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Abstract

Dark matter may be comprised of keV-mass sterile neutrinos, which were mainly pro-
duced during the Quantum Chromodynamics (QCD) epoch of the early Universe.
The production could be strongly affected by opacities (or damping rates) of active
neutrinos, which receive non-perturbative QCD contributions. We investigate the
importance of these contributions and find that they significantly affect the sterile
neutrino yield only in the case of non-resonant production. The latter can however
only provide a small fraction of the relic dark matter abundance, since it is subject
to strong constraints from X-ray observations of sterile neutrino decay, as well as
Lyman-α observations connected to structure formation. In the presence of large
lepton asymmetries, the production can be resonantly enhanced and a significant
fraction of the dark matter can be produced, while observational constraints are
much weaker. In that case however, we find that the yield turns out to be insensi-
tive to changes of the opacities. Thus, non-perturbative QCD contributions to the
opacities will not affect this dark matter scenario. Furthermore, we obtain larger
sterile neutrino yields than previous studies and thus weaker lower limits on the
active-sterile mixing angle from big bang nucleosynthesis. In addition, we calculate
lower limits on the mixing angle from the cosmic microwave background, which has
not been done before in the context of sterile neutrino dark matter. These limits
are weaker than the limits from big bang nucleosynthesis but also more robust due
to smaller systematic uncertainties. Finally, we investigate a simple extension of
the Standard Model in which a new scalar field, mediating self-interactions among
active neutrinos, poses an alternative to large lepton asymmetries in helping to ef-
ficiently produce sterile neutrino dark matter. The new scalar field can also lead
to resonant production, however its contribution to the active neutrino opacity is
much higher than the Standard Model contribution and reduces the significance of
resonances. Nevertheless, the available parameter space in which the dark matter
abundance can be produced is quite large due to weak observational constraints in
this scenario.
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Chapter 1

Introduction

Gaining a deeper understanding of the building blocks that make up the world
around us, from the smallest scales on the quantum level to the largest scales of
cosmology, often requires the connection of puzzle pieces from opposite sides of this
spectrum. On the one side, the advancements in theoretical and experimental parti-
cle physics of the last few decades have opened our eyes to a variety of fundamental
particles and laws that govern their interplay, collectively forming the Standard
Model (SM) of particle physics. On the other side, the Lambda-Cold-Dark-Matter
model (ΛCDM) serves as the cosmological standard model that describes the evo-
lution of the Universe as a whole, and is well-founded based on many observations
on large scales, like the cosmic microwave background (CMB) or the accelerating
expansion of the Universe. What appears to be a separation of different worlds by
many orders of magnitude in length and by different forces dictating how the states
of a given system evolve, turns out to be deeply connected in many instances. For
example, roughly 300.000 years after the Big Bang, when the Universe was much
hotter and denser than today, most of the energy density resided in a plasma of rel-
ativistic particles. Due to the cosmological expansion, the energy density decreased
and the plasma cooled down. Then at some point, the interaction rate of photons
with the electrons in the plasma was overtaken by the expansion rate of the Uni-
verse, which lead to their decoupling. These photons subsequently streamed freely
through spacetime, which marked the birth of the CMB. The discovery of this relic
in 1965 [2] teaches us that, in order to make sense of the cosmic evolution from very
early on, one needs to have a good idea of the relevant processes on the smallest
scales of elementary particles, as described by the SM. The SM has proven its success
in numerous experimental tests and searches over the last decades. Most notably,
the discovery of the Higgs boson in the Large Hadron Collider at CERN [3, 4] con-
firmed the theory of spontaneously broken electroweak symmetry and the resulting
mass generation for most of the known elementary particles.

A lot of what we know about the current state of the Universe stems from precise
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measurements of the CMB. It is highly isotropic, with small temperature fluctuations
of the order δT/T ∼ 10−5 after subtracting the dipole anisotropy contributions [5].
The latter come from our own movement through space, as CMB photons coming
towards us appear blueshifted and those going away from us appear redshifted. The
full-sky map of the CMB is analyzed in terms of a power spectrum of temperature
fluctuations, which sensitively depends on the parameters of the cosmological model.
The contributions ρi to the present energy density coming from dark matter, bary-
onic matter, dark energy and curvature are parametrized by the respective density
parameters Ωi = ρi/ρc, where ρc = 3H2

0/8πG is the energy density of a spatially
flat universe, which is also to very high accuracy the present energy density. Here,
H0 = (67.4± 0.5)km s−1Mpc−1 [6] is the current value of the Hubble parameter and
G is the gravitational constant. Currently, the most precise estimates of the free
parameters of the ΛCDM model are given by the Planck collaboration [6], with best
fit results

ΩDM = 0.265± 0.007,

Ωb = 0.0493± 0.0006,

ΩΛ = 0.685± 0.007,

ΩK = 0.001± 0.002,

(1.1)

for the contributions to the present energy density coming from dark matter, bary-
onic matter, dark energy and curvature. Astonishingly, about 85% of the energy
content subscribed to non-relativistic matter is dark matter, of which we know noth-
ing about its composition. We know that it is responsible for various gravitational
phenomena that cannot be explained just by the amount of luminous matter and
with our current theory of gravity, General Relativity. Most existing theories assume
that it is composed of one or more yet unknown particle species, which must have
been produced during an early stage of the Universe. In any case, the SM of particle
physics does not provide an explanation.

Assuming that after their production, these dark matter particles were in thermal
equilibrium with the SM particles in the early Universe, they must have decoupled
at some point and then continued to stream freely. Depending on their mass M and
the decoupling temperature Tdec, one usually distinguishes between cold, warm and
hot dark matter. If Tdec �M , the particles are non-relativistic when they decouple
and thus referred to as cold. In the opposite case, Tdec � M , they are still highly
relativistic upon decoupling and referred to as hot. Finally, the particles can be con-
sidered warm as an intermediate in between those two extremes. Cosmologies with
purely cold dark matter, as described by the ΛCDM model, seem to be conflicting
with observed structures on small scales, as they generally predict a more efficient
structure formation than what is required to match observations. Prime examples
are the missing-satellite problem [7] and the too-big-to-fail problem [8]. On the flip
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Chapter 1. Introduction

side, purely hot dark matter prevents the formation of structures like galaxies and
galaxy clusters [9]. This excludes for example SM neutrinos as the sole dark matter
constituent. Warm dark matter could be a way out, as it allows for the formation
of larger structures and simultaneously reduces the build-up of smaller ones [10].

The main actor of this thesis is the sterile neutrino, a hypothetical particle that
may serve as a candidate for warm dark matter if its mass lies in the keV-range. A
sterile neutrino is quite similar to the SM neutrino, only that it is right-handed and
therefore does not take part in weak interactions, which justifies the term sterile.
In contrast, the SM neutrino is then usually referred to as an active neutrino. The
extension of the SM by right-handed neutrinos is theoretically very well motivated.
They may not only serve as a dark matter candidate but also provide non-zero masses
for the active neutrinos and explain active-neutrino oscillations. Furthermore, they
might play a key role in the generation of the matter-antimatter asymmetry of the
Universe. However, these possibilities typically require sterile neutrinos on very
different mass scales and are difficult to be realized simultaneously, see section 3.1.

The minimal extension of the SM by one family of sterile neutrinos can explain
the origin of dark matter. The simplest scenario is the production of sterile neutrino
dark matter via active-sterile oscillations in the early Universe. This scenario was
originally proposed by Dodelson and Widrow [11], but was later disfavored by strong
observational constraints on the sterile neutrino mass and mixing angle [12–14]. One
way to circumvent these constraints was suggested by Shi and Fuller [15]. They as-
sumed the presence of primordial lepton asymmetries, much larger than the observed
baryon asymmetry. These lead to resonant production of sterile neutrinos, with
qualitative differences to the Dodelson-Widrow scenario that greatly weaken the pa-
rameter constraints and thus make sterile neutrino dark matter feasible. A crucial
feature of these active-sterile mixing scenarios is that the production of keV-mass
sterile neutrinos is most effective for temperatures T ∼ O(100) MeV [11, 16–19].
More specifically, in their original work, Dodelson and Widrow give the maximal
production temperature [11]

Tmax ∼ 133 MeV

(
M

keV

) 1
3

, (1.2)

where M denotes the sterile neutrino mass. For M ∼ O(keV), we find ourselves in
the epoch where the strong interaction, as described by Quantum Chromodynamics
(QCD), has a large coupling and is generally non-perturbative. During this epoch,
the plasma of strongly interacting quarks and gluons undergoes a smooth crossover
[20,21], in which these initially free particles confine into hadrons as the temperature
drops. Since the quarks are also subject to the weak force, the QCD crossover is
naturally also relevant for the neutrino sector of the SM, which in turn can have
important consequences for sterile neutrino production.
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A key ingredient in determining the production rate of sterile neutrino dark
matter is the active-neutrino propagator. It is modified by self-energy corrections,
coming from interactions with leptons and quarks. The latter naturally come with
uncertainties from the QCD epoch. The most difficult to compute are hadronic
contributions to the imaginary part of the active neutrino self-energy, or opacity.
One goal of this thesis is to answer the question of how important this hadronic
opacity contribution is in the context of sterile neutrino production. The case of
resonant production is especially interesting as it can provide for the dark matter.
Besides resonant sterile neutrino production through large lepton asymmetries, we
also investigate a model in which a potential cause of resonances is provided by self-
interactions among active neutrinos, mediated by an additional scalar field beyond
the SM. This model leads to a rather weakly constrained scenario of sterile neutrino
dark matter, in which efficient production is rather easily achieved [22].

The remainder of this thesis is structured as follows: In chapter 2, we briefly
review some observations that confirm the dark matter hypothesis and discuss some
particle candidates beyond the SM. We also discuss other fundamental problems
of the SM, namely neutrino masses and the baryon asymmetry of the Universe.
Chapter 3 will serve as an introduction to sterile neutrinos and explain how differ-
ent variants of this hypothetical particle can solve the different SM problems. The
main focus will lie on sterile neutrino dark matter, its properties and constraints on
the respective parameters. Furthermore, we introduce non-resonant and resonant
production scenarios in the early Universe, as well as further parameter constraints
associated with them. Finally, uncertainties related to QCD are introduced. In
chapter 4, we introduce evolution equations for the sterile neutrino phase space den-
sities and lepton number densities and investigate the various leptonic and hadronic
contributions entering through the active-neutrino propagator. In chapter 5, we
present numerical solutions of the evolution equations and work out the influence of
active-neutrino opacities on non-resonant and resonant sterile neutrino production.
Based on our findings, we are able to update the lower limit on the active-sterile
mixing angle in chapter 6 and extend the viable parameter space for the resonant
production scenario. We also confirm a lower limit on the sterile neutrino mass
which is based on observations of the Lyman-α forest and finally, summarize all
relevant limits in a new exclusion plot. In chapter 7, we study a model in which
the SM is extended by an additional scalar field. We investigate how this influences
sterile neutrino production efficiency and the relevance of resonances, which may
occur even in the absence of any lepton asymmetries. Chapter 8 summarizes our
findings.
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Chapter 2

Beyond the Standard Model

In this chapter we shortly review some of the observations that lead to the postula-
tion of the existence of dark matter. We have a look at some of the most popular
particle candidates, which immediately takes us beyond the realm of the SM of par-
ticle physics. We also shortly discuss other challenges the SM faces, which will then
further motivate the introduction of sterile neutrinos in the next chapter.

2.1 Some dark matter phenomenology

The first hint that the Universe holds more matter than what is detected somewhere
on the electromagnetic spectrum, was given by Zwicky in 1933 [23]. When study-
ing the Coma cluster, he found that the galaxies in the cluster were moving much
faster than expected from the virial theorem. He concluded that the mass density
inside the cluster should be at least 400 times higher than the density derived from
measurements of the visible matter. A possible explanation would be the presence
of a halo of non-visible matter, which he called dark matter, in a much greater
abundance than the visible matter. Today we have data from numerous observa-
tions on different length scales, which strengthen Zwicky’s conclusion and further
substantiate the dark matter hypothesis.

2.1.1 Galactic rotation curves

One very prominent example is the measurement of rotational velocities of spiral
galaxies. Based on Newtonian dynamics and the assumption that a large proportion
of the galaxy’s mass is accumulated in some inner region, the velocity of the outer
regions is expected to decrease like the inverse square root of the galactic radius,

v(r) =

√
GM(r)

r
, (2.1)
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2.1. Some dark matter phenomenology

Figure 2.1: Measured values of the rotational velocity of the spiral galaxy NGC
6503 together with the best-fit curve (thick black line). The other three lines are
the rotation curves of the individual matter contributions, which together fit the
experimental data. The dashed curve is for the disk, the dotted curve for the visible
gas and the dash-dotted curve for the dark halo. Taken from [25].

whereM(r) is the distribution of the visible matter and G is Newton’s gravitational
constant. The mass should remain constant for very large radii. However, it was
found that the velocity of the outer arms does not slow down with increasing radius,
but instead remains nearly constant [24]. An example is shown in figure 2.1. The
nearly constant velocity reflects a different mass distribution from the visible one.
From eq. (2.1), one concludes that the mass increases linearly for large radial dis-
tances, M(r) ∝ r, reflected by the dash-dotted curve. This hints at the existence of
dark matter that is clustering around the galaxy with a density profile ρ(r) ∝ 1/r2

for large radial distances.

2.1.2 The Bullet cluster

Another observation favoring the dark matter hypothesis is based on gravitational
lensing, an effect that is predicted by General Relativity. It describes how a matter
distribution between a distant light source and an observer bends the light’s path due
to the distortion of space-time in that region. The apparent shape of the source then
deviates from the typical shape of objects belonging to the same class as the source,
like certain galaxies. By measuring many such galaxies and comparing to the specific
source under consideration, one can learn about lensing induced distortions and draw
conclusions about the structure of the non-luminous matter distribution [26]. A
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Chapter 2. Beyond the Standard Model

Figure 2.2: Bullet cluster 1E0657-56. This image is an overlay of several observa-
tions. The optical image from the Magellan and the Hubble Space Telescope shows
galaxies in white and orange. The pink overlay stems from the hot gas as observed
by the Chandra X-ray Observatory and represents the bulk of ordinary matter. The
blue overlay shows most of the mass, which is dominantly dark, as reconstructed by
gravitational lensing. Taken from [29].

famous example in which this mass reconstruction procedure supports the existence
of dark matter is the Bullet cluster, a system of two galaxy clusters that collided with
each other. It is shown in figure 2.2. Via weak lensing mass reconstruction it was
possible to show that most galaxies from both clusters basically passed through each
other, which is possible due to their sparse distributions [27]. But X-ray observations
have shown that the bulk of the electromagnetically interacting and hot gas, which
makes up most of the total visible mass of the system, is left in between both
clusters [28]. If the only source of mass was visible matter, we would expect most of
it to be distributed in the same way as the hot gas. But the observations tell us that
the majority of the mass is centered around the stars in the galaxies, not around the
gas. Thus, the major mass component must be dark matter, which behaves mostly
collisionless.

