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SUMMARY
The application of computers in teaching statistics offers new possibilities. Two kinds

of experiments are introduced. Firstly, experiments to demonstrate statistical concepts by
exploiting the graphical capabilities of computers. Secondly, experiments which may help
teach data analysis strategies. Examples for both kinds are given. First steps towards of
experiment construction are developed. The usefulness of Literate APLis demonstrated

too.
KeywoRbDs: Teaching of statistics, APL, computer in teaching. statistical experiments.

1 The Teaching of Statistics.

“What is mathematics?” is the title of a famous book by Courant and Robbins [3]. As far
as we know a book entitled “What is statistics?” has not been written as vet. Nevertheless
the question has to be answered. It seems to be a convincing statement to say that statistics
is what is taught. Really? It is just a shift in the problem space. “How to teach statistics””

is an ever returning theme in many a paper written by statisticians. See for instance the

long row of presidential addresses to the Royal Statistical Society. To give one example let
us listen to Professor Daniels [4].
Statistics is not mathematics, not even applied mathematics. It concerns the
acquisition, interpretation and exploitation of data, and this may include some

shrewd non-mathematical guesswork.
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To make a long story short statistics is more than a collection of methods, procedures ete.
based on theory. Statistics is doing statistics.

How can this be achieved? There are a number of proposals. We would like to add
(a new?) one. Let us exploit the possibilities offered by the computers. This does not
sound very new for computers are on the market and in statistical laboratories and insti-
tutes for quite a long time. But leaving some research activities aside the situation is best
characterised as very poor use of computers so far. In 1976 the first author gave the open-
ing speach at the 2. Compstat symposium in Berlin. His paper was centered around the
following statements [10].

Firstly :Statistics is taught as if we were living in the precomputer aye.

Secondly : Computers enter the field of teaching statistics twofold: as a
tool and as a medium.

Thirdly : One need not be an expert in computer science to take computers
tnto consideration when teaching statistics.

Sorry to say, not much has been changed since then. The time is ripe to do something
about this so we want to propose two kinds of experiments in this paper which can be done
on the computer. We think that the teaching of statistics can be improved considerably by
this line of approach.

An experiment of type 1 is meant for learning statistical concepts. Understanding con-
cepts seems to be a difficult and therefore disliked task. Many students are eager to accept
certain assumptions and hurry to apply formulas which they hope to be appropriate. This

attitude is well documented by the following quotation of one of our students:

To pass the examinalion is it necessary to understand the concepts or is it suf-

ficient to know how to apply them?

Experiments we are thinking of can be used by the teacher for demonstrations and by the
student to get a better understanding of the underlying concepts by self-paced experimenta-
tion because the experiments will allow for different parameter settings. Here the computer
acts mostly as a medium.

An experiment of type 2 is intended for learning statistical strategies — or to say it more
simply — for doing statistics with real data. Here the computer is mainly a tool providing
statistical methods in a handy way, taking over the burden of housekeeping and preparing
nice output especially in a graphical form.

It is one thing to make some proposals and yet another to show that it can be achieved.
We dislike people who never reach the second state. Therefore, we will demonstrate our ideas
at work — at least to such an extent as it can be done without a computer at hand. But
hopefully our paper will convey the flavour of a real computer session well enough so that the
reader is convinced that we can do it and that it is worth doing. The many opportunities

of modern hard- and software technology offer a great potential for improving statistical
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cducation. The programming language APL and graphical facilities are indespensable means
for our work. Exploiting themn on a larger scale may eventually make the teaching of statistics

more roaring!. The outline of the rest of our paper is as follows.
e Examples of type 1 experiments
® Proof versus experiment
¢ An cxample of an type 2 experiment
o A theory of experiment construction

¢ How it was done

Writing a paper not a program

2 Examples of Type 1 Experiments.

Let us take the problem of random number generation as a first example. This is not a hard

problem for a theoretical statistician for he is aware of the following theorem.

Theorem: Assume that U/ is uniformly distributed on (0,1).

(1) Let X be a discrete random variable with distribution function Fy and mass points
Z1, Z2, Z3,... Define a random variable Y by (Y = z,) & U € (Fx(zi-1), Fx(z:)].
Then X and Y are equally distributed.

(i1)) Let X be a continuous random variable with strictly increasing distribution function

Fx. Then X and F;l(U) are identically distributed.

This theorem gives room for the following procedure. The random numbers are produced

in two steps:

1. Draw a random sample of size n {from a set of uniformly distributed random variables

Upy.o.o,Uy.
2. Deliver xy,...,z,, with z; = F~1{(u,).

