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Preface

This thesis studies the large deviations of the two-dimensional stochastic Navier-Stokes
equations (SNSE) with anisotropic viscosity. Consider the following SNSE with anisotropic
viscosity on the two dimensional torus T2 for ε > 0:

duε(t) = ∂2
1u

ε(t)dt− uε · ∇uε(t)dt+
√
εσ(t, uε(t))dW (t),

uε(0) = u0,

where W is an l2-cylindrical Wiener process and σ is the random external force. As
ε→ 0, uε will converge to the solution to the following deterministic equation:

du0(t) = ∂2
1u

0(t)dt− u0 · ∇u0(t)dt,

u0(0) = u0.

We will investigate the asymptotic behaviour of the trajectory

1√
ελ(ε)

(uε − u0)

as ε→ 0, where λ(ε) is some deviation scale which strongly influences the behaviour.

(1) The case λ(ε) = 1√
ε

provides small noise large deviation principle(LDP). We use the
weak convergence method to prove that uε satisfies the large deviation principle.

(2) For λ(ε) = 1, we are in the domain of the central limit theorem(CLT). We show that
uε−u0√

ε
converges to the solution to a stochastic differential equation as ε→ 0.

(3) To fill in the gap between the CLT and LDP, we will study the so-called moderate
deviation principle. In this part we may assume

λ(ε)→∞,
√
ελ(ε)→ 0 as ε→ 0.

We prove that 1√
ελ(ε)

(uε − u0) satisfies the large deviation principle.

Moreover, we study small time large deviation principle for the two-dimensional SNSE
with anisotropic viscosity. Let u be the solution to original SNSE with anisotropic vis-
cosity. For ε > 0, the law of u(εt) coincides with the law of

duε = ε∂2
1uεdt− εuε · ∇uεdt+

√
εσ(εt, uε)dW (t),

uε(0) = u0.

We prove that uε satisfies the large deviation principle. The proof is based on exponen-
tially equivalence.
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We also study the small time asymptotics of the dynamical Φ4
1 model. The dynamical

Φ4
1 model is given by

dφ(t) = ∆φ(t)dt− φ(t)3dt+ dW (t), for (t, x) ∈ [0, T ]× T,
φ(0) = φ0,

The law of φ(εt) coincides with the law of

dφε = ε∆φεdt− εφ3
εdt+

√
εdW (t),

φε(0) = φ0.

We prove that φε satisfies the large deviation principle.
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Chapter 1

Introduction

This thesis is concerned on the large and moderate deviation principle for the two-
dimensional stochastic Navier-Stokes (NS) equations with anisotropic viscosity and the
small time asymptotics of the dynamical Φ4

1 model.

1.1 Stochastic NS equations with anisotropic viscos-

ity

Consider the following stochastic NS equation with anisotropic viscosity on the two di-
mensional (2D) torus T2 = R2/(2πZ)2:

du = ∂2
1udt− u · ∇udt+ σ(t, u)dW (t)−∇pdt,

div u = 0,

u(0) = u0,

(1.1)

where u(t, x) denotes the velocity field at time t ∈ [0, T ] and position x ∈ T2, p denotes
the pressure field, σ is the random external force and W is an l2-cylindrical Wiener
process.

Let’s first recall the classical NS equation which is given by

du = ν∆udt− u · ∇udt−∇pdt,
div u = 0,

u(0) = u0,

(1.2)

where ν > 0 is the viscosity of the fluid. (1.2) describes the time evolution of an incom-
pressible fluid. In 1934, J. Leray proved global existence of finite energy weak solutions
for the deterministic case in the whole space Rd for d = 2, 3 in the seminar paper [Ler33].
For more results on deterministic NS equation, we refer to [CKN82], [Tem79], [Tem95],
[KT01] and references therein. For the stochastic case, there exists a great amount of
literature too. The existence and uniqueness of solutions and ergodicity property to
the stochatic 2D NS equation have been obtained (see e.g. [FG95], [MR05], [HM06]).
Large deviation principles for the two-dimensional stochastic NS equations have been
established in [CM10] and [SS06]. Moderate deviation principles for the two-dimensional
stochastic NS equations have been established in [WZZ15].

Compared to (1.2), (1.1) only has partial dissipation, which can be viewed as an
intermediate equation between NS equation and Euler equation. Systems of this type

1



2 Chapter 1. Introduction

appear in geophysical fluids (see for instance [CDGG06] and [Ped79]). Instead of putting
the classical viscosity −ν∆ in (1.2), meteorologists often modelize turbulent diffusion by
putting a viscosity of the form: −νh∆h − ν3∂

2
x3

, where νh and ν3 are empiric constants,
and ν3 is usually much smaller than νh. We refer to the book of J. Pedlovsky [Ped79,
Chapter 4] for a more complete discussion. However, for the 3 dimensional case there is
no result concerning global existence of weak solutions.

In the 2D case, [LZZ18] investigates both the deterministic system and the stochastic
system (1.1) for H0,1 initial value (for the definition of space see Chapter 2). The main
difference in obtaining the global well-posedness for (1.1) is that the L2-norm estimate is
not enough to establish L2([0, T ], L2) strong convergence due to lack of compactness in
the second direction. In [LZZ18], the proof is based on an additional H0,1-norm estimate.

1.1.1 Large and moderate deviations

For ε > 0, consider the equation:

duε(t) = ∂2
1u

ε(t)dt− uε · ∇uε(t)dt+
√
εσ(t, uε(t))dW (t),

uε(0) = u0.
(1.3)

As ε→ 0, uε will converge to the solution to the following deterministic equation:

du0(t) = ∂2
1u

0(t)dt− u0 · ∇u0(t)dt,

u0(0) = u0.
(1.4)

We will investigate deviations of uε from the deterministic solution u0. That is, the
asymptotic behaviour of the trajectory

1√
ελ(ε)

(uε − u0),

where λ(ε) is some deviation scale which strongly influences the behaviour.

Small noise large deviation principle

The large deviation theory concerns the asymptotic behavior of a family of random vari-
ables Xε and we refer to the monographs [DPZ09] and [Str84] for many historical remarks
and extensive references. It asserts that for some tail or extreme event A, P (Xε ∈ A)
converges to zero exponentially fast as ε→ 0 and the exact rate of convergence is given
by the so-called rate function. The large deviation principle was first established by
Varadhan in [Var66] and he also studied the small time asymptotics of finite dimensional
diffusion processes in [Var67]. Since then, many important results concerning the large
deviation principle have been established. For results on the large deviation principle for
stochastic differential equations in finite dimensional case we refer to [FW84]. For the
extensions to infinite dimensional diffusions or SPDE, we refer the readers to [BDM08],
[CM10], [DM09], [Liu09], [LRZ13], [RZ08], [XZ09], [Zha00] and the references therein.

The case λ(ε) = 1√
ε

provides some large deviation estimates. In Chapter 3 we study
the small noise large deviation for the stochastic NS equations with anisotropic viscosity
by using the weak convergence approach. This approach is mainly based on a variational
representation formula for certain functionals of infinite dimensional Brownian Motion,
which is established by Budhiraja and Dupuis in [BD00]. The main advantage of the weak
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convergence approach is that one can avoid some exponential probability estimates, which
might be very difficult to derive for many infinite dimensional models. To use the weak
convergence approach, we need to prove two conditions in Hypothesis 2.5. In [Liu09] and
[LRZ13], the authors use integration by parts and lead to some extra conditions on diffu-
sion coefficient. In [CM10], the authors use time discretization and require time-regularity
of diffusion coefficient. We use the argument in [WZZ15] (in which the authors prove a
moderate deviation principle), i.e. first establishing the convergence in L2([0, T ], L2) and
then by using this and Itô’s formula to obtain L∞([0, T ], L2)

⋂
L2([0, T ], H1,0) conver-

gence. By this argument, we can drop the extra condition on diffusion coefficient.

Central limit theorem

If λ(ε) = 1, we are in the domain of the central limit theorem (CLT). In Chapter 4 we will
show that uε−u0√

ε
converges to the solution of a stochastic differential equation as ε→ 0.

The central limit theorem is a traditional topic in the theory of probability and statis-
tics. The classical CLT shows that the normalized sum of a series of independent and
identically distributed random variables convergent in distribution to a standard nor-
mal random variable. For the study of the central limit theorem for stochastic (partial)
differential equation, we refer the readers to [WZZ15], [CLWY18] and [WZ14].

Moderate deviation principle

To fill in the gap between the CLT and LDP, we will study the so-called moderate
deviation principle (MDP). Here we may assume

λ(ε)→∞,
√
ελ(ε)→ 0 as ε→ 0.

The moderate deviation principle refines the estimates obtained through the cen-
tral limit theorem. It provides the asymptotic behaviour for P (‖uε − u0‖ > δ

√
ελ(ε))

while CLT gives bounds for P (‖uε − u0‖ > δ
√
ε). MDP arises in the theory of statis-

tical inference. It can provide us with the rate of convergence and a useful method for
constructing asymptotic confidence intervals, see [Erm12], [GZ11], [KI03], [Kal83] and
references therein. For the study of MDP for general Markov process see [Lim95]. Re-
sulst of MDP for stochastic partial differential equations have been obtained in [WZ14],
[BDG16], [DXZZ17] and references therein.

In Chapter 5 we study the moderate deviations by using the weak convergence ap-
proach. We need to prove two conditions in Hypothesis 2.5. We will use the argument in
[WZZ15] too, i.e. we first establish the convergence in L2([0, T ], L2) and then by using
this and Itô’s formula, L∞([0, T ], L2)

⋂
L2([0, T ], H1,0) convergence can be obtained. As

mentioned above, due to the lack of compactness in the second direction, we need to do
H0,1 estimate for the skeleton equation (5.1), which requires H0,2 estimates of solution
to the deterministic equation (1.4). To obtain this, we use a commutator estimate (see
Lemma 2.13) from [CDGG00]. This also leads to H0,2 condition for the initial value.

1.1.2 Small time large deviation principle

In Chapter 6 we study the small time asymptotics (large deviations) of the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. That is, the behaviour of
the solution to
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duε = ε∂2
1uεdt− εuε · ∇uεdt+

√
εσ(εt, uε)dW (t),

uε(0) = u0.

This describes the limiting behaviour of the solution u(εt) as ε goes to zero.
The study of the small time asymptotics of finite dimensional diffusion processes was

initiated by Varadhan in the influential work [Var67]. The small time asymptotics (large
deviation) of SPDEs were studied in [Zha00], [XZ09], [LRZ13] and references therein.
Another motivation will be to get the following Varadhan identity through the small
time asymptotics:

lim
t→0

2t logP (u(0) ∈ B, u(t) ∈ C) = −d2(B,C),

where d is an appropriate Riemannian distance associated with the diffusion generated by
the solutions of the two-dimensional stochastic Navier-Stokes equations with anisotropic
viscosity. The small time asymptotics itself is also theoretically interesting, since the
study involves the investigation of the small noise and the effect of the small, but highly
nonlinear drift.

To prove the small time asymptotics, we follow the idea of [XZ09] to prove the solution
to (1.1) is exponentially equivalent to the solution to the linear equation. The main
difference compared to [XZ09] is that similar to [LZZ18] L2-norm estimate is not enough
due to less dissipation and we have to do H0,1-norm estimate.

1.2 Small time asymptotics of Φ4
1 model

In Chapter 7 we study small time behaviour of the dynamical Φ4
1 model :

dφ(t) = ∆φ(t)dt− φ(t)3dt+ dW (t), for (t, x) ∈ [0, T ]× T,
φ(0) = φ0,

(1.5)

where T is one dimensional torus and W is a cylindrical Wiener process on L2(T).
Equation (1.5) in d dimensional case describes the natural reversible dynamics for

the Euclidean Φ4
d quantum field theory. It is formally given by the following probability

measure

ν(dϕ) = N−1
∏
x∈Td

dϕ(x) exp[−
∫
Td

(
1

2
|∇ϕ(x)|2 + ϕ4(x))dx],

where N is a renormalization constant and ϕ is the real-valued field. This measure was
investigated intensively in the 1970s and 1980s (see [GJ87] and the references therein).
Parisi and Wu in [PW81] proposed a program named stochastic quantization of getting
the measure as limiting distributions of stochastic processes, especially as solutions to
nonlinear stochastic differential equations(see [JLM85]). The issue to study Φ4

d measure
is to solve and study properties of (1.5) in d dimensional case.

The dynamical Φ4
1 model with Dirichlet boundary condition (which also named as

reaction-diffusion equations) was studied systematically in [DP04]. In [DP04] not only
existence and uniqueness of solutions to this equation have been obtained, but also the
strong Feller property and ergodicity. For more details and more properties we refer to
[DP04, Section 4]. We can obtain the results on the torus case similarly.
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In 2 and 3 dimensions, the equation (1.5) falls in the category of the singular SPDEs
due to the irregular nature of the noise dW (t). Solutions are expected to take value in
distribution spaces of negative regularity, which means the cubic term in the equation is
not well-defined in the classical sense and renormalization has to be done for the nonlinear
term.

In two spatial dimensions, weak solutions to (1.5) have been first constructed in
[AR91] by using Dirichlet form theory. In [DDP03] the authors decomposed (1.5) into
the linear equation and a shifted equation (so called Da Prato-Debussche trick) and
obtain a probalistical strong solution via a fixed-point argument and invariant measure
ν(dφ). Recently, global well-posedness to (1.5) via a PDE argument has been obtained
in [MW17b]. See also [RZZ17] for a study of relation between weak solutions and strong
solutions.

By Hairer’s breakthrough work on regularity structures [Hai14], (1.5) in the three
dimensional case is well-defined and local existance and uniqueness can be obtained.
In [GIP15] Gubinelli, Imkeller and Perkowski introduced paracontrolled distributions
method for singular SPDEs and by this method in [CC18] the authors also obtained
local-in-time well-posedness result. Mourrat and Weber in [MW17a] gave existence and
uniqueness of global-in-time solutions on T3 by energy estimate and mild formulation.
Recently, Gubinelli and Hofmanová in [GH19] proved the global existence and uniqueness
results for (1.5) on R3 based on maximum principle and localization technique.

The purpose is to study the small time asymptotics (large deviations) of the dynamical
Φ4

1 model. We try to estimate the limiting behavior of the solution in time interval [0, t]
as t goes to zero, which describes how fast the solution approximating its initial data
in the sense of probability. The small time asymptotics in this case is also theoretically
interesting, since the study involves the investigation of the small rough noise and the
effect of the small nonlinear drift.

We also want to mention the following small time asymptotics result by Dirichlet
form. By [AR91] and [ZZ18] we know that the dynamical Φ4

d model associated with
a conservative and local Dirichlet form. Then the main result in [HR03] implies the
following Varadhan-type small time asymptotics for the dynamical Φ4

d model:

lim
t→0

t logP ν(φ(0) ∈ A, φ(t) ∈ B) = −d(A,B)2

2
,

for all measurable sets A,B, where d is the intrinsic metric associated with the Dirichlet
form of Φ4

d model (see [HR03] for the definition). However, these results is for the sta-
tionary case or holds for ν(dφ)-almost every starting point (see [HR03, Theorem 1.3] for
a stronger version). The small time large deviation result in this thesis holds for every
starting point and is of its own interest.

Let ε > 0, by the scaling property of the Brownian motion, it is easy to see that φ(εt)
coincides in law with the solution of the following equation:

dφε = ε∆φεdt− εφ3
εdt+

√
εdW (t),

φε(0) = φ0.
(1.6)

To establish the small time large deviation, we follow the idea of [XZ09] to prove the
solution to (1.6) is exponentially equivalent to the solution to the linear equation. In our
case, due to the irregularity of the white noise, the Itô formula in [XZ09] cannot be uesd.
Our calculations are based on the energy estimate for the shifted equation (see (7.5)) and
the mild formulation.



6 Chapter 1. Introduction

In [HW15] the small noise large deviation principle for the dynamical Φ4
d model is

established. The authors considered the solution as a continuous map F of the noise
√
εξ

and some renormalization terms which belong to the Wiener chaos with the help of the
regularity structure, then the result follows from the large deviation for Wiener chaos
and the contraction principle. However, this method seems not work for the small time
asymptotics problem. By this method, we have to prove the large deviation principle
for the solution to linear equations in a better space (compared to Theorem 7.2 in our
paper), which seems not true since eε∆ → I as ε → 0 and the smoothing effect of heat
flow will disappear.

1.3 Structure of the thesis

This thesis is organised in the following:
In Chapter 2 we collect some preliminaries. First we give the function spaces we are

working on. Then we introduce the large deviation principle and the weak convergence
method which is given by Budhiraja and Dupuis in [BD00]. We also list the existence
and uniqueness results from [LZZ18]. In Section 2.5, we list some useful estimates.

In Chapter 3 we obtain the small noise large deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. In Section 3.1 we introduce
the skeleton equation which gives the rate function and measures the rate of the conver-
gence. In Section 3.2 we prove that the rate function is good. In Section 3.3, we check
the last hypothesis and hence prove the large deviation principle.

In Chapter 4 we study the central limit theorem for the two-dimensional stochastic
Navier-Stokes equations with anisotropic viscosity. First we study the well-posedness for
the limiting equation and then obtain the central limit theorem.

In Chapter 5 we obtain the moderate deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. The structure of this chap-
ter is similar to Chapter 3. In Section 5.1 we study the skeleton equation. In Section
5.2 we prove that the rate function is good. In Section 5.3 we establish the moderate
deviation principle.

In Chapter 6 we obtain the small time large deviation principle for the two-dimensional
stochastic Navier-Stokes equations with anisotropic viscosity. We start by establishing
the large deviation principle for the linear equation in Section 6.1. Section 6.2 is devoted
to the energy estimates. In Section 6.3 we approximate the initial data. In Section 6.4 we
prove the exponential equivalence between the linear and nonlinear equation and hence
the large deviation principle.

In Chapter 7 we obtain the small time large deviation principle for the dynamical Φ4
1

model. Section 7.1 is devoted to the large deviation principle for the linear equation. In
Section 7.2 we prove the exponential equivalence and finally establish the main result.



Chapter 2

Preliminary

2.1 Function spaces on torus

We first recall some definitions of function spaces for the two dimensional torus T2.
Let T2 = R/2πZ×R/2πZ = (Th,Tv) where h stands for the horizonal variable x1 and

v stands for the vertical variable x2. For exponents p, q ∈ [1,∞), we denote the space
Lp(Th, Lq(Tv)) by Lph(L

q
v), which is endowed with the norm

‖u‖Lph(Lqv)(T2) := {
∫
Th

(

∫
Tv
|u(x1, x2)|qdx2)

p
q dx1}

1
p .

Similar notation for Lpv(L
q
h). In the case p, q =∞, we denote L∞ the essential supre-

mum norm. Throughout the paper, we denote various positive constants by the same
letter C.

For u ∈ L2(T2), we consider the Fourier expansion of u:

u(x) =
∑
k∈Z2

ûke
ik·x with ûk = û−k,

where ûk := 1
(2π)2

∫
[0,2π]×[0,2π]

u(x)e−ik·xdx denotes the Fourier coefficient of u on T2.

Define the Sobolev norm:

‖u‖2
Hs :=

∑
k∈Z2

(1 + |k|2)s|ûk|2,

and the anisotropic Sobolev norm:

‖u‖2
Hs,s′ =

∑
k∈Z2

(1 + |k1|2)s(1 + |k2|2)s
′ |ûk|2,

where k = (k1, k2). We define the Sobolev spaces Hs(T2), Hs,s′(T2) as the completion of
C∞(T2) with the norms ‖ · ‖Hs , ‖ · ‖Hs,s′ respectively. The notation Lpv(H

s
h) is given by

‖u‖Lpv(Hs
h) :=

(∫
Tv
‖u(·, x2)‖pHs(Th)dx2

) 1
p

Let us recall the definition of anisotropic dyadic decomposition of the Fourier space,
which will lead to another represnetation of Hs,s′ in the sense of Besov space. For a
general introduction to the theory of Besov space we refer to [BCD11], [Tri78], [Tri06].

7



8 Chapter 2. Preliminary

Let χ(1), θ(1) ∈ D be nonnegative radial functions on R, such that
i. the support of χ(1) is contained in a ball and the support of θ(1) is contained in an

annulus;
ii. χ(1)(z) +

∑
j≥0 θ

(1)(2−jz) = 1 for all z ∈ R.

iii. supp(χ(1))∩ supp(θ(1)(2−j·)) = ∅ for j ≥ 1 and suppθ(1)(2−i·)∩ suppθ(1)(2−j·) = ∅
for |i− j| > 1.

We call such (χ(1), θ(1)) dyadic partition of unity. The Littlewood-Paley blocks in the
vertical variable are now defined as u =

∑
j>−1 ∆v

ju, where

∆v
−1u = F−1(χ(1)(|k2|)û) ∆v

ju = F−1(θ(1)(2−j|k2|)û), k2 ∈ Z,

where F−1 is the inverse Fourier transform. The anisotropic Sobolev norm can also be
defined as follows:

‖u‖Hs,s′ =

(∑
j≥−1

22js′‖∆v
ju‖2

L2
v(Hs(Th))

) 1
2

.

To formulate the stochastic Navier-Stokes equations with anisotropic viscosity, we
need the following spaces:

H := {u ∈ L2(T2;R2); div u = 0},

V := {u ∈ H1(T2;R2); div u = 0},
H̃s,s′ := {u ∈ Hs,s′(T2;R2); div u = 0}.

Moreover, we use 〈·, ·〉 to denote the scalar product (which is also the inner product of
L2 and H)

〈u, v〉 =
2∑
j=1

∫
T2

uj(x)vj(x)dx

and 〈·, ·〉X to denote the inner product of Hilbert space X where X = l2, V or H̃s,s′ .
Besov spaces
Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
i. the support of χ is contained in a ball and the support of θ is contained in an

annulus;
ii. χ(z) +

∑
j>0 θ(2

−jz) = 1 for all z ∈ Rd;
iii. supp(χ) ∩ supp(θ(2−j·)) = ∅ for j > 1 and suppθ(2−i·) ∩ suppθ(2−j·) = ∅ for

|i− j| > 1.
We call such (χ, θ) dyadic partition of unity, and for the existence of dyadic partitions

of unity we refer to [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now
defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j·)Fu).

For α ∈ R, p, q ∈ [1,∞], u ∈ D we define

‖u‖Bαp,q := (
∑
j>−1

(2jα‖∆ju‖Lp)q)1/q,

with the usual interpretation as l∞ norm in case q = ∞. The Besov space Bα
p,q consists

of the completion of D with respect to this norm and the Hölder-Besov space Cα is given
by Cα(Rd) = Bα

∞,∞(Rd). For p, q ∈ [1,∞),

Bα
p,q(Rd) = {u ∈ S ′(Rd) : ‖u‖Bαp,q <∞}.
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Cα(Rd)  {u ∈ S ′(Rd) : ‖u‖Cα(Rd) <∞}.

We point out that everything above and everything that follows can be applied to dis-
tributions on the torus (see [Sic85], [SW71]). More precisely, let S ′(Td) be the space
of distributions on Td. Besov spaces on the torus with general indices p, q ∈ [1,∞] are
defined as the completion of C∞(Td) with respect to the norm

‖u‖Bαp,q(Td) := (
∑
j>−1

(2jα‖∆ju‖Lp(Td))
q)1/q,

and the Hölder-Besov space Cα is given by Cα = Bα
∞,∞(Td). We write ‖ · ‖α instead of

‖ · ‖Bα∞,∞(Td) in the following for simplicity. For p, q ∈ [1,∞)

Bα
p,q(Td) = {u ∈ S ′(Td) : ‖u‖Bαp,q(Td) <∞}.

Cα  {u ∈ S ′(Td) : ‖u‖α <∞}.

Here we choose Besov spaces as completions of smooth functions, which ensures that
the Besov spaces are separable which has a lot of advantages for our analysis below.

In this thesis, we use the following notations:

CCβ := C([0, T ], Cβ), CL∞ := C([0, T ], L∞(Td)).

2.2 Large deviation principle

We recall the definition of the large deviation principle. For a general introduction to the
theory we refer to [DPZ09], [DZ10].

Definition 2.1 (Large deviation principle). Given a family of probability measures {µε}ε>0

on a metric space (E, ρ) and a lower semicontinuous function I : E → [0,∞] not identi-
cally equal to +∞. The family {µε} is said to satisfy the large deviation principle(LDP)
with respect to the rate function I if
(U) for all closed sets F ⊂ E we have

lim sup
ε→0

ε log µε(F ) 6 − inf
x∈F

I(x),

(L) for all open sets G ⊂ E we have

lim inf
ε→0

ε log µε(G) > − inf
x∈G

I(x).

A family of random variable is said to satisfy large deviation principle if the law of
these random variables satisfy large deviation princple.

Moreover, I is a good rate function if its level sets Ir := {x ∈ E : I(x) 6 r} are
compact for arbitrary r ∈ (0,+∞).

Definition 2.2 (Laplace principle). A sequence of random variables {Xε} is said to
satisfy the Laplace principle with rate function I if for each bounded continuous real-
valued function h defined on E

lim
ε→0

ε logE
[
e−

1
ε
h(Xε)

]
= − inf

x∈E
{h(x) + I(x)}.



10 Chapter 2. Preliminary

Given a probabilty space (Ω,F , P ), the random variables {Zε} and {Zε} which take
values in (E, ρ) are called exponentially equivalent if for each δ > 0,

lim
ε→0

ε logP (ρ(Zε, Zε) > δ) = −∞.

Lemma 2.3 ([DZ10, Theorem 4.2.13]). If an LDP with a rate function I(·) holds for the
random variables {Zε}, which are exponentially equivalent to {Zε}, then the same LDP
holds for {Zε}.

2.3 Weak convergence approach

The weak convergence approach introduced by Budhiraja and Dupuis in [BD00] will play
an important role in this thesis. The starting point is the equivalence between the large
deviation principle and the Laplace principle. This result was first formulated in [Puk94]
and it is essentially a consequence of Varadhan’s lemma [Var66] and Bryc’s converse
theorem [Bry90].

Remark 2.4. By [DZ10] we have the the equivalence between the large deviation principle
and the Laplace principle in completely regular topological spaces. In [BD00] the authors
give the weak convergence approach on a Polish space. Since the proof does not depend
on the separability and the completeness, the result also holds in metric spaces.

Let {W (t)}t>0 be a cylindrical Wiener process on l2 w.r.t. a complete filtered prob-
ability space (Ω,F ,Ft, P ) (i.e. the path of W take values in C([0, T ];U), where U is
another Hilbert space such that the embedding l2 ⊂ U is Hilbert-Schmidt). Let E be a
metric space and suppose gε: C([0, T ], U)→ E is a measurable map for ε > 0. Let

A :=

{
v : v is l2-valued Ft-predictable process and

∫ T

0

‖v(s)(ω)‖2
l2ds <∞ a.s.

}
,

SN :=

{
φ ∈ L2([0, T ], l2) :

∫ T

0

‖φ(s)‖2
l2ds 6 N

}
,

AN := {v ∈ A : v(ω) ∈ SN P-a.s.} .

Here we will always refer to the weak topology on SN in the following if we do not state
it explicitly.

Now we formulate the following sufficient conditions for the Laplace principle of gε as
ε→ 0.

Hypothesis 2.5. There exists a measurable map g0 : C([0, T ], U) → E such that the
following two conditions hold:
1. Let {vε : ε > 0} ⊂ AN for some N < ∞. If vε converges to v in distribution as
SN -valued random elements, then

gε
(
W (·) +

1√
ε

∫ ·
0

vε(s)ds

)
→ g0

(∫ ·
0

v(s)ds

)
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in distribution as ε→ 0.
2. For each N <∞, the set

KN =

{
g0

(∫ ·
0

φ(s)ds

)
: φ ∈ SN

}
is a compact subset of E.

Lemma 2.6 ([BD00, Theorem 4.4]). If gε satisfies Hypothesis 2.5, then the family
{gε(W (·))} satisfies the Laplace principle (hence large deviation principle) on E with
the good rate function I given by

I(f) = inf
{φ∈L2([0,T ],l2):f=g0(

∫ ·
0 φ(s)ds)}

{
1

2

∫ T

0

‖φ(s)‖2
l2ds

}
. (2.1)

2.4 Existence and uniqueness of solutions

Due to the divergence free condition, we introduce the following Larey projection operator
PH : L2(T2)→ H:

PH : u 7→ u−∇∆−1(div u).

By applying the operator PH to (1.1) we can rewrite the equation in the following
form:

du(t) = ∂2
1u(t)dt−B(u(t))dt+ σ(t, u(t))dW (t),

u(0) = u0,
(2.2)

where the nonlinear operator B(u, v) = PH(u · ∇v) with the notation B(u) = B(u, u).
Here we use the same symbol σ after projection for simplicity.

For u, v, w ∈ V , define
b(u, v, w) := 〈B(u, v), w〉.

We have b(u, v, w) = −b(u,w, v) and b(u, v, v) = 0.
We introduce the precise assumptions on the diffusion coefficient σ. Given a complete

probability space (Ω,F , P ) with filtration {Ft}t>0. Let L2(l2, U) denotes the Hilbert-
Schmidt norms from l2 to U for a Hilbert space U . We recall the following conditions for
σ from [LZZ18]:

(i) Growth condition
There exists nonnegative constants K ′i, Ki, K̃i (i = 0, 1, 2) such that for every t ∈

[0, T ]:

(A0) ‖σ(t, u)‖2
L2(l2,H−1) 6 K ′0 +K ′1‖u‖2

H ;

(A1) ‖σ(t, u)‖2
L2(l2,H) 6 K0 +K1‖u‖2

H +K2‖∂1u‖2
H ;

(A2) ‖σ(t, u)‖2
L2(l2,H0,1) 6 K̃0 + K̃1‖u‖2

H0,1 + K̃2(‖∂1u‖2
H + ‖∂1∂2u‖2

H);

(ii)Lipschitz condition
There exists nonnegative constants L1, L2 such that:

(A3) ‖σ(t, u)− σ(t, v)‖2
L2(l2,H) 6 L1‖u− v‖2

H + L2‖∂1(u− v)‖2
H .

