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Preface

This thesis studies the large deviations of the two-dimensional stochastic Navier-Stokes
equations (SNSE) with anisotropic viscosity. Consider the following SNSE with anisotropic
viscosity on the two dimensional torus T? for & > 0:

du®(t) = Ofus (t)dt — u® - Vus (t)dt + eo (t, us(t))dW (t),

u®(0) = wy,

where W is an [*>-cylindrical Wiener process and o is the random external force. As
e — 0, u® will converge to the solution to the following deterministic equation:

du®(t) = OFul (t)dt — u” - Vu°(t)dt,
u’(0) = wg.
We will investigate the asymptotic behaviour of the trajectory
1
V)

as € — 0, where A(¢) is some deviation scale which strongly influences the behaviour.

(o~ u)

(1) The case \(e) = \/% provides small noise large deviation principle(LDP). We use the
weak convergence method to prove that u® satisfies the large deviation principle.

(2) For A(e) = 1, we are in the domain of the central limit theorem(CLT). We show that

¥ \;5“0 converges to the solution to a stochastic differential equation as € — 0.

(3) To fill in the gap between the CLT and LDP, we will study the so-called moderate
deviation principle. In this part we may assume

Ae) = 00, VeAe) = 0ase—0.
We prove that ﬁ(a)(us — uP) satisfies the large deviation principle.

Moreover, we study small time large deviation principle for the two-dimensional SNSE
with anisotropic viscosity. Let u be the solution to original SNSE with anisotropic vis-
cosity. For € > 0, the law of u(et) coincides with the law of

du. = edu.dt — eu, - Vudt + v/eo(et,u.)dW (t),

u:(0) = up.

We prove that u. satisfies the large deviation principle. The proof is based on exponen-
tially equivalence.
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We also study the small time asymptotics of the dynamical ®] model. The dynamical
®1 model is given by

do(t) = Ag(t)dt — ¢(t)3dt +dW (t), for (¢t,z) € [0,T] x T,
$(0) = ¢o,

The law of ¢(et) coincides with the law of

dp. = eA¢.dt — ep?dt + /edW (t),
¢s(0) = (bO'

We prove that ¢. satisfies the large deviation principle.
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Chapter 1

Introduction

This thesis is concerned on the large and moderate deviation principle for the two-
dimensional stochastic Navier-Stokes (NS) equations with anisotropic viscosity and the
small time asymptotics of the dynamical ®{ model.

1.1 Stochastic NS equations with anisotropic viscos-
ity

Consider the following stochastic NS equation with anisotropic viscosity on the two di-
mensional (2D) torus T? = R?/(2rZ)*

du = Ofudt — u - Vudt + o(t,u)dW (t) — Vpdt,
divu =0, (1.1)
u(0) = up,

where u(t, z) denotes the velocity field at time ¢ € [0, 7] and position = € T?, p denotes
the pressure field, o is the random external force and W is an [?-cylindrical Wiener
process.

Let’s first recall the classical NS equation which is given by

du = vAudt — u - Vudt — Vpdt,
divu =0, (1.2)
u(0) = wo,

where v > 0 is the viscosity of the fluid. describes the time evolution of an incom-
pressible fluid. In 1934, J. Leray proved global existence of finite energy weak solutions
for the deterministic case in the whole space R? for d = 2, 3 in the seminar paper [Ler33].
For more results on deterministic NS equation, we refer to [CKN82|, [TemT79], [Tem95],
[KT01] and references therein. For the stochastic case, there exists a great amount of
literature too. The existence and uniqueness of solutions and ergodicity property to
the stochatic 2D NS equation have been obtained (see e.g. [FG95], [MRO5], [HMO0G]).
Large deviation principles for the two-dimensional stochastic NS equations have been
established in [CM10] and [SS06]. Moderate deviation principles for the two-dimensional
stochastic NS equations have been established in [WZZ15].

Compared to , only has partial dissipation, which can be viewed as an
intermediate equation between NS equation and Euler equation. Systems of this type

1



2 Chapter 1. Introduction

appear in geophysical fluids (see for instance [CDGGO06] and [Ped79]). Instead of putting
the classical viscosity —vA in (1.2), meteorologists often modelize turbulent diffusion by
putting a viscosity of the form: —v, A, — V38§3, where v}, and v3 are empiric constants,
and v is usually much smaller than v;,. We refer to the book of J. Pedlovsky [Ped79,
Chapter 4] for a more complete discussion. However, for the 3 dimensional case there is
no result concerning global existence of weak solutions.

In the 2D case, [LZZ18| investigates both the deterministic system and the stochastic
system for H%! initial value (for the definition of space see Chapter 2). The main
difference in obtaining the global well-posedness for is that the L?-norm estimate is
not enough to establish L?([0, 7], L?) strong convergence due to lack of compactness in
the second direction. In [LZZI§], the proof is based on an additional H%!-norm estimate.

1.1.1 Large and moderate deviations

For € > 0, consider the equation:

du®(t) = Ous (t)dt — u® - Vus (t)dt + eo (t, us(t))dW (t),

u®(0) = ug. (1.3)

As e — 0, u® will converge to the solution to the following deterministic equation:

du®(t) = Oful (t)dt — u” - Vu°(t)dt, (1.4)

u’(0) = wg. '

We will investigate deviations of u® from the deterministic solution u°. That is, the
asymptotic behaviour of the trajectory

(UE - uo)a

1
VEA(e)

where A(g) is some deviation scale which strongly influences the behaviour.

Small noise large deviation principle

The large deviation theory concerns the asymptotic behavior of a family of random vari-
ables X, and we refer to the monographs [DPZ09] and [Str84] for many historical remarks
and extensive references. It asserts that for some tail or extreme event A, P(X,. € A)
converges to zero exponentially fast as ¢ — 0 and the exact rate of convergence is given
by the so-called rate function. The large deviation principle was first established by
Varadhan in [Var66] and he also studied the small time asymptotics of finite dimensional
diffusion processes in [Var67]. Since then, many important results concerning the large
deviation principle have been established. For results on the large deviation principle for
stochastic differential equations in finite dimensional case we refer to [FW84]. For the
extensions to infinite dimensional diffusions or SPDE, we refer the readers to [BDMO0S],
[CM10], [DM09], [Liu09], [LRZ13], [RZ0S], [XZ09], [Zha00] and the references therein.
The case A(e) = \% provides some large deviation estimates. In Chapter |3 we study
the small noise large deviation for the stochastic NS equations with anisotropic viscosity
by using the weak convergence approach. This approach is mainly based on a variational
representation formula for certain functionals of infinite dimensional Brownian Motion,
which is established by Budhiraja and Dupuis in [BD00]. The main advantage of the weak
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convergence approach is that one can avoid some exponential probability estimates, which
might be very difficult to derive for many infinite dimensional models. To use the weak
convergence approach, we need to prove two conditions in Hypothesis . In [Liu09] and
[LRZ13|, the authors use integration by parts and lead to some extra conditions on diffu-
sion coefficient. In [CMI10], the authors use time discretization and require time-regularity
of diffusion coefficient. We use the argument in [WZZ15] (in which the authors prove a
moderate deviation principle), i.e. first establishing the convergence in L*([0, T, L?) and
then by using this and It6’s formula to obtain L>([0,T1], L?) () L*([0, T], H"?) conver-
gence. By this argument, we can drop the extra condition on diffusion coefficient.

Central limit theorem

If A(¢) = 1, we are in the domain of the central limit theorem (CLT). In Chapter 4 we will
show that “i;g‘o converges to the solution of a stochastic differential equation as ¢ — 0.

The central limit theorem is a traditional topic in the theory of probability and statis-
tics. The classical CLT shows that the normalized sum of a series of independent and
identically distributed random variables convergent in distribution to a standard nor-

mal random variable. For the study of the central limit theorem for stochastic (partial)
differential equation, we refer the readers to [WZZ15|, [CLWY18] and [WZ14].

Moderate deviation principle

To fill in the gap between the CLT and LDP, we will study the so-called moderate
deviation principle (MDP). Here we may assume

Ae) = 00, VeMe) = 0ase—0.

The moderate deviation principle refines the estimates obtained through the cen-
tral limit theorem. It provides the asymptotic behaviour for P(||u® — u®| > dv/EA(€))
while CLT gives bounds for P(||u® — u°|| > /). MDP arises in the theory of statis-
tical inference. It can provide us with the rate of convergence and a useful method for
constructing asymptotic confidence intervals, see [Erm12], [GZ11], [KI03|, [Kal83] and
references therein. For the study of MDP for general Markov process see [Lim95]. Re-
sulst of MDP for stochastic partial differential equations have been obtained in [WZ14],
[BDG16], [DXZZ17] and references therein.

In Chapter 5 we study the moderate deviations by using the weak convergence ap-
proach. We need to prove two conditions in Hypothesis 2.5 We will use the argument in
[WZZ15)] too, i.e. we first establish the convergence in L?([0,T], L?) and then by using
this and Itd’s formula, L>([0,T], L*) () L*([0, T], H'*) convergence can be obtained. As
mentioned above, due to the lack of compactness in the second direction, we need to do
H%! estimate for the skeleton equation (5.1]), which requires H%? estimates of solution
to the deterministic equation . To obtain this, we use a commutator estimate (see
Lemma from [CDGGO0]. This also leads to H%? condition for the initial value.

1.1.2 Small time large deviation principle

In Chapter 6 we study the small time asymptotics (large deviations) of the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. That is, the behaviour of
the solution to
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du, = edu.dt — eu, - Vudt + v/eo(et,u.)dW (t),

u:(0) = up.

This describes the limiting behaviour of the solution u(et) as € goes to zero.

The study of the small time asymptotics of finite dimensional diffusion processes was
initiated by Varadhan in the influential work [Var67]. The small time asymptotics (large
deviation) of SPDEs were studied in [Zha00], [XZ09], [LRZ13] and references therein.
Another motivation will be to get the following Varadhan identity through the small
time asymptotics:

PI% 2t log P(u(0) € B,u(t) € C) = —d*(B,C),

where d is an appropriate Riemannian distance associated with the diffusion generated by
the solutions of the two-dimensional stochastic Navier-Stokes equations with anisotropic
viscosity. The small time asymptotics itself is also theoretically interesting, since the
study involves the investigation of the small noise and the effect of the small, but highly
nonlinear drift.

To prove the small time asymptotics, we follow the idea of [XZ09] to prove the solution
to is exponentially equivalent to the solution to the linear equation. The main
difference compared to [XZ09] is that similar to [LZZI8] L?-norm estimate is not enough
due to less dissipation and we have to do H%'-norm estimate.

1.2 Small time asymptotics of ] model
In Chapter 7 we study small time behaviour of the dynamical ®} model :

do(t) = Ag(t)dt — ¢(t)*dt + dW (t), for (¢t,z) € [0,T] x T,

6(0) = do. (15)

where T is one dimensional torus and W is a cylindrical Wiener process on L*(T).

Equation in d dimensional case describes the natural reversible dynamics for
the Euclidean ®} quantum field theory. It is formally given by the following probability
measure .

v(dg) = N T det@yessl= [ IV + ot (a)dal,
x€Td T
where N is a renormalization constant and ¢ is the real-valued field. This measure was
investigated intensively in the 1970s and 1980s (see [GJ87] and the references therein).
Parisi and Wu in [PWRI] proposed a program named stochastic quantization of getting
the measure as limiting distributions of stochastic processes, especially as solutions to
nonlinear stochastic differential equations(see [JLMS85]). The issue to study ®% measure
is to solve and study properties of in d dimensional case.

The dynamical ®} model with Dirichlet boundary condition (which also named as
reaction-diffusion equations) was studied systematically in [DP04]. In [DP04] not only
existence and uniqueness of solutions to this equation have been obtained, but also the
strong Feller property and ergodicity. For more details and more properties we refer to
[DP04) Section 4]. We can obtain the results on the torus case similarly.



1.2. Small time asymptotics of ® model )

In 2 and 3 dimensions, the equation falls in the category of the singular SPDEs
due to the irregular nature of the noise dW(t). Solutions are expected to take value in
distribution spaces of negative regularity, which means the cubic term in the equation is
not well-defined in the classical sense and renormalization has to be done for the nonlinear
term.

In two spatial dimensions, weak solutions to have been first constructed in
[AR91] by using Dirichlet form theory. In [DDP03] the authors decomposed into
the linear equation and a shifted equation (so called Da Prato-Debussche trick) and
obtain a probalistical strong solution via a fixed-point argument and invariant measure
v(d¢). Recently, global well-posedness to via a PDE argument has been obtained
in [MWITh]. See also [RZZ17] for a study of relation between weak solutions and strong
solutions.

By Hairer’s breakthrough work on regularity structures [Haild], in the three
dimensional case is well-defined and local existance and uniqueness can be obtained.
In [GIP15] Gubinelli, Imkeller and Perkowski introduced paracontrolled distributions
method for singular SPDEs and by this method in [CCIS§| the authors also obtained
local-in-time well-posedness result. Mourrat and Weber in [MW17a] gave existence and
uniqueness of global-in-time solutions on T? by energy estimate and mild formulation.
Recently, Gubinelli and Hofmanova in [GH19] proved the global existence and uniqueness
results for ((1.5) on R? based on maximum principle and localization technique.

The purpose is to study the small time asymptotics (large deviations) of the dynamical
®1 model. We try to estimate the limiting behavior of the solution in time interval [0, ¢]
as t goes to zero, which describes how fast the solution approximating its initial data
in the sense of probability. The small time asymptotics in this case is also theoretically
interesting, since the study involves the investigation of the small rough noise and the
effect of the small nonlinear drift.

We also want to mention the following small time asymptotics result by Dirichlet
form. By [AR91] and [ZZ18] we know that the dynamical ®} model associated with
a conservative and local Dirichlet form. Then the main result in [HRO3] implies the
following Varadhan-type small time asymptotics for the dynamical ®4 model:

d(A, B)?
——
for all measurable sets A, B, where d is the intrinsic metric associated with the Dirichlet
form of @} model (see [HRO3] for the definition). However, these results is for the sta-
tionary case or holds for v(d¢)-almost every starting point (see [HR03, Theorem 1.3] for
a stronger version). The small time large deviation result in this thesis holds for every
starting point and is of its own interest.

Let £ > 0, by the scaling property of the Brownian motion, it is easy to see that ¢(ct)
coincides in law with the solution of the following equation:

dp. = eA¢.dt — ep?dt + /zdW (t),
¢s(0) = ¢0-

To establish the small time large deviation, we follow the idea of [XZ09] to prove the
solution to is exponentially equivalent to the solution to the linear equation. In our
case, due to the irregularity of the white noise, the Ito6 formula in [XZ09] cannot be uesd.
Our calculations are based on the energy estimate for the shifted equation (see ([7.5])) and
the mild formulation.

lim ¢ log P*(6(0) € A, 6(t) € B) =

(1.6)
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In [HWT5] the small noise large deviation principle for the dynamical ®j model is
established. The authors considered the solution as a continuous map F of the noise /2
and some renormalization terms which belong to the Wiener chaos with the help of the
regularity structure, then the result follows from the large deviation for Wiener chaos
and the contraction principle. However, this method seems not work for the small time
asymptotics problem. By this method, we have to prove the large deviation principle
for the solution to linear equations in a better space (compared to Theorem in our
paper), which seems not true since e — I as ¢ — 0 and the smoothing effect of heat
flow will disappear.

1.3 Structure of the thesis

This thesis is organised in the following:

In Chapter 2 we collect some preliminaries. First we give the function spaces we are
working on. Then we introduce the large deviation principle and the weak convergence
method which is given by Budhiraja and Dupuis in [BD00]. We also list the existence
and uniqueness results from [LZZ18]. In Section 2.5, we list some useful estimates.

In Chapter 3 we obtain the small noise large deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. In Section 3.1 we introduce
the skeleton equation which gives the rate function and measures the rate of the conver-
gence. In Section 3.2 we prove that the rate function is good. In Section 3.3, we check
the last hypothesis and hence prove the large deviation principle.

In Chapter 4 we study the central limit theorem for the two-dimensional stochastic
Navier-Stokes equations with anisotropic viscosity. First we study the well-posedness for
the limiting equation and then obtain the central limit theorem.

In Chapter 5 we obtain the moderate deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. The structure of this chap-
ter is similar to Chapter 3. In Section 5.1 we study the skeleton equation. In Section
5.2 we prove that the rate function is good. In Section 5.3 we establish the moderate
deviation principle.

In Chapter 6 we obtain the small time large deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. We start by establishing
the large deviation principle for the linear equation in Section 6.1. Section 6.2 is devoted
to the energy estimates. In Section 6.3 we approximate the initial data. In Section 6.4 we
prove the exponential equivalence between the linear and nonlinear equation and hence
the large deviation principle.

In Chapter 7 we obtain the small time large deviation principle for the dynamical ®{
model. Section 7.1 is devoted to the large deviation principle for the linear equation. In
Section 7.2 we prove the exponential equivalence and finally establish the main result.



Chapter 2

Preliminary

2.1 Function spaces on torus

We first recall some definitions of function spaces for the two dimensional torus T2.

Let T? = R/27Z x R/27Z = (T}, T,) where h stands for the horizonal variable z; and
v stands for the vertical variable z5. For exponents p,q € [1,00), we denote the space
LP(Ty, L9(T,)) by LY (L2), which is endowed with the norm

j 1
Jullgianyen i= ([ Tutonwoltdz)dn)s,
T, JT,

Similar notation for L?(L}). In the case p,q = 0o, we denote L> the essential supre-
mum norm. Throughout the paper, we denote various positive constants by the same
letter C'.

For w € L*(T?), we consider the Fourier expansion of u:

u(x) = Z tpe™® with Gy, = Gy,

where uy, := ﬁ Jio.2mpx (0201 u(z)e~**dx denotes the Fourier coefficient of u on T?.

Define the Sobolev norm:

b= > (L [kP) ],

keZ?

[[ul

and the anisotropic Sobolev norm:

e = Z(l R ) (1 + ko) |,

keZ?

[l

where k = (ki, ko). We define the Sobolev spaces H*(T?), H>* (T?) as the completion of
C>(T?) with the norms || - | s respectively. The notation LE(H}) is given by

Hs, |||

p
otz = ( [ Tt e

Let us recall the definition of anisotropic dyadic decomposition of the Fourier space,
which will lead to another represnetation of H** in the sense of Besov space. For a
general introduction to the theory of Besov space we refer to [BCD11], [Tri78], [Tri06].

7



8 Chapter 2. Preliminary

Let x™, 0 € D be nonnegative radial functions on R, such that

i. the support of xM is contained in a ball and the support of #!) is contained in an
annulus;

il xM(2) + 3,500 (2772) = 1 for all z € R.

iii. supp(x™) Nsupp(§M(277-)) = @ for j > 1 and suppd™ (27) Nsuppd™M(277-) = ()
for |i — 5| > 1.

We call such (x", (")) dyadic partition of unity. The Littlewood-Paley blocks in the
vertical variable are now defined as u=}_.. | Aju, where

A% ju=F (W (kal)a) Aju=F OV (27 |ko))d), ks € Z,
where F~! is the inverse Fourier transform. The anisotropic Sobolev norm can also be

defined as follows: )
3
pesl = (Z 2%7° ||A§u||%%(HS(Th))> :

Jj=—-1

|

To formulate the stochastic Navier-Stokes equations with anisotropic viscosity, we
need the following spaces:

H :={u € L*(T*R?);div u = 0},
V = {u € H(T*R?);div u = 0},
o = {u € H*(T%R?);div u = 0}.

Moreover, we use (-, ) to denote the scalar product (which is also the inner product of

L? and H)

2

(u,v) = ;/p u! (2)v? (1) dx

and (-,-)x to denote the inner product of Hilbert space X where X =12, V or H>*.

Besov spaces

Let x, 8 € D be nonnegative radial functions on R?, such that

i. the support of y is contained in a ball and the support of # is contained in an
annulus;

i x(2) +30,500(2772) = 1 for all 2 € RY;

iii. supp(x) Nsupp(6(277-)) = O for j > 1 and suppf(2~*:) N suppf(277-) = @ for
li —j] > 1.

We call such (x, 0) dyadic partition of unity, and for the existence of dyadic partitions
of unity we refer to [BCD11l Proposition 2.10]. The Littlewood-Paley blocks are now
defined as

A ju=F Y (xFu) Aju=F 10277 )Fu).