2.1.3 The cosmic microwave background

Going further to the cosmological scale, evidence for dark matter is provided by
measurements of the CMB. Features of its power spectrum offer a lot of information
on the Universe’s composition, see ,e.g., [30] for an intuitive review. The impact of
dark matter on CMB anisotropies can roughly be summarized as follows. Before
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2.2. Searching for a suitable particle candidate

Figure 2.3: Planck power spectrum of temperature fluctuations in the CMB. Red
dots with error bars are measured data, the green curve is the best fit to the ΛCDM,
the pale green stripe corresponds to predictions of model variations that best agree
with the data. Figure taken from [31].

the atoms in the Universe became neutral, the photons were still tightly coupled
to the baryonic matter. Due to its collisionless nature, dark matter was able to
cluster gravitationally, providing for perturbations in the gravitational potential.
These perturbations drove gravitational clusterings in the photon-baryon plasma,
which were however counteracted by electromagnetic repulsion. The photon-baryon
plasma began to oscillate in and out of overdense regions, the back and forth being
due to gravitational pull and radiational push. The phases of these oscillations froze
in at the time the photons decoupled from the rest of the plasma and were projected
onto the sky as a series of so-called acoustic peaks [5], visible on sub-degree scales
(100 . l . 1000) in the CMB power spectrum, as shown in figure 2.3. The angular
scale and height of these peaks are powerful probes of cosmological parameters and
the ΛCDMmodel with the parameters in (1.1) provides an excellent fit [6]. Therefore
the CMB power spectrum not only provides very strong evidence for the existence
of dark matter, but also precisely predicts its relic abundance.

2.2 Searching for a suitable particle candidate

Assuming that dark matter consists purely of one type of elementary particle, it
quickly becomes clear that the search for it must go beyond the SM. Most obviously,
the wanted particle must not underly electromagnetic or strong interactions, since
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Chapter 2. Beyond the Standard Model

they should lead to observable effects on large scales. Furthermore it must be stable
or extremely long lived, with a lifetime exceeding the age of the Universe. This
immediately narrows the list of SM candidates down to the neutrinos. However,
their tiny masses1 make them a hot dark matter candidate, which is incompatible
with structure formation. They are only allowed to make a small contribution to
the dark matter energy density.

We mention that as an alternative to the particle hypothesis, some theories
manage to explain some observations not by dark matter but by modifying gravity
itself. Modified Newtonian Dynamics (MOND), for example, provides an enhanced
gravitational attraction by modifying Newton’s force law, leading to a successful
prediction of the rotation curves of low-surface-brightness galaxies [32]. On the flip
side, theories of modified gravity like MOND are unable to explain the observations
from the Bullet cluster. Without dark matter, the dominant mass component of the
cluster would be the X-ray gas. The mass peak obtained via weak lensing should
then coincide with the gas, which is not the case [27].

There exist many candidates for dark matter, with very different physical back-
grounds and we will certainly not be able to give a complete list. Exotic ones may
include, e.g., axinos, gravitinos or neutralinos that originate from supersymmetric
theories [33], or Kaluza-Klein particles arising from extra dimensional extensions of
the SM [34]. Besides candidates on the elementary particle side, there exist various
candidates on macroscopic scales. Popular ones include primordial black holes [35]
or massive astrophysical compact halo objects (MACHOs) [36], like brown dwarfs,
neutron stars or black holes.

There exists a huge variety of dark matter candidates beyond the SM, some of
which have been more popular than others in the last decades. In this section, we
want to focus on arguably the two most popular particle candidates besides sterile
neutrinos, namely WIMPs and axions.

2.2.1 WIMPs

The WIMP (weakly interacting massive particle) might provide the dark matter
density via the freeze-out mechanism. Its name actually does not refer to a specific
elementary particle, but rather to a broader class of particles. In [37] it was intro-
duced in the form of a heavy right-handed neutrino. In general it is a neutral, stable
particle X, which initially resides in thermal equilibrium with the primordial plasma
at high temperatures T & mX . It constantly undergoes creation and annihilation
processes with its coinciding anti-particle X̄. Once the temperature drops below its
mass, the number density begins to drop due to annihilation processes, which cannot

1In the SM, neutrinos are exactly massless, which is a problem on its own and discussed further
below.
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2.2. Searching for a suitable particle candidate

be balanced by the corresponding creation processes anymore. The evolution of its
number density nX is governed by the Boltzmann equation

dnX
dt

= −3HnX − 〈σv〉 (n2
X − n2

eq). (2.2)

Here H is the Hubble rate, 〈σv〉 is the thermally-averaged annihilation cross-section
and neq the equilibrium density. The number density initially tracks the equilibrium
density. At some point in time, the temperature drops to the freeze-out temperature,
a critical value at which the annihilation rate is taken over by the expansion rate
and the annihilations stop. Then the number of X-particles in a comoving volume
element remains constant, this process is referred to as freeze-out. As an order of
magnitude estimate, the solution to (2.2) provides a present relic density [38]

ΩXh
2 ∼ 10−27cm3s−1

〈σv〉
∼ 10−10GeV−2

〈σv〉
. (2.3)

Thus, assuming an annihilation cross-section on the weak scale, 〈σv〉 ∼ 10−9 GeV−2,
one obtains a density that is remarkably close to the relic dark matter density
ΩDMh

2 ≈ 0.12 [6]. This incidental feature is known as the ’WIMP miracle’ and
naturally makes the WIMP an attractive candidate for dark matter.

2.2.2 Axions

Another candidate, or rather another class of candidates comprises axions and axion-
like particles (ALPs), which typically encompass very light scalar or pseudoscalar
fields. The axion is a hypothetical particle originally associated with the Peccei-
Quinn symmetry as a solution to the strong CP problem [39]. The SM Lagrangian’s
main source of CP violation is a phase in the CKM matrix that is needed in the de-
scription of quark mixing. However, there is another CP violating term in the QCD
sector associated with non-trivial topological configurations of the QCD vacuum,

Lθ = −θ αs
8π
F µνaF̃µνa. (2.4)

Here, αs is the fine-structure constant of strong interactions, F is the gluon field-
strength tensor and F̃ its dual. θ is a free parameter of the theory which needs
to be determined experimentally. One would argue that most naturally, its value
should be of order 1, as there are no theoretical arguments suggesting otherwise.
However, measurements of the neutron electric dipole moment pose very stringent
bounds, pushing its value down to θ . 10−10 [40]. This discrepancy is the strong
CP problem. Peccei and Quinn proposed the following solution: They consider an
additional global U(1) symmetry, which is spontaneously broken and the θ-term
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Chapter 2. Beyond the Standard Model

(2.4) is canceled dynamically. The axion a emerges as the Nambu-Goldstone boson
associated with the symmetry breaking and it couples to the QCD gauge sector via

L =
a

fPQ

αs
8π
F µνaF̃µνa, (2.5)

where fPQ is the U(1) symmetry-breaking scale. In the phase of broken symmetry,
the axion field acquires a vacuum expectation value,

〈a〉 = θfPQ, (2.6)

providing a vacuum configuration which leads to the cancellation of (2.4) and thus
solving the strong CP problem.

Axion dark matter is a very broad subject, with different possible production
scenarios that may underly different parameter constraints. Axions may have been
produced thermally in the early Universe via interactions involving quarks and glu-
ons [41], which would contribute a hot dark matter fraction [42]. More attractive
is their possible role as cold dark matter, which is mainly produced non-thermally
via cosmic string decay [43], domain wall decay [44] or most famously via the mis-
alignment mechanism [45–47]. In the latter, topological fluctuations of the gluon
fields explicitly break the Peccei-Quinn symmetry, which then drives the axion field
towards the minimum of its potential. This process leads to an excitement of co-
herent axion field oscillations, which ultimately represent a condensate that builds
the cold dark matter. Very light, bosonic dark matter tends to carry imprints of
quantum effects to macroscopic scales, which is the reason that this type of dark
matter is often referred to as wave or fuzzy dark matter. A more in-depth review of
WIMP and ALP physics including the current status and prospects for experimental
searches can be found, e.g., in [5].

2.3 Further challenges

Besides having no good dark matter candidate in its repertoire, the SM also lacks
the ability to solve a few other, very fundamental puzzles. The most prominent ones
are the existence of neutrino masses and oscillations and the origin of the baryon
asymmetry of the Universe. Possible solutions to these unanswered questions also
involve the introduction of sterile neutrinos, which is why we briefly discuss them
here and thus further motivate the following chapter.

2.3.1 Neutrino masses

The neutrino is the only SM fermion that appears only as a left-handed particle,
therefore it remains massless after the spontaneous breaking of electroweak symme-
try. What might at first look like a superficial problem of theoretical incompleteness
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in some sense, turns out to be a severe problem in the light of neutrino oscillations. In
such an oscillation, the flavor content of a neutrino traveling through space changes
periodically. The flavor of a neutrino is determined by the accompanying charged
lepton in a weak interaction, thus a state |να〉 with α = e, µ, τ refers to weak inter-
action eigenstate or flavor eigenstate. A freely propagating neutrino, on the other
hand, is in a quantum mechanical superposition of all three flavor eigenstates and
exists in a mass eigenstate |νi〉. These states are related by a unitary matrix U ,

|να〉 =
∑
i

Uαi |νi〉 . (2.7)

If we now fix the energy E, we can consider the evolution of a mass eigenstate in
terms of the distance L the neutrino has traveled,

|νi(t, L)〉 = e−i
m2
i

2E
L |νi(0)〉 , (2.8)

where the neutrino is assumed to be ultra-relativistic and to carry momentum pi ≈
E − m2

i /2E. Then the amplitude for detecting a neutrino with flavor β, after a
neutrino with initial flavor α has traveled the distance L in time t, reads

〈νβ(t, L)|να(0)〉 =
∑
i

U∗βiUαie
−im

2
i

2E
L. (2.9)

The probability for this event is given by

| 〈νβ(t, z)|να(0)〉 |2 =
∑
i,j

U∗βiUαiUβjU
∗
αje

i
∆m2

ij
2E

L, (2.10)

which shows that neutrino flavor oscillations generally occur for non-zero squared-
mass differences ∆m2

ij ≡ m2
i −m2

j . More specifically, measurements involving accel-
erator, reactor, solar and atmospheric neutrinos predict two non-zero squared-mass
differences [5]

∆m2
12 = (7.58± 0.18) · 10−5eV2, (2.11)

∆m2
32 = (2.453± 0.034) · 10−3eV2, (2.12)

which in turn require at least two non-zero masses, the third one may or may not
be massive. The origin of these masses remains an open question, but it certainly
lies beyond the SM.

2.3.2 Baryon asymmetry

The second fundamental puzzle can be stated in simple terms as follows: why is
there only matter around us but no antimatter? What is the origin of this baryon
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Chapter 2. Beyond the Standard Model

asymmetry? Measurements of the CMB tell us that the baryon number density nB
in the Universe is quite small but a non-zero fraction of the photon number density
nγ, whereas the number density nB̄ of anti-baryons is basically zero. Concretely, the
baryon asymmetry is given as [5, 48]

nB − nB̄
nγ

=
nB
nγ

= (6.133± 0.027) · 10−10. (2.13)

It is generally assumed that this number was initially zero and that it was produced
dynamically in the early Universe, in a process called baryogenesis. A.D. Sakharov
showed that for a successful baryogenesis, one has to fulfill three conditions [49],
namely

• the non-conservation of baryon number,

• the violation of charge (C) and charge-parity (CP) symmetry,

• a departure from thermal equilibrium.

The first condition is obvious if the Universe initially started out with nB = 0. The
violation of C and CP symmetry is necessary since any process generating baryon
number would have the same rate as its C- or CP-conjugate process, generating
anti-baryon number. Hence, no baryon asymmetry would be generated. A system
in thermal equilibrium does not allow for a non-zero rate of baryon number creation
without the same rate for destruction, so again no baryon asymmetry would be
generated. In the SM, the chiral anomaly can lead to baryon number generation
via so-called sphaleron processes [50, 51]. Such a process describes the transition
between different electroweak vacuum configurations, in which baryon number and
lepton number are violated in a way such that their difference is conserved. Then,
baryon number can be created from a non-zero lepton number. The origin of the
latter again demands an explanation. The only source of CP-violation in the SM
is the Cabbibo-Kobayashi-Maskawa matrix, responsible for quark mixing. It was
however shown that it provides insufficient amounts of CP-violation for a successful
baryogenesis [52,53]. A departure from thermal equilibrium can be found in the early
Universe during the electroweak phase transition. It was shown that a strong first
order phase transition is required for generating the observed baryon asymmetry [54].
It turned out however, that for the SM Higgs mass mH ≈ 125GeV [3, 4], this
transition was a smooth crossover and a first order phase transition would only be
possible for a much lower mass, mH . 80 GeV [55]. Due to these findings, it can
be concluded that the SM alone is not able to explain the origin of the baryon
asymmetry of the Universe.
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Chapter 3

General introduction to sterile
neutrinos

This chapter serves as a general introduction to the main actor of this thesis, the
sterile neutrino. There is a large variety of phenomenology associated with its ex-
istence, depending on the number of sterile flavors, their masses and couplings to
other fields.

A sterile neutrino is the right-handed counterpart to the left-handed SM neutrino,
which makes it a singlet also under the weak SU(2) gauge symmetry. This is the
reason for the term ’sterile’, as opposed to the SM neutrino often being referred to
as ’active’. It may come in any number of different flavors, even though the most
natural number would appear to be three, just like the active neutrino appears in
three flavors. As the sterile neutrino is uncharged under all gauge groups of the
SM, it is possible to introduce a Majorana mass for it without violating any gauge
symmetry. In order to find solutions to SM problems, a connection between the
sterile sector and the SM sector is desirable. Coupling active and sterile neutrinos
via Yukawa interactions with the Higgs field is in accordance with all SM gauge
symmetries. In this setup, we may describe the sterile neutrino with a Majorana
spinor N and extend the SM Lagrangian by

L =
1

2

∑
i

N̄i

(
i/∂ −Mi

)
Ni −

∑
α,i

(
N̄iϕ̃

†hiα`α + h.c.
)
. (3.1)

Here, the index i counts the number of sterile flavors, ϕ̃ = iσ2ϕ∗ is the conjugate
Higgs doublet, `α = (ν

Lα
, e

Lα
)> is the left-handed lepton doublet, the Yukawa cou-

plings are denoted by hiα and the Majorana masses by Mi.
With this setup, we may not only find a suitable dark matter candidate but

also a possible way out of other problems we discussed in the previous chapter.
Solving more than one problem at once is challenging however, as different solutions
generally require different sterile neutrino masses.
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3.1 Different mass scales solve different problems

3.1.1 Seesaw-mechanism

For the purpose of illustration, we consider the simple case of only one sterile and
one active neutrino in (3.1). Generally, we can express the sterile neutrino field N
through a right-chiral field νR as

N = νR + (νR)c, (3.2)

where (νR)c is the CP-conjugate field of νR. In the broken phase of electroweak
symmetry, the Higgs field adopts its vacuum expectation value 〈ϕ̃〉 = (v/

√
2, 0)>

with v ' 246 GeV [5]. In that case, we can rewrite the mass terms in (3.1) as

Lm =
1

2

(
νL (νR)c

)(
0 mD

mD M

)(
(νL)c

νR

)
+ h.c., (3.3)

where mD ≡ hαv/
√

2 is a Dirac mass. Diagonalizing the mass matrix in the limit
M � mD, yields the eigenvalues

m1 = −m
2
D

M
, (3.4)

m2 = M. (3.5)

The negative sign of the first eigenvalue can be absorbed via redefinitions of the
fields. The corresponding mass eigenfields read

νm =νL + (νL)c − mD

M

(
νR + (νR)c

)
, (3.6)

Nm =νR + (νR)c +
mD

M

(
νL + (νL)c

)
. (3.7)

We see that the introduction of a right-chiral neutrino field and a heavy scale M
yields two new mass eigenfields, one of which is very light and almost purely left-
handed and the other is much heavier and almost purely right-handed. The heavier
one field becomes by choosing larger M , the lighter the other field becomes as a
result, hence this is called the seesaw mechanism.