Z1,...,Z, can be regarded as a random sample from a population whose cumulative distri-
bution function is F'.

Even though this formulation is correct it is too terse and only a minority of students
if any will comprehend its implications. Usually the beginner does not see this procedure

and, consequently, he is reluctant to apply it. But an eyecatching picture can help. The

I“Roaring” means not only absence of boredom but power.
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following experiment is designed to demonstrate graphically the procedure contained in the
theorem mentioned above.

The idea is to divide the procedure into single steps in order to gain a dynamic com-
puter experiment. We will demonstrate this approach by considering the task of generating
exponentially distributed random numbers. Just as a reminder we will give the following
Definition: X is called exponentially disiributed, if the distribution function can be wrilten
as F(z;A) = 1 — e™**. [is inverse function is given by F~'(u) = —In(1 — u)/A.

We consider four ingredients for our experiment:

1. The drawing of uniform random numbers.
2. The inversion process.
3. The piling up of exponential random numbers.

4. The target distribution.

Let us split the screen into four parts in which the respective aspects will be demonstrated.

N-W-corner || N-E-corner

S-W-corner S-E-corner

These parts are used as follows.

N-W: Here the histogram from the sample wuy,...,u, is created. Every draw adds a
small piece to a pillar of the histogram.

N-E: In this part the inverting process is represented, that is z = F~'(u). Every time
a u is drawn, there appears from u of the y-axis a line which runs to the permanent visible
graph of the function F. From the point of intersection there appears a line which runs
vertically towards the z-axis and touches it in . The elements of the random sample slides
along this lines from the uniform into the exponential distribution.

S-E: In this part, the histogram that results from the transformed u; is built up syn-
chronously in time with the histogram from the random sample of the uniform distribution.
The graph of the density function of the exponential distribution is added after the drawings
are done.

S-W: In this place the graph of the density of the aspired exponential distribution is
displayed to see our goal.

We will present three hardcopies taken during a run of this experiment. We will draw a
sample of size n = 50 from the exponential distribution with X = 1, one from the beginning,

one from the middle and one from the end of the experiment.
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Figure I: Display at the start of the experiment.
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Figure 2: Display at the middle of the experiment.
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Figure 3: Display at the end of the experiment.
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Naturally this is a poor substitute of the impression one gets from the procedure if you
follow the dynamic movements on the screen. Such experiments not only just highlight
the procedure but raise a lot of questions. For instance: What influence has the quality
of the uniformly distributed random values to the exponential random values? How are
uniformly distributed random numbers created? How are corresponding generators built?
How to measure the quality of random number generators? What influence has the size of
the random sample? etc...So, one experiment might initiate a whole bunch of experiments
to follow.

Here is another experiment. The statistics X and o2 = n—‘_l—Z(X,' — X)? are both
unbiased estimators of A in the case of a Poisson distribution. Which is the one to be
preferred? Fifty random samples of size n = 5 from a Poisson distribution with A=1 were
generated. For each random sample # and o2 were computed. A comparison is made by

comparative stem and leaf displays.

Stem amd leaf display of £ Stem amd leaf display of o2
Factor of Stem: 1 Factor of Stemn: 1
1|2 represents 1.2 1{2 represents 1.2
3 01024 12 0 | 022333333333
12 0 | 666666888 24 0 | 555555777778
(27) 1 | 000000000000222222222224444 (9) 1| 002223333
11 1 | 66666688 17 1 | B55HTTTTTT8
3 2 | 060 2
6 2 | 557
3 3,3
2 3.5
4
4
5
5
1 613

Even though both estimators are unbiased their individual distributional properties have
to be taken into account. Applying this experiment the student is forced to recapture con-
cepts like distributional shape, central limit theorem, expectation, variability, mean square
error and so on in the context of parameter estimation. Later on, he may be introduced to
the idea of uniformly minimum variance unbiased estimation. In fact, it be shown that X is
UMVUE for A in the case of a Poisson distribution and experiments like this can elucidate

that it 15 so.

3 Proof Versus Experiment.

To prove or not to prove — that is the question teachers of statistics often have to face.
Presumably there are many people who are reluctant to our line of approach. A proof

is a proof and should not be replaced by such ambiguous things like a picture. Such a
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weak approach however offers some advantages since it may alleviate the understanding of
theoretical facts and provoke the longing to prove them. And is a proof given by an author

always a proof for the student? Let us consider an example.

When sampling from a normal distribution one can rely on the independence of the

sanple mean and variance. But how do textbooks cope with the problem of proving this

fact?

