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Chapter 1

Introduction

For a long time, science tried to find out "what holds the world together in
its innermost core". With the formulation of the Standard Model of Particle
Physics in the 20th century, physicists finally got closer to an answer. Out of
the four fundamental forces of nature, namely gravitational, electromagnetic,
weak and strong force, the latter three are described in this standard model.
Its constituents are the elementary particles, divided into leptons and quarks
as well as the force carriers leading to interactions. Leptons contain the
electron, muon, tauon and their corresponding neutrinos. They can interact
via electroweak coupling mediated by photons and the W±, Z bosons. The
six quarks (up, down, strange, charm, bottom and top) additionaly carry a
property called color charge and are thus able to participate in the strong
interaction mediated by gluons. The quark masses are largely different for
the different flavors, ranging from mu ≈ 2.3MeV for the light up quark to
mt ≈ 160GeV for the heavy top quark. This work focuses on two of the heavy
quarks, the charm quark at a mass of mc ≈ 1.28GeV and the bottom quark
with mb ≈ 4.18GeV1.

The field theory describing this strongly interacting matter is called Quan-
tumchromodynamics (QCD), a non-abelian gauge theory with an underlying
SU(3) symmetry, since there are three different values, named red, green and
blue, that the color charge can take. What makes QCD interactions spe-
cial in comparison to other interactions is the dependence on the distance
of the quarks. While most forces decrease with increasing distance (decreas-
ing energy scale), the strong force increases until the energy becomes large
enough to create a new quark-antiquark pair. Due to this property called
confinement, we do not observe single quarks, but hadrons, color-neutral
combinations of quarks. There are combinations of three quarks, so-called
baryons, like the proton and neutron, combinations of quark and antiquark,
so-called mesons, and even more complex combinations like tetraquarks. A

1All masses in MS-scheme at a scale of µ = mQ, taken from [1].
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Figure 1.1: The Standard Model of Particle Physics.

special kind of these mesons are quarkonia, pairs of a quark and its antiquark
of the same flavor. However, when decreasing the distance (increasing the
energy scale), the strong force decreases and the quarks become asymptoti-
cally free [2]. The coupling constant is thus not constant, but depending on
the energy scale.

The nature of strong interactions makes first principle investigations of
QCD matter complicated. Perturbation theory often breaks down, as its un-
derlying assumption of small couplings and approximately free particles is
often not fulfilled. Only at high temperatures, perturbative QCD becomes
applicable. A better, non-perturbative method in a lot of other cases is Lat-
tice QCD (LQCD, [3]). First introduced by Kenneth Wilson in the 1970s,
LQCD discretizes the continuous space-time on a four dimensional Euclidean
lattice. With Monte-Carlo algorithms it is possible to simulate a medium us-
ing supercomputers. With the huge development in regards to computational
power over the last decades, more and more physics has become accessible by
LQCD. Despite facing some challenges (e.g. sign problem, doublers), LQCD
has proven to be a powerful tool in investigating strongly interacting mat-
ter at different temperatures and zero or, with some tricks, small chemical
potential.

With changing temperature or density, strongly interacting matter under-
goes phase transitions. At high energies, present in e.g. neutron stars or the
early universe, the hadrons dissolve and instead of ordinary matter, a quark-
gluon-plasma (QGP,[4]), where the quarks and gluons are no longer bound,
forms. With colliders like the LHC, these extreme conditions are accessible
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to experiments as well. In probing the QGP, heavy quarkonia, i.e. charmonia
and bottomonia2, can play a crucial role. Due to their large mass, they can
rarely be created after equilibration of the medium. They are produced in
the early stage of the collision and their suppression can later be used to
gain information. As Matsui and Satz argued in [5], the suppression of the
charmonium bound state J/ψ, also observed experimentally at RHIC and
LHC [6–10], could signal the formation of a QGP. Therefore an interesting
feature of heavy quarks is the sequential melting of their bound states. Not
all bound states vanish immediately, when crossing the critical temperature,
but some persist up to higher temperatures. This was also observed in ex-
periments [11, 12] and heavy quarkonia can thus be used as a thermometer.
Therefore, it is of fundamental importance to obtain as much information on
these quarkonia as possible. How many states are there? At which energies?
What are the dissociation temperatures?

In principle, this information is included in the change of hadronic spec-
tral function and there have been many attempts to find a suitable spectral
function with different methods, including the aforementioned Lattice QCD.
However, a direct calculation of spectral functions on the lattice is impossi-
ble. Instead, LQCD uses correlation functions that are related to spectral
functions via an integration with a kernel. Extracting a spectral function
out of a few lattice points for the correlators is an ill-posed inversion prob-
lem due to the many degrees of freedom. Imposing some conditions, like the
positivity of spectral functions, excludes many possibilities, but the number
of spectral functions that are suitable to describe the correlator data still
remains infinite. Several methods have been proposed to extract meaningful
spectral functions, most of them relying on Bayesian statistics [13]. To gain a
deeper understanding, often combined efforts of different methods are needed.
This work tries to gain insight into in-medium modifications of charmonium
and bottomonium by comparing continuum extrapolated lattice correlators
to a perturbative spectral function. Using a perturbatively inspired model
we investigate the intermediate and higher frequency regime of the spectral
function. From this comparison we can understand wether the search for
spectral functions can be treated perturbatively at certain temperatures and
conditions.

For the small frequency part in the vector channel, where perturbation
theory does not provide an ansatz, we use a Lorentzian ansatz [14] to gain in-
formation on the heavy quark diffusion coefficient D and the drag coefficient
η. The heavy quark diffusion coefficient is (along with other transport coef-
ficients) of crucial importance for understanding heavy ion collisions. Most
theories focus on a medium in equilibrium, but the quark-gluon-plasma cre-

2A quarkonium of the top-quark and antiquark is hard (maybe even impossible) to
observe, as the formation time of toponium might be longer than the life-time of the
extremely heavy top-quark.
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Figure 1.2: Phase diagram of QCD matter. At low temperature and density, the
quarks are bound in hadrons. When going to more extreme conditions, there are
different kinds of phase transitions. The solid black line stands for a first order phase
transition. At a certain point, this line ends and below this density there is only a
crossover between different phases. The nature of this point is still debated. The
orange marks show, where some of the extreme conditions are realized in nature.
The purple marks show where some experiments operate. Lattice QCD (green) is
only applicable at zero or, with great effort, at small baryon chemical potential. This
work is placed along the temperature-axis (zero baryon chemical potential).

ated in a collision expands and cools down and is thus not in equilibrium. On
the experimental side, we can only observe the result of the collision, when
particles hit a detector, which is after the chemical freeze-out. The evolution
of the medium from the collision to this point is unclear and can only be
modelled. The transport coefficients are an important input to these trans-
port models, so extracting D from an analysis of the transport contribution
is a goal of this work. So far, a lot of effort has been made to estimate the
heavy quark diffusion coefficient from different ansätze, e.g. perturbation
theory, lattice methods or transport models. But most methods lead to large
uncertainties and in addition the agreement between different ansätze is not
very high. The current state of research provides more of a range, in which
we would expect the coefficient, than an actual value. With this work, we
will check towards which end of this range our method hints. In total, we
analyze pseudoscalar and vector correlators at four temperatures above Tc
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(1.1, 1.3, 1.5 and 2.25Tc) and also provide a correlator for 0.75Tc.
The outline of this thesis is as follows: In chapter 2, we start with an

introduction to correlators and spectral functions by building an intuition
for their relation. We present the current state of the research on spectral
functions as well as the diffusion coefficient. A special focus lies on the con-
struction of a perturbative spectral function in section 2.3.3 by combining
pNRQCD calculations with vacuum asymptotics. To obtain correlators, we
apply LQCD. After a brief introduction to this powerful tool, chapter 3 pro-
vides the necessary information on the lattices used in this work. As we
work with continuum extrapolated data to reduce cut-off effects and make a
comparison to perturbation theory possible, we also present the extrapolation
method. The continuum correlators are shown and compared to perturbation
theory in chapter 4. We account for systematical uncertainties and build a
model for the spectral function based on the perturbative ansatz. While this
is relatively straightforward for the pseudoscalar channel (see section 4.1),
the presence of the transport peak provides some challenges in the vector
channel (4.3). The differences between the perturbative description and the
data hint to a transport contribution and are further analyzed in chapter 5.
We gain a qualitative understanding of the transport contribution and also
show two attempts to analyze this more quantitatively, before we conclude
with a brief summary and outlook.

This work uses the quenched approximation, but the method for obtaining
the continuum limit (chapter 3), as well as the comparison to a perturbatively
inspired model (chapter 4) and the analysis of the transport peak (chapter
5) would work in full QCD as well. The methodology of this thesis thus
provides a basis for further studies.
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Chapter 2

Heavy Quarkonium
Correlators and Spectral
Functions

All information on the in-medium modification of bound states as well as
transport properties are encoded in spectral functions. The simplified quali-
tative shape of the spectral function is shown in Fig. 2.1. At zero tempera-
ture, the spectral function consists of a continuum part describing asymptot-
ically non-interacting quarks at higher frequencies ω (see section 2.3.1) and
δ peaks describing the bound states at intermediate ω. When increasing the
temperature, these peaks get broadened until they melt and dissolve while
the threshold of the continuum part shifts to lower frequencies. So far, it is
not clear, wether the location of the bound states shift. While some studies
based on potential model calculations find that the bound state mass de-
creases with increasing temperature [15], others do not [16]. In the vector
channel a transport peak in the form of a Lorentzian arises on the other side
of the spectrum (see section 2.4.3). The shape of this peak is determined by
the drag coefficient η and the heavy quark diffusion coefficient D and trans-
forms into a δ peak at infinite temperature. In the pseudoscalar channel
there is no such transport contribution.

Unfortunately, this is only a qualitative description as spectral functions
are not easily accessible. There are many different approaches to find a
spectral function, e.g. using perturbation theory (see 2.3.3). In this work we
used lattice QCD, where we do not directly calculate the spectral function
but instead measure hadronic correlation functions related to the spectral
function via a Laplacian transformation problem. For an overview on lattice
QCD see chapter 3. To make use of the path integral formalism, lattice
correlators are calculated in imaginary time. But since the corresponding
spectral function is the same in Minkowski space, Euclidean correlators are



CHAPTER 2. HEAVY QUARKONIUM CORRELATORS AND
SPECTRAL FUNCTIONS

ω

ρ/ω T = 0
T > Tc
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Figure 2.1: Qualitative shape of the spectral function at different temperatures.

a great tool to investigate real-time physics.
In this section, we will give an overview on hadronic correlators and their

computation in Euclidean space (see sec. 2.1). While these observables can
be used to perform hadron spectroscopy and are thus an interesting quantity
themselves, this work mostly focuses on their relation to the spectral func-
tions. Since we are interested in the properties of heavy quarkonia, we define
mesonic correlators. For baryonic correlation functions, see [17].

2.1 Hadronic Correlators
The correlation function is defined as

G(τ) = 〈O(τ)O†(0)〉 , (2.1)

where O is an operator describing an observable, e.g. a meson with specific
quantum numbers. On the lattice, we calculate current-current correlators

G(τ) = 〈JH(τ, ~x)J†H(0,~0)〉 . (2.2)

In this case, O is a meson interpolator given by

Of1,f2
H (τ) = ψ̄f1(n)ΓHψf2(n), (2.3)

where the fi denote the quark flavors (f1 = f2 for quarkonia), H the channel
and n the lattice site, where the fermion is created. Tab. 2.1 gives an overview
of the different channels and their corresponding matrices.
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2.1. HADRONIC CORRELATORS

Channel ΓH 2S+1LJ JPC cc̄ M(cc̄) [GeV] bb̄ M(bb̄) [GeV]
Vector γµ

3S1 1−− J/ψ 3.097(1) Υ 9.460(3)
Axial Vector γ5γµ 3P1 1++ χc1 3.511(1) χb1 9.892(1)

Scalar 1 3P0 0++ χc0 3.415(3) χb0 10.233(1)
Pseudoscalar γ5 1S0 0−+ ηc 2.981(1) ηb 9.399(2)

Table 2.1: Charmonium and bottomonium states in different channels with masses
taken from the Particle Data Group booklet ([1]).

In real time, we can write the correlator as a linear combination

G(t) = i
(
G>(t)−G<(t)

)
, (2.4)

where

G>(t) = 〈O(t)O(0)〉 and G<(t) = 〈O(0)O(t)〉 = G>(−t). (2.5)

Using the time evolution operator, we can express O(t) as eiHtO(0)e−iHt,
which allows us to write G>(t) as a sum over states 〈n|, 〈m|:

G>(t) = 1
Z

∑
m,n

e−βEneit(En−Em)|| 〈n|O(0) |m〉 ||2, (2.6)

where Z denotes the canonical partition function, β is the inverse of the
temperature an En,m are the energies corresponding to the states 〈n| , 〈m|.

By taking a Fourier transform, we obtain the spectral function

ρ(ω) = 1
πi

∞∫
−∞

dt eiωtG(t) = G>(ω)−G<(ω). (2.7)

With the Kubo-Martin-Schwinger relation [18, 19]

G>(t) = G<(t+ iβ) (2.8)

we get

G>(ω) = eβω

eβω − 1ρ(ω), G<(ω) = 1
eβω − 1ρ(ω). (2.9)

We can now define the retarded correlator

GR(ω) =
∞∫
0

dteiωtG(t), (2.10)

9



CHAPTER 2. HEAVY QUARKONIUM CORRELATORS AND
SPECTRAL FUNCTIONS

with which we can rewrite the spectral function as

ρ(ω) = 1
2πi (GR(ω)−GR(ω)?) = 1

π
Im (GR(ω)) . (2.11)

So far, the correlation function has been defined in real time. To go to
imaginary time as on the lattice, we relate the Euclidean correlator from (2.2)
to the forward real time correlator:

GH(τ) = G>(−it). (2.12)

In a definite momentum projection,

GH(τ, ~p) =
∫

dx e−i~p·~x 〈JH(τ, ~x)J†H(0,~0)〉 , (2.13)

we get

GH(τ, ~p) =
∫

d3x e−i~p·~xG>(−it, ~x)

=
∫

d3x

∞∫
−∞

dω
π

∫
d3q ei(~q−~p)

~6x−ωτG>(ω, ~q)

=
∞∫
−∞

dω
π
e−ωτG>(ω, ~p), (2.14)

where we have inserted (2.9). We transform the negative part of the integra-
tion to the positive half-axis using the relation

G>(−ω) = e−βωG>(ω). (2.15)

In the end, we obtain the following relation between the correlator and the
spectral function:

G(τ) =
∞∫
0

dω
π
ρ(ω)K(ω, τ) (2.16)

with the integration kernel

K(ω, τ) =
cosh(ω(τ − 1

2T ))
sinh( ω

2T ) . (2.17)

Extracting the spectral function is an ill-posed inversion problem. Many
different solutions have been proposed, such as using a Bayesian ansatz in
MEM ([20]) or SAI ([21]), gaining information by looking at a reconstructed
correlator or a Taylor expansion of the midpoint (see section 2.2). One of

10



2.2. GAINING INFORMATION ON THE CORRELATOR LEVEL

the main goals of this thesis will be to fit a perturbative spectral function to
the correlator data and thus to combine different approaches.

In this work, we are especially interested in the pseudoscalar correlators
given by

GPS(τ) = M2
B

∫
~x
〈(ψ̄iγ5ψ)(τ, ~x)(ψ̄iγ5ψ)(0,~0)〉c , (2.18)

where MB is a bare quark mass. By including the factor M2
B, the pseu-

doscalar correlator is believed to be finite after mass and gauge coupling
renormalization. The vector channel correlators read

Gii(τ) =
∫
~x
〈(ψ̄γiψ)(τ, ~x)(ψ̄γiψ)(0,~0)〉c . (2.19)

As indicated by the c, we only analyze the connected (flavor non-singlet)
part of the correlator, since the disconnected part is only accessible with
great computational effort. Due to OZI suppression, the disconnected part
is so small that its neglection is justified.

2.2 Gaining information on the correlator level

Even without extracting the spectral function, we can obtain knowlegde
about how bound states and the transport contribution change with tem-
perature. This section builds an intuition for how changes in different parts
of the spectral function affect the correlator. Fig. 2.2 provides a better un-
derstanding of which parts of the spectral function influence the correlator
in which τT regime. Due to the structure of the kernel (Fig. 2.3), the low
frequency regime of the spectral function mostly contributes to the large τ
part of the correlator. This can be made use of when analyzing the influence
of the transport peak around ω ≈ 0.