The light field is identified with the SM neutrino. Although the individual
SM neutrino masses are unknown, combined results from CMB measurements and
baryon acoustic oscillations suggest the upper limit on the sum of all three active
neutrino masses [5, 6] ∑

mν < 0.12 eV. (3.8)

Let us for the moment assume a neutrino mass m1 ∼ 10−2eV. Then we can give a
rough estimate of the scale M that is necessary to produce this mass via the seesaw
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mechanism. For Yukawa couplings comparable to the ones for the charged leptons
or quarks, i.e., for masses between mD ∼ me and mD ∼ mt, this would require a
Majorana mass M ∼ 104 GeV up to M ∼ 1015 GeV respectively. Alternatively,
the small SM neutrino masses can simply be the result of much smaller Yukawa
couplings and smaller values for M .

3.1.2 Leptogenesis

Regarding the origin of the baryon asymmetry of the Universe, sterile neutrinos
may enable a successful baryogenesis via so-called leptogenesis, originally proposed
in [56]. In this scenario, the first step is the creation of a lepton asymmetry, the
second step is converting it into a baryon asymmetry via sphaleron processes. Sterile
neutrinos can provide for additional CP violation to the SM through their Yukawa
couplings. If the couplings are small enough, the sterile neutrinos may be far from
thermal equilibrium and never even reach it. Furthermore, their Majorana mass
term violates lepton number conservation. Thus, a lepton asymmetry can be created
and subsequently baryogenesis can take place, since the Sakharov conditions can be
fulfilled.

There exist various possible realizations of leptogenesis, involving different mass
scales. In the original scenario, also called thermal leptogenesis, lepton asymmetry
is created via the out-of-equilibrium decay of heavy Majorana neutrinos. One gener-
ally requires very high masses, M � TeV. Thermal leptogenesis may be resonantly
enhanced by nearly mass-degenerate sterile neutrinos, referred to as resonant lep-
togenesis [57]. This may be realized with lighter masses, M ∼ 1 TeV. Hence, the
same scale necessary to explain SM neutrino masses and mixing, can account for the
baryon asymmetry of the Universe with these mechanisms. Leptogenesis can also
take place via sterile neutrino oscillations [58], which is possible for even smaller
masses, M ∼ O(GeV).

The Majorana mass scales mentioned in this section are way above the mass scale
at which the sterile neutrino is a viable dark matter candidate, which is the keV-
scale. This scale will be our main focus for the rest of this thesis and we introduce
some generalities on sterile neutrino dark matter in the following section.

3.2 Sterile neutrino dark matter today

If sterile neutrinos are supposed to make up the dark matter, they must have been
produced in the early Universe at some point and they have to fulfill certain condi-
tions. Generally, the particles should be almost stable, with lifetimes being of the
same order as the age of the Universe. Otherwise, they would mostly have decayed
already. Furthermore they must be present in the correct abundance, see eq. (1.1).
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These conditions give constraints on the sterile neutrino masses and their couplings
to the SM neutrinos. Additional constraints from observations can be obtained for
concrete production mechanisms, which deserve detailed inspections on their own.

All relevant processes we will consider take place at temperatures far below the
electroweak scale, where the Higgs field acquires its vacuum expectation value v.
The common way of parameterizing the coupling of the sterile neutrino with mass
M to an active neutrino of flavor α is via the active-sterile mixing angle

θα ≡
|hα| v√

2M
, (3.9)

where hα denotes the Yukawa coupling. We recast the total mixing angle through

sin2(2θ) ≈ 4
∑
α

θ2
α, (3.10)

which is the parameter that can be constrained experimentally.

3.2.1 Phase space constraints

The first model-independent parameter constraint on sterile neutrino dark matter
comes from the fact that neutrinos are fermions and thus underly the Pauli exclusion
principle. Consider for example a galaxy with a fixed portion of its mass coming
from sterile neutrinos that are contained in it. To keep it simple, we assume that
there is only one flavor of sterile neutrinos. By decreasing the sterile neutrino’s mass
M , one increases the particle number. Pauli blocking requires that the phase space
density does not exceed the density of a degenerate Fermi gas, leading to a lower
bound onM . By studying some of the most compact dwarf spheroidal galaxies (see,
e.g., [59]), ref. [60] finds the lower limit

M ≥ 0.13 keV (3.11)

The strength of this bound can be improved if the phase space density is specified,
which is however model-dependent as the density is determined by the production
mechanism. When the production of sterile neutrinos terminates at some early point
in time, the shape of their spectrum is fixed and will only be subject to redshift. At
later times, structure formation sets in and the particles start clustering differently
in galaxies, galaxy clusters, voids and so forth. Then the coarse-grained density
f̃ , i.e., the distribution averaged over macroscopic parts of space, becomes inhomo-
geneous. Naturally, it grows in underdense regions and gets diluted in overdense
regions. Since sterile neutrino dark matter is basically collisionless, Liouville’s the-
orem guarantees that its maximum fmax never exceeds the maximum of the initial
primordial distribution,

f̃max(t) ≤ fmax. (3.12)
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A mass bound derived from this inequality is also referred to as a Tremaine-Gunn
bound [61]. The left-hand side of this inequality can be determined with help of
observations, only the right-hand side is a prediction of a particular production
mechanism. In their original work, Tremaine and Gunn assumed that the central
regions of bound systems formed by neutrinos resemble isothermal spheres with
a core radius rc and a 1D velocity dispersion σ, with a maximum coarse-grained
density

f̃max =
9σ2

M44πG(2πσ2)3/2r2
c

. (3.13)

The particles are assumed to follow a Fermi-Dirac distribution initially, with the
maximum

fmax =
2g

(2π~)3
, (3.14)

where g is the number of allowed helicity states. Then (3.12) leads to the lower mass
bound

M4 ≥ 9(2π)1/2~3

4gGσr2
c

. (3.15)

Newer studies rely on more recent observations of, e.g., dwarf spheroidal galaxies
and more involved coarse-graining techniques to estimate the left-hand side of (3.12)
and obtain a lower mass bound in this fashion. For non-resonantly produced sterile
neutrino dark matter, [60] finds the lower bound

M & 1.74keV, (3.16)

where the initial primordial distribution has been calculated using the publicly avail-
able codes from [62] and [63]. Both codes produce similar distributions in that sce-
nario and agree with our results in chapters 5 and 6. For resonantly produced sterile
neutrino dark matter, [64] gives

M & 1keV, (3.17)

which well agrees with [60] and is also the limit we adopted in [1]. We will display
this limit in chapter 6.

3.2.2 X-ray constraints

The second very general constraint is based on active-sterile mixing via the Yukawa
couplings in (3.1). Due to these couplings, the sterile neutrino naturally is subject
to decay, with one possible decay channel involving a photon in the final state. Even
though this is not the primary decay channel, the final state photon potentially leads
to a detectable signal, which would fix M as well as sin2(2θ). The primary decay
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Figure 3.1: Left: Tree-level decay of a sterile neutrino into three active neutrinos.
The big blob represents the active-sterile mixing. Right: One-loop decay of a sterile
neutrino into an active neutrino and a photon.

channel is a tree-level decay into three active neutrinos, mediated by a Z-boson.
The corresponding decay rate reads [65]

Γ3ν =
G2
F

768π3
M5 sin2(2θ), (3.18)

where GF = 1.1663787(6) · 10−5 GeV−2 [5] is the Fermi coupling constant. The rate
of the secondary decay into an active neutrino and a photon reads [66]

Γνγ =
9αEMG

2
F

1024π4
M5 sin2(2θ), (3.19)

with the fine-structure constant αEM = 7.2973525693(11) · 10−3 ≈ 1/137 [5]. Both
decays are depicted in figure 3.1. For typical values sin2(2θ) . 10−7 for the active-
sterile mixing angle, which we will encounter in chapter 5, both channels can still
yield a sterile neutrino lifetime that can well be above the age of the Universe. In
the neutrino plus photon decay, both product particles carry away half of the energy
of the comparably massive sterile neutrino. For keV-masses, the photon energy will
be located in the X-ray spectrum. A detectable signal can originate from regions
where a sizable amount of dark matter accumulates and it is actively searched for
in various places, like galaxies, galaxy clusters and the diffuse X-ray background.
The latter is due to lots of obscured and unobscured active galactic nuclei. It is
a rather featureless astrophysical background, against which other decay line may
be searched for. If a line in the X-ray spectrum is measured, its position would
fix the sterile neutrino mass and its intensity would then fix the mixing angle via
(3.19). If we assume that the dark matter abundance is solely due to sterile neutrinos
and no line feature of an expected decay is found, the corresponding combination
of mass and mixing angle is excluded. There is a number of measurements from
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different observatories that have already explored large regions in the (M, sin2(2θ))-
plane. For masses . 10 keV, strong limits come from X-ray telescopes like Chandra
and XMM-Newton [67, 68]. The intermediate mass range (10keV . M . 50keV)
is strongly constrained by NuSTAR observations [69], higher masses are covered,
e.g., by INTEGRAL [70]. Over the years, new telescopes with increasingly high
resolutions have been able to probe smaller and smaller mixing angles and thus
limiting the available parameter space more and more. We show current, combined
constraints in chapter 6.

A few years ago, the detection of an unidentified line at energy E ' 3.55 keV
was first reported in spectra of galaxy clusters and the Andromeda galaxy [71, 72].
Since then, it was reported in several more clusters, as well as in the galactic center
of the Milky Way [73]. It can be interpreted as the radiative decay of a sterile
neutrino with a mass M = 7.1 keV, the measured intensity would correspond to a
mixing angle sin2(2θ) ' (2 − 20) · 10−11 according to [72]. The true origin of this
line is however not yet clear. Uncertainties from astrophysical background as well
as systematic errors in instrumental calibration make a definite identification very
difficult, see, e.g., [74] for a review.

3.3 Production in the early Universe

Assuming that no sterile neutrinos existed early on from the very beginning of
the Universe, one needs a production mechanism in order to explain the relic dark
matter abundance. We will only deal with scenarios in which the production purely
relies on non-zero active-sterile mixing angles. Besides this mechanism, which is
by far the most studied one in the literature, there exist mechanisms for sterile
neutrino production that do not rely on active-sterile mixing or only partly. Popular
ones include the decay of a heavy scalar field into sterile neutrinos [75] or thermal
overproduction with subsequent entropy dilution [76].

3.3.1 Thermal production via mixing

Sterile neutrinos that mix with the SM neutrinos are a suitable dark matter candi-
date. The combined constraints from phase space considerations and X-ray obser-
vations suggest a viable particle mass in the keV range, which would make them a
warm dark matter candidate. For non-vanishing active-sterile mixing angles, sterile
neutrinos can be produced thermally through oscillations and scatterings in the early
Universe. Assuming that they have no initial abundance, this would inevitably lead
to a build-up of a sterile neutrino reservoir, but thermal equilibrium would never
be reached for sufficiently small mixing angles. This minimal scenario of thermal
sterile neutrino production in the context of dark matter was proposed by Dodelson

21



3.3. Production in the early Universe

and Widrow [11], thus it is often referred to as Dodelson-Widrow (DW) scenario.
In this scenario, sterile neutrinos are produced at high temperatures, where active
neutrinos are in thermal equilibrium with the other SM particles. Active-sterile os-
cillations are influenced by interactions of active neutrinos with the rest of the SM
plasma. On the one hand, the active-neutrino scattering rate can drive scattering-
induced decoherence and states that are purely active initially, may collapse into
sterile states. On the other hand, through coherent forward scatterings off of parti-
cles in the plasma, active neutrinos acquire thermal masses which may suppress the
in-medium mixing with sterile neutrinos (cf. section 4.3). Assuming temperatures
far below the electroweak scale, T � 100 GeV, these considerations generally lead
to sterile neutrino production rates that are maximal around T ∼ O(100 MeV) for
sterile neutrinos masses M ∼ O(keV) [11, 16–19].

3.3.2 Mass bounds from structure formation

Sterile neutrinos produced in the Dodelson-Widrow scenario are subject to an ad-
ditional, important lower mass bound from structure formation, which however de-
pends on the shape of their distribution function. Structure formation, including,
e.g., the formation of galaxies and galaxy clusters, is influenced by the free-streaming
length of the dark matter particles. On scales above the free-streaming length, warm
dark matter acts quite similar to cold dark matter. There it does not disturb the
clustering of ordinary matter to a great extent. On smaller scales however, it can
suppress structure formation as it tends to wash out the seeds of gravitational col-
lapse.

Simulations of structure formation in the presence of warm dark matter require
the linear warm dark matter power spectrum as input [14], which can be obtained
from the distribution function. The outcome of such simulations can then be com-
pared to observations which probe the power spectrum, which in turn constrains the
free-streaming length and thus the viability of the warm dark matter scenario under
consideration. A widely used probe is the Lyman-α forest, a series of absorption
lines in spectra of distant objects (like quasars) due to neutral hydrogen in the inter-
galactic medium. The hydrogen atoms absorb UV photons from the source, raising
their bound electron from the ground state to the first excited state. This process
is called the Lyman-α transition. Hydrogen clouds at different redshifts produce
absorption lines that we observe at different wavelengths, thus we generally see not
only one line but multiple lines, i.e., a forest. The Lyman-α forest is a widely used
tool for probing density fluctuations at intergalactic scales. A similar probe used to
study the onset of structure formation is the 21-cm line [77], a hydrogen emission
line due to the transition of the electron between the hyperfine levels of the ground
state, also called the spin-flip transition.
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Structure formation simulations generally assume that the dark matter is a ther-
mal relic, meaning that it decoupled from the primordial plasma very early on and
follows a thermal distribution. Then one can simply relate the free-streaming length
to the particle mass and translate upper bounds on the former to lower bounds on
the latter [78]. Due to symmetry arguments in the evolution equations of linear
perturbations, thermal relics produce the same cutoff in the linear matter power
spectrum as sterile neutrinos produced in the DW scenario [79]. Thus, warm dark
matter simulations with thermal relics can also be used to derive bounds on sterile
neutrinos.

A direct relation between the mass mx of a thermal relic and the mass M of a
sterile neutrino can be derived as follows. Just like the thermal relic, active neutrinos
are in thermal equilibrium at high temperatures and they have the distribution

fν =
1

ep/Tν + 1
. (3.20)

By integrating over momenta, one obtains the relation [80,81]

Ωνh
2 =

mν

93eV
(3.21)

between the relic density and total mass of the neutrinos. The thermal relic has the
same distribution, but with a temperature Tx that is much lower than Tν since it
decoupled much earlier. Then its relic density is given by

Ωxh
2 =

(
Tx
Tν

)3
mx

93eV
. (3.22)

Now consider sterile neutrino warm dark matter from the DW scenario. It is sup-
posedly approximated by a suppressed version of the distribution of active neutri-
nos [18, 82],

fsterile ≈ χfactive =
χ

ep/Tν + 1
, (3.23)

with the suppression factor χ ∈ [0, 1] being a function of the active-sterile mixing
angle. In this case, the relic density reads

ΩDMh
2 = χ

M

93eV
. (3.24)

Both, the thermal relic scenario and the DW scenario, impact structure formation
equally, assuming equal relic densities and mean velocities. Requiring equal mean
velocities yields

〈ps〉Tν
M

=
3.15Tx
mx

, (3.25)

which gives a direct relation between the masses of both scenarios. Here, 〈ps〉 is
the mean momentum of the sterile neutrino spectrum in units of Tν , the thermal
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distribution has a mean momentum 〈px〉 ≈ 3.15Tx. Assuming that both scenarios
yield the relic dark matter density, we find

M =
〈ps〉
3.15

m4/3
x

(
ΩDMh

2 93 eV

)−1/3

, (3.26)

where we used (3.22) to express Tx via mx. The key assumption behind this relation
is that the sterile neutrino spectra in the DW scenario can be described by (3.23).
We explicitly compute them in chapter 5 and refer to figure 5.1, where we show
them together with a thermal spectrum for comparison. We find relatively similar
spectra for low masses, M ∼ 1 keV. Their difference does not exceed 20%, which
has negligible impact on the mass bounds [60, 64] and justifies the approximation
a posteriori. Strong bounds on the mass of a thermal relic based on Lyman-α
observations come from [83] and [79], both reporting mx > 5.3 keV (95% confidence
level), which translates to

M > 34 keV. (3.27)

Besides the Lyman-α forest, observations of the 21-cm line have been used to con-
strain the mass of Dodelson-Widrow sterile neutrinos in a recent study [77]. Their
analysis predicts that in order to be compatible with observations, the sterile neu-
trino mass should be

M = 63+19
−35keV, (3.28)

which also provides an upper limit for the first time. The lower limits from these
different studies are compatible with each other and they reach far into the region
that has already been excluded by X-ray observations. These predictions exclude
the Dodelson-Widrow scenario as a viable dark matter scenario.