One of our {avourite books is that by Mood and Graybill (8]. To prove the proposition
they use the joint moment generating function m(ty, #;) of the random variables U and V

which are given by
WANAY -
= - Y V= Y, - Y)*
HEe) veBeer

where nis the sample size and ¥, is the (theoretical) standardized random sample variable.
They show after some manipulations of a quadratic forin and exploitation of a special

determinant that m(t,, ;) can be factored as
n—1

! YT
m(tlstQ):(l__Qt}) (l—%) .

Now all (!) the reader has to do is to follow some arguments found in the theory of moment

A=

generating functions and he can state quod erat demonstrandum.

But if one carefully rereads the proof — it is spread over three pages of their hook —
one comes to the conclusion that for the beginner too many dependencies on other facts of
statistical theory are included. It calls more for belief than being a proof. This is especially

evident if one reads the following lines:

All the results of this section apply only to normal populations. It can be proved
that for no other distributions are (1) the sample mean and sample variance

independently distributed or (2) the sample mean exactly normally distributed.

Why not teach it the following way. State the propositions mentioned before and then
show two scatter diagrams. One displays 50 points (%,5%) based on samples from a normal
disribution each having size 50 while the other shows the the same for an exponential

distribution. Here they are:
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Figure 4: Scatter plot of (Z,s?) coming from a normal distribution.
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Figure 5: Scatter plot of (Z,s%) coming from an exponential distribution.

Clearly this is not a proof but we believe the beginner gets a better understanding what is
sald in the cited quotation from Mood and Graybill. To be fair let us loock how the subject
is dealt with after Boes joined the team [9]. They still use moment generating function
arguments. But now they apply them to the special case n = 2. Here you succeed if you
can prove that Y; + Y; and Y2 — Y; are independent. The quotation given above is in the
new edition too. And we still feel pity for the beginner.

We are not opposed to proving things. But to follow the lines of a proof usually calls
for an amount of other theoretical facts the reader must be willing to rely on. We doubt if
the beginner is always equipped in the appropriate way. So our line of approach certainly
can help him see — to us this is better than just to believe. Even though we clearly do not
give a proof students are likely to get a feeling of what this is all about. After all they have
to accept certain theoretical facts later on which they will never be forced to prove. What

they have to learn is that statistical methods are based on certain assumptions and that just
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conclusions may heavily rest upon their validity. Furthermore, examples like this enable to
go one step further since now we can pose questions like “Do we have enough evidence to
claim that X and S? are (not) independent?” provoking the need for tools like the x? test

of independence.

4 An Example of Type 2 Experiment

Statistical inference represents another area where computer simulation can excel. As

Thompson [13] puts it

... the current generation of 32 bit chips can bring about the real computer rev-
olution and change fundamentally the ways in which we approach the task of
modeling and problem solving. ... the proliferation of fast computing to the desk-
top will encourage private developers to develop simulation-based procedures for
a large and growing market of users who need to get from specific problems to
useful solutions in the shortest time possible. We now have the ability to use
the computer not as a fast calculator but as a device that changes the process of

going from the microazioms to the macrorealization.

As an example to conduct an experiment of type 2 let us take the following data set
which are prices (DM) and ratings of quality for bicycles from 18 producers, [12]. The
ratings range from 1 (good) to 5 (defective).

Price Rating | Price Rating | Price Rating
270 5 509 3 660 5

300 5 510 3 700 3

400 3 550 3 | 720 !

450 3 610 2| 750 3
499 3 615 3 790 ! g
500 5 630 2 800 2|

Here is a scatter plot of this data set.
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Figure 6: Prices and ratings of 18 bicycles.

The question arises whether there is a relationship between prices and ratings. To be
precise it can be suspected that higher prices will cause the associated ratings to fall. But
how can we get evidence?

The first thought coming into our mind is using Pearson’s coeflicient
__ 2= - &)y — 9)
V(e — 2 3y — y)?

For this data set we compute rp = —-0.6511. But what is the interpretation of getting this

rp

value? Significance tests based on rp often make the assumption that the joint distribution
of (X,Y) is a bivariate normal, {2|. This assumption is obviously too bold in this case since
ratings are measured on an ordinal scale. As teachers of statistics we can recommend this
approach only with mixed feelings since we hope that our conclusions are approximately
valid.
A more appropriate approach would be to use Spearman’s rank correlation coeflicient
S = A = )
ARV, D Y e

where r;=rank(z;) and ri=rank(y;). For this data set we compute rs = —0.5155 using

average ranks. Yet again, how can we interpret this value? Tables for the distribution of
rs as high as n = 18 are available assuming the existence of no ties. In fact, every tie
constellation leads to an individual distribution of r5 and it is not clear to what extent the
data situation at hand with that many ties can be treated as that without any. Furthermore.
we must be aware that we may lose relevant information by using ranks r, instead of the
original z;.