2.2.1 Reconstructed, Midpoint-subtracted and Difference cor-
relator

If we want to qualitatively compare how many changes occur between differ-
ent temperatures, we take a look into the reconstructed correlator [22–24]

Grec(τ, T, T ′) =
∞∫
0

dω ρ(ω, T ′)K(ω, τ, T ), (2.20)

where T ′ < T . The trivial temperature dependence of the kernel is removed
and by comparing the reconstructed to the original correlator we obtain a
qualitative change in the spectral function from T ′ to T . If we want to

11
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Figure 2.2: The influence of different parts of the spectral function to the different
regimes of the correlator.

calculate the expression in (2.20) from our lattice data, we make use of the
relation [24]

cosh(ω(τ −Nτ/2))
sinh(ωNτ/2) =

N ′τ−Nτ+nτ∑
n′τ=nτ ;n′τ+=Nτ

cosh (ω (τ ′ −N ′τ/2))
sinh (ωN ′τ/2) (2.21)

that holds when the temperature T is an integer multiple of T ′, i.e. N ′τ =
mNτ with m ∈ N. With this, the reconstructed correlator becomes

Grec(τ, T ;T ′) =
N ′τ−Nτ+nτ∑

n′τ=nτ ;n′τ+=Nτ
G
(
τ ′, T ′

)
. (2.22)

To estimate the effect of the transport contribution, we can take a look
into the midpoint subtracted correlator

Gmid(τT ) = G(τT )−G(τT = 0.5). (2.23)

As the transport peak mostly influences the midpoint of the correlator, its
subtraction will cancel a lot of the transport contribution and thus make
it possible to investigate the higher ω region seperately. If the transport
peak had the form of a δ, the midpoint subtraction would already remove all
transport effects, but since in reality we mostly expect a smeared out shape,
it can be more useful to use the difference of neighbouring correlators

Gdiff (nτ ) = G(nτ )−G(nτ + 1) (2.24)

instead. In this work we will refer to this expression as the difference corre-
lator.

12
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Figure 2.3: The shape of the integration kernel for different τT (left) and for
different ω/T (right). It is clearly seen, that the suppression of higher ω contributions
is larger for higher τT . Due to this, the lower frequencies have an higher influence
on the correlator around the midpoint.

2.2.2 Thermal Moments

For an investigation of the transport peak, the correlator around the midpoint
τT = 0.5 is especially interesting1. The Taylor expansion around this point
reads [25]

GH(τT ) =
∞∫
0

dω
π
ρH(ω)

cosh(ω(τ − 1
2T ))

sinh( ω
2T )

≈
∞∫
0

dω
π

ρH(ω)
sinh( ω

2T )

(
1 + 1

2!

(
ω

T

)2
(τT − 0.5)2 + 1

4!

(
ω

T

)4
(τT − 0.5)4

)

= G
(0)
H +G

(2)
H (τT − 0.5)2 +G

(4)
H (τT − 0.5)4 + ... (2.25)

with Taylor coefficients

G
(n)
H = 1

n!

∞∫
0

dω
π

(
ω

T

)n ρH(ω)
sinh( ω

2T ) . (2.26)

These Taylor coefficients are the so called thermal moments and provide some
insights to the curvature of the correlator around the midpoint. The zeroth
moment is simply the value of the correlator at the midpoint. To avoid
problems with renormalization, we build ratios

Rn,mH = G
(n)
H

G
(m)
H

(2.27)

1Of course, the transport peak is only investigated in the vector channel, but since the
following procedure is applicable to all channels, we still denote the generalized version
using H to denote the channel and then set H = ii later.
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and use them in the expansion

GH(τT ) = G
(0)
H

∞∑
n=0

R2n,0
H (τT − 0.5)2n (2.28)

To obtain the moments from our data, we calculate the curvature

∆H(τT ) = GH(τT )−GH(τT = 0.5)
(τT − 0.5)2 (2.29)

and express it using our ratios

∆H(τT )
GH(τT = 0.5) = R2,0

H

(
1 +

∞∑
n=1

R2n+2,2n
H (τT − 0.5)2n

)
. (2.30)

To obtain the R2n+2,2n
H , we fit (2.30) to match our data. The approximation

is valid close to the midpoint, so we should conduct the fit for the points close
to τT = 0.5. But at the same time, we should not make our fit intervall too
small. To find a balance between fitting a reasonable number of data points
and staying close to the midpoint, we vary the lower limit τminT of the fit
intervall and keep the upper bound at τT = 0.5. At some value of τminT , a
plateau is reached and we use the average over the plateau as our final value
for the R2n+2,2n.

2.3 Spectral functions
The methods described in the previous section help to gain a qualitative un-
derstanding of the in-medium modifications of quarkonia. To extract quanti-
tative information, one has to look into the spectral function directly. There-
fore it is useful to compare the lattice data to model spectral functions. A
few of them will be presented in this section.
The spectral function consists of mainly three parts. For high energies, there
is a continuum part that can be treated perturbatively, at intermediate fre-
quencies bound states arise and at very small ω, a transport peak arises
in the vector channel. The temperature dependence is schematically shown
in Fig. 2.1. In the zero temperature limit, the spectral function consists of
bound states described by δ peaks, that broaden, when going to higher tem-
peratures until they eventually melt. There are many different ansätze for
the spectral function and those important for this work will be presented in
this section.

2.3.1 Non-interacting spectral function

In the case of two non-interacting quarks, which is reached at asymptotically
high temperatures, the spectral function can be calculated analytically as
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Figure 2.4: Non-interacting spectral function (left) and its corresponding correlator
(right) for four different masses at an example temperature of T ≈ 1.5Tc.

[26]

ρfree(ω) = NC

16π2 Θ
(
ω2

T 2 −
4m2

q

T 2

)
ω2 tanh

(
ω

4T

)√
1−

(2mq

ω

)2
(2.31)

·
((
a

(1)
H − a

(2)
H

)
+
(
a

(2)
H − a

(3)
H

)(2mq

ω

)2
)

+ ωδ(ω)Nc

[(
a

(1)
H + a

(3)
H

)
I1 +

(
a

(2)
H − a

(3)
H

)
I2
]
,

with the quark mass mq and Nc the number of colors (here Nc = 3). The
coefficients aH depend on the channel and can be seen in tab. 2.2. Fig. 2.4
shows an example of the free spectral function. Constructing a correlator of
this spectral function leads to

Gfree(τ ′)
T 3 = 3

16π2

∫ ∞
2m′q

ω′2 tanh
(
ω′

4

)√
1−

(2m′q
ω′

)

·

(a(1)
H − a

(2)
H

)
+
(
a

(2)
H − a

(3)
H

)(2m′q
ω′

)2
 (2.32)

·
cosh(ω′(τ ′ − 1

2))
sinh(ω′2 )

dω′.

This correlator is later used as a normalization for the lattice correlators
to suppress the exponential fall-off and thus make the region around the
midpoint more visible.

The non-interacting spectral function also provides a good example to
study cut-off effects. Fig. 2.5 shows the massless spectral function calcu-
lated on different lattices compared to the analytic solution (2.31). Due to
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Figure 2.5: Non-interacting spectral function in the continuum and on the lattice.
The discretization effects are clearly visible. Instead of becoming constant in ρ/ω2,
the lattice spectral functions show peaks and then fall off to zero. Figure taken from
[25].

discretization artifacts, the lattice results show a peak that gets shifted to
higher ω with increasing lattice size. It thus describes physics differently and
only after taking the continuum limit, the correct solution is obtained. For
a more detailled discussion see [25].

Channel a
(1)
H a

(2)
H a

(3)
H

Vector
ρµµ 2 -2 -4
ρii 3 -1 -3
ρ00 1 1 1

Pseudoscalar 1 -1 -1
Scalar 1 -1 1

Axial Vector 2 -2 4

Table 2.2: Coefficients for Gfree in different channels. Taken from [26].

2.3.2 Bound States

In the intermediate to higher frequency part of the spectral function, we
expect bound states to arise, at least until the temperature exceeds the dis-
sociation temperature. At T = 0, we expect the bound states to appear as
δ-peaks in the spectral function. When increasing the temperature, they are
expected to broaden. Some calculations, e.g. the NRQCD calculation in [15],
suggest, that the bound state mass shifts, when going to higher temperatures,
while others do not observe this.
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So far, a lot of attempts have been made to estimate a spectral function.
On the lattice, techniques like MEM provide insight, see [27–32]. Most of the
results show a few peaks that could be interpreted as bound states, but the
number and amplitude of these peaks vary from study to study. For higher
frequencies, most show shapes that are similar to the non-interacting spectral
function, but sometimes it is hard to distinguish between physical features of
the spectral function and oscillations due to lattice artifacts. [33] discusses
how MEM compares to two other popular stochastical methods, Stochastic
Analytical Interference (SAI) and Stochastic Optimisation Method (SOM),
and finds that the results agree well. Furthermore, the default model depen-
dence is analyzed. It is found that while the location of peaks is not very
dependent on the default model, the height and width are. MEM requires
many lattice points and a high precision to produce reliable results indepen-
dent from the default model. As [27, 28] mentioned, details of the spectral
functions can not be resolved for high temperatures, as the lattice extent
becomes too small.

Another approach is to work with potential models. Under some cir-
cumstances given by effective field theory [34], the medium effects can be
characterized by a temperature dependent potential. This potential has a
real part, which can be calculated on the lattice and an imaginary part that
can be expressed perturbatively or with the help of LQCD. There are sev-
eral studies using a real potential, e.g. [35, 36]. [16], however, finds that
the imaginary part has a significant effect on the spectral functions as it
is responsible for the dissolution of the charmonium 1S state and excited
bottomonium states at T ≈ 250MeV and the melting of the bottomonium
bound state at T & 450MeV. In total, the study finds one other charmonium
S-bound state at T = 0, which is gone for the non-zero temperatures ana-
lyzed. For the location of the ground state peak, there is a shift to lower
masses with increasing temperature. When taking the imaginary potential
into account, the melting is visible. For bottomonium, the spectral function
shows three bound states and one small peak that could hint to a fourth.
The three clearly visible bound states melt sequentially. Υ(3S) is gone for
the non-zero temperatures in this study, Υ(2S) melts above 245MeV, while
the ground state persists up to 449MeV. Temperatures above this were not
analyzed. The mass shift observed in charmonium spectral functions does
not show for bottomonium.

In [15] analytic expressions for the real and complex potentials are found
by using a generalized Gauss law ansatz. The expressions depend on a single
parameter, the Debye mass, which can be determined via a fit to the real part
of the potential evaluated on full QCD lattices. Fig. 2.6 shows the results for
the vector spectral functions. Even though [15] presents the calculation for
the vector channel, it holds information on the pseudoscalar as well since the
two channels are related in the non-relativistic limit.

17



CHAPTER 2. HEAVY QUARKONIUM CORRELATORS AND
SPECTRAL FUNCTIONS

Figure 2.6: Vector spectral functions for bottomonium (upper figure) and charmo-
nium (lower figure) obtained by the potential model study in [15]. With increasing
temperature, sequential melting can be observed, as well as a shift of the peak to
lower ω.

The sequential melting is confirmed in this study. The charmonium spec-
tral functions show two bound states, ψ(2S) disappearing almost at Tc and
the ground state surviving up to between 1.19 and 1.41Tc. Four bottomonium
states can be observed, the highest already gone around Tc, the next highest
disappearing rapidly around the same temperature, while Υ(2S) melts only
above 1.19Tc and the ground state even survives up to 1.66Tc, the highest
temperature used in that study. The positions of the bound state peaks shift
significantly to lower masses with increasing temperature. In contrast to [16]
this is observed for charmonium and bottomonium.

2.3.3 Perturbative spectral function

As seen in the previous section, estimating a spectral function works best as a
combined effort of different ansätze. For the potential model studies, LQCD
and perturbation theory have been employed and the same combination can
be done for MEM, if a perturbatively motivated default model is chosen. In
this work, we will further explore how LQCD and perturbation theory can be
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combined to gain insight into spectral functions. A major goal is to compare
lattice correlators to a perturbative spectral function as done in [37, 38]. In
this section, the perturbative spectral functions for vector and pseudoscalar
channel will be given. Note that the expression "perturbative" in this case
means a combination of perturbative and pNRQCD calculations, valid for
different energy regimes. The basic idea how to construct these spectral
functions is given in [39]. The matching procedure between the different
energy regimes is presented in [37].

For energies well above the threshold, the spectral function can be de-
scribed by ultraviolet asymptotics, which is perturbatively known up to 5-
loop order, see [37, 40]. The spectral function can be written as

ρvacii = Ncω
2

4π Rcii(ω2), (2.33)

in the vector channel and

ρvacPS = M2Ncω
2

8π RcPS,M (ω2), (2.34)

in the pseudoscalar channel, where we need the factor M2 to be consistent
with our definition of the correlator (2.18). We normalized the correlator with
M2 to take care of the anomalous dimension and to get a finite correlator
after renormalization.

It is convenient to rewrite expression (2.34) in terms of the MS massm(µ̄)
instead of the pole mass M , which means leaving the on-shell scheme. This
changes the coefficients in RcPS , so that there are two versions, RcPS,M and
RcPS,m. As a reference scale, we choose µ̄ = max(ω, πT ).

With

l = ln
(
µ̄2

ω2

)
, (2.35)

Rc is given by

RcPS,ii(ω2) =r0,0 + r1,0αs + (r2,0 + r2,1l)α2
s

+
(
r3,0 + r3,1l + r3,2l

2
)
α3
s

+
(
r4,0 + r4,1l + r4,2l

2 + r4,3l
3
)
α4
s +O

(
α5
s

)
. (2.36)

The coefficients ri,j are given in [37] for the pseudoscalar spectral function
and in [40] for the vector channel. Since this expression is given in terms of
the MS mass, it must be related to the pole mass. Therefore, one makes use
of the different Rc:

M2 = m2(µ̄)R
m
c

RMc
. (2.37)
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Figure 2.7: Perturbative spectral functions for charmonium and bottomonium in
the vector and pseudoscalar channel.

For energies around the threshold, thermal effects arise and the physics
can no longer be treated strictly perturbatively, since a perturbative ex-
pression is only available up to NLO. Instead we treat the system non-
relativistically and apply pNRQCD. In the non-relativistic limit, pseudoscalar
and vector channel are related via

ρNRQCD
PS = M2

3 ρNRQCD
ii . (2.38)

ρNRQCD
ii has been calculated in [41, 42] in resummed hot QCD by solving

ρNRQCDii (ω) = 1
2
(
1− e−

ω
T

) ∞∫
−∞

dt eiωTC>(t,~0,~0). (2.39)

The Wightman function C> is evaluated using a real-time static potential by
solving (

i∂t −
(

2M + VT (r)− ∇
2
~r

M

))
C>(t, ~r, ~r′) = 0, t 6= 0

C>(0, ~r, ~r′) = 6Ncδ
3(~r − ~r′). (2.40)

The resulting spectral functions is valid for frequencies around the threshold
region. When going to much smaller ω, the expression (2.39) overestimates
the spectral function. An exponential suppression Φ(ω) = θ(2M−ω)e−

|ω−2M|
T

is introduced to overcome this problem.
To combine the NRQCD regime and the vacuum asymptotics, we multiply
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Figure 2.8: Perturbative correlators in the vector channel (top) and pseudoscalar
channel (bottom). The left side shows charmonium, the right side shows bottomo-
nium. The error bands come from varying the mass m(µ̄) by 10% in each direction,
as the main source of systematic uncertainties in the calculation of the perturbative
spectral function is the unclear relation between the MS and the pole mass.

an overall factor Amatch, so that the two expressions connect smoothly at a
matching point ωmatch. We arrive at the final result for the spectral function:

ρpert(ω) = AmatchΦ(ω)ρNRQCD(ω)θ(ωmatch − ω) + ρvacθ(ω − ωmatch).
(2.41)

Examples of these perturbative spectral functions are shown in Fig. 2.7. In-
serted in (2.16) they lead to the correlators in Fig. 2.8.

2.3.4 The Spectral Function at Low Frequencies

At frequencies around zero, a transport contribution arises in the vector chan-
nel due to heavy quark diffusion. In the spectral function, this takes a form
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of a narrow peak, in the correlator it gives an almost constant contribution.
The interest in the transport peak stems from its connection to the heavy
quark diffusion coefficient D, which can be derived by combining linear re-
sponse theory with diffusive motion as done in [43]. As the transport peak
is of great interest to this work, we will present the details on this as well as
some calculations for the transport coefficient D in the next section.