3.3.3 Resonant production

One possible way to circumvent the strong constraints in the DW scenario is the
introduction of a large primordial lepton asymmetry. This dark matter scenario was
introduced by Shi and Fuller [15]. If large enough, such an asymmetry can shift
the thermal masses of active neutrinos up to the level of sterile neutrino masses in
the keV-range, which is not possible with only SM interactions and lepton asym-
metries as low as the baryon asymmetry. Potential mass level crossings result in
Mikheyev-Smirnov-Wolfenstein (MSW) resonances [84,85], at which the in-medium
active-sterile mixing angle peaks. Then very efficient conversion of active to sterile
neutrinos takes place, which simultaneously depletes the lepton asymmetry. It is
a trade-off in which a surplus of neutrinos over anti-neutrinos (or vice-versa) will
be transformed into an abundance of sterile neutrinos with negative (positive) he-
licity, thus the net lepton number decreases. Resonant enhancements make sterile
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neutrino production much more efficient than purely thermal production, requiring
smaller mixing angles and thus potentially escaping the upper limits from X-ray
constraints. Furthermore, resonant production generally results in a non-thermal
spectrum, which can be colder than in the DW scenario. Then no simple relation
like (3.26) exists and one can potentially evade Lyman-α constraints.

The lepton asymmetries, needed to produce the complete dark matter abundance
without running into X-ray or Lyman-α constraints, are generally quite large com-
pared to the baryon asymmetry. Typically, the total lepton asymmetry nL is given
as the number density of leptons minus the number density of anti-leptons, either
in units of the photon number density nγ or the entropy density s. The Shi-Fuller
scenario typically requires values nL/s & 10−6 in order to be a viable dark matter
scenario, which we will use in section 5.2.

3.3.4 Upper bounds on lepton asymmetry

Large primordial lepton asymmetries can impact the evolution of the early Universe
and have measurable effects on big bang nucleosynthesis (BBN) and the CMB. Upper
limits on the lepton asymmetry can be derived from measurements of light element
abundances, which form during BBN. The latter is a stage in the cosmological
evolution in which protons and neutrons start to form nuclei. The temperature
of the cosmic plasma has dropped to T ∼ 0.1 MeV at this point, which so far
corresponds to the highest temperature, i.e., the earliest epoch that can be directly
probed by measurements [86].

We know that the Universe is electrically neutral, which implies that large lepton
asymmetries lie mostly in the neutrinos, while the charged sector has a negligible
asymmetry of the order of the baryon asymmetry or below. Neutrino asymmetries
are often expressed in terms of the neutrino degeneracy parameters ξνα = µνα/T ,
where µνα are the chemical potentials, as [87]

ηνα ≡
nνα − nν̄α

nγ
≈ 1

12ζ(3)

(
Tνα
Tγ

)3

(π2ξνα + ξ3
να). (3.29)

The total asymmetry is obtained by summing over all flavors,

ην =
∑
α

ηνα . (3.30)

Non-zero chemical potentials have two effects on BBN. First of all, they modify the
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3.3. Production in the early Universe

overall energy density ρν in the neutrino sector according to

ρν =
∑
α

∫
d3k

(2π)3
k
(
fF(k − µα) + fF(k + µα)

)
(3.31)

=
7π2

120

∑
α

T 4
να

[
1 +

30

7

(
ξα
π

)2

+
15

7

(
ξα
π

)4
]
, (3.32)

where fF(x) = 1/(ex/Tνα + 1) is the Fermi-Dirac distribution and Tνα denotes the
neutrino temperature. This increase is often expressed in terms of an excess of the
effective number of neutrinos, ∆Neff , with [88]

∆Neff =
15

7

∑
α

[
2

(
ξα
π

)2

+

(
ξα
π

)4
]
. (3.33)

Non-zero chemical potentials always lead to a non-negative ∆Neff and thus and
increased energy density. This leads to a higher expansion rate of the Universe,
implying an earlier freeze-out of weak interaction processes. Ultimately, the neutron-
to-proton ratio decreases as a result. Secondly, a positive chemical potential in the
electron flavor decreases the neutron-to-proton ratio according to the beta decay
and inverse decay equilibrium processes p+ e↔ n+ νe. Both effects naturally alter
the measured light element abundances, like the helium-4 abundance.

Simulations of BBN at T . 1 MeV can predict the light element abundances and
give limits on what values the neutrino asymmetries can take. A recent analysis [89]
found that, using two different codes for their simulations, the neutrino degeneracy
parameters either take the value ξνα = 0.001 ± 0.016 or ξνα = 0.021 ± 0.016. Not
only are there sizable, statistical uncertainties, the systematic uncertainties due to
the different codes are also very large. The upper limits on ξνα imply the upper
limits ην < 0.013 and ην < 0.028 respectively.

We can translate asymmetries, which are normalized to the photon number den-
sities, to ones which are normalized to the entropy density, using (see, e.g., [90])

nγ =
2ζ(3)

π2
T 3 (3.34)

and

s =
2π2

45
g∗T

3. (3.35)

Here, g∗ counts the relativistic degrees of freedom and is a function of temperature
and chemical potentials. For bounds on the lepton asymmetry from BBN, we are
interested in temperatures T . 1 MeV. Hence, we use the value of g∗ ≈ 3.9 after
electron-positron annihilation [91], which takes place at T ∼ 0.5 MeV.
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Chapter 3. General introduction to sterile neutrinos

We find that the upper limits ην < 0.013, ην < 0.028 translate to nL/s < 0.0018

and nL/s < 0.0039 respectively. Ref. [87] finds ξ = 0.0245 ± 0.0092 (1σ), based on
the value of the primordial helium abundance Yp = 0.2421± 0.0021 [92], as well as
the baryon asymmetry. Plugging this into (3.29) and converting it into a fraction of
the entropy density, one obtains the upper bound

nL
s

∣∣∣
BBN
≤ 2.5 · 10−3 (3.36)

on the total lepton asymmetry. This lies within the region of values from [89]. It
is used as the upper limit for calculating sterile neutrino abundances in [13] and we
also used it in [1].

The large uncertainties in BBN calculations motivate the consideration of addi-
tional, more robust limits that take into account CMB measurements. One notable
effect of large lepton asymmetries on the CMB, conducted through a non-zero ∆Neff ,
is a delay of the matter-radiation equality time. This leads to an enhancement of
the first acoustic peak in the CMB power spectrum and also influences the position
of the following peaks, which is the early integrated Sachs-Wolfe effect [93].

Strong constraints are given in [88], reporting −0.085 ≤ ην ≤ 0.084. These
numbers are deduced from an analysis of CMB data, which are consistent with
BBN but do not rely on direct measurements of the light element abundances. The
resulting upper limit on the lepton asymmetry reads

nL
s

∣∣∣
CMB/BBN

< 0.012. (3.37)

More precisely, the absolute value of the lepton asymmetry is constrained and the
latter could also be negative. We will update the available parameter space for
resonantly produced sterile neutrino dark matter in chapter 6 using this limit.

3.3.5 Uncertainties from QCD

Sterile neutrinos with keV-masses are produced mainly during the QCD epoch of
the early Universe. In this epoch, the strongly interacting SM sector undergoes a
transition from a quark-gluon plasma into a more dilute hadron gas, which greatly
decreases the number of relativistic degrees of freedom g∗ (cf. (3.35)) from roughly 60
down to roughly 20 [94]. This already illustrates that hadronic effects are sizable and
potentially dominate the plasma behavior. As was shown by numerical simulations
on a lattice, the transition is a smooth crossover from one phase to the other, in
case of vanishing baryon-chemical potential [20,21]. This is an accurate assumption
for the state of the early Universe at T . 130 GeV, since at this point, the baryon
asymmetry (generated at much higher temperatures) is fixed [95] and only a tiny

27



3.3. Production in the early Universe

fraction of the photon density, see (2.13). As reported by the HotQCD collaboration,
this smooth but rapid crossover takes place around the temperature [96]

TQCD = (156.5± 1.5) MeV. (3.38)

In this regime, one cannot rely on a weakly interacting quark-gluon plasma or a
dilute hadron gas as an accurate description of QCD matter. Perturbation theory
does not apply and one has to resort to non-perturbative calculations of QCD effects.

In principle, the QCD crossover can have important effects on sterile neutrino
production in two ways. On the one hand, the number of relativistic degrees of
freedom influences the cosmological expansion through the pressure-energy relation
(equation of state) of the matter in the Universe. The expansion directly enters
the sterile neutrino production rate. Lattice QCD results have been incorporated
into an equation of state [94], which was for the first time used to compute ster-
ile neutrino production in [97]. On the other hand, quarks participate in weak
interactions and thus, they naturally enter sterile neutrino reaction rates through
interactions of active neutrinos with hadronic degrees of freedom. These interactions
contribute to both the real and the imaginary part of the active-neutrino self-energy.
Real-part contributions are determined by susceptibilities of the QCD plasma’s con-
served charges, see section 4.3. Lattice determinations of susceptibilities [98, 99]
were included into sterile neutrino evolution equations in [62]. The most difficult
to compute are hadronic contributions to the imaginary part of the active-neutrino
self-energy, or opacity, which can be written as a momentum integral over mesonic
spectral functions [100]. Determining these spectral functions on the lattice is chal-
lenging. Previous works on resonant sterile neutrino production [62,63] have treated
the opacity in different approximations, but it still remains an open question how
important the non-perturbative contributions are.
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Chapter 4

Non-equilibrium evolution equations

4.1 Notation and setup

We consider the Standard Model augmented by one family of sterile Majorana neu-
trinos N with Majorana mass M and non-zero Yukawa couplings hα to all active-
neutrino flavors,

L = LSM +
1

2
N̄(i/∂ −M)N −

∑
α

(
N̄ϕ̃†hα`α + h.c.

)
(4.1)

The sterile neutrino field in the interaction picture reads

N(x) =
∑
k,λ

1√
2k0V

[
e−ik·xukλakλ + eik·xvkλa

†
kλ

]
, (4.2)

with the energy k0 = (k2 + M2)1/2. The spinors u and v satisfy the Majorana
condition u = vc, where c denotes charge conjugation. Furthermore, the creation-
/annihilation operators fulfill {akλ, a

†
qλ′} = δk,qδλλ′ with helicities λ = ±1/2. V

denotes the volume of our system. With these operators we define the sterile neutrino
phase space density operators as

fkλ ≡ a†kλakλ. (4.3)

The number operator for left-handed leptons of flavor α reads

Lα =

∫
d3x `†α`α. (4.4)

We will be considering their time evolution at temperatures of a few GeV, where
sphaleron processes have long terminated. Then baryon number B is conserved, and
its tiny value can be well approximated by zero for our purposes. Furthermore,+
electric charge Q is conserved and exactly zero.
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4.2. Equations of motion

4.2 Equations of motion

The expectation values of the operators introduced above are conserved by Standard
Model interactions and thus evolve much more slowly than the other degrees of
freedom. Their deviations from equilibrium characterize the non-equilibrium state,
and are assumed to be small. We introduce chemical potentials µLα , µB and µQ and
denote them collectively by µ in the following. In the infinite volume limit the phase
space densities and the lepton number densities nLα ≡ Lα/V satisfy the evolution
equations [101,102]

ḟkλ = − 1

2k0

∑
α

{
ūkλρα(k, µ)ukλ

[
fkλ − fF(k0 − µLα)

]
+ v̄kλρα(−k, µ)vkλ

[
fkλ − fF(k0 + µLα)

]}
, (4.5)

and

ṅLα =
∑
λ

∫
d3k

(2π)32k0

{
ūkλρα(k, µ)ukλ

[
fkλ − fF(k0 − µLα)

]
− v̄kλρα(−k, µ)vkλ

[
fkλ − fF(k0 + µLα)

]}
, (4.6)

with the spinors u and v which appear in (4.2). Furthermore,

ρα(k, µ) ≡ 1

i

[
∆ret
α (k, µ)−∆adv

α (k, µ)
]

(4.7)

is the spectral function which is determined by the retarded and advanced 2-point
function

∆ret,adv
α (k) = ±i

∫
d4xΘ(±t)eikx

〈{
Jα(x), J̄α(0)

}〉
(4.8)

of the operator Jα ≡ ϕ̃†hα`α, which couples to N̄ in (4.1).
Oftentimes the kinetic equations are expanded in µ. However, for a proper

treatment of resonances, which show up in the spectral functions ρα, one has to
include all orders in µ, which will become more apparent below. The relation of the
chemical potentials to the charge densities, to be discussed in the next section, can
still be assumed to be linear.

In the broken phase of electroweak symmetry, the 2-point function (4.8) is pro-
portional to the active-neutrino propagator,

∆α(k, µ) = θ2
αM

2PL
−1

/k − Σα(k, µ)
PR. (4.9)

Here we have factored the chiral projectors PR,L = 1
2
(1±γ5) out of the propagator and

expressed the couplings through the active-sterile mixing angle (3.9). The active-
neutrino self-energy in the plasma rest frame can be approximated as [63,103]

Σret
α (±k, µ) = γ0

(
∓ bα + cα −

iΓα
2

)
, (4.10)
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with real bα, cα. Γα is the imaginary part of the refractive index for the active
neutrinos [104], and is also referred to as neutrino opacity. Γα/2 is the neutrino
damping rate (see e.g. [105]). The function cα is odd in µ. For the chemical potentials
under consideration we only need to keep the linear order in µ for cα, and we
can neglect the µ-dependence of bα and Γα. The advanced self-energy is obtained
from (4.10) by replacing iΓα → −iΓα. Then one obtains the spectral function

ρα(±k, µ) =
θ2
αΓαM

2

[M2 + 2k0(bα ∓ cα)]2 + (k0Γα)2
PL(2k0/k −M2γ0)PR. (4.11)

A quick calculation yields

ūk±ρα(k, µ)uk± =
θ2
αΓαM

4(k0 ∓ |k|)
[M2 + 2k0(bα − cα)]2 + (k0Γα)2

, (4.12)

v̄k±ρα(−k, µ)vk± =
θ2
αΓαM

4(k0 ± |k|)
[M2 + 2k0(bα + cα)]2 + (k0Γα)2

. (4.13)

Resonances occur when a square bracket in the denominator of (4.12) or (4.13)
vanishes. This can happen when cα is large enough and has the appropriate sign.
For a given sign of an initial lepton asymmetry, only one of the expressions (4.12)
and (4.13) can lead to resonances. Moreover, at leading order in M/|k| only the
terms containing ūk−ραuk− or v̄k+ραvk+ will contribute in the evolution equations.
The subleading terms will be dropped in the following.

