ [0, T ], we get

E
[∫ τ−

0

ηs−
[
2X∗s−bs + ‖σs‖2

]
[1 + εηs−‖Xs−‖2]2

ds

]
≤ C1E

[∫ τ−

0

ηs−(1 + ‖Xs−‖2)

[1 + εηs−‖Xs−‖2]2
ds

]
≤ C1E

[∫ τ−

0

ηs− ds

]
+ C1E

[∫ τ−

0

ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
ds

]
≤ C1T + C1E

[∫ τ−

0

ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
ds

]
. (A.7)
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Next, we see that

E
[∫ τ−

0

2ηs−Xs−

[1 + εηs−‖Xs−‖2]2
dνcs

]
=

m∑
i=1

E
[∫ τ−

0

2ηs−X
i
s−

[1 + εηs−‖Xs−‖2]2
dνi,cs

]

≤
m∑
i=1

E
[∫ τ−

0

2ηs− |Xi
s− |

[1 + εηs−‖Xs−‖2]2
d|νi,c|s

]
≤

m∑
i=1

E
[∫ τ−

0

ηs−(1 + |Xi
s− |

2)

[1 + εηs−‖Xs−‖2]2
d|νi,c|s

]

≤
m∑
i=1

E
[∫ τ−

0

ηs− d|νi,c|s
]

+

m∑
i=1

E
[∫ τ−

0

ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
d|νi,c|s

]
. (A.8)

Similarly to what we did in the proof of Lemma A.1, let us de�ne

ν̃it := |νi|t1t<T +K1t≥T , t ≥ 0, i = 1, . . . ,m.

For each i = 1, . . . ,m, ν̃i is a Y-adapted, càdlàg, non-decreasing process, with ν̃i0− = 0. Moreover, random

measures 1s<τ d|νi|s and 1s<τ dν̃is agree, therefore

E
[∫ τ−

0

ηs− d|νi|s
]

= E
[∫ τ−

0

ηs− dν̃is

]
, i = 1, . . . ,m,

and, in particular,

E
[∫ τ−

0

ηs− d|νi,c|s
]

= E
[∫ τ−

0

ηs− dν̃i,cs

]
, i = 1, . . . ,m.

Let us de�ne the changes of time Cit := inf{s ≥ 0: ν̃is ≥ t}, for all t ≥ 0 and all i = 1, . . . ,m. Then, noticing
that {Cis ≤ t} = {ν̃it ≥ s} and recalling that η is non-negative and ν̃iT = K, we get

E
[∫ τ−

0

ηs− dν̃i,cs

]
≤ E

[∫ T

0

ηs− dν̃i,cs

]
≤ E

[∫ T

0

ηs− dν̃is

]
= E

[∫ +∞

0

η(Ci
s)
−1Ci

s≤T ds

]

= E
[∫ +∞

0

η(Ci
s)
−1s≤ν̃i

T
ds

]
= E

[∫ K

0

η(Ci
s)
− ds

]
=

∫ K

0

E[η(Ci
s)
− ] ds.

Since E[ηt] ≤ 1, for any t ∈ [0, T ], and Cis ≤ T , for all s ∈ [0,K], we get that

E
[∫ τ−

0

ηs− d|νi,c|s
]

= E
[∫ τ−

0

ηs− dν̃i,cs

]
≤ K, i = 1, . . . ,m. (A.9)

Similarly, we obtain also

E
[∫ τ−

0

ηs− d|νi|s
]

= E
[∫ τ−

0

ηs− dν̃is

]
≤ K, i = 1, . . . ,m. (A.10)

Therefore, putting together (A.8) and (A.9) we obtain

E
[∫ τ−

0

2ηs−

[1 + εηs−‖Xs−‖2]2
Xs− dνcs

]
≤ mK +

m∑
i=1

E
[∫ τ−

0

ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
d|νi,c|s

]
(A.11)

We are left with estimating the last term of (A.6). We have:

E
[ ∑
0≤s<τ

{
ηs‖Xs‖2

1 + εηs‖Xs‖2
− ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2

}]
≤ E

[ ∑
0≤s<τ

{
ηs−(‖Xs‖2 − ‖Xs−‖2)

1 + εηs−‖Xs−‖2

}]

= E
[ ∑
0≤s<τ

{
ηs−(‖∆νs‖2 + 2Xs− ·∆νs)

1 + εηs−‖Xs−‖2

}]
≤ E

[ ∑
0≤s<τ

m∑
i=1

{
ηs−(|∆νis|+ 1 + |Xi

s− |
2)

1 + εηs−‖Xs−‖2
|∆νis|

}]
,

where we used the fact that η is continuous. Since all quantities in the last term are non negative and
|∆νis| ≤ K, for all s ∈ [0, T ] and all i = 1, . . . ,m, P-a.s., we get that