For a € R, p,q € [1,00], u € D we define
lullsg, == (> @1 Azull)")"?,
i>—1

with the usual interpretation as [* norm in case ¢ = oo. The Besov space By, consists
of the completion of D with respect to this norm and the Holder-Besov space C* is given
by C*(R?) = B, (R?). For p,q € [1,00),

By, (RY) = {u € §'(RY : |lullmg, < oo},
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CYRY) & {u e S'(RY) : [[uflca(re) < oo}
We point out that everything above and everything that follows can be applied to dis-
tributions on the torus (see [Sic85], [SWTI]). More precisely, let S’(T¢) be the space

of distributions on T¢. Besov spaces on the torus with general indices p,q € [1, 0] are
defined as the completion of C°°(T%) with respect to the norm

||U||Bg,q(1rd) = (Z (QjaHAjU||Lv(Td))q)l/q,

j>—1

and the Holder-Besov space C* is given by C* = B% _(T%). We write || - || instead of
| - | ge, _(ray in the following for simplicity. For p,q € [1,00)

By (T%) = {u € §'(T%) : ||u]| g (r4) < 00}

C* ¢ {u e S'(T : |lu|o < oo}

Here we choose Besov spaces as completions of smooth functions, which ensures that
the Besov spaces are separable which has a lot of advantages for our analysis below.
In this thesis, we use the following notations:

cc? .= C([0,7],C%), CL*® := C([0,T], L>=(T)).

2.2 Large deviation principle

We recall the definition of the large deviation principle. For a general introduction to the
theory we refer to [DPZ09], [DZ10].

Definition 2.1 (Large deviation principle). Given a family of probability measures {jic }e~o
on a metric space (E, p) and a lower semicontinuous function I : E — [0, 00] not identi-
cally equal to +00. The family {p.} is said to satisfy the large deviation principle(LDP)
with respect to the rate function I if

(U) for all closed sets F C E we have

limsup e log p.(F) < — inf I(x),

e—0 zeF

(L) for all open sets G C E we have

liminfel > — inf I(x).
iminfelog yio(G) > — inf ()

A family of random wvariable is said to satisfy large deviation principle if the law of
these random variables satisfy large deviation princple.

Moreover, I is a good rate function if its level sets I, := {x € E : I(z) < r} are
compact for arbitrary r € (0,400).

Definition 2.2 (Laplace principle). A sequence of random wvariables { X} is said to

satisfy the Laplace principle with rate function I if for each bounded continuous real-
valued function h defined on E

. _1 € .
lim < log [e Eh(X >] — —inf {h(z) + I(2)}).

zeE



10 Chapter 2. Preliminary

Given a probabilty space (€2, F, P), the random variables {Z.} and {Z.} which take
values in (F, p) are called exponentially equivalent if for each § > 0,

limelog P(p(Z.,Z.) > §) = —oo.

e—0

Lemma 2.3 ([DZ10, Theorem 4.2.13]). If an LDP with a rate function I(-) holds for the
random variables {Z.}, which are exponentially equivalent to {Z.}, then the same LDP
holds for {Z.}.

2.3 Weak convergence approach

The weak convergence approach introduced by Budhiraja and Dupuis in [BD00] will play
an important role in this thesis. The starting point is the equivalence between the large
deviation principle and the Laplace principle. This result was first formulated in [Puk94]
and it is essentially a consequence of Varadhan’s lemma [Var66] and Bryc’s converse
theorem [Bry90].

Remark 2.4. By [DZ10] we have the the equivalence between the large deviation principle
and the Laplace principle in completely reqular topological spaces. In [BDO0] the authors
give the weak convergence approach on a Polish space. Since the proof does not depend
on the separability and the completeness, the result also holds in metric spaces.

Let {W(t)}:>0 be a cylindrical Wiener process on [? w.r.t. a complete filtered prob-
ability space (Q, F,F;, P) (i.e. the path of W take values in C([0,T];U), where U is
another Hilbert space such that the embedding (? C U is Hilbert-Schmidt). Let E be a
metric space and suppose ¢°: C([0,T],U) — E is a measurable map for ¢ > 0. Let

T
A= {v - v is [*-valued JF;-predictable process and / lv(s)(w)]|ds < oo a.s.} :
0

Sy = {gb c L*([0,T),1%) : /0 o(s)||Bds < N} ,
Ay ={ve A: v(w) € Sy P-as.}.

Here we will always refer to the weak topology on Sy in the following if we do not state
it explicitly.

Now we formulate the following sufficient conditions for the Laplace principle of ¢° as
e —0.

Hypothesis 2.5. There exists a measurable map ¢° : C([0,T],U) — E such that the
following two conditions hold:

1. Let {v® : e > 0} C Ay for some N < oo. If v° converges to v in distribution as
Sn-valued random elements, then

7 (W(-) 4 % /0 vs(s)ds) S g (/O'U@)ds)
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i distribution as € — 0.
2. For each N < o0, the set

Ky = {go (/ gb(s)ds) Cp € SN}
0
1s a compact subset of E.

Lemma 2.6 ([BD00, Theorem 4.4]). If ¢° satisfies Hypothesis then the family
{g°(W(-))} satisfies the Laplace principle (hence large deviation principle) on E with
the good rate function I given by

1 T
I = lnf _/ s 2d8} ' 21
g {6eL2(0.T1,2):f =5 (f; ¢(s)ds)}{2 ol (2.1)

2.4 Existence and uniqueness of solutions

Due to the divergence free condition, we introduce the following Larey projection operator
Py : L*(T?) — H:
Py :uw u— VA (div u).
By applying the operator Py to (1.1)) we can rewrite the equation in the following
form:
du(t) = 02u(t)dt — B(u(t))dt + o (t,u(t))dW (t),
u(0) = uo,
where the nonlinear operator B(u,v) = Py(u - Vv) with the notation B(u) = B(u,u).
Here we use the same symbol o after projection for simplicity.
For u,v,w € V, define

(2.2)

b(u,v,w) := (B(u,v),w).

We have b(u, v, w) = —b(u,w,v) and b(u,v,v) = 0.

We introduce the precise assumptions on the diffusion coefficient o. Given a complete
probability space (€, F, P) with filtration {F;};>o. Let Ly(I>,U) denotes the Hilbert-
Schmidt norms from /2 to U for a Hilbert space U. We recall the following conditions for
o from [LZZ1§]:

(i) Growth condition

There exists nonnegative constants K/, K;, K; (i = 0,1,2) such that for every t €
0, T]:

(A0) llor(t wll7 2 g1y < Ko + Killully;
(AL) [lo(t, W)z, 0y < < Ko + Kilullf + Kol|0vul 7
(A2) [lo(t, w17, g2 prony < Ko+ Kullullfon + Ka(0vullf; + 0102ul3);

(ii)Lipschitz condition
There exists nonnegative constants L, Ly such that:

(A3) [lo(t,u) — ot 0) 17,02,y < Lallu = vllF + LallO(u — 0)II7
The following theorem from [LZZ18|] shows the well-posedness of equation ([2.2)):

Theorem 2.7 ([LZZ18| Theorem 4.1, Theorem 4.2]). Under the assumptions (A0), (A1),
(A2) and (A3) with Ky < 21,K2 < 5,L2 < 5, equation has a unique probabilistically

strong solution uw € L>([0,T], H>') N L*([0, T], H“') N C([O,T], =1 for ug € H'.
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2.5 Some useful estimates

We first present several lemmas from [LZZ18§]. It follows from Minkowski inequality that

Lemma 2.8. For 1 < g < p < 0o, we have
lullzecay < llullzaceey,
lullzpcrey < llullps ws)-
Lemma 2.9 ([LZZ18, Lemma 3.4]). Let u be a smooth function from T? to R, we have
lullZa ey < CllullzzllOnull e + [[ullZ2),
lullZ2 (19 < Cllullzz]|Ozullze + [[ullZ2).
The following anisotropic estimate is from the proof of [LZZ18, Theorem 3.1]:

Lemma 2.10. For smooth functions u,v from T? to R with u satisfies the divergence free
condition, we have

2 2 2 2
b, v, )| < alldhulfz + Clullfz (1010] 3210105011 + 1920159100117
+ 0l + 010l z2 + 19501132 + 19201122
1 1 1 1
+ 0r0l17 19050117 + 10201172 101020117. ).

where a > 0 is a constant small enough.
In particular, we have

[b(u, v, w)| < allOvullzs + Cllullz>(1+ [JvllF).-
Proof  We have
|b(u, v, u)| = |(u'01v + u?dv, u)|

< (Hul“Lz"(L%)||81U||L%L(L3°) + ||U2’|L$L(Lgo)||820\|L30(L3))||U||L2a

where v = (u',u?). Now we show the calculation of two terms in the right hand side

separately.
For the first term, by Lemmas 2.8 and we have

'l

[|u

1 1

<Cllullrz (lu'lr2l|ovu |22 + Ju'[172)* (01v] r2]|01020] 12 + |O10])72) 2
1

<Cllullrz (lu']] r2]|ovu’ || 2| 01v]| 12 ]|01020 ]| 12) ® + Cllul| 2] ut || 2|01 12

1 1
+ Cllullz2(lwll 2 + 01w [ 22)[[010]| 2 + Cllul cellu® || 2|01l 22 10100 .

Lie(12)[|01v] L,%(Lgo)HUHL2

Then Young’s inequality implies that

[

Cllullzz (Ju' || 22|06t | 2|01 || 12]| 01020 ]| 2)

a 2 2
<ZH@1UH%2 + Cll0r0]| 3211019501 [lull 72,
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and
a
Cllull 2 10y ut || 2|00 2 < ZH@WHiz + Cllovll72ullZ-.
Thus we have

||u1||LjL°°(L%)||81U||L$L(Lg°)||u||ll2
a 2 2 1 1
<G lowulzz + Cllull: (IIawllizH@l@szZz +10wl7: + 0] 2 + ||81v|122||8182v\|22>.
Do the same calculation for the second term and combine the divergence free condition
Ou? = —01u', we have
[0 | 22 (£3o) 1920 e 23y [[ ]| 2
a 2 2 1 1
<G lowulzz + Cllull: <||32v||22||3132v||22 + 1020|722 + 1020l 2 + ||3avllizllalazvlliz>,
which implies the first inequality.
The second inequality holds from the first one and Young’s Inequality.

]
Similar to the proof of Lemma [2.10], by Lemmas [2.8) and we also have

Lemma 2.11. For smooth functions u,v, w form T? to R? with divergence free condition,
we have
[b(w, v, w)| < Cllul|grollof g flwllze.

Proof
|b(u, v, w)|
Stz @ 10101122 ooy + 10211 22 (220) 1020 Lo 22 10| 2
<C<(HU1HL2H51U1HL2 + 1wt 132)2 (|010| 2101000 | 2 + [[Or0]32) 2
+ (]| 2102 2 + 12 132)2 ([|00]] 2|91 0| 2 + H(9271||%2)%> [wl|z2
<Clul[ro|v][ g l|w][ 2,

where we used the divergence free condition to deal with the term Oyu? in the last in-
equality. Il

The next lemma is from the proof of [LZZ18, Lemma 3.5], which plays an important
role in H%!-estimate.

Lemma 2.12. For smooth function u form T? to R? with divergence free condition, we
have

(O, O (u - V)| < all010yullz + C(1+ [|Orul|Z2) | 92ul[ 72,

where a > 0 1s a constant small enough.
Proof  We have
(Oqu, Dy(u - Vo)) = (Ogut, Do(u - Vu')) + (Opu?, O (u - Vu?)),

where u = (u', u?).



14 Chapter 2. Preliminary

For the first term on the right hand side, we have

(Oput, Oy (u - Vul)) =(0pu', Op(u' Oyu' + udou'))

(Oput, DoutOruty + (Opu, ut 0y01ut)
+ (Do, DouOput) + (Oout, u?O3u’)
(Oout, ur 001Uty + (Oout uO3ut)
(Oout ) u - VOpu')

1
- i/div u|Oout | dx
—0,

where we use the fact div u = 0 in the third and sixth equality.
Similarly, for the second term, we have

<82U2, 82(u . VU2)> :<(92U2, 82u181u2> + <82U2, u18281u2>
+ (Ogu®, Dou*Dpu®) + (Opu®, u*O3u?)

1
:(62u2,82u181u2> + §/u181(82u2)2dx
1
+ (62u2, 82U262U2> + §/U282(82U2)2dl’
:<62U2, 82%181U2> + <82U2, 82u282u2>
— %<82U2,61U182U2> — %(@u?, 82u282u2>
:<82U2, 62U181U2> + <02u2, 62U262U2>,

where we use div v = 0 in the last equality.
Then by Lemma we have

(Oau, Do (u - Vu))
<82u2 82U181U2> -+ <82U2 82u28 u2>|

(100 a0 g ey + 110w

N

Nugan ) 10501
(100022 + 100l 191000 . (||aluuLz 0wl 2 0n 00l £ ) (1950 22

Cllovull 2 [|02ul| 72 + CllO185ul| L2 || Ovul| 2] Ou] L2

+ Cl0n0ul fy (vl c2l|Owul o + 100ul 2| 9real 2 ) 1000 2,

<C
<

where we use the following inequality in the last inequality:

1 1
|02ul| 2,]| 01 Oou]| 12| Ol 3, || O2ws® | 2

1 1 1 1
=|10aull7. |01 O] 2| Ovu]| 22 |0 || 72 | 0?2

<[|0109ul| 2 ||O1ul| 2 [| Opu]| 2,

where we use div u = 0 in the first equality.
By Young’s inequality, we have

a
Cllor0aul| 2| Ovull 2 1020l 2 < 10102l 72 + CllOvullZz | Dpullze,
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and
Cllondsul i (10vull 2 |l £ + 100wl 2 |0ru] . ) 100022
<2010l + C (I0rull oDl + 10l w2 ) 103015
<2 0r0ul3= + Cllovul ol + Clloul a|9rull a1y 211020
<2010} + (1 + | Dyull3=) [0rul,

where we use div u = 0 in the second inequality.
Thus we deduce that

[(@2u, 0o - Vu))| < al|0105ull72 + C(1+ [[0rull12) | 9aul 7.

O
The following estimates are obtained by [CDGGO00] in dimension 3, we now present
its 2-dimension version.

Lemma 2.13 ([CDGGO0, Lemma 3]). For any real number sy > 5 and s > sg, for any
vector fields u and w, with divergence free condition, there exists constants C' and dy(u, w)
such that

(AR (- Vw), Agw)| < Cdp2™ |wl| 1 (lull 10 101wl o + [lull 1 O1w0]| oo

+ [10vull o0

Hi*
+ ||Ovu|| o

wl|

H%,s wHH%vSO)’

where Y, di, = 1.

Proof  Define
Fl = AY(u'0yw) and FY = AY(u?0hw).
Let us start by proving the result for F'. Recall the Bony decomposition (see
[BCD11]) in vertical variables for tempered distributions a, b:

ab=Tb+ T a+ R"(a,b),

with
Th=> S! ,aA% and R(a,b)= >  ApaAlb,
J lk—jl<1
where S7_ja =3, ,Ala. 1
Then we have by Holder’s inequality and Sobolev embedding H1(T) < L*(T)
(Af (' o), Ajw) <[| AL (u' dyw)|

LQ(L}%)HAZIUHL%(L‘}L)
v

<CYNUTAOw + Ty + R D)), [[Afw] (2.3)

1
L3(H,)

27 el

2

N NN

<C||AYTHdyw + Ty yut + R (ul, éﬁw))lng(Lg) e
ka Ak

Il .

Tl

H

IS

where ¢;, = € 12, For the first term of the third line, we have

IAK(T0vw) |

4
LE(L})
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< Z ||SZ/_1U1AZ/81U}HL%(L%) < Z ||S]1€}/_1U1||L80(L;1L)||AZ/81'LU||L12)(L$L)

|k—K'|<No h |k—k'|<No
<C D7 ] 027 b 0wl o < CHP27F ||y 1|01 o,
|k—K’|<No

2ks||A261wHL2(L2) (1) ,

2 k —k

where b, = oo ioe [2and by’ = 2k ek <np 2 bw € 2. Note here Ny
depends on the choice of Dyadic partition. For the second term, similarly we have

IAUT) 5 < D IS dwlsaplain Ly

|k—k'|<No
<C Y w2 aplull, ). < Cal2 0wl oo ull ..
lk—k'|<No
2ks || A ull , 1
where q;, = T ;”:Hh) € [? and al(;) = ks Zlk—k’KNo Q*klsék e’
s
AR o), g€ 30 Ak laapl Aol
ViR |k’ —3|<1,k'>k—No
<C >0 27%apull gy Jl0vw] o
k! >k—No

<CaP275|[ull 3 NOrw]| oo,
where a,(f) = ks Zk,>k_N0 2 Ksqy = Zk’ez ]{k,<N0}2k/5ak_k/ and by Young’s convolution
inequality

la® iz < [Tpwraney2* unllallis < oo.
This implies that

v 1 1 2)\n—2ks
(F, Ajw)| < Con(by +a” +a,7) 27wy . (

ul

Ohw||go.s +|ul]

b 0w,

where ¢;(b"” + a(" + a{?) € I".
To estimate the term (FY, Abw), write AY(u?0yw) = F'' + F* with

FPl =AY Y Spo0wApu® and FPP =AY Y Sp utALdyw.

k'>k—No |k—k'|<No

For F 1 again we have by Holder’s inequality and Sobolev embedding,

,1
||F1: ||L%(L§)< Z ||S£’+2a2w||Lg°(L‘}L)HAZ’UQHL%(L%L)

k'>k— Ny

<C Z 2k,HSIZ)’JFQWHLgO(L;t)Tk,HA”@quHLg(Li)
k’>k—Ng

<C’ Z ||W||Hzll’302_klsék/||81U||H0,5
k' >k—No

<0272 |wl|

H150 a1UHHO’S>
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where we use Bernstein’s inequality twice in the second inequality and divergence free
2k3||A%81u”L%(L%L)

condition in the third inequality. Note here ¢, = € [? and 6,&2) =

, orallo.s
ka Zk,}k‘*N@ 2_k Sék/ 6 l2.
Then similar as (2.3) we have
1 L(2)ey—
[(Ft, Ajw)] < CordD27 [wl] oy wl] g0 1902 0

The last term F} 2 requires commutator estimates. Following a computation in [CL92],
we have

(F72 Abw) =(Sy_u’ ALdyw, Abw) + Ri(u,w)  with
Ri(u,0) = > ([A}, Sy 4u’) AL dyw, Ajw)
|k—k'|<No
— > (Shy = Sp P AALOaw, Ajw).

|k —k|<No

Using an integration by parts and divergence free condition, we have

1 1
[(Sh_yu? A 0xw, Ajw)] =§|<Sﬁa2u2AZW,AZw>| = §|<SZ31U1AZU%AZU)>|
<O|Sponu || e ) | ARwl 72 1 (2.4)
<C27"||0yul| ro.s0 Z%

w]

Note that the Fourier transform of (Sy_, —S},_,)u® is supported in 2% A since |k—k/| <
Ny where A is an annulus. We have by Bernstein’s inequality

I D0 Sk = Sp)uwApAL O,
’U(Lh

|k’ —k|<No )
< D S = Spo)w g IATALOw] aey
|k’ —k|<No
<C Y 2M(SEy = S0 |l 2 M IAY w2 )
|k —k|<No
<C D0 Mot los2 ekl .
|k’ —k|<No

This similar as (2.3]) implies that

2
1 .
H1*

1D (SEy = Sp )P Ay daw, Ajw)| < C27(|0yul| oo ||

|k —k|<No
To estimate the term ([A}, Sy, u?|AY, 0w, AYw), we have for any function f,
(A, Sioyu?] f (1, 72)

:2’“/ h(28y2)(Sp (1, m9) — Spr_ju? (21, 20 — y2)) f1, T2 — y2)dys
Ty

:/ h1(2ky2)(5,1’,_182u2)(11, To + (t - 1)yz)f($1, Ty — yz)ddet
Ty %x[0,1]
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= / h1(2ky2)(55/—1alul)(x17 T2 + (t - 1)92)f(951> T2 — yz)dyzdt,
T, x[0,1]

where h = F~'xW (k = —1) or h = F'0W (k > 0), hi(z) = zh(z) and we use
divergence free condition in the last line. This implies

AL, Sp_yw?] f (2| pd S /|h1 )15 -100u || Lo 12 L (- w2 — ) 22 Ay
Then we get
AL Sp ), 5, < C2HISE sl
Hence
[ (A% SE )AL O, Ajw)|
|k—k!|<No
S D AR P L PN N N S
[k—k'|<No ) v
< S 0ullgon2 el 42" kScknwnHis
|k—k/|<No
<Ockc,£}>2—2’“||alu||Ho,so wll ol e
where c,(:) = 2ks Z‘k K|<No 2 Sop € 12
Combining all the term together, let
d/
chk(b;(:)‘f’ ()+a(2)—|— (>+c +c ) el' andd, = ||d’k||
kIl
we finish the proof. Il

The following remarkable result is from [BY82] and [Dav76]:

Lemma 2.14. There exists a universal constant ¢ such that, for any p > 2 and for all
continuous martingale (My) with My = 0 and stopping times T,

x : 3
1My < ep2[[(M)7 I,

where M} = supg,<, |Ms| and || - ||, stands for the LP norm with respect to the probability
space.

We will need several important properties of Besov spaces on the torus and we recall
the following Besov embedding theorems on the torus (c.f. [Tri78, Theorem 4.6.1], [GIP15],
Lemma A.2]):

Lemma 2.15. Let 1 < p; < pp <ocand 1 < ¢ < g < o0, and let a € R. Then
B (T%) is continuously embedded in Byl /P~1/P2)(Td).