Due to the isotropy of the universe the phase space density only depends on |k|.
Then the Hubble expansion is taken into account by replacing

ḟkλ →
(
∂t −H|k|∂|k|

)
fkλ. (4.14)

The Hubble parameter is given by

H =

√
8πρ

3M2
Pl

, (4.15)

where ρ is the energy density and MPl ' 1.22 · 1019 GeV is the Planck mass. By
using K ≡ |k|a(t)/a(tend) as an independent variable, where a is the scale factor,
(4.14) turns into ∂tfKλ and the equation for f becomes an ordinary differential
equation. a(tend) is the scale factor at the time corresponding to the temperature
Tend = 10 MeV at which we compute the final abundances in the next chapter. For
lepton number densities, the Hubble expansion is taken into account through the
replacement

ṅLα →
(
∂t + 3H

)
nLα . (4.16)
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The term proportional to H is eliminated by considering the differential equation
for nLα/s where s is the entropy density. Finally, the time derivatives are replaced
by temperature derivatives via the time-temperature relation [106]

dT

dt
= −TH(T )3c2

s(T ), (4.17)

with the speed of sound cs. Once the solutions to (4.5) are obtained, we obtain the
total energy density at the final temperature Tend as

ρs(Tend) =
∑
λ

∫
d3k

(2π)3

√
k2 +M2fkλ(Tend). (4.18)

If we know the energy density today at temperature T0, we use ρs = Ωsρc and obtain
the fraction of the present dark matter abundance via

Ωs

ΩDM

=
1

ΩDMh2 ρc
h2s(T0)

ρs(T0)

s(T0)
, (4.19)

with ΩDMh
2 ≈ 0.12 and ρc/h2s(T0) ≈ 3.64 eV [6]. Since the ratio ρs/s is conserved

in a comoving volume element of the Universe at temperatures T ≤ Tend, we can
replace T0 by Tend in the rightmost fraction. This yields the final expression

Ωs

ΩDM

≈ 1

0.437eV s(Tend)

∑
λ

∫
d3k

(2π)3

√
k2 +M2fkλ(Tend). (4.20)

4.3 Active-neutrino self-energy

4.3.1 Real parts

Interactions of active neutrinos with the ambient heat bath contribute to their self-
energy. Its real part stems from the one-loop diagrams in figure 4.1. For vanishing
chemical potentials, the real part bα arises at O

(
GF/m

2
W

)
, where GF is the Fermi

constant and mW is the W -boson mass. It reads [97,104]

bα =
8
√

2GF

m2
W

k0

[
cos2 θW

7π2T 4

360
+

∫
d3p

(2π)3

fF(Eα)

Eα

(
4

3
p2 +m2

α

)]
, (4.21)

where θW is the weak mixing angle, Eα ≡ (p2 + m2
α)1/2, and mα is the mass of the

charged lepton of flavor α. We have neglected the masses of active neutrinos. bα is
positive, which corresponds to an index of refraction greater than 1, or a negative
thermal mass squared. The leading contribution due to non-zero chemical potentials
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ν l, ν

W, Z

Z

q, l, ν

ν

Figure 4.1: Leading contributions to the real part of the active-neutrino self-energy.
Left: bubble diagram, contributing to (4.21). Right: tadpole diagram, contributing
to (4.22).

can have either sign. It arises at O
(
GF

)
[62, 63,104],

cα =
√

2GF

[
2nνα +

∑
β 6=α

nνβ +

(
1

2
+ 2 sin2 θW

)
neα −

(
1

2
− 2 sin2 θW

)∑
β 6=α

neβ

− 1

2
nB +

(
1− 2 sin2 θW

)
nhad
Q

]
, (4.22)

without the 1/m2
W suppression of (4.21). Therefore it can be of similar size as (4.21)

when the chemical potentials are small. nνα and neα are particle minus anti-particle
number densities of neutrinos and charged leptons. They can be written in terms of
the particle chemical potentials µi,

ni = χiµi, (4.23)

where the lepton susceptibilities χi can be evaluated in the ideal gas limit,

χeα = −2geα

∫
d3p

(2π)3
f ′F(Eα), (4.24)

χνα = gνα
T 2

6
, (4.25)

with gνα = 1, geα = 2. The hadronic contribution to the electric charge density nhad
Q

can be written as

nhad
Q = χhad

QQµQ + χQBµB, (4.26)

where χhad
QQ is the hadronic contribution to the electric-charge susceptibility. The par-

ticle chemical potentials in (4.23) can be written in terms of the chemical potentials
of the slowly varying and of the conserved charges,

µeα = µLα − µQ, (4.27)
µνα = µLα . (4.28)
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The latter can be expressed through the lepton number densities nLα by inverting

nB = χBBµB + χQBµQ, (4.29)

nQ =
(
χhad
QQ + χlep

QQ

)
µQ + χQBµB + χQLαµLα , (4.30)

nLα = χLαLαµLα + χQLαµQ, (4.31)

and assuming vanishing overall baryon and electric charge density, nB = nQ = 0.
Concretely, this yields the expressions

µB = −χBQ
χBB

µQ, (4.32)

µLα =
nLα − χQLαµQ

χLαLα
, (4.33)

µQ =

∑
α

χQLα
χLαLα

nLα
χ2
BQ

χBB
+
∑

α

χ2
QLα

χLαLα
− χQQ

. (4.34)

Plugging them into (4.22) gives us functions cα that are linear in the asymmetries
nLα , with coefficients determined by susceptibilities.

The leptonic part of the electric charge susceptibility in (4.30) can be written in
terms of (4.24),

χlep
QQ =

∑
α=e,µ,τ

χeα . (4.35)

The susceptibilities in (4.31) are related to (4.24),(4.25) by

χLαLα = χeα + χνα , (4.36)
χQLα = −χeα . (4.37)

The susceptibilities χhad
QQ, χBQ, and χBB have been determined on the lattice for

temperatures near the QCD crossover [98, 99]. Reference [62] has used a hadron
resonance gas model below and perturbation theory above and connected all three
regions via spline interpolations, which we are going to use.1

4.3.2 Imaginary parts

The dominant contribution to the imaginary part of the active-neutrino self-energy,
i.e., the opacity Γα, appears atO

(
G2
F

)
since theO

(
GF

)
contributions are suppressed

by exp(−mW/T ). The corresponding diagram is shown in figure 4.2. The opacity
can be split into a leptonic and a hadronic piece,

Γα = Γlep
α + Γhad

α . (4.38)

1Available at https://github.com/ntveem/sterile-dm/tree/master/data/tables.
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ν ν, l

W, Z

q, l, ν

Figure 4.2: Two-loop diagram contributing to the active-neutrino opacity (4.38).
Quarks in the upper loop can only be treated perturbatively at temperatures way
above the QCD crossover.

The leptonic part can be computed perturbatively by simply considering a free
lepton-antilepton pair in the top loop, since leptons basically behave like free par-
ticles at temperatures much below the electroweak scale. Over a large part of the
temperature range which is relevant for sterile neutrino production, Γhad

α is non-
perturbative. Two different approaches have been taken to calculate this function.
In [97], the free-quark approximation is used for the whole temperature range, but
in order to account for the strong interaction, the number of colors Nc is replaced by
a temperature dependent Nc,eff(T ) which vanishes at low temperatures, and equals 3
at the highest temperature. In [62], on the other hand, the free-quark approximation
at high temperatures is connected to chiral perturbation theory at low temperatures
via spline interpolations. We refer to these two approximations for (4.38) as Γ

Nc,eff
α

and Γspline
α . We will also consider the approximation Γhad

α = 0 for which we write
Γlep.

We show the different muon-flavor opacities in figure 4.3 for a fixed energy.
With increasing temperature, the leptonic opacity slightly increases due to crossings
of the muon and tau mass thresholds. When the temperature reaches mµ or mτ

respectively, these particles can be produced on-shell and thus populate the plasma,
which naturally increases the neutrino opacity. In contrast, the hadronic opacity
contributions rise more strongly when increasing the temperature through the QCD
crossover. As hadronic bound states melt during this process, the number of on-shell
degrees of freedom (which also interact weakly) rises strongly, which is why ΓNc,eff

and Γspline increase. The small rise of Γspline at low temperatures is a signature of
the onset of processes like two- and three-body fusions involving broad resonances
from the hadron resonance gas model [62].

The opacity is an important ingredient of the active-neutrino spectral function
and therefore for sterile neutrino production. Moreover, it is the least known ingre-
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Figure 4.3: The three different opacities as functions of temperature for energy
k0 = T .

dient. But with the above approximations at hand, we can investigate its influence
on different sterile neutrino dark matter scenarios with and without lepton asym-
metries. This is what we will do in the following chapter.
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Chapter 5

Impact of active-neutrino opacities

5.1 Non-resonant production

5.1.1 Setup

As a starting point for studying hadronic opacity contributions, this chapter deals
with the case of non-resonant sterile neutrino production. For that case, we do not
consider any non-zero initial lepton asymmetries and (4.6) is set to zero. Moreover,
no chemical potentials appear in (4.5) and the active-neutrino self-energy contri-
bution (4.22) vanishes, cα = 0. The remaining real part of the self-energy, (4.21),
does not have any hadronic contributions at leading order in the weak coupling.
They only arise at two-loop order and are neglected. The only hadronic self-energy
contribution we are left with, is the opacity Γhad in (4.38).

In this setup, both the positive and negative helicity phase space densities in
(4.5) will evolve equally in time, given that (4.12) and (4.13) are equal at leading
order in M/ |k|. We set fk− = fk+ ≡ fk and only track the evolution of fk,
simply multiplying the final density by a factor 2 to obtain the complete abundance.
We make the simplifying assumption that only one Yukawa coupling is non-zero,
namely hµ. Then only the term with α = µ contributes in (4.5). This allows
us to compare the effect of the opacities Γ

Nc,eff
α , which are available for all three

lepton flavors, and Γspline
α , which is currently only available for α = µ. We integrate

(4.5) from T = 4 GeV down to 10 MeV, outside of this range the right-hand side is
vanishingly small and no sterile neutrino production takes place. The opacities Γspline

µ

and Γlep
µ are available for momenta 10−4 ≤ |k|/T ≤ 20, whereas Γ

Nc,eff
µ is available for

0.03 ≤ |k|/T ≤ 12.5. We use the latter range when solving the evolution equations,
which is sufficient for our purposes. We will always be using the parameterizations
of the energy density ρ(T ) and entropy density s(T ) as well as the speed of sound
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Figure 5.1: Solutions to (4.5) at T = 10 MeV for two different combinations
of mass and mixing angle, without any lepton asymmetry. Left: M = 1 keV,
sin2(2θ) = 6.8 · 10−8, right: M = 10 keV, sin2(2θ) = 10−9. The three colored curves
correspond to the use of the three different opacities. For each mass, the mixing an-
gle was chosen such that the resulting energy density roughly gives the dark matter
abundance for the highest curve. The fractions of the dark matter energy density
read: left: (Ωs/ΩDM)spline = 1.003, (Ωs/ΩDM)Nc,eff

= 0.986, (Ωs/ΩDM)lep = 0.755,
right: (Ωs/ΩDM)spline = 1.012, (Ωs/ΩDM)Nc,eff

= 0.938, (Ωs/ΩDM)lep = 0.529 respec-
tively. The solid black lines are Fermi-Dirac distributions with an overall suppression
factor chosen such that their energy densities give the relic abundance.

cs(T ) from [97] 1, based on calculations in [94].

5.1.2 Results

We compare the resulting sterile neutrino phase space densities at T = 10 MeV
obtained with the different opacities Γspline

µ ,Γ
Nc,eff
µ , and Γlep

µ . We show results with
exemplary parameter values in figure 5.1. We find that the use of Γspline

µ leads to the
most efficient production, closely followed by Γ

Nc,eff
µ with a difference in final abun-

dances below the 10% level, for the masses we consider. The purely leptonic opacity
is the smallest one, leading to the lowest curve and the least efficient production with
a final abundance between 25% and 50% smaller than with the highest curve. The
mixing angle sin2(2θ) dictates the absolute abundances but does not influence their
relative differences. The specific choices for figure 5.1 roughly lead to the relic dark
matter abundance for the red curve but beyond that, they are completely arbitrary
and can be adjusted to give any fraction of the dark matter abundance.

1Available at www.laine.itp.unibe.ch/dmpheno/release_2016jun21.tar.gz.
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Figure 5.2: Parameter values for which the relic dark matter abundance is produced,
Ωs = ΩDM. The three lines correspond to the use of the three different opacities. The
shaded region is excluded by X-ray constraints taken from [22], see also [107–110].
The tentative 3.5 keV signal is indicated by the black dot, the error bar corresponds
to the uncertainty in the measured line intensity, cf. section 3.2.2.

Figure 5.1 hints at the fact that the higher the mass, the lower does the green
curve lie beneath the other two curves. Since the two full opacities differ most
from the leptonic opacity in the region of the highest considered temperatures (cf.
figure 4.3), we expect from (1.2) that for higher sterile neutrino masses, the relative
differences in the final phase space densities increase as the production is shifted
towards higher temperatures. In figure 5.2, we show lines of constant sterile neutrino
abundance in the (M , sin2(2θ)) - parameter space for a large range of masses. The
X-ray constraints are already very strong and only allow for low masses M . 2 keV
if we require sterile neutrinos to give the full dark matter abundance. For such low
masses however, the resulting spectra are reasonably close to a thermal form, which
is represented by the black curves in figure 5.1. For example, in the left plot, the
mean momenta of the three colored curves are roughly 10% lower than the mean
momentum of the thermal spectrum, which leads to very strong lower mass bounds
from structure formation, cf. section 3.3.2. Furthermore, we see that when using
the two full opacities, one requires very similar mixing angles to produce the same
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5.2. Resonant production

abundance. The blue curve is slightly above the red one, with differences in the
mixing angle below the 10%-level for all masses. With the leptonic opacity, the
mixing angle has to be much higher than with the other two opacities. The green
curve lies higher than the blue curve by ∼30% for the lowest shown masses and by
up to 180% for the highest masses. This is in accordance with the fact that the
production is shifted towards higher temperatures upon increasing the mass. Then
the full opacities become significantly larger than the leptonic opacity, resulting in a
boosted production and in turn a smaller, required mixing angle. Generally, we find
that the hadronic contributions play a notable role in sterile neutrino production,
even though the uncertainties do not exceed the 10%-level when comparing Γspline to
ΓNc,eff . Still, it can be concluded that a precise determination of non-resonant sterile
neutrino production rates requires a more precise determination of the involved
hadronic opacity. This might be desired for models that assume not all but a sizable
portion of dark matter to be composed of sterile neutrinos.

5.2 Resonant production

5.2.1 Setup

We have seen that the hadronic opacity is relevant for non-resonant production of
sterile neutrinos and a precise, non-perturbative determination in the future is de-
sirable. In this chapter we check its relevance for resonant production, which is a
viable sterile neutrino dark matter scenario. Producing the complete dark matter
abundance requires quite large lepton asymmetries, which can lead to resonances.
Thus, we now need to solve the coupled system of equations (4.5) and (4.6). Again,
we limit ourselves to α = µ. Then only the muon-flavor asymmetry will be dynam-
ical. In principle, non-zero electron and tau-flavor asymmetries can influence the
evolution equations as they appear in the functions cα, but we assume these to be
zero unless specified otherwise.