2.4 Transport Peak

2.4.1 Relation to the Heavy Quark Diffusion Coefficient

We follow [43] and start by introducing a small, time-dependend disturbance
Hext to the hamiltonian of the system. The new Hamiltonian then reads

H ′(t) = H +Hext(t). (2.42)

Hext can be described by an external source hext coupling to the observable
O itself:

Hext = −
∫

d~rA(~r)hext(~r, t) with hext = h(~r)eεtΘ(−t), (2.43)

where we chose hext in such a way, that it perturbs the medium and switches
off above t = 0 and thus creates out of equilibrium states. The expectation
value of our observable at t = 0 is no longer zero anymore. The modified
expectation value now reads

〈ψ′|O(~x, t) |ψ′〉 = 〈ψ|U−1(t)O(~x, t)U(t) |ψ〉 (2.44)

with the time evolution operator

U(t) = exp

−i t∫
−∞

dt′Hext(t′)

 . (2.45)

To estimate the effect of the disturbance, we subtract the unperturbed ex-
pectation value 〈ψ|O(~x, t) |ψ〉. Since we only introduced a small disturbance,
it is reasonable to omit non-linear terms, so that the difference between the
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expectation values is given by

δ 〈O(t)〉 = 〈ψ′|O(~x, t) |ψ′〉 − 〈ψ|O(~x, t) |ψ〉

=
t∫

−∞
dt′ 〈ψ|

[
Hext

(
t′
)
, O(~x, t)

]
|ψ〉

= −i
t∫

−∞
dt′
∫

d~x′hext
(
~x′, t′

)
Θ
(
−t′
)
〈
[
O(~x, t), O(~x′, t′)

]
〉

=
t∫

−∞
dt′
∫

d~x′hext
(
~x′, t′

)
Θ
(
−t′
)
〈i
[
O(~x− ~x′, t− t′), O(~0, 0)

]
〉

=
t∫

−∞
dt′
∫

d~x′hext
(
~x′, t′

)
G(~x− ~x′, t− t′)

=
∞∫
−∞

dt′
∫

d~x′hext
(
~x′, t′

)
Θ
(
t− t′

)
G(~x− ~x′, t− t′) (2.46)

We then switch to momentum-frequency-space by making use of the Fourier
decompositions

δ 〈O(t)〉 =
∫

d~k
∫

dωei(~k~r−ωt)δ 〈A(~k, ω)〉 (2.47)

Θ
(
t− t′

)
G(~x− ~x′, t− t′) =

∫
d~k
∫

dωei(~k(~r−~r′)−ω(t−t′))GR(~k, ω) (2.48)

hext(~x′, t′) =
∫

d~p
∫

dαei(~p~r′−αt′)hext(~p, α). (2.49)

With this, we obtain

δ 〈O(~k, ω)〉 = GR(~k, ω)hext(~k, ω). (2.50)

The retarded correlatorGR appearing here, has already been defined in (2.10)
and gives the relation to the spectral function. We now define the suscepti-
bility χ(~k) via the difference of the expectation values at t = 0

δ 〈O(~k, 0)〉 = hext(~k)
∞∫
−∞

dt′e−εt′G(~k, t′)Θ(t′)

= hext(~k)GR(~k, ω = iε)|ε→0+ = hext(~k)χ(~k), (2.51)

so that

χ(~k) =
∫ dω

π

ρ(~k, ω)
ω

. (2.52)
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At t > 0, the difference of the expectation values is given by a Laplace
transform of (2.46):

δ 〈O(~k, z)〉 =
∫ dω

iπ

ρ(~k, ω)
ω(ω − z)hext(

~k) (2.53)

= 1
iz

(
GR(~k, z)
χ(~k)

− 1
)
δ 〈O(~k, t = 0)〉 . (2.54)

Note that, in this last equation, the external field does not appear anymore.
To now derive a connection between the spectral function and transport

coefficients from this, we need another ingredient, which is diffusive motion.
Starting from the diffusion equation

δt 〈O(~r, t)〉 = D∇2 〈O(~r, t)〉 , (2.55)

with the diffusion coefficient D, we Fourier transform in space and Lapace
transform in time and obtain the solution

〈O(~k, z)〉 = i

z − iD~k2
〈A(~k, t = 0)〉 . (2.56)

We can now directly compare this solution and (2.54), which yields

GR(~k, z) = iD~k2

z + iD~k2
χ(~k). (2.57)

Since the retarded correlator is related to the spectral function via (2.11), we
take the imaginary part and additionally substitute z = ω + iε, so that we
finally obtain the connection between the spectral function and the transport
coefficient D:

ρ(~k, ω) = D~k2ω

ω2 +D2~k4
χ(~k) (2.58)

With this we arrive at a Kubo formula [44]

D = 1
χs

lim
ω→0

lim
k→0

ω

k2 ρ(k, ω), (2.59)

where we defined

χs = lim
k→0

χ(k) (2.60)

As already mentioned at the beginning of this chapter, the observables we
are interested in are the heavy quark currents JH , for the transport peak
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especially the vector current Jµ, consisting of J0 and J i. According to [14],
the corresponding spectral functions are related by

ρ00(k, ω) = k2

3ω2 ρ
ii(k, ω). (2.61)

The factor 3 is obtained by summing over the spatial components. If we
insert this in the Kubo relation, we obtain

D = 1
3χs

lim
ω→0

lim
k→0

ρii(k, ω)
ω

. (2.62)

for the spatial component of the vector spectral function. The susceptibility
we obtain from the zero-component of the correlator is the quark number
susceptibility

χq =
1/T∫
0

dτG00(τ) with q = u, d, s. (2.63)

2.4.2 Modelling the Transport Peak

In the previous section we already have established the connection between
the transport peak and the heavy quark diffusion coefficient, but the exact
shape of the low frequency spectral function is still missing. [14] models this
based on Langevin dynamics and Brownian motion.

According to the equipartition theorem, the thermal momentum p of a
heavy quark is of order p ∼

√
MT , where M is the quark mass. From this

follows p� T , meaning that the time scale of heavy quark transport effects
is large enough to apply the Langevin formalism [45]. The momentum of the
heavy quark is then determined by the langevin equation

dpi
dt = ξi(i)− ηpi, (2.64)

where η is the drag coefficient. ξ denotes the noise function that produces
random momentum kicks. Its expectation value

〈ξi(t)ξj(t′)〉 = κδijδ(t− t′) (2.65)

is related to yet another transport coefficient, the heavy quark momentum
diffusion coefficient κ. Comparing with the diffusion equation (2.55) yields
the Einstein relation, which connects the two new transport coefficients η
and κ to the heavy quark diffusion coefficient D via

D = T

ηM
= 2T 2

κ
. (2.66)
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M is the kinetic mass of the heavy quark.
After a small perturbation, the distribution of heavy quarks will equili-

brate again according to

N(~x, t) =
∫

d3~v′P (~x− ~x′, t)N(~x′, 0) (2.67)

N(~k, t) = P (~k, t)N(~k′, 0). (2.68)

P (~x, t) is the probability that a heavy quark moves a distance ~x in a time
t given an initial velocity distribution of 〈~v/3〉 = T/M . With a Gaussian
distributed noise, the Langevin formalism yields that P (~x, t) is Gaussian

P (~x, t) = 1
(2πσ2(t))

3
2

exp
(
− x2

2σ2(t)

)
(2.69)

with a width of

σ2(t) = 2Dt = 2D
η

(
1− e−ηt

)
. (2.70)

Using (2.50) to establish the connection to the retarded correlator and (2.11),
which relates GR to the spectral function, we obtain a Lorentzian shape for
the transport peak [14]

ρtransii (k = 0, ω) = 3χqD
ωη2

ω2 + η2 . (2.71)

2.4.3 Transport Coefficients from Different Methods

The transport coefficient D appearing in the low frequency spectral function
in section 2.3.4 is a quantity of great interest, since it can be used as an input
parameter in simulations to understand heavy ion collisions better. There
have been some attempts to determine D, not only from lattice calculations,
which is one of the goals of this work, but also from transport models, per-
turbative QCD and AdS/CFT [46]. Fig. 2.9 shows an overview of the ranges
for 2πTD obtained with different methods.

Previous quenched lattice studies using MEM [51] provide values of 2πTD ≈
1...3 for temperatures between 1.5 and 3Tc. Note that, in contrast to this
work, [51] does not use continuum extrapolated results.

Another property that is accessible in lattice calculations is the heavy
quark momentum diffusion constant κ, which is connected to D via the Ein-
stein relation D = 2T 2/κ in the non-relativistic limit M � πT . κ can be
obtained from the color-electric correlator [55]

GE(τ) = −1
3

3∑
i=1

〈Re Tr
[
U
(

1
T , τ

)
gEi(τ,~0)U (τ, 0) gEi

(
0,~0
)]
〉

〈Re Tr
[
U
(

1
T , 0

)]
〉

. (2.72)
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LQCD,κlat [Banerjee et al., 2012]
LQCD,κcont [Kaczmarek et al., 2015]
LQCD,κcont [Altenkort et al., 2020]
LQCD,κcont [Brambilla et al., 2020]

Experiment [STAR, 2017]
Experiment [ALICE, 2018]
pQCD,NLO,α ≈ 0.2
AdS/CFT

Figure 2.9: Overview over selected results for the heavy quark diffusion coefficient.
The lattice results based on the heavy quark momentum diffusion coefficient κ are
taken from [47–50], while the MEM result is from [51]. The perturbative NLO cal-
culation can be found in [52] and the AdS/CFT calculation is done in [46]. The LO
perturbative result is not shown, as it deviates significantly from all other calcula-
tions. The experimental values are taken from the ALICE ([53]) and STAR ([54])
collaborations. The figure clearly shows that there are large uncertainties regarding
the value of 2πTD, but most calculations fall in the range between 1 and 9.

Here, gEi are the components of the color-electric field and U(τ1, τ2) is a
Wilson line. GE can be calculated on the lattice. Encoded in this correlator
is the spectral function ρE(ω) and κ is obtained from its low frequency limit

κ

T 3 = lim
ω→0

2ρE(ω)
ωT 2 . (2.73)

[47] finds κ/T 3 to be 2.5(4) at 1.4Tc, which corresponds to 2πTD ≈ 5, while
[56] quotes κ/T 3 ≈ 1.8..3.4 leading to 2πTD ≈ 3.7..6.9. These are the first
available continuum estimates of κ/T 3. A newer study [48] using gradient
flow methods obtains κ/T 3 ≈ 2.31..3.70 (2πTD ≈ 3.39..5.44) at a tempera-
ture of 1.5Tc. [49] studies a broad range of temperatures (from 1.1 to 104Tc)
and finds κ/T 3 to be decreasing with increasing temperature. For the temper-
atures that are relevant to our work, the results range from κ/T 3 = 1.91..5.4
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at 1.1Tc over κ/T 3 = 1.31..3.64 for 1.5Tc to κ/T 3 = 0.63− 2.20 at 3Tc. This
leads to 2πTD = 2.33..6.58, 2πTD = 3.45..9.59 and 2πTD = 5.71..19.94
correspondingly. Other studies with a similar method but on fine lattices
instead of continuum data [50] lead to 2πTD ≈ 4..10 with no clearly seen
temperature dependence. All studies on κ are carried out in the heavy quark
mass limit. To compare to results obtained with physical masses, corrections
of order O(T/M) need to be included [57].

Perturbation theory finds 2πTD ≈ 70 for αs ≈ 0.2 at leading order [58]
and 2πTD ≈ 8 at next-to-leading order [52], but as [52] suggests, convergence
might be poor. AdS/CFT calculations in the strong coupling limit hint to
lower values for the diffusion constant. [46, 59] obtain values around 1.

A direct experimental measurement of the heavy quark diffusion coeffi-
cient is not possible. To obtain experimental results, a comparison to trans-
port models is needed, where the parameter of interest is tuned or fitted to
match experimental observables like the elliptic flow. With this procedure,
experiments estimate the heavy quark diffusion coefficient close to the criti-
cal temperature to be around 2πTD ≈ 1.5..7 (ALICE collaboration, [53]) or
2πTD ≈ 2..12 (STAR collaboration, [54]).

So far, there are large uncertainties regarding the value of 2πTD and most
methods give an idea of the region in which we can expect the heavy quark
diffusion coefficient to be rather than a reliable value. Since most estimates
give 2πTD < 10, we later compare our data to examples in this range.

The calculation that deviates significantly from the others is the pertur-
bative one and as it is already mentioned, the result might not be reliable
due to poor convergence. Perturbation theory can thus not provide an exact
shape of the transport peak. A better way to treat the transport contribution
perturbatively might be to apply unresummed perturbation theory which can
provide an estimate of the constant part of the transport contribution. These
constant contributions are calculated up to NLO in [60] together with an es-
timate for the quark number susceptibility (see next section). The leading
order contribution is given by

GLOii (τ)
∣∣∣∣
const

= −4CA
∫
p

(
1− M2

E2
p

)
Tn′F (Ep), (2.74)

where n′F denotes the derivative of the Fermi distribution, CA = Nc = 3 and
Ep =

√
p2 +M2. At NLO the constant contribution reads

GNLOii (τ)
∣∣∣∣
const

4g2CACF
=
∫
p
Tn′F (Ep)

∫
k

(
−3
E2
p

nB(εk)
εk

+nF (Ek)
Ek

(
−3
E2
p

− M2

E2
pE

2
k

+ M2(4E2
k −M2)

2pkE2
pE

2
k

ln
(∣∣∣∣p+ k

p− k

∣∣∣∣)
))

(2.75)
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Charmonium Charmonium
T/Tc χq/T

2 Gpert.constii /T 3 χq/T
2 Gpert.constii /T 3

1.1 0.247 0.125 0.809e-04 0.155e-04
1.3 0.324 0.176 0.348e-03 0.746e-04
1.5 0.416 0.245 0.146e-02 0.354e-03
2.25 0.637 0.444 0.229e-01 0.757e-02

Table 2.3: The perturbative estimates for the quark number susceptibility and the
constant part of the transport contribution from [60]. The values are also quoted
here: [61]

with the group theory factor CF = (N2
c −1)/(2Nc), the Bose distribution nB

and εk = |~k|. The results for the perturbative transport contribution and the
quark number susceptibility at the four temperatures relevant to this work
are given in tab. 2.3. [60] also provides a comparison to lattice data from [25]
and concludes that there is hope to resolve the transport peak with lattice
methods if 2πTD ≈ 1 − 2 and the statistical errors of the data are small
enough. If the heavy quark diffusion coefficient is higher, the task becomes
more challenging.

29



CHAPTER 2. HEAVY QUARKONIUM CORRELATORS AND
SPECTRAL FUNCTIONS

30



Chapter 3

Lattice QCD - A Method To
Obtain Correlators

QCD describes one of the fundamental interactions in nature, namely the
strong interaction of quarks and gluons, and is thus an interesting field of
research. To gain insight, we would have to solve the equations of motion
from the Yang-Mills lagrangian

L = ψ̄(x)(iγµDµ −m)ψ(x)− 1
4F

i
µν(x)Fµν,i(x), (3.1)

where ψ is the vector of spinor fields, Dµ the covariant dericative, γµ the
Dirac matrices and F iµν the components of the field strength tensor with
color index i, which can be written as

F iµν(x) = ∂µA
i
ν(x)− ∂νAiµ(x)− gfijkAjµ(x)Akν(x). (3.2)

Here, the fijk are the structure constants, g is the bare coupling constant
and Aiµ are the gauge fields.

As there are too many degrees of freedom in (3.1), an analytical solution
is impossible. Instead we make use of statistical mechanics and calculate
expectation values of different observables in the path integral formalism.
For this, it is necessary to switch from Minkowski to Euclidean space via a
Wick rotation, where we replace real with imaginary time τ = −it. We then
define the Euclidean action

SE(ψ, ψ̄, U) =
β∫

0

dτ
∫

d~x
(
ψ̄(x)(γµDµ +m)ψ(x) + 1

4F
i
µνF

µν,i
)
, (3.3)

where β denotes the inverse of the temperature and U are the link variables
related to the gauge fields A as explained in section 3.1.1. With the path
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integral measure Dφ for generalized fields φ = ψψ̄, U , the expectation value
of any operator O can now be expressed as

〈O〉 = 1
Z

∫
DψDψ̄DUOe−SE(ψ,ψ̄,U) (3.4)

where

Z(β) =
∫
DψDψ̄DUe−SE(ψ,ψ̄,U) (3.5)

is the partition partition function. The partition function alone can not be
computed by current methods, but the whole expression (3.4) is accessible
with Monte-Carlo techniques. This gives the basis to the field of Lattice
QCD, which has proven to be a useful tool to gain insight into physics that
is unreachable by perturbative calculations or any other approaches. In our
case, the observable of interest are the correlators described previously. This
chapter is dedicated to give an introduction on the method of LQCD and is
based on [17]. We will also provide information on the lattices used in this
work and present our method to get from lattices to continuum data.

3.1 Discretization

To evaluate (3.4) with numerical methods, we need to discretize space-time
so that the path integral has finite dimenson. In lattice QCD, this is done
by introducing a finite lattice spacing a to build a four dimensional lattice as
shown in Fig. 3.1. The points n are called sites and correspond to fermions,
while the links U connecting them represent gluons. The continuous x is
now replaced with an and the Euclidean time is given by τ = anτ . Usu-
ally all spatial extents Nσ are chosen to be equal, so that the volume of the
lattice is given by V = (aNσ)3. In our work, a quite large number of data
points is needed for reconstruction methods and we choose spatial extents
of Nσ = 96, 120, 144, 192. Meanwhile the temporal extent is linked to the
temperature via T = 1/aNτ . For each spatial extent Nσ we investigated four
or five different Nτ , chosen in such a way that the temperatures are approx-
imately 0.75, 1.1, 1.3, 1.5 and 2.25Tc. More information on these lattices is
summarized in tab. 3.1.