To circumvent this difficulty note that we need to know just how »p is distributed if .\
and Y are independent. In other words a permutation test seems appropriate, This amounts

to computing all values of
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. YAz, — x)(m; — 7)
T V@i -2y (m, - 1)

where (my, ... 7, ) is one of the 18!=64023737705728000 permutations of (¥1y. .., yn). This

certainly is not a feasible task. On the other hand if we believe in the efficiency of statistical

methods why not apply them to draw a conclusion. What we can do is to sample a certain
amonnt of permutations and to judge on the basis of this ezperiment how likely it is to
observe such an extreme data situation like the one we have at hand.

The following five steps can be viewed as a proposal to get an insight into the rationale
of statistical tests.

(1) Set up an alternative hypothesis H; which we believe is true. Act as if it is nof true,

i.e. the null hypothesis Hy is true. In this case we suppose that
H,: High prices tend to be associated with low ratings.
Thus we work under
Hy: There is no relationship whatsoever between prices and ratings.

(ii) Which test statistic should be used to come to a decision? For our example r, seems
appropriate. A moment's thought shows that T = 3" zim; will lead to equivalent conclusions
and this is the one we will use.

(iii) Let o be the value of T computed from the data. Asking if our data situation is
extreme under independence leads to asking if ¢, is an extreme value under Ho. This question
can initiate the discussion of two approaches: the classical and the “nonparametric” one.
The classical approach starts with a fixed level of significance a and t; will be defined
as extreme if P(T < ty) < a. On the other hand the nonparametric approach amounts
lo assessing the critical level @ = P(T < t;). While the classical approach assumes our
knowledge of the Ho-distribution of T' the latter offers more flexibility in that it is sufficient
to give an estimate of & = G(fo) or even better a confidence bound (0, &) of 4. Depending
on o we judge the data situation as extreme if we consider & or &, as “too small”.

(iv) Suppose there is a (18,2)-matrix bike whose first column contains the prices and
the second the ratings. The expression

+/x/bike
29189

computes .

To get a visual impression of how extreme g is a sample of M = 1000 random permuta-
tions is generated. To this end suppose there is function RANDOMPERMUTATI ONS_OF_SIZE.
Typing

treal-bike[1000 RANDOMPERMUTATIONS_OF_SIZE 18;1]+.xbike[ ;2]
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renders a vector treal of 1000 realisations t of T. A function STEM_AND_LEAF docs the
job of displaying their distribution in form of a stem-and-leaf display. Here we present a

polished version of the cutput.

Stem amd leaf display of 1000 realisations of T = }_ 7,

Factor of Stem: 1000

1|2 represents 1200

1 28 9

2 29 0

9 29 2233333

i6 29 4555555

30 29 S66668TTTTTTIT

52 29 838 9999

a5 30 000000000060111111111311111111111
131 30 2222222222222222222223333333333333333333333333
195 30 A4 44444444444 44444 446444 4244445555555555555555555555555555555555
257 30 CE666LCLCE6BE686666666866668866TTTTTITIIITITITIITITTIZIIIITIRIITY
337 30 SEE33388885838A88R838888858884888939939999999959999999999999999999999999999999999
425 31 G00006000000000000000000000000000002 1112133011130 3801320000000 03202303 0002353211113112
{86} 31 22222222222222222222222222227222222222333333333333333333333333333333333333333333333333333333333)
479 31 4444040444844 4404444484444 44 4444444444444 44455555555555 5555558505505 55584L5 0500010

392 3 866 6EEEEE66EE6666666666666666666666677777IT777TI 72777 7T I7ITI7IT7TII7I7797777
306 31 B888353535288838A8A8868888A8RARRRRASRRARARAANI999909999309999999999599999999999599999999939
216 32 0000000000000000000300000000000000011111 131211110030 100280012030302

149 32 222222222222222222223333333333323333333333333.233333
99 32 4444444444444944444444445555555555555555595
56 32 666666666666666 77777777777
30 32 588838388899
is 32 0000111
11 33 22223
& 33 4445
2 33 6
1 32 8

(v) We arrive at a decision by the nonparametric approach as follows. There are
+/treal<29189

2
out of 1000 realisations of T being as small as ¢, or smaller leading to an estimate & = 0.002
of &.