P1,91

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow,
for later use.

Lemma 2.16 ([GIP15, Lemma A.7]). Let u € C* for some o € R. Then for every § > 0,
there exists a constant C' independent of u such that

leullass < CE2|fulla.



Chapter 3

Small noise large deviation principle

In this chapter, we consider the small noise large deviation principle for the stochastic
Navier-Stokes equations with anisotropic viscosity.
Consider the following equation:
du®(t) = Ofus (t)dt — B(u®(t))dt + v/eo (t,u (t))dW (t),

u®(0) = up. (3.1)

By Lemma , under the assumptions (A0)-(A3) with Ks < %, K, < %, Ly < %, 1}
has a unique strong solution u¢ € L*([0,T], H*') N L*([0,T], H*') (N C([0,T], H™") for
uy € H'. Tt follows from Yamada-Watanabe theorem (See [LRIF, Appendix E]) that
there exists a Borel-measurable function

"+ C([0,T],U) — L=([0,T], H) (| L*([0,T], H**) (C([0, T, H )

such that u® = ¢°(W) a.s..
Let us introduce the skeleton equation associated to (3.1)), for ¢ € L?([0,T7,[?):

dz?(t) = 022°(t)dt — B(2%(t))dt + o(t,2°(t))é(t)dt,
div 2? = 0, (3.2)
2?(0) = w.

Define ¢° : C([0,T],U) — L>([0,T], H) N L*([0, T], H°) N C([0, T], H™') by

P(h) = { 2%, if h = [ ¢(s)ds for some ¢ € L*([0,T1,1%);

0, otherwise.

Then the rate function can be written as
. 1 r 2 o3 2 2
I(z) = inf 5 |o(s)||ds = 2z =2 ¢ € L*([0,T],I%) ¢, (3.3)
0

where z € L*((0, 7], H) ( L*([0, T], H**) N C([0, T, H).
The main result of this chapter is the following one:

Theorem 3.1. Assume (A0)-(A3) hold with Ky < £, K> < , Ly = 0 anduy € H', then

u® satisfies a large deviation principle on L=([0,T], H) () L*([0,T], H**) N C([0,T], H™")
with the good rate function I given by .

19
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3.1 Two equations

In this section we give existence and uniqueness of solutions to two equations which will
be used in the proof of the main result. The first one we consider is the skeleton equation

B2, )
An element 2¢ € L>([0,T], H) (N L*([0,T], H**) O C([0,T], H™ ) is called a (weak)
solution to (3.2)) if for any ¢ € (C5°([0,T] x T?))? with divp = 0, and ¢ > 0,

t

(2°(t), (1)) = <uO,90(0)>+/ (=7, 01p) — (0127, 01p) + (=B(2%) + (s, 2°)¢, ) ds.

0

The following Lemma gives existence and uniqueness of the weak solution to (3.2))
which can be obtained by the same method as in [LZZ18].

Lemma 3.2. Assume (A0)-(A3) hold with L, = 0. For allug € H*' and ¢ € L*([0,T],1?)
there exists a unique solution

2% e L=([0,T), H*Y) (L*([0,T], H"") () C([0,T], H )

to .

Proof First we give some a priori estimates for 2?. By taking H inner product of (3.2)
with 2 and using div 2? = 0, we have

=l +2 [ 1=l
ol +2 [ (2(s) s (5ot s
<l + 2 [ 12260l (6D a6 s
Sl +2 [ (12O + Ko+ Kl + Kalfn=*(s)}) s

where we used (A1) in the last inequality.
Hence by Gronwall’s inequality, we have

t t
1=*@)l17 + / 10022(5) [3rds < (IfuollF + e o I#CIE+D (3.4)
0
Similarly, we have

122 ()| %0, +2/0 (10127 (s) I3 + [|010227(s) |7 ) ds
=||uol| %01 — 2 / (022%(s), 02(2” - V29)(s5))ds + 2 / (2%(s),0(s,2%(5))9(5)) goads
0 0
tq
<||u(>||i~,o,1+/O (gllalagz¢(s)|!%1+0(1+||81z¢<s)II%)Ilaaz‘f’(s)II%f)ds

t
+2/0 (122 () 1o ()72 + llo (s, 22 ()7, g2 0.y s,
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where we used Lemma [2.12]in the last inequality.
Hence by (A2) we deduce that

t
120 + / 129(5)|Pyuadls
t
luoles +C +C / (14 18022y + 16() 1212 (3) o ds

Then by Gronwall’s inequality and ({3.4]) we have

[EC H01+/H2 ) Fads < (JuollFo. + C)e@om), (3:5)

where

O(t,cb,uo):c(/o (14 16() 2 )ds + (ol + 1)eC O+ >d8).

Now consider the following approximate equation:

dz(t) = 0222 (t)dt + 20522 (t)dt — B(22(t))dt + o (t, 22 (t))b(t)dt,
divz? = 0, (3.6)
Z?<O) = Up * j€7

where j is a smooth function on R? with

j) =1 Jz| <1; j(2) = 0, Ja| =

and
1 =«

It follows from classical theory on Navier- Stokes system that . has a unlque global
smooth solution z? for any fixed e. Furthermore, along the same line to and .
we have

IO+ [ 10n=t s+ [ 10622060 s < (ol + OBt

1022 (D11 + / 1010522(5) |3y ds + & / 18225 (3)|%ds < (fuo]%0n + C)eCltm0),
0 0

(3.7)

The following follows a similar argument as in the proof of [LZZI8, Theorem 3.1].

By , we have {29} is uniformly bounded in L>([0,T], H*') N L3([0, T], '),

hence bounded in L*([0,7], Hz) (by interpolation) and L*([0,T], L*(T?)) (by Sobolev

embedding). Thus B(z¢) is uniformly bounded in L*([0,T], H™'). Let p € (1,3), we
have

/0 lo(s. 2 ())o(s) 1 ds < / lo(s, 22 (N2, ey l6(5) s
<C / (U4 llo (s, 22 () 14y ) + |0(3)[2)ds
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<oA<Lw4@m%+W@me«m

where we used Young’s inequality in the second line and (A0) in the third line. It comes
out that
{0,22} >0 is uniformly bounded in LP([0,T], H™). (3.8)

Thus by Aubin-Lions lemma (see [LZZ18, Lemma 3.6]), there exists a 2? € L?([0,T], H)
such that

2% — 2% strongly in L*([0,T], H) as € — 0 (in the sense of subsequence).

Since {2} es is uniformly bounded in L>([0,T), H*Y)Y O L*([0, T], HY), there exists a
z e L>([0,T), H*YY L*([0, T], H"') such that

2¢ — Z weakly in L2([0,T], H"') as € — 0 (in the sense of subsequence).

2¢ — % weakly star in L>=([0,T], H*') as € — 0 (in the sense of subsequence).

By the uniqueness of weak convergence limit, we deduce that 2¢ = z. By (3.8) and [FG95,
Theorem 2.2], we also have for any 6 > 0

2% — 2% strongly in C([0,T], H *7°) as € — 0 (in the sense of subsequence).

Now we use the above convergence to prove that z? is a solution to (3.2)). Note that
for any ¢ € C*°([0,T] x T?) with divg = 0, for any ¢ € [0, 7], 2¢ satisfies

(z2(2), (1)) =(uo, £(0))

t
+/ (22,00p) — (0122, 01p) — €2(0228, Do) + (=B(22) + o (s, 28) ¢, p)ds.
0
By [Tem79, Chapter 3, Lemma 3.2] we have
t t
/ (=B(2?),¢)ds — / (=B(2%),)ds as € — 0.
0 0
For the last term in the right hand side of (3.9)), we have
t
[ (0652010 - (5,206, 2)ds
0
t
< [ o2 = ot #Nolullolinds
t
<C [ llo(s,28) = o1, 2)aqean [0l
0

¢ 1 ¢ 1
<C ( / ||zf—z¢||zds) ( / ||¢<s>||%2ds) |
0 0

where we used Hélder’s inequality and (A3) with Ly = 0 in the last inequality.
Thus let € — 0 in (3.9), we have z¢ € L>=([0, T], H*') N L*([0,T], H"') and

0,2° = 072% — B(2°) + a(t, 2°(t))¢.
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Since the right hand side belongs to LP([0,T], H~'), we deduce that
2% € L=([0, 71, A% (VL2([0. 71, A" (Y C([0. 7], HY).

For uniqueness, let 27, 2 € L>([0,T], H>")Y( L2([0, T], H*') N C([0,T], H™") be two
solutions to (3.2) and w® = 2¥ — z¢. Then we have

It Ol +2 [ 10000 s
O 2 [ (61, B - BE))ds
+2 [ (069,005, 5(61)006) — s 55D
<Rt 2 [ 6005, 506) ()
+2 [ ")l (o, 5(5)) = 015, 26 e 1666) s
<t O+ [ 1ot @lds +C [0+ 136l () s
# [ U OGO + Ll 6))ds

where we used Lemma in the sixth line and (A3) with Ly = 0 in the last line.
Then by Gronwall’s inequality we have

s
lw? () ||%, < |Jw?(0) ||§{ec Jo (128 (8)||%1,1+\|¢(8)|If2)d87

which along with the fact that z§ e L2([0,T], H"') and ¢ € L*([0,T7],1?) implies that
w?(t) = 0. That is: 20 = 2.

O
For next step, consider the following equation:
AZE() = RZE(t)dt — B(ZE()dt + o (t, Z5 (1) (1)t + /o (t, Z:(1)dW (1),
divZ; =0, (3.10)

Zj(O) = Uyg,

where v* € Ay for some N < oco. Here Z; should have been denoted Z;. and the slight
abuse of notation is for simplicity.

Lemma 3.3. Assume (AO) (A3) hold with Ly = 0 and v € Ay for some N < oo. Then
7t =g° (W( f Jov© ds) is the unique strong solution to (3.10)).

Proof Since v € Ay, by the Girsanov theorem (see [LRIB, Appendix 1), W(-) :=
W)+ 2 - [, v°(s)ds is an [*>-cylindrical Wiener-process under the probability measure

T

P —exp{ vl E(S)dW(s)—2—18/0T||UE(3)||122d8}dP.
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Then (Z2, W) is the solution to (3.1) on the stochastic basis (€2, F, P). By (A0) we have

T
[ s, Z2(6lln-rds < o
0

Then (Z2, W) satisfies the condition of the definition of weak solution (see [LZZI8] Defi-
nition 4.1]) and hence is a weak solution to (3.10]) on the stochastic basis (2, F, P) and

Ze — ¢ (W(~) +L Ue<s)ds).
If Z¢ and Z¢ are two weak solutions to (3.10) on the same stochastic basis (Q, F, P).
Let W& = Z& — Z¢ and ¢(t) = lcfot(Hqu(s)H2 + ||v°(s)[|2)ds for some constant k.

J2a0!
Applying Itd’s formula to e~ ||[W=(t)||%,, we have

t
IO W (D) +2 / 9|0, W () % ds
0
t t
—k / NV ()2 (122 ()% + 107 () [3)ds — 2 / e UL, 25, WF)ds
0 0
t
49 / 1) (o (s, ZEWF — (s, Z2)F, W (s))ds
0 . )
LoyE / O W (s), (0(s, Z5) — (s, Z5))dW (s))
0
t
e / e 105, Z5) — 0(5, Z2)|2, o g ds.
0
By Lemma m, there exists constants & € (0,1) and C such that

b(W*, Z5, We)| < @lloaWeIf + C(L+ | Z511 5 ) IWell

J2Et
We also have

2|(a(s. Z;) — (s, Z))o" | |W* 1w

2‘ <0<87 Zi)va - 0(87 Zi)’UE, W5>| <
<lo(s, Z5) — os, Zo)|Tu0e.m + 101 NWE 13-

Let k > 2C and we may assume ¢ < %, by (A3) with Ly = 0 we have

t
OO, + (2~ 28) [ o) [fds
0

t t
<C [N s + 205 [ €O (s). (005 22) - o(s. ZENaW (5).
0 0
By the Burkholder-Davis-Gundy’s inequality (see [LR15, Appendix D]), we have

2/E|E[ sup / LU (W (s), (05, Z2) — o (s, Z2))dW ()]

re(0,t]

t
<ovEE ([ e o(s,22) = oo ZDIE W70 s
0

2

t
<VEE(sup (e " WH(s) ) + 9VEE | e LW ()]s,
0

s€[0,¢]
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where we used (A3) with Ly = 0 and assume that & < 1.
Thus we have

t
E(sup (e [[W(s)|3)) < CE/O e MW= (s) [ 5,ds.

s€[0,t]
By Gronwall’s inequality we obtain W¢ =0 P-a.s., i.e. Zg = Z: P-as..

Then by the Yamada-Watanabe theorem, we have Z; is the unique strong solution to
(13.10)). O

3.2 Proof of Hypothesis 2

In this section we will show that I is a good rate function by checking the second part of
Hypothesis . The proof follows essentially the same argument as in [WZZ15, Proposi-
tion 4.5].

Lemma 3.4. Assume (A0)-(A3) hold with Ly = 0. For all N < oo, the set

e ([ oow) 025

is a compact subset in L>([0,T], H)( L*([0,T], H*) N C([0,T]), H™Y).

Proof By definition, we have

Ky = {z¢ c¢ € L*([0,T),1%), /O lo(s)||%ds < N} :

Let {297} be a sequence in Ky where {¢,} C Sy. Note that (3.5 implies that 2%
is uniformly bounded in L>([0,T], H*%) N L*([0,T], H"'). Thus by weak compactness of
Sy, a similar argument as in the proof of Lemma shows that there exists ¢ € Sy and
2/ € L*([0,T), H) such that the following convergence hold as n — oo (in the sense of
subsequence):

¢n — ¢ in Sy weakly,

2% — 2 in L2([0, T, H'?) weakly,

2% — 2" in L>([0,T], H) weak-star,

2% — 2" in L*([0,T], H) strongly.

2% — 2 in C([0,T], H~*7%) strongly for any & > 0.

Then for any ¢ € C*°([0,T] x T?) with divip = 0 and for any ¢ € [0, 7], 29" satisfies

(2% (1), (1)) = (uo, 0(0)) + /Ot<2¢”,8tso> — (01277, 010) + (=B(2*") + (5, 2°" ), @) ds

(3.11)
Let n — oo, we have

/0 (0(5, 25 )n — (5, ), PV
- / (05, 2%) — 05, )] + 0 (5, )6 — B), )
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< / 1o (s, 2%%) — (5, ))rall sl s + / (0(5,#)(6n — ), )

<C [ lots,2) = o(s lwmldallods + [ (o(5,2)(6, - 0).c)ds
0 0

<c ([ - z’\@dsf (f |r¢>n<s>|r%2ds)é [ ot )0n = o). 1ds

— 0,

where we used Hoélder’s inequality and (A3) with Ly = 0 in the last inequality. By
[Tem79, Chapter 3, Lemma 3.2] we also have

[Ben s [ -8 pas

Then we deduce that

t

(2(8), (1)) = (uo, ¥(0)) + / (2, 0up) = (012, 1) + (= B(') + o (s, 2)9, p)ds,

0

which implies that 2’ is a solution to (3.2)). By the uniqueness of solution, we deduce that
2 =29
Our goal is to prove 2% — 2% in L>([0,T], H) (" L*([0, T], H*) N C([0, T], H ).
Let w™ = 2% — 2%, by a direct calculation, we have

Ol +2 [ o s s
=2 [ (). B - BE)(5)ds
2 [ 060,06, 2 (6)0n(s) — o1, 2(6))6(6))ds
=2 [ b ) 5)s 42 [ W), (06,2 (6)) = ol D))
2 [ (060,005, 206))(0n(5) — 605D
< [ 10w s +¢ [0+ 1l 6) s
+0 [ 6 on(s) s
[ T alous) = o660 (o + Kl + Kaln=*(o)l) s,

where we used Lemma in the sixth line, (A3) with Ly = 0 in the seventh line and
(A1) in the last line. Then we have

T
sup [lu”(6)[% + / |0y () 3y ds

te(0,7)

T
<C/O L+ 122 ()Gl () s
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T 3/ T 3
+CCsup 1@l + swp 1200 ([ lontzas) ([l las)
t€[0,7) 0 0

t€[0,T]
1
2

iy " l6as) - czs<s)||%2ds)é (/ St 28 + o152 ) )l () s

1
2

< [+ 1=l @lds+ o) ([ o)l )

=

+CON? </0 (1+!\z¢(5)\|?1+H<912¢(8)||iz)Hw"(S)IlizdS) :

where we used (3.4)) and the fact that ¢,, ¢ are in Sy.
For any € > 0, let

A= {s€[0,T]; ||2%"(s) — 2°(s) ||l > €}

Since 2% — 2% in L?([0,T], H) strongly, we have
T
/ |[w"(s)||3,ds — 0, as n — oo
0

and lim,,_,, Leb(A¢) = 0, where Leb(B) means the Lebesgue measure of B € B(R). Thus
we have

/0 (L4 122 ()Gl () [ s

< ( / N /[ . ) (4 [ (3)] ) 0 (s) eds
<Ce+2 / (L4 122() 2 (122 ()2 + 129() |12 ) s

€

<Cet c/ (14 [12%(5) 30 )ds

— (e as n — o0,
where we used (3.4) in the forth line and (3.5)) in the last line. A similar argument also
implies that

T
/0 (L4 122 + 1802 () %) [ (s) By ds < Ce.
Hence we have

T
sup ||w"(t)||% +/ |O1w™(s)||3,ds < Ce + Cv/e as n — oo.
te[0,T 0

Since € is arbitrary, we obtain that

2" — 2% strongly in L*((0,T], H) (") L*([0,T], H°) () C([0,T], H ).
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3.3 Proof of Hypothesis 1

In this section we will prove the main result by checking the rest of Hypothesis [2.5]

Lemma 3.5. Assume ZZ is a solution to with v* € Ay and € < 1 small enough.
Then we have

T T
E(ts[%pﬂ 1Z5()|5) + E/O 1Z5 ()17 Z5 () 5 0ds + E/O 10125 (s)|77ds < C(N, up)-
S )
(3.12)
Moreover, there exists k > 0 such that
T
E( sup e MO Z5(6)150,) + / TR Z5 () | Fuads < C(N o), (3.13)
te[0,7T 0

where g(t fo 1 Z(s)||%,ds and C(N,ug) is a constant depend on N, uy but independent
of €.