When discretizing (3.4), we interchange the integrals by sums
∫
d4x →∑

n a
4 and derivatives by difference quotients ∂µφ→ φ(na+µ̂)−φ(na−µ̂)

2a , where
µ̂ denotes a unit vector in µ direction.

For the further discussion we split the action into two parts: The fermionic
part SF and the gauge part SG.
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Uµ(n)

U †µ(n+ µ̂+ ν̂)

Uν(n+ µ̂)U †ν (n+ ν̂)

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Figure 3.1: Picture of a lattice in two dimensions. The points n are the sites
where fermion fields ψ are evaluated, while the links U between them are gluons.
The product of the four links is called plaquette.

3.1.1 Gauge action

For the gauge action we only need the links

Uµ(n) = eigaAµ(n). (3.6)

These belong to the SU(3) group and fulfill

U−µ(n) = U †µ(n− µ̂). (3.7)

However, these links are not invariant under gauge transformations ψ(n) →
ψ′(n) = Ω(n)ψ(n), ψ̄(n)→ ψ̄′(n) = ψ̄(n)Ω(n)† as in general

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)′ 6= Uµ(n). (3.8)

But still, the links can be used to construct a gauge invariant object. We
define the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (3.9)

as a product of link variables shown in Fig. 3.1. As the plaquette describes
a closed loop, the Ω in (3.8) cancel each other. The Wilson gauge action can
then be expressed through plaquettes:

SG(U) = 6
g2
∑
n

∑
µ<ν

(
I− 1

3Re tr (Uµν(n))
)
. (3.10)
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To take the continuum limit a→ 0, we apply the Baker-Campbell-Hausdorff
formula to the plaquette

Uµν = exp(iaAµ(n) + iaAnu(n+ µ̂)− a2

2 [Aµ(n), Aν(n+ µ̂)])

− iaAµ(n+ ν̂)− iaAν(n)− a2

2 [Aµ(n+ ν̂), Aν(n)]

+ a2

2 [Aν(n+ µ̂), Aµ(n+ ν̂)] + a2

2 [Aµ(n), Aν(n)]

+ a2

2 [Aµ(n), Aµ(n+ ν̂)] + a2

2 [Aν(n+ µ̂), Aν(n)] +O(a3) (3.11)

and Taylor expand the fields

Aν(n+ µ) = Aν(n) + a∂µAν(n) +O(a2). (3.12)

With this, we arrive at the Yang-Mills action

SG[U ] = 6
g2
∑
n

∑
µ<ν

Re(tr(1− Uµν(n)))

= 3a4

2g2
∑
n

∑
µ<ν

tr(Fµν(n)2) +O(a2)

a→0−−−→ 1
2

∫
V
d3x

∫ 1
T

0
dτ tr(Fµν(n)Fµν(n)) +O(g2) (3.13)

and have thus shown that the Wilson gauge action produces the correct
continuum result.

3.1.2 Fermionic action

By applying the changes mentioned above, a naive discretization of SF for
the case of free fermions reads

SF = a4∑
n

ψ̄(n)

 3∑
µ=0

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a +mψ(n)

 (3.14)

In the following, we change the notation to get rid of the factor a by rescaling
the fields with a 3

2ψ(an) 7→ ψ(n) and the mass with am 7→ m. To switch on
interactions, we have to include the links (3.6):

SF =
∑
n

ψ̄(n)

 3∑
µ=0

γµ
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

2 +mψ(n)


(3.15)
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However, the naive discretization in (3.14) leads to a problem. In mo-
mentum space

ψ̄(p) = 1√
V

∑
n

e−ipnψ̄(n); ψ(p) = 1√
V

∑
n

eipnψ(n)

with pµ = 2π
Nµ

kµ, kµ ∈ {
−Nµ

2 + 1, ..., Nµ

2 } (3.16)

the above formulation of the free fermion action leads to

S =
∑
p

ψ̄

(
i
∑
µ

γµ sin(pµ) +m

)
ψ(p) = ψ̄Mψ (3.17)

The fermion matrix M appearing here is the inverse of the free fermion
propagator

G(p) = M−1 ∝
m− i

a

∑
µ γµ sin(pµa)

m2 + a−2∑
µ sin(pµa)2 (3.18)

In the limit a→ 0, this has 16 poles, where only one is the physically correct
one and the other 15 are so-called doublers, additional unwanted particles.
There are several methods to circumvent this problem, each with different
advantages and disadvantages. The most prominent solutions are Wilson
fermions [62], Ginsparg-Wilson fermions [63] and highly improved staggered
quarks (HISQ, [64]). While the Ginsparg-Wilson method is the theoretically
superior of the aforementioned, it comes with high computational costs and is
thus not applicable to this work, where we need an extremely large number of
lattice points. HISQ fermions are less computationally intensive and do not
fully break chiral symmetry but at the price of introducing a new so called
taste component to the spinor and having to control for the unphysical mixing
of such tastes. Wilson fermions on the other hand break chiral symmetry,
but have the advantage of low computational cost and theoretical simplicity.
In this work, we thus choose clover-improved Wilson fermions explained in
the following section.

3.1.3 Clover-improved Wilson fermions

The idea of Wilson in [62] was to add an extra mass term in the action that
shifts the doublers to heavier masses. This term depends on the cut-off, so
that it vanishes in the continuum limit. After rescaling the quark fields with√
m+ 4ψ(n) 7→ ψ(n), the new action reads

SF = a4∑
x,µ

(
ψ̄xψx − κ

(
ψ̄x(r − γµ)Ux,µψn+aµ̂ + ψ̄x(r + γµ)Ux,µψx−aµ̂

))
(3.19)
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with the newly introduced hopping parameter

κ = 1
2am+ 8 . (3.20)

The discretization error of this action is of order a. A significant improvement
can be made by adding yet another term [65]

Sclover = cswa
5 ∑
n∈Λ

∑
µ<ν

ψ(n)1
2σµνF̂µν(n)ψ(n). (3.21)

On the lattice, the field strength tensor takes the form of

F̂µν(n) = −i
8a2 (Qµν(n)−Qνµ) , (3.22)

where the Qµν(n) are sums over plaquettes in the µ − ν-plane around a
point n. Their shape of a four leave clover gives the name to this clover-
improvement. In the quenched approximation used in this work, the appear-
ing Sheikholeslami-Wohlert coefficients are determined non-perturbatively
and can be interpolated using [66]

csw = 1− 0.656g2
0 − 0.512g4

0 − 0.054g6
0

1− 0.922g2
0

, (3.23)

which is valid in the range of 0 ≤ g0 ≤ 1.
While Wilson fermions bring the advantage of theoretical simplicity and

low computational cost, they come with the disadvantage of symmetry break-
ing, especially chiral symmetry. But since in this work we need large lattices
rather than chiral symmetries as we study heavy quarks, clover-improvedWil-
son fermions are a good choice. To realize the large and fine lattices needed
for reconstructing spectral functions, we also perform our calculations in the
quenched approximation, where we omit sea quarks.

3.2 Scale setting
In order to connect our dimensionless observables Γlat to meaningful physical
quantities Γ, we need a scale in units of GeV so that Γ = a−dΓlat, where d
is the dimension of the operator. The lattice spacing a can be determined
from the coupling β = 6/g2 via some considerations on the continuum ex-
trapolation. On the one hand, the coupling has to depend on a, but on the
other, the continuum limit has to be independent. These conditions make
the renormalization group equation

a
d
daΓ =

(
a
∂

∂a
− β(g) ∂

∂g

)
Γ = 0. (3.24)
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Note that β(g) is not β = 6/g2, but the so called β-function given by

β(g) = −adg
da (3.25)

and thus relates a to the coupling. For small enough a, a perturbative solu-
tion is possible, but still leaves an undefined integration constant. Thus we
instead make use of a non-perturbative scale setting. The basic idea there
is to measure lattice observables whose physical values are known from ex-
periments (e.g. masses, decay constants) and then find a relation. Several of
these methods exist. We choose the Sommer scale [67] that works with the
static quark potential

V (r) = A+ B

r
+ σr. (3.26)

At the Sommer scale r0 the slope of this potential is given by

r2dV (r)
dr

∣∣∣∣
r=r0

= B + σr2
0 = 1.65. (3.27)

By determining r0 from the lattice data for the potential, a direct relation to
a physical value is obtained. This relation has been interpolated for different
quenched lattices, leading to [68, 69]

ln
(
r0
a

)
=
[
β

12b0
+ b1

2b20
ln
(6b0
β

)] 1 + c1/β + c2/β2

1 + c3/β + c4/β2 (3.28)

with the coefficients b0 = 11
(4π)2 , b1 = 102

(4π)2 , c1 = −8.9664, c2 = 19.21,
c3 = −5.25217 and c4 = 0.606828.

To connect to physical units, we need a value for r0. With r0 = 0.469(7)fm
[70] we obtain the lattice spacings in tab. 3.1.

3.3 Lattice Setup
To realize the large number of data points needed for different spectral re-
construction methods, we used the quenched approximation with Clover-
improved Wilson fermions. We generated lattices with four different spacings
and spatial extents from Nσ = 96 to Nσ = 192. After a thermalization time
of 6000 sweeps the configurations are separated by 500 sweeps in the Markov
chain, where each sweep consists of four overrelaxations and one heatbath
update. The statistics of these lattices are given in tab. 3.1 together with the
lattice spacing a. As the table shows, our lattices are very fine. The temporal
extents from Nτ = 16 to Nτ = 96 correspond to five different temperatures
T ≈ 0.75, 1.1, 1.3, 1.5 and 2.25Tc. The differences in the temperatures origi-
nate from uncertainties in the scale and have to be accounted for later (see
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β r0/a a[fm](a−1[GeV]) Nσ Nτ T/Tc # confs

7.192

48 0.74 237
32 1.12 476

26.6 0.018(11.19) 96 28 1.27 336
24 1.49 336
16 2.23 237

7.394 33.8 0.014(14.24) 120

60 0.76 171
40 1.13 141
30 1.51 247
20 2.27 226
72 0.75 221
48 1.13 462

7.544 40.4 0.012(17.01) 144 42 1.29 660
36 1.51 288
24 2.26 237
96 0.76 224
64 1.13 291

7.793 54.1 0.009(22.78) 192 56 1.30 291
48 1.51 348
32 2.27 235

Table 3.1: The four different N3
σ × Nτ lattices used for the continuum extrap-

olation. The lattice spacing a stems from Wilson-loop expectation values with
r0 = 0.469(7)fm [70]. With the relation r0Tc=0.7457(45) from [68], we obtain the
temperature in units of Tc. On each lattice, the correlators for five to six different
κ-values have been measured, see tab. 3.2.

section 3.6). On each of the lattice spacings, we examined up to six κ values
corresponding to vector meson masses in the region of the J/ψ and Υ mass.
The masses are measured with the many-state-fit method described in [71]
and shown in tab. 3.2 and Fig. 3.2. As it can be seen, the masses of the
different lattices do not exactly match each other nor the physical masses. A
major task described in section 3.6 will thus be to interpolate the correlators
between different κ values.

In contrast to other works, we will not work directly on the correlators
calculated on these lattices, but with continuum extrapolated results. For
the extrapolation we closely follow the procedure in [71], which is an update
of the method presented in [72]. We start with the renormalization of the
lattices (section 3.5), then interpolate between different masses to obtain the
correlators at the physical J/ψ and Υ masses (section 3.6) and in the end
extrapolate to the continuum using a spline interpolation (section 3.7).
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β κ mV [GeV] β κ mV [GeV]

7.192

0.13194 3.21(1) 0.132008 3.38(2)
0.1315 3.59(1) 0.1315 3.94(2)
0.131 4.01(1) 7.394 0.131 4.47(2)
0.13 4.81(1) 0.129 6.50(2)
0.128 6.34(1) 0.124772 10.04(1)
0.12257 10.11(1)

7.544

0.13236 3.06(2)

7.793

0.13221 3.37(1)
0.1322 3.28(1) 0.13209 3.59(1)
0.1318 3.82(2) 0.13181 4.11(1)
0.131 4.86(2) 0.13125 5.11(1)
0.1295 6.70(2) 0.13019 6.92(1)
0.12641 10.23(2) 0.12798 10.42(1)

Table 3.2: κ-values and the corresponding vector meson masses mV for each lat-
tice. The results for mV are determined using many-state fits to spatial correlators
at 0.75Tc. From this table it can already be seen that the measured masses are
distributed around the J/ψ and Υ masses but do not exactly match one of them.

0.1225 0.1250 0.1275 0.1300 0.1325
2

4

6

8

10

J/ψ

Υ

κ

mV [GeV]

7.192
7.394
7.544
7.793

Figure 3.2: The vector meson masses for different values of κ. The dashed lines
represent the physical masses of J/ψ and Υ. It can be seen that the measured masses
are close to the physical masses, but do not exactly match. To overcome this, we
interpolated the correlators between the different masses as shown in Fig. 3.3.
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3.4 Analysis of Statistical Errors

Our lattices consist of several configurations that are generated using Markov
chains. As each of these configurations are based on the previous one, they
are not independent but correlated. To reduce correlations, we skip some of
the configurations in between but not enough to assume uncorrelated data.
Thus, we can not rely on the standard deviation as it would underestimate
the statistical error. To still be able to perform an an error analysis, we make
use of the bootstrap method.

Bootstrapping relies on randomly chosen samples. Given a data set of
size N for an observable O, we construct M different samples of size N by
randomly drawing data points from our set. Some points will be drawn more
than one time, others not at all. The observable of interest is now calculated
on every sample, leading to M different values Om. The expectation value Õ
is then given by the average of the Om and its error is given by the standard
deviation

σO =

√√√√ 1
M

M∑
m=1

(Om − Õ)2. (3.29)

To get an estimate on the statistical errors, the whole continuum extrap-
olation is carried out on bootstrap samples. The further investigation of our
data in the following chapters is also done on bootstrap samples. Only in the
end we average to get our final result.

As for our observables (meson correlators) the neighbouring lattice points
are correlated on each configuration, the final correlators will also show cor-
relations. Again, bootstrapping can be applied to resolve this. For some
methods, especially for MEM, a covariance matrix

Cij = 1
N(N − 1)

N∑
k=1

(yi,k − ȳi) (yj,k − ȳj) (3.30)

is required to account for these cross-correlations. Unfortunately, the boot-
strap required for the continuum extrapolation destroys the covariance ma-
trix. While the diagonal elements Cii associated with the error ∆Gi remain
reliable, the off-diagonal elements suffer from numerical errors. Instead of
the continuum covariance matrix we thus use the covariance matrix from the
finest lattice and rescale it to the continuum limit via

Cresij = C latij

√√√√∆Gconti ∆Gcontj

∆Glati ∆Glatj
. (3.31)
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3.5 Renormalization
Befor going towards the continuum limit, we have to consider that the dis-
cretization acts as a regulator and thus renormalization is needed. Currents
of the form

JH(τ, ~x) = ψ̄(τ, ~x)ΓHψ(τ, ~x) (3.32)
are renormalized as

JrenH = 2κZHJH (3.33)
with the renormalization constants ZH that can either be calculated pertur-
batively or, in the case of vector and axial vector channel, non-perturbatively.
The perturbative renormalization constants are available up to two-loop or-
der [73].

3.5.1 Non-perturbative Renormalization Constants and Renor-
malization Independent Ratios

For the vector channel the renormalization constants have been calculated
non-perturbatively and interpolated in [74].

Zm=0
V (g2) = 1− 0.7663g2 + 0.0488g4

1− 0.6369g2 . (3.34)

To include the mass dependence in the renormalization prescription, the mass
correction was interpolated with

bV (g2) = 1− 0.6518g2 − 0.1226g4

1− 0.8467g2 . (3.35)

The massive renormalization constants are then given by

ZmassiveV (g2, κ) = Zm=0
V (g2)

(
1 + bV (g2)amq

)
. (3.36)

This is valid for 6 ≤ β ≤ 24, so the lattices used in this work lie within this
range. (3.36) is only valid for small amq. The renormalization constants are
given in the appendix.

In this work, we use non-perturbative renormalization constants for the
continuum extrapolation of the quark number susceptibility. As a test we
also extrapolate the spatial vector correlator with these constants, but for
continuum results that are used in the rest of this work, we apply another
method. Since G00 and Gii are renormalized in the same way, we build a
renormalization independent ratio of the correlator and χ′q at a fixed temper-
ature T ′ = 2.25Tc, where this quantity is believed to be most reliable. Since
we are also interested in the χq at other temperatures, we also extrapolate the
ratios χqT ′2/χ′qT 2. In this way, some results can already be obtained with-
out ever using the renormalization constants and thus we avoid additional
uncertainties.
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3.5.2 Perturbative Renormalization Constants

Unfortunately the non-perturbative formula does not work in the pseudoscalar
case, so that a perturbative calculation is needed. For clover-improved Wil-
son fermions at vanishing mass, the one-loop renormalization constants are
given by [75]

ZH = 1− g2

16π2CF (γO ln(aµ) +BO), (3.37)

where γO is the anomalous dimension, BO the finite part of the renormaliza-
tion constant and CF = 4

3 . γO and BO are given in [76].
When comparing perturbatively and non-perturbatively calculated renormal-
ization constants in the vector channel, where both versions exist, huge dif-
ferences are found. To improve the perturbative calculation, the tadpole
formulation is introduced. With u0 being the fourth root of the plaquette
expectation value it reads [77]

ZH = u0(g2)
(

1− g2
P

16π2CF (γO ln(aµ) +BO − π2)
)
. (3.38)

u0 is given in the appendix. The tadpole-improved coupling gP is often
replaced by gMS. This coupling is derived from the coupling in the potential
scheme, gV , given by [76]

− ln(u4
0) = CF g

2
V (µ?)
4

(
1− g2

V (µ?)
4π

(
11Nc

12π ln
(6.7117

µ?a

)2
))

+O(g6
V (µ?)).