As an alternative we may use an upper confidence limit. The efficiency of several ap-
proaches to finding confidence regions can be discussed at this point. For instance, there
are at least two (1 — v)x100% upper limits UL(&) based on the normal approximation to

the binomial distribution:

UL'M&a)=[0,0+ 2

1 12 s+ LHM-s-1% 2
s+—+f—+z( 2)( : 2)+f— ,

UL?@) = {0, ———
(&) M + 22 2773 M 3

where s = Mé& and z = z,_., is the (1 —) x 100%-point of the standard normal distribution.
Ior relevant literature covering this topic see [5] and the literature cited therein.
Interestingly, it turns out that the use of UL"){&) can be highly misleading since its

nominal confidence level can be dramatically smaller than the actual one especially if & is
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small, cf. [5]. It turns out U/L{?(&) does not share this shortcoming. Setting 1 — v = (.99,
£=2.3263 and s = 2 we find the 99% upper bound of é:
UPPER_BOUND_OF_PROB 0.01 2 1000

0.0054
so that ULP(&) = (0, 0.0054].

Putting our findings together we arrive at the conclusion that Hy is not tenable.

Even though this last example may seem strange we hold that it can serve as a vehicle
to teach what statistical thinking is about. A whole bunch of old and new statistical ideas
can be addressed to arrive at a reasonable solution. Nevertheless, it is not too streamlined
and “normally distributed” as many synthetic examples in introductory texts. After all, it

i1s this kind of data sets that the student has to face later on in the rough world outside.

5 A Theory of Experiment Construction

In this section we describe different levels of abstractions on the way to the entities we call
“Statistical Experiments”. The goal of the experiments is to demonstrate special ideas of the
theory of statistics as well as statistical thinking. To justify the name “experiments” they
must work under modified circumstances an experimenter is interested in. The experiments
must not be black boxes. On the contrary one must be able to open the boxes to rearrange

the ingredients.

5.1 A Problem

How can we get a feeling for the quality of the approximation of the binomial distribution
by the Poisson distribution? An example will help to make our ideas clear. If a teacher is
interested in clarifying the relationship between the binomial distribution and the Poisson
distribution he usually proves the relationship by manipulating formulas:

np=2X AT .

P(X =2)= (:)p’(l -p)nF — g

n—o

But presumably all this is not as good as an experiment where one can see the approximation

work. To achieve this there must be a device to generate adequate graphical outputs,

!

formulas sraphics -
—_ generating — . ;
parameters . oo ‘
device R l.l AL ,l,_}._Fv e
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This means that input and output of the device have to be well suited for the way a

statistician thinks.

5.2 First Step: Translating Formulas Directly

Let us start with the formulas. Surely you must be able to handle such expressions like

n AF

P(X =2z)= (1 —p)" = and em?

( ) (x)p (1 —p) p
The translation into a form understandable to a computer often is the first and the
last argument to switch off the high-tech-instrument at hand. But there is 4 Programming
Language that allows to type operations and operands of formulas very similarly to the

mathematical notation.?

APL allows to start the designing process on a very high abstraction level compared to
other computer languages. Pure APL enables to transform many mathematical notations
into a computer readable form in a direct and easy way.® Here is a comparison of the

probability functions above and their APL-counterparts.

Mathematics APLY

PP (1-p)"~7 (x'm)x(p*x)x((1-p)*(n-x))
A”e‘)‘/.t! (lambdaxx) x{x~Iambda)+{x)

5.3 Second Step: Building Idioms for Frequently Used Terms

On the second level of abstraction one notices that certain patterns in formulas appear
again and again. There are terms consisting of these patterns and one does not realize the
atomic elements of the patterns any longer. As in natural languages these patterns are
called “idioms”. Examples related to statistics are exp (—— %ﬁ) or Y (z,— 7)%p;.

Such idioms may be identified with APL-idioms used by the programming statistician,
but there are also a great number of APL-specific idioms decreasing the amount of time to
solve programming problems. In building idioms and thinking in idioms one reaches the

second level of abstraction.

%fverson, [6], developed APL as a notational tool.
3Nobody is perfect. It may happen that the implemented functions run into numerical difficulties. For

example it can be necessary to implement the !-function for yourself:

(:)p’(l - p)" 7 = exp( E Ini— Zlni+ zinp+4(n—z)yn{l —p).

i=n—-r+1i i=2
APL: x(+/0(n-x+1)lan)+(-+/®1lrx)+(xxep)+(n-x)*@(1-p)
It is very nice to compute sums by “+/” and to handle vectors, for example wn «+1 2 3
n.  Therefore, it is straightforward to generate the probability density function in one step:

{xtn)x(p*x)x{1-p)*n-x-0,1n

*We know that some brackets are redundant..
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5.4 Third Step: Enhancing the Language by Well Defined Func-
tions

When idioins get longer and longer it becomes desirable to enhance the APL-language by
adding new language elements. This means that user-defined functions have to be written.
However the main problem is to decide how to design the new language elements. Questions

such as
e What are the main basic tasks to be done?
e What are input il;formations that change from day to day?
e What is the structure of the desired output?
e What is an appropriate name for the operations done by the function?

have to be faced. The starting point for extending the language always is a concrete problem.
To solve it in a satisfying way the structure of the whole space you are working in (workspace)
has to be taken into consideration. The same job should not be done twice. Furthermore,
some structural decisions for adding functions in the future have to be made. It is not a
simple task for the statistician to work as a software engineer.