Proof  We prove ([3.12)) by two parts of estimates. For first step, applying 1t6’s formula
to || Z:(t)]|%, we have

IZ:01% +2 [ 1012506 s
~ugl +2 / t<Z§<s>,a<s,Zz<s>>v€<s>>ds
+2f/ (Z5(s), 7 (s, Z5())dW (s) +e/||ost< I s
<ol + / (12 Il (5) % + (s, Z2 (5D 01y )
#2vE [ (22060t ZUDAW )+ [ ot Z 60 mds
<ol + / IZl s + 1+2) [ (o KllZ21 + Kallr 221
12z / (Z2(5), 0(s, Z5(s) AV (s),

where we used (A1) in the last inequality.
By Gronwall’s inequality and v € Ay,

t
1Z5O17 + (2= (1 +e)E>) / 10,23 (s) || ds
S(lulfy + 0+ 27 [ (20610 ZEDaW ()N 25
For the term in the right hand side, by the Burkholder-Davis-Gundy inequality we have

S

2/zeN T (sup | [ (Z5(r),o(r, Zj(r))dW(r)H)

o<s<t Jo
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1
t 2
<6vee"TTE (/ 125 () [l (r, Zi(?“))lliQ(zz,H)dS)
0
t
<VeE[sup ([Z;(s)lI7)] + 9\/5€2N+2K1TE/ (Ko + K1l Z3 () s + K2]10:1Z5(s) [ 1] ds
0

\S\

where (9y/2e*N 28T 41 4 £) Ky — 2 < 0 (this can be done when € < (gzrsarr—)°) and
we used (A1) in the last inequality. Thus we have

Blsup (12013 + B [ 102206y

s€[0,t]

Cllully +1)+C [ Blsmo (12500 s

rel0,s]

Then by Gronwall’s inequality we have

T
E( sup [|Z,(t i) + E/ 10:Z5(s)IIyds < C(1+ [luoll)- (3.14)
0

0<t<

The second step is similar to [LZZ18, Lemma 4.2]. By It6’s formula we have
t
1Z5 ) =lluollzr — 4/0 1Z5 1151101 Z5 ()11, ds
t
w4 [N (o, Zi() (), ZE(s)) s
t

+ 25/0 1Z5 ()1 llo (s, Z5 ()T 02,y

‘ (3.15)
+e [ lots. Z) (ZD)lfads
‘ t
+4VE [ 1ZE 7). s, Z ()W ()
t
=:{|uoll} — 4/ 1Z5 1131101 Z5 ()7 ds + o + Io + I3 + I
0
y (A1) we have
t
L,(t) <4/0 1Z5 ()7l (s, Z5 ()| paez, i 107 ()22 | Z5 ()| s
t
<2/0 125 ()| (Ko + Eq || Z5 ()17 + KalloyZg ()17 + [10°(s) 121125 (5) 1 7 ) dls
and
t
Iy + I <65/0 lo (s, Z5 ()12, 125 (5) | s

t
<6e [ K+ B ZE)I + Kol ZE )25 ) By
0
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Thus we have
1Z5 ()5 + (4 = 2, — 6K) /Ot 1Z5 () 113110125 (5) 1 7rds
<lluolly + Is + (2 + 6) Ko Ot 125 ()17 ds + /Dt(2K1 +6e K1+ 2|[v(s) 121125 ()l 3)ds
Since v* € Ay, by Gronwall’s inequality we have
IZi01Y + (4= 20— 6e1) [ 122065 100220
< <||u0||jlq + I, + (2 + 6) Ky /t ||Z;f(s)||§1ds) SEKITHN.
0

The Burkhélder-Davis-Gundy inequality, the Young’s inequality and (A1) imply that

E(sup L(s)) <122 ( [ et Zs<s>>||iQ(,2,H>||Z§<s>||%ds) ’

s€[0,t]
<VEE(sup || Z5(s)|%)

s€[0,t]

t
+ 36\/5E/ (Ko + K1l Z3 ()l + K2010:Z5(s) 7)1 25 () [ ds.
0

Let € small enough such that 2Ky + 6c6 Ky + 36,/ K23 THN < 4 and (/ze85THN < 1
(for instance € < (?MBEQ%)Q). Then the above estimates and (3.12) imply that

t
E(sup [Z5(s)||%) +/ 1Z5 ()71 Z5 ()11 0
s€0,t] 0

t
<CWV.u) +CE [ 125}y,
0
which by Gronwall’s inequality yields that

E(sup [[Z5(s)|[&) /HT I Z5 () [f1.0ds < C(N, o).

s€[0,t]

For 1} let h(t = kg(t) + fo |v°(s)||%ds for some universal constant k. Apply-
ing 1t6’s formula to e~ "® || Z5(t)]|2 Zo. (by applying It6’s formula to its finite- dimension
projection first and then passing to the limit), we have

O Z5(1)[| %0 + 2 /O t e ([0nZ; ()17 + 1010225 (3) | 7r)ds
=|luol%0. —/Ot e PO RN Z5 ()17 + 0" ()1 Z5 ()1 o ds
+2 / t e MN0,Z5(s), 0n(Z; - V Z;) (s))ds + 2 / t e "N Z5(s), 0 (s, Z5(5))v" () goads
0 0
+2\/g/0t e M Z5(s), (s, Z5(8))dAW (5)) o +a/0t e N|a(s, Z5(5))I[7, g2, frony 0
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By Lemma [2.12] there exists a constant C; such that
1
(0225, 0223 - VZD))| < 511010225\ + Co(1 + 101 Z 20 110: 25 -
By Young’s inequality,
20(Z5(s), 0 (s, Z35(5))0" () roa| < N Z5 ol ll7 + llor(s, ZE)IT, g2 o -
Choosing k > 2C', we have
t
ONZEO) 1o +/ e M (10023 (5)5 + 10:0:Z5(5) |7 ds
0
t t
<ol +C [ N0z fyds + (1+2) [ el ZIE g oyl
0 0

+20E [ MONZi(0). 05, ZE)W (3)) .

By the Burkholder-Davis-Gundy inequality we have

s

2VeE <sup | [ e "N ZE(r), o, ZE(T))dW(T»HOJ‘)

sef0,t] Jo

N

<6v/cE (/ —2h(s ||Z€( )||?qo,1||0(3725(3))||L2 12,H0:1) )
g\/EE[sup (B_h(S)HZE( )HHO 1)]

s€(0,t]

+9fE/ "OKy + Kl Z5(5) o0 + Ka((10:25 ()3 + 1010225(5) 1 77)] s,

where (9y/24 14 ¢)K, — 1 < 0 (this can be done if £ < 15) and we used (A2) in the last
inequality.
Combine the above estimates, we have

t
E( sup 6_h(s)!\Zi(8)II§qo,1)+E/ e "IN Z5 (5) [ ds
0

s€0,t]
t
Clluolos +1+ E / e Z2(3) | %o ds)
0

Then Gronwall’s inequality implies that
T
B(sup e MONZiOl300) + B [ e 256 s < COL ol
0<t<T 0
Since v° € Sy, we deduce that
T
E( SFP]€_kg(t)HZ§(t)“12QO,1) + E/ e MO Z5(9) | Fuads < C(L+ [luolFor)e™.  (3.16)
te0,T 0

U
Similar as [LZZ18] lemma 4.3], we have the following tightness lemma:
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Lemma 3.6. Assume ZZ is a solution to with v* € Ay and € < 1 small enough.
There exists €9 > 0, such that {Z}}ec(o,e0) 15 tight in the space

X =C([0,T], H ) (L*([0,T], H) () L2,([0, 7], H"") () Lz ([0, T), H*Y),

where L2 denotes the weak topology, LS. denotes the weak star topology and x equipped
with the topology T, generated by the four subspace topology of the four intersecting spaces.

Proof Note that the law of Z¢ is defined on the path space C([0,T], H™'). First we
should point out that it can be restricted to x. We denote the space C'([0,T], H') by X
with Borel o-algebra B(X).

For N € N| let

Yy i={w € L*([0,T), H") : |wl| 200701y < N}

equipped with the weak topology on L2([0, 7], H"'). Then Yy is compact and metrizable,
hence separable and complete.
Similarly, let

Zy == {w e L>([0,T], H") : |w| oo o 11,500 < N},

equipped with the weak star topology on L*®([0,T], H*'). Then Zy is compact and
metrizable, hence separable and complete.
Define

Yy =C L0, 7], H) (Y] 2y o= X1N Xa N X351 Xy,

where X; are complete separable metric spaces with metric d;, ¢« = 1,2,3,4. Let xny be
equipped with the metric d = max{d;, ds, ds,ds}. Then yy is separable. To show that
xn is complete, it is enough to show that if wy € yn,k € N and w, — v € X; in d; for
every 1 < i < 4, then w® = w® = w® = w®. This is true since obviously we have the
continuous embedding

X; c M([0,T),H?), 1<i<4,

where M denotes the space of Radon measures. Hence (xy,d) is a complete separable
metric space. Furthermore, the following embeddings are continuous and hence measur-

able:
(XN, d) c X.

Therefore by Kuratowski’s theorem we have for the Borel o-algebra B(xn) of (xn,d),
xn € B(X), B(xn) = B(X)Nxw-

Consequently, x = Uxy € B(X).
Note that xn is a 7,-closed subset of x. Let A C x be 7,-closed. Then A N xy is
Ty-closed too, hence

AN xn € B(xw)
=B(X)Nxny ={B € B(X): B C xn}
c{BeB(X):BCx}

C B(X)Ny.
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Hence

A= |JAnyyeBX)N
N=1
and

B(r,) C B(X)Nx
Since x C X continuously, hence measurably, we have B(X) N x C B(ry). Then
B(ry) = B(X) N x.

Thus any probability measure on X can be restricted on Y.
Let k be the same constant as in the proof of (3.13)) and let

T
K i={u e CO.TLH) s sup o)+ [ [u®l ot + el s
0

te[0,7

T

—k [F 1181 w(s)]12, ds u(s)||?,ds

_|_ sup e kf(] ”81 ()HHd ||u(t>||%071 _l_/ kfo Hal ( ” d ||U( )||H11 }
te(0,7) 0

where €15 ([0, 7], H™!) is the Hélder space with the norm:
t) — -1
WO =)

0<s<t<T |t — s|%

HfHC%([O,T],Hfl) -

Then from the proof of [LZZI8, Lemma 4.3], we know that for any R > 0, Kg is
relatively compact in Y.

Now we only need to show that for any ¢ > 0, there exists R > 0, such that P(Z: €
Kpg)>1— 6 for any € € (0,¢¢), where gy is the constant such that Lemma hold.

By Lemma and Chebyshev inequality, we can choose Ry large enough such that

2 . Ry ¢
P sup | Z;(05+ | 1Z:@0)]%0dt > = <7
t€[0,T 0

and

T
t R
P ( sup e Jo 10 sy ) 12, +/ e o 1O )13, 1t > —O> <
0

te[0,7) 3

1

Y

where k is the same constant as in (3.13)).
Fix Ry and let

~

T
) R
R, ={ue COTLH 5 sup Julolfy + [ [t < 5 and

te[0,T

T
‘ R
sup e —k [y o1u(s HHds”u( )H%m +/ ek Jo Halu(S)H%dSHU(t)legp,ldt < ?0}
t€[0,T] 0
Then P(Z: € C([0,T],H ')\ Kg,) < 2
Now for Z¢ € Kg,, we have §2Z¢ is uniformly bounded in L2([0,T], H~!). Similar
as in Lemma , Z¢ is uniformly bounded in L*([0,T], H2) and L*([0,T], L*(T?)), thus
B(Z¢) is uniformly bounded in L*([0,7], H™'). By Holder’s inequality, we have
02ZE(r) + B(ZE(r))dr]|?, -
I (Ze(r))ir

s,t€[0,T),s#t |t - S’

T
Lo / 10222 (r) + B(ZE(r)|Pyrdr < C(Ro),
0
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where C(Ry) is a constant depend on Ry. For any p € (1, ) by Holder’s inequality, we
have

. IS, o(r, Ze(r (T)dr”ng/ o (r, Z2 (r)v ()|,

5,t€[0,T],s#£t |t - S|p ! 0

T
< / o, ZEEDIE gy 107 () ol
0

T
<C / (U 125 + 1" () | )dr
gCf(RO)a

where we used Young’s inequality and (A0) in the third inequality.
Moreover, for any 0 < s < t < T, by Holder’s inequality we have

t t 2
Bl [ ot ZE )W O)llyor <CE [ ot ZEIE, o)
t
<Clt = s|E [ lotr.ZE)|t, s ndr
<Clt = sP(1+ E( sup |1Z:(0)]3)
te[0,T
<C|t o 8‘27

where we used (A0) in the third inequality and (3.12]) in the last inequality. Then by
Kolmogorov’s continuity criterion, for any « € (0, %1), we have

E( . | [ o(r, Z5(r <r>||351><a

$,t€[0,T),s#t |t - S|2a

Choose p = %, a = 1 in the above estimates, we deduce that there exists R > R, such

8
that
€ R € 2
P (HZUHCEG([O,T},Hl) > §7Zv € KRO)
125 ()= Z5 (s)|l g —
E <Sup5,t€[O,T],s;£t | T5 = 1{2561%30})
<

= R
3

[\ e

<

Combining the fact that P(Z¢ € C([0,T], H ')\ Kg,) < 2, we finish the proof. O

Lemma 3.7. Assume (A0)-(A3) hold with K, < %, K, < $,Ly=0. Let {v°}.s0 C Ay
for some N < co. Assume v® converge to v in distribution as SN valued random elements,

then
, (W<_) . %/O'Us(s)ds) —g" (/OIU(S)ds)

i distribution as € — 0.
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Proof  The proof follows essentially the same argument as in [WZZ15, Proposition 4.7].
By Lemma , we have Z¢ = ¢° (W (-) + \/ fo ds) By a similar but simple
argument as in the proof of Lemmas and [3.5 there exists a unique strong solution
Ye e L>([0,T], H>) N L*([0,T], H*"Y N C([0,T], H™') satisfying
dY(t) =07 (t)dt + \eo(t, Z:(t))dW (t),
div Y*© =0,
Y*#(0) =0,

and

lim
e—0

E swp V()% +E / 1Y) 2n0d ]

t€[0,T]

lim
e—0

T
E sup ( (t)HYa( )HHO 1) / e_kg(t)HYa( )HHU ]

t€[0,T

where g(t fo | Z2(s)||%,ds and k are the same as in (3.13)).
Set

== (0 Sw, L((0,7), H) (Y L3([0, 7). H*) () C (0, 7). H )

The above limit implies that Y — 0 in L>([0,T], H) O L*([0, T), H°) N C([0, T].H")
almost surely as ¢ — 0 (in the sense of subsequence). By Lemma the family
{(Z;,v°) Yec(0,60) s tight in (x, Sn). Let (Z,,v,0) be any limit point of {(Z;,v°,Y*) }ec(0,00)-
Our goal is to show that Z, has the same law as g ( fo ) and Z; convergence in
distribution to Z, in the space L>([0,T], H) () L*([0, T], H1 OYNC(o, 7], H1).

By the Skorokhod Theorem, there exists a stochastic basis (€, F, {E}tG[OT P) and,
on this basis, Z-valued random variables (Z,,#,0), (Z¢,9°,Y*), such that (Z¢,°,Y*)
(respectively (Z,,0,0)) has the same law as (ZZ,v°,Y¢) (respectively (Z,,v,0)), and
(Z2,0°,Y%) = (Z,,9,0), P-as.

We have

d(Z;(t) = Y2(1) =08(Z5(t) — Y*(t))dt — B(Z(1)dt + o(t, Z5 (1)) 5" (t)dt,

Z5(0) = Y*(0) =uo o
and
P(Z; = Y* e L®([0,T), H) (| L*([0, 7], H**) (" C([0,T], H"))
=P(Z; =Y € L=((0,T), H) (| L*([0, 7], H**) (\ C ([0, T], H))
~1.

Let Qo be the subset of Q such that for w € Q,
(22,5, V%) (w) = (Z, ,0)(w) in Z,
and

Rl IZi@lEdsy () — 0 in L=([0,T], A () LA([0,T], £ (" C([0, 7], H™),
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then P(Qy) = 1. For any w € Qp, fix w, we have sup, fOT 122 (w, 5)||3ds < oo, then we
deduce that

T
lim ( sup ||Y(w, )|l goa +/ ||Y€(w,t)||i~1171dt> = 0. (3.18)
0

=0 \ te[0,1]

Now we show that

T
sup || Z5(w,t) — Zy(w, )||5 +/ 1Z5(w,t) — Zy(w, )| F10dt — 0 ase — 0. (3.19)
te[0,T 0

Let Z° = Z5(w) — Y*(w), then by (3.17) we have
dZe(t) = P Z5(t)dt — B(Z5(t) + YE(b))dt + o (t, Z5(t) + Y=(1)) 5% (t)dt. (3.20)

Since Z¢(w ) - Z, ( ) in X, by a very similar argument as in Lemma we deduce

that Z, = ¢° ([, 9(s)ds). Moreover, note that Z:(w) — 2°(w) weak star in
L*>([0,T], f[ ) then the uniform boundedness principle implies that
sup sup || Z5(w)|| gon < oo. (3.21)
e t€[0,T]

Let w® = Z¢ — 2%, then we have
t t 5 ~
e (1 +2 [ 0w (s =2 [ (w(s), B +77) ~ B(=")ds
0 0

42 /0 (W (s), 0 (s, 25 + V)i (s) — o(s, 27)i(s))ds.

By Lemmas [2.10] and [2.11], we have
/t(ws(s), B(Z° + V) — B(="))ds
0
= /Ot b(YE, 2% w®) + b(YE, Y5, w®) + b(w, Y + 2% w®) + b(2°, Y&, w®)ds
/t[ 10vw ()17 + %||3~/E(S)||§;1,1 + O+ [127() 50+ 1Y ()30 lwf () | ds
+O/WWf||nm<nmw

t
l/—Ww(Nm%+C !WE\QU%+CA(H4V(Nm0Mﬂ$%®,

where we used the fact that by (3.18)) and (3.21]) w* are uniformly bounded in L>([0, 7], H)
in the last inequality. By (A1) and (A3) with Ly = 0 we have

/0 (w(s),0(s, Z5 + Yo (s) — (s, 2°)0(s))ds
:A@f@<<sf+Yﬂ—awz» <»m+l< “(s), (s, 2°) (5°(s) — 0(s)))ds
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<C/O (e () 1 19° () ez (e () + 1V () ) 2 ds

+ /0 s ()11l (5) = B(5) = (Ko + K| 2(5) 77 + Kallow="(s)I[%) 2 ds

1
2

[NIES

<eni( [ e (5) % + I7<(5)lEs )

NI

t
+ Nt ([ I+ KO + Kl G
0

where we used the fact that w® are uniformly bounded in L*°([0,7T], H) and that 0%, ©
are in Ay. Thus we have

t
lof ()13 + / |0vw (s) %

t t
<C / (14 127() o) (s) yds + C / 172 (5)|%0.0ds

1
2 2

ront ([ e + i) +ont ([ s 1556 o () s

Since Z°(w) — 2%(w) strongly in L*([0,T], H) and Y* — 0 in L2([0,T], H""), the
same argument used in Lemma |3.4] implies

T
sup || Z8(w,t) — 2% (w, t)||3 + / 1Z5(w, t) — 2°(w, ) |510dt = 0ase — 0. (3.22)
te(0,7) 0

The proof is thus complete.

Proof of Theorem 3.1. The result holds from Lemmas and 3.7, O



Chapter 4

Central limit theorem

In this chapter, we will establish the central limit theorem. Let u® be the solution to
(1.3) and u° the solution to (1.4). Then we have the following estimates from Lemma
3.5, Lemma 4.1, Lemma 4.2 and Lemma 4.4 in [LZZ18]:

Lemma 4.1. Assume (A0)-(A3) hold with Ko < 2, Ky < 1,Ly < £, there exists g9 > 0
such that

T
sup E ( sup Hua(t)H%{—i-/ ||u€(3)||%1,0d3> < C.
0

e€(0,e0) te[0,7

Particularly,

T
sup [ ()]0 + / 12(s) 1% 1ds < C.
te(0,7) 0

We have the following H°? estimate for u:

Lemma 4.2. Given uy € H2, the unique solution u° to satisfies the following
estimate:

sup [[a®(t)[[30s + / 1®(8) 120t (4.1)

te[0,7]

Proof Let’s start by proving a priori estimates for u’. Applying the operator AY and
using an L? energy estimate, we have

T4y
2"k

where we denote by u? the term A?u°. By Lemma with s = 2,50 = land u = v = u°,
there exists dj, € ! such that

Wi+ 0@l < (AR” - Vu'), uy),

1d
Sl @)% + o 0l

<O 2™ (il ol 1910 o+ 001 101 s )

24k

Now multiplying by and taking sum over k£ gives

1d

el @20 + 100 s < © (10010 1008 0+ 0123 100 )

38



By interpolation inequalities (see [BCD11, Theorem 2.80]) we have

[a(Fy ST

1
P
H1s?

where s = 1,2. Thus we infer that

£ )+ 1000

3
<C<||U°||H02||u0|| - 1||81u0||H02 + [ o2 e 1 a 1016° | o
+ )2 202000 ~02||31u0||go,1 + ||u0||§;oz||31u0||H01>
~X

<al|0ru’ | o,z +CHUOH~11||u0||§~{o,2+CHu0H pallt oz

L
+ CH@IUOHQOJHUOHQO,Q + (1016 o 14”1 oo
~

2 3 1
<allov’ o + CllulFo el Z e 1u oz + Cllu® [ o 1l e o2
4

+ Cllovu’ || Fo U o, + 1010 | groa |4’ 0.2

2
0 0 0 , 0
<al|0iu ||H02 +C(1+ ||lu ||H01)(1+ |u ||H1 Olu ||H027

2,..
where we used Young’s inequality in the third inequality and a <
inequality implies that

%. Then Gronwall’
sup [Ju”

T
P + / 10,u°(8) 2t
te[0,7 0
<||u0||i}0,2 exXp (C sup

te(0,7

T
(1+ [ >||zo,1>/ (14 [ (0)][3)d ) .
0
Then by Lemma {4.1], we get the result

The next proposition is about the convergence of u

U
Proposition 4.3. Assume (A0)-(A3) hold with Ky <

exists a constant €9 > 0 such that, for any ¢ € (0,e), we have

217K2
E | sup ||Ju(t) —
te[0,T]

(?) (L‘)I|%+/0 [u”(s) —UO(S)IIfql,ods> < Ce

Proof  Applying Itd’s formula to [|u®(t)

< %,Lg < é, then there

(4.2)
t) — u®(t)]|%, we have
lu () — u* ()15

t

9 / 100 — u®)(s) s — 2 / () — u®(s), B(u*(s)) — B (s)))ds
+2\/E/Ot<ué‘(

)0 (s, u"(s))dW (s)) +6/0 lo (s, w* ()70 2.
By Lemma [2.11] we have

[(u*(s) = u’(s), B(u“(s)) — B(u"(5)))]
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—Ib( —u ,uo,ue —u’)]
—Hal(u =)l + O+ [l ) Ju® — w7

By the Burkholder-Davis-Gundy’s inequality (see [LR15, Appendix DJ), we have

[ ) = 6). (s, ) D

s€[0,t]

2\/eE ( sup

t 3
<6VEE ( [ ) - u0<s>||%q||o—<s,u€<s>||%2(lz,mds)

N[

<6veE ( sup [Ju”(s) — uO(S)H?z/O (Ko + K [lus(s)[7 + Kzl\alus(S)H%)dS>

s€[0,t]

< (Sup [u(s) = uO(S)H?{) +Cek (/O (14w ()7 + Hf?luE(S)H?I)dS) :

2 \sepy

where we used (A1) in the last second line. Thus by above estimates and (A1) we deduce

that
E(sup lu(s) — w0(s) 1% + / lu(5) = w0(5) |Bnod )
s€[0,t]

<O/0 (L + [lu® ()5 ECsup [[u(1) — u(D)II3)ds

1€[0,s]
t
L CeE ( Jas e+ ||alu€<s>||z>ds) .
0

Then Gronwall’s inequality and Lemma [£.1) imply that

T
E ( sup [Ju®(s) —u’(s)|% +/ [u*(s) — u0(8)|\21,0d5>
s€[0,T] 0

r T
<Ce ([ o + 100 s ) €8 1
0

<Ce.