The following theorem from [LZZ18] shows the well-posedness of equation (2.2):

Theorem 2.7 ([LZZ18, Theorem 4.1, Theorem 4.2]). Under the assumptions (A0), (A1),
(A2) and (A3) with K2 <

2
21
, K̃2 <

1
5
, L2 <

1
5
, equation (2.2) has a unique probabilistically

strong solution u ∈ L∞([0, T ], H̃0,1) ∩ L2([0, T ], H̃1,1) ∩ C([0, T ], H−1) for u0 ∈ H̃0,1.
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2.5 Some useful estimates

We first present several lemmas from [LZZ18]. It follows from Minkowski inequality that

Lemma 2.8. For 1 6 q 6 p 6∞, we have

‖u‖Lph(Lqv) 6 ‖u‖Lqv(Lph),

‖u‖Lpv(Lqh) 6 ‖u‖Lqh(Lpv).

Lemma 2.9 ([LZZ18, Lemma 3.4]). Let u be a smooth function from T2 to R, we have

‖u‖2
L2
v(L∞h ) 6 C(‖u‖L2‖∂1u‖L2 + ‖u‖2

L2),

‖u‖2
L2
h(L∞v ) 6 C(‖u‖L2‖∂2u‖L2 + ‖u‖2

L2).

The following anisotropic estimate is from the proof of [LZZ18, Theorem 3.1]:

Lemma 2.10. For smooth functions u, v from T2 to R with u satisfies the divergence free
condition, we have

|b(u, v, u)| 6 a‖∂1u‖2
L2 + C‖u‖2

L2

(
‖∂1v‖

2
3

L2‖∂1∂2v‖
2
3

L2 + ‖∂2v‖
2
3

L2‖∂1∂2v‖
2
3

L2

+ ‖∂1v‖2
L2 + ‖∂1v‖L2 + ‖∂2v‖2

L2 + ‖∂2v‖L2

+ ‖∂1v‖
1
2

L2‖∂1∂2v‖
1
2

L2 + ‖∂2v‖
1
2

L2‖∂1∂2v‖
1
2

L2

)
,

where a > 0 is a constant small enough.
In particular, we have

|b(u, v, u)| 6 a‖∂1u‖2
L2 + C‖u‖2

L2(1 + ‖v‖2
H1,1).

Proof We have

|b(u, v, u)| = |〈u1∂1v + u2∂2v, u〉|
6 (‖u1‖L∞h (L2

v)‖∂1v‖L2
h(L∞v ) + ‖u2‖L2

h(L∞v )‖∂2v‖L∞h (L2
v))‖u‖L2 ,

where u = (u1, u2). Now we show the calculation of two terms in the right hand side
separately.

For the first term, by Lemmas 2.8 and 2.9, we have

‖u1‖L∞h (L2
v)‖∂1v‖L2

h(L∞v )‖u‖L2

6C‖u‖L2

(
‖u1‖L2‖∂1u

1‖L2 + ‖u1‖2
L2

) 1
2
(
‖∂1v‖L2‖∂1∂2v‖L2 + ‖∂1v‖2

L2

) 1
2

6C‖u‖L2

(
‖u1‖L2‖∂1u

1‖L2‖∂1v‖L2‖∂1∂2v‖L2

) 1
2 + C‖u‖L2‖u1‖L2‖∂1v‖L2

+ C‖u‖L2(‖u1‖L2 + ‖∂1u
1‖L2)‖∂1v‖L2 + C‖u‖L2‖u1‖L2‖∂1v‖

1
2

L2‖∂1∂2v‖
1
2

L2 .

Then Young’s inequality implies that

C‖u‖L2

(
‖u1‖L2‖∂1u

1‖L2‖∂1v‖L2‖∂1∂2v‖L2

) 1
2

6
a

4
‖∂1u‖2

L2 + C‖∂1v‖
2
3

L2‖∂1∂2v‖
2
3

L2‖u‖2
L2 ,
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and

C‖u‖L2‖∂1u
1‖L2‖∂1v‖L2 6

a

4
‖∂1u‖2

L2 + C‖∂1v‖2
L2‖u‖2

L2 .

Thus we have

‖u1‖L∞h (L2
v)‖∂1v‖L2

h(L∞v )‖u‖L2

6
a

2
‖∂1u‖2

L2 + C‖u‖2
L2

(
‖∂1v‖

2
3

L2‖∂1∂2v‖
2
3

L2 + ‖∂1v‖2
L2 + ‖∂1v‖L2 + ‖∂1v‖

1
2

L2‖∂1∂2v‖
1
2

L2

)
.

Do the same calculation for the second term and combine the divergence free condition
∂2u

2 = −∂1u
1, we have

‖u2‖L2
h(L∞v )‖∂2v‖L∞h (L2

v)‖u‖L2

6
a

2
‖∂1u‖2

L2 + C‖u‖2
L2

(
‖∂2v‖

2
3

L2‖∂1∂2v‖
2
3

L2 + ‖∂2v‖2
L2 + ‖∂2v‖L2 + ‖∂2v‖

1
2

L2‖∂1∂2v‖
1
2

L2

)
,

which implies the first inequality.
The second inequality holds from the first one and Young’s Inequality.

�
Similar to the proof of Lemma 2.10, by Lemmas 2.8 and 2.9, we also have

Lemma 2.11. For smooth functions u, v, w form T2 to R2 with divergence free condition,
we have

|b(u, v, w)| 6 C‖u‖H1,0‖v‖H1,1‖w‖L2 .

Proof

|b(u, v, w)|
6(‖u1‖L∞h (L2

v)‖∂1v‖L2
h(L∞v ) + ‖u2‖L2

h(L∞v )‖∂2v‖L∞h (L2
v))‖w‖L2

6C
(

(‖u1‖L2‖∂1u
1‖L2 + ‖u1‖2

L2)
1
2 (‖∂1v‖L2‖∂1∂2v‖L2 + ‖∂1v‖2

L2)
1
2

+ (‖u2‖L2‖∂2u
2‖L2 + ‖u2‖2

L2)
1
2 (‖∂2v‖L2‖∂1∂2v‖L2 + ‖∂2v‖2

L2)
1
2

)
‖w‖L2

6C‖u‖H1,0‖v‖H1,1‖w‖L2 ,

where we used the divergence free condition to deal with the term ∂2u
2 in the last in-

equality. �
The next lemma is from the proof of [LZZ18, Lemma 3.5], which plays an important

role in H0,1-estimate.

Lemma 2.12. For smooth function u form T2 to R2 with divergence free condition, we
have

|〈∂2u, ∂2(u · ∇u)〉| 6 a‖∂1∂2u‖2
L2 + C(1 + ‖∂1u‖2

L2)‖∂2u‖2
L2 ,

where a > 0 is a constant small enough.

Proof We have

〈∂2u, ∂2(u · ∇u)〉 = 〈∂2u
1, ∂2(u · ∇u1)〉+ 〈∂2u

2, ∂2(u · ∇u2)〉,

where u = (u1, u2).
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For the first term on the right hand side, we have

〈∂2u
1, ∂2(u · ∇u1)〉 =〈∂2u

1, ∂2(u1∂1u
1 + u2∂2u

1)〉
=〈∂2u

1, ∂2u
1∂1u

1〉+ 〈∂2u
1, u1∂2∂1u

1〉
+ 〈∂2u

1, ∂2u
2∂2u

1〉+ 〈∂2u
1, u2∂2

2u
1〉

=〈∂2u
1, u1∂2∂1u

1〉+ 〈∂2u
1, u2∂2

2u
1〉

=〈∂2u
1, u · ∇∂2u

1〉

=− 1

2

∫
div u|∂2u

1|2dx

=0,

where we use the fact div u = 0 in the third and sixth equality.
Similarly, for the second term, we have

〈∂2u
2, ∂2(u · ∇u2)〉 =〈∂2u

2, ∂2u
1∂1u

2〉+ 〈∂2u
2, u1∂2∂1u

2〉
+ 〈∂2u

2, ∂2u
2∂2u

2〉+ 〈∂2u
2, u2∂2

2u
2〉

=〈∂2u
2, ∂2u

1∂1u
2〉+

1

2

∫
u1∂1(∂2u

2)2dx

+ 〈∂2u
2, ∂2u

2∂2u
2〉+

1

2

∫
u2∂2(∂2u

2)2dx

=〈∂2u
2, ∂2u

1∂1u
2〉+ 〈∂2u

2, ∂2u
2∂2u

2〉

− 1

2
〈∂2u

2, ∂1u
1∂2u

2〉 − 1

2
〈∂2u

2, ∂2u
2∂2u

2〉

=〈∂2u
2, ∂2u

1∂1u
2〉+ 〈∂2u

2, ∂2u
2∂2u

2〉,

where we use div u = 0 in the last equality.
Then by Lemma 2.9 we have

|〈∂2u, ∂2(u · ∇u)〉|
=|〈∂2u

2, ∂2u
1∂1u

2〉+ 〈∂2u
2, ∂2u

2∂2u
2〉|

6
(
‖∂2u

1‖L∞h (L2
v)‖∂1u

2‖L2
h(L∞v ) + ‖∂1u

1‖L2
h(L∞v )‖∂2u

2‖L∞h (L2
v)

)
‖∂2u

2‖L2

6C
(
‖∂2u‖L2 + ‖∂2u‖

1
2

L2‖∂1∂2u‖
1
2

L2

)(
‖∂1u‖L2 + ‖∂1u‖

1
2

L2‖∂1∂2u‖
1
2

L2

)
‖∂2u

2‖L2

6C‖∂1u‖L2‖∂2u‖2
L2 + C‖∂1∂2u‖L2‖∂1u‖L2‖∂2u‖L2

+ C‖∂1∂2u‖
1
2

L2

(
‖∂1u‖L2‖∂2u‖

1
2

L2 + ‖∂2u‖L2‖∂1u‖
1
2

L2

)
‖∂2u

2‖L2 ,

where we use the following inequality in the last inequality:

‖∂2u‖
1
2

L2‖∂1∂2u‖L2‖∂1u‖
1
2

L2‖∂2u
2‖L2

=‖∂2u‖
1
2

L2‖∂1∂2u‖L2‖∂1u‖
1
2

L2‖∂1u
1‖

1
2

L2‖∂2u
2‖

1
2

L2

6‖∂1∂2u‖L2‖∂1u‖L2‖∂2u‖L2 ,

where we use div u = 0 in the first equality.
By Young’s inequality, we have

C‖∂1∂2u‖L2‖∂1u‖L2‖∂2u‖L2 6
a

2
‖∂1∂2u‖2

L2 + C‖∂1u‖2
L2‖∂2u‖2

L2 ,
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and

C‖∂1∂2u‖
1
2

L2

(
‖∂1u‖L2‖∂2u‖

1
2

L2 + ‖∂2u‖L2‖∂1u‖
1
2

L2

)
‖∂2u

2‖L2

6
a

2
‖∂1∂2u‖2

L2 + C
(
‖∂1u‖

4
3

L2‖∂2u‖
2
3

L2 + ‖∂2u‖
4
3

L2‖∂1u‖
2
3

L2

)
‖∂2u

2‖
4
3

L2

6
a

2
‖∂1∂2u‖2

L2 + C‖∂1u‖
4
3

L2‖∂2u‖2
L2 + C‖∂2u‖

4
3

L2‖∂1u‖
2
3

L2‖∂1u
1‖

2
3

L2‖∂2u
2‖

2
3

L2

6
a

2
‖∂1∂2u‖2

L2 + C(1 + ‖∂1u‖2
L2)‖∂2u‖2

L2 ,

where we use div u = 0 in the second inequality.
Thus we deduce that

|〈∂2u, ∂2(u · ∇u)〉| 6 a‖∂1∂2u‖2
L2 + C(1 + ‖∂1u‖2

L2)‖∂2u‖2
L2 .

�
The following estimates are obtained by [CDGG00] in dimension 3, we now present

its 2-dimension version.

Lemma 2.13 ([CDGG00, Lemma 3]). For any real number s0 >
1
2

and s > s0, for any
vector fields u and w, with divergence free condition, there exists constants C and dk(u,w)
such that

|〈∆v
k(u · ∇w),∆v

kw〉| 6 Cdk2
−2ks‖w‖

H
1
4 ,s

(‖u‖
H

1
4 ,s0
‖∂1w‖H0,s + ‖u‖

H
1
4 ,s
‖∂1w‖H0,s0

+ ‖∂1u‖H0,s0‖w‖
H

1
4 ,s

+ ‖∂1u‖H0,s‖w‖
H

1
4 ,s0

),

where
∑

k dk = 1.

Proof Define
F h
k = ∆v

k(u
1∂1w) and F v

k = ∆v
k(u

2∂2w).

Let us start by proving the result for F h
k . Recall the Bony decomposition (see

[BCD11]) in vertical variables for tempered distributions a, b:

ab = T va b+ T vb a+Rv(a, b),

with
T va b =

∑
j

Svj−1a∆v
jb and Rv(a, b) =

∑
|k−j|61

∆v
ka∆v

jb,

where Svj−1a =
∑

j′6j−2 ∆v
j′a.

Then we have by Hölder’s inequality and Sobolev embedding H
1
4 (T) ↪→ L4(T)

〈∆v
k(u

1∂1w),∆v
kw〉 6‖∆v

k(u
1∂1w)‖

L2
v(L

4
3
h )
‖∆v

kw‖L2
v(L4

h)

6C‖∆v
k(T

v
u1∂1w + T v∂1wu

1 +Rv(u1, ∂1w))‖
L2
v(L

4
3
h )
‖∆v

kw‖
L2
v(H

1
4
h )

6C‖∆v
k(T

k
u1∂1w + T v∂1wu

1 +Rv(u1, ∂1w))‖
L2
v(L

4
3
h )

2−ksck‖w‖H 1
4 ,s
,

(2.3)

where ck =

2ks‖∆k
vw‖

L2
v(H

1
4
h

)

‖w‖
H

1
4 ,s

∈ l2. For the first term of the third line, we have

‖∆v
k(T

k
u1∂1w)‖

L2
v(L

4
3
h )
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6
∑

|k−k′|6N0

‖Svk′−1u
1∆v

k′∂1w‖
L2
v(L

4
3
h )
6

∑
|k−k′|6N0

‖Svk′−1u
1‖L∞v (L4

h)‖∆v
k′∂1w‖L2

v(L2
h)

6C
∑

|k−k′|6N0

‖u1‖
H

1
4 ,s0

2−k
′sbk′‖∂1w‖H0,s 6 Cb

(1)
k 2−ks‖u1‖

H
1
4 ,s0
‖∂1w‖H0,s ,

where bk =
2ks‖∆v

k∂1w‖L2
v(L

2
h
)

‖∂1w‖H0,s
∈ l2 and b

(1)
k = 2ks

∑
|k−k′|6N0

2−k
′sbk′ ∈ l2. Note here N0

depends on the choice of Dyadic partition. For the second term, similarly we have

‖∆v
k(T

k
∂1w

u1)‖
L2
v(L

4
3
h )
6

∑
|k−k′|6N0

‖Svk′−1∂1w‖L∞v (L2
h)‖∆v

k′u
1‖L2

v(L4
h)

6C
∑

|k−k′|6N0

‖∂1w‖H0,s02−k
′sak′‖u‖H 1

4 ,s
6 Ca

(1)
k 2−ks‖∂1w‖H0,s0‖u‖

H
1
4 ,s
,

where ak =

2ks‖∆v
ku‖

L2
v(H

1
4
h

)

‖u‖
H

1
4 ,s

∈ l2 and a
(1)
k = 2ks

∑
|k−k′|6N0

2−k
′sc̃k ∈ l2.

‖∆v
kR

v(u1, ∂1w)‖
L2
v(L

4
3
h )
6

∑
|k′−j|61,k′>k−N0

‖∆v
k′u

1‖L2
v(L4

h)‖∆v
j∂1w‖L∞v (L2

h)

6C
∑

k′>k−N0

2−k
′sak′‖u‖H 1

4 ,s
‖∂1w‖H0,s0

6Ca(2)
k 2−ks‖u‖

H
1
4 ,s
‖∂1w‖H0,s0 ,

where a
(2)
k = 2ks

∑
k′>k−N0

2−k
′sak′ =

∑
k′∈Z I{k′6N0}2

k′sak−k′ and by Young’s convolution
inequality

‖a(2)‖l2 6 ‖I{k′6N0}2
k′s‖l1‖a‖l2 <∞.

This implies that

|〈F h
k ,∆

v
kw〉| 6 Cck(b

(1)
k +a

(1)
k +a

(2)
k )2−2ks‖w‖

H
1
4 ,s

(‖u‖
H

1
4 ,s0
‖∂1w‖H0,s+‖u‖

H
1
4 ,s
‖∂1w‖H0,s0 ),

where ck(b
(1)
k + a

(1)
k + a

(2)
k ) ∈ l1.

To estimate the term 〈F v
k ,∆

v
kw〉, write ∆v

k(u
2∂2w) = F v,1

k + F v,2
k with

F v,1
k = ∆v

k

∑
k′>k−N0

Svk′+2∂2w∆v
k′u

2 and F v,2
k = ∆v

k

∑
|k−k′|6N0

Svk′−1u
2∆v

k′∂2w.

For F v,1
k , again we have by Hölder’s inequality and Sobolev embedding,

‖F v,1
k ‖

L2
v(L

4
3
h )
6

∑
k′>k−N0

‖Svk′+2∂2w‖L∞v (L4
h)‖∆v

k′u
2‖L2

v(L2
h)

6C
∑

k′>k−N0

2k
′‖Svk′+2w‖L∞v (L4

h)2
−k′‖∆v

k′∂2u
2‖L2

v(L2
h)

6C
∑

k′>k−N0

‖w‖
H

1
4 ,s0

2−k
′sc̃k′‖∂1u‖H0,s

6C2−ksc̃
(2)
k ‖w‖H 1

4 ,s0
‖∂1u‖H0,s ,
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where we use Bernstein’s inequality twice in the second inequality and divergence free

condition in the third inequality. Note here c̃k =
2ks‖∆v

k∂1u‖L2
v(L

2
h
)

‖∂1u‖H0,s
∈ l2 and c̃

(2)
k =

2ks
∑

k′>k−N0
2−k

′sc̃k′ ∈ l2.
Then similar as (2.3) we have

|〈F v,1
k ,∆v

kw〉| 6 Cckc̃
(2)
k 2−2ks‖w‖

H
1
4 ,s
‖w‖

H
1
4 ,s0
‖∂1u‖H0,s .

The last term F v,2
k requires commutator estimates. Following a computation in [CL92],

we have

〈F v,2
k ,∆v

kw〉 =〈Svk−1u
2∆v

k∂2w,∆
v
kw〉+Rk(u,w) with

Rk(u, v) =
∑

|k−k′|6N0

〈[∆v
k, S

v
k′−1u

2]∆v
k′∂2w,∆

v
kw〉

−
∑

|k′−k|6N0

〈(Svk−1 − Svk′−1)u2∆v
k∆

v
k′∂2w,∆

v
kw〉.

Using an integration by parts and divergence free condition, we have

|〈Svk−1u
2∆v

k∂2w,∆
v
kw〉| =

1

2
|〈Svk∂2u

2∆v
kw,∆

v
kw〉| =

1

2
|〈Svk∂1u

1∆v
kw,∆

v
kw〉|

6C‖Svk∂1u
1‖L∞v (L2

h)‖∆v
kw‖2

L2
v(L4

h)

6Cc2
k2
−2ks‖∂1u‖H0,s0‖w‖2

H
1
4 ,s
.

(2.4)

Note that the Fourier transform of (Svk−1−Svk′−1)u2 is supported in 2kA since |k−k′| 6
N0 where A is an annulus. We have by Bernstein’s inequality

‖
∑

|k′−k|6N0

(Svk−1 − Svk′−1)u2∆v
k∆

v
k′∂2w‖

L2
v(L

4
3
h )

6
∑

|k′−k|6N0

‖(Svk−1 − Svk′−1)u2‖L∞v (L2
h)‖∆v

k∆
v
k′∂2w‖L2

v(L4
h)

6C
∑

|k′−k|6N0

2k‖(Svk−1 − Svk′−1)∂2u
2‖L∞v (L2

h)2
−k‖∆v

kw‖L2
v(L4

h)

6C
∑

|k′−k|6N0

‖∂1u
1‖H0,s02−ksck‖w‖H 1

4 ,s
.

This similar as (2.3) implies that

|〈
∑

|k′−k|6N0

(Svk−1 − Svk′−1)u2∆v
k′∂2w,∆

v
kw〉| 6 Cc2

k2
−2ks‖∂1u‖H0,s0‖w‖2

H
1
4 ,s
.

To estimate the term 〈[∆v
k, S

v
k′−1u

2]∆v
k′∂2w,∆

v
kw〉, we have for any function f ,

[∆v
k, S

v
k′−1u

2]f(x1, x2)

=2k
∫
Tv
h(2ky2)(Svk′−1u

2(x1, x2)− Svk′−1u
2(x1, x2 − y2))f(x1, x2 − y2)dy2

=

∫
Tv×[0,1]

h1(2ky2)(Svk′−1∂2u
2)(x1, x2 + (t− 1)y2)f(x1, x2 − y2)dy2dt
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=−
∫
Tv×[0,1]

h1(2ky2)(Svk′−1∂1u
1)(x1, x2 + (t− 1)y2)f(x1, x2 − y2)dy2dt,

where h = F−1χ(1), (k = −1) or h = F−1θ(1), (k > 0), h1(z) = zh(z) and we use
divergence free condition in the last line. This implies

‖[∆v
k, S

v
k′−1u

2]f(·, x2)‖
L

4
3
h

6 C

∫
|h1(2ky2)|‖Svk′−1∂1u

1‖L∞v (L2
h)‖f(·, x2 − y2)‖L4

h
dy2

Then we get

‖[∆v
k, S

v
k′−1u

2]f‖
L2
v(L

4
3
h )
6 C2−k‖Svk′−1∂1u

1‖L∞v (L2
h)‖f‖

L2
v(H

1
4
h )
.

Hence

|
∑

|k−k′|6N0

〈[∆v
k, S

v
k′−1u

2]∆v
k′∂2w,∆

v
kw〉|

6C2−k
∑

|k−k′|6N0

‖Svk′−1∂1u
1‖L∞v (L2

h)2
k′‖∆v

k′w‖
L2
v(H

1
4
h )
‖∆v

kw‖
L2
v(H

1
4
h )

6C
∑

|k−k′|6N0

‖∂1u‖H0,s02−k
′sck′‖w‖H 1

4 ,s
2−ksck‖w‖H 1

4 ,s

6Cckc
(1)
k 2−2ks‖∂1u‖H0,s0‖w‖

H
1
4 ,s
‖w‖

H
1
4 .s
,

where c
(1)
k = 2ks

∑
|k−k′|6N0

2−k
′sck′ ∈ l2

Combining all the term together, let

d′k = ck(b
(1)
k + a

(1)
k + a

(2)
k + c̃

(2)
k + ck + c

(1)
k ) ∈ l1 and dk =

d′k
‖d′k‖l1

we finish the proof. �

The following remarkable result is from [BY82] and [Dav76]:

Lemma 2.14. There exists a universal constant c such that, for any p > 2 and for all
continuous martingale (Mt) with M0 = 0 and stopping times τ ,

‖M∗
τ ‖p 6 cp

1
2‖〈M〉

1
2
τ ‖p,

where M∗
t = sup06s6t |Ms| and ‖ ·‖p stands for the Lp norm with respect to the probability

space.

We will need several important properties of Besov spaces on the torus and we recall
the following Besov embedding theorems on the torus (c.f. [Tri78, Theorem 4.6.1], [GIP15,
Lemma A.2]):

Lemma 2.15. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then
Bα
p1,q1

(Td) is continuously embedded in B
α−d(1/p1−1/p2)
p2,q2 (Td).

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow,
for later use.

Lemma 2.16 ([GIP15, Lemma A.7]). Let u ∈ Cα for some α ∈ R. Then for every δ > 0,
there exists a constant C independent of u such that

‖et∆u‖α+δ 6 Ct−δ/2‖u‖α.



Chapter 3

Small noise large deviation principle

In this chapter, we consider the small noise large deviation principle for the stochastic
Navier-Stokes equations with anisotropic viscosity.

Consider the following equation:

duε(t) = ∂2
1u

ε(t)dt−B(uε(t))dt+
√
εσ(t, uε(t))dW (t),

uε(0) = u0.
(3.1)

By Lemma 2.7, under the assumptions (A0)-(A3) with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5
, (3.1)

has a unique strong solution uε ∈ L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1)

⋂
C([0, T ], H−1) for

u0 ∈ H̃0,1. It follows from Yamada-Watanabe theorem (See [LR15, Appendix E]) that
there exists a Borel-measurable function

gε : C([0, T ], U)→ L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1)

such that uε = gε(W ) a.s..
Let us introduce the skeleton equation associated to (3.1), for φ ∈ L2([0, T ], l2):

dzφ(t) = ∂2
1z

φ(t)dt−B(zφ(t))dt+ σ(t, zφ(t))φ(t)dt,

div zφ = 0,

zφ(0) = u0.

(3.2)

Define g0 : C([0, T ], U)→ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1) by

g0(h) :=

{
zφ, if h =

∫ ·
0
φ(s)ds for some φ ∈ L2([0, T ], l2);

0, otherwise.

Then the rate function can be written as

I(z) = inf

{
1

2

∫ T

0

‖φ(s)‖2
l2ds : z = zφ, φ ∈ L2([0, T ], l2)

}
, (3.3)

where z ∈ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

The main result of this chapter is the following one:

Theorem 3.1. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 = 0 and u0 ∈ H̃0,1, then

uε satisfies a large deviation principle on L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1)

with the good rate function I given by (3.3).

19
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3.1 Two equations

In this section we give existence and uniqueness of solutions to two equations which will
be used in the proof of the main result. The first one we consider is the skeleton equation
(3.2).

An element zφ ∈ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1) is called a (weak)

solution to (3.2) if for any ϕ ∈ (C∞0 ([0, T ]× T2))2 with divϕ = 0, and t > 0,

〈zφ(t), ϕ(t)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈zφ, ∂tϕ〉 − 〈∂1z
φ, ∂1ϕ〉+ 〈−B(zφ) + σ(s, zφ)φ, ϕ〉ds.

The following Lemma gives existence and uniqueness of the weak solution to (3.2)
which can be obtained by the same method as in [LZZ18].

Lemma 3.2. Assume (A0)-(A3) hold with L2 = 0. For all u0 ∈ H̃0,1 and φ ∈ L2([0, T ], l2)
there exists a unique solution

zφ ∈ L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1)

to (3.2).

Proof First we give some a priori estimates for zφ. By taking H inner product of (3.2)
with zφ and using div zφ = 0, we have

‖zφ(t)‖2
H + 2

∫ t

0

‖∂1z
φ(s)‖2

Hds

=‖u0‖2
H + 2

∫ t

0

〈zφ(s), σ(s, zφ(s))φ(s)〉ds

6‖u0‖2
H + 2

∫ t

0

‖zφ(s)‖H‖σ(s, zφ(s))‖L2(l2,H)‖φ(s)‖l2ds

6‖u0‖2
H + 2

∫ t

0

(
‖zφ(s)‖2

H‖φ(s)‖2
l2 +K0 +K1‖zφ(s)‖2

H +K2‖∂1z
φ(s)‖2

H

)
ds,

where we used (A1) in the last inequality.
Hence by Gronwall’s inequality, we have

‖zφ(t)‖2
H +

∫ t

0

‖∂1z
φ(s)‖2

Hds 6 (‖u0‖2
H + C)eC

∫ t
0 (‖φ(s)‖2

l2
+1)ds. (3.4)

Similarly, we have

‖zφ(t)‖2
H̃0,1 + 2

∫ t

0

(‖∂1z
φ(s)‖2

H + ‖∂1∂2z
φ(s)‖2

H)ds

=‖u0‖2
H̃0,1 − 2

∫ t

0

〈∂2z
φ(s), ∂2(zφ · ∇zφ)(s)〉ds+ 2

∫ t

0

〈zφ(s), σ(s, zφ(s))φ(s)〉H̃0,1ds

6‖u0‖2
H̃0,1 +

∫ t

0

(
1

5
‖∂1∂2z

φ(s)‖2
H + C(1 + ‖∂1z

φ(s)‖2
H)‖∂2z

φ(s)‖2
H)ds

+ 2

∫ t

0

(‖zφ(s)‖2
H̃0,1‖φ(s)‖2

l2 + ‖σ(s, zφ(s))‖2
L2(l2,H̃0,1)

)ds,
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where we used Lemma 2.12 in the last inequality.
Hence by (A2) we deduce that

‖zφ(t)‖2
H̃0,1 +

∫ t

0

‖zφ(s)‖2
H̃1,1ds

6‖u0‖2
H̃0,1 + C + C

∫ t

0

(1 + ‖∂1z
φ(s)‖2

H + ‖φ(s)‖2
l2)‖zφ(s)‖2

H̃0,1ds.