E
[ ∑
0≤s<τ

m∑
i=1

{
ηs−(|∆νis|+ 1 + |Xi

s− |
2)

1 + εηs−‖Xs−‖2
|∆νis|

}]

≤ (1 +K)

m∑
i=1

E
[ ∑
0≤s<τ

ηs− |∆νis|
]

+

m∑
i=1

E
[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
|∆νis|

}]

≤ (1 +K)

m∑
i=1

E
[∫ τ−

0

ηs−d|νi|s
]

+

m∑
i=1

E
[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
∆|νi|s

}]
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≤ mK(1 +K) +

m∑
i=1

E
[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
∆|νi|s

}]
, (A.12)

where we used (A.10) and the fact that |∆νi| = ∆|νi|.
Therefore, feeding (A.7), (A.11), and (A.12) back into (A.6), we obtain

E
[

ητ−‖Xτ−‖2

1 + εητ−‖Xτ−‖2

]
≤M

{
1 + E

[∫ τ−

0

ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
dAs

]}
, (A.13)

where M is a suitable constant, not depending on ε, and A is the process

At := t+

m∑
i=1

|νi|t, t ∈ [0, T ].

Clearly, A is a càdlàg, Y- (and hence F-) adapted, non-negative process, with A0− = 0 and AT ≤ T +mK.

Moreover,
ηt−‖Xt−‖

2

1+εηt−‖Xt−‖2
≤ 1

ε , for all t ∈ [0, T ], P-a.s. Therefore, we can apply Lemma A.1 and obtain

E
[

ηt−‖Xt−‖2

1 + εηt−‖Xt−‖2

]
≤MeM(T+mK).

Recalling that η is continuous we get, applying Fatou's lemma,

E[ηt‖Xt−‖2] = E
[

lim
ε→0

ηt‖Xt−‖2

1 + εηt‖Xt−‖2

]
≤ lim inf

ε→0
E
[

ηt‖Xt−‖2

1 + εηt‖Xt−‖2

]
≤MeM(T+mK). (A.14)

It is important to stress that (A.14) holds for any t ∈ [0, T ], since t was arbitrarily chosen.
Now we can �nally obtain that E[ηt] = 1, for all t ∈ [0, T ]. By Itô's formula, for an arbitrarily �xed ε > 0

and all t ∈ [0, T ],

ηt
1 + εηt

=
1

1 + ε
−
∫ t

0

εη2s
(1 + εηs)3

‖γ−1(s)h(s,Xs)‖2 ds+

∫ t

0

ηs
(1 + εηs)2

γ−1(s)h(s,Xs) dBs.

Thanks to conditions (2.10) and (2.1), standard computations show that the stochastic integral is a (P,F)-
martingale. Therefore, taking the expectation we get

E
[

ηt
1 + εηt

]
=

1

1 + ε
− E

[∫ t

0

εη2s
(1 + εηs)3

‖γ−1(s)h(s,Xs)‖2 ds

]
.

Notice that
εη2s

(1+εηs)3
‖γ−1(s)h(s,Xs)‖2 −→ 0, as ε→ 0, dP⊗ dt-a.s. Moreover,

εη2s
(1 + εηs)3

‖γ−1(s)h(s,Xs)‖2 ≤ ηs‖γ−1(s)h(s,Xs)‖2, s ∈ [0, T ],

that, using conditions (2.10) and (2.1), satis�es (see also (A.4))

E

[∫ T

0

ηs‖γ−1(s)h(s,Xs)‖2 ds

]
≤ nChCγE

[∫ T

0

ηs(1 + ‖Xs‖2) ds

]

= nChCγ

{∫ T

0

E[ηs] ds+

∫ T

0

E[ηs‖Xs−‖2] ds

}
≤ nChCγT [1 +MeM(T+mK)],

where we used the fact that E[ηt] ≤ 1, for all t ∈ [0, T ], and (A.14). Similarly, ηt
1+εηt

→ ηt, as ε → 0,

dP⊗ dt-a.s., and E[
∫ T
0
ηs ds] ≤ T . Therefore, by the dominated convergence theorem

E[ηt] = lim
ε→0

E
[

ηt
1 + εηt

]
= lim
ε→0

{
1

1 + ε
− E

[∫ t

0

εη2s
(1 + εηs)3

‖γ−1(s)h(s,Xs)‖2 ds

]}
= 1,

and this concludes the proof. �

Proof of Lemma 4.3. Fix ε > 0. To start, let us notice that continuity of process ν implies that also ζ is
continuous and, therefore, ζt = ζt− and Tεζt = Tεζt− , dt⊗ dP-almost everywhere.