Let V? be the solution to the following SPDE:
dVO(t) = o7VO(t)dt — B(VO(t),u’(t))dt — B(u®(t), VO (t))dt + o (t,u’(t))dW (1),
V0(0) =0 (4:3)

4.1 Well-posedness of the limiting equation

In this section we give existence and uniqueness of the solution to the limiting equation.

Lemma 4.4. Assume that u° satisfies (4.1)). Then under the assumptions (A0), (A1),
(A2), equation (4.3) has a unique probabilistically strong solution

VO e L>(0,T], H*) n L*([0, T], H*)Y n C([0, T]), HY).
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Proof  The proof follows a very similar Galerkin approximation argument as in [LZZ18,
Section 4], we show some key steps here.

Let {er,k > 1} be an orthonormal basis of H whose elements belong to H? and
orthogonal in HO! and HYO. Let H, = span{ey,...,e,} and let P, denote the or-
thogonal projection from H to H,. For I>—cylindrical Wiener process W (t), let W, (t) =
IL,W(t) := Z?:l 1;B;(t), where f3; is a sequence of independent Brownian motions and ;
is an orthonormal basis of [2. Set F': H' — H ! with F(u) = —B(u, u’) — B(u°, u) + du.

Fix n > 1 and for v € H,, consider the following equation on H,:

d(V(t),v) =(P,F(V,),v)dt + (Pno(t,u’(t))dW,(t),v)

V. (0) =Pyuo. (44)

Then by [LR15, Theorem 3.1.1] there exists unique global strong solution V,, to (4.4)).
Moreover, V,, € C([0,T], Hn)-

We first prove a priori estimates. Applying It6’s formula to ||V}, [/ Ho1s We have

t
|V (t 01+2/ 101V,u(5)]1 50,1 ds ||Pnu0||g0,1—2/(B(vn,uo)+B(u°,vn),vn>go,lds
0
t
+;/w@w@mm@xm@mm
0
t
+/0 HPnCT(S,uD(S))HnHiQ(lgﬂo,l)ds-

By Lemma and Young’s inequality, we have

|<B(Vn7 UO) + B(uoa Vn)y Vn>ﬁ[0,1|
é\b(Vn, uo, Vn>’ + ]b(@gVn, UO, agvn)| + |b(Vn, aguo, agvn)l + \b(@uo, Vn, 82‘/”)’

<C<HVnHmoHu0Hﬁl,lHVnHH +102Vall gro [0l g1 [102Vall 2

Vol grollOau’ || g1 105 Vol + ||82u°\|g1,0||Van1,1||82Vn||H>
<O‘HVnH?@(l,l + CHUOH 12||V ”Hou

where o < %
The growth condition and Lemma [£.I] imply that

¢
A||Pna(5,UO(S))HnHiQ(lQ,Hol C/ 1—i-HuO||H11

Similarly, by the Burkholder-Davis-Gundy’s inequality, we have

2F ( sup )
se0,1]

<68 ( [/ 1Bt DI o 1V

BE (Sup IV°(s)] H01> +C/ (1 + [[u”[[ 7,1 )ds

s€[0,t]

&Aw< W(5))dWin(3), Vi(5)) o

1
2

/N



42 Chapter 4. Central limit theorem

s€[0,¢]

<PE (Sup ||V0(8)||fqo,1> +C,

where [ < %
Then we get

t
E (SUP IIVn(S)Ilﬁam) +E/ NACHPAE
0

s€[0,t]

t
<+ C [ (0. +1) B <sup ||vn<r>||zo,1) ds.
0

rel0,s]

Then by Gronwall’s inequality and (4.1]), we have

t t
E<sup uvn<s>n§qo,1)+E [ I lds <cen (¢ [l + 1)as) < c.
0 0

s€[0,t]

(4.5)
The rest part of the existence proof is very similar as in the proof of [LZZ18, Theorem
4.1], we only need to point out that the convergence of F'(V},) holds as n — oo: From the
proof we could obtain that there exists another stochastic basis (Q,./% , lf’) and random
variables V,, with same law of V,, such that V, — V in C([0,T],H~") n L*([0,T], H),
P-as. (in the sense of subsequence). Fix | € C°°(T?) with divl = 0. Since F(V},) is

actually linear term, the convergence of Vj, in L2([0,T], H) implies that

/t<F(‘~/n), P,l)ds — /t<F(\7), I)ds, P-a.s.

For uniqueness, assume V2, V are two solutions in L>([0, 7], H*')NL2([0,T], H*)N
C([0,T], H™') with the same initial condition, let w = Vi — V5, then w(0) = 0 and w
satisfies

dw(t) = 0fw(t)dt — B(w(t),u’(t))dt — B(u’(t), w(t))dt.

Then similarly as the proof of the uniqueness for the deterministic Navier-Stokes
equation with anisotropic viscosity, we know that w = 0.

4

Remark 4.5. Note here we do not need assumption (A3) and L*(Q) estimate of V;, since
the drift term o(t,u’) does not depend on V,,.

4.2 Central limit theorem

In this section we give the main theorem of this chapter.

Theorem 4.6. Assume (A0)-(A3) hold with Ky < %, Ky < 1, Ly < 1, then foru, € H°?
we have

. us(t) —u’(t) 012 TouE(t) — (1) 012 _
lim £ <t:[%g“] =7V (t)IIHJr/0 =7V (t)||H1,odt> 0



4.2. Central limit theorem 43

Proof Let V& = Mﬁ“%) Then we have

dVE(t) = 0iVE(t)dt — B(VE(t),us(t))dt — B(u®(t), VE(t))dt + o(t, us(t))dW (t),

Ve(o) =0 (4.6)

and

d(Ve =V =02(Ve —Vdt — (B(VE,uf) — B(V?,u®))dt
— B(u’,VF = VO)dt + (o(t,u*) — o(t,u’))dW (t).

By Ito's formula, we have

V() = VOOl +2 /Ot 101(V(s) = VO(s))ll7ds

=2 /0t<B(V€,u€) — B(V° u°), Ve —V9ds
+2/t<( (s,u%) — a(s,u’))dW (s), V=(s) = V(s))

[ loto.) = o0 s

<2/ b(VE - VO u Ve —VO)|ds
42 / b(V —VO)|ds
+2 / (05, u%) — (s, u))dW (), V¥(s) — V()]
+ /Ot lo(s, 4) — o (5, 60) |2, o s

:211 + IQ -+ [3 + 14.

Taking the supremum and the expectation, we obtain that

E (Sel[lopt} IVE(s) = Vo) T + 2/0 101(V=(s) — VO(S))H?MS)

SE(L(E) + I2(t) + sup I3(s) + 14(1)).

s€[0,t]

By Lemma [2.11} we have
! 1 2 2 2
B1(0) <28 [ (FIV° = VOl + CICl 1V = VI ) s
0
By Lemma [2.11} we have
t
EI(t) :2\/EE/ |b(VE, Ve Ve —VO)|ds
0

t t
—2EE [ 0VE VA V)lds = 2vEE [ Ib(ve Ve Ve ds
0 0
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t
gﬁCE/O (VA2 olVEZ + (VO )ds.

By the Burkholder-Davis-Gundy inequality and (A3), we have

E (sup I3(s ) <6F </ o (s, u%) (s,u0)|\%2(127H)|]V€ — Vonids)
s€(0,t

t
6E (sup [ VOH%/ lor(s,u) — 0(s,u°)H%Qaz,H>dS>
0

s€[0,¢]

1

=

N

N

1 t
'k ( sup [V* - v%r%) +08 ([ I =l + 101 — )l ).

s€[0,¢]

y (A1), we have

t
EL(t) < CE (/ |luf — u®||% + ||01 (uf — u0)||fqu) )
0

The above estimates together with Lemma [4.3] and Lemma [£.7 below induce that

E<sup V) = VOO + [ V() = VO s )
s€[0,t]

t
<CE / <||u0<s>||§~,1,1 sup [[V2(1) - v0(l>|!%1> ds
0

1€[0,s]

t
#VECE [Vl VEI + 1V s
t
+08 ([ = s+ 0s(u - ) s
0

<CE/O ((1 + [t () I 1.0) Sup V@) - VOU)H%) ds + C(Ve +e).

Then by Gronwall’s inequality and Lemma [.1] we have

E(aup V) =Vl + [ V() = Vs )
s€(0,t

O(Vz +2) exp (c/ (14 ()30 )ds ) < O(Ve+o).

0

Let € — 0, we complete the proof.
O
It remains to establish the following lemma.

Lemma 4.7. Assume (A0)-(A3) hold with Ky < %, K, < %)
solution to (4.6)), then there exists a constant eq > 0 such that

Ly < Let V& be the

1
=

T
sup E / V() 31V ()] ods < oo,

€€(0,e0)
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Proof  Applying 1t6’s formula to ||V¢||};, we have

Ve <2VEI5 (20007 3t — 26(vF, 0, VE)de
o 200t u)AW (£), Vo) + ot u) Iyt ) + 4 (08w (1)) VE .

Taking the supremum and the expectation, we have

t
E (sup |!V8(8)|\2+4/0 HVE(S)‘ﬁ{HalVE(S)H%{d$>

s€0,2]
< ([ IV )06 V(o) s
+68 ([ 1V O lotsa O i

+4F ( sup

s€[0,¢]

/0HVa(S)H?AU(S,uE(S))dW(S),VE(S))D

:Z[1 -+ [2 + 13.

Recall that V* = “E\;g“o. By Lemma [2.11|, we have

1) =48 ([ IVOIRIN6)a005) + VEV (6. V()
—a ([ IV 510060 V(o) s
<8 ([ IV BV + 0+ 16 )1V () s )
<E/Ot||Va(s)||§{||alve(s)||%{ds+OE (/Ot(u ||u0(8)||%1’1)l2%2]Hva(l)”%ds) |

Note that Proposition [4.3implies the boundedness of u° in L2([0,T], H"'). By (Al)
we have

1(1) <CE ( J v+ e + ualu%s)r\%{)ds)
<CE ( J IV G+ 16 + VG + o)1, + eualva@)n%»ds)

t
<C+eCE (Sup HVE(S)H%> +eCE (/O HVE(S)H?{H@lVE(S)H%dS) :

s€[0,t]
By the Burkholder-Davis-Gundy inequality, (A1) and Proposition , we have

I3(t)

t
<o ([ WAoo s

2
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<CE <sup VE(s)I% ( [ I+ e+ ||alua<s>||%1>ds) )

s€[0,¢]

K (sup IIV6(8>H§2>
s€[0,¢]

0 ([ IV 18, + IV + 10O + v o)as

<

N | —

<t +cO)E <sup ||Vf<s>uzz) +C+eCE ( / HV&(s)nzualvwsnrzds) -

2 s€[0,t]

Combining the above estimates, there exists constants Cy and Cf,

E ((1 — Coe) sup V()% + (3 — Cie) / ||ve<s>||z||alvs<s>||zds>

2 s€[0,¢]
t
<C+CE (/ (14 [[u”(s) [ 1.) sup ||V€(l)||3lqd8> :
0 l€[0,s]

When € < ¢ := min{ﬁ, %}, by Gronwall’s inequality, we have

E (sup ||V5(S)||‘}{+/O ||V5(S)||§{||31VE(S)II?{dS> < Cexp (/0 (1+ IIUO(S)qul,l)dS)

s€[0,t]

Again by Lemma (.1 we complete the proof.



Chapter 5

Moderate deviation principle

In this chapter, we will prove that Z¢ := ﬁ(s)(us — u?) satisfies LDP on
L>([0, 7], H) N L2([0,T], HY*) n C([0,T), H™")

if A(e) satisfies:
Ae) = 00, VeAe) = 0ase— 0.

Let us introduce the following skeleton equation associated to Z¢ = ﬁ(a)(us —u),
for ¢ € L*([0,T],1%):
dX?(t) = 01X ?(t)dt — B(X(t),u°(t))dt — B(u’(t), X°(t))dt + o (t,u’(t))o(t)dt,
X?(0) =0.
Define ¢° : C([0,T],U) — L>([0,T), H) (N L2([0, T], H*°) N C([0, T], H') by

O(h) = X, if h= [, ¢(s)ds for some ¢ € L*([0,T],1?);
g "1 0, otherwise.

(5.1)

Then the rate function can be written as

I(g) = mf{1 / 16(s) 3ds : gzx¢,¢eL2<[o,Tu2>}, (5.2)

where g € L>([0,T], H)  L*([0,T], H°) N C([0, T}, H").
The main result of this section is the following:

Theorem 5.1. Assume (A0)-(A3) hold with Ky <

then Z¢ satisfies a large deviation principle on

L=([0,7], H) () L*([0,T], H°) () C([0,T], H)

K2 ,LQ < % and uy € ];’0’2,

21’

with speed N\*(g) and with the good rate function I given by , more precisely, it holds
that
(U) for all closed sets F'  L>([0,T], H)( L*([0,T], H*) N C([0,T], H") we have

lim sup

! logP(ue_uoeF) — inf I(g),
=0 A%(e) VEAN(E) geF
(L) for all open sets G < L>=([0,T], H)( L*([0,T], H**) N C([0,T], H™) we have
lim sup —— ! log P < — € G) — inf I(g).
BN VG e
By Lemma we should check that Hypothesis holds with e replaced by A\72.

47
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5.1 Two equations

In this section we give existence and uniqueness of solutions to two equations which will
be used in the proof of the main result. The first one we consider is the skeleton equation

D).

Proposition 5.2. Assume (A0)-(A2) hold. For all ug € H** and ¢ € L*([0,T),1?) there
exists a unique solution

X? e L>(0,T), H*) (\L*([0, T}, H*) () C([0,T), H")
to .

Proof  We start by giving a priori estimates. Using an HO%! energy estimate, we have

L X+ 100X
- <B(X¢,U ) + B(U 7X¢)7X¢>P~IO’1 + <U(t7u0(t))¢<t)ﬂX¢>f101

The first two terms on the roght hand side can be dealt by the same calculation as in
the proof of Lemma [£.4] For the third term we have

ot u®(£))p (1), X2) groa] <Nt u) | 2 oy 19 () iz [ X ()] 0.
<Ko + Kul|ullFo. + Ka([0vullfy + 10105ullfy) + ClllE X 1o
<C + CllollRlIX? o,

where we used (A2) in the second line. Thus we deduce that
XA + [ 1K) s
<O+0 [ (14 1+ 1OIR) 1 s

By Gronwall’s inequality we have

1X(0)| 2 + / 1X%(3) %0 ds

<Cexp ( / (L4 [0l + [61) d ) <c

where we used Lemma (4.2l

The existence results will be given by compactness arguments (see [LZZ18, Theorem
3.1]). We put them in the following for the use in the proof of next lemma.

Consider the approximate equation:

{de(t) D2XP(t)dt + 202X (t)dt — B(X?,u®)dt — B(u®, X?)dt + o(t,u’(t))p(t)dt,
X2(0)

(5.3)
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It follows from classical theory on Navier-Stokes system that (5.3) has a unique global
smooth solution 2¢ for any fixed e. Furthermore, we have

t
X2 s + [ 1X205) s < C
0

Then we have that {X?} 0 is uniformly bounded in L ([0, T, H') N L*([0, T], "),
hence bounded in L*([0,7], Hz) (by interpolation) and L*([0,T], L*(T?)) (by Sobolev
embedding). Thus B(X?,u°) and B(u®, X?) are uniformly bounded in L*([0,T], H™!).
Let p € (1, %), we have

T T
/0 o (s, ()b rds < / (s, 0 (T o 1 19(5) s
T
<C / (L4l (5w ) [, g + |6(5)]2)ds

<0/0 L+ u"())5 + o) li2)ds < oo,

where we used Young’s inequality in the second line and (A0) in the third line. It comes
out that
{0, X%} >0 is uniformly bounded in L?([0, T], H™ ). (5.4)

Thus by Aubin-Lions lemma (see [LZZ18, Lemma 3.6]), there exists a X € L?([0,T], H)
such that

X? — X? strongly in L*([0,T], H) as ¢ — 0 (in the sense of subsequence).

Since {X¢}es is uniformly bounded in L>([0, T, HOYY N L*([0, T], HYY), there exists
a X € L>([0,T], H*) N L*([0, T], H"') such that

X? — X weakly in L*([0,T], H"!) as € — 0 (in the sense of subsequence).

X? — X weakly star in L®([0, 7], H*!) as € — 0 (in the sense of subsequence).

By the uniqueness of weak convergence limit, we deduce that X¢ = X. By 1’ and
[FG95, Theorem 2.2], we also have for any 6 > 0

X? — X? strongly in C([0,T], H*°) as € — 0 (in the sense of subsequence).
Now we use the above convergence to prove that X is a solution to (5.1)). Note that
for any o € C°°([0, T] x T?) with divp = 0, for any ¢ € [0,T], 2¢ satisfies
t
(X2 0(0) = [ (X2,000) — (X2, 019) = (02X, 0a)
0

+ <_B(Xe¢> uO) - B(u07 Xéb) + O<S> u0)¢7 90>d5

(5.5)

Let € — 0 in (5.5, we have X € L>([0,T], H>') N L*([0,T], H"') and
0, X? = 0?X? — B(X?,u’) — B(u®, X?) + o(t,u’(t))o.
Since the right hand side belongs to LP([0,T], H~'), we deduce that
X% e L>([0,T), H*")(L*([0,T], H*") () C([0,T], H ).

The uniqueness part is exactly the same as in Lemma 4.4} U
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Recall Z¢ = ﬁ then

dZe(t) = 02 Z°(t)dt — B(Z°(t),u’(t) + VeA(e) Z5(t))dt — B(u°(t), Z(t))dt

+ AT (@) ot ul(t) + VEA(E) Z5(E))dW (1), (5.6)

with initial value Z¢(0) = 0. The uniqueness of solution to (|5.6) is very similar to that of
(2.2). Then it follows from Yamada-Watanabe theorem (See [LR15, Appendix EJ]) that
there exists a Borel-measurable function

g C([0,7),U) — L=([0,T], H) () L*([0, T}, H**) () C([0, T}, H")

such that Z¢ = ¢°(W) a.s..
Now consider the following equation:

dXe(t) = 07X (t)dt — B(X(t),u’(t) + VeA(e)XE(t))dt — B(u°(t), X°(t))dt
+ o (t, u’(t) + VeEA(e) X (t))ve (t)dt + X1 (e)a(t, u’ (t) + VeA(e) XE(t))dW (t),
X¢(0) =0,
(5.7)
where v € Ay for some N < co. Here X¢ should have been denoted X:. and the slight
abuse of notation is for simplicity.

Lemma 5.3. Assume (A0)-(A3) hold with K, < %,f@ < $,Ly < : and v* € Ay for
some N < co. Then X° = ¢° (W(:)+ Ae) [, v°(s)ds) is the unique strong solution to

.

Proof  Since v* € Ay, by the Girsanov theorem (see [LRI15, Appendix I]), W () :=
W () + A(e) [, v°(s)ds is an [>-cylindrical Wiener-process under the probability measure

dP = exp {—)\(s) /OT 0¥ (s)dW (s) — %)\2(5) /OT ||v€(s>||,22ds} dP.

Then (X, W) is the solution to on the stochastic basis (2, F, P). Thus (X¢,W)
satisfies the condition of the definition of weak solution (see [LZZI1S8, Definition 4.1])
and hence is a weak solution to (5.7) on the stochastic basis (2, F, P) and X¢ =
9= (W) + A(e) [;v°(s)ds).