Then by Gronwall’s inequality and (3.4) we have

‖zφ(t)‖2
H̃0,1 +

∫ t

0

‖zφ(s)‖2
H̃1,1ds 6 (‖u0‖2

H̃0,1 + C)eC(t,φ,u0), (3.5)

where

C(t, φ, u0) = C

(∫ t

0

(1 + ‖φ(s)‖2
l2)ds+ (‖u0‖2

H + 1)eC
∫ t
0 (1+‖φ(s)‖2

l2
)ds

)
.

Now consider the following approximate equation:
dzφε (t) = ∂2

1z
φ
ε (t)dt+ ε2∂2

2z
φ
ε (t)dt−B(zφε (t))dt+ σ(t, zφε (t))φ(t)dt,

divzφε = 0,

zφε (0) = u0 ∗ jε,
(3.6)

where j is a smooth function on R2 with

j(x) = 1, |x| 6 1; j(x) = 0, |x| > 2,

and

jε(x) =
1

ε2
j(
x

ε
).

It follows from classical theory on Navier-Stokes system that (3.6) has a unique global
smooth solution zφε for any fixed ε. Furthermore, along the same line to (3.4) and (3.5)
we have

‖zφε (t)‖2
H +

∫ t

0

‖∂1z
φ
ε (s)‖2

Hds+ ε2
∫ t

0

‖∂2z
φ
ε (s)‖2

Hds 6 (‖u0‖2
H + C)eC

∫ t
0 (‖φ(s)‖2

l2
+1)ds,

‖∂2z
φ
ε (t)‖2

H +

∫ t

0

‖∂1∂2z
φ
ε (s)‖2

Hds+ ε2
∫ t

0

‖∂2
2z

φ
ε (s)‖2

Hds 6 (‖u0‖2
H̃0,1 + C)eC(t,φ,u0),

(3.7)
The following follows a similar argument as in the proof of [LZZ18, Theorem 3.1].

By (3.7), we have {zφε }ε>0 is uniformly bounded in L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1),

hence bounded in L4([0, T ], H
1
2 ) (by interpolation) and L4([0, T ], L4(T2)) (by Sobolev

embedding). Thus B(zφε ) is uniformly bounded in L2([0, T ], H−1). Let p ∈ (1, 4
3
), we

have ∫ T

0

‖σ(s, zφε (s))φ(s)‖pH−1ds 6
∫ T

0

‖σ(s, zφε (s))‖pL2(l2,H−1)‖φ(s)‖pl2ds

6C
∫ T

0

(1 + ‖σ(s, zφε (s))‖4
L2(l2,H−1) + ‖φ(s)‖2

l2)ds
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6C
∫ T

0

(1 + ‖zφε (s))‖4
H + ‖φ(s)‖2

l2)ds <∞,

where we used Young’s inequality in the second line and (A0) in the third line. It comes
out that

{∂tzφε }ε>0 is uniformly bounded in Lp([0, T ], H−1). (3.8)

Thus by Aubin-Lions lemma (see [LZZ18, Lemma 3.6]), there exists a zφ ∈ L2([0, T ], H)
such that

zφε → zφ strongly in L2([0, T ], H) as ε→ 0 (in the sense of subsequence).

Since {zφε }ε>0 is uniformly bounded in L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1), there exists a

z̃ ∈ L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1) such that

zφε → z̃ weakly in L2([0, T ], H̃1,1) as ε→ 0 (in the sense of subsequence).

zφε → z̃ weakly star in L∞([0, T ], H̃0,1) as ε→ 0 (in the sense of subsequence).

By the uniqueness of weak convergence limit, we deduce that zφ = z̃. By (3.8) and [FG95,
Theorem 2.2], we also have for any δ > 0

zφε → zφ strongly in C([0, T ], H−1−δ) as ε→ 0 (in the sense of subsequence).

Now we use the above convergence to prove that zφ is a solution to (3.2). Note that
for any ϕ ∈ C∞([0, T ]× T2) with divϕ = 0, for any t ∈ [0, T ], zφε satisfies

〈zφε (t), ϕ(t)〉 =〈u0, ϕ(0)〉

+

∫ t

0

〈zφε , ∂tϕ〉 − 〈∂1z
φ
ε , ∂1ϕ〉 − ε2〈∂2z

φ
ε , ∂2ϕ〉+ 〈−B(zφε ) + σ(s, zφε )φ, ϕ〉ds.

(3.9)
By [Tem79, Chapter 3, Lemma 3.2] we have∫ t

0

〈−B(zφε ), ϕ〉ds→
∫ t

0

〈−B(zφ), ϕ〉ds as ε→ 0.

For the last term in the right hand side of (3.9), we have∫ t

0

〈σ(s, zφε )φ− σ(s, zφ)φ, ϕ〉ds

6
∫ t

0

‖(σ(s, zφε )− σ(s, zφ))φ‖H‖ϕ‖Hds

6C
∫ t

0

‖σ(s, zφε )− σ(s, zφ)‖L2(l2,H)‖φ‖l2ds

6C

(∫ t

0

‖zφε − zφ‖2
Hds

) 1
2
(∫ t

0

‖φ(s)‖2
l2ds

) 1
2

,

where we used Hölder’s inequality and (A3) with L2 = 0 in the last inequality.
Thus let ε→ 0 in (3.9), we have zφ ∈ L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1) and

∂tz
φ = ∂2

1z
φ −B(zφ) + σ(t, zφ(t))φ.



3.1. Two equations 23

Since the right hand side belongs to Lp([0, T ], H−1), we deduce that

zφ ∈ L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1).

For uniqueness, let zφ1 , z
φ
2 ∈ L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1)

⋂
C([0, T ], H−1) be two

solutions to (3.2) and wφ = zφ1 − z
φ
2 . Then we have

‖wφ(t)‖2
H + 2

∫ t

0

‖∂1w
φ(s)‖2

Hds

=‖wφ(0)‖2
H − 2

∫ t

0

〈wφ(s), B(zφ1 )(s)−B(zφ2 )(s)〉ds

+ 2

∫ t

0

〈wφ(s), σ(s, zφ1 (s))φ(s)− σ(s, zφ2 (s))φ(s)〉ds

6‖wφ(0)‖2
H − 2

∫ t

0

b(wφ(s), zφ2 (s), wφ(s))ds

+ 2

∫ t

0

‖wφ(s)‖H‖σ(s, zφ1 (s))− σ(s, zφ2 (s))‖L2(l2,H)‖φ(s)‖l2ds

6‖wφ(0)‖2
H +

∫ t

0

1

5
‖∂1w

φ(s)‖2
Hds+ C

∫ t

0

(1 + ‖zφ2 (s)‖2
H̃1,1)‖wφ(s)‖2

Hds

+

∫ t

0

(‖wφ(s)‖2
H‖φ(s)‖2

l2 + L1‖wφ(s)‖2
H)ds,

where we used Lemma 2.10 in the sixth line and (A3) with L2 = 0 in the last line.
Then by Gronwall’s inequality we have

‖wφ(t)‖2
H 6 ‖wφ(0)‖2

He
C

∫ t
0 (1+‖zφ2 (s)‖2

H̃1,1+‖φ(s)‖2
l2

)ds,

which along with the fact that zφ2 ∈ L2([0, T ], H̃1,1) and φ ∈ L2([0, T ], l2) implies that
wφ(t) = 0. That is: zφ1 = zφ2 .

�

For next step, consider the following equation:

dZε
v(t) = ∂2

1Z
ε
v(t)dt−B(Zε

v(t))dt+ σ(t, Zε
v(t))v

ε(t)dt+
√
εσ(t, Zε

v(t))dW (t),

divZε
v = 0,

Zε
v(0) = u0,

(3.10)

where vε ∈ AN for some N < ∞. Here Zε
v should have been denoted Zε

vε and the slight
abuse of notation is for simplicity.

Lemma 3.3. Assume (A0)-(A3) hold with L2 = 0 and vε ∈ AN for some N <∞. Then

Zε
v = gε

(
W (·) + 1√

ε

∫ ·
0
vε(s)ds

)
is the unique strong solution to (3.10).

Proof Since vε ∈ AN , by the Girsanov theorem (see [LR15, Appendix I]), W̃ (·) :=
W (·) + 1√

ε

∫ ·
0
vε(s)ds is an l2-cylindrical Wiener-process under the probability measure

dP̃ := exp

{
− 1√

ε

∫ T

0

vε(s)dW (s)− 1

2ε

∫ T

0

‖vε(s)‖2
l2ds

}
dP.
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Then (Zε
v , W̃ ) is the solution to (3.1) on the stochastic basis (Ω,F , P̃ ). By (A0) we have∫ T

0

‖σ(s, Zε
v(s))‖H−1ds <∞.

Then (Zε
v ,W ) satisfies the condition of the definition of weak solution (see [LZZ18, Defi-

nition 4.1]) and hence is a weak solution to (3.10) on the stochastic basis (Ω,F , P ) and

Zε
v = gε

(
W (·) + 1√

ε

∫ ·
0
vε(s)ds

)
.

If Z̃ε
v and Zε

v are two weak solutions to (3.10) on the same stochastic basis (Ω,F , P ).
Let W ε = Zε

v − Z̃ε
v and q(t) = k

∫ t
0
(‖Zε

v(s)‖2
H̃1,1 + ‖vε(s)‖2

l2)ds for some constant k.

Applying Itô’s formula to e−q(t)‖W ε(t)‖2
H , we have

e−q(t)‖W ε(t)‖2
H + 2

∫ t

0

e−q(s)‖∂1W
ε(s)‖2

Hds

=− k
∫ t

0

e−q(s)‖W ε(s)‖2
H(‖Zε

v(s)‖2
H̃1,1 + ‖vε(s)‖2

l2)ds− 2

∫ t

0

e−q(s)b(W ε, Zε
v ,W

ε)ds

+ 2

∫ t

0

e−q(s)〈σ(s, Zε
v)v

ε − σ(s, Z̃ε
v)v

ε,W ε(s)〉ds

+ 2
√
ε

∫ t

0

e−q(s)〈W ε(s), (σ(s, Zε
v)− σ(s, Z̃ε

v))dW (s)〉

+ ε

∫ t

0

e−q(s)‖σ(s, Zε
v)− σ(s, Z̃ε

v)‖2
L2(l2,H)ds.

By Lemma 2.10, there exists constants α̃ ∈ (0, 1) and C̃ such that

|b(W ε, Zε
v ,W

ε)| 6 α̃‖∂1W
ε‖2
H + C̃(1 + ‖Zε

v‖2
H̃1,1)‖W ε‖2

H .

We also have

2|〈σ(s, Zε
v)v

ε − σ(s, Z̃ε
v)v

ε,W ε〉| 6 2‖(σ(s, Zε
v)− σ(s, Z̃ε

v))v
ε‖H‖W ε‖H

6 ‖σ(s, Zε
v)− σ(s, Z̃ε

v)‖2
L2(l2,H) + ‖vε‖2

l2‖W ε‖2
H .

Let k > 2C̃ and we may assume ε < 16
25

, by (A3) with L2 = 0 we have

e−q(t)‖W ε(t)‖2
H + (2− 2α̃)

∫ t

0

e−q(s)‖∂1W
ε(s)‖2

Hds

6C
∫ t

0

e−q(s)‖W ε(s)‖2
Hds+ 2

√
ε

∫ t

0

e−q(s)〈W ε(s), (σ(s, Zε
v)− σ(s, Z̃ε

v))dW (s)〉.

By the Burkhölder-Davis-Gundy’s inequality (see [LR15, Appendix D]), we have

2
√
ε|E[ sup

r∈[0,t]

∫ r

0

e−q(s)〈W ε(s), (σ(s, Zε
v)− σ(s, Z̃ε

v))dW (s)〉]|

66
√
εE

(∫ t

0

e−2q(s)‖σ(s, Zε
v)− σ(s, Z̃ε

v)‖2
L2(l2,H)‖W ε(s)‖2

Hds

) 1
2

6
√
εE( sup

s∈[0,t]

(e−q(s)‖W ε(s)‖2
H)) + 9

√
εE

∫ t

0

e−q(s)L1‖W ε(s)‖2
Hds,
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where we used (A3) with L2 = 0 and assume that α̃ < 1.
Thus we have

E( sup
s∈[0,t]

(e−q(s)‖W ε(s)‖2
H)) 6 CE

∫ t

0

e−q(s)‖W ε(s)‖2
Hds.

By Gronwall’s inequality we obtain W ε = 0 P -a.s., i.e. Z̃ε
v = Zε

v P -a.s..
Then by the Yamada-Watanabe theorem, we have Zε

v is the unique strong solution to
(3.10). �

3.2 Proof of Hypothesis 2

In this section we will show that I is a good rate function by checking the second part of
Hypothesis 2.5. The proof follows essentially the same argument as in [WZZ15, Proposi-
tion 4.5].

Lemma 3.4. Assume (A0)-(A3) hold with L2 = 0. For all N <∞, the set

KN =

{
g0

(∫ ·
0

φ(s)ds

)
: φ ∈ SN

}
is a compact subset in L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

Proof By definition, we have

KN =

{
zφ : φ ∈ L2([0, T ], l2),

∫ T

0

‖φ(s)‖2
l2ds 6 N

}
.

Let {zφn} be a sequence in KN where {φn} ⊂ SN . Note that (3.5) implies that zφn

is uniformly bounded in L∞([0, T ], H̃1,0)∩L2([0, T ], H̃1,1). Thus by weak compactness of
SN , a similar argument as in the proof of Lemma 3.2 shows that there exists φ ∈ SN and
z′ ∈ L2([0, T ], H) such that the following convergence hold as n → ∞ (in the sense of
subsequence):

φn → φ in SN weakly,
zφn → z′ in L2([0, T ], H̃1,0) weakly,
zφn → z′ in L∞([0, T ], H) weak-star,
zφn → z′ in L2([0, T ], H) strongly.
zφn → z′ in C([0, T ], H−1−δ) strongly for any δ > 0.
Then for any ϕ ∈ C∞([0, T ]× T2) with divϕ = 0 and for any t ∈ [0, T ], zφn satisfies

〈zφn(t), ϕ(t)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈zφn , ∂tϕ〉 − 〈∂1z
φn , ∂1ϕ〉+ 〈−B(zφn) + σ(s, zφn)φn, ϕ〉ds.

(3.11)
Let n→∞, we have∫ t

0

〈σ(s, zφn)φn − σ(s, z′)φ, ϕ〉ds

=

∫ t

0

〈[σ(s, zφn)− σ(s, z′)]φn + σ(s, z′)(φn − φ), ϕ〉ds
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6
∫ t

0

‖(σ(s, zφn)− σ(s, z′))φn‖H‖ϕ‖Hds+

∫ t

0

〈σ(s, z′)(φn − φ), ϕ〉ds

6C
∫ t

0

‖σ(s, zφn)− σ(s, z′)‖L2(l2,H)‖φn‖l2ds+

∫ t

0

〈σ(s, z′)(φn − φ), ϕ〉ds

6C

(∫ t

0

‖zφn − z′‖2
Hds

) 1
2
(∫ t

0

‖φn(s)‖2
l2ds

) 1
2

+

∫ t

0

〈σ(s, z′)(φn − φ), ϕ〉ds

→ 0,

where we used Hölder’s inequality and (A3) with L2 = 0 in the last inequality. By
[Tem79, Chapter 3, Lemma 3.2] we also have∫ t

0

〈−B(zφn), ϕ〉ds→
∫ t

0

〈−B(z′), ϕ〉ds.

Then we deduce that

〈z′(t), ϕ(t)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈z′, ∂tϕ〉 − 〈∂1z
′, ∂1ϕ〉+ 〈−B(z′) + σ(s, z′)φ, ϕ〉ds,

which implies that z′ is a solution to (3.2). By the uniqueness of solution, we deduce that
z′ = zφ.

Our goal is to prove zφn → zφ in L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

Let wn = zφn − zφ, by a direct calculation, we have

‖wn(t)‖2
H + 2

∫ t

0

‖∂1w
n(s)‖2

Hds

=− 2

∫ t

0

〈wn(s), B(zφn)(s)−B(zφ)(s)〉ds

+ 2

∫ t

0

〈wn(s), σ(s, zφn(s))φn(s)− σ(s, zφ(s))φ(s)〉ds

=− 2

∫ t

0

b(wn, zφ, wn)(s)ds+ 2

∫ t

0

〈wn(s), (σ(s, zφn(s))− σ(s, zφ(s)))φn(s)〉ds

+ 2

∫ t

0

〈wn(s), σ(s, zφ(s))(φn(s)− φ(s))〉ds

6
∫ t

0

1

5
‖∂1w

n(s)‖2
Hds+ C

∫ t

0

(1 + ‖zφ(s)‖2
H̃1,1)‖wn(s)‖2

Hds

+ C

∫ t

0

‖wn(s)‖2
H‖φn(s)‖l2ds

+

∫ t

0

‖wn(s)‖H‖φn(s)− φ(s)‖l2(K0 +K1‖zφ(s)‖2
H +K2‖∂1z

φ(s)‖2
H)

1
2ds,

where we used Lemma 2.10 in the sixth line, (A3) with L2 = 0 in the seventh line and
(A1) in the last line. Then we have

sup
t∈[0,T ]

‖wn(t)‖2
H +

∫ T

0

‖∂1w
n(s)‖2

Hds

6C
∫ T

0

(1 + ‖zφ(s)‖2
H̃1,1)‖wn(s)‖2

Hds
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+C( sup
t∈[0,T ]

‖zφn(t)‖H + sup
t∈[0,T ]

‖zφ(t)‖H)

(∫ T

0

‖φn(s)‖2
l2ds

) 1
2
(∫ T

0

‖wn(s)‖2
Hds

) 1
2

+C

(∫ T

0

‖φn(s)− φ(s)‖2
l2ds

) 1
2
(∫ T

0

(1 + ‖zφ(s)‖2
H + ‖∂1z

φ(s)‖2
H)‖wn(s)‖2

Hds

) 1
2

6C
∫ T

0

(1 + ‖zφ(s)‖2
H̃1,1)‖wn(s)‖2

Hds+ C(N)

(∫ T

0

‖wn(s)‖2
Hds

) 1
2

+CN
1
2

(∫ T

0

(1 + ‖zφ(s)‖2
H + ‖∂1z

φ(s)‖2
H)‖wn(s)‖2

Hds

) 1
2

,

where we used (3.4) and the fact that φn, φ are in SN .
For any ε > 0, let

Aε := {s ∈ [0, T ]; ‖zφn(s)− zφ(s)‖H > ε}.

Since zφn → zφ in L2([0, T ], H) strongly, we have∫ T

0

‖wn(s)‖2
Hds→ 0, as n→∞

and limn→∞ Leb(Aε) = 0, where Leb(B) means the Lebesgue measure of B ∈ B(R). Thus
we have ∫ T

0

(1 + ‖zφ(s)‖2
H̃1,1)‖wn(s)‖2

Hds

6

(∫
Aε

+

∫
[0,T ]\Aε

)
(1 + ‖zφ(s)‖2

H̃1,1)‖wn(s)‖2
Hds

6Cε+ 2

∫
Aε

(1 + ‖zφ(s)‖2
H̃1,1)(‖zφn(s)‖2

H + ‖zφ(s)‖2
H)ds

6Cε+ C

∫
Aε

(1 + ‖zφ(s)‖2
H̃1,1)ds

→ Cε as n→∞,

where we used (3.4) in the forth line and (3.5) in the last line. A similar argument also
implies that ∫ T

0

(1 + ‖zφ(s)‖2
H + ‖∂1z

φ(s)‖2
H)‖wn(s)‖2

Hds 6 Cε.

Hence we have

sup
t∈[0,T ]

‖wn(t)‖2
H +

∫ T

0

‖∂1w
n(s)‖2

Hds 6 Cε+ C
√
ε as n→∞.

Since ε is arbitrary, we obtain that

zφ
n → zφ strongly in L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

�
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3.3 Proof of Hypothesis 1

In this section we will prove the main result by checking the rest of Hypothesis 2.5.

Lemma 3.5. Assume Zε
v is a solution to (3.10) with vε ∈ AN and ε < 1 small enough.

Then we have

E( sup
t∈[0,T ]

‖Zε
v(t)‖4

H) + E

∫ T

0

‖Zε
v(s)‖2

H‖Zε
v(s)‖2

H̃1,0ds+ E

∫ T

0

‖∂1Z
ε
v(s)‖2

Hds 6 C(N, u0).

(3.12)
Moreover, there exists k > 0 such that

E( sup
t∈[0,T ]

e−kg(t)‖Zε
v(t)‖2

H̃0,1) + E

∫ T

0

e−kg(s)‖Zε
v(s)‖2

H̃1,1ds 6 C(N, u0), (3.13)

where g(t) =
∫ t

0
‖Zε

v(s)‖2
Hds and C(N, u0) is a constant depend on N, u0 but independent

of ε.

Proof We prove (3.12) by two parts of estimates. For first step, applying Itô’s formula
to ‖Zε

v(t)‖2
H , we have

‖Zε
v(t)‖2

H + 2

∫ t

0

‖∂1Z
ε
v(s)‖2

Hds

=‖u0‖2
H + 2

∫ t

0

〈Zε
v(s), σ(s, Zε

v(s))v
ε(s)〉ds

+ 2
√
ε

∫ t

0

〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉+ ε

∫ t

0

‖σ(s, Zε
v(s))‖2

L2(l2,H)ds

6‖u0‖2
H +

∫ t

0

(‖Zε(s)‖2
H‖vε(s)‖2

l2 + ‖σ(s, Zε
v(s))‖2

L2(l2,H))ds

+ 2
√
ε

∫ t

0

〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉+ ε

∫ t

0

‖σ(s, Zε
v(s))‖2

L2(l2,H)ds

6‖u0‖2
H +

∫ t

0

‖Zε
v(s)‖2

H‖vε(s)‖2
l2ds+ (1 + ε)

∫ t

0

(K0 +K1‖Zε
v‖2

H +K2‖∂1Z
ε
v‖2

H)ds

+ 2
√
ε

∫ t

0

〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉,

where we used (A1) in the last inequality.
By Gronwall’s inequality and vε ∈ AN ,

‖Zε
v(t)‖2

H + (2− (1 + ε)K2)

∫ t

0

‖∂1Z
ε
v(s)‖2

Hds

6(‖u0‖2
H + C + 2

√
ε

∫ t

0

〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉)eN+2K1T .

For the term in the right hand side, by the Burkhölder-Davis-Gundy inequality we have

2
√
εeN+K1TE

(
sup

06s6t
|
∫ s

0

〈Zε
v(r), σ(r, Zε

v(r))dW (r)〉|
)
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66
√
εeN+K1TE

(∫ t

0

‖Zε
v(r)‖2

H‖σ(r, Zε
v(r))‖2

L2(l2,H)ds

) 1
2

6
√
εE[ sup

06s6t
(‖Zε

v(s)‖2
H)] + 9

√
εe2N+2K1TE

∫ t

0

[K0 +K1‖Zε
v(s)‖2

H +K2‖∂1Z
ε
v(s)‖2

H ]ds,

where (9
√
εe2N+2K1T + 1 + ε)K2 − 2 < 0 (this can be done when ε < ( 10

9e2N+2K1T+1
)2) and

we used (A1) in the last inequality. Thus we have

E[ sup
s∈[0,t]

(‖Zε
v(t)‖2

H)] + E

∫ t

0

‖∂1Z
ε
v(s)‖2

Hds

6C(‖u0‖2
H + 1) + C

∫ t

0

E[ sup
r∈[0,s]

(‖Zε
v(r)‖2

H)]ds.

Then by Gronwall’s inequality we have

E( sup
06t6T

‖Zε
v(t)‖2

H) + E

∫ T

0

‖∂1Z
ε
v(s)‖2

Hds 6 C(1 + ‖u0‖2
H). (3.14)

The second step is similar to [LZZ18, Lemma 4.2]. By Itô’s formula we have

‖Zε
v(t)‖4

H =‖u0‖4
H − 4

∫ t

0

‖Zε
v‖2

H‖∂1Z
ε
v(s)‖2

Hds

+ 4

∫ t

0

‖Zε
v(s)‖2

H〈σ(s, Zε
v(s))v

ε(s), Zε
v(s)〉ds

+ 2ε

∫ t

0

‖Zε
v(s)‖2

H‖σ(s, Zε
v(s))‖2

L2(l2,H)ds

+ 4ε

∫ t

0

‖σ(s, Zε
v(s))

∗(Zε
v)‖2

l2ds

+ 4
√
ε

∫ t

0

‖Zε
v(s)‖2

H〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉H

=:‖u0‖4
H − 4

∫ t

0

‖Zε
v‖2

H‖∂1Z
ε
v(s)‖2

Hds+ I1 + I2 + I3 + I4.

(3.15)

By (A1) we have

I1(t) 64

∫ t

0

‖Zε
v(s)‖2

H‖σ(s, Zε
v(s))‖L2(l2,H)‖vε(s)‖l2‖Zε

v(s)‖Hds

62

∫ t

0

‖Zε
v(s)‖2

H(K0 +K1‖Zε
v(s)‖2

H +K2‖∂1Z
ε
v(s)‖2

H + ‖vε(s)‖2
l2‖Zε

v(s)‖2
H)ds,

and

I2 + I3 66ε

∫ t

0

‖σ(s, Zε
v(s))‖2

L2(l2,H)‖Zε
v(s)‖2

Hds

66ε

∫ t

0

(K0 +K1‖Zε
v(s)‖2

H +K2‖∂1Z
ε
v(s)‖2

H)‖Zε
v(s)‖2

Hds.
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Thus we have

‖Zε
v(t)‖4

H + (4− 2K2 − 6εK2)

∫ t

0

‖Zε
v(s)‖2

H‖∂1Z
ε
v(s)‖2

Hds

6‖u0‖4
H + I4 + (2 + 6ε)K0

∫ t

0

‖Zε
v(s)‖2

Hds+

∫ t

0

(2K1 + 6εK1 + 2‖vε(s)‖2
l2)‖Zε

v(s)‖4
H)ds.

Since vε ∈ AN , by Gronwall’s inequality we have

‖Zε
v(t)‖4

H + (4− 2K2 − 6εK2)

∫ t

0

‖Zε
v(s)‖2

H‖∂1Z
ε
v(s)‖2

Hds

6

(
‖u0‖4

H + I4 + (2 + 6ε)K0

∫ t

0

‖Zε
v(s)‖2

Hds

)
e8K1T+N .

The Burkhölder-Davis-Gundy inequality, the Young’s inequality and (A1) imply that

E( sup
s∈[0,t]

I4(s)) 612
√
εE

(∫ t

0

‖σ(s, Zε
v(s))‖2

L2(l2,H)‖Zε
v(s)‖6

Hds

) 1
2

6
√
εE( sup

s∈[0,t]

‖Zε
v(s)‖4

H)

+ 36
√
εE

∫ t

0

(K0 +K1‖Zε
v(s)‖2

H +K2‖∂1Z
ε
v(s)‖2

H)‖Zε
v(s)‖2

Hds.

Let ε small enough such that 2K2 + 6εK2 + 36
√
εK2e

8K1T+N < 4 and
√
εe8K1T+N < 1

(for instance ε < ( 10
3+18e8K1T+N )2). Then the above estimates and (3.12) imply that

E( sup
s∈[0,t]

‖Zε
v(s)‖4

H) +

∫ t

0

‖Zε
v(s)‖2

H‖Zε
v(s)‖2

H̃1,0ds

6C(N, u0) + CE

∫ t

0

‖Zε
v(s)‖4

Hds,

which by Gronwall’s inequality yields that

E( sup
s∈[0,t]

‖Zε
v(s)‖4

H) +

∫ t

0

‖Zε
v(s)‖2

H‖Zε
v(s)‖2

H̃1,0ds 6 C(N, u0).

For (3.13), let h(t) = kg(t) +
∫ t

0
‖vε(s)‖2

l2ds for some universal constant k. Apply-

ing Itô’s formula to e−h(t)‖Zε
v(t)‖2

H̃0,1 (by applying Itô’s formula to its finite- dimension
projection first and then passing to the limit), we have

e−h(t)‖Zε
v(t)‖2

H̃0,1 + 2

∫ t

0

e−h(s)(‖∂1Z
ε
v(s)‖2

H + ‖∂1∂2Z
ε
v(s)‖2

H)ds

=‖u0‖2
H̃0,1 −

∫ t

0

e−h(s)(k‖∂1Z
ε
v(s)‖2

H + ‖vε(s)‖2
l2)‖Zε

v(s)‖2
H̃0,1ds

+ 2

∫ t

0

e−h(s)〈∂2Z
ε
v(s), ∂2(Zε

v · ∇Zε
v)(s)〉ds+ 2

∫ t

0

e−h(s)〈Zε
v(s), σ(s, Zε

v(s))v
ε(s)〉H̃0,1ds

+ 2
√
ε

∫ t

0

e−h(s)〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉H̃0,1 + ε

∫ t

0

e−h(s)‖σ(s, Zε
v(s))‖2

L2(l2,H̃0,1)
ds.
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By Lemma 2.12, there exists a constant C1 such that

|〈∂2Z
ε
v , ∂2(Zε

v · ∇Zε
v)〉| 6

1

2
‖∂1∂2Z

ε
v‖2

H + C1(1 + ‖∂1Z
ε
v‖2

H)‖∂2Z
ε
v‖2

H .

By Young’s inequality,

2|〈Zε
v(s), σ(s, Zε

v(s))v
ε(s)〉H̃0,1| 6 ‖Zε

v‖2
H̃0,1‖vε‖2

l2 + ‖σ(s, Zε
v)‖2

L2(l2,H̃0,1)
.