We choose M = 7.1 keV and θ2
µ = 2.5 · 10−13 as a representative point in the

available parameter space. The conclusions we will draw from our results will be
independent of that choice. We compare the resulting sterile neutrino phase space
densities at T = 10 MeV obtained with the different opacities Γspline

µ ,Γ
Nc,eff
µ , and

Γlep
µ for a set of different positive initial values for nLµ/s. For positive lepton asym-

metries, resonances mainly contribute to the production of sterile neutrinos with
negative helicity, while for positive helicity the resonant contribution is suppressed
withM/|k|. If there are resonances, then there are usually two resonance frequencies
for each |k| [19,62,63]. For most of the relevant temperatures, the two resonances lie
in the momentum range we consider. In practice, the smaller resonance frequency
dominates the sterile neutrino dark matter production, and the larger one plays a
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Figure 5.3: Solutions to the kinetic equations for M = 7.1keV, θ2
µ = 2.5 · 10−13. The

different curves are obtained with the different approximations for Γα. Left: Phase
space densities of sterile neutrinos with negative helicity at T = 10 MeV. The fraction
of the dark matter energy density is (Ωs/ΩDM)spline = 5.7 · 10−4, (Ωs/ΩDM)Nc,eff

=
5.3 · 10−4, (Ωs/ΩDM)lep = 3.2 · 10−4 respectively. Right: Evolution of the lepton
asymmetry.

negligible role [62].

5.2.2 Results

We show results for three different initial values of nLµ/s in figures 5.3, 5.4 and 5.5,
additional ones can be found in appendix A. Generally we observe that the higher
the initial lepton asymmetry, the larger the phase space densities become. In fig-
ure 5.3, the lepton asymmetry is so low that resonances are outside the displayed
momentum range (the dominant one leads to the slight increase at small momenta)
and only give a small contribution to the production. In contrast, the initial lepton
asymmetry in figure 5.4 is high enough so that each momentum mode in the shown
range passes through a resonance, giving much larger phase space densities. The
same is true for figure 5.5, where we chose the initial asymmetry such that we obtain
the complete dark matter abundance. In figure 5.3, we see how the different approx-
imations for the opacity influence the sterile neutrino production and in parallel the
depletion of nLµ/s. The purely leptonic contribution is the smallest one, resulting
in the least efficient production. In figures 5.4 and 5.5, one can see that for a larger
initial lepton asymmetry, there is only a sub-percent difference in the final abun-
dance of sterile neutrinos between using the full opacity and using only the leptonic
contribution. The resulting phase space densities have become indistinguishable. In
the limit Γα → 0, (4.12) turns into a delta function [63]. This indicates that the
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Figure 5.4: Same as figure 5.3 but with a higher initial lepton asymmetry. The
fraction of the dark matter energy density in all three cases is roughly Ωs/ΩDM =
2.5 · 10−2.

dominant resonance in figures 5.4 and 5.5 is so sharply peaked, that the differences
in the active-neutrino opacities become irrelevant. The same is true for the lepton
asymmetry evolution. No matter what opacity is used, the depletion is almost iden-
tical. We find that this behavior occurs in all of the allowed (white) parameter space
shown in figure 6.2, if we tune the lepton asymmetry such that the resulting sterile
neutrino energy density gives the correct dark matter abundance. The differences
in energy densities obtained with the different opacities are typically below the 2%
level, for very low masses and high mixing angles at most 5%. The transition from
quite different to basically equivalent solutions by increasing the lepton asymmetry
can be followed in smaller steps in appendix A.

We have used the publicly available code of [63] to check our calculation, and
what we find is mostly in agreement with our results described above. For very high
asymmetries we find that the resulting phase space densities suffer from sporadic
kinks, hinting at numerical instabilities which we could not get rid of by naively
increasing the desired precision. Nevertheless the resulting figures resemble ours
quite well.

Our findings partly disagree with the ones in [62], which were calculated using
sterile-dm, a publicly available code created by the authors of [62]. It uses 1,000
momentum bins as a default, which apparently misses parts of the resonances in the
sterile neutrino production. While this problem is absent for non-resonant produc-
tion, it becomes more and more severe for increasing asymmetry. We have explicitly
checked that increasing the number of momentum bins to 30,000 gives results which
mainly agree with ours. This problem could be the cause of the rather large differ-

42



Chapter 5. Impact of active-neutrino opacities

10-1 100 101

k/T= k̂

0. 0

0. 5

1. 0

1. 5

2. 0

k̂
2
f k̂
−

×10 3

Γspline

ΓNc, eff

Γlep

101 102 103

T [MeV]

2. 8

2. 9

3. 0

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

n
L
µ
/
s

×10−4

Figure 5.5: Same as figure 5.3 but with an initial lepton asymmetry tuned such that
the sterile neutrino energy density gives the complete relic dark matter abundance,
Ωs = ΩDM.

ences in the phase space densities using either Γ
Nc,eff
α or Γspline

α which was observed
in [62].

The lepton asymmetries needed to produce the complete dark matter abundance
(Ωs/ΩDM = 1) are quite large compared to the baryon asymmetry. Most baryoge-
nesis mechanisms produce comparable amounts of lepton and baryon asymmetries
before electroweak sphaleron freeze-out. In the νMSM [111], which contains two
additional heavier sterile neutrinos, a larger lepton asymmetry can be produced
thereafter [112,113]. However, it turns out this can boost the lepton asymmetry by
at most a factor 1,000 [114], and that one can reach at most Ωs/ΩDM = 1/10 [101]. In
this scenario, improving on calculations for hadronic contributions to active-neutrino
opacities can be important [101], as the lepton asymmetries are even smaller than
in figure 5.3.
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Chapter 6

Parameter constraints for resonant
production

Efficient sterile neutrino production via resonances can provide the dark matter
abundance with much smaller mixing angles than in the non-resonant case. However,
the required lepton asymmetries cannot be arbitrarily high due to observational
constraints from BBN and the CMB, which we introduced in section 3.3.4. We
compute new, lower limits on the active-sterile mixing angle in accordance with
these upper limits on the lepton asymmetry. We will summarize the results in
a parameter plot with all relevant limits. They will also include lower mass limits
from Lyman-α observations, which we do not calculate ourselves, but we can confirm
them based on a numerical comparison to other studies.

6.1 Lower mixing angle bounds from BBN and CMB

We start this section by computing the lower limits on the mixing angle from BBN
and the CMB, for which one can obtain Ωs/ΩDM = 1. We separately use both (3.36)
and (3.37) for that purpose. For simplicity, we take these maximal values as initial
conditions at T = 4 GeV. The lepton asymmetry at times prior to the onset of BBN
could be higher, as long as it is depleted enough during sterile neutrino production.
However, the depletion turns out to be only on the level of a few percent for the
low mixing angles considered here. We calculate, for various masses, the mixing
angle that leads to the complete relic dark matter abundance. The only non-zero
neutrino Yukawa coupling is hµ. The results are given in table 6.1, displaying the
scenario where all asymmetry is in the muon flavor (left) and the scenario where the
asymmetry is split equally onto all three flavors (right).

As we have seen in section 5.2, our calculations generally give larger phase space
densities than sterile-dm, if it is used for resonant production “as is” with 1,000
default momentum bins. This code was used to calculate the BBN limit in [69,110,
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Table 6.1: Mixing angle that leads to the complete relic dark matter abundance
for various masses, with total initial asymmetry nL/s = 2.5 · 10−3 (BBN limit) or
nL/s = 1.2 · 10−2 (CMB/BBN limit). Left: asymmetry only in the muon flavor,
right: all three asymmetries initially equal, nLα/s = nL/3s.

M/keV sin2(2θ) · 1013

BBN CMB/BBN
1 30 6
2 11 2.2
5 2.8 0.6
10 1.03 0.24
20 0.39 0.09
50 0.12 0.025
70 0.08 0.016

M/keV sin2(2θ) · 1013

BBN CMB/BBN
1 47 10
2 16 3.7
5 4.1 0.99
10 1.48 0.39
20 0.57 0.15
50 0.20 0.04
70 0.14 0.026

115,116], giving much stronger limits than the ones we find, especially for the lower
end of the mass range in table 6.1. Again, increasing the number of momentum
bins, sterile-dm gives better agreement with our results. On the other hand we note
that our BBN limits are in closer agreement with the only slightly lower ones in [13],
which are also displayed in [109, 117], and also with the ones shown in [118], which
are based on [87].

The limits we obtain from the CMB measurements are much weaker than the
ones from BBN alone. They can be classified as much more robust than the pure
BBN limits as they do not suffer from such large systematic uncertainties (cf. section
3.3.4). Therefore, we stick to these limits for the final parameter space plot in section
6.3.

One has to keep in mind that the used bounds only apply to the total lepton
asymmetry. In fact, nLµ could be larger than (3.36) or (3.37) if it is partly compen-
sated by the other lepton flavor asymmetries. But the same compensation would
not take place in (4.22), where the different flavors enter with different coefficients.
Therefore cµ would increase, leading to a larger production rate and to a weaker
bound on sin2(2θ).

6.2 Lower mass bounds from the Lyman-α forest

In contrast to the scenario of non-resonant sterile neutrino production, where the
resulting spectra do not deviate too strongly from a thermal form for low masses,
resonant production can lead to much colder spectra. In figure 6.1, we show the
mean momenta of our final spectra for a large range of masses and mixing angles.
The colormap is an interpolation between values calculated on a grid covering the
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Figure 6.1: Mean momenta of sterile neutrino distributions at T = 10 MeV which
give the relic dark matter abundance, Ωs = ΩDM. The boundaries to the excluded
(grey) regions correspond to zero (upper region) and maximal (lower region) lepton
asymmetry, the latter corresponds to the BBN/CMB bound from table 6.1 (left).
The shown range of masses and mixing angles covers all of the allowed parameter
space when combining all relevant constraints, which are shown explicitly in section
6.3.

shown parameter space. For each point on the grid, the relic dark matter abundance
is reached by adjusting the lepton asymmetry accordingly. The mean momentum
is a suitable feature to look at in order to get an idea of how different from a
thermal shape the final spectra can turn out if one fixes the mass, the mixing angle
and the final abundance. We generally find colder than thermal spectra in the
entire parameter space shown (for a Fermi-Dirac distribution 〈k〉/T ' 3.15). For
mixing angles roughly an order of magnitude lower than the upper limit, one needs
a moderate amount of lepton asymmetry, typically nLµ/s ∼ 10−6 − 10−4 , in order
to produce the dark matter abundance. This moderate amount leads to resonant
enhancements of the low momentum modes, but keeps high modes untouched. This
results in very cold distributions (blue shaded regions). For decreasing mixing angles,
higher lepton asymmetries are needed, nLµ/s & 10−4, which let resonances extend
also towards higher momentum modes. Hence, the distributions become warmer
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again (orange/red shaded regions).
Overall, we expect that structure formation bounds from Lyman-α observations

should become much weaker here than for non-resonant production. Their appli-
cation in the first place also becomes more difficult, since mass limits cannot be
estimated from limits on thermal relics as done in section 3.3.2. Instead, one re-
quires a dedicated calculation of power spectra involving the explicit distribution
functions in order to obtain limits on the free-streaming scales, which then con-
strain the mass. Such a calculation is done in [119], using the distribution functions
produced by the Mathematica code of [63]. We already used that code to confirm
what we found in section 5.2 and found well agreeing distribution functions for a
large range of initial lepton asymmetries. Therefore, we conclude that the derived
constraints from [119] apply here as well. The result is a lower mass limit exclud-
ing masses below ∼ 7 keV for almost all mixing angles sin2(2θ) & 10−13, which is
considerably stronger than the limit from phase space analysis. We expect the limit
to continue to lower mixing angles, but this is not shown in [119] and thus we do
not have access to it in this region. We show the explicit limit together with all
previously introduced parameter constraints in section 6.3.

Similar calculations have been performed, e.g., in [115,116] using the distribution
functions that are produced by the code sterile-dm. We generally find colder spectra
than [116], with a mean momentum that is typically between 25% and 50% lower,
depending on the region in the parameter space. The Lyman-α limits shown in [116]
are much stronger than the ones displayed in [119], excluding the entire parameter
space. Due to the already mentioned issues regarding sterile-dm, we conclude that
these limits are too strong.

6.3 Combined constraints

In the final section of this chapter, we provide a new plot in which we summarize
all parameter constraints on resonantly produced sterile neutrino dark matter that
we discussed so far. Besides constraints from X-ray and Lyman-α observations
as well as phase space density analysis, which we did not compute ourselves, we
add new constraints from CMB/BBN. Our results, together with the constraints
introduced in chapter 3, are shown in figure 6.2. The allowed region (white space) is
bounded from all sides. For very high active-sterile mixing angles, sterile neutrino
production can result in too much dark matter abundance even without any lepton
asymmetry. This overproduction region is shown as the green-shaded area. Non-
resonant production of the relic dark matter density can take place on the boundary
of that region (upper solid black line), which corresponds to the Dodelson-Widrow
scenario. We have used the active-neutrino opacity Γspline

µ (cf. section 4.3.2) for all
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Figure 6.2: Combined constraints for keV sterile neutrino dark matter that is res-
onantly produced with the help of a lepton asymmetry. The X-ray constraints are
taken from [22], see also [107–110]. Phase space density constraints are from [64].
The Lyman-α limits are taken from [119]. The CMB/BBN limit given by the solid
black line holds if all of the input lepton asymmetry is only in the muon flavor. The
dashed line corresponds to the CMB/BBN limit if the input lepton asymmetry is
split equally onto all three flavors. The tentative 3.5 keV signal is indicated by the
black dot.

calculations here, which really only affects the location of that black line slightly,
see figure 5.2. Below the region of overproduction, resonance effects due to non-zero
lepton asymmetries make this choice irrelevant and using one of the other opacities
Γ
Nc,eff
µ and Γlep

µ would not change anything then.
We were able to weaken previous, lower limits on the mixing angle from BBN.

Combining the lower limit on the mixing angle from BBN alone (BBN column in
table 6.1) with X-ray constraints, closes the available parameter space for masses
M & 40 keV, which is not shown here. Still, this leaves us with more free space
than previous studies [69, 110, 115, 116]. The lower limits from the CMB and BBN
(CMB/BBN column in table 6.1) lead to a closing of the available parameter space
for M & 70 keV when combined with X-ray constraints, which is why we did not
calculate limits for even higher masses. The CMB/BBN limits are more robust than
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from BBN alone, which is the reason we show them here. With these new limits
on the mixing angle, we were able to open up the parameter space for resonant
production of sterile neutrino dark matter considerably.

In section 6.2, we found that the Lyman-α limits calculated in [119] apply here
since they are based on basically the same sterile neutrino distribution functions
as the ones we calculated. These limits take away a lot of the otherwise allowed
parameter space as they are much stronger than the lower mass limits from phase
space arguments. Nevertheless, they do not reach up to M = 7.1 keV and therefore
the sterile neutrino interpretation of the 3.5 keV line signal remains viable. In the
upper mixing angle range, there is a horn-like dip in the Lyman-α excluded region,
where slightly lower masses are possible. A feature of that sort does not come
unexpected, since the corresponding sterile neutrino spectra turn out especially cold
in that region (cf. figure 6.1), leading to large free-streaming wavelengths and thus
weak structure formation limits.

50



Chapter 7

Enhanced production from
self-interacting neutrinos

Primordial lepton asymmetries are very weakly constrained and can help in produc-
ing large amounts of sterile neutrinos via resonant production. This gives a viable
dark matter scenario but the available parameter space is quite restricted and could
shrink further in the future due to, e.g., upcoming X-ray observations. Also the
question about the origin of such large lepton asymmetries is left open.