(3.39)

Choosing the scale to be µ? = 3.4018
a gives the best matching. Together with

the relation ΛMS = 0.6252ΛV and

g−2(a) = 2β0 ln
( 1
aΛ

)
+ β1
β0

ln
(

2 ln
( 1
aΛ

))
, (3.40)

where β0 and β1 are renormalization independent constants, gV is used to
evaluate the coupling in the MS scheme.

In two-loop order, the renormalization constants can be written as

ZbareH (g2, aµ) = 1 + g2

16π2 (−γO ln(aµ) + z1) +
(

g2

16π2

)2

(l1 ln(aµ)2 + l2 ln(aµ) + z2)

(3.41)

with the coefficients l1, l2, z1, z2 from [78, 79]. To introduce tadpole improve-
ment to this expression, the plaquette expectation value needs to be expanded
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in g.

u0 = 1 + r1
g2

16π2 + r2

(
g2

16π2

)2

+O
(
g6
)

(3.42)

= 1 + r1
g2
LAT

16π2 + /r2 − 16π2r1p1)
(
g2
LAT

16π2

)2

+O(g6
LAT ). (3.43)

Inserting this into (3.41) leads to the final expression for the two-loop tadpole-
improved renormalization constants for Clover-improved Wilson fermions
[77].

ZH(g2
LAT , aµ) = u0(1 + g2

LAT

16π2 (−γO ln(aµ) + z1 + CFπ
2)

+
(
g2
LAT

16π2

)2

(l1 ln(aµ)2 + (l2 + 16π2p1γO) + r1γO ln(aµ))

+ z2 − r2 − 16π2p1(z1 − r1) + r2
1 − r1z1) +O(g6

LAT )).
(3.44)

In the vector channel, the one-loop perturbative renormalization constants
are in good agreement with the non-perturbative constants that are believed
to be more reliable. The two-loop renormalization constants differ and can
be used to estimate one source of systematic errors.

In the pseudoscalar channel, we need to include an additional factor Z5
in the renormalization to get the same anomalous dimension as the scalar
density. According to [80] this factor is given by

Z5 = 1− g2CF
2π2 + g4CF

128π4
Nc + 2Nf

9 +O
(
g6
)

(3.45)

3.6 Mass Interpolation
As Fig. 3.2 shows, the measured vector meson masses do not directly match
the physical J/ψ and Υ masses. Also, the temperatures in tab. 3.1 are close
but not exactly the same. After the renormalization, we thus need to ensure
that the correlators from the different lattices show physics at the same mass
and temperatures. Therefore, we interpolate the results from different values
of κ in the vector meson mass to the physical J/ψ and Υ masses by fitting
every point in τT to a quadratic exponential ansatz

Gii
(
τT,

mqq̄
T

)
T ′2

T 3χq
= exp

(
p

(
mqq̄

T

)2
+ q

mqq̄

T
+ r

)
. (3.46)

with the three fit parameters p, q and r. As the three examples on the right
of Fig. 3.3 show, this ansatz describes the data reasonably well. A linear
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Figure 3.3: The correlators for different values of κ on a 1443 × 48 lattice (left).
For each point in τT , we interpolate with a quadratic exponential ansatz in the mass
to arrive at the interpolated correlator (black) that is then used for the continuum
extrapolation. For the three distances marked with the dashed lines, the interpo-
lation to the physical J/ψ mass is shown in detail (right). As it is seen there, the
ansatz (3.46) matches the data well.

function in the exponential was also tried and even though the results were
similar, the quadratic exponential matches the data points better in some
cases. We fit the four correlators with the masses closes to J/ψ and Υ
respectively and obtain a mass interpolated correlator (like the one depicted
with black dots in Fig. 3.3) for every lattice size and temperature. These are
the basis for the following extrapolation.

3.7 Continuum Extrapolation
In a next step we need to interpolate between the distances in τT and ex-
trapolate to the continuum. In an improved version of the algorithm in [72],
these two steps are combined [71]. To perform the interpolation we make use
of splines given by [81]

p(x) =
d∑

n=0
an(x− x0)n +

n∑
k=0

ck(x− xk)d+, (3.47)

where

(x)+ =
{

0 x ≤ 0
x x > 0 . (3.48)

The coefficients an and cn are obtained by fitting the spline to the correla-
tor. Instead of extrapolating the interpolated correlator, we extrapolate the
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Figure 3.4: Continuum extrapolation of the mass-interpolated correlators from
different lattices to the continuum (grey). The coarser lattices are interpolated with
a spline and the spline coefficients are extrapolated and then used to build the
continuum correlator.

spline coefficients with an ansatz quadratic in the lattice spacing, which is
an acceleration and an improvement compared to the algorithm presented
in [72]. Fig. 3.4 shows an example of the extrapolation of four different
mass-interpolated correlators to the continuum.

This is the final step on the way from the lattice data in 3.3 to the contin-
uum correlators that will be analyzed in the following chapters of this thesis.
The whole procedure consists of renormalization, mass interpolation and the
combined step of b-spline interpolation and continuum extrapolation, where
each of these steps is performed on the individual bootstrap samples, which
are later averaged to give a final result. Fig. 3.5 summarizes the method,
which is the basis for every analysis in the following chapters. Though this
method has been used for quenched lattices in this work, it could easily be
extended to full QCD.
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Lattice Correlators
(Section 3.3)

Building Bootstrap samples
(Section 3.4)

Renormalization
(Section 3.5)

Mass Interpolation
(Section 3.6)

B-Splines & Continuum Extrapolation
(Section 3.7)

Further Analysis &
Averaging over Bootstrap samples

Figure 3.5: The method to obtain continuum correlators.
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Chapter 4

Heavy Quarkonium
Correlators and Their
Comparison to a
Perturbative Spectral
Function

From the lattices described in the previous chapter, we obtain the continuum
correlators in Figs. 4.1,4.2. Fig. 4.1 shows charmonium and bottomonium
in the pseudoscalar channel at five different temperatures, one below the
critical temperature (0.75Tc) and four above (1.1,1.3,1.5 and 2.25Tc). For
both quarkonia, the correlators show only little temperature dependence and
have a very similar shape at all T . Within the statistical errors obtained
from the bootstrap analysis (see section 3.4), they overlap.

The vector correlators in Fig. 4.2 are normalized with the quark number
susceptibility at a reference temperature of T ′ = 2.25Tc. A more detailled
explanation regarding χq is provided in section 4.2. In contrast to the pseu-
doscalar correlators, the vector channel exhibits a clear temperature depen-
dence, especially for charmonium. While the correlators agree at small τ ,
the deviations grow when going to higher τ , with smaller temperatures rising
more steeply.

We can already draw some first conclusions regarding the different parts of
the spectral function described in chapter 2.3. Reminder: As seen in Fig. 2.2,
the low frequency spectral function corresponding to the transport peak (see
section 2.4) has a higher influence at high τ , while high frequencies describing
the ultraviolet asymptotics (see section 2.3.3) dominate the correlator at
small τ .

In the pseudoscalar channel the temperature dependence is much smaller
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than in the vector channel. Since the main difference between these channels
is the appearance of the transport peak, this could be an indication that a lot
of the temperature dependence originates from this peak. The fact that the
deviations between correlators grow with τ , just as the influence of the trans-
port peak, seconds this. In contrast, the ultraviolet asymptotic part of the
spectral function, mostly dominant in the small τ regime, does not seem to
undergo significant changes when increasing the temperature. Compared to
bottomonium, charmonium correlators in the vector channel show a stronger
temperature dependence around the midpoint. This is not the case in the
pseudoscalar channel. Thus this might be a first hint that charmonium’s
transport contribution is higher and more temperature dependent.
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Figure 4.1: The continuum extrapolated charmonium (left) and bottomonium
(right) correlators at different temperatures in the pseudoscalar channel.

A first look at Fig. 4.1 and Fig. 2.8 reveals a qualitatively good agreement
between the shape of our lattice correlators and the correlators calculated
from a perturbative spectral function presented in section 2.3.3. To find a
more quantitative description, systematical uncertainties need to be adressed.
We identified two major sources of possible errors.

On the lattice side, the renormalization constants used in the continuum
extrapolation (see section 3.5) might be off. We accounted for this by intro-
ducing an overall normalization factor A to our spectral function.

On the perturbative side, uncertainties stem from the unclear relation
between the pole mass and the MS mass used in the calculation of the per-
turbative spectral function. Thus, the spectral function might be shifted in
the mass. To account for this, we introduced a mass shift B.

With these two corrections, we obtain a model spectral function

ρmod = Aρpert(ω −B) (4.1)
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Figure 4.2: The continuum extrapolated charmonium (left) and bottomonium
(right) correlators at different temperatures in the vector channel. As normalization
we chose the quark number susceptibility at a temperature of T ′ = 2.25Tc.

leading to the model correlator

Gmod(τT ) =
∞∫
0

dω
π
Aρpert(ω −B)K(ω, τ) (4.2)

A and B can now be determined by a fit of this correlator to our lattice data.
The result can be used as an estimate for the agreement between perturbative
description and lattice correlators. If A is close to 1 and B is around 0, our
systematic uncertainties are small and our model is suited to describe the
correlators.

We will apply this method to pseudoscalar and vector correlators. For the
first channel, this is relatively straightforward, while the rise of the transport
peak in the latter requires some more steps in the analysis. In both chan-
nels our results are then crosschecked with the maximum entropy method
(MEM,[20]). Therefore, we use our fit results as a default model. If our model
already describes the data well, we expect MEM to reproduce it except for
small changes due to artifacts and uncertainties in the rescaled covariance
matrix needed for MEM.

4.1 Pseudoscalar Channel
We first applied this fit method to the pseudoscalar channel. In [37] this led
to good results, but since the fit there was conducted on the bootstrapped
means of the correlators, we were not able to give a reliable error analysis.
In this work we perform the fit on every bootstrap sample and only average
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Figure 4.3: Fits to the lattice correlators.

in the end1. Thus we can now provide errors for our parameters A and B
shown in tab. 4.1. Additionally we chose a slightly different fit range. In [37],
the fit interval starts at (τT )min = 0.15, while this work uses (τT )min = 0.2
to further exclude the unreliable data points at small temporal distances.
Our improved fits confirm the previous findings. Even though, the results
from this work (tab. 4.1) and from [37] (tab. 4.2) do not always exactly
agree, the tendencies and the corresponding conclusions are the same. A is
around 1 and B is small. The resulting correlators in Fig. 4.3 match the
data almost perfectly. The two examples in Fig. 4.4 show the comparison of
lattice data, perturbative correlator and fit more closely. We conclude that
our model spectral function agrees well with our lattice data with only slight
modifications. The crosscheck with MEM leads to almost no changes in our
results which is an additional sign that our model spectral function is a good
description for our data.

Fig. 4.5 shows the model spectral functions in comparison to the pertur-
bative spectral functions. For charmonium there is no need for an additional
resonance peak at any of the analyzed temperatures, meaning that ηc dis-
sociates rapidly above the critical temperature, which is a difference to the
findings from potential models [15, 16]. For bottomonium on the other hand,
we observe one resonance peak that persists up to 1.5Tc. This peak gets ther-
mally broadened with increasing temperature. This confirms the findings of
many other studies predicting a melting of the bottomonium ground state
around this temperature. Even though our mass shift B would allow the

1Instead of bootstrapping, we also tried correlated fits with the rescaled covariance
matrix explained in 3.4. The results are similar, but the errors are overestimated. We thus
choose to focus on the bootstrap method in this analysis.
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Charmonium Bottomonium
T/Tc A B/T A B/T

1.1 1.06(1) 0.60(2) 0.84(1) -0.06(1)
1.3 1.05(1) 0.41(2) 0.85(1) -0.12(2)
1.5 1.02(1) 0.34(2) 0.84(1) -0.14(2)
2.25 1.03(1) 0.11(3) 0.88(1) -0.14(2)

Table 4.1: Modifications to the perturbative spectral function in the pseudoscalar
channel. A and B are obtained by fitting the correlator with our model spectral
function (4.1).

Charmonium Bottomonium
T/Tc A B/T A B/T

1.1 1.04 0.52 0.85 -0.11
1.3 1.04 0.37 0.87 -0.13
1.5 1.02 0.33 0.87 -0.11
2.25 1.06 0.16 0.93 -0.04

Table 4.2: Previous results for A and B as presented in [37]. As the first fit was
performed without considering the correct statistical uncertainties, we do not quote
errors here. The main differences of [37] and this work are the bootstrap analysis and
the smaller fit range ((τT )min=0.15 vs (τT )min=0.2). Even though the new results
in tab. 4.1 do not always match the parameters in this table exactly, the statement
remains the same. A is close to 1 and B is small.

location of the resonance to vary for different temperatures, the maximum is
found to be at the same point in ω. In this aspect, our results differ from the
study of lattice potentials in [15] that obtained a mass shift. The maximum
of our peak is located at ω ≈ 9.26(2)GeV, which is close to the PDG value
of mηb = 9.399(2).

Note that we worked in the quenched approximation, which is believed to
agree better with perturbation theory. Still, the unexpectedly high agreement
is a good sign that our model spectral functions are suitable to describe
charmonium and bottomonium in the pseudoscalar channel.
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Figure 4.4: Example of the fit to the lattice data at 1.5Tc. The orange band shows
the original perturbative correlator, where the errors are estimated by varying the
mass by 10%. The blue curve showing the modified spectral function obtained from
our fit matches the data points almost perfectly.
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Figure 4.5: Spectral functions in the pseudoscalar channel for charmonium (left)
and bottomonium (right). Top: The dashed lines show the original perturbative
spectral functions (see section 2.3.3) and the solid lines show the modified versions
after accounting for systematic uncertainties. The modifications made by the pa-
rameters A and B in our fits are only small. Bottom: Crosscheck with MEM. Here,
the solid lines are our fit results used as default models and the dashed lines are the
MEM output. We chose to not show the bottomonium result at 1.5Tc, as the MEM
analysis for this temperature failed due to uncertainties in the rescaled covariance
matrix. But except for this one case, our model spectral functions remain mostly
unchanged, meaning that they already describe the correlators well.
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4.2 Quark Number Susceptibility
Before moving on to the analysis of the vector channel, we show the contin-
uum extrapolated results for the quark number susceptibility χq. Since this
quantity is used in the continuum extrapolation of the vector correlators, its
determination is important for the rest of this chapter.

Via the conservation of the vector current, the quark number susceptibil-
ity is related to the zeroth component of the vector correlator:

G00 = χqT (4.3)

Since G00 and Gii share the same renormalization constants, the quark num-
ber susceptibility is used to build a renormalization independent ratio before
extrapolating to the continuum as explained in section 3.5. As χq becomes
more reliable with increasing temperature, we normalized with χ′q/T ′2 at a
temperature of T ′ = 2.25Tc. But when analyzing the transport peak, we are
often interested in the correlator divided by the quark number susceptibility
at the corresponding temperature T , not at T ′. Therefore we additionally
continuum extrapolate the ratio χq/χ′q. In this way, we again build a renor-
malization independent ratio. The results can be seen in tab. 4.3.

For the extrapolation of χq/χ′q we start with the correlator G00 on the lat-
tice, an example of which is shown in Fig. 4.6. Theoretically, G00 is constant
at all τT , but in practice, the first few points are deviating from the con-
stant due to cut-off effects. Thus, we use the midpoint to evaluate χq. The
extrapolation method for χq follows the method for the correlators described
in chapter 3 closely. We build the ratio of the quark number susceptibilities
on every bootstrap sample for every value of κ. As for the correlators, we
then perform a mass interpolation. For the full correlator we would then
perform a spline interpolation in τT , but since we are only interested in the
midpoint, this step is omitted here and we directly continuum extrapolate
with an ansatz quadratic in the lattice spacing.

We then have the continuum results for GiiT ′2/χ′qT 3 and for χqT ′2/χ′qT 2

and can easily obtain Gii/χqT by dividing. To further examinate the χq at
different temperatures, we also extrapolate χ′q/T ′2. The results are shown
in Fig. 4.7. It is seen that the bottom quark number susceptibility is larger
than the charm quark number susceptibility. Both increase with growing
temperature.