Since ψ2ε is bounded by (4πε)−
m
2 , we get that for all t ∈ [0, T ],

‖Tεζt‖2H =

∫
Rm

[∫
Rm

ψε(x− y) ζt(dx)

]2
dy (A.15)

=

∫
Rm

∫
Rm

∫
Rm

ψε(x− y)ψε(z − y) ζt(dx) ζt(dz) dy (A.16)

=

∫
Rm

∫
Rm

ψ2ε(x− z) ζt(dx) ζt(dz) ≤ (4πε)−
m
2 ζt(1)2. (A.17)
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Taking into account (3.8) and the fact that ν is continuous, the process ζ(1) satis�es

ζt(1) = 1 +

∫ t

0

γ−1(s)ζs(hs) dBs, t ∈ [0, T ],

where ht(·) := h(t, ·), t ∈ [0, T ]. Thanks to Assumption 4.1, ζt(ht) < +∞, P-a.s., for all t ∈ [0, T ]. Therefore,
since ζt is P-a.s. a �nite (non-negative) measure, for any t ∈ [0, T ], we get that ζ(1) is a non-negative
(P,Y)-local martingale, and hence a (P,Y)-supermartingale.

The next step is to prove that ζ(1) is a square-integrable3 (P,Y)-martingale. We follow, �rst, a reasoning
analogous to that of [5, Lemma 4.3.1] (see also [2, Lemma 3.29]) to provide an explicit representation of
ζ(1). By Itô's formula we obtain, for any δ > 0 and all t ∈ [0, T ],

log
(√

δ + ζt(1)2
)

= log
(√

1 + δ
)

+

∫ t

0

ζs(1)

δ + ζs(1)2
γ−1(s)ζs(hs) dBs

+
1

2

∫ t

0

δ − ζs(1)2

[δ + ζs(1)2]2

n∑
i=1

 n∑
j=1

γ−1ij (s)ζs(h
j
s)

2

ds. (A.18)

Since, thanks to Assumption 4.1 and (A.3),

n∑
i=1

( n∑
j=1

γ−1ij (t)ζt(h
j
t )

)2

≤ (nCγKhζt(1))2, P-a.s., ∀t ∈ [0, T ], (A.19)

and δ−ζt(1)2
[δ+ζt(1)2]2

≤ 1
δ+ζt(1)2

, P-a.s., for all t ∈ [0, T ], we have

ζs(1)2

[δ + ζs(1)2]2

n∑
i=1

 n∑
j=1

γ−1ij (t)ζt(h
j
t )

2

≤
(
nCγKh

ζs(1)2

δ + ζs(1)2

)2

≤ (nCγKh)2, ∀t ∈ [0, T ],

and

δ − ζs(1)2

[δ + ζs(1)2]2

n∑
i=1

 n∑
j=1

γ−1ij (s)ζs(h
j
s)

2

≤ ζs(1)2

δ + ζs(1)2
(nCγKh)2 ≤ (nCγKh)2, ∀t ∈ [0, T ].

Both the r.h.s. of the last two inequalities are integrable on [0, T ], therefore we can pass to the limit, as
δ → 0, in (A.18), getting that, for all t ∈ [0, T ],

log(ζt(1)) = 1 +

∫ t

0

γ−1(s)ζ1s (hs) dBs −
1

2

∫ t

0

n∑
i=1

( n∑
j=1

γ−1ij (s)ζ1s (hjs)

)2

ds, (A.20)

where ζ1t (dx) := ζt(dx)
ζt(1)

, t ∈ [0, T ], is the normalized process associated to ζ. From (A.20) we get the explicit

representation for ζ(1), i.e., for all t ∈ [0, T ],

ζt(1) = exp

{∫ t

0

γ−1(s)ζ1s (hs) dBs −
1

2

∫ t

0

n∑
i=1

( n∑
j=1

γ−1ij (s)ζ1s (hjs)

)2

ds

}
. (A.21)

This entails that ζ(1) coincides with the Doléans-Dade exponential of the continuous (P,Y)-local martingale∫ t
0
γ−1(s)ζ1s (hs) dBs, t ∈ [0, T ]. Using once more (A.19) we have that, for any k > 1,

E
[
exp

{
k

2

∫ T

0

n∑
i=1

( n∑
j=1

γ−1ij (t)ζ1t (hjt )

)2

dt

}]
≤ exp

{
kT (nCγKh)2

2

}
.

Applying [13, Theorem 15.4.6], we get that, for any p > 1, ζ(1) is a p-integrable (in particular, square-
integrable) (P,Y)-martingale. Therefore, from (A.15) we get

E[ sup
t∈[0,T ]

‖Tεζt‖2H ] ≤ (4πε)−
m
2 E[ sup

t∈[0,T ]

ζt(1)2] < +∞,

whence, recalling the remark at the beginning of the proof, the claim. �

3If M = (Mt)t∈[0,T ] is any martingale, we say that M is a p-integrable martingale, with p ≥ 1, if E[supt∈[0,T ]|Mt|p]1/p <
+∞.
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