Choosing k > 2C1, we have

e−h(t)‖Zε
v(t)‖2

H̃0,1 +

∫ t

0

e−h(s)(‖∂1Z
ε
v(s)‖2

H + ‖∂1∂2Z
ε
v(s)‖2

H)ds

6‖u0‖2
H̃0,1 + C

∫ t

0

e−h(s)‖∂2Z
ε
v(s)‖2

Hds+ (1 + ε)

∫ t

0

e−h(s)‖σ(s, Zε
v(s))‖2

L2(l2,H̃0,1)
ds

+ 2
√
ε

∫ t

0

e−h(s)〈Zε
v(s), σ(s, Zε

v(s))dW (s)〉H̃0,1 .

By the Burkhölder-Davis-Gundy inequality we have

2
√
εE

(
sup
s∈[0,t]

|
∫ s

0

e−h(r)〈Zε
v(r), σ(r, Zε

v(r))dW (r)〉H̃0,1|

)

66
√
εE

(∫ t

0

e−2h(s)‖Zε
v(s)‖2

H̃0,1‖σ(s, Zε
v(s))‖2

L2(l2,H̃0,1)
ds

) 1
2

6
√
εE[ sup

s∈[0,t]

(e−h(s)‖Zε
v(s)‖2

H̃0,1)]

+ 9
√
εE

∫ t

0

e−h(s)[K̃0 + K̃1‖Zε
v(s)‖2

H̃0,1 + K̃2(‖∂1Z
ε
v(s)‖2

H + ‖∂1∂2Z
ε
v(s)‖2

H)]ds,

where (9
√
ε+ 1 + ε)K̃2− 1 < 0 (this can be done if ε < 9

400
) and we used (A2) in the last

inequality.
Combine the above estimates, we have

E( sup
s∈[0,t]

e−h(s)‖Zε
v(s)‖2

H̃0,1) + E

∫ t

0

e−h(s)‖Zε
v(s)‖2

H̃1,1ds

6C(‖u0‖2
H̃0,1 + 1 + E

∫ t

0

e−h(s)‖Zε
v(s)‖2

H̃0,1ds)

Then Gronwall’s inequality implies that

E( sup
06t6T

e−h(t)‖Zε
v(t)‖2

H̃0,1) + E

∫ T

0

e−h(s)‖Zε
v(s)‖2

H̃1,1ds 6 C(1 + ‖u0‖2
H̃0,1).

Since vε ∈ SN , we deduce that

E( sup
t∈[0,T ]

e−kg(t)‖Zε
v(t)‖2

H̃0,1) + E

∫ T

0

e−kg(s)‖Zε
v(s)‖2

H̃1,1ds 6 C(1 + ‖u0‖2
H̃0,1)e

N . (3.16)

�
Similar as [LZZ18, lemma 4.3], we have the following tightness lemma:
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Lemma 3.6. Assume Zε
v is a solution to (3.10) with vε ∈ AN and ε < 1 small enough.

There exists ε0 > 0, such that {Zε
v}ε∈(0,ε0) is tight in the space

χ = C([0, T ], H−1)
⋂

L2([0, T ], H)
⋂

L2
w([0, T ], H̃1,1)

⋂
L∞w∗([0, T ], H̃0,1),

where L2
w denotes the weak topology, L∞w∗ denotes the weak star topology and χ equipped

with the topology τχ generated by the four subspace topology of the four intersecting spaces.

Proof Note that the law of Zε
v is defined on the path space C([0, T ], H−1). First we

should point out that it can be restricted to χ. We denote the space C([0, T ], H−1) by X
with Borel σ-algebra B(X).

For N ∈ N, let

YN := {w ∈ L2([0, T ], H̃1,1) : ‖w‖L2([0,T ],H̃1,1) 6 N},

equipped with the weak topology on L2([0, T ], H̃1,1). Then YN is compact and metrizable,
hence separable and complete.

Similarly, let

ZN := {w ∈ L∞([0, T ], H̃0,1) : ‖w‖L∞([0,T ],H̃0,1) 6 N},

equipped with the weak star topology on L∞([0, T ], H̃0,1). Then ZN is compact and
metrizable, hence separable and complete.

Define

χN = C([0, T ], H−1)
⋂

L2([0, T ], H)
⋂

YN
⋂

ZN := X1 ∩X2 ∩X3 ∩X4,

where Xi are complete separable metric spaces with metric di, i = 1, 2, 3, 4. Let χN be
equipped with the metric d = max{d1, d2, d3, d4}. Then χN is separable. To show that
χN is complete, it is enough to show that if wk ∈ χN , k ∈ N and wk → w(i) ∈ Xi in di for
every 1 6 i 6 4, then w(1) = w(2) = w(3) = w(4). This is true since obviously we have the
continuous embedding

Xi ⊂M([0, T ], H−2), 1 6 i 6 4,

where M denotes the space of Radon measures. Hence (χN , d) is a complete separable
metric space. Furthermore, the following embeddings are continuous and hence measur-
able:

(χN , d) ⊂ X.

Therefore by Kuratowski’s theorem we have for the Borel σ-algebra B(χN) of (χN , d),

χN ∈ B(X), B(χN) = B(X) ∩ χN .

Consequently, χ = ∪χN ∈ B(X).
Note that χN is a τχ-closed subset of χ. Let A ⊂ χ be τχ-closed. Then A ∩ χN is

τχ-closed too, hence

A ∩ χN ∈ B(χN)

= B(X) ∩ χN = {B ∈ B(X) : B ⊂ χN}
⊂ {B ∈ B(X) : B ⊂ χ}
⊂ B(X) ∩ χ.
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Hence

A =
∞⋃
N=1

A ∩ χN ∈ B(X) ∩ χ

and
B(τχ) ⊂ B(X) ∩ χ.

Since χ ⊂ X continuously, hence measurably, we have B(X) ∩ χ ⊂ B(τχ). Then

B(τχ) = B(X) ∩ χ.

Thus any probability measure on X can be restricted on χ.
Let k be the same constant as in the proof of (3.13) and let

KR :=
{
u ∈ C([0, T ], H−1) : sup

t∈[0,T ]

‖u(t)‖2
H +

∫ T

0

‖u(t)‖2
H̃1,0dt+ ‖u‖

C
1
16 ([0,T ],H−1)

+ sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃1,1dt 6 R
}
,

where C
1
16 ([0, T ], H−1) is the Hölder space with the norm:

‖f‖
C

1
16 ([0,T ],H−1)

= sup
06s<t6T

‖f(t)− f(s)‖H−1

|t− s| 116
.

Then from the proof of [LZZ18, Lemma 4.3], we know that for any R > 0, KR is
relatively compact in χ.

Now we only need to show that for any δ > 0, there exists R > 0, such that P (Zε
v ∈

KR) > 1− δ for any ε ∈ (0, ε0), where ε0 is the constant such that Lemma 3.5 hold.
By Lemma 3.5 and Chebyshev inequality, we can choose R0 large enough such that

P

(
sup
t∈[0,T ]

‖Zε
v(t)‖2

H +

∫ T

0

‖Zε
v(t)‖2

H̃1,0dt >
R0

3

)
<
δ

4
,

and

P

(
sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃1,1dt >
R0

3

)
<
δ

4
,

where k is the same constant as in (3.13).
Fix R0 and let

K̂R0 =
{
u ∈ C([0, T ], H−1) : sup

t∈[0,T ]

‖u(t)‖2
H +

∫ T

0

‖u(t)‖2
H̃1,0dt 6

R0

3
and

sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃1,1dt 6
R0

3

}
.

Then P (Zε
v ∈ C([0, T ], H−1) \ K̂R0) <

δ
2
.

Now for Zε
v ∈ K̂R0 , we have ∂2

1Z
ε
v is uniformly bounded in L2([0, T ], H−1). Similar

as in Lemma 3.2, Zε
v is uniformly bounded in L4([0, T ], H

1
2 ) and L4([0, T ], L4(T2)), thus

B(Zε
v) is uniformly bounded in L2([0, T ], H−1). By Hölder’s inequality, we have

sup
s,t∈[0,T ],s 6=t

‖
∫ t
s
∂2

1Z
ε
v(r) +B(Zε

v(r))dr‖2
H−1

|t− s|
6
∫ T

0

‖∂2
1Z

ε
v(r) +B(Zε

v(r))‖2
H−1dr 6 C(R0),
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where C(R0) is a constant depend on R0. For any p ∈ (1, 4
3
), by Hölder’s inequality, we

have

sup
s,t∈[0,T ],s 6=t

‖
∫ t
s
σ(r, Zε

v(r))v
ε(r)dr‖pH−1

|t− s|p−1
6
∫ T

0

‖σ(r, Zε
v(r))v

ε(r)‖pH−1dr

6
∫ T

0

‖σ(r, Zε
v(r))‖

p
L2(l2,H−1)‖v

ε(r)‖pl2dr

6C
∫ T

0

(1 + ‖Zε
v(r)‖4

H + ‖vε(r)‖4
l2)dr

6C(R0),

where we used Young’s inequality and (A0) in the third inequality.
Moreover, for any 0 6 s 6 t 6 T , by Hölder’s inequality we have

E‖
∫ t

s

σ(r, Zε
v(r))dW (r)‖4

H−1 6CE

(∫ t

s

‖σ(r, Zε
v(r))‖2

L2(l2,H−1)dr

)2

6C|t− s|E
∫ t

s

‖σ(r, Zε
v(r))‖4

L2(l2,H−1)dr

6C|t− s|2(1 + E( sup
t∈[0,T ]

‖Zε
v(t)‖4

H))

6C|t− s|2,

where we used (A0) in the third inequality and (3.12) in the last inequality. Then by
Kolmogorov’s continuity criterion, for any α ∈ (0, 1

4
), we have

E

(
sup

s,t∈[0,T ],s 6=t

‖
∫ t
s
σ(r, Zε

v(r))dW (r)‖4
H−1

|t− s|2α

)
6 C.

Choose p = 8
7
, α = 1

8
in the above estimates, we deduce that there exists R > R0 such

that

P

(
‖Zε

v‖C 1
16 ([0,T ],H−1)

>
R

3
, Zε

v ∈ K̂R0

)

6
E

(
sups,t∈[0,T ],s 6=t

‖Zεv(t)−Zεv(s)‖H−1

|t−s|
1
16

1{Zεv∈K̂R0
}

)
R
3

<
δ

2
.

Combining the fact that P (Zε
v ∈ C([0, T ], H−1) \ K̂R0) <

δ
2
, we finish the proof. �

Lemma 3.7. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 = 0. Let {vε}ε>0 ⊂ AN

for some N <∞. Assume vε converge to v in distribution as SN -valued random elements,
then

gε
(
W (·) +

1√
ε

∫ ·
0

vε(s)ds

)
→ g0

(∫ ·
0

v(s)ds

)
in distribution as ε→ 0.
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Proof The proof follows essentially the same argument as in [WZZ15, Proposition 4.7].

By Lemma 3.3, we have Zε
v = gε

(
W (·) + 1√

ε

∫ ·
0
vε(s)ds

)
. By a similar but simple

argument as in the proof of Lemmas 3.2 and 3.5, there exists a unique strong solution
Y ε ∈ L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1)

⋂
C([0, T ], H−1) satisfying

dY ε(t) =∂2
1Y

ε(t)dt+
√
εσ(t, Zε

v(t))dW (t),

div Y ε =0,

Y ε(0) =0,

and

lim
ε→0

[
E sup

t∈[0,T ]

‖Y ε(t)‖2
H + E

∫ T

0

‖Y ε(t)‖2
H̃1,0dt

]
= 0,

lim
ε→0

[
E sup

t∈[0,T ]

(e−kg(t)‖Y ε(t)‖2
H̃0,1) + E

∫ T

0

e−kg(t)‖Y ε(t)‖2
H̃1,1dt

]
= 0,

where g(t) =
∫ t

0
‖Zε

v(s)‖2
Hds and k are the same as in (3.13).

Set
Ξ :=

(
χ,SN , L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ].H−1)

)
.

The above limit implies that Y ε → 0 in L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ].H−1)

almost surely as ε → 0 (in the sense of subsequence). By Lemma 3.6 the family
{(Zε

v , v
ε)}ε∈(0,ε0) is tight in (χ,SN). Let (Zv, v, 0) be any limit point of {(Zε

v , v
ε, Y ε)}ε∈(0,ε0).

Our goal is to show that Zv has the same law as g0
(∫ ·

0
v(s)ds

)
and Zε

v convergence in

distribution to Zv in the space L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

By the Skorokhod Theorem, there exists a stochastic basis (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃ ) and,

on this basis, Ξ-valued random variables (Z̃v, ṽ, 0), (Z̃ε
v , ṽ

ε, Ỹ ε), such that (Z̃ε
v , ṽ

ε, Ỹ ε)
(respectively (Z̃v, ṽ, 0)) has the same law as (Zε

v , v
ε, Y ε) (respectively (Zv, v, 0)), and

(Z̃ε
v , ṽ

ε, Ỹ ε)→ (Z̃v, ṽ, 0), P̃ -a.s.
We have

d(Z̃ε
v(t)− Ỹ ε(t)) =∂2

1(Z̃ε
v(t)− Ỹ ε(t))dt−B(Z̃ε

v(t))dt+ σ(t, Z̃ε
v(t))ṽ

ε(t)dt,

Z̃ε
v(0)− Ỹ ε(0) =u0,

(3.17)

and

P (Z̃ε
v − Ỹ ε ∈ L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1))

=P (Zε
v − Y ε ∈ L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1))

=1.

Let Ω̃0 be the subset of Ω̃ such that for ω ∈ Ω̃0,

(Z̃ε
v , ṽ

ε, Ỹ ε)(ω)→ (Z̃v, ṽ, 0)(ω) in Ξ,

and

e−k
∫ ·
0 ‖Z̃

ε
v(ω,s)‖2HdsỸ ε(ω)→ 0 in L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1)

⋂
C([0, T ], H−1),



36 Chapter 3. Small noise large deviation principle

then P (Ω̃0) = 1. For any ω ∈ Ω̃0, fix ω, we have supε
∫ T

0
‖Z̃ε

v(ω, s)‖2
Hds < ∞, then we

deduce that

lim
ε→0

(
sup
t∈[0,T ]

‖Ỹ ε(ω, t)‖H̃0,1 +

∫ T

0

‖Ỹ ε(ω, t)‖2
H̃1,1dt

)
= 0. (3.18)

Now we show that

sup
t∈[0,T ]

‖Z̃ε
v(ω, t)− Z̃v(ω, t)‖2

H +

∫ T

0

‖Z̃ε
v(ω, t)− Z̃v(ω, t)‖2

H̃1,0dt→ 0 as ε→ 0. (3.19)

Let Zε = Z̃ε
v(ω)− Ỹ ε(ω), then by (3.17) we have

dZε(t) = ∂2
1Z

ε(t)dt−B(Zε(t) + Ỹ ε(t))dt+ σ(t, Zε(t) + Ỹ ε(t))ṽε(t)dt. (3.20)

Since Zε(ω) → Z̃v(ω) in χ, by a very similar argument as in Lemma 3.4 we deduce
that Z̃v = zṽ = g0

(∫ ·
0
ṽ(s)ds

)
. Moreover, note that Z̃ε

v(ω) → zṽ(ω) weak star in

L∞([0, T ], H̃0,1), then the uniform boundedness principle implies that

sup
ε

sup
t∈[0,T ]

‖Z̃ε
v(ω)‖H̃0,1 <∞. (3.21)

Let wε = Zε − zṽ, then we have

‖wε(t)‖2
H + 2

∫ t

0

‖∂1w
ε(s)‖2

Hds =− 2

∫ t

0

〈wε(s), B(Zε + Ỹ ε)−B(zṽ)〉ds

+ 2

∫ t

0

〈wε(s), σ(s, Zε + Ỹ ε)ṽε(s)− σ(s, zṽ)ṽ(s)〉ds.

By Lemmas 2.10 and 2.11, we have∫ t

0

〈wε(s), B(Zε + Ỹ ε)−B(zṽ)〉ds

=

∫ t

0

b(Ỹ ε, zṽ, wε) + b(Ỹ ε, Ỹ ε, wε) + b(wε, Ỹ ε + zṽ, wε) + b(zṽ, Ỹ ε, wε)ds

6
∫ t

0

[
1

2
‖∂1w

ε(s)‖2
H +

1

2
‖Ỹ ε(s)‖2

H̃1,1 + C(1 + ‖zṽ(s)‖2
H̃1,1 + ‖Ỹ ε(s)‖2

H̃1,1)‖wε(s)‖2
H ]ds

+ C

∫ t

0

‖Ỹ ε(s)‖2
H̃1,1‖wε(s)‖Hds

6
∫ t

0

1

2
‖∂1w

ε(s)‖2
Hds+ C

∫ t

0

‖Ỹ ε(s)‖2
H̃1,1ds+ C

∫ t

0

(1 + ‖zṽ(s)‖2
H̃1,1)‖wε(s)‖2

Hds,

where we used the fact that by (3.18) and (3.21) wε are uniformly bounded in L∞([0, T ], H)
in the last inequality. By (A1) and (A3) with L2 = 0 we have∫ t

0

〈wε(s), σ(s, Zε + Ỹ ε)vε(s)− σ(s, zṽ)ṽ(s)〉ds

=

∫ t

0

〈wε(s), (σ(s, Zε + Ỹ ε)− σ(s, zṽ))ṽε(s)〉ds+

∫ t

0

〈wε(s), σ(s, zṽ)(ṽε(s)− ṽ(s))〉ds
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6C
∫ t

0

(‖wε(s)‖H‖ṽε(s)‖l2(‖wε(s)‖2
H + ‖Ỹ ε(s)‖2

H)
1
2ds

+

∫ t

0

‖wε(s)‖H‖ṽε(s)− ṽ(s)‖l2(K0 +K1‖zṽ(s)‖2
H +K2‖∂1z

ṽ(s)‖2
H)

1
2ds

6CN
1
2

(∫ t

0

(‖wε(s)‖2
H + ‖Ỹ ε(s)‖2

Hds

) 1
2

+ CN
1
2

(∫ t

0

‖wε(s)‖2
H(K0 +K1‖zṽ(s)‖2

H +K2‖∂1z
ṽ(s)‖2

H)ds

) 1
2

,

where we used the fact that wε are uniformly bounded in L∞([0, T ], H) and that ṽε, ṽ
are in AN . Thus we have

‖wε(t)‖2
H +

∫ t

0

‖∂1w
ε(s)‖2

Hds

6C
∫ t

0

(1 + ‖zṽ(s)‖2
H̃1,1)‖wε(s)‖2

Hds+ C

∫ t

0

‖Ỹ ε(s)‖2
H̃1,1ds

+ CN
1
2

(∫ t

0

(‖wε(s)‖2
H + ‖Ỹ ε(s)‖2

H)ds

) 1
2

+ CN
1
2

(∫ t

0

(1 + ‖zṽ(s)‖2
H̃1,1)‖wε(s)‖2

Hds

) 1
2

.

Since Zε(ω) → zṽ(ω) strongly in L2([0, T ], H) and Ỹ ε → 0 in L2([0, T ], H̃1,1), the
same argument used in Lemma 3.4 implies

sup
t∈[0,T ]

‖Z̃ε
v(ω, t)− zṽ(ω, t)‖2

H +

∫ T

0

‖Z̃ε
v(ω, t)− zṽ(ω, t)‖2

H̃1,0dt→ 0 as ε→ 0. (3.22)

The proof is thus complete.
�

Proof of Theorem 3.1. The result holds from Lemmas 2.6, 3.4 and 3.7. �



Chapter 4

Central limit theorem

In this chapter, we will establish the central limit theorem. Let uε be the solution to
(1.3) and u0 the solution to (1.4). Then we have the following estimates from Lemma
3.5, Lemma 4.1, Lemma 4.2 and Lemma 4.4 in [LZZ18]:

Lemma 4.1. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5
, there exists ε0 > 0

such that

sup
ε∈(0,ε0)

E

(
sup
t∈[0,T ]

‖uε(t)‖2
H +

∫ T

0

‖uε(s)‖2
H̃1,0ds

)
6 C.

Particularly,

sup
t∈[0,T ]

‖u0(t)‖2
H̃0,1 +

∫ T

0

‖u0(s)‖2
H̃1,1ds 6 C.

We have the following H̃0,2 estimate for u0:

Lemma 4.2. Given u0 ∈ H̃0,2, the unique solution u0 to (1.4) satisfies the following
estimate:

sup
t∈[0,T ]

‖u0(t)‖2
H̃0,2 +

∫ T

0

‖u0(t)‖2
H̃1,2dt 6 C. (4.1)

Proof Let’s start by proving a priori estimates for u0. Applying the operator ∆v
k and

using an L2 energy estimate, we have

1

2

d

dt
‖u0

k(t)‖2
H + ‖∂1u

0
k(t)‖2

H 6 〈∆v
k(u

0 · ∇u0), u0
k〉,

where we denote by u0
k the term ∆v

ku
0. By Lemma 2.13 with s = 2, s0 = 1 and u = v = u0,

there exists dk ∈ l1 such that

1

2

d

dt
‖u0

k(t)‖2
H + ‖∂1u

0
k(t)‖2

H

6Cdk2
−4k
(
‖u0‖

H̃
1
4 ,2
‖u0‖

H̃
1
4 ,1
‖∂1u

0‖H̃0,2 + ‖u0‖2

H̃
1
4 ,2
‖∂1u

0‖H̃0,1

)
.

Now multiplying by 24k and taking sum over k gives

1

2

d

dt
‖u0(t)‖2

H̃0,2 + ‖∂1u
0(t)‖2

H̃0,2 6 C
(
‖u0‖

H̃
1
4 ,2
‖u0‖

H̃
1
4 ,1
‖∂1u

0‖H̃0,2 + ‖u0‖2

H̃
1
4 ,2
‖∂1u

0‖H̃0,1

)
.

38



39

By interpolation inequalities (see [BCD11, Theorem 2.80]) we have

‖u0‖
H̃

1
4 ,s
6‖u0‖

3
4

H̃0,s‖u0‖
1
4

H̃1,s ,

where s = 1, 2. Thus we infer that

1

2

d

dt
‖u0(t)‖2

H̃0,2 + ‖∂1u
0(t)‖2

H̃0,2

6C
(
‖u0‖

3
4

H̃0,2‖u0‖
H̃

1
4 ,1
‖∂1u

0‖
5
4

H̃0,2 + ‖u0‖H̃0,2‖u0‖
H̃

1
4 ,1
‖∂1u

0‖H̃0,2

+ ‖u0‖
3
2

H̃0,2‖∂1u
0‖

1
2

H̃0,2‖∂1u
0‖H̃0,1 + ‖u0‖2

H̃0,2‖∂1u
0‖H̃0,1

)
6α‖∂1u

0‖2
H̃0,2 + C‖u0‖

8
3

H̃
1
4 ,1
‖u0‖2

H̃0,2 + C‖u0‖2

H̃
1
4 ,1
‖u0‖2

H̃0,2

+ C‖∂1u
0‖

4
3

H̃0,1‖u0‖2
H̃0,2 + ‖∂1u

0‖H̃0,1‖u0‖2
H̃0,2

6α‖∂1u
0‖2
H̃0,2 + C‖u0‖2

H̃0,1‖u0‖
2
3

H̃1,1‖u0‖2
H̃0,2 + C‖u0‖

3
2

H̃0,1‖u0‖
1
2

H̃1,1‖u0‖2
H̃0,2

+ C‖∂1u
0‖

4
3

H̃0,1‖u0‖2
H̃0,2 + ‖∂1u

0‖H̃0,1‖u0‖2
H̃0,2

6α‖∂1u
0‖2
H̃0,2 + C(1 + ‖u0‖2

H̃0,1)(1 + ‖u0‖2
H̃1,1)‖u0‖2

H̃0,2 ,

where we used Young’s inequality in the third inequality and α < 1
2
. Then Gronwall’s

inequality implies that

sup
t∈[0,T ]

‖u0(t)‖2
H̃0,2 +

∫ T

0

‖∂1u
0(t)‖2

H̃0,2dt

6‖u0‖2
H̃0,2 exp

(
C sup

t∈[0,T ]

(1 + ‖u0(t)‖2
H̃0,1)

∫ T

0

(1 + ‖u0(t)‖2
H̃1,1)dt

)
.

Then by Lemma 4.1, we get the result.
�

The next proposition is about the convergence of uε.

Proposition 4.3. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5
, then there

exists a constant ε0 > 0 such that, for any ε ∈ (0, ε0), we have

E

(
sup
t∈[0,T ]

‖uε(t)− u0(t)‖2
H +

∫ T

0

‖uε(s)− u0(s)‖2
H̃1,0ds

)
6 Cε. (4.2)

Proof Applying Itô’s formula to ‖uε(t)− u0(t)‖2
H , we have

‖uε(t)− u0(t)‖2
H

=− 2

∫ t

0

‖∂1(uε − u0)(s)‖2
Hds− 2

∫ t

0

〈uε(s)− u0(s), B(uε(s))−B(u0(s))〉ds

+ 2
√
ε

∫ t

0

〈uε(s)− u0(s), σ(s, uε(s))dW (s)〉+ ε

∫ t

0

‖σ(s, uε(s))‖2
L2(l2,H)ds.

By Lemma 2.11 we have

|〈uε(s)− u0(s), B(uε(s))−B(u0(s))〉|
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=|b(uε, uε, uε − u0)− b(u0, u0, uε − u0)|
=|b(uε − u0, u0, uε − u0)|

6
1

4
‖∂1(uε − u0)‖2

H + C(1 + ‖u0‖2
H̃1,1)‖uε − u0‖2

H .

By the Burkhölder-Davis-Gundy’s inequality (see [LR15, Appendix D]), we have

2
√
εE

(
sup
s∈[0,t]

∣∣∣∣∫ t

0

〈uε(s)− u0(s), σ(s, uε(s))dW (s)〉
∣∣∣∣
)

66
√
εE

(∫ t

0

‖uε(s)− u0(s)‖2
H‖σ(s, uε(s)‖2

L2(l2,H)ds

) 1
2

66
√
εE

(
sup
s∈[0,t]

‖uε(s)− u0(s)‖2
H

∫ t

0

(K0 +K1‖uε(s)‖2
H +K2‖∂1u

ε(s)‖2
H)ds

) 1
2

6
1

2
E

(
sup
s∈[0,t]

‖uε(s)− u0(s)‖2
H

)
+ CεE

(∫ t

0

(1 + ‖uε(s)‖2
H + ‖∂1u

ε(s)‖2
H)ds

)
,

where we used (A1) in the last second line. Thus by above estimates and (A1) we deduce
that

E

(
sup
s∈[0,t]

‖uε(s)− u0(s)‖2
H +

∫ t

0

‖uε(s)− u0(s)‖2
H̃1,0ds

)

6C
∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)E( sup

l∈[0,s]

‖uε(l)− u0(l)‖2
H)ds

+ CεE

(∫ t

0

(1 + ‖uε(s)‖2
H + ‖∂1u

ε(s)‖2
H)ds

)
.

Then Gronwall’s inequality and Lemma 4.1 imply that

E

(
sup
s∈[0,T ]

‖uε(s)− u0(s)‖2
H +

∫ T

0

‖uε(s)− u0(s)‖2
H̃1,0ds

)

6CεE

(∫ T

0

(1 + ‖uε(s)‖2
H + ‖∂1u

ε(s)‖2
H)ds

)
eC

∫ T
0 (1+‖u0(s)‖2

H̃1,1 )ds

6Cε.

�
Let V 0 be the solution to the following SPDE:

dV 0(t) = ∂2
1V

0(t)dt−B(V 0(t), u0(t))dt−B(u0(t), V 0(t))dt+ σ(t, u0(t))dW (t),

V 0(0) = 0.
(4.3)

4.1 Well-posedness of the limiting equation

In this section we give existence and uniqueness of the solution to the limiting equation.

Lemma 4.4. Assume that u0 satisfies (4.1). Then under the assumptions (A0), (A1),
(A2), equation (4.3) has a unique probabilistically strong solution

V 0 ∈ L∞([0, T ], H̃0,1) ∩ L2([0, T ], H̃1,1) ∩ C([0, T ], H−1).
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Proof The proof follows a very similar Galerkin approximation argument as in [LZZ18,
Section 4], we show some key steps here.

Let {ek, k > 1} be an orthonormal basis of H whose elements belong to H2 and
orthogonal in H̃0,1 and H̃1,0. Let Hn = span{e1, . . . , en} and let Pn denote the or-
thogonal projection from H to Hn. For l2−cylindrical Wiener process W (t), let Wn(t) =
ΠnW (t) :=

∑n
j=1 ψjβj(t), where βj is a sequence of independent Brownian motions and ψj

is an orthonormal basis of l2. Set F : H1 → H−1 with F (u) = −B(u, u0)−B(u0, u)+∂2
1u.

Fix n > 1 and for v ∈ Hn consider the following equation on Hn:

d〈Vn(t), v〉 =〈PnF (Vn), v〉dt+ 〈Pnσ(t, u0(t))dWn(t), v〉
Vn(0) =Pnu0.

(4.4)

Then by [LR15, Theorem 3.1.1] there exists unique global strong solution Vn to (4.4).
Moreover, Vn ∈ C([0, T ],Hn).