In the light of the approximation problem and related ones basic routines have to be
defined to evaluate the probability density functions. The input should be parameters and
z-values. The the output will be the corresponding probabilities.

What about the names?

t0iln2a3ndwss®

is a bad one. We want to have the same pattern in names of functions doing jobs of the
same kind. So it is a good idea to use small letters for the names of “low level functions™.
Another design decision is to let the names of the functions computing a probability density
function (cumulative distribution function) start with the letter “d” (“c”): d_binomial
c_binomial d_poisson c_poisson. Although not being optimal in every respect we take
the z-(or the p-)-values as left and the parameters as right argument of the functions in

order to be compatible with the APL-function syntax:

Result +left_argument function right argument .

In designing functions in the way described above the notational abilities of the given lan-
guage are extended. Moreover, an individual language is created. In this way an abstraction
level is reached that is closer to the structure of the thoughts of the working statistician

than working with the original APL-operators.

5This-is-not-a-name-with-sense.

el
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5.5 Fourth Step: Combining Low Level Functions to Generate
High Level Functions

To proceed with the approximation problem we need some functions to visualize the shape

of distribution functions:

VSHOWV_BINONIAL

Such a function has to activate graphical capabilities to draw the graph of the probability
density function, to draw axis, a title, and so on. So we look for an easy way to produce
output showing the main structure of the binomial distribution. What we have in mind is

something like this:

VSHOW_B n_p
Axkx%x computation of the probability density function
dbi+d_binomial n_p
Rxxkx plot of the probability density function
G_BARPLOT dbi
Ax%** this function shows the probability density function of the

Axxx+ binomial distribution with n=n_p[1] and p=n_pf[2]

SHOW_B works!® It works because of a set of well defined graphical functions. G_BARPLOT is
one of the high leve! routines producing graphical output. Other examples often needed by

a statistician are:

G_HISTOGRAM G_DENSITYTRACE G_BOX_AND_WHISKER G_XY_LINES G_Q_Q_PLOT ...

These high level functions allow to draw sophisticated plots for special jobs. The high level
functions themselves call functions of a lower abstraction level. On this level there exist

functions like

G_points G_singlelines G_vlines G_hlines G _marks ...

Combining these ingredients very complicated pictures can be put together. This is not
the right place to go into further details but two remarks are in order. First, there are
functions in the set of the graphical functions to define the beginning and the ending of a
picture as well as some to handle the organisation of different viewports, colours, modes,
etc. Second, the G_-functions are based on A-functions written by Dr. Jiirgen Steinecker
which themselves involve the graphical abilities of the APL-implementation.

With the vocabulary of these routines in mind SHOW_B could be improved by defining
SHOW_BINOMIAL to get pictures being a little bit more attractive.

®You have seen an output of SHOV_B some pages before.
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Figure 7: Qutput of SHOW_BINOMIAL.

5.6 Fifth Step: Defining an Intermediate Level Function to the
Posed Problem

To compare the shape of the binomial distribution with the shape of the the Poisson distri-

bution we have to design a picture showing the essentials of both. Here are some ideas:

® Draw the probability density functions into two viewports:

f(x) binomial, n=100 p= ,2400
0.15
0.4
|!1|H“l||
0 : . l :lll | ; !Ill.; I .
0 10 20 K 40 X
f(x) Poisson, lambda= 24.00
0015"
0.4 4
Tl
0 ] r I .|!|l||f | |!“ll:. T r
0 10 20 » 40 X

Figure 8: Comparing Poisson with binomial distribution (1}.

¢ Draw the cumulative functions the same way.

® Draw the probability density function (or the cumulative distribution function) of
the Poisson distribution into one viewport and the differences between the density

functions (or the cumnulative distribution functions) into the second one.

¢ The same as the one before but draw the differences not starting from the x_axis but

from the points defined by the Poisson distribution.
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Figure 9: Comparing Poisson with binomial distribution (2).

o It is easy to create some more types by remembering that PP-plots and QQ-plots are

efficient tools to compare distributions.