If X< and X¢ are two weak solutions to on the same stochastic basis (2, F, P).
Let W5 = X° — X= and q(t) = k [2([u” + VEAER)X()[2,, + v°(s)[2)ds for some

HL.1
constant k. Applying It&’s formula to e=2®||1W(2)||%,, we have

IOV +2 [ o) s
= - k/ot e IONW (s)][7 ([ + VENE) X ()50 + [0°(s)[172)ds
-2 / t e 1Op(We Ul + VEN(e) X, We)ds
0
+2 /Ot e 1 (g (s,u’ + VENE) X)) — o (s, u’ 4+ EA(€) XE)vs, WE(s))ds

+ 2271 (e) /o e’q(s)(WE(s), (o(s,u’ + VeX(e) X®) — a(s,u’ + \/g)\(e)f(g))dW(s))
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t
FA2(e) / e~ o5, 10 + VENE)X?) — (s, 10 + VENE)XO)Z, o .
0

By Lemma m, there exists constants & € (0,1) and C such that
[B(W*, w® + VEA(e)XZ, W) < @llaWe [T + C(L+ [lu + VEA(e)XZ | ) IIWF 17

1.1

We also have

2o (s,u’ + VEANE) X — (s, u’ + EA() XF)v®, WF)]
2| (o (s, u® + VEM)XT) = a(s,u” + VEAE) X))o | |[We |l
<lo(s,u® + VEAE)X®) — o s,u” + Ve (e) X[, q2.m) + 012 IWEIIR-

By (A3), we have

lo(s,u” + VEM)X®) — o (s, u’ + VEAE) XO) |, 2.
SVENEN L [WEI[ + Lol W1 7)-

By the Burkholder-Davis-Gundy’s inequality (see [LR15, Appendix D]), we have

207 (e)|E] sup /OT e 1 (We(s), (0(s,u’ 4+ VEA(E)XE) — o (s, u’ + VEX(€) X))dW (s))]|

rel0,t]
t
<6A(e)E (/ e o (s, u” + VENe) X7) — a(s,u’ + VEA(ﬁ)Xs)||%2(zz,H)||W6(8)||§1d5)
0

t
SVEE(sup (e [W=(s)[|7)) + 9x/5E/ e MLy W ()17 + LalloaW=(s)I[3)ds,
0

s€[0,¢]

where we used (A3).
Let k& > 2C and we may assume /z\(¢) < 1, by (A3) we have

e MONW() |5 + (2 - 28 — LeX*(e)) /Ot e 1|0 W= (s) || Fyds
<o [ e s

+ 2271 (e) /Ot eI (WE(s), (0(s, u’ + VEN)XE) — o (s, u® + VEN)XE))dW (s)).
Let £ be small enough such that 1 — /g — LyeA*(¢) — 9y/eLy > 0. Then we have

t
E(sup (" |W=(s)||)) < CE/ e[ W= (s) | 3ys.
0

s€[0,t]

By Gronwall’s inequality we obtain W¢ = 0 P-a.s., i.e. X¢ = X¢ P-as..
Then by the Yamada-Watanabe theorem, we have X° is the unique strong solution

to . O

N
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5.2 Proof of Hypothesis 2

In this section we will show that I is a good rate function by checking the second part of

Hypothesis 2.5
Lemma 5.4. Assume (A0)-(A2) hold. For all N < oo, the set

e ([ oow) 025

is a compact subset in L>([0,T], H)( L*([0,T], HY°) N C([0,T]), H™").

Proof By definition, we have

Ky = {X¢ c¢ € L*([0,T],1%), /0 p(s)||%ds < N} :

Let {X?} be a sequence in Ky where {¢,} C Sy. Note that X% is uniformly
bounded in L*®([0,T]), H“°) N L*([0,T], H*'). Thus by weak compactness of Sy, a
similar argument as in the proof of Lemma shows that there exists ¢ € Sy and
X' € L*([0,T], H) such that the following convergence hold as n — oo (in the sense of
subsequence):

¢n — ¢ in Sy weakly,

X% — X' in L*([0,T], H") weakly,

X — X" in L>([0,T], H) weak-star,

X% — X" in L*([0,T], H) strongly.

X% — X'"in O([0,T], H~'7°%) strongly for any ¢ > 0.

Then for any ¢ € C*°([0,7] x T?) with divp = 0 and for any ¢ € [0,7], X satisfies

(X (1), @(t)) = (uo, (0))

t
+/ <X¢",8tg0> - <81X¢",61Q0> + (—B(X¢’L,u0) - B(U’O7X¢n) + 0(87u0)¢na @)ds
0

(5.8)
Let n — oo, we deduce that X’ is a solution to . By the uniqueness of solution,
we deduce that X' = X?.
Our goal is to prove X% — X? in L>([0,T], H) " L*([0,T], H*) N C([0,T], H™1).
Let w" = X% — X? by a direct calculation, we have

o O +2 [ 10w s) s
= =2 [ {u(6), BOC ) — X9s) ()i
—2 [ (), Bs). X9 5) = X))
2 [ (5) o5, )) 60(5) — 651
<2 [ bt w o)l +2 [ 10,0150 ) 6uls) 65 s
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/ 101w ()17 + C (1 + u” () [ ) 0" (5) [ 7yl

+ 0/0 ™ () |zl b () — ()2 (1 + [[u®(5) % + |0ru(s) %) 2 ds,

where we used Lemma and (A1) in the last inequality.
Note that ¢,, ¢ are in Sy, we have

o O+ [ 1)y

<C{/ (14 () Ml (5) s

o ([ @i e + 1) ([ oo - sl
<C{/ (1 + () )l (5) s

+0¢N(Anw%m@a+ww@wz+wm%w@mﬁ

For any € > 0, let

[NIES

Ao ={s €0, T);||w"(s)|lz > €}
Since X% — X¢ in L?([0,T], H) strongly, we have
T
/ lw™(s)||%ds — 0, as n — oo
0

and lim,,_, o, Leb(A¢) = 0, where Leb(B) means the Lebesgue measure of B € B(R). Thus
we have

/0 (14 [[u” ()Gl () s

(L4 )l
A [0,T1\Ac

<Ce+ 2/A (L + e’ () ) X () + 1X2 ()7 )ds

g%+c/<nwwww;nw
Ae

— (e as n — o0,

where we used Lemma [£.] in the last line. A similar argument also implies that

[ I8 + o) 0 s < C.

Hence we have

T
sup ||w"(t)||% +/ |O1w™(s)]|3ds < Ce + Cy/e as n — oo.
0

t€[0,T

Since € is arbitrary, we obtain that

X" — X strongly in L*([0,T], H) (| L*([0, 7], H°) () C((0, 7], H ).
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5.3 Proof of Hypothesis 1

In this section we will prove the main result by checking the rest of Hypothesis [2.5]

Lemma 5.5. Assume X¢ is a solution to with v* € Ay and € < 1 small enough.
Then we have

E(;{léf;} IX=@®)lIk) + E/O (IX=() 17 + DIXE(5)F.0ds < C(N). (5.9)

Moreover, there exists k > 0 such that

T
E( S[up]e_kg(t)llXE(t)llfqo,l) + E/ e MO X5 (s)|[Fuads < C(N), (5.10)
tel0,T 0

where g(t) = f; 101 X¢2(s)||3ds and C(N) is a constant depend on N but independent of
€.

Proof We prove (5.9) by two steps of estimates. For the first step, applying [t6’s formula
to || X°(¢)]|%, we have

IOl +2 [ 10X s
— /Ot b(XE, 0, X*)ds + z/oto(f(s), o (5,10 + VENE) XE(5))0"(5))ds
+2E) [ (060,005, + VXXV
X700 [ ot + VA X s
< [ GIaXIE + €O+ 11X s
# [ ARG + (o, + VN )
2076 [ 0o+ VAR XA ()
720) [ o1 5 VXX s
< [ GO + €O+ I X s + [ X s
@) [ (B Kl + VEXEXC + Kol + VA X s

oA () / (X(5), 0(s,u” + VEA() X (s))dW (),

where we used (A1) in the last inequality.
Note that v* € Ay, by Lemma {.1| and Gronwall’s inequality,

g 3 ! 13
XAl + 5 = eha = X)) [ [0 (9
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<€+ [0, 0050+ VENEX ()W (3))e .

For the term on the right hand side, by the Burkhdlder-Davis-Gundy inequality we
have

2)\’1(5)601(N)E (sup | S<X€(r), o(r,u’ + \/E/\(g)Xs(r))dW('r’)H)

0<s<t 0
1
2

t
<A ()M E (/ X () z Nl (r w” + \/EA(€)X€(T))IIiQ(zz,H)d8>
0

<A (&) E[sup ([ X=(s)l7)]

0<s<t
t
+ 9)\_2(6)601(N)E/ [Ko + Ky ||u® 4+ VEX(e) X (s)|13 + Ka| 01 (u® + VeX(e) XE(s)) 1% ]ds,
0
where (9ee“ ™) + eX?(e) 4+ €) K, — 2 < 0 (this can be done since /A(g) — 0) and we

used (A1) in the last inequality. Thus we have

E[sup (| X*(t)]I%)] + E/O 101X (s) ;s

s€[0,t]

<C(N) + C(N) / B[ sup (|1X°(r)|13))ds.

r€(0,s]

Then by Gronwall’s inequality we have

Bl sup [|X(0)[3) + E/O 19X (5) B ds < C(N). (5.11)

0<t<T

Now by It6’s formula we have
X<l =4 | 1 (5) 2 101X (5) s — 4 / X (5) 2B, X7)ds
£ [ IXO o+ VXX ()07 (5), X5
L) [ ()l (s + VAN X)) o
0 (5.12)
+4x2(6) [ s, + VENE)X(5)) (X s
) [ IXIR(), 005,00 + VEXOX () ()
= — 4/0t | X113 ]|01 X5 (8)|13,ds + To + Iy + I + I3 + 1.
By Lemma [2.T7]

t
€ 1 € €
(0] < 4 [ IXU G107 + €1+ )01 X7 o).
0
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By (A1) we have
t
L(1) <4/0 IX=(8) [ llor(s, 1 + VM) X () a2, 1" () 12| X () | 1l

< / X ()% (Ko + Ko ® + VEAE) X ()1
I+ VEAE) X ()13 + [[0° () 2117 () |12)ds.
and

t
L+ 1; <6/\_2(€)/ lo(s, u” + VEAE) X (8)) 17, 02,01 1 X7 () Il
0

t
<6A() / (Ko + Kallu® + VENE) X (s)1%
0
K9 (e + VENE) X () E)IXE () ds.
Thus we have

t
IX=@)1[5 + (3 — 26X (e) K> — 6€K2)/ 1X= ()17 100X (5) [l
0

t
<L+ C+ 0/ (L + ([’ () Fan + o= ()2 I1X°(5) 1 77)ds.
0
Since v* € Ay, by Gronwall’s inequality we have

t
IX= ()17 + (3 — 2eA*(e) Kz — GeK) /0 1% ()13 1101.X (s) | 7rds
< (I + C) %2,

Then the Burkhodlder-Davis-Gundy inequality, the Young’s inequality and (A1) imply
that

B(sup 1) <120 @ ( [l + VENOX (g 170
A E(sup [X(5)ll) + 30X O [ (Ko + Kallu’ + VEAE)X(5) s

s€[0,t] 0

+ K0||0n (u” + VEA) X (5))I[7) | X () I3 ds.

Let € small enough such that 3 —2eA2(g) Ky — 6e Ky — 36 K2e“2™) > 0 and A\~!(g)e®™) <
1. Then the above estimates and ((5.9)) imply that

t
E( sup HXE(S)H%H/O X () 311X ()l 71 0

s€[0,t]
t
<C(N) + C(N)E / 1X%(s) s,
0

which by Gronwall’s inequality yields that

E(sup HXE(S)II‘}{H/O IX= () [E 11X (3)[F1.0ds < C(N).

s€[0,¢]
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For 1} let h(t) = kg(t) + fo |v¢(s)||I%ds for some universal constant k. Apply-
ing Ito’s formula to e="® || X*(t)]|2 +o. (by applying Ito’s formula to its finite- dimension
projection first and then passing to the limit), we have

TOIXE) o + 2/; e M (|0 X(s) |7 + 110:0:X° (5) 1 77)ds
= - /Ot e~ (k[|01 X () + [l () [E)11X° () 1 o ds

—2 /t e POb(XE Ul X%)ds — Q/t e M9, X5(s), 05( X5 - V(u® + Ve(e) X)) (s))ds

0 0

9 /0 o) (8, X (), Ba(u® - VX7) ()}

2 [ eHO0X0) 050+ VENEX 1)) s

27 [ 058+ VXAV (5

#30) [Oo(s,u + VENX D g oy
By Lemma [2.11} we have

20X, XN < X[y + CCL+ ) X7
where o < % By Lemma there exists Cf,
2VEA(e) (02 X7, 0o(X° - VXO))| < al|010:X°|| + Cr (L + (100X 7)) 1102X 13-

By Lemma [2.11} we have

2 BuXE, Da( X - ViO)))| <2[b(BaXE, 10, 0o X5)| + 2|b(XE, 8o, 9o X7)]
<a([| X5 o + [02X5500) + Clle®|| 5.2 (102 X[

Similarly,
[(92X5(s), Oa(u” - VX7)(5))| = [b(Opu”, X, 02.X°)| < | XZ[[F00 + Cllu’ [ 10X 17
By Young’s inequality,

2[(X°(s), o (s, u”+VEME) XF)v7(8)) groa | < [ XF|Fpou [l 12+ o (s, u’+vEXE) X, 2 g0
Choosing k > 2C11/e\(g), we have
t
_ (t)HXE( )HHOl + (2 — 30&)/(; @*h(S)HXe( )HHll
¢
<C [ MO [ ) X5
0

¢
+ (1 + )\_2(5))/ e "o (s, u’ + EN(e )X€)||2 (12,770.1)d5
0
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Lo (e) /0 ) (X%(s), 0(5, u® + /EAE) X)W (5)) o
By (A2) we have

(14 A2 ()05, 0 + VEAE) X o oy < CL+ [6])
(14 A2(0)) (Ko + KieX2 ()| X [Fas + KaeA2() (100 XN + 1010, X7113) )

By the Burkholder-Davis-Gundy inequality we have

s€l0,t] Jo

2/\_1(€)E (Sup | —h(r)<X5( ) (r u® + \/_)\( )XS)dW(T’)>ﬁI0,1|>

<O ([ MO0 s o8+ VENE X s )

0

<A () Esup (e7"1X5(5)][F0.)] + (6)0/0 MO A 71 )ds

s€0,t]
t
+ 9€A(€)E/ e MR X (5) [ Fon + Ka(10:X ()17 + 1010:X°(s) 7)) ds
0
where we choose & small enough such that (9e\(g) +eA?(e) +¢) Ky < 1 — 3 and we used

(A2) in the last inequality.
Combine the above estimates, we have

t
E(sup 6_h(S>IIXE(S)II§~,o,1)+E/ e )X ()15, ds
0

s€[0,t]
t
<0+ 0B ( [ M0+ 1)) X6 s

Then Gronwall’s inequality and (4.1)) imply that

T
E(sup ¢ O X3(8)%0.) + E / MO X(5) 2. ds < C.
0<t<T 0
Since v° € Sy, we deduce that
T
E(sup e OIXC(0)f0) + B [ MO Guds < (613
0

t€[0,T]

0

Similar as [LZZ18, lemma 4.3], we have the following tightness lemma:

Lemma 5.6. Assume X°¢ is a solution to with v¢ € Ay and € small enough. There
exists g > 0, such that {X®}.c(,) 15 tight in the space

x=C([0,T], H ) (\L*([0, 7], H) () L3,([0, T, H"") () L. ([0, T, H*Y),

where L2 denotes the weak topology and LSS denotes the weak star topology.
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Proof ~ Similar as in the proof of Lemma [3.6] the law of ZZ on C([0,7], H™!) can be
restricted on Y.
Let k be the same constant as in the proof of (5.10)) and let

T
Kni={u e CQ0.T)H): swp (o) + 1Ot ol

te[0,T

T
+ sup RIS ue) 3, 4 [ e F RIS (o), di < R),
0

t€[0,T]
where C'16 ([0, 7], H™!) is the Hélder space with the norm:

£ () = F()llm—

0<s<t<T |t — s|%

Hchv%([&T]’Hfl) =

Then from the proof of [LZZ18, Lemma 4.3], we know that for any R > 0, Kg is
relatively compact in Y.

Now we only need to show that for any § > 0, there exists R > 0, such that P(X°® €
Kpg) >1—¢ for any € € (0,&q), where gq is the constant such that Lemma [5.5| hold.

By Lemma and Chebyshev inequality, we can choose R, large enough such that

£ 4 £ R 5
P<sup X+ [ 10 ot ?0) <%
0

te[0,T

and

Y

o
1

T
P sup o BIXO XA, 4 [e EIOOT x)  r> ) <
te[0,7) ’ 0 3

where £ is the same constant as in ([5.10)).
Fix Ry and let

T
A ) R
iy, ~{u € C0.TLH) ¢ sup (ol + [ a0 3uodt < 52 ana

te[0,T

T
R
sup e~k o loru(s)llE; 195 (1)]| %00 +/ e—kféHalu(s)H%dsHu(t)||12Ep’ldt < ?0}
te[0,7) 0

Then P(X¢ € C([0,T), H ')\ Kg,) < &

Now for X¢ € Kp,, we have ?X¢ is uniformly bounded in L*([0,T], H~'). Similar
as in Lemma , X¢ is uniformly bounded in L*([0,T], H2) and L([0,T], L*(T2)), thus
1

B(X®,u® + y/eA(e)X®) and B(u®, X¢) are uniformly bounded in L*([0,7], H™'). By
Holder’s inequality, we have

- | [102X5(r) + B(X®,u® 4+ EA(e) X?) + B(u®, X°)dr|%,

5,t€[0,T),s#t ‘t - S|

T
</ 107 X5(r) + B(X®,u® + Ver(e) X?) + B(u®, X9)||5-1dr < C(Ry),
0
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where C(Ry) is a constant depend on Ry. For any p € (1, ) by Holder’s inequality, we
have

IOt VEA DX ()

5,t€[0,T],s#t ‘t - S’p !

< / lo(r, 4 4+ VENE) X (7)o ()| dr
< / o, 60+ ENE XL, 4o g () [l

<C/O (1 + [[u® + VeX(E) X (r) |5 + o7 (r)[l2)dr
<C(Ry),

where we used Young’s inequality and (A0) in the third inequality.
Moreover, for any 0 < s <t < T, by Holder’s inequality we have

t
Bl [ otraa? + VEXEX ()W ()]}

S . )

<CB ([ ot + VXX O )
t
<Clt =18 [ o, + VENEX ()
<CJt = 51+ E(sup o + VAN X (D))
te[0,7)

<C|t — s,

where we used (A0) in the third inequality and (5.9) in the last inequality. Then by
Kolmogorov’s continuity criterion, for any « € (0, }1), we have

E ( tesup | f, o(r,u® + \/|5_t>\£€2|)2(:(7“))dw(7’)||§{1> <C

’ [07T]787£t

Choose p = %, a = % in the above estimates, we deduce that there exists R > Rj such
that

€ R € 2
P (10t oy > 5 X° € )

X=X ()l -
<E <Sups,te[0,T],s;£t |t—s|ﬁ; H=1 1{X66RRO}) - 5
~ R .
3 2
Combining the fact that P(X¢ € C([0,T],H ")\ Kg,) < S, we finish the proof. O

Lemma 5.7. Let {v°}.~0 C Ayx for some N < co. Assume v¢ converge to v in distribu-
tion as Sy-valued random elements, then

(s L) ([ )

i distribution as € — 0.
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Proof  The proof follows essentially the same argument as in [WZZ15, Proposition 4.7].
By Lemma , we have X¢ = ¢° (W(-) + A(e) [;v°(s)ds). By a similar argument as
in the proof of Lemmas and [5.5] there exists a unique strong solution

Ye e L>([0,T], H*") (\L*([0, T}, H*") (| C([0,T), H")

satisfying
dY(t) =07 (t)dt + N (e)o(t,u’ + /eA(e) XE(t))dW (1),
¥#(0) =0,
and
T
ti | E sup V()1 + B [ (VA0 ]
te[0,7) 0
T
iy | B sup (e |Y5(0) 0,) + E [ e Oye 0]yt =0,
e—0 te[0,T) 0

where g(t fo |01 X¢(s)||%ds and k are the same as in ([5.10)).
Set

== (o Sv, 20,71, H) () E2(0, 7). ) (€ (0. T1.H ™))

The above limit implies that Y — 0 in L>([0,T], H) O L*([0,T], H*) N C([0, T].H")
almost surely as ¢ — 0 (in the sense of subsequence). By Lemma the family
{(X®, %) }ee(o,e0) 18 tight in (x, Sn). Let (X, v,0) be any limit point of {(X*®, v%, Y?) }ec(0.60)-
Our goal is to show that X, has the same law as g ( fo ds) and X°® convergence in
distribution to X, in the space L®([0,T], H) ( L([0,T], H**) N C([0,T], H ).

By Jakubowski-Skorokhod’s representation theorem (see [Jak98] or [LZZ18, Theorem
4.3]), there exists a stochastic basis (Q,F, {F;}rep, T],P) and, on this basis, =Z-valued
random variables (X, 7,0), (X¢,9°,Y?), such that (X¢ o°,Y*) (respectively (XU,"U 0))
has the same law as (X°¢,v°,Y°?) (respectively (Xy,v,0)), and (X¢,%°,Y°) — (X,,9,0),
P-as.