We first prove a priori estimates. Applying Itô’s formula to ‖Vn‖2
H̃0,1 , we have

‖Vn(t)‖2
H̃0,1 + 2

∫ t

0

‖∂1Vn(s)‖2
H̃0,1ds =‖Pnu0‖2

H̃0,1 − 2

∫ t

0

〈B(Vn, u
0) +B(u0, Vn), Vn〉H̃0,1ds

+ 2

∫ t

0

〈σ(s, u0(s))dWn(s), Vn(s)〉H̃0,1

+

∫ t

0

‖Pnσ(s, u0(s))Πn‖2
L2(l2,H̃0,1)

ds.

By Lemma 2.11 and Young’s inequality, we have

|〈B(Vn, u
0) +B(u0, Vn), Vn〉H̃0,1 |

6|b(Vn, u0, Vn)|+ |b(∂2Vn, u
0, ∂2Vn)|+ |b(Vn, ∂2u

0, ∂2Vn)|+ |b(∂2u
0, Vn, ∂2Vn)|

6C
(
‖Vn‖H̃1,0‖u0‖H̃1,1‖Vn‖H + ‖∂2Vn‖H̃1,0‖u0‖H̃1,1‖∂2Vn‖H

+ ‖Vn‖H̃1,0‖∂2u
0‖H̃1,1‖∂2Vn‖H + ‖∂2u

0‖H̃1,0‖Vn‖H̃1,1‖∂2Vn‖H
)

6α‖Vn‖2
H̃1,1 + C‖u0‖2

H̃1,2‖Vn‖2
H̃0,1 ,

where α < 1
2
.

The growth condition and Lemma 4.1 imply that∫ t

0

‖Pnσ(s, u0(s))Πn‖2
L2(l2,H̃0,1)

ds 6 C

∫ t

0

(1 + ‖u0‖2
H̃1,1)ds 6 C.

Similarly, by the Burkhölder-Davis-Gundy’s inequality, we have

2E

(
sup
s∈[0,t]

∣∣∣∣∫ t

0

〈σ(s, u0(s))dWn(s), Vn(s)〉H̃0,1

∣∣∣∣
)

66E

(∫ t

0

‖Pnσ(s, u0(s))Πn‖2
L2(l2,H̃0,1)

‖Vn(s)‖2
H̃0,1ds

) 1
2

6βE

(
sup
s∈[0,t]

‖V 0(s)‖2
H̃0,1

)
+ C

∫ t

0

(1 + ‖u0‖2
H̃1,1)ds
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6βE

(
sup
s∈[0,t]

‖V 0(s)‖2
H̃0,1

)
+ C,

where β < 1
2
.

Then we get

E

(
sup
s∈[0,t]

‖Vn(s)‖2
H̃0,1

)
+ E

∫ t

0

‖Vn(s)‖2
H̃1,1ds

6C + C

∫ t

0

(
‖u0‖2

H̃1,2 + 1
)
E

(
sup
r∈[0,s]

‖Vn(r)‖2
H̃0,1

)
ds.

Then by Gronwall’s inequality and (4.1), we have

E

(
sup
s∈[0,t]

‖Vn(s)‖2
H̃0,1

)
+ E

∫ t

0

‖Vn(s)‖2
H̃1,1ds 6C exp

(
C

∫ t

0

(
‖u0‖2

H̃0,2 + 1
)
ds

)
6 C.

(4.5)
The rest part of the existence proof is very similar as in the proof of [LZZ18, Theorem

4.1], we only need to point out that the convergence of F (Vn) holds as n→∞: From the
proof we could obtain that there exists another stochastic basis (Ω̃, F̃ , P̃ ) and random
variables Ṽn with same law of Vn such that Ṽn → Ṽ in C([0, T ], H−1) ∩ L2([0, T ], H),
P̃ -a.s. (in the sense of subsequence). Fix l ∈ C∞(T2) with divl = 0. Since F (Vn) is
actually linear term, the convergence of Ṽn in L2([0, T ], H) implies that∫ t

0

〈F (Ṽn), Pnl〉ds→
∫ t

0

〈F (Ṽ ), l〉ds, P̃ -a.s.

For uniqueness, assume V 0
1 , V

0
2 are two solutions in L∞([0, T ], H̃0,1)∩L2([0, T ], H̃1,1)∩

C([0, T ], H−1) with the same initial condition, let w = V1 − V2, then w(0) = 0 and w
satisfies

dw(t) = ∂2
1w(t)dt−B(w(t), u0(t))dt−B(u0(t), w(t))dt.

Then similarly as the proof of the uniqueness for the deterministic Navier-Stokes
equation with anisotropic viscosity, we know that w = 0.

�

Remark 4.5. Note here we do not need assumption (A3) and L4(Ω) estimate of Vn since
the drift term σ(t, u0) does not depend on Vn.

4.2 Central limit theorem

In this section we give the main theorem of this chapter.

Theorem 4.6. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5
, then for u0 ∈ H̃0,2

we have

lim
ε→0

E

(
sup
t∈[0,T ]

‖u
ε(t)− u0(t)√

ε
− V 0(t)‖2

H +

∫ T

0

‖u
ε(t)− u0(t)√

ε
− V 0(t)‖2

H̃1,0dt

)
= 0
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Proof Let V ε = uε(t)−u0(t)√
ε

. Then we have

dV ε(t) = ∂2
1V

ε(t)dt−B(V ε(t), uε(t))dt−B(u0(t), V ε(t))dt+ σ(t, uε(t))dW (t),

V ε(0) = 0,
(4.6)

and

d(V ε − V 0) =∂2
1(V ε − V 0)dt− (B(V ε, uε)−B(V 0, u0))dt

−B(u0, V ε − V 0)dt+ (σ(t, uε)− σ(t, u0))dW (t).

By Itô’s formula, we have

‖V ε(t)− V 0(t)‖2
H + 2

∫ t

0

‖∂1(V ε(s)− V 0(s))‖2
Hds

=− 2

∫ t

0

〈B(V ε, uε)−B(V 0, u0), V ε − V 0〉ds

+ 2

∫ t

0

〈(σ(s, uε)− σ(s, u0))dW (s), V ε(s)− V 0(s)〉

+

∫ t

0

‖σ(s, uε)− σ(s, u0)‖2
L2(l2,H)ds

62

∫ t

0

|b(V ε − V 0, u0, V ε − V 0)|ds

+ 2

∫ t

0

|b(V ε, uε − u0, V ε − V 0)|ds

+ 2|
∫ t

0

〈(σ(s, uε)− σ(s, u0))dW (s), V ε(s)− V 0(s)〉|

+

∫ t

0

‖σ(s, uε)− σ(s, u0)‖2
L2(l2,H)ds

=:I1 + I2 + I3 + I4.

Taking the supremum and the expectation, we obtain that

E

(
sup
s∈[0,t]

‖V ε(s)− V 0(s)‖2
H + 2

∫ t

0

‖∂1(V ε(s)− V 0(s))‖2
Hds

)
6E(I1(t) + I2(t) + sup

s∈[0,t]

I3(s) + I4(t)).

By Lemma 2.11, we have

EI1(t) 62E

∫ t

0

(
1

4
‖V ε − V 0‖2

H̃1,0 + C‖u0‖2
H̃1,1‖V ε − V 0‖2

H

)
ds.

By Lemma 2.11, we have

EI2(t) =2
√
εE

∫ t

0

|b(V ε, V ε, V ε − V 0)|ds

=2
√
εE

∫ t

0

|b(V ε, V ε, V 0)|ds = 2
√
εE

∫ t

0

|b(V ε, V 0, V ε)|ds
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6
√
εCE

∫ t

0

(‖V ε‖2
H̃1,0‖V ε‖2

H + ‖V 0‖2
H̃1,1)ds.

By the Burkhölder-Davis-Gundy inequality and (A3), we have

E

(
sup
s∈[0,t]

I3(s)

)
66E

(∫ t

0

‖σ(s, uε)− σ(s, u0)‖2
L2(l2,H)‖V ε − V 0‖2

Hds

) 1
2

66E

(
sup
s∈[0,t]

‖V ε − V 0‖2
H

∫ t

0

‖σ(s, uε)− σ(s, u0)‖2
L2(l2,H)ds

) 1
2

6
1

2
E

(
sup
s∈[0,t]

‖V ε − V 0‖2
H

)
+ CE

(∫ t

0

‖uε − u0)‖2
H + ‖∂1(uε − u0)‖2

Hds

)
.

By (A1), we have

EI4(t) 6 CE

(∫ t

0

‖uε − u0‖2
H + ‖∂1(uε − u0)‖2

Hds

)
.

The above estimates together with Lemma 4.3 and Lemma 4.7 below induce that

E

(
sup
s∈[0,t]

‖V ε(s)− V 0(s)‖2
H +

∫ t

0

‖V ε(s)− V 0(s)‖2
H̃1,0ds

)

6CE
∫ t

0

(
‖u0(s)‖2

H̃1,1 sup
l∈[0,s]

‖V ε(l)− V 0(l)‖2
H

)
ds

+
√
εCE

∫ t

0

(‖V ε‖2
H̃1,0‖V ε‖2

H + ‖V 0‖2
H̃1,1)ds

+ CE

(∫ t

0

‖uε − u0‖2
H + ‖∂1(uε − u0)‖2

Hds

)
6CE

∫ t

0

(
(1 + ‖u0(s)‖2

H̃1,1) sup
l∈[0,s]

‖V ε(l)− V 0(l)‖2
H

)
ds+ C(

√
ε+ ε).

Then by Gronwall’s inequality and Lemma 4.1 we have

E

(
sup
s∈[0,t]

‖V ε(s)− V 0(s)‖2
H +

∫ t

0

‖V ε(s)− V 0(s)‖2
H̃1,0ds

)

6C(
√
ε+ ε) exp

(
C

∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)ds

)
6 C(

√
ε+ ε).

Let ε→ 0, we complete the proof.
�

It remains to establish the following lemma.

Lemma 4.7. Assume (A0)-(A3) hold with K2 < 2
21
, K̃2 < 1

5
, L2 < 1

5
. Let V ε be the

solution to (4.6), then there exists a constant ε0 > 0 such that

sup
ε∈(0,ε0)

E

∫ T

0

‖V ε(s)‖2
H‖V ε(s)‖2

H̃1,0ds <∞.
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Proof Applying Itô’s formula to ‖V ε‖4
H , we have

d‖V ε‖4
H 62‖V ε‖2

H

(
− 2‖∂1V

ε‖2
Hdt− 2b(V ε, uε, V ε)dt

+ 2〈σ(t, uε)dW (t), V ε〉+ ‖σ(t, uε)‖2
L2(l2,H)dt

)
+ 4‖ (σ(t, uε(t)))∗ V ε‖2

l2dt.

Taking the supremum and the expectation, we have

E

(
sup
s∈[0,t]

‖V ε(s)‖4
H + 4

∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds

)

64E

(∫ t

0

‖V ε(s)‖2
H |b(V ε(s), uε(s), V ε(s))|ds

)
+ 6E

(∫ t

0

‖V ε(s)‖2
H‖σ(s, uε(s))‖2

L2(l2,H)ds

)
+ 4E

(
sup
s∈[0,t]

∣∣∣∣∫ t

0

‖V ε(s)‖2
H〈σ(s, uε(s))dW (s), V ε(s)〉

∣∣∣∣
)

=:I1 + I2 + I3.

Recall that V ε = uε−u0√
ε

. By Lemma 2.11, we have

I1(t) =4E

(∫ t

0

‖V ε(s)‖2
H |b(V ε(s), u0(s) +

√
εV ε(s), V ε(s))|ds

)
=4E

(∫ t

0

‖V ε(s)‖2
H |b(V ε(s), u0(s), V ε(s))|ds

)
6E

(∫ t

0

‖V ε(s)‖2
H(‖∂1V

ε(s)‖2
H + C(1 + ‖u0(s)‖2

H̃1,1)‖V ε(s)‖2
H)ds

)
6E

∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds+ CE

(∫ t

0

(1 + ‖u0(s)‖2
H̃1,1) sup

l∈[0,s]

‖V ε(l)‖4
Hds

)
.

Note that Proposition 4.3 implies the boundedness of u0 in L2([0, T ], H̃1,1). By (A1)
we have

I2(t) 6CE

(∫ t

0

‖V ε(s)‖2
H(1 + ‖uε(s)‖2

H + ‖∂1u
ε(s)‖2

H)ds

)
6CE

(∫ t

0

‖V ε(s)‖2
H(1 + ‖u0(s)‖2

H + ε‖V ε(s)‖2
H + ‖∂1u

0(s)‖2
H + ε‖∂1V

ε(s)‖2
H)ds

)
6C + εCE

(
sup
s∈[0,t]

‖V ε(s)‖4
H

)
+ εCE

(∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds

)
.

By the Burkholder-Davis-Gundy inequality, (A1) and Proposition 4.3, we have

I3(t)

6CE

(∫ t

0

‖V ε(s)‖6
H‖σ(s, uε(s))‖2

L2(l2,H)ds

) 1
2
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6CE

(
sup
s∈[0,t]

‖V ε(s)‖2
H

(∫ t

0

‖V ε(s)‖2
H(1 + ‖uε(s)‖2

H + ‖∂1u
ε(s)‖2

H)ds

) 1
2

)

6
1

2
E

(
sup
s∈[0,t]

‖V ε(s)‖4
H

)

+ CE

(∫ t

0

‖V ε(s)‖2
H(1 + ‖u0(s)‖2

H + ε‖V ε(s)‖2
H + ‖∂1u

0(s)‖2
H + ε‖∂1V

ε(s)‖2
H)ds

)
6(

1

2
+ εC)E

(
sup
s∈[0,t]

‖V ε(s)‖4
H

)
+ C + εCE

(∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds

)
.

Combining the above estimates, there exists constants C0 and C1,

E

(
(
1

2
− C0ε) sup

s∈[0,t]

‖V ε(s)‖2
H + (3− C1ε)

∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds

)

6C + CE

(∫ t

0

(1 + ‖u0(s)‖2
H̃1,1) sup

l∈[0,s]

‖V ε(l)‖4
Hds

)
.

When ε < ε0 := min{ 1
4C0

, 3
2C1
}, by Gronwall’s inequality, we have

E

(
sup
s∈[0,t]

‖V ε(s)‖4
H +

∫ t

0

‖V ε(s)‖2
H‖∂1V

ε(s)‖2
Hds

)
6 C exp

(∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)ds

)
.

Again by Lemma 4.1 we complete the proof.
�



Chapter 5

Moderate deviation principle

In this chapter, we will prove that Zε := 1√
ελ(ε)

(uε − u0) satisfies LDP on

L∞([0, T ], H) ∩ L2([0, T ], H̃1,0) ∩ C([0, T ], H−1)

if λ(ε) satisfies:
λ(ε)→∞,

√
ελ(ε)→ 0 as ε→ 0.

Let us introduce the following skeleton equation associated to Zε = 1√
ελ(ε)

(uε − u0),

for φ ∈ L2([0, T ], l2):

dXφ(t) = ∂2
1X

φ(t)dt−B(Xφ(t), u0(t))dt−B(u0(t), Xφ(t))dt+ σ(t, u0(t))φ(t)dt,

Xφ(0) = 0.
(5.1)

Define g0 : C([0, T ], U)→ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1) by

g0(h) :=

{
Xφ, if h =

∫ ·
0
φ(s)ds for some φ ∈ L2([0, T ], l2);

0, otherwise.

Then the rate function can be written as

I(g) = inf

{
1

2

∫ T

0

‖φ(s)‖2
l2ds : g = Xφ, φ ∈ L2([0, T ], l2)

}
, (5.2)

where g ∈ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

The main result of this section is the following:

Theorem 5.1. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5

and u0 ∈ H̃0,2,
then Zε satisfies a large deviation principle on

L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1)

with speed λ2(ε) and with the good rate function I given by (5.2), more precisely, it holds
that
(U) for all closed sets F ⊂ L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1) we have

lim sup
ε→0

1

λ2(ε)
logP

(
uε − u0

√
ελ(ε)

∈ F
)
6 − inf

g∈F
I(g),

(L) for all open sets G ⊂ L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1) we have

lim sup
ε→0

1

λ2(ε)
logP

(
uε − u0

√
ελ(ε)

∈ G
)
> − inf

g∈G
I(g).

By Lemma 2.6, we should check that Hypothesis 2.5 holds with ε replaced by λ−2.

47
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5.1 Two equations

In this section we give existence and uniqueness of solutions to two equations which will
be used in the proof of the main result. The first one we consider is the skeleton equation
(5.1).

Proposition 5.2. Assume (A0)-(A2) hold. For all u0 ∈ H̃0,2 and φ ∈ L2([0, T ], l2) there
exists a unique solution

Xφ ∈ L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1)

to (5.1).

Proof We start by giving a priori estimates. Using an H̃0,1 energy estimate, we have

1

2

d

dt
‖Xφ‖2

H̃0,1 + ‖∂1X
φ‖2

H̃0,1

=− 〈B(Xφ, u0) +B(u0, Xφ), Xφ〉H̃0,1 + 〈σ(t, u0(t))φ(t), Xφ〉H̃0,1 .

The first two terms on the roght hand side can be dealt by the same calculation as in
the proof of Lemma 4.4. For the third term we have

|〈σ(t, u0(t))φ(t), Xφ〉H̃0,1| 6‖σ(t, u0)‖L2(l2,H̃0,1)‖φ(t)‖l2‖Xφ(t)‖H̃0,1

6K̃0 + K̃1‖u‖2
H̃0,1 + K̃2(‖∂1u‖2

H + ‖∂1∂2u‖2
H) + C‖φ‖2

l2‖Xφ‖2
H̃0,1

6C + C‖φ‖2
l2‖Xφ‖2

H̃0,1 ,

where we used (A2) in the second line. Thus we deduce that

‖Xφ(t)‖2
H̃0,1 +

∫ t

0

‖Xφ(s)‖2
H̃1,1ds

6C + C

∫ t

0

(
1 + ‖u0‖2

H̃1,2 + ‖φ‖2
l2

)
‖Xφ‖2

H̃0,1ds.

By Gronwall’s inequality we have

‖Xφ(t)‖2
H̃0,1 +

∫ t

0

‖Xφ(s)‖2
H̃1,1ds

6C exp

(∫ t

0

(
1 + ‖u0‖2

H̃1,2 + ‖φ‖2
l2

)
ds

)
6 C,

where we used Lemma 4.2.
The existence results will be given by compactness arguments (see [LZZ18, Theorem

3.1]). We put them in the following for the use in the proof of next lemma.
Consider the approximate equation:{
dXφ

ε (t) = ∂2
1X

φ
ε (t)dt+ ε2∂2

2X
φ
ε (t)dt−B(Xφ

ε , u
0)dt−B(u0, Xφ

ε )dt+ σ(t, u0(t))φ(t)dt,

Xφ
ε (0) = 0.

(5.3)
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It follows from classical theory on Navier-Stokes system that (5.3) has a unique global
smooth solution zφε for any fixed ε. Furthermore, we have

‖Xφ
ε (t)‖2

H̃0,1 +

∫ t

0

‖Xφ
ε (s)‖2

H̃1,1ds 6 C.

Then we have that {Xφ
ε }ε>0 is uniformly bounded in L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1),

hence bounded in L4([0, T ], H
1
2 ) (by interpolation) and L4([0, T ], L4(T2)) (by Sobolev

embedding). Thus B(Xφ
ε , u

0) and B(u0, Xφ
ε ) are uniformly bounded in L2([0, T ], H−1).

Let p ∈ (1, 4
3
), we have∫ T

0

‖σ(s, u0(s))φ(s)‖pH−1ds 6
∫ T

0

‖σ(s, u0(s))‖pL2(l2,H−1)‖φ(s)‖pl2ds

6C
∫ T

0

(1 + ‖σ(s, u0(s))‖4
L2(l2,H−1) + ‖φ(s)‖2

l2)ds

6C
∫ T

0

(1 + ‖u0(s))‖4
H + ‖φ(s)‖2

l2)ds <∞,

where we used Young’s inequality in the second line and (A0) in the third line. It comes
out that

{∂tXφ
ε }ε>0 is uniformly bounded in Lp([0, T ], H−1). (5.4)

Thus by Aubin-Lions lemma (see [LZZ18, Lemma 3.6]), there exists a Xφ ∈ L2([0, T ], H)
such that

Xφ
ε → Xφ strongly in L2([0, T ], H) as ε→ 0 (in the sense of subsequence).

Since {Xφ
ε }ε>0 is uniformly bounded in L∞([0, T ], H̃0,1)

⋂
L2([0, T ], H̃1,1), there exists

a X̃ ∈ L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1) such that

Xφ
ε → X̃ weakly in L2([0, T ], H̃1,1) as ε→ 0 (in the sense of subsequence).

Xφ
ε → X̃ weakly star in L∞([0, T ], H̃0,1) as ε→ 0 (in the sense of subsequence).

By the uniqueness of weak convergence limit, we deduce that Xφ = X̃. By (5.4) and
[FG95, Theorem 2.2], we also have for any δ > 0

Xφ
ε → Xφ strongly in C([0, T ], H−1−δ) as ε→ 0 (in the sense of subsequence).

Now we use the above convergence to prove that Xφ is a solution to (5.1). Note that
for any ϕ ∈ C∞([0, T ]× T2) with divϕ = 0, for any t ∈ [0, T ], zφε satisfies

〈Xφ
ε (t), ϕ(t)〉 =

∫ t

0

〈Xφ
ε , ∂tϕ〉 − 〈∂1X

φ
ε , ∂1ϕ〉 − ε2〈∂2X

φ
ε , ∂2ϕ〉

+ 〈−B(Xφ
ε , u

0)−B(u0, Xφ
ε ) + σ(s, u0)φ, ϕ〉ds.

(5.5)

Let ε→ 0 in (5.5), we have Xφ ∈ L∞([0, T ], H̃0,1)
⋂
L2([0, T ], H̃1,1) and

∂tX
φ = ∂2

1X
φ −B(Xφ, u0)−B(u0, Xφ) + σ(t, u0(t))φ.

Since the right hand side belongs to Lp([0, T ], H−1), we deduce that

Xφ ∈ L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1).

The uniqueness part is exactly the same as in Lemma 4.4. �
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Recall Zε = uε−u0√
ελ(ε)

, then

dZε(t) = ∂2
1Z

ε(t)dt−B(Zε(t), u0(t) +
√
ελ(ε)Zε(t))dt−B(u0(t), Zε(t))dt

+ λ−1(ε)σ(t, u0(t) +
√
ελ(ε)Zε(t))dW (t),

(5.6)

with initial value Zε(0) = 0. The uniqueness of solution to (5.6) is very similar to that of
(2.2). Then it follows from Yamada-Watanabe theorem (See [LR15, Appendix E]) that
there exists a Borel-measurable function

gε : C([0, T ], U)→ L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1)

such that Zε = gε(W ) a.s..
Now consider the following equation:

dXε(t) = ∂2
1X

ε(t)dt−B(Xε(t), u0(t) +
√
ελ(ε)Xε(t))dt−B(u0(t), Xε(t))dt

+ σ(t, u0(t) +
√
ελ(ε)Xε(t))vε(t)dt+ λ−1(ε)σ(t, u0(t) +

√
ελ(ε)Xε(t))dW (t),

Xε(0) = 0,
(5.7)

where vε ∈ AN for some N <∞. Here Xε should have been denoted Xε
vε and the slight

abuse of notation is for simplicity.

Lemma 5.3. Assume (A0)-(A3) hold with K2 <
2
21
, K̃2 <

1
5
, L2 <

1
5

and vε ∈ AN for
some N < ∞. Then Xε = gε

(
W (·) + λ(ε)

∫ ·
0
vε(s)ds

)
is the unique strong solution to

(5.7).

Proof Since vε ∈ AN , by the Girsanov theorem (see [LR15, Appendix I]), W̃ (·) :=
W (·) + λ(ε)

∫ ·
0
vε(s)ds is an l2-cylindrical Wiener-process under the probability measure

dP̃ := exp

{
−λ(ε)

∫ T

0

vε(s)dW (s)− 1

2
λ2(ε)

∫ T

0

‖vε(s)‖2
l2ds

}
dP.

Then (Xε, W̃ ) is the solution to (5.6) on the stochastic basis (Ω,F , P̃ ). Thus (Xε,W )
satisfies the condition of the definition of weak solution (see [LZZ18, Definition 4.1])
and hence is a weak solution to (5.7) on the stochastic basis (Ω,F , P ) and Xε =
gε
(
W (·) + λ(ε)

∫ ·
0
vε(s)ds

)
.

If X̃ε and Xε are two weak solutions to (5.7) on the same stochastic basis (Ω,F , P ).
Let W ε = Xε − X̃ε and q(t) = k

∫ t
0
(‖u0 +

√
ελ(ε)Xε(s)‖2

H̃1,1 + ‖vε(s)‖2
l2)ds for some

constant k. Applying Itô’s formula to e−q(t)‖W ε(t)‖2
H , we have

e−q(t)‖W ε(t)‖2
H + 2

∫ t

0

e−q(s)‖∂1W
ε(s)‖2

Hds

=− k
∫ t

0

e−q(s)‖W ε(s)‖2
H(‖u0 +

√
ελ(ε)Xε(s)‖2

H̃1,1 + ‖vε(s)‖2
l2)ds

− 2

∫ t

0

e−q(s)b(W ε, u0 +
√
ελ(ε)Xε,W ε)ds

+ 2

∫ t

0

e−q(s)〈σ(s, u0 +
√
ελ(ε)Xε)vε − σ(s, u0 +

√
ελ(ε)X̃ε)vε,W ε(s)〉ds

+ 2λ−1(ε)

∫ t

0

e−q(s)〈W ε(s), (σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε))dW (s)〉
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+ λ−2(ε)

∫ t

0

e−q(s)‖σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε)‖2

L2(l2,H)ds.

By Lemma 2.11, there exists constants α̃ ∈ (0, 1) and C̃ such that

|b(W ε, u0 +
√
ελ(ε)Xε,W ε)| 6 α̃‖∂1W

ε‖2
H + C̃(1 + ‖u0 +

√
ελ(ε)Xε‖2

H̃1,1)‖W ε‖2
H .

We also have

2|〈σ(s, u0 +
√
ελ(ε)Xε)vε − σ(s, u0 +

√
ελ(ε)X̃ε)vε,W ε〉|

62‖(σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε))vε‖H‖W ε‖H

6‖σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε)‖2

L2(l2,H) + ‖vε‖2
l2‖W ε‖2

H .

By (A3), we have

‖σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε)‖2

L2(l2,H)

6
√
ελ(ε)(L1‖W ε‖2

H + L2‖∂1W
ε‖2
H).

By the Burkhölder-Davis-Gundy’s inequality (see [LR15, Appendix D]), we have

2λ−1(ε)|E[ sup
r∈[0,t]

∫ r

0

e−q(s)〈W ε(s), (σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε))dW (s)〉]|

66λ−1(ε)E

(∫ t

0

e−2q(s)‖σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε)‖2

L2(l2,H)‖W ε(s)‖2
Hds

) 1
2

6
√
εE( sup

s∈[0,t]

(e−q(s)‖W ε(s)‖2
H)) + 9

√
εE

∫ t

0

e−q(s)(L1‖W ε(s)‖2
H + L2‖∂1W

ε(s)‖2
H)ds,

where we used (A3).
Let k > 2C̃ and we may assume

√
ελ(ε) < 1, by (A3) we have

e−q(t)‖W ε(t)‖2
H + (2− 2α̃− L2ελ

2(ε))

∫ t

0

e−q(s)‖∂1W
ε(s)‖2

Hds

6C
∫ t

0

e−q(s)‖W ε(s)‖2
Hds

+ 2λ−1(ε)

∫ t

0

e−q(s)〈W ε(s), (σ(s, u0 +
√
ελ(ε)Xε)− σ(s, u0 +

√
ελ(ε)X̃ε))dW (s)〉.

Let ε be small enough such that 1−
√
ε− L2ελ

2(ε)− 9
√
εL2 > 0. Then we have

E( sup
s∈[0,t]

(e−q(s)‖W ε(s)‖2
H)) 6 CE

∫ t

0

e−q(s)‖W ε(s)‖2
Hds.

By Gronwall’s inequality we obtain W ε = 0 P -a.s., i.e. X̃ε = Xε P -a.s..
Then by the Yamada-Watanabe theorem, we have Xε is the unique strong solution

to (5.7). �
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5.2 Proof of Hypothesis 2

In this section we will show that I is a good rate function by checking the second part of
Hypothesis 2.5.

Lemma 5.4. Assume (A0)-(A2) hold. For all N <∞, the set

KN =

{
g0

(∫ ·
0

φ(s)ds

)
: φ ∈ SN

}
is a compact subset in L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

Proof By definition, we have

KN =

{
Xφ : φ ∈ L2([0, T ], l2),

∫ T

0

‖φ(s)‖2
l2ds 6 N

}
.

Let {Xφn} be a sequence in KN where {φn} ⊂ SN . Note that Xφn is uniformly
bounded in L∞([0, T ], H̃1,0) ∩ L2([0, T ], H̃1,1). Thus by weak compactness of SN , a
similar argument as in the proof of Lemma 5.2 shows that there exists φ ∈ SN and
X ′ ∈ L2([0, T ], H) such that the following convergence hold as n → ∞ (in the sense of
subsequence):

φn → φ in SN weakly,
Xφn → X ′ in L2([0, T ], H̃1,0) weakly,
Xφn → X ′ in L∞([0, T ], H) weak-star,
Xφn → X ′ in L2([0, T ], H) strongly.
Xφn → X ′ in C([0, T ], H−1−δ) strongly for any δ > 0.
Then for any ϕ ∈ C∞([0, T ]× T2) with divϕ = 0 and for any t ∈ [0, T ], Xφn satisfies

〈Xφn(t), ϕ(t)〉 = 〈u0, ϕ(0)〉

+

∫ t

0

〈Xφn , ∂tϕ〉 − 〈∂1X
φn , ∂1ϕ〉+ 〈−B(Xφn , u0)−B(u0, Xφn) + σ(s, u0)φn, ϕ〉ds.