The internal structure of functions doing this job is straightforward:

VCOMFARE_BINOMIAL_AND_PQOISSON n_p
{ Compute the values of binomial and Poisson distribution )
( Further computation like differences, etc. )
( Initialize graphic )
( Define viewport 1 and draw bars, lines, ... )
{ Define viewport 2 and draw ... )
{ Finish graphic }

This function can be viewed as a high level function but we classify it as an intermediate
level function because of reserving the mark “high” for the remaining experiments. These

are the ones that hopefully will make the teaching roar. Some remarks are in order.
e The user always has to remember the syntax of the function.
o The user has to make an explicit decision about the parameters.

e To visualize the process of approximation by increasing the parameter n the function

has to be restarted again and again.
e The desire to make slight changes makes it necessary to edit the function.

With this in mind we are prepared to discuss the highest level described in Lhis paper

the level of statistical experiments.
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5.7 Sixth Step: Reaching the Highest Level by Designing Ex-

periments

Au experiment should be a flexible instrument to demonstrate (statistical} phenomena in an
open way. The experimenter should not be burdened with syntactical problems; nevertheless
he should be able to make some essential modifications with very little effort. To achieve

these aims we define the following structure of an experiment function:

VEIP <pame_of_the_experiment>
{ Definiton part: here the environment of the experiment is defined )

( Working part: here the statements of the experiment’s heart are gathered )

The first part can be seen as defining the desk of the laboratory. A hox (implemented as a
function with the name EXP_<name_of_the_experiment>_box) is opened and all variables
and other things that may be altered are declared. The working part of the experiment
runs in this well defined environment. To create an experiment as open as possible the user
must be allowed to have a look into the associated boxes and to change the ingredients he
finds therein. The changes can either be accomplished using a programming editor or if you
prefer an interactive mode by calling the function DEF_BOX.

Its syntax is: DEF_BOX *EXP_cname_of_the_experiment>'

It is clear that the designer of experiments has to define the boxes too and therefore the
whole range of changes. In this way much programming efforts can be avoided.

Now an experiment for the approximation problem will be constructed: We take the
idea described above to define two viewports in which the probability density function
of the Poisson distribution and the differences can be seen. The general structure of an

experiment just mentioned is the beginning of a top down designing process:

VEXP_APPROXIMATION_BINGMIAL_BY_POI1SSON
{ Define the environment )

{ Do the experiment }

First refinement of the definition part:

( Define the environment } =

{ Some initializations )

start:
sink-EXP_APPROXIMATION_BINOMIAL_BY_POISSON_box

- and on the other hand the first step for the working part:

( Do the experiment ) =

{ Compute some values )

{ Initialize graphical facilities )

loop: A*xx here starts the part that will be repeated some times *w«
{ Compute new values for the next picture )

( Modify the first viewport )
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Modify the second viewport )

(

{ Goto loop or stop )

{ Finish graphical output )
{

Clean up a little bit )

We think a small impression is given by the short “top level descriptions”. More inter-
esting than discussing further details of the top down process is to have a look at the input

values that an experimenter may wish to change.

1. First of all the location of the distributions has to be fixed. This is equivalent to

choosing the parameter A of the Poisson distribution.

lambda +24

2. It is important to define the region that will be displayed in the viewports.

x_min «0

x_max +<2x]lambda

It follows that the mean of the Poisson distribution is located in the middle of the

plot. Another idea would be to consider the variance in defining x_max, too.

3. To demonstrate the process of approximation it is necessary to define the valucs of

the “running” parameter nr of the binomial distribution. The bounds may be set by:

n_min +[lambda

n_max +100
The amount of the increase of n can be defined by an increment factor, for example:

n_incr_factor +1.5
The resulting box function looks like this:

VEXP_APPROXIMATION_BINOMIAL_BY_POISSON_box
fAxxx+ the mean of the Poisson distribution ***x
lambda +24
Ax*x%x the minimal value of n of the binomial distribution *k*x
n_min +[lambda
Arxkx the maximal value of n of the binomial distribution *xxx
n_max +100
A*%x%«%* the incrementation factor for the parameter n *kx%
n_incr_factor +1.5
Rex*% the minimum x~value for the window x*x%
x_min +0
Axxxx the maximum x-value for the window **%x

xXx_max +2x]lambda
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A little demonstration: To start the experiment we just type
EXP_APPROXINATION_BINOMIAL_ _BY_POISSON

and a sequence of displays will be generated. Some of these are copied here:

0.2 differences tc binomial,
, n= 24 p=l,
0.15
0.4
(A
0 .n[l]” H“IH;.
I T I T l L | Tt T L)
0 10 20 ¥ 40 M
0'2““ Poisson, lambda=24.00
0.15
0.1
i}
S L.glllll | ||!1...:. |
0 10 2 0 0y

Figure 10: First display of the experiment.