Unresummed perturbation theory also provides an estimate for the quark
number susceptibility using a similar approach as for the constant part of the
transport contribution (see also [60]). At leading order, the quark number
susceptibility is given as

TχLOq = GLO00 = −4CA
∫
p
Tn′F (Ep) (4.4)
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Figure 4.6: Example of the G00 correlator at the highest temperature on the finest
lattice. After a few fluctuations at small τT due to cut-off effects, the correlator
becomes constant. The midpoint is chosen for the further examination of the quark
number susceptibility.

while the NLO version reads

TχNLOq = GNLO00 = 4g2CaCF

∫
p

Tn′F (Ep)
p2

∫
k

(
nB(εk
εk

+ nF (Ek)
Ek

(
1− M2

k2

))
.

(4.5)

If we compare our results with to the perturbative values in tab. 2.3, we
observe a good agreement for the bottomonium correlator at all temperatures,
while for charm the difference between lattice and perturbative result grows
with decreasing temperature.

Charmonium Bottomonium
T/Tc χq/χ′q χq/T

2 χq/χ′q χq/T
2

1.1 0.063(2) 0.62(3)e-3
1.3 0.145(5) 0.45(2)e-2
1.5 0.333(9) 0.034(1)
2.25 1 0.626(10) 1 0.0250(5)

Table 4.3: Quark number susceptibilities for charm and bottom at different tem-
peratures.
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Figure 4.7: Continuum extrapolated quark number susceptibilities from charmo-
nium and bottomonium correlators compared to estimates from unresummed per-
turbation theory. While for bottom the results roughly agree at all temperatures,
the charm results only agree at the highest temperature and the differences grow
with decreasing temperatures. Note that the right picture uses a logarithmic scale
due to the large changes in the quark number susceptibility.

4.3 Vector Channel
Motivated by the success in the pseudoscalar channel, we extended our
method to the vector channel. Due to the rise of the transport peak, the
method is not as straightforward as this feature is not included in the per-
turbative description. Using a Lorentzian ansatz for the transport peak as
motivated in section 2.4.2, we obtain

ρii(ω) = 3Dχq
ωη2

ω2 + η2︸ ︷︷ ︸
ρtransii (ω)

+Aρpert(ω −B)︸ ︷︷ ︸
ρmodii (ω)

(4.6)

with four fit parameters: A, B, D and η. Unfortunately a direct fit is not
possible due to the high number of parameters. The next step would thus
be to fix some of the parameters. As many calculations hint to values of
2πTD between 1 and 9 (see section 2.4.3), we decided to fix D to choices in
that region and fit the remaining three parameters. The fit now converges
but as seen in Figs. 4.8,4.9, the different choices all match the data equally
well within errors. The reason can be seen in the upper and middle panel
of Fig. 4.9. Every change in the transport peak is compensated by changes
in the bound state region. Already small changes in A and B suffice to
absorb large changes in the transport region. Thus we need to determine the
two regimes seperately. There are different ways to split the analysis. We

56



4.3. VECTOR CHANNEL

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

ω/T

ρii(ω)T/ωχq

2πTD = 1
2πTD = 2
2πTD = 3
2πTD = 4
2πTD = 9

Figure 4.8: The spectral function obtained by fixing 2πTD to different values and
fitting the remaining three parameters. The top panel shows the spectral function
consisting of the Lorentzian transport peak at small ω and the perturbative model at
larger ω. While the results for different choices of 2πTD vary much in the shape of
the transport peak, the parameters A and B determining the higher and intermediate
ω region are similar and only very small differences are observed there. Fig. 4.9 shows
the corresponding correlators.

investigate two of them more closely.
The first makes use of the extremly flat curvature of the transport con-

tribution to the correlator. By assuming this contribution to be constant, we
can reduce the fit ansatz to three parameters:

Gconst+modii (τT ) = Gtrans,constii +
∞∫
0

dω
π
Aρpertii (ω −B)K(ω, τ). (4.7)

With Gtrans,constii we obtain a constant that could later be used as a constraint
for investigations of the transport peak. The fit gives an A of approximately
1 and a small B, indicating that the perturbative spectral function is a good
ansatz for intermediate and higher ω. The results match the data well, but
a weakness to this ansatz is the lack of sensitivity to the curvature of the
transport peak. By using a constant, we can obtain A and B for a further
analysis of the bound state and vacuum asymptotic region but we might
already be influencing later results for 2πTD and η too much.

An better way might be to use the differences of neighbouring correlators
described in 2.2. As the transport contribution is more dominant around the
midpoint, the subtraction of these points mostly cancels out the transport
effects. We now construct a difference correlator from our model spectral
function and fit to our lattice data for the difference correlator. As seen in
Fig. 4.11 the fit matches the data well. As in the pseudoscalar channel, A
is close to 1 and B is around 0, meaning that the perturbative model is a
suitable ansatz. This is in agreement with the findings from the constant fits
and indeed the differences are rather small. In Fig. 4.10, both ansätze are
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Figure 4.9: The correlators for the different parts of the spectral function, where
the left side shows the whole τT range, while the right side zooms in on the correlator
close to the midpoint as the transport contribution has the highest influence there.
From the different correlators, a problem can be seen: Every change in the transport
peak (upper correlator figures) is absorbed by the changes in the perturbative model
correlator (middle correlator figures), so that the final results (bottom figures) do
not show any difference, meaning they all match the data equally well. Thus, the
three parameter fit method is not suitable to gain insights into the transport peak.
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Figure 4.10: Comparison of two fit ansätze for the model spectral function for an
example correlator (Charmonium, 1.5Tc). The blue curve shows the result obtained
by fitting the model correlator plus a constant transport contribution, while the
orange curve shows the result obtained from fitting the difference correlator (see
Fig. 4.11) and then inserting the results in the regular correlator (see Fig. 4.12). Both
ansätze are relatively close with comparable error bands. In the further chapters of
this thesis, we work with the result from the fits to the difference correlator.

compared. They lead to similar results and with comparable errors on the
parameters A and B. Since the fit to the difference correlator does not make
any assumptions about the transport peak beforehand and is thus valid for
more cases, we from now on work with the results obtained from this method.

With the obtained values for A and B (tab. 4.4) we are able to describe the
bound state and vacuum asymptotic region. Fig. 4.12 shows the comparison
to the whole correlator. The differences between data and model correlator
hint to the transport contribution and are further analyzed in chapter 5.

The spectral functions for the bound state and vacuum asymptotic region
show a similar behaviour as in the pseudoscalar channel (see Fig. 4.13). For
charmonium, the data is well described without a resonance peak, while
bottomonium has one thermally broadened resonance peak that is melted at
2.25Tc. The location of this peak lies around 9.2(2)GeV, which is close to
mΥ = 9.46GeV. As for the pseudoscalar channel, the mass shift observed in
[15] is not confirmed. Again, we crosscheck by using our result as a default
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Figure 4.11: Fits to the difference of neighboring correlators for charmonium (left)
and bottomonium (right) in the vector channel. As a normalization we used χ′

q

T ′2 at
a temperature T ′ = 2.25Tc. Overall, the curves describe the data well.

Charmonium Bottomonium
T/Tc A B/T A B/T

1.1 1.09(2) 0.37(4) 1.03(2) 0.04(2)
1.3 1.07(2) 0.16(5) 1.01(1) -0.05(2)
1.5 1.03(2) 0.01(6) 1.00(2) -0.12(2)
2.25 0.99(3) -0.27(9) 0.99(2) -0.23(4)

Table 4.4: Modifications to the perturbative spectral function the high ω region
obtained by fitting the correlator of the model spectral function eq.(4.1) to the lattice
data Gdiffii in the vector channel.
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Figure 4.12: Comparison of our model spectral function (4.1) obtained from a fit to
the difference correlator to the lattice data of the whole correlator. The differences
hint to the transport contribution (chapter 5) and already contain some information:
It seems as if the contribution for bottomonium is rather small, while the differences
for charmonium grow with increasing temperature. Later, especially the differences
at the midpoint will be of interest.

model for MEM. As MEM leaves the spectral functions almost unchanged,
we conclude that our resulting spectral function for the intermediate and
high ω region is well-suited to describe our data.
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Figure 4.13: Top: Spectral functions in the high ω region for charmonium (left)
and bottomonium (right) in the vector channel from the fits to Gdiffii (τ). The dashed
lines show the original perturbative spectral functions, while the solid lines show the
modified spectral function. Bottom: Crosscheck using MEM. The dashed lines show
the output of MEM when using the modified spectral function as a default model.
Since MEM leaves the spectral functions almost unchanged, they are well-suited to
describe the vector correlators.
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Chapter 5

Transport Contribution

If we come back to the qualitative shape of the spectral function explained
in section 2.3, we identified three major parts: The high frequency part
describing the ultraviolet asymptotics, an intermediate region, where we ex-
pect bound states to fall in, and a transport peak around ω ≈ 0. The former
two are well described by the model spectral function (4.1) analyzed in the
previous chapter. In the pseudoscalar channel, where there is no transport
contribution, we thus already have a complete description of the spectral
function that matches our correlator data very well. This chapter will now
provide insights into the low frequency spectral function of the vector channel
and thus complete the analysis of our correlators.

In the previous chapter, we splitted the analysis of the vector channel
into two parts, as it was not possible to fit the transport peak and the higher
frequency part simultaneously. By a fit to the difference correlator we deter-
mined a model spectral function ρmodii for intermediate and higher frequencies
(see (4.1) and tab. 4.4). In Fig. 4.12 the corresponding correlator Gmodii is
compared to the continuum extrapolated lattice data Gii obtained with the
setup in chapter 3. As Gmodii does not describe the whole spectral function,
there is a difference between the continuum data and the model, which is
clearly seen in the figure. This gap will now be closed by the transport
contribution:

Gtransii (τT ) = Gii(τT )−Gmodii (τT ). (5.1)

The mentioned figures already allow for some qualitative conclusions. It can
be seen that for charmonium the transport contribution grows with increasing
temperature and is generally larger than for bottomonium.

In order to reach a deeper understanding of the transport contribution
and to extract the heavy quark diffusion coefficient D, we need to employ
an ansatz for the low frequency spectral function. As mentioned in section
2.4.1, linear response theory relates the transport peak to the heavy quark
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diffusion coefficient D via a Kubo formula

D = 1
3χq

lim
ω→0

ρii(ω)
ω

, (5.2)

The shape of the transport peak can be modelled using Brownian motion
and the Langevin formalism. According to [14] this leads to a Lorentzian
ansatz as presented in section 2.4.2. To prevent an overestimation of the
transport peak at larger frequencies, we use an additional cut-off 1/ cos(ω/2πT )
proposed in [40]:

ρtransii (ω) = 3Dχq
ωη2

ω2 + η2
1

cosh
(
ω

2πT
) , (5.3)

where the drag coefficient η corresponds to the width of the peak and is
connected to D via the Einstein relation [82]

η = T

MD
. (5.4)

It is not entirely clear, which kinetic mass M to insert. In this work we used
Mc = 1.28GeV and Mb = 4.18GeV, but assume a 10% uncertainty. We then
use the Einstein relation to eliminate one of the two parameters D and η to
simplify our calculations. This leads to

ρtransii (ω) = 3χq
T

M

ωη

ω2 + η2
1

cosh
(
ω

2πT
) , (5.5)

Another ansatz sometimes applied to the transport region is the Gaus-
sian ansatz [14]. In this work, we apply the Lorentzian ansatz but use the
Gaussian ansatz as a crosscheck. The results can be found in the appendix.

At infinitely high temperature, the width approaches zero and for both
ansätze the transport peak takes the form of a δ peak as predicted in [14, 83,
84]

ρtransii (ω) −→
η→0

2πχq
T

M
ωδ(ω). (5.6)

In Fig. 5.1 the transport contributionGtransii is shown. The data points are
obtained by subtracting the model for higher frequency contributions from
the continuum data, according to (5.1). As many calculations presented in
section 2.4.3 hint to values of 1-9 for the heavy quark diffusion coefficient, we
additionally show the transport contributions obtained with the Lorentzian
ansatz and different choices of 2πTD in this region. It can already be seen
why the analysis of the transport peak is a challenging task: The curvature
of our data is extremely small, especially when compared to the statistical
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Figure 5.1: The transport contribution normalized by its midpoint. The shift in
y direction does not have a physical meaning but is rather to guide the eye. It can
be seen that the curvature is extremely small compared to the uncertainties on the
data. For a comparison we plotted the same contribution for a Lorentzian ansatz
(5.3) with different choices of 2πTD, where the drag coefficient is determined via the
Einstein relation (5.4) with masses of Mc = 1.28GeV and Mb = 4.18GeV. Within
errors all choices match our data and the value of 2πTD can not be resolved based
on curvature.

uncertainties. Thus, the different choices of 2πTD can not simply be resolved
based on the curvature or a fit and we have to try other approaches.

For a more detailed analysis we are especially interested in the differ-
ence at the correlator midpoint Gtransii (τT = 0.5), where the influence of
the transport contribution is the strongest. Fig. 5.2 shows this midpoint for
charmonium and bottomonium and in comparison to the respective whole
correlators. For both quarkonia, the transport contribution only accounts
for a small fraction of the correlator while the major contribution comes
from the intermediate and high frequency part discussed in the previous
chapter. It can further be seen that the transport contribution rises with
temperature for charmonium, while for bottomonium it remains largely con-
stant within errors. The further investigation of the midpoint is divided into
several parts. Before we calculate transport coefficients quantitatively, we ap-
proach qualitatively by first comparing to perturbative results and drawing
some conclusions from the comparison of charmonium and bottomonium.
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Figure 5.2: The midpoint of Gtransii /(Tχq) for charmonium and bottomonium at
different temperatures. While the charmonium transport contributions rise with
temperature, the bottomonium transport contributions remain roughly constant.
The right plot shows the fraction of the midpoint value that stems from the transport
contribution.

5.1 Comparison to Perturbative Constants
Even though perturbation theory can not provide an exact shape of the trans-
port peak, it can give an estimate for the constant part of its contribution to
the correlator in a similar way as the quark number susceptibility is calcu-
lated. The results up to NLO from [60] are given in tab. 2.3. In our analysis,
we specifically chose not to assume the contribution to be constant from the
beginning, but as our results for Gtransii show only very little curvature, it
is still reasonable to compare our result at the midpoint to the perturbative
constant. In Fig. 5.3 we see that the perturbative and lattice results for bot-
tomonium agree within errors for most temperatures. For charmonium, not
even the highest temperature agrees and the deviations grow with decreas-
ing temperature. This confirms the expectation that perturbation theory
describes bottomonium better than charmonium.
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Figure 5.3: Comparison of the transport contribution at the midpoint determined
in (5.1) and the perturbative constants from [60]. For bottomonium (right) we see
agreement to some extent, at least for 1.3 and 2.25Tc and for 1.5Tc if we consider
that the perturbative constants might also suffer some uncertainties. For charmo-
nium (left) on the other hand, the perturbative results overshoot our data at all
temperatures. The deviation becomes smaller with increasing temperature.

5.2 Comparison of Charmonium and Bottomonium

To get some more insights on the transport coefficients, we now assume a
Lorentzian shape (5.3)1. We now insert (5.5) into (2.16) and cut the integra-
tion of at some frequency ωcut to avoid an overestimation at large frequencies,
where the transport peak should not have an effect. At the midpoint, where
the integration kernel simplifies to 1/ sinh( ω

2T ), the correlator then reads

Gtransii (τT = 0.5) =
ωcut∫
0

dω
π

3Dχq
ωη2

ω2 + η2
1

cosh
(
ω

2πT
) 1

sinh
(
ω

2T
)

=
ωcut∫
0

dω
π

3χq
M

T

ωη

ω2 + η2
1

cosh
(
ω

2πT
) 1

sinh
(
ω

2T
) (5.7)

1The following analysis would work for other ansätze as well. As a crosscheck we tried
the Gaussian ansatz (B.1). This leads to similar results, see appendix.
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We perform a Taylor expansion of the kernel and the cut-off term around
ω ≈ 0:

cosh (ω(1/2T − 1/2T ))
sinh

(
ω

2T
)

cosh
(
ω

2πT
) ≈2T

ω
− (3 + π2)ω

12π2T
+ (75 + 30 + 7π4)ω3

2880π4T 3

− (1281 + 525π2 + 147π4 + 31π6)ω5

483840π6T 5 +O
(
ω7
)
.