(5.8)
Let n→∞, we deduce that X ′ is a solution to (5.1). By the uniqueness of solution,

we deduce that X ′ = Xφ.
Our goal is to prove Xφn → Xφ in L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

Let wn = Xφn −Xφ, by a direct calculation, we have

‖wn(t)‖2
H + 2

∫ t

0

‖∂1w
n(s)‖2

Hds

=− 2

∫ t

0

〈wn(s), B(Xφn(s)−Xφ(s), u0(s))〉ds

− 2

∫ t

0

〈wn(s), B(u0(s), Xφn(s)−Xφ(s))〉ds

+ 2

∫ t

0

〈wn(s), σ(s, u0(s))(φn(s)− φ(s))〉ds

62

∫ t

0

|b(wn, u0, wn)(s)|ds+ 2

∫ t

0

|〈wn(s), σ(s, u0(s))(φn(s)− φ(s))〉|ds
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6
∫ t

0

‖∂1w
n(s)‖2

H + C(1 + ‖u0(s)‖2
H̃1,1)‖wn(s)‖2

Hds

+ C

∫ t

0

‖wn(s)‖H‖φn(s)− φ(s)‖l2(1 + ‖u0(s)‖2
H + ‖∂1u

0(s)‖2
H)

1
2ds,

where we used Lemma 2.11 and (A1) in the last inequality.
Note that φn, φ are in SN , we have

‖wn(t)‖2
H +

∫ t

0

‖∂1w
n(s)‖2

Hds

6C
∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)‖wn(s)‖2

Hds

+ C

(∫ t

0

‖wn(s)‖2
H(1 + ‖u0(s)‖2

H + ‖∂1u
0(s)‖2

H)ds

) 1
2
(∫ t

0

‖φn(s)− φ(s)‖2
l2

) 1
2

6C
∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)‖wn(s)‖2

Hds

+ C
√
N

(∫ t

0

‖wn(s)‖2
H(1 + ‖u0(s)‖2

H + ‖∂1u
0(s)‖2

H)ds

) 1
2

.

For any ε > 0, let
Aε := {s ∈ [0, T ]; ‖wn(s)‖H > ε}.

Since Xφn → Xφ in L2([0, T ], H) strongly, we have∫ T

0

‖wn(s)‖2
Hds→ 0, as n→∞

and limn→∞ Leb(Aε) = 0, where Leb(B) means the Lebesgue measure of B ∈ B(R). Thus
we have ∫ T

0

(1 + ‖u0(s)‖2
H̃1,1)‖wn(s)‖2

Hds

6

(∫
Aε

+

∫
[0,T ]\Aε

)
(1 + ‖u0(s)‖2

H̃1,1)‖wn(s)‖2
Hds

6Cε+ 2

∫
Aε

(1 + ‖u0(s)‖2
H̃1,1)(‖Xφn(s)‖2

H + ‖Xφ(s)‖2
H)ds

6Cε+ C

∫
Aε

(1 + ‖u0(s)‖2
H̃1,1)ds

→ Cε as n→∞,
where we used Lemma 4.1 in the last line. A similar argument also implies that∫ T

0

(1 + ‖u0(s)‖2
H + ‖∂1u

0(s)‖2
H)‖wn(s)‖2

Hds 6 Cε.

Hence we have

sup
t∈[0,T ]

‖wn(t)‖2
H +

∫ T

0

‖∂1w
n(s)‖2

Hds 6 Cε+ C
√
ε as n→∞.

Since ε is arbitrary, we obtain that

Xφn → Xφ strongly in L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1).

�
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5.3 Proof of Hypothesis 1

In this section we will prove the main result by checking the rest of Hypothesis 2.5.

Lemma 5.5. Assume Xε is a solution to (5.7) with vε ∈ AN and ε < 1 small enough.
Then we have

E( sup
t∈[0,T ]

‖Xε(t)‖4
H) + E

∫ T

0

(‖Xε(s)‖2
H + 1)‖Xε(s)‖2

H̃1,0ds 6 C(N). (5.9)

Moreover, there exists k > 0 such that

E( sup
t∈[0,T ]

e−kg(t)‖Xε(t)‖2
H̃0,1) + E

∫ T

0

e−kg(s)‖Xε(s)‖2
H̃1,1ds 6 C(N), (5.10)

where g(t) =
∫ t

0
‖∂1X

ε(s)‖2
Hds and C(N) is a constant depend on N but independent of

ε.

Proof We prove (5.9) by two steps of estimates. For the first step, applying Itô’s formula
to ‖Xε(t)‖2

H , we have

‖Xε(t)‖2
H + 2

∫ t

0

‖∂1X
ε(s)‖2

Hds

=− 2

∫ t

0

b(Xε, u0, Xε)ds+ 2

∫ t

0

〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))vε(s)〉ds

+ 2λ−1(ε)

∫ t

0

〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))dW (s)〉

+ λ−2(ε)

∫ t

0

‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H)ds

6
∫ t

0

(
1

2
‖∂1X

ε(s)‖2
H + C(1 + ‖u0‖2

H̃1,1)‖Xε‖2
H)ds

+

∫ t

0

(‖Xε(s)‖2
H‖vε(s)‖2

l2 + ‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H))ds

+ 2λ−1(ε)

∫ t

0

〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))dW (s)〉

+ λ−2(ε)

∫ t

0

‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H)ds

6
∫ t

0

(
1

2
‖∂1X

ε(s)‖2
H + C(1 + ‖u0‖2

H̃1,1)‖Xε‖2
H)ds+

∫ t

0

‖Xε(s)‖2
H‖vε(s)‖2

l2ds

+ (1 + λ−2(ε))

∫ t

0

(K0 +K1‖u0 +
√
ελ(ε)Xε‖2

H +K2‖∂1(u0 +
√
ελ(ε)Xε)‖2

H)ds

+ 2λ−1(ε)

∫ t

0

〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))dW (s)〉,

where we used (A1) in the last inequality.
Note that vε ∈ AN , by Lemma 4.1 and Gronwall’s inequality,

‖Xε(t)‖2
H + (

3

2
− εK2 − λ2(ε)εK2)

∫ t

0

‖∂1X
ε(s)‖2

Hds
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6(C + 2λ−1(ε)

∫ t

0

〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))dW (s)〉)eC1(N).

For the term on the right hand side, by the Burkhölder-Davis-Gundy inequality we
have

2λ−1(ε)eC1(N)E

(
sup

06s6t
|
∫ s

0

〈Xε(r), σ(r, u0 +
√
ελ(ε)Xε(r))dW (r)〉|

)
66λ−1(ε)eC1(N)E

(∫ t

0

‖Xε(r)‖2
H‖σ(r, u0 +

√
ελ(ε)Xε(r))‖2

L2(l2,H)ds

) 1
2

6λ−1(ε)E[ sup
06s6t

(‖Xε(s)‖2
H)]

+ 9λ−2(ε)eC1(N)E

∫ t

0

[K0 +K1‖u0 +
√
ελ(ε)Xε(s)‖2

H +K2‖∂1(u0 +
√
ελ(ε)Xε(s))‖2

H ]ds,

where (9εeC1(N) + ελ2(ε) + ε)K2 − 3
4
< 0 (this can be done since

√
ελ(ε) → 0) and we

used (A1) in the last inequality. Thus we have

E[ sup
s∈[0,t]

(‖Xε(t)‖2
H)] + E

∫ t

0

‖∂1X
ε(s)‖2

Hds

6C(N) + C(N)

∫ t

0

E[ sup
r∈[0,s]

(‖Xε(r)‖2
H)]ds.

Then by Gronwall’s inequality we have

E( sup
06t6T

‖Xε(t)‖2
H) + E

∫ T

0

‖∂1X
ε(s)‖2

Hds 6 C(N). (5.11)

Now by Itô’s formula we have

‖Xε(t)‖4
H =− 4

∫ t

0

‖Xε(s)‖2
H‖∂1X

ε(s)‖2
Hds− 4

∫ t

0

‖Xε(s)‖2
Hb(X

ε, u0, Xε)ds

+ 4

∫ t

0

‖Xε(s)‖2
H〈σ(s, u0 +

√
ελ(ε)Xε(s))vε(s), Xε(s)〉ds

+ 2λ−2(ε)

∫ t

0

‖Xε(s)‖2
H‖σ(s, u0 +

√
ελ(ε)Xε(s))‖2

L2(l2,H)ds

+ 4λ−2(ε)

∫ t

0

‖σ(s, u0 +
√
ελ(ε)Xε(s))∗(Xε)‖2

l2ds

+ 4λ−1(ε)

∫ t

0

‖Xε(s)‖2
H〈Xε(s), σ(s, u0 +

√
ελ(ε)Xε(s))dW (s)〉H

=:− 4

∫ t

0

‖Xε‖2
H‖∂1X

ε(s)‖2
Hds+ I0 + I1 + I2 + I3 + I4.

(5.12)

By Lemma 2.11,

|I0(t)| 6 4

∫ t

0

‖Xε‖2
H(

1

4
‖∂1X

ε‖2
H + C(1 + ‖u0‖2

H̃1,1)‖Xε‖2
H))ds.
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By (A1) we have

I1(t) 64

∫ t

0

‖Xε(s)‖2
H‖σ(s, u0 +

√
ελ(ε)Xε(s))‖L2(l2,H)‖vε(s)‖l2‖Xε(s)‖Hds

62

∫ t

0

‖Xε(s)‖2
H(K0 +K1‖u0 +

√
ελ(ε)Xε(s)‖2

H

+K2‖∂1(u0 +
√
ελ(ε)Xε(s))‖2

H + ‖vε(s)‖2
l2‖Xε(s)‖2

H)ds,

and

I2 + I3 66λ−2(ε)

∫ t

0

‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H)‖Xε(s)‖2
Hds

66λ−2(ε)

∫ t

0

(K0 +K1‖u0 +
√
ελ(ε)Xε(s)‖2

H

+K2‖∂1(u0 +
√
ελ(ε)Xε(s))‖2

H)‖Xε(s)‖2
Hds.

Thus we have

‖Xε(t)‖4
H + (3− 2ελ2(ε)K2 − 6εK2)

∫ t

0

‖Xε(s)‖2
H‖∂1X

ε(s)‖2
Hds

6I4 + C + C

∫ t

0

(1 + ‖u0(s)‖2
H̃1,1 + ‖vε(s)‖2

l2)‖Xε(s)‖4
H)ds.

Since vε ∈ AN , by Gronwall’s inequality we have

‖Xε(t)‖4
H + (3− 2ελ2(ε)K2 − 6εK2)

∫ t

0

‖Xε(s)‖2
H‖∂1X

ε(s)‖2
Hds

6 (I4 + C) eC2(N).

Then the Burkhölder-Davis-Gundy inequality, the Young’s inequality and (A1) imply
that

E( sup
s∈[0,t]

I4(s)) 612λ−1(ε)E

(∫ t

0

‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H)‖Xε(s)‖6
Hds

) 1
2

6λ−1(ε)E( sup
s∈[0,t]

‖Xε(s)‖4
H) + 36λ−1(ε)E

∫ t

0

(K0 +K1‖u0 +
√
ελ(ε)Xε(s)‖2

H

+K2‖∂1(u0 +
√
ελ(ε)Xε(s))‖2

H)‖Xε(s)‖2
Hds.

Let ε small enough such that 3−2ελ2(ε)K2−6εK2−36εK2e
C2(N) > 0 and λ−1(ε)eC2(N) <

1. Then the above estimates and (5.9) imply that

E( sup
s∈[0,t]

‖Xε(s)‖4
H) +

∫ t

0

‖Xε(s)‖2
H‖Xε(s)‖2

H̃1,0ds

6C(N) + C(N)E

∫ t

0

‖Xε(s)‖4
Hds,

which by Gronwall’s inequality yields that

E( sup
s∈[0,t]

‖Xε(s)‖4
H) +

∫ t

0

‖Xε(s)‖2
H‖Xε(s)‖2

H̃1,0ds 6 C(N).
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For (5.10), let h(t) = kg(t) +
∫ t

0
‖vε(s)‖2

l2ds for some universal constant k. Apply-

ing Itô’s formula to e−h(t)‖Xε(t)‖2
H̃0,1 (by applying Itô’s formula to its finite- dimension

projection first and then passing to the limit), we have

e−h(t)‖Xε(t)‖2
H̃0,1 + 2

∫ t

0

e−h(s)(‖∂1X
ε(s)‖2

H + ‖∂1∂2X
ε(s)‖2

H)ds

=−
∫ t

0

e−h(s)(k‖∂1X
ε(s)‖2

H + ‖vε(s)‖2
l2)‖Xε(s)‖2

H̃0,1ds

− 2

∫ t

0

e−h(s)b(Xε, u0, Xε)ds− 2

∫ t

0

e−h(s)〈∂2X
ε(s), ∂2(Xε · ∇(u0 +

√
ελ(ε)Xε))(s)〉ds

− 2

∫ t

0

e−h(s)〈∂2X
ε(s), ∂2(u0 · ∇Xε)(s)〉ds

+ 2

∫ t

0

e−h(s)〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))vε(s)〉H̃0,1ds

+ 2λ−1(ε)

∫ t

0

e−h(s)〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε(s))dW (s)〉H̃0,1

+ λ−2(ε)

∫ t

0

e−h(s)‖σ(s, u0 +
√
ελ(ε)Xε(s))‖2

L2(l2,H̃0,1)
ds.

By Lemma 2.11, we have

2|b(Xε, u0, Xε)| 6 α‖∂1X
ε‖2
H + C(1 + ‖u0‖2

H̃1,1)‖Xε‖2
H ,

where α < 1
3
. By Lemma 2.12, there exists C1,

2
√
ελ(ε)|〈∂2X

ε, ∂2(Xε · ∇Xε)〉| 6 α‖∂1∂2X
ε‖2
H + C1(1 + ‖∂1X

ε‖2
H)‖∂2X

ε‖2
H .

By Lemma 2.11, we have

2|〈∂2X
ε, ∂2(Xε · ∇u0))〉| 62|b(∂2X

ε, u0, ∂2X
ε)|+ 2|b(Xε, ∂2u

0, ∂2X
ε)|

6α(‖Xε‖2
H̃1,0 + ‖∂2X

ε‖2
H̃1,0) + C‖u0‖2

H̃1,2‖∂2X
ε‖2
H .

Similarly,

|〈∂2X
ε(s), ∂2(u0 · ∇Xε)(s)〉| = |b(∂2u

0, Xε, ∂2X
ε)| 6 α‖Xε‖2

H̃1,1 + C‖u0‖2
H̃1,1‖∂2X

ε‖2
H .

By Young’s inequality,

2|〈Xε(s), σ(s, u0+
√
ελ(ε)Xε)vε(s)〉H̃0,1| 6 ‖Xε‖2

H̃0,1‖vε‖2
l2+‖σ(s, u0+

√
ελ(ε)Xε)‖2

L2(l2,H̃0,1)
.

Choosing k > 2C1

√
ελ(ε), we have

e−h(t)‖Xε(t)‖2
H̃0,1 + (2− 3α)

∫ t

0

e−h(s)‖Xε(s)‖2
H̃1,1ds

6C
∫ t

0

e−h(s)(1 + ‖u0‖2
H̃1,2)‖Xε(s)‖2

H̃0,1ds

+ (1 + λ−2(ε))

∫ t

0

e−h(s)‖σ(s, u0 +
√
ελ(ε)Xε)‖2

L2(l2,H̃0,1)
ds
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+ 2λ−1(ε)

∫ t

0

e−h(s)〈Xε(s), σ(s, u0 +
√
ελ(ε)Xε)dW (s)〉H̃0,1 .

By (A2) we have

(1 + λ−2(ε))‖σ(s, u0 +
√
ελ(ε)Xε)‖2

L2(l2,H̃0,1)
6 C(1 + ‖u0‖2

H̃1,1)

+ (1 + λ−2(ε))
(
K̃0 + K̃1ελ

2(ε)‖Xε‖2
H̃0,1 + K̃2ελ

2(ε)(‖∂1X
ε‖2
H + ‖∂1∂2X

ε‖2
H)
)
.

By the Burkhölder-Davis-Gundy inequality we have

2λ−1(ε)E

(
sup
s∈[0,t]

|
∫ s

0

e−h(r)〈Xε(r), σ(r, u0 +
√
ελ(ε)Xε)dW (r)〉H̃0,1|

)

66λ−1(ε)E

(∫ t

0

e−2h(s)‖Xε(s)‖2
H̃0,1‖σ(s, u0 +

√
ελ(ε)Xε)‖2

L2(l2,H̃0,1)
ds

) 1
2

6λ−1(ε)E[ sup
s∈[0,t]

(e−h(s)‖Xε(s)‖2
H̃0,1)] + λ−1(ε)C

∫ t

0

e−h(s)(1 + ‖u0‖2
H̃1,1)ds

+ 9ελ(ε)E

∫ t

0

e−h(s)[K̃1‖Xε(s)‖2
H̃0,1 + K̃2(‖∂1X

ε(s)‖2
H + ‖∂1∂2X

ε(s)‖2
H)]ds,

where we choose ε small enough such that (9ελ(ε) + ελ2(ε) + ε)K̃2 < 1− 3α and we used
(A2) in the last inequality.

Combine the above estimates, we have

E( sup
s∈[0,t]

e−h(s)‖Xε(s)‖2
H̃0,1) + E

∫ t

0

e−h(s)‖Xε(s)‖2
H̃1,1ds

6C + CE

(∫ t

0

e−h(s)(1 + ‖u0(s)‖2
H̃1,2)‖Xε(s)‖2

H̃0,1ds

)
Then Gronwall’s inequality and (4.1) imply that

E( sup
06t6T

e−h(t)‖Xε(t)‖2
H̃0,1) + E

∫ T

0

e−h(s)‖Xε(s)‖2
H̃1,1ds 6 C.

Since vε ∈ SN , we deduce that

E( sup
t∈[0,T ]

e−kg(t)‖Xε(t)‖2
H̃0,1) + E

∫ T

0

e−kg(s)‖Xε(s)‖2
H̃1,1ds 6 C. (5.13)

�
Similar as [LZZ18, lemma 4.3], we have the following tightness lemma:

Lemma 5.6. Assume Xε is a solution to (5.7) with vε ∈ AN and ε small enough. There
exists ε0 > 0, such that {Xε}ε∈(0,ε0) is tight in the space

χ = C([0, T ], H−1)
⋂

L2([0, T ], H)
⋂

L2
w([0, T ], H̃1,1)

⋂
L∞w∗([0, T ], H̃0,1),

where L2
w denotes the weak topology and L∞w∗ denotes the weak star topology.
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Proof Similar as in the proof of Lemma 3.6, the law of Zε
v on C([0, T ], H−1) can be

restricted on χ.
Let k be the same constant as in the proof of (5.10) and let

KR :=
{
u ∈ C([0, T ], H−1) : sup

t∈[0,T ]

‖u(t)‖2
H +

∫ T

0

‖u(t)‖2
H̃1,0dt+ ‖u‖

C
1
16 ([0,T ],H−1)

+ sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃1,1dt 6 R
}
,

where C
1
16 ([0, T ], H−1) is the Hölder space with the norm:

‖f‖
C

1
16 ([0,T ],H−1)

= sup
06s<t6T

‖f(t)− f(s)‖H−1

|t− s| 116
.

Then from the proof of [LZZ18, Lemma 4.3], we know that for any R > 0, KR is
relatively compact in χ.

Now we only need to show that for any δ > 0, there exists R > 0, such that P (Xε ∈
KR) > 1− δ for any ε ∈ (0, ε0), where ε0 is the constant such that Lemma 5.5 hold.

By Lemma 5.5 and Chebyshev inequality, we can choose R0 large enough such that

P

(
sup
t∈[0,T ]

‖Xε(t)‖2
H +

∫ T

0

‖Xε(t)‖2
H̃1,0dt >

R0

3

)
<
δ

4
,

and

P

(
sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1X

ε(s)‖2Hds‖Xε(t)‖2
H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1X

ε(s)‖2Hds‖Xε(t)‖2
H̃1,1dt >

R0

3

)
<
δ

4
,

where k is the same constant as in (5.10).
Fix R0 and let

K̂R0 =
{
u ∈ C([0, T ], H−1) : sup

t∈[0,T ]

‖u(t)‖2
H +

∫ T

0

‖u(t)‖2
H̃1,0dt 6

R0

3
and

sup
t∈[0,T ]

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃0,1 +

∫ T

0

e−k
∫ t
0 ‖∂1u(s)‖2Hds‖u(t)‖2

H̃1,1dt 6
R0

3

}
.

Then P (Xε ∈ C([0, T ], H−1) \ K̂R0) <
δ
2
.

Now for Xε ∈ K̂R0 , we have ∂2
1X

ε is uniformly bounded in L2([0, T ], H−1). Similar

as in Lemma 5.2, Xε is uniformly bounded in L4([0, T ], H
1
2 ) and L4([0, T ], L4(T2)), thus

B(Xε, u0 +
√
ελ(ε)Xε) and B(u0, Xε) are uniformly bounded in L2([0, T ], H−1). By

Hölder’s inequality, we have

sup
s,t∈[0,T ],s 6=t

‖
∫ t
s
∂2

1X
ε(r) +B(Xε, u0 +

√
ελ(ε)Xε) +B(u0, Xε)dr‖2

H−1

|t− s|

6
∫ T

0

‖∂2
1X

ε(r) +B(Xε, u0 +
√
ελ(ε)Xε) +B(u0, Xε)‖2

H−1dr 6 C(R0),
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where C(R0) is a constant depend on R0. For any p ∈ (1, 4
3
), by Hölder’s inequality, we

have

sup
s,t∈[0,T ],s 6=t

‖
∫ t
s
σ(r, u0 +

√
ελ(ε)Xε(r))vε(r)dr‖pH−1

|t− s|p−1

6
∫ T

0

‖σ(r, u0 +
√
ελ(ε)Xε(r))vε(r)‖pH−1dr

6
∫ T

0

‖σ(r, u0 +
√
ελ(ε)Xε(r))‖pL2(l2,H−1)‖v

ε(r)‖pl2dr

6C
∫ T

0

(1 + ‖u0 +
√
ελ(ε)Xε(r)‖4

H + ‖vε(r)‖4
l2)dr

6C(R0),

where we used Young’s inequality and (A0) in the third inequality.
Moreover, for any 0 6 s 6 t 6 T , by Hölder’s inequality we have

E‖
∫ t

s

σ(r, u0 +
√
ελ(ε)Xε(r))dW (r)‖4

H−1

6CE

(∫ t

s

‖σ(r, u0 +
√
ελ(ε)Xε(r))‖2

L2(l2,H−1)dr

)2

6C|t− s|E
∫ t

s

‖σ(r, u0 +
√
ελ(ε)Xε(r))‖4

L2(l2,H−1)dr

6C|t− s|2(1 + E( sup
t∈[0,T ]

‖u0 +
√
ελ(ε)Xε(t)‖4

H))

6C|t− s|2,

where we used (A0) in the third inequality and (5.9) in the last inequality. Then by
Kolmogorov’s continuity criterion, for any α ∈ (0, 1

4
), we have

E

(
sup

s,t∈[0,T ],s 6=t

‖
∫ t
s
σ(r, u0 +

√
ελ(ε)Xε(r))dW (r)‖4

H−1

|t− s|2α

)
6 C.

Choose p = 8
7
, α = 1

8
in the above estimates, we deduce that there exists R > R0 such

that

P

(
‖Xε‖

C
1
16 ([0,T ],H−1)

>
R

3
, Xε ∈ K̂R0

)

6
E

(
sups,t∈[0,T ],s 6=t

‖Xε(t)−Xε(s)‖H−1

|t−s|
1
16

1{Xε∈K̂R0
}

)
R
3

<
δ

2
.

Combining the fact that P (Xε ∈ C([0, T ], H−1) \ K̂R0) <
δ
2
, we finish the proof. �

Lemma 5.7. Let {vε}ε>0 ⊂ AN for some N <∞. Assume vε converge to v in distribu-
tion as SN -valued random elements, then

gε
(
W (·) + λ(ε)

∫ ·
0

vε(s)ds

)
→ g0

(∫ ·
0

v(s)ds

)
in distribution as ε→ 0.
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Proof The proof follows essentially the same argument as in [WZZ15, Proposition 4.7].
By Lemma 5.3, we have Xε = gε

(
W (·) + λ(ε)

∫ ·
0
vε(s)ds

)
. By a similar argument as

in the proof of Lemmas 5.2 and 5.5, there exists a unique strong solution

Y ε ∈ L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1)

satisfying

dY ε(t) =∂2
1Y

ε(t)dt+ λ−1(ε)σ(t, u0 +
√
ελ(ε)Xε(t))dW (t),

Y ε(0) =0,

and

lim
ε→0

[
E sup

t∈[0,T ]

‖Y ε(t)‖2
H + E

∫ T

0

‖Y ε(t)‖2
H̃1,0dt

]
= 0,

lim
ε→0

[
E sup

t∈[0,T ]

(e−kg(t)‖Y ε(t)‖2
H̃0,1) + E

∫ T

0

e−kg(t)‖Y ε(t)‖2
H̃1,1dt

]
= 0,

where g(t) =
∫ t

0
‖∂1X

ε(s)‖2
Hds and k are the same as in (5.10).

Set
Ξ :=

(
χ,SN , L∞([0, T ], H)

⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ].H−1)

)
.

The above limit implies that Y ε → 0 in L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ].H−1)

almost surely as ε → 0 (in the sense of subsequence). By Lemma 5.6 the family
{(Xε, vε)}ε∈(0,ε0) is tight in (χ,SN). Let (Xv, v, 0) be any limit point of {(Xε, vε, Y ε)}ε∈(0,ε0).
Our goal is to show that Xv has the same law as g0

(∫ ·
0
v(s)ds

)
and Xε convergence in

distribution to Xv in the space L∞([0, T ], H)
⋂
L2([0, T ], H̃1,0)

⋂
C([0, T ], H−1).

By Jakubowski-Skorokhod’s representation theorem (see [Jak98] or [LZZ18, Theorem
4.3]), there exists a stochastic basis (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃ ) and, on this basis, Ξ-valued

random variables (X̃v, ṽ, 0), (X̃ε, ṽε, Ỹ ε), such that (X̃ε, ṽε, Ỹ ε) (respectively (X̃v, ṽ, 0))
has the same law as (Xε, vε, Y ε) (respectively (Xv, v, 0)), and (X̃ε, ṽε, Ỹ ε) → (X̃v, ṽ, 0),
P̃ -a.s.

We have

d(X̃ε(t)− Ỹ ε(t)) =∂2
1(X̃ε(t)− Ỹ ε(t))dt−B(X̃ε, u0 +

√
ελ(ε)X̃ε)dt

−B(u0, X̃ε)dt+ σ(t, u0 +
√
ελ(ε)X̃ε(t))ṽε(t)dt,

X̃ε(0)− Ỹ ε(0) =0,

(5.14)

and

P (X̃ε − Ỹ ε ∈ L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1))

=P (Xε − Y ε ∈ L∞([0, T ], H)
⋂

L2([0, T ], H̃1,0)
⋂

C([0, T ], H−1))

=1.

Let Ω̃0 be the subset of Ω̃ such that for ω ∈ Ω̃0,

(X̃ε, ṽε, Ỹ ε)(ω)→ (X̃v, ṽ, 0)(ω) in Ξ,
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and

e−k
∫ ·
0 ‖X̃

ε(ω,s)‖2HdsỸ ε(ω)→ 0 in L∞([0, T ], H̃0,1)
⋂

L2([0, T ], H̃1,1)
⋂

C([0, T ], H−1),

then P (Ω̃0) = 1. For any ω ∈ Ω̃0, fix ω, we have supε
∫ T

0
‖X̃ε(ω, s)‖2

Hds < ∞, then we
deduce that

lim
ε→0

(
sup
t∈[0,T ]

‖Ỹ ε(ω, t)‖H̃0,1 +

∫ T

0

‖Ỹ ε(ω, t)‖2
H̃1,1dt

)
= 0. (5.15)

Now we show that

sup
t∈[0,T ]

‖X̃ε(ω, t)− X̃v(ω, t)‖2
H +

∫ T

0

‖X̃ε(ω, t)− X̃v(ω, t)‖2
H̃1,0dt→ 0 as ε→ 0. (5.16)

Let U ε = X̃ε(ω)− Ỹ ε(ω), then by (5.14) we have

dU ε(t) =∂2
1U

ε(t)dt−B(U ε + Ỹ ε, u0 +
√
ελ(ε)(U ε + Ỹ ε))dt

−B(u0, U ε + Ỹ ε) + σ(t, u0 +
√
ελ(ε)(U ε(t) + Ỹ ε(t)))ṽε(t)dt.