In this chapter, we investigate a simple alternative in which no lepton asymme-
tries are required for efficient production via active-sterile mixing, while parameter
constraints are also much weaker. The price for that is having to introduce additional
field content beyond the SM. A minimal working extension is provided by the sim-
ple addition of a new scalar field, which mediates self-interactions among the active
neutrinos. These self-interactions give contributions to the active-neutrino spectral
functions, which can significantly increase the sterile neutrino production. This
model relies on the same production mechanism as the original Dodelson-Widrow
scenario, only with an altered production rate. This is different from the possibly
more known scenario of sterile neutrino production via decay of heavy scalars, which
does not rely on active-sterile mixing, see, e.g., [120]. There exist rather weak ob-
servational constraints on the scalar field mass and coupling, which will translate
to a much wider, available sterile neutrino parameter space for producing the relic
dark matter density than in the last chapter. Furthermore, we will see that the
interactions of the new field with the active neutrinos can in principle lead to res-
onances, just like non-zero lepton asymmetries do. Similar to what we did in the
last chapter, our goal here will be understanding the importance of resonances and
the role of opacities for this dark matter scenario. This new scenario was originally
proposed in [22], where the appearance of resonance effects was mentioned but no
deeper investigation, other than referring to them as accidental, took place. We will
clarify the situation and see what impact resonances have in this scenario.
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7.1. Contribution to active-neutrino self-energy

7.1 Contribution to active-neutrino self-energy

We consider a model in which self-interactions among active neutrinos assist in
producing sterile neutrino dark matter. For that purpose, we extend the Lagrangian
(4.1) by adding a new complex scalar field φ which couples to active neutrinos να,
with the interaction

Lφint =
∑
α,β

λαβ
2
φ νανβ + h.c. (7.1)

In order to preserve SM gauge invariance, such an interaction can be obtained from
a higher dimensional operator,

Lφint = φ
(lαϕ̃)(lβϕ̃)

Λαβ

+ h.c. (7.2)

with the cutoff scale Λαβ. This results in (7.1) after electroweak symmetry breaking,
〈ϕ̃〉 = (v/

√
2, 0)>, with the dimensionless coupling λαβ = v2/Λ2

αβ. This effective
operator can be derived from a renormalizable theory at higher energy scales [121].
We will only be interested in phenomenological implications of the interaction (7.1)
from here on. For simplicity, we assume non-zero coupling only for muon-flavor
neutrinos, so only the terms with α = β = µ contribute in the following. Moreover,
the only remaining coupling λµµ will be denoted by λ from here on.

The self-energy (4.10) of active muon-flavor neutrinos receives additional contri-
butions from the new field. We write the real and imaginary parts as

bµ = bSM
µ + bφµ, (7.3)

Γµ = ΓSM
µ + Γφµ, (7.4)

where the first terms are the SM contributions introduced in chapter 4, (4.21) and
(4.38) respectively. The new scalar field contributions carry the superscript φ. Since
we do not assume any non-zero lepton asymmetries in this chapter, the function cµ
in (4.10) is zero. The contribution bφµ to the self-energy comes from the real part of
the same one-loop graph shown in figure 4.1 on the left, only that the gauge field
line is replaced by a scalar field line. For a general scalar mass mφ, we find

bφµ =
λ2

16π2k2

∫ ∞
0

dp

[(
m2
φp

2ε
L2(p, k)− 4kp2

ε

)
fB(ε) +

(
m2
φ

2
L1(p, k)− 4kp

)
fF (p)

]
(7.5)

with the energy ε =
√
p2 +m2

φ and the logarithmic functions

L1(p, k) = ln

(
m2
φ + 4kp

m2
φ − 4kp

)
, (7.6)
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L2(p, k) = ln

(
m2
φ + 2k(w + p)

m2
φ + 2k(w − p)

)
+ ln

(
m2
φ − 2k(w − p)

m2
φ − 2k(w + p)

)
. (7.7)

This agrees with the result of [122] in the limit of vanishing fermion mass. Expression
(7.5) takes simple forms for very high or very low temperatures. For T � mφ, the
logarithmic terms can be dropped and we are left with the asymptotic form

bφµ = −λ
2T 2

16k
, (7.8)

whereas in the limit T � mφ, expanding the logarithms to leading order in p/mφ

gives [123,124]

bφµ =
7π2λ2kT 4

90m4
φ

. (7.9)

It is important to note that, when going from high to low temperatures, bφµ changes
its sign. It is negative in the high-temperature regime, where it may compensate
the positive bSM

µ , such that resonances in the spectral function (4.11) can occur
in principle. The necessary parameters for creating sizable resonance effects in
sterile neutrino production, if they exist in the first place, have to be determined
numerically.

The imaginary part of the same one-loop diagram gives the leading opacity con-
tribution Γφµ, at least for intermediate scalar masses, mφ . T . For such masses,
neutrinos interact mainly through the decay and inverse decay of on-shell φ parti-
cles. We find the expression

Γφµ =
λ2m2

φT

8πk2

[
ln
(

1 + em
2
φ/(4kT )

)
+
k

T
− ln

(
em

2
φ/(4kT )+k/T − 1

)]
, (7.10)

which slightly differs from the corresponding expression in [22], although they co-
incide for large momenta k. A detailed calculation of our result is presented in
appendix B. The opacity (7.10) becomes very small in the limit mφ � T , just like
the SM opacity is exponentially suppressed at leading order in the coupling due to
very heavy gauge bosons. Then the leading scalar field contribution is obtained from
two-loop order and reads [22]

Γφµ =
7πkλ4T 4

864m4
φ

. (7.11)

In numerical evaluations, we consider scalar field masses in the range 1 MeV ≤ mφ .
Tmax = 4GeV (cf. section 7.2 for the lower limit), which is sufficient for our purposes
of investigating effects on dark matter and resonances. Then expression (7.11) plays
only a minor role when we solve the sterile neutrino evolution equations. We have
checked that, as stated in [121], it is a very good numerical approximation to use
the sum of (7.10) and (7.11) over the whole temperature range when solving the
sterile neutrino evolution equations.
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7.2 Parameter constraints

If the new scalar particles are light enough and in thermal equilibrium with the
active neutrinos, they can lead to an enhanced expansion rate of the Universe during
BBN, which would alter the formation of light elements. Additionally they decay
into active neutrinos at later times, leading to an enhanced Neff with measurable
impacts on the CMB. In [125], it is shown that for sizable couplings, a lower mass
limit is necessary to ensure that the scalar particle density is Boltzmann-suppressed
enough to be in accordance with predictions of light element abundances from BBN.
They report

mφ > 5.2 MeV for λ & 10−4. (7.12)

For weaker couplings, the limits should be relaxed. References [126,127] suggest

mφ & O(0.1) MeV for λ & 10−8, (7.13)

relying on BBN predictions as well as on CMB measurements. The regime of even
lower couplings is not subject to any notable BBN limits.

Besides observational constraints related to the cosmology of the early Universe,
there also exist constraints on self-interactions of active neutrinos in the laboratory.
In case of a scalar mediator, the strongest constraints come from the search of
rare meson decays, primarily from the kaon decay K+ → µ+ν̄µνν [121]. The pair
of neutrinos emerges from the decaying scalar, φ → νν. The lower limit on the
branching ratio Br(K+ → µ+ν̄νν) > 2.4 · 10−6 [128] for this decay results in an
upper limit on the coupling λµµ for intermediate masses mφ . O(100)MeV. For
increasingly higher masses, the limit becomes weaker as the decay becomes more
suppressed. Both, the BBN limit and the kaon decay limit are shown in figure 7.1.

7.3 Numerical results

Our numerical evaluations will ensue like in chapter 5. We solve the sterile neutrino
evolution equations (4.5) by integrating over T and again, we limit ourselves to
the case of hµ being the only non-zero Yukawa coupling between active and sterile
neutrinos. Besides the SM contributions, the active-neutrino self-energy now also
contains contributions from the scalar field and so we use (7.3), (7.4) in the spectral
function (4.11). We will stick to using Γspline

µ (cf. section 4.3) as the SM-input to
(7.4) from here on. As it turns out, the opacity contribution Γφµ is much larger and
thus dominating, rendering the specific choice of the SM opacity irrelevant. This
statement holds true for values of mφ and λ that are necessary for yielding the relic
dark matter abundance. Since the self-energy contributions from the scalar field
are affecting both sterile neutrino helicity states equally, unlike a non-zero lepton
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Figure 7.1: Locations in the parameter space of the φ-field where the produced
sterile neutrinos make up all of the dark matter, Ωs = ΩDM, given fixed values of M
and sin2(2θ). The three lines correspond to exemplary choices of the latter. The relic
dark matter abundance is produced anywhere on the lines. Parameter constraints
are indicated by the color-shaded regions. The BBN constraint is from [125], the
constraint from kaon decay is from [121].

asymmetry with a fixed sign, we can track the evolution of only one helicity and
multiply the resulting abundance by 2. In contrast to the previous chapters, where
the production rate typically runs inefficient not too far below TQCD, we find that
the rate can be large also for lower temperatures down to T ∼ O(1 MeV), due to the
large opacity Γφµ. Therefore, we choose 1 MeV as the lower end of the T-integration
range instead of 10 MeV. We cannot go to lower temperatures as we do not have
numerical values for entropy and energy density at hand there.

7.3.1 Parameter values for the relic abundance

We begin by fixing points in the (M, sin2(2θ))-plain and exploring how the scalar
field impacts the production of sterile neutrinos. In figure 7.1, we show a large range
of values ofmφ and λ which are necessary for obtaining the relic dark matter density,
given three different sets of sterile neutrino parameters. For each set, there exists an
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infinite amount of combinations of suchmφ and λ values, which continuously connect
to form the "S"-shaped lines shown. We chooseM = 7.1 keV and sin2(2θ) = 7·10−11

as exemplary parameters (blue line), corresponding to the central values for the
tentative 3.5 keV-line signal. By altering eitherM (red line) or sin2(2θ) (black line),
we can see how mφ and λ have to be adjusted to keep the relic density unchanged.
Generally, a higher sterile neutrino mass or a higher mixing angle both increase the
production rate and require a smaller λ for fixed mφ. Besides slightly altering the
shape of the lines, this moves the whole line towards the bottom-right direction in
that plane. In contrast, a lower sterile neutrino mass or mixing angle tends to move
the lines to the upper-left.

The location of the blue line agrees very well with the location of the correspond-
ing line shown in [22], which uses the same parameters. Only towards the lower end
of themφ-range we find slight differences. Our line bends up towards higher λ-values
when φ is decreased below ∼ 5 MeV, while it continues to go straight down in [22].
This difference probably comes from the fact that for low mφ, the sterile neutrino
production becomes efficient towards low temperatures and we only integrate down
to 1 MeV, while the authors of [22] integrate down to 0.1 MeV. Thus, it appears
that we are not able to cover all of the relevant production temperatures and in turn
require slightly higher λ to compensate that. However, a complication in that regard
arises due to the decoupling of active neutrinos which typically takes place in this
temperature regime. On the one hand, the applicability of the evolution equations
(4.5) is no longer justified when the active neutrinos fall out of thermal equilibrium.
On the other hand, the new self-interactions should keep them in equilibrium longer
than in the SM scenario. A detailed calculation, taking these effects into account,
goes beyond the scope of the work presented in this thesis but could be interesting
for future investigations. We do not consider masses mφ . 5 MeV in the following
and so we do not expect this issue to be relevant from here on.

7.3.2 Resonance effects and opacity impact

As a next step, we want to see where resonance effects come into play and how
relevant they are. Resonances occur when the square bracket in the denominator of
the spectral function (4.11) becomes very small. Even though we do not have any
lepton asymmetries here and thus cµ = 0, we found in section 7.1 that resonances
are possible in the regime T � mφ due to a negative bφµ. Their location and strength
is different for each momentum mode and temperature and also depends on the val-
ues of the parameters M , mφ and λ. The mixing angle sin2(2θ) only influences the
overall abundance. We have fixed M = 7.1 keV and scanned most of the allowed
parameter space shown in figure 7.1, searching for resonance signatures in the form
of peaks in the phase space densities. We checked only the region mφ < 1 GeV,
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Figure 7.2: Solution to the evolution equations for M = 7.1 keV, sin2(2θ) = 10−12,
mφ = 5 MeV, λ = 7.5 · 10−5 at different temperatures.

since resonances only occur for mφ � T and the sterile neutrino production rate
is generally very small at temperatures above 1 GeV. We did not find any peaks
in the densities at the final temperature Tend = 1 MeV, however we were able to
find them at higher temperatures. In figure 7.2, we show the temperature evolution
of the sterile neutrino phase space density for mφ = 5 MeV and λ = 7.5 · 10−5, a
combination of values that turns out to give well pronounced peaks. At T = 100

MeV, the density shows a clear peak at k ∼ 0.8T (red curve). Around that momen-
tum mode, resonant production has visibly contributed to the phase space density
evolution down to this temperature. Going further down to T = 50 MeV (orange
curve), the shape of the density barely changes as the production has run inefficient
by then. The slight shrinking of the curve is due to redshifting momenta. The fol-
lowing steps in temperature (curves shown explicitly at T/MeV = 20, 10, 5, 1) show
how the production rate increases again, significantly populating every momentum
mode in the shown range. This increase is however due to the large opacity (7.10),
driving non-resonant production. The resonance peak is overshadowed in that pro-
cess and becomes less and less significant as the temperature decreases, down to the
point where it is no longer visible. We have not explicitly tracked the temperature
evolution of the phase space density in all available regions of figure 7.1, but we
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expect that resonances occur in more instances than the one shown in figure 7.2.
Nevertheless, none of them contribute notably to the final densities, as we could not
find remnants of resonance peaks in any of them. This can be contrasted to our
findings in section 5.2. There we found that once resonances occur in sterile neutrino
production, the corresponding momentum modes evolve only due to resonance effect
and the non-resonant contribution is negligible, shown by the fact the the choice of
the opacity does not play a role anymore. Here, resonances can occur but their effect
on the final spectrum is overshadowed by efficient non-resonant production due to
the high opacity contribution Γφµ. We conclude that resonance effects are negligible
for this sterile neutrino production scenario.

7.3.3 Sterile neutrino parameter space

Last but not least, we want to see how the new self-interactions among active neu-
trinos influence the available parameter space for sterile neutrino dark matter. The
large opacity contribution enhances the production rate compared to the Dodelson-
Widrow scenario, which should allow for smaller active-sterile mixing angles to be
viable. From figure 7.1 we get a glimpse of how a lower bound on the mixing angle
can be established. For a fixed sterile neutrino mass M , a lower mixing angle leads
to a shift of the line of constant abundance towards the upper left (going from the
blue to the black line). In practice, lowering the mixing angle eventually leads the
line to completely submerge into the excluded, color-shaded regions. The lowest,
viable mixing angle is given by the requirement that some part of the line is still
in the allowed region just in front of the BBN-excluded region and simultaneously
below the region excluded by kaon decay. We do not consider values λ & 1 as this
extends beyond the perturbative realm.

For a given mass M , we have determined the value for λ that gives the highest
possible abundance along the BBN line mφ = 5.2 MeV and then reduced the mixing
angle sin2(2θ) such that we end up with the correct abundance. The resulting lower
limit is shown in figure 7.3. We find a very weak lower limit on the mixing angle
in comparison to the CMB/BBN limit in figure 6.2. This gives us a lot of available
parameter space, which closes only shortly before M = 1 GeV. For higher M , we
either produce not enough dark matter or run into X-ray constraints. On the one
hand, our available space reaches to slightly higher values for M than in [22], where
slightly stronger limits meet the same X-ray constraints already around M ≈ 700

MeV. On the other hand, their limit is slightly weaker for the lower M -range. We
assume these differences to arise due to slightly different results for the opacity Γφµ,
different endpoints in the temperature integration range, or a mixture of both. In
contrast to the non-resonant and resonant production scenarios without additional
field content, no Lyman-α constraints have been computed for this scenario so far.
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Figure 7.3: Combined constraints for keV sterile neutrino dark matter that is pro-
duced in the presence of a new scalar field, mediating self-interactions among active
neutrinos. The X-ray constraints are taken from [22], see also [70, 107–110]. Phase
space density constraints are from [64]. In the grey region, no allowed combina-
tions of the scalar field parameters mφ and λ could be found that would lead to the
production of the relic dark matter abundance.