(5.8)

This expansion is then used together with the Lorentzian ansatz in the inte-
gration (2.16), which leads to an approximated correlator

Gtransii (τT = 0.5)
χqT

= T

πM

(
f1 + f2 + f3 + f4 +O(ω7)

)
, (5.9)

with the following factors fi:

f1 = 2 arctan
(
ωcut
η

)
(5.10)

f2 = (3 + π2)η2

12π2T

(
arctan

(
ωcut
η

)
− ωcut

η

)
(5.11)

f3 = 7
(
15 + π4) η

8640π4T 3

(
3η3 arctan

(
ωcut
η

)
− 2η2ωcut + ω3

cut

)
(5.12)

f4 = (1281 + 525π2 + 147π4 + 31π6)η
483840π6T 5

·
(
− arctan

(
ωcut
η

)
η5 + η4ωcut −

η2ω3
cut

3 + ω5
cut

5

)
. (5.13)

These coefficients only depend on the drag coefficient η and the frequency
ωcut at which we cut off the integration. The higher order terms f3 and f4
are negligible in comparison to f1, f2 is around 5% of f1. As we aim for a
qualitative estimate, we also neglect f2. We apply these simplifications and
build the ratio of charmonium and bottomonium correlators at the midpoint:

Gtransii,c /χcq
Gtransii,b /χbq

≈ Mb

Mc

tan−1
(
ωcut
ηc

)
tan−1

(
ωcut
ηb

) . (5.14)

The appearing ratio of masses Mb
Mc

is around 3. If we now compare with
Fig. 5.2, where it is seen that the midpoint of the transport contribution for
charmonium is almost always larger or at least around that of bottomonium,
we can conclude that ηc > ηb.

68



5.3. ESTIMATING THE TRANSPORT COEFFICIENTS

5.3 Estimating the Transport Coefficients

To gain a more quantitative estimate for the transport coefficients, we again
use the Lorentzian ansatz2 and consider the midpoint, see (5.7). In Figs. 5.8
and 5.4, we now compare the midpoint obtained from different values of the
drag coefficient η (curves) to our data points (constant lines). As masses,
we again choose Mc = 1.28GeV and Mb = 4.18GeV, but as we aim for a
quantitative estimate, we now also take an uncertainty of 10% into account.
On the data side, we show the statistical uncertainties as errorbands on the
constant lines. Within theses errors we see an overlap for our data and the
ansatz. We determine the lower and upper bound of this overlapping region
and thus are able to give a range for η.
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Figure 5.4: Determination of a range for η at different temperatures using the
bottomonium results. The dashed constant lines represent our data for the midpoint
of Gtransii with errors. The solid curves show the results of a Lorentzian ansatz from
5.7, where the errorbands are obtained by assuming an uncertainty of ∼ 10% in the
mass. The intersection points (dotted) are then taken as upper and lower bound of
a range for possible η/T and are given in tab. 5.1.

2And again check with the Gaussian ansatz, see appendix.
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Figure 5.5: The different upper and lower boundaries for 2πTD depending on the
upper limit of the integration. The dashed lines show the result at ωcut = ∞, that
are later taken as the final result. It can be seen that the higher ωcut is, the more the
results approach the result at an infinite cut-off. After the first point, there seems
to be a plateau.

The given figures show the result for an upper integration limit of ωcut =
∞, but we also investigated the limits ωcut = T, πT,M to gain an under-
standing of how far the relevant contribution of the transport peak stretches
out in ω. For bottomonium, a plateau is reached after πT . From there on, the
different choices of integration limits produce roughly the same overlap re-
gions. Fig. 5.5 shows the dependence of the lower (ηsmall) and upper (ηlarge)
bound of the drag coefficient on the upper limit of the integration. It can be
seen that both are close to their value at ωcut = ∞ for ωcut > πT . We thus
choose an upper limit of infinity as the integration limit as this is the choice
with the strongest physical motivation. The results for the range of η and
the corresponding values of 2πTD are given in tab. 5.1.

If we now combine the model spectral function for intermediate and higher
frequencies with our findings for the transport peak, we can now give a spec-
tral function for the whole ω range (see Fig. 5.6). For bottomonium, both
parts are clearly separated. The transport peak falls off rapidly and gives
almost no contribution at frequencies where bound states arise.

We also calculate the whole correlator by adding the model correlator
Gmodii for intermediate and high frequencies and the transport contribution
using the η range from our method. The results can be seen in Fig. 5.7
with the dashed lines showing the low η result and the solid line the high
η result. It is seen that with the combination of the two parts, the whole
correlator is described. We have thus obtained one possible spectral function
of bottomonium in the vector channel.

Regarding the heavy quark diffusion coefficient, the method in this sec-
tions leads to results between 2πTD = 0.18 and 2πTD = 2.04 with no
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Figure 5.6: The spectral function for bottomonium consisting of the model ansatz
for intermediate and higher ω and the transport peak using our results in tab. 5.1.
The dashed lines show the spectral function for the lower bound of η, while the
dotted lines show it for the upper bound. The right side shows an overview of the
whole spectral function, while the left side zooms into the transport region.
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Figure 5.7: The whole bottomonium correlator consisting of the model correlator
for intermediate and high ω and the transport contribution based on the Lorentzian
ansatz with the η from tab. 5.1. The dashed line stands for the lowest choice of η
and the solid for the highest choice. For comparison, we also show the data points
from our continuum extrapolated lattices.
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obvious temperature dependence. In section 5.5, this range will be combined
with estimates from another method to gain a final result.

We repeat the same method for charmonium with the intersection ranges
shown in Fig. 5.8. Here, however, the analysis is more complicated as trans-
port peak and bound state region are not as clearly separated. The investiga-
tion of the different integration limits ωcut = T, πT,M,∞ shows no plateau,
meaning that the transport peak stretches far out.
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Figure 5.8: Determination of a range for η at different temperatures using the
charmonium results. The dashed constant lines represent our data for the midpoint
of Gtransii with errors. The solid curves show the results of a Lorentzian ansatz from
5.7, where the errorbands are obtained by assuming an uncertainty of ∼ 10% in the
mass. The intersection points (dotted) are then taken as upper and lower bound of
a range for possible η/T and are given in tab. 5.1.

If we combine the model spectral function for intermediate and higher
frequencies with our findings for the transport peak, we are able to describe
the whole correlator. In Fig. 5.9, we see the comparison to the continuum
data. Again the results are shown with dashed lines for the lower bound
of η and solid lines for the higher bound of η. The corresponding spectral
functions for the whole ω range are given in Fig. 5.10. Here, we clearly see
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Figure 5.9: The whole charmonium correlator consisting of the model correlator
for intermediate and high ω and the transport contribution based on the Lorentzian
ansatz with the η from tab. 5.1. The dashed line stands for the lowest choice of η
and the solid for the highest choice. For comparison, we also show the data points
from our continuum extrapolated lattices.

that the transport region stretches out into the bound state region, which
causes problems in our method. This ansatz is suited much better for bot-
tomonium. Still, we quote the η range for ωcut = ∞ in tab. 5.1 as we did
for bottomonium, with the remark that we should not rely on these numbers
too much but rather use the bottomonium results and the findings from the
previous and the following section.

Charmonium Bottomonium
T/Tc η/T 2πTD η/T 2πTD
1.1 7.37-21.38 0.08-0.24 <0.81 >0.66
1.3 7.75-20.28 0.10-0.26 0.30-2.76 0.22-2.04
1.5 7.93-17.08 0.14-0.29 1.40-4.02 0.18-0.51
2.25 4.98-10.45 0.33-0.70 0.62-3.20 0.33-1.73

Table 5.1: Estimated ranges for η/T from Figs. 5.8,5.4 and their corresponding
values for 2πTD according to the Einstein relation with a mass of Mc = 1.28GeV
and Mb = 4.18GeV.
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Figure 5.10: The spectral function for charmonium consisting of the model ansatz
for intermediate and higher ω and the transport peak using our results in tab. 5.1.
The dashed lines show the spectral function for the lower bound of η, while the
dotted lines show it for the upper bound.

5.4 Thermal Moments
To gain further information on the transport peak, we Taylor expand the
correlator around the midpoint to obtain the thermal moments mentioned
in section 2.2.2. As explained there, we get the ratios of thermal moments
by fitting the curvature of our continuum extrapolated correlators with the
Taylor expansion

∆H(τT )
GH(τT = 0.5) ≈ R

2,0
H

(
1 +

N∑
n=1

R2n+2,2n
H (τT − 0.5)2n

)
. (5.15)

For charmonium we choose N = 1, for bottomonium N = 2. The fit is
conducted on every bootstrap sample and the fit parameters R2n+2,2n are
averaged later. Examples of the fit are shown in Figs. 5.11 and 5.12. As
explained before, the approximation is valid around the midpoint, so the
fit interval should be closely around τT = 0.5, but at the same time we
need enough data points to conduct a fit with realistic errors, where the
number of points depends on the number of parameters that we choose in
the approximation. We chose to show the thermal moments up to the order
of R4,2 for charmonium since the corresponding fits have two parameters and
are stable. For bottomonium the fits still lead to good results with one more
parameter R6,4. Adding another thermal ratio works for some temperatures
but leads to instabilities at others.

The resulting thermal ratios depending on the lower limit of the fit inter-
vall, τminT , can be seen in Figs. 5.13 and 5.14. To quote a number for the
thermal ratios, we identify plateaus in the fit results and average over the
values inside the plateau and arrive at the results in tab. 5.2. If no plateau is
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found, we use the closest values to the midpoint that have reasonably small
errors. The values over which the average is taken are indicated by the length
of the lines in Figs. 5.13 and 5.14.
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Figure 5.11: Curvature of the charmonium correlator at 2.25Tc. The lines show
the fit (2.30) for different ranges. As fit parameters we used the first two thermal
ratios, R2,0 and R4,2. For intervalls with starting points close to the midpoint (pink
curves), this describes the data well, while for larger intervalls (blue curves), higher
orders need to be taken into account.

Charmonium Bottomonium
T/Tc R2,0 R4,2 R2,0 R4,2 R6,4

1.1 52.28(24) 16.60(64) 389.4(1.5) 64.4(1.2) 24.2(1.6)
1.3 44.22(10) 14.49(47) 303.04(35) 52.19(65) 16.3(1.3)
1.5 37.59(21) 14.28(74) 229.45(22) 39.33(26) 14.03(74)
2.25 26.89(16) 13.02(1.35) 114.37(37) 22.10(13) 9.34(84)

Table 5.2: Thermal ratios at different temperatures, determined by averaging over
the plateaus identified in Figs. 5.13,5.14. For charmonium, we use the first two ratios
as a fit with three parameters lead to instabilities. For bottomonium, adding a third
ratio was possible.
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Figure 5.12: Curvature of the bottomonium correlator at 2.25Tc. The lines show
the fit (2.30) for different ranges. As fit parameters we used the first three thermal
ratios, R2,0, R4,2 and R6,4. Due to taking a higher order into account, the fits
describe the data better than for charmonium, even at smaller starting points τminT .
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Figure 5.13: The thermal ratios depending on the lower limit of the fit intervall for
Charmonium. The line shows the average and error over a plateau region indicated
by the length of the line. For some cases, no plateau was found. In that case we
averaged over values with reasonably small errors.
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Figure 5.14: Like Fig. 5.13 but for bottomonium and also including the next order
R6,4.
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We can now compare the thermal ratios from our data to the ones calcu-
lated using our spectral function (4.6). For R2,0, this reads

R2,0(A,B, η) = G
(2)
mod(A,B) +G

(2)
trans(η)

Gmodii (τT = 0.5) +Gtransii (τT = 0.5)
(5.16)

with

G
(2)
mod(A,B) = 1

2

∞∫
0

dω
π

(
ω

T

)2
Aρpertii (ω −B) 1

sinh
(
ω

2T
) (5.17)

G
(2)
trans = 1

2

∞∫
0

dω
T

(
ω

T

)2
3χq

T

M

ωη

ω2 + η2
1

cosh
(
ω

2πT
)

sinh
(
ω

2T
) , (5.18)

where we use A and B from tab. 4.4 and the estimated ranges for η from the
previous section. Fig. 5.15 shows that the lower choice for η is always closer to
the data than the higher choice for R2,0. Especially at higher temperatures,
there is already some agreement, but in general the moments calculated from
our model tend to overshoot the data. For R4,2, the results for the two
different η are so close that a distinction is not possible, especially not given
the errors on the data. Thus we only investigate the R2,0 further.
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Figure 5.15: Thermal moments depending on the starting point of the fit intervall
compared to the result of (5.16) using A and B from tab. 4.4 and the η-range from
the previous section. The dashed lines show the result for the lower bound of η and
the dotted lines show the result for the upper bound.

Similar to the method we applied for the midpoint, we now solve (5.16)
for η. To get a range of possible results, we take the statistical errors of A,B
and the R2,0 coming from the data into account, as well as an uncertainty of

78



5.5. COMBINING THE RESULTS

∼ 10% in the mass. We determine a lower and an upper bound for η, given
in tab. 5.3 and use the Einstein relation to obtain 2πTD. Unfortunately,
this does not work for all temperatures. For charmonium, we get results
for 1.3,1.5 and 2.25Tc, while for bottomonium there are only intersections
at 2.25Tc. The ranges we obtain with this method differ from the result
in the previous section. In general, this method seems to work better for
charmonium.

Charmonium Bottomonium
T/Tc η/T 2πTD η/T 2πTD
1.1 - - - -
1.3 <0.27 >7.48 - -
1.5 0.85-2.78 0.84-2.73 - -
2.25 3.32-5.28 0.66-1.05 0.29-1.10 0.97-3.66

Table 5.3: Estimated ranges for η/T using the thermal ratio R2,0. Their cor-
responding values for 2πTD are obtained by the Einstein relation with a mass of
Mc = 1.28GeV. For some temperatures, the method did not give a result.
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Figure 5.16: Comparison of the first thermal ratio from the data to the result of
(5.16). The constant lines represent the average over a plateau and the error bands
are the standard error of this average. The error bands for the curves are obtained
by assuming a 10% uncertainty in the mass. The dotted lines indicate the ranges,
where ansatz and data overlap.

5.5 Combining the Results
In this chapter, several attempts have been made at estimating 2πTD and
η, each more suitable for some cases and less for others. As a reminder, the
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different methods used are:
• Qualitative analysis of the ratio of ηc and ηb (see section 5.2).

• Comparison of the midpoint of Gtransii from the data and the Lorentzian
ansatz for different η (see section 5.3). Works for bottomonium and
charmonium at every temperature.

• Comparison of the first thermal ratioR2,0 from the data to the Lorentzian
ansatz for different η (see section 5.4). Works for charmonium above
1.3Tc and for bottomonium at the highest temperature.

Each of these approaches has also been crosschecked with the Gaussian ansatz
(see appendix). To get a final result, the different estimates are combined in
this section.

First, it can be seen that the statement ηc > ηb predicted in 5.2 is con-
firmed in the more quantitative analysis in 5.3 and 5.4. For charmonium,
the results in 5.3 do not seem too reliable, as the transport peak extends far
into the bound state region. This is slightly better in the approach with the
thermal moments. For bottomonium on the other hand, the thermal moment
analysis does not provide a deeper understanding, as for most temperatures
no intersection ranges were found. But there, the direct comparison of the
midpoint seems more promising. So far, we used a Lorentzian ansatz for the
transport peak, but the same analysis has been carried out for the Gaussian
ansatz with the results shown in the appendix. There, we observe similar
tendencies: The thermal moment analysis is more promising with charmo-
nium correlators, while the comparison to the midpoint works better with
bottomonium correlators.

Regarding the systematic uncertainties, one should note that the results
at a temperature of 2.25Tc are the most reliable for mainly two reasons. First,
the quark number susceptibility included in the transport peak can be most
accurately determined here. For the other temperatures T we continuum ex-
trapolated a ratio of the quark number susceptibility at T and T ′ = 2.25Tc,
as argued in section 4.2. This ratio is by far not as certain as the extrapola-
tion of χq at 2.25Tc. And second, as the transport part of the correlator is
estimated by subtracting the perturbative result from the whole correlator,
the method is more valid at high temperatures, where perturbation theory is
more reliable. Due to this, the bottomonium result is also more reliable than
the charmonium result.

Fig. 5.17 shows an overview of all the results for the heavy quark diffusion
coefficient we obtained with the different methods. As already argued, not
all results are equally trustworthy. Thus, Fig. 5.18 shows another version of
this plot, where only the following results are taken into account:
• The bottomonium results from a comparison of the midpoint with the

Lorentzian ansatz for temperatures of 1.3Tc and above.
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Figure 5.17: Overview of the different results for 2πTD from different ansätze.

• The results for charmonium and bottomonium from the thermal ratios,
determined with the Lorentzian ansatz.

There is no obvious temperature dependence visible.
If we now compare our results to the current state of research presented in

2.4.3, we see that our value of 2πTD falls on the lower side of the spectrum.
As the errors are still quite large, we do not quote an exact result, but rather
constrain the range of 2πTD. The lowest bound of the reliable results for
charm is 2πTD = 0.66, while the highest value is around 2πTD = 2.73. We
thus conclude 2πTDc ∈ [0.66, 2.73]. For bottom we find 2πTDb ∈ [0.18, 3.66].
It should be noted that the result from bottomonium correlators is more
reliable as transport and bound state region are clearly more seperated in
the corresponding spectral function. But since the result from charmonium
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Figure 5.18: Like Fig. 5.17, but only for the more reliable results.
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correlators is included in the bottomonium result, we still quote it here.
Within errors, our findings are in agreement with a lot of the results

presented earlier, especially the MEM results in [51]. Our results partly
overlap with the two newer studies on the heavy quark momentum diffusion
coefficient κ [48, 49]. Older studies on κ on the other hand hint to slightly
higher values for 2πTD [47, 50]. The distribution of the different lattice
results is especially interesting since this work and the MEM study both work
with finite quark masses, while the studies on the heavy quark momentum
diffusion coefficients are all carried out in the heavy quark limit. As [57]
argues, corrections of order O(T/M) are to be expected when going to finite
masses. The result of this work together with the MEM study could hint to
those corrections and can maybe be used to gain further insight.