(5.17)

Since U ε(ω) → X̃v(ω) in χ, by a very similar argument as in Lemma 5.4 we deduce
that X̃v = X ṽ = g0

(∫ ·
0
ṽ(s)ds

)
. Moreover, note that X̃ε(ω) → X ṽ(ω) weak star in

L∞([0, T ], H̃0,1), then the uniform boundedness principle implies that

sup
ε

sup
t∈[0,T ]

‖X̃ε(ω)‖H̃0,1 <∞. (5.18)

Let wε = U ε −X ṽ, then we have

‖wε(t)‖2
H + 2

∫ t

0

‖∂1w
ε(s)‖2

Hds

=− 2

∫ t

0

〈wε(s), B(U ε + Ỹ ε, u0 +
√
ελ(ε)(U ε + Ỹ ε))−B(X ṽ, u0)〉ds

− 2

∫ t

0

〈wε(s), B(u0, wε + Ỹ ε)〉ds

+ 2

∫ t

0

〈wε(s), σ(s, u0 +
√
ελ(ε)(U ε + Ỹ ε))ṽε(s)− σ(s, u0)ṽ(s)〉ds

=:I1 + I2 + I3.

By Lemma 2.11, we have

|I1 + I2|

=|
∫ t

0

b(wε, u0 +
√
ελ(ε)(X ṽ + Ỹ ε), wε) + b(Ỹ ε, u0, wε)

+
√
ελ(ε)b(X ṽ + Ỹ ε, X ṽ + Ỹ ε, wε) + b(u0, Ỹ ε, wε)ds|

6
∫ t

0

[
1

2
‖∂1w

ε(s)‖2
H + C(1 + ‖u0(s)‖2

H̃1,1 + ‖X ṽ(s)‖2
H̃1,1 + ‖Ỹ ε(s)‖2

H̃1,1)‖wε(s)‖2
H ]ds

+

∫ t

0

[‖Ỹ ε(s)‖2
H̃1,0 + C‖u0(s)‖2

H̃1,1‖wε(s)‖2
H ]ds
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+
√
ελ(ε)

∫ t

0

[‖X ṽ(s)‖2
H̃1,0 + ‖Ỹ ε(s)‖2

H̃1,0 + (‖X ṽ(s)‖2
H̃1,1 + ‖Ỹ ε(s)‖2

H̃1,1)‖wε(s)‖2
H ]ds

+

∫ t

0

[‖Ỹ ε(s)‖2
H̃1,1 + C‖u0(s)‖2

H̃1,0‖wε(s)‖2
H ]ds

6
∫ t

0

[
1

2
‖∂1w

ε(s)‖2
H + C(1 + ‖u0(s)‖2

H̃1,1 + ‖X ṽ(s)‖2
H̃1,1)‖wε(s)‖2

H ]ds

+C

∫ t

0

‖Ỹ ε(s)‖2
H̃1,1ds+

√
ελ(ε)

∫ t

0

‖X ṽ(s)‖2
H̃1,0ds.

where we used the fact that by (5.15) and (5.18) wε are uniformly bounded in L∞([0, T ], H)
in the last inequality. By (A1) and (A3) we have

|I3(t)| =
∫ t

0

〈wε(s), (σ(s, u0 +
√
ελ(ε)[U ε + Ỹ ε])− σ(s, u0))ṽε(s)〉ds

+

∫ t

0

〈wε(s), σ(s, u0)(ṽε(s)− ṽ(s))〉ds

6C(
√
ελ(ε))

1
2

∫ t

0

(‖wε(s)‖H‖ṽε(s)‖l2(‖wε(s)‖2
H̃1,0 + ‖X ṽ(s)‖2

H̃1,0 + ‖Ỹ ε(s)‖2
H̃1,0)

1
2ds

+

∫ t

0

‖wε(s)‖H‖ṽε(s)− ṽ(s)‖l2(K0 +K1‖u0(s)‖2
H +K2‖∂1u

0(s)‖2
H)

1
2ds

6(
√
ελ(ε))

1
2

(
CN + C1

∫ t

0

(‖wε(s)‖2
H̃1,0 + ‖X ṽ(s)‖2

H̃1,0 + ‖Ỹ ε(s)‖2
H̃1,0ds

)
+ CN

1
2

(∫ t

0

‖wε(s)‖2
H(K0 +K1‖u0(s)‖2

H +K2‖∂1u
0(s)‖2

H)ds

) 1
2

,

where we used the fact that wε are uniformly bounded in L∞([0, T ], H) and that ṽε, ṽ
are in AN . Note here C1 is a positive constant. Thus choose ε small enough such that
1
2

+ (
√
ελ(ε))

1
2C1 < 1, we have

‖wε(t)‖2
H +

∫ t

0

‖∂1w
ε(s)‖2

Hds

6C
∫ t

0

(1 + ‖u0(s)‖2
H̃1,1 + ‖X ṽ(s)‖2

H̃1,1)‖wε(s)‖2
Hds

+ C

∫ t

0

‖Ỹ ε(s)‖2
H̃1,1ds+

√
ελ(ε)

∫ t

0

‖X ṽ(s)‖2
H̃1,0ds

+ C(
√
ελ(ε))

1
2

(
N +

∫ t

0

(‖wε(s)‖2
H + ‖X ṽ(s)‖2

H̃1,0 + ‖Ỹ ε(s)‖2
H̃1,0ds

)
+ CN

1
2

(∫ t

0

(1 + ‖u0(s)‖2
H̃1,1)‖wε(s)‖2

Hds

) 1
2

.

Since U ε(ω) → X ṽ(ω) strongly in L2([0, T ], H) and Ỹ ε → 0 in L2([0, T ], H̃1,1), the
same argument used in Lemma 5.4 implies

sup
t∈[0,T ]

‖X̃ε(ω, t)−X ṽ(ω, t)‖2
H +

∫ T

0

‖X̃ε(ω, t)−X ṽ(ω, t)‖2
H̃1,0dt→ 0 as ε→ 0. (5.19)

The proof is thus complete.
�
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Proof of Theorem 5.1. The result holds from Lemmas 2.6, 5.4 and 5.7. �



Chapter 6

Small time asymptotics

In this chapter, we consider the small time behaviour. We need the following additional
assumption (A3’) and (A4). Note that (A3’) is stronger than (A3).

(A3’) ‖σ(t, u)− σ(s, v)‖2
L2(l2,H) 6 L0|t− s|α + L1‖u− v‖2

H .

(A4) ‖σ(t, u)‖2
L2(l2,V ) 6 K0 +K1‖u‖2

V .

Remark 6.1. A typical example of σ is similar as in [LZZ18, Remark 4.2]. For u =
(u1, u2) ∈ H1,1 and y ∈ l2, let

σ(t, u)y =
∞∑
k=1

bkg(u)〈y, ψk〉l2 ,

where {ψk}k>0 is the orthonormal basis of l2, {bk}k>0 are functions from T2 to R and g
is a differentiable function from R2 to R. Assume that |g(x) − g(y)| 6 C|x − y| for all
x, y ∈ R2 and some constant C depends on g. Also suppose that div(bkg(u)) = 0 and
bk, ∂1bk, ∂2bk ∈ L∞,

∑∞
k=1 ‖bk‖2

L∞ 6 M ,
∑∞

k=1 ‖∂1bk‖2
L∞ 6 M and

∑∞
k=1 ‖∂2bk‖2

L∞ 6 M .
From the conditions of g, it is easy to obtain |g(u)| 6 C|u| + C, |∂1g(u)| 6 C and
|∂2g(u)| 6 C. In this case, σ satisfies (A0)-(A4) and (A3’):

‖σ(t, u)‖2
L2(l2,H) 6

∞∑
k=1

‖bkg(u)‖2
H 6 CM(‖u‖2

H + 1);

‖σ(t, u)‖2
L2(l2,H0,1) 6

∞∑
k=1

‖bkg(u)‖2
H +

∞∑
k=1

‖∂2(bkg(u))‖2
H

6CM(‖u‖2
H + 1)

+
∞∑
k=1

‖∂2bkg(u) + bk(∂1g(u)∂2u
1 + ∂2g(u)∂2u

2)‖2
H

6CM(1 + ‖u‖2
H + ‖∂2u‖2

H);

‖σ(t, u)‖2
L2(l2,V ) 6CM(‖u‖2

H + 1) +
∞∑
k=1

‖∂1(bkg(u))‖2
H +

∞∑
k=1

‖∂2(bkg(u))‖2
H

6CM(1 + ‖u‖2
H + ‖∂1u‖2

H + ‖∂2u‖2
H);

‖σ(t, u)− σ(s, v)‖2
L2(l2,H) 6MC‖u− v‖2

H .

65
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Let ε > 0 and u be the solution to (2.2), by the scaling property of the Brownian
motion, u(εt) coincides in law with the solution to the following equation:

duε = ε∂2
1uεdt− εB(uε)dt+

√
εσ(εt, uε)dW (t),

uε(0) = u0.
(6.1)

Define a functional Iu0 on L∞([0, T ], H)
⋂
C([0, T ], H−1) by

Iu0(g) = inf
h∈Γg
{1

2

∫ T

0

‖h(t)‖2
l2dt},

where

Γg = {h ∈ L2([0, T ], l2) : g(t) = u0 +

∫ t

0

σ(0, g(s))h(s)ds, t ∈ [0, T ]}.

The main theorem of this chapter is the following one:

Theorem 6.2. Assume (A0), (A1), (A2), (A3’), (A4) hold with K2 = K̃2 = 0 and
u0 ∈ H̃0,1, then uε satisfies a large deviation principle on L∞([0, T ], H)

⋂
C([0, T ], H−1)

with the good rate function Iu0.

We aim to prove that uε is exponentially equivalent to the solution to the following
equation:

vε(t) = u0 +
√
ε

∫ t

0

σ(εs, vε(s))dW (s). (6.2)

Because of the non-linear form b(·, ·, ·) and the anisotropic viscosity, we split the proof
into several lemmas.

6.1 LDP for linear equation

In this section we prove that vε satisfies a large deviation principle.

Lemma 6.3. Assume u0 ∈ H̃0,1, then vε satisfies a large deviation principle on the space
L∞([0, T ], H)

⋂
C([0, T ], H−1) with the good rate function Iu0.

Proof Let zε be the solution to the stochastic equation:

zε(t) = u0 +
√
ε

∫ t

0

σ(0, zε(s))dW (s).

By [DPZ09, Theorem 12.11], we know that zε satisfies a large deviation principle with
the good rate function Iu0 . Applying Itô’s formula to ‖vε − zε‖2

H , we obtain

‖vε(t)− zε(t)‖2
H =2

√
ε

∫ t

0

〈vε(s)− zε(s), [σ(εs, vε(s))− σ(0, zε(s))]dW (s)〉

+ ε

∫ t

0

‖σ(εs, vε(s))− σ(0, zε(s))‖2
L2(l2,H)ds.

Then by (A3’) and Lemma 2.14, we get for p > 2,
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(
E[ sup

06t6T
‖vε(t)− zε(t)‖2p

H ]

) 2
p

6Cε

(
E[ sup

06t6T

∫ t

0

〈vε(s)− zε(s), (σ(εs, vε(s))− σ(0, zε(s)))dW (s)〉]p
) 2

p

+ Cε2

(
E[

∫ T

0

‖σ(εs, vε(s))− σ(0, zε(s))‖2
L2(l2,H)ds]

p

) 2
p

6Cεp

(
E

[∫ T

0

‖vε(s)− zε(s)‖2
H‖σ(εs, vε(s))− σ(0, zε(s))‖2

L2(l2,H)ds

] p
2

) 2
p

+ Cε2

(
ε2αT 2+2α + T

∫ T

0

(
E[ sup

06l6s
‖vε(l)− zε(l)‖2p

H ]

) 2
p

ds

)

6Cεp

(
ε2α +

∫ T

0

(
E[ sup

06l6s
‖vε(l)− zε(l)‖2p

H ]

) 2
p

ds

)

+ Cε2

(
ε2α +

∫ T

0

(
E[ sup

06l6s
‖vε(l)− zε(l)‖2p

H ]

) 2
p

ds

)
.

By Gronwall’s inequality, we have(
E[ sup

06t6T
‖vε(t)− zε(t)‖2p

H ]

) 2
p

6 C(ε1+2αp+ ε2+2α)eC(εp+ε2).

Then Chebyshev’s inequality implies that

ε logP ( sup
06t6T

‖vε(t)− zε(t)‖2
H > δ) 6ε logE[ sup

06t6T
‖vε(t)− zε(t)‖2p

H ]− εp log δ

6
εp

2
(C + Cεp+ Cε2 + log(ε1+2αp+ ε2+2α)− 2 log δ).

Let p = 1
ε

and ε→ 0, we get that vε and zε are exponentially equivalent, which by Lemma
2.3 implies the result. �

6.2 Energy estimates

In this section, we give some energy estimates.

Lemma 6.4. Let Fuε(t) = sup06s6t ‖uε(s)‖2
H + ε

∫ t
0
‖∂1uε(s)‖2

Hds, then

lim
M→∞

sup
0<ε61

ε logP (Fuε(T ) > M) = −∞.

Proof
Since b(uε, uε, uε) = 0, applying Itô’s formula to ‖uε(t)‖2

H , we have

‖uε(t)‖2
H + 2ε

∫ t

0

‖∂1uε(s)‖2
Hds
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=‖u0‖2
H + 2

√
ε

∫ t

0

〈uε(s), σ(εs, uε(s))dW (s)〉+ ε

∫ t

0

‖σ(εs, uε(s))‖2
L2(l2,H)ds.

Then it follows from (A1) with K2 = 0 that

‖uε(t)‖2
H + ε

∫ t

0

‖∂1uε(s)‖2
Hds 6‖u0‖2

H̃0,1 + Cεt+ Cε

∫ t

0

‖uε(s)‖2
Hds

+ 2
√
ε

∫ t

0

〈uε, σ(εs, uε(s))dW (s)〉.

Take supremum over t, for p > 2, we have

(E[Fuε(T )]p)
1
p 6‖u0‖2

H̃0,1 + CεT + Cε

∫ T

0

(E[Fuε(t)]
p)

1
pdt

+ 2
√
ε(E[ sup

06t6T
|
∫ t

0

〈uε, σ(εs, uε(s))dW (s)〉|]p)
1
p .

For the term in the last line, by Lemma 2.14 and [XZ09, (3.12)], we have

2
√
ε(E[ sup

06t6T
|
∫ t

0

〈uε, σ(εs, uε(s))dW (s)〉|]p)
1
p

6C
√
εp

[∫ T

0

1 + (E‖uε(s)‖2p
H )

2
pds

] 1
2

.

Combining the above estimate, we arrive at

(E[Fuε(T )]p)
2
p 6C

(
‖u0‖2

H̃0,1 + εT
)2

+ Cε2

∫ T

0

(E[Fuε(t)]
p)

2
p ds

+ CεpT + Cεp

∫ T

0

(E[Fuε(t)]
p)

2
p dt.

Then Gronwall’s inequality implies

(E[Fuε(T )]p)
2
p 6 C

[
‖u0‖4

H̃0,1 + ε2 + εp
]
eCε

2+Cεp.

Let p = 1
ε
, by Chebyshev’s inequality, we have

ε logP (Fuε(T ) > M)

6− logM + log (E[Fuε(T )]p)
1
p

6− logM + log
√
‖u0‖4

H̃0,1 + ε2 + 1 + C(ε2 + 1).

Take supremum over ε and let M →∞, we finish the proof. �

Lemma 6.5. For M > 0, define a random time

τM,ε = T ∧ inf{t : ‖uε(t)‖2
H > M, or ε

∫ t

0

‖∂1uε(s)‖2
Hds > M}.

Then τM,ε is a stopping time with respect to Ft+ = ∩s>tFs.
Similarly, Let

τ ′M,ε = T ∧ inf{t : ‖uε(t)‖2
H̃0,1 > M, or ε

∫ t

0

‖uε(s)‖2
H̃1,1ds > M},

then τ ′M,ε is a stopping time with respect to Ft+.
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Proof The problem comes with the continuity of uε(t). Since
∫ t

0
‖∂1uε(s)‖2

Hds is a
continuous adapted process, we only need to prove that τ̂ = inf{t > 0 : ‖uε(t)‖2

H > M}
is a stopping time.

Since uε ∈ L∞([0, T ], H)
⋂
C([0, T ], H−1), uε(t) is weakly continuous on H, which

implies the lower semi-continuity of uε on H.
By definition of τ̂ , for t > 0⋂

s∈(0,t]

{‖uε(s)‖2
H 6M} ⊂ {τ̂ > t} ⊂

⋂
s∈(0,t)

{‖uε(s)‖2
H 6M}.

On the contrary, if ω ∈ {τ̂ > t}, for any s < t, ‖uε(s)(ω)‖2
H 6 M . Then lower semi-

continuity implies
‖uε(t)(ω)‖2

H 6 lim inf
s<t,s→t

‖uε(s)‖2
H 6M.

Hence we have
{τ̂ > t} =

⋂
s∈(0,t]

{‖uε(s)‖2
H 6M}.

Note that for ω ∈
⋂
s∈(0,t]∩Q{‖uε(s)‖2

H 6 M}, we have for any s ∈ (0, t], by the lower
semi-continuity,

‖uε(s)(ω)‖2
H 6 lim inf

s′→s
‖uε(s′)‖2

H 6 lim inf
s′→s,s′∈Q

‖uε(s′)‖2
H 6M,

which means ⋂
s∈(0,t]

{‖uε(s)‖2
H 6M} =

⋂
s∈(0,t]∩Q

{‖uε(s)‖2
H 6M}.

Then we have for t > 0

{τ̂ > t} =
⋂

s∈(0,t]

{‖uε(s)‖2
H 6M} =

⋂
s∈(0,t]∩Q

{‖uε(s)‖2
H 6M} ∈ Ft,

which implies the result.
For τ ′M,ε, the result follows from the fact that uε is weakly continuous in H̃0,1 since

uε ∈ L∞([0, T ], H̃0,1)
⋂
C(0, T ], H−1). �

Lemma 6.6. Let Guε(t) = sup06s6t ‖uε(s)‖2
H̃0,1 + ε

∫ t
0
‖uε(s)‖2

H̃1,1ds. For fixed M1, we
have

lim
M→∞

sup
0<ε61

ε logP (Guε(τM1,ε) > M) = −∞.

Proof Let k be a positive constant and fε(t) = 1 + ‖∂1uε(t)‖2
H . Applying Itô’s formula

to e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 (by applying Itô’s formula to its finite- dimension projection
first and then passing to the limit), we obtain

e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 + 2ε

∫ t

0

e−kε
∫ s
0 fε(r)dr(‖∂1uε(s)‖2

H + ‖∂1∂2uε(s)‖2
H)ds

=‖u0‖2
H̃0,1 − kε

∫ t

0

e−kε
∫ s
0 fε(r)drfε(s)‖uε(s)‖2

H̃0,1ds

− 2ε

∫ t

0

e−kε
∫ s
0 fε(r)dr〈∂2uε(s), ∂2(uε · ∇uε)(s)〉ds
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+ 2
√
ε

∫ t

0

e−kε
∫ s
0 fε(r)dr〈uε(s), σ(εs, uε(s))dW (s)〉H̃0,1

+ ε

∫ t

0

e−kε
∫ s
0 fε(r)dr‖σ(εs, uε(s))‖2

L2(l2,H̃0,1)
ds.

The fourth and the fifth line can be dealt in the same way as in the proof of Lemma
6.4. For the third line, by Lemma 2.12, we have

|〈∂2uε, ∂2(uε · ∇uε)〉| 6
1

2
‖∂1∂2uε‖2

H + C1fε‖∂2uε‖2
H ,

where C1 is a constant. Therefore by (A2) with K̃2 = 0 we get

e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 + ε

∫ t

0

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃1,1ds

6‖u0‖2
H̃0,1 − kε

∫ t

0

e−kε
∫ s
0 fε(r)drfε(s)‖uε(s)‖2

H̃0,1ds

+ 2C1ε

∫ t

0

e−kε
∫ s
0 fε(r)drfε(s)‖uε(s)‖2

H̃0,1ds

+ 2
√
ε

∫ t

0

e−kε
∫ s
0 fε(r)dr〈uε(s), σ(εs, uε(s))dW (s)〉H̃0,1

+ ε

∫ t

0

e−kε
∫ s
0 fε(r)dr[K̃0 + (K̃1 + 1)‖uε(s)‖2

H̃0,1 ]ds.

For the last second line, similar to [XZ09, (3.12)], we have

2
√
ε(E[ sup

06s6t
|
∫ s

0

e−kε
∫ r
0 fε(l)dl〈uε(r), σ(εr, uε(r))dW (r)〉H̃0,1|]p)

1
p

6C
√
εp(E[

∫ t

0

e−2kε
∫ r
0 fε(l)dl‖uε(r)‖2

H̃0,1‖σ(εr, uε(r))‖2
L2(l2,H̃0,1)

dr]
p
2 )

1
p

6C
√
εp(E[

∫ t

0

e−2kε
∫ r
0 fε(l)dl‖uε(r)‖2

H̃0,1(1 + ‖uε(r)‖2
H̃0,1)dr]

p
2 )

1
p

6C
√
εp(E[

∫ t

0

e−2kε
∫ r
0 fε(l)dl(1 + ‖uε(r)‖4

H̃0,1)dr]
p
2 )

1
p

6C
√
εp

[∫ t

0

1 + (E[e−pkε
∫ r
0 fε(l)dl‖uε(s)‖2p

H̃0,1 ])
2
pds

] 1
2

,

where we used (A2) with K2 = 0 in the third line.
Let k > 2C1 and using Lemma 2.14, we have for p > 2(
E

[
sup

06s6t∧τM1,ε

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃0,1 + ε

∫ t∧τM1,ε

0

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃1,1ds

]p) 2
p

6C(‖u0‖2
H̃0,1 + ε)2 + Cε2

∫ t

0

(
E

[
sup

06r6s∧τM1,ε

e−kε
∫ r
0 fε(l)dl‖uε(r)‖2

H̃0,1

]p) 2
p

ds

+ Cεp+ Cεp

∫ t

0

(
E

[
sup

06r6s∧τM1,ε

e−kε
∫ r
0 fε(l)dl‖uε(r)‖2

H̃0,1

]p) 2
p

ds.
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Applying Gronwall’s inequality, we obtain(
E

[
sup

06t6τM1,ε

e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 + ε

∫ τM1,ε

0

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃1,1ds

]p) 2
p

6C
[
‖u0‖4

H̃0,1 + ε2 + εp
]
eC(ε2+εp).

Hence by the definition of τM1,ε, we have

(E [Guε(τM1,ε)]
p)

2
p

6

(
E

[(
sup

06t6τM1,ε

e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 + ε

∫ τM1,ε

0

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃1,1ds

)p

epkε
∫ t
0 fε(s)ds

]) 2
p

6eC(M1+ε)

(
E

[
sup

06t6τM1,ε

e−kε
∫ t
0 fε(s)ds‖uε(t)‖2

H̃0,1 + ε

∫ τM1,ε

0

e−kε
∫ s
0 fε(r)dr‖uε(s)‖2

H̃1,1ds

]p) 2
p

6CeC(M1+ε)
[
‖u0‖4

H̃0,1 + ε2 + εp
]
eC(ε2+εp).

Let p = 2
ε
, by Chebyshev’s inequality, we have

ε logP (Guε(τM1,ε) > M)

6ε log
E [Guε(τM1,ε)]

p

Mp

6− 2 logM + C + C(M1 + ε) + C(ε2 + εp) + log[‖u0‖4
H̃0,1 + ε2 + εp].

Take supremum over ε and let M →∞, we finish the proof. �

6.3 Approximating the initial value

Since V is dense in H̃0,1, there exists a sequence {un0} ⊂ V such that

lim
n→+∞

‖un0 − u0‖H̃0,1 = 0.

Let un,ε be the solution to (6.1) with the initial data un0 . Similarly, let vn,ε be the
solution to (6.2) with the initial data un0 .

For M > 0, define a random time (which is also a stopping time with respect to Ft+
by Lemma 6.5)

τnM,ε := T ∧ inf{t : ‖un,ε(t)‖2
H > M, or ε

∫ t

0

‖∂1un,ε(s)‖2
Hds > M}.

From the proof of Lemma 6.4 and Lemma 6.6, it follows that

Lemma 6.7.
lim
M→∞

sup
n

sup
0<ε61

ε logP (Fun,ε(T ) > M) = −∞.

For fixed M1, we have

lim
M→∞

sup
n

sup
0<ε61

ε logP (Gun,ε(τ
n
M1,ε

) > M) = −∞.
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The following lemma for vn,ε is from [XZ09]:

Lemma 6.8 ([XZ09, Lemma 3.2]).

lim
M→∞

sup
0<ε61

ε logP

(
sup

06t6T
‖vn,ε(t)‖2

V > M

)
= −∞.

Lemma 6.9. For any δ > 0,

lim
n→∞

sup
0<ε61

ε logP

(
sup

06t6T
‖un,ε(t)− uε(t)‖2

H > δ

)
= −∞.

Proof
Clearly, for M1,M2 > 0

P

(
sup

06t6T
‖un,ε(t)− uε(t)‖2

H > δ

)
6P

(
sup

06t6T
‖un,ε(t)− uε(t)‖2

H > δ, Fuε(T ) 6M1, Guε(T ) 6M2

)
+ P (Fuε(T ) > M1) + P (Fuε(T ) 6M1, Guε(T ) > M2)

6P

(
sup

06t6τM1,ε
∧τ ′M2,ε

‖un,ε(t)− uε(t)‖2
H > δ

)
+ P (Fuε(T ) > M1) + P (Guε(τM1,ε) > M2) ,

(6.3)

where τM1,ε and τ ′M2,ε
are introduced in Lemma 6.5.

For the first term on the right hand of (6.3), let k be a positive constant and

Uε = 1 + ‖uε‖2
H̃1,1 .

Applying Itô’s formula to e−εk
∫ t
0 Uε(s)ds‖uε(t)− un,ε(t)‖2

H , we get

e−εk
∫ t
0 Uε(s)ds‖uε(t)− un,ε(t)‖2

H + 2ε

∫ t

0

e−εk
∫ s
0 Uε(r)dr‖∂1(uε(s)− un,ε(s))‖2

Hds

=‖u0 − un,0‖2
H − kε

∫ t

0

e−εk
∫ s
0 Uε(r)drUε(s)‖uε(s)− un,ε(s)‖2

Hds

− 2ε

∫ t

0

e−εk
∫ s
0 Uε(r)dr (b(uε, uε, uε − un,ε)(s)− b(un,ε, un,ε, uε − un,ε)(s)) ds

+ ε

∫ t

0

e−εk
∫ s
0 Uε(r)dr‖σ(εs, uε(s))− σ(εs, un,ε(s))‖2

L2(l2,H)ds

+ 2
√
ε

∫ t

0

e−εk
∫ s
0 Uε(r)dr〈uε(s)− un,ε(s), (σ(εs, uε(s))− σ(εs, un,ε(s)))dW (s)〉.

Notice that by the property of the trilinear form b and Lemma 2.10, we have

|b(uε, uε, uε − un,ε)− b(un,ε, un,ε, uε − un,ε)|
=|b(uε, uε, uε − un,ε)− b(un,ε, uε, uε − un,ε)|
=|b(uε − un,ε, uε, uε − un,ε)|
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6
1

2
‖∂1(uε − un,ε)‖2

H + C1Uε‖uε − un,ε‖2
H ,

where C1 is a constant.
Therefore,

e−εk
∫ t
0 Uε(s)ds‖uε(t)− un,ε(t)‖2

H

6‖u0 − un,0‖2
H̃0,1 − kε

∫ t

0

e−εk
∫ s
0 Uε(r)drUε(s)‖uε(s)− un,ε(s)‖2

Hds

+ 2εC1

∫ t

0

e−εk
∫ s
0 Uε(r)drUε(s)‖uε(s)− un,ε(s)‖2

Hds

+ Lε

∫ t

0

e−εk
∫ s
0 Uε(r)dr‖uε(s)− un,ε(s)‖2

Hds

+ 2
√
ε

∫ t

0

e−εk
∫ s
0 Uε(r)dr〈uε(s)− un,ε(s), (σ(εs, uε(s))− σ(εs, un,ε(s)))dW (s)〉,

where we used (A3’) in the forth line.
Choosing k > 2C1 and using Lemma 2.14 and (A3’), by the similar calculation as in

the proof of Lemma 6.6 we have for p > 2(
E

[
sup

06s6t∧τM1,ε
∧τ ′M2,ε

e−εk
∫ s
0 Uε(r)dr‖uε(s)− un,ε(s)‖2

H

]p) 2
p

62‖u0 − un,0‖4
H̃0,1 + Cε2

∫ t

0

(
E

[
sup

06r6s∧τM1,ε
∧τ ′M2,ε

e−εk
∫ r
0 Uε(l)dl‖uε(r)− un,ε(r)‖2

H

]p) 2
p

ds

+ Cεp

∫ t

0

(
E

[
sup

06r6s∧τM1,ε
∧τ ′M2,ε

e−εk
∫ r
0 Uε(l)dl‖uε(r)− un,ε(r)‖2

H

]p) 2
p

ds.

Applying Gronwall’s inequality, we obtain(
E

[
sup

06s6t∧τM1,ε
∧τ ′M2,ε

e−εk
∫ s
0 Uε(r)dr‖uε(s)− un,ε(s)‖2

H

]p) 2
p

6 C‖u0 − un,0‖4
H̃0,1e

C(ε2+εp).