We have

d(X°(t) = Y°(1)) =0} (X°(t) — Y°(t))dt — B(X*, u +\/_A( )X°)dt
— B(u®, X°)dt + o (t,u® + VeX(e) XE(t))0° (t)dt (5.14)

and

Let Qg be the subset of Q such that for w € QO,

(X5, 9°,Y9)(w) = (X,,,0)(w) in E,
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and
e Mo XMty e (w) — 0 in L([0, 7], H*) (Y 22([0, 7], B () C(([0, 7], H™),

then P(€Q) = 1. For any w € €, fix w, we have sup_ fOT |1 X (w, s)||%ds < oo, then we

T
swuwwwmm+/HWMM@ﬂQ:o (5.15)
te[0,7 0

lim
e—0

deduce that (

Now we show that

T
(w,t) — Xy(w, t)||3 + / [ X°(w, t) — Xo(w, ) ||5:0dt = 0 ase — 0. (5.16)
0

sup [|X°
te[0,7)

Let U = X*(w) — Y*(w), then by (5.14) we have
dUS(t) =0?U%(t)dt — B(U® + Y, u® + /EA(e)(U® + Y*))dt
— B, U +Y®) 4 o(t, u® + eX(e) (U (t) + YE(t)))o° (t)dt.
Since Uf(w) — X,(w) in x, by a very similar argument as in Lemma we deduce
= ¢°(J; 9(s)ds). Moreover, note that X°(w) — X%(w) weak star in

that X, = X7
L>([0,T], H*), then the uniform boundedness principle implies that

(5.17)

(5.18)

sup sup || X°(w)]| go. < oo.
e tel0,T]

Let w® = U® — X7, then we have

t
Wfﬁmé+2AH&w%$ﬁﬂs

— 2/01‘/(105(5),3((]E +YE 0+ VENe)(UF +Y¥)) — B(X",u’))ds

¢
- 2/ (w (), B(u®, w* + V*))ds

0

¢
+ 2/ (we(s), 0 (s, u” + VEA(e) (U + V)0 (s) — (s, u®)i(s))ds

0

Ilfl -+ IQ + ]3.
By Lemma [2.11} we have

|, + I
= /t b(w®,u + VENE) (X 4+ V), wf) + b(Y*, u’, w)
+0\/E)\(5)b(X77 Y X7 Y wf) + b(u’, Y, wf)ds|
) lw ()[[]ds

t
1 15 0] €
</0 (5101w ()7 + OO+ [ ()0 + 1X () Faa + 1Y) 700

t
+/O Y4 () 10 + Cllu’ () 1w () [ ds
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= VENE) [ I o + 17w + X6 s+ 17 B 0 s
+ [ U7 + €6 pallo (s
< [ 00 9l + 1+ 10 s + 16l (9l

t
+0 [ IV + VNG [ 1X76) uads

where we used the fact that by (5.15]) and (5.18]) w* are uniformly bounded in L>([0, 7], H)
in the last inequality. By (Al) and (A3) we have

01 = [ @60 (ot + VENDIU + 57]) = (s, ) ()
[ o) ot 0(6) — o))
CWENNE [ Rl o)+ 1X7 ) + 17(6) o) s
[ 7))o+ a6+ Faloras) ) s

<(VEAE))? (0N+ 01/0 ([ ()l 0 + X7 () 10 + ||3~/E(3)||ffp,od3)

2

t
+ N ([ Ol B+ Kl + Kl () 15)ds)
0

where we used the fact that w® are uniformly bounded in L*([0,7], H) and that ¢, ©
are in Ay. Note here (' is a positive constant. Thus choose ¢ small enough such that
2+ (VEA(e))2Cy < 1, we have

IO + [ e (s) s
<O [0+ s+ Xl
e / 175() s + VEA(: / 127 (6) 308
+ VA (N4 [ )+ Xl + 177 s

ront ([ 0 (s >|rH11>||w6<s>||%{ds)é

0

Since U(w) — X?(w) strongly in L*([0,T], H) and Y* — 0 in L*([0,T], H'), the
same argument used in Lemma [5.4] implies

T
sup || X5 (w, ) — X(w, 8| + / X5 (w, 1) = X7 (w, t)[[%00dt — 0 as e — 0. (5.19)
te[0,T] 0

The proof is thus complete.
O
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Proof of Theorem 5.1. The result holds from Lemmas and[5.7 O



Chapter 6

Small time asymptotics

In this chapter, we consider the small time behaviour. We need the following additional
assumption (A3’) and (A4). Note that (A3’) is stronger than (A3).

(A3) [lo(t,u) = o (s, )7, 02,y < Lolt = s|* + Lalu — v]|Z.

(A4) [lo(t, )17, 20y < Ko+ KlHqu

Remark 6.1. A typical ezample of o is similar as in [LZZ18, Remark 4.2]. For u =
(u',u?) € HY and y € 12, let

o(t,u)y = beg(u){y, vi)

where {Yy }r=o 8 the orthonormal basis of 12, {by}r=0 are functions from T? to R and g
is a differentiable function from R? to R. Assume that |g(x) — g(y)| < Clz —y| for all
x,y € R? and some constant C' depends on g. Also suppose that div(brg(u)) = 0 and
b, O1bi, Oobi € L2, 3707 [|bellfee < M, 3702 (|01l Te < M and 3207 [|05bk]7 < M.
From the conditions of g, it is easy to obtain |g(u)] < Clu| + C, |019(u)] < C and
|02g(u)| < C. In this case, o satisfies (A0)-(A4) and (A3’):

lo (s )12 2,0y < D Ibrg ()l < CM(JfullF + 1);

k=1
o, )y \Z gl + 3 I0a(bra ()
k=1
<CMJuly+ 1
£ 10abeg(u) + bulOrg(w)duct + Dag(u)d®)
<OMQL+ Jul}y + o)
ot )y <CMully + 1) + 3 191 (eglu \|H+Z||a2 o)
k=1

<SCM (1A [[ully + 1|10vullz + 10:ul3);
lo(t, w) = o (s, 0)|L, 2,y SMClu =]l

65
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Let ¢ > 0 and u be the solution to (2.2)), by the scaling property of the Brownian
motion, u(et) coincides in law with the solution to the following equation:

du, = ed?u.dt — eB(u.)dt + /zo(et, u)dW (t),

ue(0) = ug. (6.1)

Define a functional 7" on L*([0,T], H)(C([0,T], H') by

() = inf {5 [ Ik
where
L, ={h € L*([0,T),1*) : g(t) = uo +/0 a(0,9(s))h(s)ds, t €[0,T]}.

The main theorem of this chapter is the following one:

Theorem 6.2. Assume (A0), (A1), (A2), (A3’), (A4) hold with Ky = K, = 0 and
ug € H®Y, then u. satisfies a large deviation principle on L°°([0,T], H)(C([0,T], H™')
with the good rate function I"°.

We aim to prove that u. is exponentially equivalent to the solution to the following
equation:

ve(t) = up + \/E/O o(es, ve(s))dW (s). (6.2)

Because of the non-linear form b(-, -, -) and the anisotropic viscosity, we split the proof
into several lemmas.

6.1 LDP for linear equation

In this section we prove that v. satisfies a large deviation principle.

Lemma 6.3. Assume ug € H', then v. satisfies a large deviation principle on the space
Le([0,T], H)( C([0,T], H~) with the good rate function I"°.

Proof  Let z. be the solution to the stochastic equation:
t
2:(t) = up + \/5/ 0 (0, z(s))dW (s).
0

By [DPZ09, Theorem 12.11], we know that z. satisfies a large deviation principle with
the good rate function I*. Applying Itd’s formula to ||v. — z.||%, we obtain

lve(t) = z:(8) I =2\/5/0 (v=(8) = z:(s), [0 (8, ve(8)) — (0, 2:(s))|dW (s))

t
+€/0 |lo(es,ve(s)) — (0, zg(s))||%2(lz,H)ds.

Then by (A3’) and Lemma [2.14] we get for p > 2,
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N

(ELsup o) - =0171)’

0<t<T

LSAIN]

<Ce (E[ sup /0 (v(8) — 2z(8), (o(es,v:(s)) — (0, za(s)))dW(s)ﬂp)

o<t<T

hSAIN

#02 (B[ lot,ves) — o0, 2Dl )

[S13S]
SIS

<Cep (E VO lve(s) = 2z () llo(es, ve(s)) — o (0, %(8))HiQ<zz,H)dS}

T 5
+ 2 (sQO‘T”Q“ + T/ (E[ sup [Jv(l) — Ze(l)||12§]) dS)
0 0<i<s

r
<Cep (sm +/ <E[Sup lve(1) — zs(l)||§§’]) dS)
0 0o<i<s

T ’
+ Ce? (52" +/ (E[sup |ve(l) — zE(l)H%’,’]) ds) :
0 0<i<s

By Gronwall’s inequality, we have
2
(E[ sup [lo-(#) — zs(t)H?f]) < O 4 22720) i)
ot<T

Then Chebyshev’s inequality implies that

elog P( sup [lv-(t) — z(t)[|% > 8) <elog B[ sup [Jo-(t) — 2(1)[77] — eplog

D\\ X

<€2—p(0 + Cep + Ce? + log(e'2p + 212*) — 21ogd).

Let p = % and € — 0, we get that v. and z. are exponentially equivalent, which by Lemma
implies the result. O

6.2 Energy estimates

In this section, we give some energy estimates.
Lemma 6.4. Let F,_(t) = supgc,« |[us(s)|/3 + Efot |01 (5)]|%ds, then
lim sup elog P(F,.(T) > M) = —o0.

M—00 0<exl

Proof
Since b(ue, u.,u.) = 0, applying Itd’s formula to ||u.(t)||%, we have

t
s (6)1 + 2 / 10vue(3) % ds
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ol +2VE [ {05 e uel D )+ [ e, uelo) s

Then it follows from (A1) with Ky = 0 that

t t
lus (I + < / 101 () |%ds <ol + Cet + Ce / lus(s) 3 s
0 0
t
L oE / (s, 0 (25, us(5)) AW (5)).
0

Take supremum over ¢, for p > 2, we have

(BIFT))Y <ol + CoT + Ce [ (EIP.(0)F)ba

t

+2ve(E[sup | [ {(ue,o(es, ug(s))dW(s))Hp)%.

o<t<T 0
For the term in the last line, by Lemma and [XZ09, (3.12)], we have

t

2VE(E[sup | [ (ue,0(cs,us(s))dW (s))]]")

ost<T 0

3 =

<cva| | e (Bl s g

Combining the above estimate, we arrive at

(E[F,. (T)]P)% <C (fluoll%on + aT)2 + Ce? /D (E[F,. (t)]p)% ds
+ CepT + Cep / ' (E[F,.()]P)? dt.

Then Gronwall’s inequality implies
(EIF(T)P)? < C [luollfos + ¢+ ep] 740,
Let p = %, by Chebyshev’s inequality, we have
elog P(F,.(T) > M)
—log M + log (E[F,_(T)])»
< —log M + log \/||u0|yH01 te2 414 C2+1).

Take supremum over ¢ and let M — oo, we finish the proof.

Lemma 6.5. For M > 0, define a random time
t
e = T Ainf{t : Jua()|% > M, or g/ 10w (s)|[%ds > M.
0
Then Tae ts a stopping time with respect to Fiy = NgsyFs.

Stmilarly, Let
¢
TJ’\“ =T Ainf{t: ||u€(zf)||§~{0,1 > M, ora/ Hua(s)H%Mds > M},
0

then Ty, is a stopping time with respect to Fi.
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Proof  The problem comes with the continuity of u.(¢). Since fg |01u(8)]|%ds is a
continuous adapted process, we only need to prove that 7 = inf{t > 0 : |Ju.(t)||3 > M}
is a stopping time.

Since u. € L*([0,T], H)(C([0,T], H™ '), u.(t) is weakly continuous on H, which
implies the lower semi-continuity of u. on H.

By definition of 7, for t > 0

() {lu(s)lf < M} c {7 > th € () {llua(s)lf < M3

s€(0,t] s€(0,t)

On the contrary, if w € {7 > t}, for any s < ¢, |Juc(s)(w)||3; < M. Then lower semi-
continuity implies

2 < limi 2 < M.
()@ < i inf [luc ()}, < M

Hence we have

= () {lluc(s)l7 < M}.

s€(0,t]

Note that for w € (N, gnolllu(s)lIF < M}, we have for any s € (0,¢], by the lower
semi-continuity,

Jue() @)l < liminf uc () < limin [lue(s)]% < M,

which means

M {llu(s)llF < ﬂ {lluc(s)ll7 < M}

s€(0,1] €(0,JNQ

Then we have for ¢t > 0

{pzty= () lluG)E <M= () {l(s)lf <M} e F,

s€(0,4] s€(0,NQ

which implies the result. .
For 73, the result follows from the fact that u. is weakly continuous in H%' since

u. € L>(0, 7], H*YYN C(0,T],H™Y). O

Lemma 6.6. Let Gy, (1) = supgc,e; [ue(s)[1%,, + 6f0 [ue($)1%11ds. For fived M, we
have
lim sup elog P(Gu. (7o) > M) = —o0.

M—00 0<exl

Proof Let k be a positive constant and f.(t) = 1+ ||0u.(¢)||%. Applying Itd’s formula
to e~k o fs(S)a’SHUE(t)||%r0}1 (by applying Itd’s formula to its finite- dimension projection
first and then passing to the limit), we obtain

t
t s
¢ H o J O i (8) G0 + 22 / eI DN (101uc ()13 + 1101Daue(5) 131 ds
0
t a
ol = ke [ e R () )
0

t
- 25/ e ke s = (9 (s), O (ue - Vue)(s))ds
0
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t
+ 2\/5/ e ke Jo ff(")d"<us(s),a(es,us(s))dW(S»go,l
0

+5/0 —ke [ f(r) d’”Ha(as U (s ))Hig(ﬂﬁovl)ds'

The fourth and the fifth line can be dealt in the same way as in the proof of Lemma
6.4, For the third line, by Lemma we have

1
[(Daue, B (ue - Vue))| < §||8182u8||%, + C1fel| O[3,

where C} is a constant. Therefore by (A2) with K, = 0 we get
e_kgfot fg(s)dsnus(t)“%o,l + 5/t ekl fg(r)dT”ue(s)Hi}l,ldS
0
ol = b [ €O ) ) s
+2C4e / b R F(9) lue ()[40, ds
0
- / ek 0Ny (5). (25, ue()) TV (3)) o
0

t
+ 8/ e~k Jo S K0 4 (K + D)[Juc(s)]| %0, ]ds.
0
For the last second line, similar to [XZ09, (3.12)], we have

S

2VE(E[sup | [ e O (1), o(er, uc(r))dW (1) goal )

0<s<t 0

3=

t
ld p.1l
éCvep(E[/ e 2k Jo fa(l)dl||“€(r)||12qo,1H‘T(grv U (r ))||2 (12,170 1)dr]5)p
0

D =

<C\/@(E[/O e O (1) o0 (1 + e (1) o) dr] )

t
<O\/€_p<E[/ €—2k8f0Tfa(l)dl(1 + ||U5(7")”i~1071)d7"]g)5
0

N[

t
<ovap [ 1+ im0, D]
0

where we used (A2) with Ky = 0 in the third line.
Let £ > 2C and using Lemma [2.14] we have for p > 2

(E
t

C’(HuOH%,Q1 +e)*+ 062/ (E
0

t P P
+C€p+06p/ (E sup e "o fS(”dlllua(T)II?;o,ll ) ds.
0

OST<sATM e

SN

. t/\’rM1 e s 8
sup RO (o), e [ RO )3 ds

O0<s<INTM], & 0

O0<Sr<SATMy e

P\ 5
sup efksfo fs(l)leuE( )HHO 1] )
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Applying Gronwall’s inequality, we obtain

(E

<C [HUO‘|}1;O,1 +&% +ep) (C(e>+ep)

2

2
t TMl’s s P
Sup e—kafo fs(S)dsHua(t)H%O,l + 5/ e—kafo fs(r)dr““a(s)H%mdsl >
0

0<t<TMy e

Hence by the definition of 7y, ., we have

AT

(EGu.(Tan, )]")

<(s

gec(M1+E) (El

0<t<Tary

2
o 2
t TMl’E s P
sup e "o fs(s)dsHua(t)H%ro,l + 6/ ereh fa(r)drHuf( )HH1 ! ] )
0

0<t<TMy e

<Ce“MH) (||| 40, + €% + ep] eCE*+ep),
Let p = %, by Chebyshev’s inequality, we have

elog P(Gy (Tar e) > M)
< E [Gus (TMLE)]p
Mp
< —2logM + C + C(M; +¢€) 4+ C(e* + ep) + log]||uo| o1 + € + €p).-

Take supremum over £ and let M — oo, we finish the proof. U

6.3 Approximating the initial value
Since V is dense in H%!, there exists a sequence {u?} C V such that

Tim g — g 0 = 0.

Let u,. be the solution to (6.1) with the initial data ug. Similarly, let v, . be the
solution to (6.2)) with the initial data ug.
For M > 0, define a random time (which is also a stopping time with respect to Fi

by Lemma
t
The =T Ainf{t : ||un(¢)|7 > M, or &?/ |O1tn < (8)||5;ds > M}.
0

From the proof of Lemma [6.4] and Lemma it follows that

Lemma 6.7.
hm sup sup ¢log P(F,, (T) > M) = —oo.

M—oo ' 0<e<l

For fized M, we have

hm sup sup ¢log P(Gy, (T3, .) > M) = —o0.

M—oo ' 0<exl

N

; .
+ TM1,e s . P
( sup e * 0 S u (1) |50, + e / eksfofs<r>dr||u€(s)||gl,lds) epksfoff(s)d“‘]>
0
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The following lemma for v, . is from [XZ09]:

Lemma 6.8 ([XZ09, Lemma 3.2]).

lim sup elog P < sup ||vn®|3 > M) = —o0.

M—00 g<egl

tx

Lemma 6.9. For any 6 > 0,

lim sup elog P ( sup |[uno(t) — u(t) |5 > 5) - —o0.

n—30 <e<1 0<t<T

Proof
Clearly, for My, My > 0

P (s, fune(t) - o)l > 0)

0<t<T

<P ( st lnel0) = 00 > 6.5 (1) < 2, G (T) < 3

0<t<T

+ P(F,.(T) > My) + P (F,.(T) < My, G,_(T) > M,) (6.3)

<P < sup tne(t) — us(t)||7 > 5)

OétéTMl75/\7']’\4.2’E

+ P (Fu(T) > My) + P(Gu.(Tan ) > Ma),

where 7y, . and 7y, _ are introduced in Lemma (6.5
For the first term on the right hand of (6.3)), let k£ be a positive constant and

U= 14 el
Applying It6’s formula to e~k Jo Us(9)s||yy_ (£) — w,, (£)[|%;, we get

t
e o VI (8) — w o (8)|F + 26/ eIV 3y (ue(5) = wne(s))l|ds
0
t
o = tnolfy = ke [ HE ST (5) e 5) — e 5) s
0
t
- 25/ e Io U= by g e — ) (8) — b(tne, Une, Ue — Un2)(s)) ds
0
t
+ 6/ e~k I U= | 5 (25, ug(s)) — o(es, un,g(s))H%z(lz,H)ds
o S
+ 2\/5/ ek o Uedr (4 () — uy, o (3), (0(e5,ua(s)) — 0(£8, tno(8)))dW (5)).
0

Notice that by the property of the trilinear form b and Lemma [2.10, we have

|b(u£, Ue, Ue — Un,a) - b(un,m un,a> Ue — un,a)|
:|b(u€7 Ue, Ue — un,a) - b(un,a’ Ue, Ue — Un,s)|

:|b(u€ - un,sa Ug, Ue — un,s)|
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1
§§H81(UE - un,s)”%{ + C1Uc||ue — un,s”%{’

where (] is a constant.
Therefore,

e—ek fg Us(s)dsHus(t) — Un,e(t) ||?{

gHuO - un,O

t
zm—ké/e““%““w@mww»wmxw@@
0
t
+aan/6ﬁ“ﬁﬂwwu@mu@—um@wz@
0

t
+Lg/eﬁwwwwmu@—um@myw

+ 2\/5/0 e~k o UE(T)dT(uE(s) — Upe(5), (0(es,u:(s)) — o(es, unc(s)))dW (s)),

where we used (A3’) in the forth line.

Choosing k > 2C and using Lemma and (A3’), by the similar calculation as in

the proof of Lemma [6.6] we have for p > 2

(E
¢

<2||uo—un70||‘11~{071 +C€2/ E
0
t

+ Cap/ E
0

Applying Gronwall’s inequality, we obtain

<E

Hence, by the definition of the stopping times,

~ P %
(E sup [te(s) = Une(s) ||§1] >
_O<S<TM1’5/\T]/\/12Y5

<<E< wp T () — un (5) ) R

/
OgngMLE/\TMQ’5

P

p
sup e—ck Io Us(”)dTHuE(S) — Un,a(*S)H?{] )

0<s<tAT L, ’5/\7']’\/[2 -

/
Ogrgs/\TMLE/\TMQ’E

!
Ogrgs/\er,E/\TMz,E

0<s<tATL, 75/\75\/12,5

LeCletMa)k (E

PN\
sup e—akfos Ua(’”)drHuE(S) — Un,a(S)H?{] )

/
0<8<T1L11’E/\TM2,5

<C€C(E+M2)k”uO _ unOl C(52+sp).