Their computation is especially difficult here since at each available point in the
sterile neutrino parameter space, there are many different scalar field parameters
leading to the relic abundance. The different combinations generally result in ster-
ile neutrino spectra with different shapes and mean momenta, which could affect
structure formation in different ways. All in all, we find that this simple scalar field
extension of the SM can significantly impact the production of sterile neutrino dark
matter, with very weak parameter constraints compared to the scenario of resonant
production via lepton asymmetries.
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Chapter 8

Summary and conclusions

Sterile neutrinos with masses on the keV-scale represent a theoretically well-motivated
candidate for dark matter. Due to their mixing with active neutrinos, they are pro-
duced from the thermal plasma in the early Universe. This process takes place
mainly during the QCD epoch, where strong-interaction effects can play an impor-
tant role but are difficult to compute at the same time. In this thesis, we have
investigated how non-resonant and resonant production scenarios are affected by
active-neutrino opacities, which are the largest source of hadronic uncertainties. Fur-
thermore, we provide the most up-to-date available parameter space for resonantly
produced sterile neutrino dark matter by calculating new limits on the mixing angle,
based on BBN and observations of the CMB. We also studied a model in which new
self-interactions among active neutrinos can help in making the production more
efficient, as an alternative to large lepton asymmetries.

In chapter 5, we solve coupled evolution equations of sterile neutrino phase space
densities and lepton number densities using different approximations for the active-
neutrino opacity as input. The three approximations model the hadronic input in
different ways and by comparing their influence on the final phase space densities
and resulting dark matter abundances, we can estimate the importance of strong-
interaction effects.

We first consider non-resonant production in section 5.1, where no lepton asym-
metry is present. In that case, we find that hadronic opacity contributions are sub-
stantial. For very low sterile neutrino mass, M = 1 keV, the purely leptonic opacity
Γlep gives roughly 20-25% less abundance than the two full opacities Γspline and
ΓNc,eff . This difference only becomes larger when M increases and it is independent
of the mixing angle sin2(2θ), the latter only controlling the absolute abundances.
The differences in abundance between using Γspline or ΓNc,eff are generally around
10% or below. For the low mass range, we find that the resulting spectra resemble
thermal spectra quite well, with similar mean momenta. This confirms the applica-
bility of lower mass bounds from Lyman-α forest observations, which together with
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X-ray constraints on the mixing angle, exclude the sterile neutrinos in this scenario
from providing all of the dark matter. However, if they are only required to make
up a fraction of the dark matter abundance or if one introduces, e.g., additional
sterile flavors, this scenario remains viable. Then, non-perturbative determinations
of the hadronic opacity contributions would be desirable for precise computations
of sterile neutrino abundances.

In section 5.2, we introduce a non-zero lepton asymmetry which boosts the sterile
neutrino production via resonances. For lepton asymmetries as high as nLα/s &
10−6, necessary for producing the complete dark matter abundance and at the same
time avoiding strong parameter constraints from Lyman-α and X-ray observations,
we find that the hadronic opacity plays no role in the production anymore. The
sharp resonances dominate the production process and no distinction between the
uses of the three opacities Γspline, Γlep and ΓNc,eff can be made. We conclude that
non-perturbative input in the form of hadronic opacities will not be necessary in
this scenario. Still, strong-interaction effects play a role as they also enter the
equation of state and the real part of the active-neutrino self-energy. However,
these effects are under much better control as lattice QCD calculations have already
been incorporated.

We were able to confirm our findings with the two publicly available codes for
resonant sterile neutrino production, a Mathematica code from [63] and sterile-
dm [62]. While substantially different results were produced by sterile-dm at first,
we could identify an inaccuracy in that code and successfully resolve the discrepancy
by adjusting the numerical precision.

In chapter 6, we present parameter constraints on resonantly produced sterile
neutrino dark matter. The code sterile-dm was used previously to calculate lower
limits on the mixing angle sin2(2θ) from BBN [69,110,115,116], which we were able
to update. We find much weaker limits, especially for low masses, which provides
more available parameter space for that scenario than in these previous studies.
Furthermore, we have calculated similar limits based on limits derived from the
CMB [88], which are in accordance with BBN. They have not been used before in
the context of sterile neutrino dark matter. They are much weaker than the limits
from BBN alone but come with much smaller, systematic uncertainties. Lyman-
α constraints on the sterile neutrino mass have been calculated for the resonant
production scenario [119], using phase space densities produced by the Mathematica
code associated with [63]. Our calculations give very similar densities, which allows
us to incorporate the same Lyman-α constraints in our work. In figure 6.2, we
summarize the relevant constraints on resonantly produced sterile neutrino dark
matter, providing a new parameter exclusion plot.

Finally, chapter 7 deals with a slightly different scenario in which sterile neu-
trino dark matter is efficiently produced with the help of a new scalar field φ that
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mediates self-interactions among active neutrinos. Through its contributions to
the active-neutrino self-energy, the scalar field can strongly amplify sterile neutrino
production. We consider masses mφ . T , which can result in the appearance of res-
onances through a negative contribution to the real self-energy. We have calculated
the opacity contribution and find that it is very large and dominates the SM contri-
butions. The latter arise at a higher loop level due to high gauge boson masses. We
find that the large opacity renders resonance effects irrelevant for the final sterile
neutrino abundances. Non-resonant production, being very efficient down to the
lowest temperature T = 1 MeV we consider, overshadows resonances completely.
This behavior is the opposite of what we found in chapter 5 about resonant pro-
duction through large lepton asymmetries. There, opacities are comparatively small
and resonances completely dominate the production process.

We find that the relic dark matter abundance is easily produced in this scenario,
since the scalar field mass and coupling are rather weakly constrained. For fixed
sterile neutrino parameters, we find the correct abundance on continuous lines in
the scalar field parameter space, which are mainly in accordance with the results
in [22]. We find small deviations for very low scalar field masses, which could
be due to differences in the opacity and the the fact that we were only able to
take temperatures T ≥ 1 MeV into account, ending one order of magnitude earlier
than [22]. While this implies that we could have missed some parts of the effective
production range, the validity of the evolution equations in this range is not clear
at the same time. Based on existing constraints on the scalar field parameters, we
finally calculated a lower limit on the active-sterile mixing angle. The available
space for sterile neutrino parameters turns out quite large as a result. We find a
slightly stronger limit than [22] for the lower end of possible sterile neutrino masses,
but a slightly weaker limit for very high masses, with allowed regions up to M ∼ 1

GeV for mixing angles sin2(2θ) ∼ 10−20.

63





Appendix A

Emergence of resonances with
increasing lepton asymmetries

Here we show the negative helicity phase space densities and corresponding lepton
asymmetries like in figures 5.3 - 5.5, comparing the use of the three different opacities.
The sterile neutrino parameters are M = 7.1keV, θ2

µ = 2.5 · 10−13 in all shown cases.
From top to bottom we gradually increase the initial lepton asymmetry (figures on
the right), whereby the resonances extend more towards higher momentum modes
(figures on the left). When a mode passes through a resonance, it becomes blind to
the choice of the active-neutrino opacity.
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Appendix B

Opacity calculation

Here we calculate the opacity (7.10), which we obtain from the imaginary part of
the one-loop self-energy diagram shown in figure 4.1 (left), with the scalar field φ

replacing the gauge boson. In the absence of any chemical potentials, we write the
self-energy contribution from interactions with the scalar field φ as

Σ(k) = /kaφ − γ0

(
bφ +

iΓφ

2

)
, (B.1)

where aφ is usually neglected against the tree-level term when inserting the self-
energy into the neutrino propagator (cf. (4.10)). For calculating the self-energy in
the first place, we keep all terms. From (B.1), the opacity is extracted as

Γφ =
1

2k2
Tr

[
(k2γ0 − ω/k)ImΣ(k)

]
, (B.2)

with the four-momentum k = (ω,k). Assuming massless neutrinos, we set |k| = ω

and the first term drops out immediately since k2 = 0.
For the diagram evaluation, we use the imaginary-time formalism of finite-

temperature quantum field theory with four-momenta k = (k0,k), where k0 = iωn
and ωn = πnT with even (odd) n denoting bosonic (fermionic) Matsubara frequen-
cies. The space-time metric has the signature (+,−,−,−). At one-loop order, the
self-energy reads

Σ(k) = −λ2
∑∫
p

/p+ /k

(p+ k)2(p2 −m2
φ)
, (B.3)

where the sum-integral contains the three-dimensional integration over spatial mo-
menta and the summation over all frequencies,∑∫

p

≡ T
∑
n

∫
d3p

(2π)3
. (B.4)
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For calculating the opacity, we take the following steps: we will compute the trace
of /k times expression (B.3), carry out the Matsubara sums, analytically continue
the frequency k0 to the real axis, extract the imaginary part from the discontinuity
across that axis and finally, handle the spatial integration. With Tr[/k/p + k2] =

4(p · k + k2) = 2((p+ k)2 − p2 −m2
φ +m2

φ + k2), we need to compute

Tr[/kΣ(k)] = −2λ2
∑∫
p

[
1

p2 −m2
φ

− 1

(p+ k)2
+

k2 −m2
φ

(p+ k)2(p2 −m2
φ)

]
. (B.5)

The first two terms are k-independent and thus do not contribute to the discontinuity
of k0 across the real axis. Only the third term contributes to the imaginary part
and will be kept. The denominator of that term is handled through partial fraction
decomposition,

1

[(p0 + k0)2 − E2
2 ][p02 − E2

1 ]
=

1

4E1E2[
1

E1 − k0 − E2

(
1

p0 + k0 + E2

− 1

p0 + E1

)
+

1

E1 + k0 + E2

(
1

p0 + k0 + E2

− 1

p0 − E1

)
− 1

E1 − k0 + E2

(
1

p0 + k0 − E2

− 1

p0 + E1

)
− 1

E1 + k0 − E2

(
1

p0 + k0 − E2

− 1

p0 − E1

)]
, (B.6)

with E1 =
√

p2 +m2
φ and E2 = |p + k|. This allows us to easily carry out the

bosonic Matsubara sums over p0 (for a general guide on how to solve them, we refer
to [106]). We find

Tr[/kΣ(k)] =4λ2m2
φ

∫
d3p

(2π)3

1

4E1E2[
1

E1 − k0 − E2

(
− fF − fB

)
+

1

E1 + k0 + E2

(
− fF + (1 + fB)

)
− 1

E1 − k0 + E2

(
− (1− fF )− fB

)
− 1

E1 + k0 − E2

(
− (1− fF ) + (1 + fB)

)]
, (B.7)
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with fB = fB(E1), fF = fF (E2). Now we analytically continue k0 → ω + i0+ with
real frequency ω and use the identity

1

x± i0+
= p.v.

(
1

x

)
∓ iπδ(x) (B.8)

to extract the imaginary part. This gives

Tr[/kImΣ(k)] =πλ2m2
φ

∫
d3p

(2π)3

1

E1E2[
δ(E1 − ω − E2)

(
− fF − fB

)
−δ(E1 + ω + E2)

(
− fF + (1 + fB)

)
−δ(E1 − ω + E2)

(
− (1− fF )− fB

)
+δ(E1 + ω − E2)

(
− (1− fF ) + (1 + fB)

)]
. (B.9)

Since the active neutrinos are assumed massless, only the first of the four terms
contributes as it is the only kinematically allowed one. Using (B.2), we are left with

Γφ =
πλ2m2

φ

2ω

∫
d3p

(2π)3

1

E1E2

δ(E1 − ω − E2)

(
fF (E2) + fB(E1)

)
. (B.10)

We denote the integral containing fF by IF and handle it as follows. We shift the k-
dependence out of the distribution function by substituting u = p+k and renaming
u ≡ p afterwards, yielding

IF =

∫
d3p

(2π)3

fF (|p|)√
(p− k)2 +m2

φ|p|
δ
(√

(p− k)2 +m2
φ − ω − |p|

)
. (B.11)

We continue by substituting p − k = q and inserting a delta distribution, making
use of the identity

g(p− k) =

∫
d3q δ(3)(q− p + k)g(q). (B.12)

By shifting q→ −q, p→ −p and using the symmetry of the delta distribution, we
arrive at

IF =

∫
d3p

(2π)3

∫
d3q√

q2 +m2
φ|p|

fF (|p|)δ(3)(q−p−k)δ
(√

q2 +m2
φ−ω−|p|

)
. (B.13)
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A useful trick is to promote the momenta p and q to 4-vectors p = (|p|,p) and
q = (q0,q) with q0 =

√
q2 +m2

φ. Then the delta distributions in (B.13) can be
combined into a four-dimensional delta distribution, which is used to cancel the
Lorentz-invariant expression∫

d3q

(2π)32q0
=

∫
d4q

(2π)3
δ
(
q2 −m2

φ

)
θ(q0). (B.14)

This leaves us with

IF = 2

∫
d3p

(2π)3

fF (|p|)
|p|

δ
(
(p+ k)2 −m2

φ

)
θ(ω + |p|), (B.15)

where we can safely drop the Heaviside function since its argument is always positive.
The remaining spatial integral is easily computed in spherical coordinates. We
denote by z the cosine of the angle between both vectors, which is chosen as the
polar angle. Expanding the argument of the delta distribution then yields

δ
(
2|p|ω − 2|p|ωz −m2

φ

)
=

1

2|p|ω
δ
( m2

φ

2|p|ω
− 1 + z

)
. (B.16)

From the lower integration limit on the polar angle, z ≥ −1, the delta distribution
gives the lower limit |p| ≥ m2

φ/(4ω) on the radial coordinate upon integrating over
z. For smaller values, it does not contribute. In the end, this gives

IF =
1

4π2ω

∫ ∞
m2
φ

4ω

d|p|fF (|p|) =
T

4π2ω

[
ln
(

1 + em
2
φ/(4ωT )

)
−

m2
φ

4ωT

]
. (B.17)

Similar steps are made in the computation of the second part of (B.10), containing
the integral over the Bose-distribution. This part is denoted by IB. We find

IB = 2

∫
d3p

(2π)3

fB(p0)

p0

1

2|p|ω
δ
( m2

φ

2|p|ω
− p0

|p|
+ z
)
θ(p0 − ω), (B.18)

where now p0 =
√

p2 +m2
φ. Again, using spherical coordinates, the delta distribu-

tion gives constraints on the integration range of |p|. From z ≤ 1, it follows that
|p| ≥ (4ω2−m2

φ)/(4ω) , whereas from z ≥ −1, it follows that |p| ≥ (m2
φ−4ω2)/(4ω).

So the lower integration limit is |p| ≥ |m2
φ − 4ω2|/(4ω). Then we obtain

IB =
1

4π2ω

∫ ∞
|m2
φ
−4ω2|
4ω

d|p| pfB(p0)

p0
θ(p0 − ω)

=
T

4π2ω

[
m2
φ

4ωT
+
ω

T
− ln

(
em

2
φ/(4ωT )+ω/T − 1

)]
. (B.19)
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Appendix B. Opacity calculation

Putting everything together, we arrive at the final result

Γφ =
πλ2m2

φ

2ω

(
IF + IB

)
=
λ2m2

φT

8πω2

[
ln
(

1 + em
2
φ/(4ωT )

)
+
ω

T
− ln

(
em

2
φ/(4ωT )+ω/T − 1

)]
, (B.20)

which is given in (7.10) (remembering that |k| = ω). For comparison, our result
coincides with the result of [22] in the limit IB = 0. This holds for large ω.
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