Hence, by the definition of the stopping times,(
E

[
sup

06s6τM1,ε
∧τ ′M2,ε

‖uε(s)− un,ε(s)‖2
H

]p) 2
p

6

(
E

[(
sup

06s6τM1,ε
∧τ ′M2,ε

e−εk
∫ s
0 Uε(r)dr‖uε(s)− un,ε(s)‖2

H

)p
ekpε

∫ τM1,ε
∧τ ′M2,ε

0 Uε(s)ds

]) 2
p

6eC(ε+M2)k

(
E

[
sup

06s6τM1,ε
∧τ ′M2,ε

e−εk
∫ s
0 Uε(r)dr‖uε(s)− un,ε(s)‖2

H

]p) 2
p

6CeC(ε+M2)k‖u0 − un,0‖4
H̃0,1e

C(ε2+εp).
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Fix M1,M2, let p = 2
ε
, then Chebyshev’s inequality implies that

sup
0<ε61

ε logP

(
sup

06t6τM1,ε
∧τ ′M2,ε

‖un,ε(t)− uε(t)‖2
H > δ

)

6 sup
0<ε61

ε log
E
[
sup06t6τM1,ε

∧τ ′M2,ε
‖un,ε(t)− uε(t)‖2p

H

]
δp

6C(ε+M2)− 2 log δ + log ‖u0 − un,0‖4
H̃0,1 + C(ε2 + εp) + C

→−∞, as n→∞.

By Lemma 6.4, for any R > 0, there exists a constant M1 such that for any ε ∈ (0, 1],

P (Fuε(T ) > M1) 6 e−
R
ε .

For such a M1, by Lemma 6.6, there exists a constant M2 such that for any ε ∈ (0, 1],

P (Guε(τM1,ε) > M2) 6 e−
R
ε .

For such M1,M2, there exists a positive integer N , such that for any n > N and
ε ∈ (0, 1],

P

(
sup

06t6τM1,ε
∧τ ′M2,ε

‖un,ε(t)− uε(t)‖2
H > δ

)
6 e−

R
ε .

Then by (6.3), we see that there exists a positive integer N , such that for any n > N ,
ε ∈ (0, 1],

P

(
sup

06t6T
‖un,ε(t)− uε(t)‖2

H > δ

)
6 3e−

R
ε .

Since R is arbitrary, the lemma follows. �
The following lemma for vε is from [XZ09]:

Lemma 6.10 ([XZ09, Lemma 3.4]). For any δ > 0,

lim
n→∞

sup
0<ε61

ε logP

(
sup

06t6T
‖vn,ε(t)− vε(t)‖2

H > δ

)
= −∞.

6.4 Exponential equivalence

In this section we prove the main results by showing the exponential equivalence.

Lemma 6.11. For any δ > 0, and every positive integer n,

lim
ε→0

ε logP

(
sup

06t6T
‖un,ε(t)− vn,ε(t)‖2

H > δ

)
= −∞.

Proof For M > 0, recall the definition of τnM,ε and define the following random time:

τ 2,n
M,ε := T ∧ inf{t : ‖un,ε(t)‖2

H̃0,1 > M, or ε

∫ t

0

‖un,ε(s)‖2
H̃1,1ds > M},
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which is a stopping time with respect to Ft+ by Lemma 6.5.
Moreover, define

τ 3,n
M,ε := T ∧ inf{t : ‖vn,ε(t)‖2

V > M},

τ 1,n
M,ε := τnM,ε ∧ τ

3,n
M,ε.

We should point out that τ 3,n
M,ε is a stopping time with respect to Ft under the condition

vn,ε ∈ C([0, T ], V ). Now we prove that vn,ε ∈ C([0, T ], V ).
By Itô’s formula and Gronwall’s inequality there exists a constant C(ε) such that

E( sup
s∈[0,t]

‖vn,ε(s)‖2
V ) 6 C(ε).

For 0 6 s < t 6 T , by (A4) we have

E‖vn,ε(t)− vn,ε(s)‖2
V 6εE

∫ t

s

‖σ(εr, vn,ε(r))‖2
L2(l2,V )dr

6ε
∫ t

s

(K0 +K1E( sup
l∈[0,r]

‖vn,ε(l)‖2
V ))dr

6ε(K0 +K1C(ε))|t− s|.

Then Kolmogorov’s continuity criterion implies that vn,ε ∈ C([0, T ], V ).
Now for M1,M2 > 0, similarly to (6.3), we have

P

(
sup

06t6T
‖un,ε(t)− vn,ε(t)‖2

H > δ

)

6P

 sup
06t6τ1,nM1,ε

∧τ2,nM2,ε

‖un,ε(t)− vn,ε(t)‖2
H > δ


+ P (Fun,ε(T ) > M1) + P (Gun,ε(τ

n
M1,ε

) > M2) + P

(
sup

06t6T
‖vn,ε(t)‖2

V > M1

)
(6.4)

Let Un,ε = 1 + ‖un,ε‖2
H̃1,1 , applying Itô’s formula to e−kε

∫ t
0 Un,ε(s)ds‖un,ε(t) − vn,ε(t)‖2

H

for some constant k > 0, we get

e−kε
∫ t
0 Un,ε(s)ds‖un,ε(t)− vn,ε(t)‖2

H + 2ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖∂1(un,ε(s)− vn,ε(s))‖2

Hds

=− kε
∫ t

0

e−kε
∫ s
0 Un,ε(r)drUn,ε(s)‖un,ε(s)− vn,ε(s)‖2

Hds

+ 2ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr〈un,ε(s)− vn,ε(s), ∂2

1vn,ε(s)〉ds

− 2ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)drb(un,ε(s), un,ε(s), un,ε(s)− vn,ε(s))ds

+ ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖σ(εs, un,ε(s))− σ(εs, vn,ε(s))‖2

L2(l2,H)ds

+ 2
√
ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr〈un,ε(s)− vn,ε(s), (σ(εs, un,ε(s))− σ(εs, vn,ε(s)))dW (s)〉.

(6.5)
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For the second term on the right hand side of (6.5), we have∣∣∣ ∫ t

0

e−kε
∫ s
0 Un,ε(r)dr〈un,ε(s)− vn,ε(s), ∂2

1vn,ε(s)〉ds
∣∣∣

6
∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖∂1(un,ε(s)− vn,ε(s))‖H‖∂1vn,ε(s)‖Hds

6
1

4

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖∂1(un,ε(s)− vn,ε(s))‖2

Hds+ C

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖vn,ε(s)‖2

V ds,

where we use Young’s inequality in the last inequality.
For the third term on the right hand side of (6.5), by Lemmas 2.10 and 2.11 we have

|b(un,ε, un,ε, un,ε − vn,ε)|
=|b(un,ε − vn,ε, un,ε, un,ε − vn,ε) + b(vn,ε, un,ε, un,ε − vn,ε|

6
1

4
‖∂1(un,ε − vn,ε)‖2

H + CUn,ε‖un,ε − vn,ε‖2
H + C‖vn,ε‖V ‖un,ε‖H̃1,1‖un,ε − vn.ε‖H

6
1

4
‖∂1(un,ε − vn,ε)‖2

H + C‖vn,ε‖2
V + C1Un,ε‖un,ε − vn,ε‖2

H ,

(6.6)

where C1 is a constant.
Thus we obtain

e−kε
∫ t
0 Un,ε(s)ds‖un,ε(t)− vn,ε(t)‖2

H + ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖∂1(un,ε(s)− vn,ε(s))‖2

Hds

6− kε
∫ t

0

e−kε
∫ s
0 Un,ε(r)drUn,ε(s)‖un,ε(s)− vn,ε(s)‖2

Hds+ Cε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖vn,ε(s)‖2

V ds

+ C1ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)drUn,ε(s)‖un,ε(s)− vn,ε(s)‖2

Hds

+ L1ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr‖un,ε(s)− vn,ε(s)‖2

Hds

+ 2
√
ε

∫ t

0

e−kε
∫ s
0 Un,ε(r)dr〈un,ε(s)− vn,ε(s), (σ(εs, un,ε(s))− σ(εs, vn,ε(s)))dW (s)〉,

where we used (A3’) in the fourth line.
Hence, choosing k > C1 + C2, by Lemma 2.14 and the similar techniques in the

previous lemma and the definition of stopping times, we deduce that for p > 2E
 sup

06s6t∧τ1,nM1,ε
∧τ2,nM2,ε

e−kε
∫ s
0 Un,ε(r)dr‖un,ε(s)− vn,ε(s)‖2

H

p
2
p

6CM2
1 ε

2 + C(ε2 + εp)

∫ t

0

E
 sup

06r6s∧τ1,nM1,ε
∧τ2,nM2,ε

e−kε
∫ r
0 Un,ε(l)dl‖un,ε(r)− vn,ε(r)‖2

H

p
2
p

ds.
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Then Gronwall’s inequality implies thatE
 sup

06t6τ1,nM1,ε
∧τ2,nM2,ε

‖un,ε(t)− vn,ε(t)‖2
H

p
2
p

6

E
 sup

06t6τ1,nM1,ε
∧τ2,nM2,ε

(e−kε
∫ t
0 Un,ε(s)ds‖un,ε(t)− vn,ε(t)‖2

H)pekpε
∫ τ1,nM1,ε

∧τ2,n
M2,ε

0 Un,ε(s)ds

 2
p

6eC(ε+M2)CM2
1 ε

2eC(ε2+εp).
(6.7)

By Lemmas 6.7 and 6.8, we know that for any R > 0, there exists M1 such that

sup
0<ε61

ε logP
(
Fun,ε(T ) > M1

)
6 −R,

sup
0<ε61

ε logP

(
sup

06t6T
‖vn,ε(t)‖2

V > M1

)
6 −R.

For such a constant M1, by Lemma 6.7, there exists M2 such that

sup
0<ε61

ε logP
(
Gun,ε(τ

n
M1,ε

) > M2

)
6 −R.

Then for such M1,M2, let p = 2
ε

in (6.7), we obtain

ε logP

 sup
06t6τ1,nM1,ε

∧τ2,nM2,ε

‖un,ε(t)− vn,ε(t)‖2
H > δ


6 log

E
 sup

06t6τ1,nM1,ε
∧τ2,nM2,ε

‖un,ε(t)− vn,ε(t)‖2
H

p
2
p

− log δ2

6C(ε+M2) + log[CM2
1 ε

2] + C(ε2 + 1)− log δ2

→−∞ as ε→ 0,

where we used Chebyshev’s inequality in the first inequality. Thus there exists a ε0 ∈ (0, 1)
such that for any ε ∈ (0, ε0),

P

 sup
06t6τ1,nM1,ε

∧τ2,nM2,ε

‖un,ε(t)− vn,ε(t)‖2
H > δ

 6 e−
R
ε .

Putting the above estimate together, by (6.4) we see that for ε ∈ (0, ε0)

P

(
sup

06t6T
‖un,ε(t)− vn,ε(t)‖2

H > δ

)
6 4e−

R
ε .

Since R is arbitrary, we finish the proof. �

Proof of Theorem 6.2. By Lemma 6.3, vε satisfies a large deviation principle with the
rate function Iu0. Our task remain is to show that uε and vε are exponentially equivalent,
then the result follows from Lemma 2.3.
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By Lemmas 6.9 and 6.10, for any R > 0, there exists a N0 such that for any ε ∈ (0, 1],

P

(
sup

06t6T
‖uε(t)− uN0,ε(t)‖2

H >
δ

3

)
6 e−

R
ε ,

and

P

(
sup

06t6T
‖vε(t)− vN0,ε(t)‖2

H >
δ

3

)
6 e−

R
ε .

Then by Lemma 6.11, for such N0, there exists a ε0 such that for any ε ∈ (0, ε0),

P

(
sup

06t6T
‖uN0,ε(t)− vN0,ε(t)‖2

H >
δ

3

)
6 e−

R
ε .

Therefore we deduce that for ε ∈ (0, ε0)

P

(
sup

06t6T
‖uε(t)− vε(t)‖2

H > δ

)
6 3e−

R
ε .

Since R is arbitrary, we finish the proof. �



Chapter 7

Small time asymptotics for Φ4
1 model

In this chapter we consider the equation

dφ(t) = ∆φ(t)dt− φ3(t)dt+ dW (t),

φ(0) = φ0,

where φ0 ∈ C−β for 0 < β < 1
4

and W is a cylindrical Wiener process on L2(T). By
a similar argument as [DP04, Theorem 4.8], we obtain that the equation has a unique
solution φ ∈ CC−β.

Let ε > 0, by the scaling property of the Brownian motion, it is easy to see that φ(εt)
coincides in law with the solution to the following equation:

dφε = ε∆φεdt− εφ3
εdt+

√
εdW,

φε(0) = φ0.

Our purpose is to establish a large deviation principle for φε. The main result is the
following Theorem:

Theorem 7.1. Assume φ0 ∈ C−β for 0 < β < 1
4

and α > 0 small enough, then φε
satisfies LDP on CC− 1

2
−α with the good rate function Iφ0, where Iφ0 is given in Theorem

7.2.

7.1 The linear case

In this section we concentrate on the following linear equations on the torus T:

dZε(t) = ε∆Zε(t)dt+
√
εdW (t),

Zε(0) = φ0.
(7.1)

where W (t) is an L2(T) cylindrical Wiener process and φ0 ∈ C−β for 0 < β < 1
4
. We will

prove that the solutions to (7.1) satisfy a large deviation principle.
The mild solutions to (7.1) are given by

Zε(t) = eεt∆φ0 +
√
ε

∫ t

0

eε(t−s)∆dW (s).

79
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1 model

Theorem 7.2. Assume φ0 ∈ C−β for 0 < β < 1
4
. Let µε,φ0 = L(Zε(·)) and α > 0 small

enough. Define a functional I on CC− 1
2
−α by

Iφ0(g) = inf
h∈Γg
{1

2

∫ T

0

‖h′(t)‖2
L2(T)dt},

where

Γg = {h ∈ CC−
1
2
−α : h(·) is absolutely continuous, g(t) = φ0 +

∫ t

0

h′(s)ds}.

Then µε,φ0 satisfies a large deviation principle with the rate function Iφ0(·).
Moreover, Iφ0 is a good rate function.

Proof
Let xε be the solution to the stochastic equation

xε(t) = φ0 +
√
ε

∫ t

0

dW (s).

Since xε is Gaussian on CC− 1
2
−α, by [DPZ09, Theorem 12.9], we know that xε − φ0

satisfy a large deviation principle with the rate function I0. Combing the deterministic
initial data, we deduce that xε satisfy a large deviation principle with the rate function
Iφ0 .

Now we prove that Iφ0 is a good rate function. Consider the level set for r ∈ (0,∞)

Iφ0r = {g ∈ CC−
1
2
−α : Iφ0(g) 6 r}.

For any g ∈ Iφ0r , we have for s, t ∈ [0, T ]

‖g(t)− g(s)‖− 1
2
−α 6 C‖g(t)− g(s)‖L2(T) 6 C

∫ t

s

‖g′(l)‖L2(T)dl 6 C(2r)
1
2 |t− s|

1
2 ,

where we use Lemma 6.4 in the first inequality and Hölder’s inequality in the last in-
equality. Since the constant C does not depend on g, Iφ0r is equicontinuous. For each
t ∈ [0, T ], let Iφ0r,t := {g(t), g ∈ Iφ0r }. For any a ∈ Iφ0r,t , there exists g ∈ Iφ0r such that
a = g(t). Then Hölder’s inequality implies

‖a− φ0‖L2(T) = ‖g(t)− g(0)‖L2(T) 6 Cr
1
2 .

Thus Iφ0r,t is contained in a ball BL2(φ0, Cr
1
2 ). By [Tri06, Proposition 4.6], the embedding

L2(T) ↪→ C− 1
2
−α is compact, which implies that Iφ0r,t is relatively compact in C− 1

2
−α for

any t. Then the generalized Aerelà-Ascoli theorem implies that Iφ0r is compact, i.e., Iφ0

is a good rate function.
By Lemma 2.3, the task remain is to show that Zε and xε are exponentially equivalent,

that is, for any δ > 0,

lim
ε→0

ε logP ( sup
06t6T

‖Zε(t)− xε(t)‖− 1
2
−α > δ) = −∞.

Let wε = Zε − xε, we have

d

dt
wε(t) = ε∆wε(t) + ε∆xε(t), wε(0) = 0.
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The mild formulation of wε is given by

wε(t) = ε

∫ t

0

eε(t−s)∆∆xε(s)ds

= ε

∫ t

0

eε(t−s)∆∆φ0ds+ ε
√
ε

∫ t

0

eε(t−s)∆∆W (s)ds.

Now we estimate every term in the second line. By Lemma 6.6, we have

sup
06t6T

‖ε
∫ t

0

eε(t−s)∆∆φ0ds‖− 1
2
−α 6 sup

06t6T
Cε

∫ t

0

1

[ε(t− s)] 34−α−β2
‖∆φ0‖−2−βds

6 Cε
1
4

+α−β
2 ‖φ0‖−β.

Similarly, we have for 0 < κ1 <
α
2
,

sup
06t6T

‖ε
√
ε

∫ t

0

eε(t−s)∆∆W (s)ds‖− 1
2
−α

6 sup
06t6T

Cε
√
ε

∫ t

0

1

[ε(t− s)]1−κ1
‖∆W (s)‖− 5

2
−α+2κ1

ds

6C
√
εεκ1 sup

06t6T
‖W (t)‖− 1

2
−α+2κ1

.

We should point out that the constant C above is independent of ε and may change
from line to line.

For the cylindrical Wiener process W , we have for s, t ∈ [0, T ], 0 < κ1 <
α
3

E|4j(W (t)−W (s))|2 = E|
∑
k∈Z

θj(k)ek〈W (t)−W (s), ek〉|2

6 C|t− s|(1 +
∑

k∈Z\{0}

2j(1+2α−6κ1)

|k|1+2α−6κ1
) 6 C|t− s|2j(1+2α−6κ1),

where ek = 2−
1
2 eiπkx and we use k ∈ suppθj ⊂ 2jA(A is an annulus).

By Nelson’s hypercontractive estimate in [Nel73], for p > 2, there exists a constant C
independent of p such that

E‖4j(W (t)−W (s))‖pLp(T) =

∫
E|4j(W (t)−W (s))|p(x)dx

6 Cpp
p
2

∫
(E|4j(W (t)−W (s))|2(x))

p
2dx.

Then we obtain for 1
p
< κ1

E‖W (t)−W (s)‖p
B
− 1

2−α+2κ1+
1
p

p,p (T)

6 Cp|t− s|
p
2 p

p
2

∑
j>−1

2j(−κ1+ 1
p

)p.

Thus Lemma 6.4 and Kolmogorov’s continuity criterion imply that for p > 1
κ1

(E[ sup
06t6T

‖W‖p− 1
2
−α+2κ1

])
1
p 6 C(E[ sup

06t6T
‖W‖p

B
− 1

2−α+2κ1+
1
p

p,p (T)

])
1
p 6 Cp

1
2 .
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Hence, with the above estimates in hand, we have

(E sup
06t6T

‖wε(t)‖p− 1
2
−α)

1
p 6 Cε

1
4

+α−β
2 ‖φ0‖−β + C

√
εεκ1(E[ sup

06t6T
‖W‖− 1

2
−α+2κ1

]p)
1
p

6 Cεκ1(1 +
√
εp

1
2 ),

where C is the constant independent of ε, p and may change from line to line.
Therefore Chebyshev’s inequality implies that

ε logP ( sup
06t6T

‖wε(t)‖− 1
2
−α > δ) 6 ε log

E sup06t6T ‖wε(t)‖
p

− 1
2
−α

δp

6 εp(logCεκ1(1 +
√
εp

1
2 )− log δ).

Let p = 1
ε

and ε→ 0, the proof is complete.
�

Now we follow the notations from [GP16, Section 9] and give some estimates of Zε:
We represent the white noise in terms of its spatial Fourier transform. Let E = Z \ {0}
and let W (s, k) = 〈W (s), ek〉, where {ek := 2−

1
2 eiπkx}k∈Z is the Fourier basis of L2(T).

Here for simplicity we assume that 〈W (s), e0〉 = 0 and restrict ourselves to the flow of∫
T u(x)dx = 0. In the following we view W (s, k) as a Gaussian process on R × E with

covariance given by

E[

∫
R×E

f(η)w(dη)

∫
R×E

g(η′)w(dη′)] =

∫
R×E

f(η1)g(η−1)dη,

where ηa = (sa, ka) and the measure dηa = dsadka is the product measure of the Lebesgue
measure ds on R and the counting measure dk on E .

Let Zε = Zε − eεt∆φ0, then

Zε(t, x) =

∫
R×E

√
εek(x)e−ε(t−s)π|k|

2

1{0<s<t}W (dη).

Now we have the following calculations: for s, t ∈ [0, T ],

E[|4j(Zε(t)− Zε(s))|2]

=E[|
∫
θj(k1)(

√
εek1e

−ε(t−s1)π|k1|21{0<s1<t} −
√
εek1e

−ε(s−s1)π|k1|21{0<s1<s})W (dη1)|2]

6εC
∫
θ2
j (k1)(e−2ε(t−s1)π|k1|21{s<s1<t} + |e−ε(t−s)π|k1|2 − 1|2e−2ε(s−s1)π|k1|21{0<s1<s})dη1

6C
∫
θj(k1)2 (ε|t− s||k1|2)2κ

|k1|2
dk1

6Cε2κ|t− s|2κ2j 1

(2j)2−4κ
= Cε2κ|t− s|2κ2j(−1+4κ),

(7.2)
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where we use 1− ex 6 |x|κ for κ ∈ (0, 1), x < 0 in the fourth inequality and k ∈ suppθj ⊂
2jA(A is an annulus) in the last inequality. Here the constant C is independent of ε and
may change from line to line.

By Nelson’s hypercontractive estimate in [Nel73], we have for p > 2, there exists a
constant C independent of p, ε such that

E‖4j(Zε(t)− Zε(s))‖pLp(T) =

∫
E|4j(Zε(t)− Zε(s))|p(x)dx

6 Cpp
p
2

∫
(E|4j(Zε(t)− Zε(s))|2(x))

p
2dx.

Let κ = 1
4
− κ′ for κ′ > 0 small enough, we obtain

E‖Zε(t)− Zε(s)‖pBκ′p,p(T)
6 Cpp

p
2 (ε|t− s|)( 1

4
−κ′)p.

Then Lemma 6.4 and Kolmogorov’s continuity criterion implies that for p > 1
κ′

, we
have

E‖Zε‖pCL∞ 6 E‖Zε‖p
CCκ

′− 1
p
6 E‖Zε‖pC([0,T ];Bκ′p,p(T))

6 Cpε( 1
4
−κ′)pp

p
2 . (7.3)

Remark 7.3. We want to emphasize that (7.3) only holds for Zε due to Zε(0) = 0. For
the stationary one this does not hold since the expectation of the stationary one does not
depend on ε.

7.2 Exponential equivalence

Theorem 7.2 implies that Zε satisfies a large deviation principle on the space CC− 1
2
−α

with the rate function Iφ0 . By Lemma 2.3, our task is to show that φε and Zε are
exponentially equivalent in CC− 1

2
−α. That is:

Theorem 7.4. For any δ > 0,

lim
ε→0

ε logP ( sup
06t6T

‖φε(t)− Zε(t)‖− 1
2
−α > δ) = −∞. (7.4)

Proof At the beginning of the proof, we should point out that the constant C in the
following is independent of ε, p and may change from line to line.

Let Yε(t) := φε(t)− Zε(t), then Yε is the solution to the following shifted equation:

dYε(t) = ε∆Yε(t)dt− ε(Yε(t) + Zε(t))
3dt,

Yε(0) = 0.
(7.5)

For p > 1, we have

1

2p

d

dt
‖Yε‖2p

L2p(T)

=ε〈∆Yε, Y 2p−1
ε 〉 − ε〈Y 3

ε , Y
2p−1
ε 〉 − 3ε〈Y 2

ε Zε, Y
2p−1
ε 〉 − 3ε〈YεZ2

ε , Y
2p−1
ε 〉 − ε〈Z3

ε , Y
2p−1
ε 〉.

Then

1

2p
‖Yε(t)‖2p

L2p(T) + ε

∫ t

0

[(2p− 1)〈∇Yε(s), Y 2p−2
ε (s)∇Yε(s)〉+ ‖Y 2p+2

ε (s)‖L1(T)]ds
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=− ε
∫ t

0

[3〈Y 2p+1
ε (s), Zε(s)〉+ 3〈Y 2p

ε (s), Z2
ε (s)〉+ 〈Y 2p−1

ε (s), Z3
ε (s)〉]ds

6ε
∫ t

0

(a‖Yε(s)2p+2‖L1(T) + C‖Zε(s)‖2p+2
L∞(T))ds,

where we use Hölder’s inequality and Young’s inequality in the last inequality and a ∈
(0, 1). Take p = 3, for t ∈ [0, T ], we have

‖Yε(t)‖6
L6(T) 6 εC

∫ t

0

‖Zε(s)‖8
L∞(T)ds

6 εC

∫ t

0

(‖eεs∆φ0‖8
β′ + ‖Zε(s)‖8

L∞(T))ds

6 εC

∫ t

0

(
1

(εs)
8(β′+β)

2

‖φ0‖8
−β + ‖Zε(s)‖8

L∞(T))ds

6 C(ε1−4(β′+β)‖φ0‖8
−β + ε‖Zε‖8

CL∞),

(7.6)

where 0 < β′ < 1
4
− β and we use Lemma 6.6 in the third inequality.

Thus Young’s inequality and the mild formulation of Yε given by

Yε(t) = ε

∫ t

0

eε(t−s)∆[−Y 3
ε − 3Y 2

ε Zε − 3YεZ
2
ε − Z3

ε ]ds

imply that

sup
t∈[0,T ]

‖Yε(t)‖L2(T) 6 εC

∫ T

0

(‖Yε(s)‖3
L6(T) + ‖Zε(s)‖3

L∞(T))ds

6 εC

∫ T

0

(‖Yε(s)‖3
L6(T) +

1

(εs)
3(β′+β)

2

‖φ0‖3
−β + ‖Zε(s)‖3

L∞(T))ds

6 C(ε
3
2
−2(β′+β) + ε

3
2‖Zε‖4

CL∞ + ε1− 3(β′+β)
2 + ε‖Zε‖3

CL∞),

where we use Lemma 6.6 in the second inequality and (7.6) in the last inequality.
Thus by (7.3) we have for 3q > 1

κ′

(E sup
t∈[0,T ]

‖Yε(t)‖qL2(T))
1
q 6 C(ε

3
2
−2(β′+β) + ε

3
2 (E[‖Zε‖4q

CL∞ ])
1
q + ε1− 3(β′+β)

2 + ε(E[‖Zε‖3q
CL∞ ])

1
q )

6 C(ε
3
2
−2(β′+β) + ε

5
2
−4κ′q2 + ε1− 3(β′+β)

2 + ε
7
4
−3κ′q

3
2 ).

Therefore, by Chebyshev’s inequality and Lemma 6.4 we have

ε logP ( sup
06t6T

‖Yε(t)‖− 1
2
−α > δ)

6ε log
E supt∈[0,T ] ‖Yε(t)‖

q
L2(T)

δq

6εq[log[C(ε
3
2
−2(β′+β) + ε

5
2
−4κ′q2 + ε1− 3(β′+β)

2 + ε
7
4
−3κ′q

3
2 )]− log δ].

Let q = 1
ε
, we deduce that

lim
ε→0

ε logP ( sup
06t6T

‖Yε(t)‖− 1
2
−α > δ) = −∞.

�
Then Theorem 7.1 follows from Lemma 2.3 and Theorem 7.4 .
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tiplicative lévy noises. Journal of Functional Analysis, 272(1):227 – 254, 2017.

[DZ10] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applica-
tions. Springer Berlin Heidelberg, 2010.

[Erm12] Mikhail Ermakov. The sharp lower bound of asymptotic efficiency of estima-
tors in the zone of moderate deviation probabilities. Electronic Journal of
Statistics, 6(0):2150–2184, 2012.

[FG95] Franco Flandoli and Dariusz Gatarek. Martingale and stationary solutions
for stochastic navier-stokes equations. Probability Theory and Related Fields,
102(3):367–391, Sep 1995.

[FW84] M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Sys-
tems. Springer Verlag, New York, 1984.

[GH19] Massimiliano Gubinelli and Martina Hofmanová. Global solutions to elliptic
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metematica, 63:193–248, 1933.

[Lim95] Wu Liming. Moderate deviations of dependent random variables related to
clt. The Annals of Probability, 23(1):420–445, Jan 1995.

[Liu09] Wei Liu. Large deviations for stochastic evolution equations with small mul-
tiplicative noise. Applied Mathematics and Optimization, 61(1):27–56, Apr
2009.



88 BIBLIOGRAPHY
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Poincaré, Probabilités et Statistiques, 45(4):1002–1019, Nov 2009.

[Zha00] T. S. Zhang. On the small time asymptotics of diffusion processes on Hilbert
spaces. The Annals of Probability, 28(2):537–557, Apr 2000.

[ZZ18] Rongchan Zhu and Xiangchan Zhu. Dirichlet form associated with the φ4
3

model. Electron. J. Probab., 23(78):31 pp, 2018.


	Preface
	Introduction
	Stochastic NS equations with anisotropic viscosity
	Large and moderate deviations
	Small time large deviation principle

	Small time asymptotics of 41 model
	Structure of the thesis

	Preliminary
	Function spaces on torus
	Large deviation principle
	Weak convergence approach
	Existence and uniqueness of solutions
	Some useful estimates

	Small noise large deviation principle
	Two equations
	Proof of Hypothesis 2
	Proof of Hypothesis 1

	Central limit theorem
	Well-posedness of the limiting equation
	Central limit theorem

	Moderate deviation principle
	Two equations
	Proof of Hypothesis 2
	Proof of Hypothesis 1

	Small time asymptotics
	LDP for linear equation
	Energy estimates
	Approximating the initial value
	Exponential equivalence

	Small time asymptotics for 41 model
	The linear case
	Exponential equivalence

	Bibliography