4
F0.1€

P\ 5
sup ek Iy Uf(l)leug(r) — uns(r)H]zq] ) ds.

P\ »
sup e Mo Uy (5) - un,a(S)H?{] ) < Cllug = un ol

’
TJ\/ILEATMQ»E

4
[}0,16

Ue (s)ds] )

C(e2+ep)

2
p

»

P\
sup o<k Jr Us(l)leue(T) _ uﬂﬁ(’r’)”%] > ds
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Fix My, Ms, let p = %, then Chebyshev’s inequality implies that

sup ¢log P ( sup [t e () — ue ()] > 5)

0<e<1 OStST]p[LE/\T]/\/I2’E

2
B [$0Dgcsryy o, Mline(8) = u(0)17]
< sup elog z

0<ex<1 P
<C(e+ Ma) — 2log 6 + log ||ug — tnol| o, + C(e° +ep) + C

— — 00, as n — o0.

By Lemmal6.4] for any R > 0, there exists a constant M; such that for any € € (0, 1],

R

P(F,(T) > M) < e *.

For such a M, by Lemma there exists a constant M; such that for any ¢ € (0, 1],

o |5

P(Gu. (i) > M) < e”

For such M, M5, there exists a positive integer N, such that for any n > N and
e €(0,1],

P( sup une(t) — u (D)% > 5) <ot

0<t<’7’1wl Y‘;;/\7'1,\/[2 e

Then by (/6.3)), we see that there exists a positive integer N, such that for any n > N,
e € (0,1],

P ( sup |[tn o (t) — u(t)||3 > 5) < 3eF.

0<t<T

Since R is arbitrary, the lemma follows. O
The following lemma for v, is from [XZ09]:

Lemma 6.10 ([XZ09, Lemma 3.4]). For any 6 > 0,

lim sup elog P ( sup ||vnc(t) —v()|15 > 5) = —0.
n—=00 <e<1 0<t<T
6.4 Exponential equivalence

In this section we prove the main results by showing the exponential equivalence.

Lemma 6.11. For any 6 > 0, and every positive integer n,

lin(l)slogP < SUp [|tne(t) — vne ()3 > 5) - —00.
e—

o<t<T

Proof ~ For M > 0, recall the definition of 73, . and define the following random time:

t
7']%4"5 =T Ninf{t : Huns(zf)Hi,O1 > M, or 8/0 Hunyg(s)Hfgp’lds > M},



6.4. Exponential equivalence 75

which is a stopping time with respect to F;; by Lemma [6.5]

Moreover, define
7']::’4"6 =T Ainf{t : |, ()|} > M},

l,n e n S,n
TMe = TMe A TM e

We should point out that 7'1:\))/1”5 is a stopping time with respect to F; under the condition
vne € C([0,T],V). Now we prove that v, . € C([0,T],V).
By It6’s formula and Gronwall’s inequality there exists a constant C'(g) such that

E(sup [[vne(s)]l7) < Cle).
s€0,t]

For 0 < s <t < T, by (A4) we have

t
Eljone(t) = vne ()7 <€E/ lo(er, vae (M) 1L 2 vy dr

t
< / (o + FAE(sup Jone(DIE))dr

1€[0,r]
<€(F0 + F10(5))|t — 8|.

Then Kolmogorov’s continuity criterion implies that v, . € C([0,T], V).
Now for My, My > 0, similarly to (6.3), we have

P ( sup ||une(t) — vn75(t)||fq > 5)

0<t<T

<P sup | tne(t) — vnf(t)H?{ >0 (6.4)

1,n 2,n
Ogtngl 75/\7'M2 B

P (1) > M) 4 PG (1 ) > 28) 4 P (s om0 > 01 )
o<t<T
Let Upe = 1+ [Junell%,,, applying It6’s formula to e~* Jo Un e (@)ds| |y, (8) — vy (8)]|%

for some constant £ > 0, we get
ek do Uy, (t) — v ()3 + 2¢ /t e H o Une 19y (o (5) = vn e (5)) | s
0
= ke [ (5 5) ~ (5 s

0

voe OO () — 1,4 (), D (5)) s
0

— 2 /t e kel Une My (1, (), U e(8), Une(8) — Vne(s))ds
0

+ e/t ek lo U"’E(’")drHa(es, Unc(s)) — oles, vw(s))H%Q(lg’H)ds

0

+ 2\/5/0 e kel Unedr (1., (8) = Une(8), (0(€8, Une () — (€8, Vne(s)))dW (s)).
(6.5)
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For the second term on the right hand side of (6.5)), we have

t
‘ / ke f;Un,a(r>dr<unva(S)_vnva(s),ﬁfvn,a(S»dS‘
0

t
</ e S0 Une @) 9y (1, . (5) — Ve (8)) | ]| D10 e (5) || rrdls
0

1/t L
< / eI IO 9y (o (5) = vne()) [ls + C / e H R I () [ s,
0 0

where we use Young’s inequality in the last inequality.
For the third term on the right hand side of (6.5)), by Lemmas and we have

Un,e; Un,egy Une — Un,é‘)'

b(
b(un,a - Un,ea un,aa un,a - Un,a) + b(vn,aa un,a; Un,a - Un,a|

1

<3191 (tne = o) I + CUnelltne = vl + Cllvnellvlltn g lune = vl ©0)
1

<5191 (e = v + Cllonclly + Crlncllum e = vacllr

where (] is a constant.
Thus we obtain

I U, (6) = v O + = [ 0,0, (5) — ) s
0
< ke / eSSV () na(5) — () [l + O / R U0 () 2 s
0 0
+ Cie /t eiksfos Un,g(r)drUnﬁ(s) Hun,e(s) - Un,e(s)”lzﬁlds
0
e / ek Un (5 — L (5)|2rds
0

+2¢/e /0 ek Jo Une@dr(yy (s) — v,2(5), (0(£8, tne(s)) — (e, Vpo(5)))dW (s)),

where we used (A3’) in the fourth line.
Hence, choosing & > C; + Cs, by Lemma and the similar techniques in the
previous lemma and the definition of stopping times, we deduce that for p > 2

~
E sup e ko Une 1y, (5) — v (3) I
OSs<UATY AT
t P P
<0M12€2 + C(e? + ep) / E sup e ke ly U"*E(l)leun,g(r) — Upe(7) qu ds.
0

1,n 2,n
OST‘QS/\TMDE/\TM%‘S
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Then Gronwall’s inequality implies that

_ py 2
E sup [t e (£) = vn e (1) ||
0ty AT
[ 7_]1\/,[’!‘1 T?\jn %
L[| F sup (e*ksfot Un,s(s)dsHunE(t) _ vns(t)qu)pekafo L M2E g, (s)ds
0<t<7_1,n /\T2,n ’ ’
SUNT A e MMy e

<60(5+1\-42)CM1262€C(62+€12) )
(6.7)

By Lemmas and [6.8] we know that for any R > 0, there exists M; such that

sup elog P (F,, (T) > M) < —R,

Un,e
0<e<1

sup ¢log P < sup |lvn-@®) |5 > M1> < —R.

0<e<1 0<t<T

For such a constant M, by Lemma [6.7] there exists M such that

sup elog P (G, . (T3, .) > Mz) < —R.

0<e<1

Then for such My, M,, let p = % in 1} we obtain

elog P sup Nt (t) — v ()3 >0
ogt@]{ﬁ’smf\j;s
P\ b
< IOg E Sup Hun,s (t) — Unge (t) HIZLI - 10g (52

OSESTA AThr <
<C(e + My) + log[CM?2e?] + C(e2 + 1) — log 6
——00 ase — 0,

where we used Chebyshev’s inequality in the first inequality. Thus there exists a gy € (0, 1)
such that for any e € (0, &),

P sup () —vnc(H >0 ] e E

1,n 2,n
OéthMl 75/\7'MQ’E

Putting the above estimate together, by (6.4) we see that for € € (0, )

P ( SUp |[tne(t) — vne ()| > 5) <de %

o0<t<T

Since R is arbitrary, we finish the proof. O

Proof of Theorem 6.2. By Lemmal6.5, v. satisfies a large deviation principle with the
rate function I'°. Our task remain is to show that u. and v, are exponentially equivalent,

then the result follows from Lemma[2.3.
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By Lemmas and|6.10, for any R > 0, there exists a Ny such that for any e € (0, 1],

)
P (sup, lnelt) ~ w0l > 3 ) <2

o<t<T
and
2 0 _R
P sup [[ve(t) — v (8) |7 > 3) <.
0<t<T

Then by Lemma for such Ny, there exists a ey such that for any ¢ € (0, &),

) _
P (s une(t) - o0l > 3) <2

o<t<T

Therefore we deduce that for e € (0, &)

P ( sup [|us(t) — vo(t)||% > 5> < 3eF.

0<t<T

Since R is arbitrary, we finish the proof.



Chapter 7

Small time asymptotics for CID% model

In this chapter we consider the equation

do(t) = A¢(t)dt — ¢*(t)dt + dW (t),
(b(()) = ¢07
where ¢y € C# for 0 < B < % and W is a cylindrical Wiener process on L*(T). By
a similar argument as [DP04, Theorem 4.8], we obtain that the equation has a unique
solution ¢ € CC7.
Let € > 0, by the scaling property of the Brownian motion, it is easy to see that ¢(et)
coincides in law with the solution to the following equation:

dp. = eA¢.dt — ep?dt + /zdW,
¢€(0) = ¢0-
Our purpose is to establish a large deviation principle for ¢.. The main result is the

following Theorem:

Theorem 7.1. Assume ¢y € C P for 0 < B < }l and o« > 0 small enough, then ¢.

satisfies LDP on CC~ 27 with the good rate function 1%°, where I%° is given in Theorem

73

7.1 The linear case
In this section we concentrate on the following linear equations on the torus T:
dZ.(t) = eAZ(t)dt + /edW (t),

Z&(()) = ¢O-

where W (¢) is an L*(T) cylindrical Wiener process and ¢y € C° for 0 < 8 < 1. We will
prove that the solutions to ([7.1)) satisfy a large deviation principle.
The mild solutions to (7.1 are given by

(7.1)

t
Z.(t) = e + \/5/ IR (5).
0

79
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Theorem 7.2. Assume ¢y € C° for 0 < < 1. Let pe g, = L(Z:(*)) and o > 0 small
enough. Define a functional I on cCcze by

1 (g) = i {5 / (1) 22},

where
t
T, = {h e CC 27" : h(-) is absolutely continuous, g(t) = ¢y +/ h'(s)ds}.
0

Then 1.4, satisfies a large deviation principle with the rate function 1%(-).
Moreover, 1% is a good rate function.

Proof
Let x. be the solution to the stochastic equation

) = ou+ V2 | Law(s)

Since x. is Gaussian on C’C_%_a, by [DPZ09, Theorem 12.9], we know that z. — ¢
satisfy a large deviation principle with the rate function I°. Combing the deterministic
initial data, we deduce that z. satisfy a large deviation principle with the rate function
I%.

Now we prove that 1% is a good rate function. Consider the level set for r € (0, 00)
[P ={geCC 2 I%(g) <r}.

For any g € I, we have for s,t € [0, 7]

lg(t) = 9(s)l|—1—a < Cllg(t) = g(s)l2er) / lg D)l 2mdl < C(2r)2 ]t = s]2,

where we use Lemma in the first inequality and Hélder’s inequality in the last in-
equality. Since the constant C' does not depend on g, I is equicontinuous. For each

t € (0,77, let If’g = {g(t),g € I?°}. For any a € If?, there exists g € I such that
a = g(t). Then Holder’s inequality implies

1
la — dollz2(ry = llg(t) — g(0)||L2(my < Cr2.

Thus Ifg is contained in a ball Br2(¢o, C’r%). By [11i06, Proposition 4.6], the embedding
L3(T) — C 2% is compact, which implies that Ifj ? is relatively compact in C27 for
any t. Then the generalized Aerela-Ascoli theorem implies that I#° is compact, i.e., I%
is a good rate function.

By Lemmal[2.3], the task remain is to show that Z. and x. are exponentially equivalent,
that is, for any 6 > 0,

hmelogP( sup || Z.(t) —z(t)[|_1_, > &) = —o0.

—Q
0<t<T 2
Let w, = Z. — x., we have

d
%'I.Ua(t) = eAw,.(t) + eAz.(t), w.(0)=0.
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The mild formulation of w, is given by
t
we(t) = 5/ 92 Az, (s5)ds
0

t t
= 5/ SR Agods + 5\/5/ EEIAATY (s)ds.
0 0

Now we estimate every term in the second line. By Lemma we have

1
Adgl|_o_sds
Al

1, a=-8
< Ceit3 | o 5.

0<t<T 0<t<T

t t
sup Hs/ DA AGods||_1_, < sup Ce/
0 : o [e(

Similarly, we have for 0 < k; < g,

t
sup |leve ee(t_s)AAW(s)dsH_%_
0

[0}

0<t<T
t
1
< C = ||[AW d
28, 2 |, T 1 O

<CVee™ sup [IW(O)]_1_asom
0<t<T 2

We should point out that the constant C' above is independent of £ and may change
from line to line.
For the cylindrical Wiener process W, we have for s,¢ € [0,T], 0 < k1 < §

B W(t) = W) = E| Y 0;(k)ex(W (1) — W(s), en) [

2j(1+2a76li1) ]
) < CJt — sf2/0r2eom),

< Clt—s|(1+ Z

|k|1+20¢—651
kezZ\{0}

where e, = 272¢™7 and we use k € suppd; C 2/ A(A is an annulus).
By Nelson’s hypercontractive estimate in [Nel73|, for p > 2, there exists a constant C'
independent of p such that

EMNWWJWW%m=/E&MW—WMW@M

ya
2

<t [(BI2, 0V (@) = W(9) () Fd

Then we obtain for IlJ < K1

N
BIW® = WO s rraney Sl s|ipt 37 2,

Bp,;n j=>—1

Thus Lemma and Kolmogorov’s continuity criterion imply that for p > K—ll

» 1 » 1 1
(Blsup W1y 00 ))? < OB IWIP )y 1P < O
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Hence, with the above estimates in hand, we have

1 1, 0-8 .
(B sup [lwe()]Z;_,)7 < Cei™ 2 | gol-p + CVee™ (Bl sup [[W]_1_ai20,])

0<t<T o<t<T

3=

< O™ (1+ vep?),

where C' is the constant independent of €, p and may change from line to line.
Therefore Chebyshev’s inequality implies that
Esupggi<r ||w5(t)||li%_
op
< ep(log Ce™ (1 + /2p?) — log b).

«

elog P sup [lw(t)|_1

_5_0‘

> 0) < elog

tx

Let p = % and € — 0, the proof is complete.
O

Now we follow the notations from [GP16, Section 9] and give some estimates of Z.:
We represent the white noise in terms of its spatial Fourier transform. Let F = Z \ {0}
and let W (s, k) = (W(s), ex), where {e, := 272}, is the Fourier basis of L2(T).
Here for simplicity we assume that (W (s),ep) = 0 and restrict ourselves to the flow of
Jpu(z)dz = 0. In the following we view W (s, k) as a Gaussian process on R x E with
covariance given by

BL syt / gty = [ fmglodn

where 1, = (84, k) and the measure dn, = ds,dk, is the product measure of the Lebesgue
measure ds on R and the counting measure dk on £ .
Let Z. = Z. — ef2 ¢y, then

Z.(t,x) = Veep(x)e st 2 W (dn).
RxFE

Now we have the following calculations: for s,t € [0, 7],
Bl|A(Z:(t) = Z<(s))[]
=E[| /ej(kl)(\/gekle_a(t_sl)wlklp1{0<51<t} — Veer, e TR B )W ()]

ggc«/gg(kl)(e—%(t—sﬁwk1|21{s<51<t} + |e—£(t—s)7r|k1\2 _ 1|26—2€(s—s1)ﬂ'|k1|2 1{0<31<s})d771

_ 2\2k
<C/9J(k1)2(€’t 8Hk1’ ) dk‘l
|12

1 . _ 062n|t_ S|2K,2j(—1+4li)7

<Ce™ |t — 5?27
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where we use 1 —e” < |z]*® for k € (0,1), 2 < 0 in the fourth inequality and k € suppf; C
27 A(A is an annulus) in the last inequality. Here the constant C' is independent of € and
may change from line to line.

By Nelson’s hypercontractive estimate in [Nel73|, we have for p > 2, there exists a
constant C' independent of p, e such that

EIZ.0) = 2Dy = [ EIAZ0 - Zo) P (o)
<Ot [ (BI8,Z.0) - Zu(5)) Pla))

Let k = 1 — &/ for K’ > 0 small enough, we obtain

4

ElNZ(t) = Zo(9)[ ) < C7P Beft — s|) 7.

Then Lemma and Kolmogorov’s continuity criterion implies that for p > l,, we
have
VAL 7P (3=r)p5
BIZl e < ENZCIP oy < BIZel om0 oy < CP25700E (73)

Remark 7.3. We want to emphasize that (7.5 (n) only holds for Z. due to Z.(0) = 0. For
the stationary one this does not hold since the expectation of the stationary one does not
depend on €.

7.2 Exponential equivalence

—Q

Theorem implies that Z, satisfies a large deviation principle on the space cCz2

with the rate function ¢°. By Lemma , our task is to show that ¢. and Z. are
. . . 1 R

exponentially equivalent in CC~27%. That is:

Theorem 7.4. For any 0 > 0,

lim elog P( sup [|¢(t) = Ze(t)[| -1 > ) = —o0. (7.4)

0<t<

Proof At the beginning of the proof, we should point out that the constant C' in the
following is independent of €, p and may change from line to line.
Let Y:(t) := ¢.(t) — Z.(t), then Y. is the solution to the following shifted equation:

dY.(t) = eAY.(t)dt — e(Yo(t) + Z.(1))*dt,

7.5
Y.(0) = . 79
For p > 1, we have
1 d
Yoz
o i Vel e

:€<A}/;’ Y;Zp—1> . E(}/;S’ }/'52p—1> - 35<}/82Z57 }/'52p—1> — 3€<}/‘5Z&?7 }/;217—1) o €<Z§7 }/;2p_1>.

Then

%uw [ / (2p — 1)(TY:(s), Y2 2(5)TY2(8)) + [Y2H2(5)]| 1oy ds
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== 6/0 [BOYZPH(s), Ze(s)) + 3(Y2(5), Z2(5)) + (Y7 (s), Z2(5))]ds

t
<€/0 (allYe(8)®*2 2 (ry + Cll Ze(s) 175 ) s,

where we use Holder’s inequality and Young’s inequality in the last inequality and a €
(0,1). Take p = 3, for t € [0, 7], we have

IYo(0) o) < 2C / 1Z2(5) B s

< C /0 (152 G0l + 1 Z-(5) S iy )l

(7.6)
t
1 —
<<C [ (g Wull 5+ 1Z(5) ey s
0 (es)” z
S CETT N golP 5 + el ZellE )
where 0 < ' < }1 — [ and we use Lemma in the third inequality.
Thus Young’s inequality and the mild formulation of Y, given by
t
Yo(t)=¢ / SR YB _3Y27, — 3Y. 7% — Z%)ds
0
imply that
T
sup |[Ye(t)[|r2(m) < EC/ (IY(s)zo () + 1Z:(5) [0 () ) ds
te[0,7 0
! 3 1 3 7 3
C/ UY=()llzom) + WH%IM + 1 Z(8) [ (my) s
€S

38’

< CE) 4 7, ||cm+el- el Zel),

where we use Lemma (6.6} - in the second inequality and ( in the last inequality.
Thus by (7.3) we have for 3¢ > &

1 3 _o(p 3 - 1
(B sup [[Ye(t)[f2ip)* < Cle2™20H) 4 2 (B[| Ze[| o)) + €'
t€[0,T]

_3(8'+8)
2

+ (Bl Z-12,.))7)

< C’( —2(8'+6) 4 52 —4k/ qz + 61_3(&’;@ " 5%_3“’q%).
Therefore, by Chebyshev’s inequality and Lemma we have
elog P(sup [[Yz()[|_1_o > 9)

gt\

Esup;eio,ry Y0l 72(r)
04
<5q[log[0(5%—2(5’+6) _|_€§—4n’q2 AT

<elog

3(8'+8)
2

+ei7%¢2)] — log d].

Let g = %, we deduce that
hmslogP( sup [|Yz(t)

0<t<T

> 0) = —o0.

[
5o

Then Theorem [7.1] follows from Lemma 2.3 and Theorem [7.4] .
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