The experimental results from ALICE [53] and STAR [54] show a small
overlap with our range. Our lower bounds seems underestimated, as no
other result for 2πTD extends to such small values, but the upper bounds
fit very well into the picture. Thus, it seems reasonable to add our values
into the overview picture to get to the final Fig. 5.19. Within this picture,
our values take a special place. So far, every result from lattice QCD has
been either based on the limit of an infinitely large quark mass (κ-studies)
and/or obtained on non-continuum extrapolated data (MEM studies). This
is the first investigation based on continuum extrapolated mesonic correlation
functions for charm and bottom quarks. So far, this analysis has only been
carried out in the quenched approximation, but the procedure presented in
this work could be a basis for future studies in full QCD.
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Figure 5.19: The overview of selected results for 2πTD (see section 2.4.3, Fig. 2.9)
complemented by our final results. It can be seen that our results agree with many
other approaches, especially the experimental results (within errors), the MEM study
and the newest investigation on the heavy quark momentum diffusion coefficient κ.
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Conclusion

In this work, we gained insight into thermal modifications of charmonia and
bottomonia by comparing LQCD results and a perturbative ansatz.

On the lattice side, we worked with correlators measured on very large
and fine lattices in the quenched approximation using clover-improved Wilson
fermions. In total, four different lattice spacings were included in the analysis,
the coarsest being a = 0.018fm and the finest a = 0.009fm. We performed
a continuum extrapolation using a relatively new method that includes a
mass-interpolation and obtained the correlation functions for five different
temperatures, 0.75, 1.1, 1.3, 1.5 and 2.25Tc. On the correlator level, we drew
first conclusions on the behaviour of charmonia and bottomonia at different
temperatures. From a comparison of pseudoscalar correlators, which show
only little temperature dependence and vector correlators, showing a large
temperature dependence around the midpoint, it can be concluded that most
of the temperature dependence originates from the transport contribution.
It can also be seen that bottomonium shows less temperature dependence
than charmonium. These observations and their interpretation are, however,
mostly intuition based.

To gain a more profound understanding, we combined our data with a
perturbative approach. Above Tc, we compare to a perturbative spectral
function, which is constructed by combining vacuum asymptotics at high fre-
quencies and pNRQCD at low to intermediate frequencies via a matching
procedure. We accounted for the two major sources of systematical un-
certainties: First, we introduced an overall normalization factor to absorb
uncertainties in the renormalization of lattice correlators. Second, we imple-
mented a mass shift, since the relation between the MS and pole mass used
in the perturbative calculation is not exactly known. These two parameters
were determined in a fit to the continuum correlators. In the pseudoscalar
channel, this procedure showed that only minor modifications are needed to
describe the correlators with the perturbative spectral function. The normal-
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ization factor is close to unity and the mass shift small. The errors on both
parameters, determined from performing the analysis on different bootstrap
samples, are reasonable. We thus obtained pseudoscalar spectral functions
for charmonium and bottomonium at four different temperatures above Tc.
A crosscheck with MEM confirmed our results.

In the vector channel the presence of the transport peak prohibited us
from applying the same procedure directly to the correlator. Instead, we
fitted our model spectral function to differences of neighbouring correlators.
The results are quite similar to those in the pseudoscalar channel. Again,
the normalization factor was around 1 and the mass shift close to 0. Again,
after the crosscheck with MEM, we conclude that our model is suitable to
describe our correlators.

In both channels, we did not observe a resonance peak for charmonium,
while for bottomonium, one thermally broadened resonance peak improved
the agreement with the data. This one peak lies close to the expected peak
for the ground states Υ and ηb and is melted at 2.25Tc, which is consistent
with the predictions for Υ and ηb from other studies.

The difference of the original vector correlator and our model obtained by
fitting to the difference correlator contains information on the low frequency
part of the spectral function, namely the transport peak. As the related
transport coefficients are an important quantity for understanding heavy ion
collisions, we investigate the transport contribution further. We assume a
Lorentzian ansatz for the analysis of the heavy quark diffusion coefficient and
the drag coefficient and relate the two quantities with the Einstein relation.
Our main focus lies on the midpoint as the transport contribution is more
dominant there than for small temporal distances. By comparing the ratios
of charmonium and bottomonium contributions, we can already conclude
that the drag coefficient of charmonium is larger than the bottomonium one.
To quote numbers, we compare the correlator obtained from the Lorentzian
ansatz for different values of the drag coefficient to our data. Including the
error on the data and an uncertainty of 10% in the mass, we are able to find
an overlap region. For bottomonium, this procedure lead to a range in which
we would expect our drag coefficient and the heavy quark diffusion coefficient
respectively. For charmonium this unfortunately does not produce reliable
results. The obtained drag coefficient is so large, that the transport region
extends into the bound state region. Instead, we tried another method. By
Taylor-expanding the correlator around the midpoint, we obtain the thermal
moments. The ratio of the first thermal moments is then analyzed further.
We again compare to the Lorentzian ansatz and determine the overlap. This
method works significantly better for charmonium.

As a check, we repeated every step of our analysis with the Gaussian
ansatz, obtaining similar values. By combining the results, we can finally
quote a range for the heavy quark diffusion coefficient. As the bottomonium
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results are more reliable due to the clear separation of transport and bound
state part in the spectral function, we examine charm and bottom seperately.
We obtain a range of 2πTD = 0.18..3.66 for bottom and a range of 2πTD =
0.66..2.73 for charm, which is included in the bottom range and can thus also
be trusted. Our values match the results of many different approaches from
other methods and hint to the smaller end of the spectrum.

So far, the method for comparing perturbative correlation functions to
lattice correlators was applied to quenched lattices, but the methodology
developed by us provides the basis for extending the studies to full QCD.
There, however, we would expect some changes in the results. Quenched
QCD is believed to agree better with perturbation theory, as the critical
temperature there is around two times larger than in full QCD, while the
coupling is smaller. Due to these differences, additional resonance peaks
might be needed and are expected from non-relativistic models i.e. in [15].
For charmonium, one could expect at least one peak for the ground state
at the temperatures analyzed in this study, at the lowest temperature, there
might even be a second state. For bottomonium we would not expect the
behaviour of the resonance peak to change much, but there would probably
be more bound states, at least for the lower temperatures. With the onset
of computational power, full QCD studies will soon be possible.
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Appendix A

Renormalization Constants

The following tables give an overview of the renormalization constants used
in this work. The calculation was done according to 3.5. We present all
available renormalization constants, even though we only use the following:

• In the vector channel we rely mostly on builing a renormalization in-
dependent ratio with the quark number susceptibility, which is then
renormalized non-perturbatively with the constants from tab. A.1 for
the case of massive quarks.

• In the pseudoscalar channel, where a non-perturbative determination
is not possible, we use one-loop (tab. A.2) as well as two-loop results
(tab. A.3), both including the mass correction and a correction factor
for the anomalous dimension (tab. A.4). From the differences, the
systematic uncertainties can be estimated.



APPENDIX A. RENORMALIZATION CONSTANTS

β κ Znp,masslessV Znp,massiveV Z1loop
V Z2loop

V

7.192

0.131940

0.8421264500921962

0.916394139906 0.918547 0.855159
0.131500 0.929882288784 0.931763 0.867464
0.131000 0.945319713862 0.946890 0.881546
0.130000 0.97655081229 0.977492 0.910037
0.128000 1.04047696688 1.040131 0.968353
0.122570 1.22455738023 1.220505 1.136279

7.394

0.132008

0.8491849220385659

0.91120932568 0.912623 0.856702
0.131500 0.926709021275 0.927841 0.870988
0.131000 0.942082013823 0.942934 0.885156
0.129000 1.00476568886 1.004479 0.942930
0.124772 1.14389338468 1.141146 1.071223

7.544

0.132360

0.8539928563366839

0.898183696476 0.899968 0.849346
0.132200 0.903014142349 0.904716 0.853826
0.131800 0.915141566775 0.916635 0.865075
0.131000 0.939618597449 0.940692 0.887779
0.129500 0.986328143437 0.986601 0.931105
0.126410 1.08604365708 1.084606 1.023598

7.793

0.132210

0.8612733107488421

0.898744883533 0.900061 0.855616
0.132090 0.902361766986 0.903621 0.859000
0.131810 0.910826772497 0.911952 0.866920
0.131250 0.92786513559 0.928722 0.882862
0.130190 0.960517635748 0.960860 0.913413
0.127980 1.03033445432 1.029578 0.978737

Table A.1: Renormalization constants in the vector channel. np denotes the non-
perturbatively determined constants.
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β u0 g2
MS( 1

a) ZmasslessPS (µ = 1
a) κ ZmassivePS (µ = 1

a)

7.192 0.908950(3) 1.523 0.85615

0.13194 0.930561
0.13150 0.943949
0.13100 0.959271
0.13000 0.990270
0.12800 1.053720
0.12257 1.236431

7.394 0.912417(3) 1.443000 0.862247

0.132008 0.923889
0.131500 0.939293
0.131000 0.954571
0.129000 1.016869
0.124772 1.155206

7.544 0.9148340(2) 1.388 0.866449

0.13236 0.910628
0.13220 0.915431
0.13180 0.927490
0.13100 0.951829
0.12950 0.998276
0.12641 1.097431

7.793 0.9185380(1) 1.308 0.872757

0.13221 0.910068
0.13209 0.913667
0.13181 0.922091
0.13125 0.939045
0.13019 0.971537
0.12798 1.041011

Table A.2: One-loop Renormalization constants in the pseudoscalar channel.
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β u0 g2
MS( 1

a) ZmasslessPS (µ = 1
a) κ ZmassivePS (µ = 1

a)

7.192 0.908950(3) 1.523 0.835023

0.13194 0.907590
0.13150 0.920647
0.13100 0.935592
0.13000 0.965825
0.12800 1.027709
0.12257 1.205910

7.394 0.912417(3) 1.443000 0.843087

0.132008 0.903359
0.131500 0.918421
0.131000 0.933360
0.129000 0.994273
0.124772 1.129536

7.544 0.9148340(2) 1.388 0.848597

0.13236 0.891865
0.13220 0.896570
0.13180 0.908381
0.13100 0.932218
0.12950 0.977708
0.12641 1.074820

7.793 0.9185380(1) 1.308 0.856738

0.13221 0.893364
0.13209 0.896897
0.13181 0.905166
0.13125 0.921810
0.13019 0.953705
0.12798 1.021903

Table A.3: Two-loop Renormalization constants in the pseudoscalar channel.

β additional factor
7.192 0.6454
7.544 0.5999
7.793 0.5726

Table A.4: Additional factors for the mass correction.
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Appendix B

Results for the Gaussian
Ansatz

In this section, the analysis in chapter 5 is repeated for the Gaussian ansatz
[14]

ρtrans,Gii (ω) = 3πχq
T

M

ω√
2πη2

G

e
− ω2

2η2
G with ηG =

√
π

2
T

MD
=
√
π

2 η. (B.1)

Again, we made use of the Einstein relation to replace 2πTD in terms of η.

B.1 Comparison of Charmonium and Bottomonium

We start with the qualitative comparison between the drag coefficients for
bottom and charm, presented in 5.2. Since this time, we only need to expand
the kernel and not the cut-off term, the expansion changes to

cosh (ω(1/2T − 1/2T ))
sinh(ω/2T ) = 2T

ω
− ω

12T + 7ω3

2880T 3 −
31ω5

483840T 5 +O
(
ω7
)
.

(B.2)

The factors fi in the approximated correlator

Gtrans,Gii (τT = 0.5)
χqT

= T

M

(
f1 + f2 + f3 + f4 +O(ω7)

)
, (B.3)
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read

f1 =
2Γ
(
ωcut√
2ηG

)
ηG

(B.4)

f2 =
ηG

(√
2
πωcut exp

(
−ω2

cut

2η2
G

)
− ηGΓ

(
ωcut√
2ηG

))
8T (B.5)

f3 =
7ηG

(
3η3
GΓ
(
ωcut√
2ηG

)
−
√

2
πωcut exp

(
−x2

2η2
G

) (
3η2
G + ω2

cut

))
1920T 3 (B.6)

f4 =
31
(

15
√

π
2 η

7
GΓ
(
ωcut√
2ηG

)
− η2

Gωcut exp
(
ωcut
2η2
G

) (
15η4

G + ω4
cut + 5η2

Gω
2
cut

))
161280

√
2πηT 5

(B.7)

with the error function Γ. Again, we only take f1 into consideration and
arrive at the ratio

Gtransii,c /χcq
Gtransii,b /χbq

≈ Mb

Mc

Γ
(

ωcut√
2ηcG

)
ηbG

Γ
(

ωcut√
2ηbG

)
ηcG

(B.8)

which only depends on the ratio of the masses, which is known to be of
approximately 3, the upper limit of the integration ωcut and ηG. When
comparing to the data in Fig. 5.2, our previous statement that ηc > ηb holds
for the Gaussian ansatz.

B.2 Estimating the Transport Coefficients
For a more quantitative result, we continue by finding an overlap between
our data (including errors) and the Gaussian ansatz with physical charm and
bottom quark masses and an uncertainty of 10%. This is done analoguously
to section 5.3 Figs. B.1,B.2 and tab. B.1 show the results. The dependence
on the upper integration limit was similar as for the Lorentzian ansatz, so
we again choose infinity as this is most correct. Unfortunately, we encounter
the same problems for charmonium. Again, the transport peak stretches
too far out and reaches into the bound state region. But for bottomonium
this method works with the Gaussian ansatz as well. We find a similar
lower bound of 2πTD = 0.12. The upper bound 2πTD = 10.88 is probably
overestimated, but the range includes the results we found for the Lorentzian
ansatz and thus does not contradict our previous findings.

94



B.2. ESTIMATING THE TRANSPORT COEFFICIENTS

0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

η/T

Gtrans
ii (τT = 0.5)/Tχq

Charmonium, 1.1Tc, Gaussian

0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

η/T

Gtrans
ii (τT = 0.5)/Tχq

Charmonium, 1.3Tc, Gaussian

0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

η/T

Gtrans
ii (τT = 0.5)/Tχq

Charmonium, 1.5Tc, Gaussian

0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

η/T

Gtrans
ii (τT = 0.5)/Tχq

Charmonium, 2.25Tc, Gaussian

Figure B.1: Like Fig. 5.8, but for the gaussian ansatz.

Charmonium Bottomonium
T/Tc η/T 2πTD η/T 2πTD
1.1 9.63-25.79 0.06-0.18 0.05-2.01 0.27-10.88
1.3 10.06-24.50 0.08-0.20 1.10-4.45 0.14-0.56
1.5 10.27-19.78 0.11-0.23 2.75-5.90 0.12-0.26
2.25 6.94-13.13 0.27-0.50 1.66-4.96 0.22-0.64

Table B.1: Like tab. 5.1, but for for the Gaussian ansatz.
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Figure B.2: Like Fig. 5.4, but for the gaussian ansatz.
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B.3. THERMAL MOMENTS

B.3 Thermal Moments
We also repeat the analysis of thermal moments in section 5.4 for the Gaus-
sian ansatz. The range, in which data and the Gaussian ansatz agree within
errors is seen in Fig. B.3 and tab. B.2. As with the Lorentzian ansatz, this
method works better for charmonium. For bottomonium, only the highest
temperature shows an intersection.

Charmonium Bottomonium
T/Tc η/T 2πTD η/T 2πTD
1.1 - - - -
1.3 <0.29 >6.77 - -
1.5 0.78-3.07 0.76-2.97 - -
2.25 3.64-6.11 0.57-0.96 0.10-1.13 0.95-10.33

Table B.2: The ranges for η and 2πTD determined by comparing the first thermal
ratio from the data with the gaussian model.
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Figure B.3: Like Fig. 5.16, but for the Gaussian ansatz.

B.4 Combining the Results
After combining the results from the Gaussian ansatz and removing the less
reliable results as we did for the Lorentzian ansatz, we obtain 2πTDc =
0.57..2.97 and 2πTDb = 0.12..10.88. The charm range agrees very well with
the previous results. For bottom, there is almost exactly the same lower
bound, but the upper limit seems overestimated. Still, the Gaussian results
do not contradict but support the findings from the Lorentzian ansatz. Since
the Lorentzian ansatz has a better theoretical motivation, we believe those
results to be more reliable.
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Figure B.4: Overview of the different results for 2πTD. Like Fig. 5.17, but for the
Gaussian ansatz.
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Figure B.5: Like Fig. B.4, but only for the more reliable results.
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