0.2 differences to binomial,

. n= 36 p= .

0.15

0. Al

0.05 r’ 1

0 .:ll” I“.lu. !
| 1 I 1§ I T T T ‘ L .
0 10 20 K 4 X

0'2“*) Poisson, lambda=24.00

0.15

0.1

Il

0 .1!][" “ll[llx.
I L I T | 1] T L]
0 10 20 kY 40 X

Figure 11: Second display of the experiment.

0.2 differences to binomial,
. n= 8l p= .293
0.15
0.1 Y
0.05 o ‘.
' it "'I|

0 I T = ' L) ' %l T T

0 10 20 o 0o,
0.2“*) Poisson, 1ambda=24,00
0.15 \
0.1 |
A |
0 F ..;JIII‘ B I!IIH:. ! .

0 10 20 % 0y

Figure 12: The last display of the expertment.
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To observe the approximation process for small values of A the laboratory desk can be
modified by defining:

*x_max+100lambdar20n_min+5' DEF_BOX 'EXP_APPROXIMATION BINOMIAL BY POISSON'

Using the abstraction level of the experiments properly enables to design attractive
instruments for the classroom as well as for the teacher. Attractive means the ease of
changing a given experiment by simple modification rules. The main keywords “run and

look” expand to “define, run and look”.

5.8 Comment: User Defined Experiments by Combining Mod-

ules of Other Experiments

The real power of the experiments has not been described completely as yet. Since the
experiment functions are open to the user he can modify them in a deeper sense: By

extracting modules of existing experiments to combine them to get new ones.

To explain this idea remember the relationship between the exponential distribution and
the Poisson distribution. Is there an easy way to illustrate this relationship without much
further ado? The answer is yes. We can exploit our former experiment illustrating how to
generate exponentially distributed random numbers. All we have to do is to copy those parts
of the experiment concerning the upper two viewports. Then we define a third viewport to
curmilate realizations of the exponential distributions and count the phenomena in a fixed

interval.

In the remaining fourth viewport the counts can be saved and compared to the theoretie

results. Here is the last output of the new experiment:

Samry_e Uniform Expo. Vert.

12 Polsson?

10

8 N

6 '
. ; . .
:0 + | 1
| T ] 7
: 0 2 4 6 8

Figure 13: A mutation of the first experiment.
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6 How it was done.

[lere we will show how the type 1 experiment concerning the random number generation
was constructed. The Tunction DRAW_EXPO realizes the described experiment. The right

argument ¥ stands for the size of the random sample.

V DRAW_EXPO ¥
(initialise global )
(imtialise N-W-corner )
{initialisc S-W-corner )
(initialise N-E-corner )
(initialise S-E-corner }
(loop overn )

{end global )

The global initialisation sets the frame for this special experiment. The value of the
parameter X is unimportant because the graph is spread over the whole width of the window.
Therefore A is set to 1. Futhermore suitable graphical parameters for the parameters L
= ) = 1.0 and N will be chosen. As for the interpretation of the graphical parameters one

should refer to our paper [11].

(initialise global } =

A Parameters for experiment

L+1 O eps+0.06 ¢ I+1

A  Parameter for graphics

X0h+eps xX0+0.999 i_exponential L O Nph+({N +3)+XChxN ¢ Nuh+[N+8
NXCh +~+N = XOh

uh+20p0 ¢ uk+20 eqgcl 0,1

Ph+20p0 O pk+20 egcl 0,X0

A Start graphic

G_begin

G_setcolor'white®

The function i_exponential computes values of the inverse distribution function F~!
of the exponential distribution while k eqcl xu,xo splits the interval (xu,x0) into k
equidistant classes. We are not going into details with respect to the graphical routines and
refer to the paper mentioned before.

Some local variables have occured and must be declared.

{Local Variables of DRAW_EXPO )} =
sink,eps,I,X0,Bph,XCh,Nuh,KXOh,uh, uh, ph, pk

The initjalisation of the parts of the graphic always is done in the same way: l

. . aithian )
» Selection of the viewport B
132 0 § 8

o Decription of the window 1 xarrniva’
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e Creation of an unmarked coordinate system
e Drawing of the permanent graphs

e Labeling

Let’s start in the upper left quarter: the N-W-corner.

{initialise N-W-corner ) =

2 2 G_setviewport 1 1

‘nxfayfnxsnys " G_setwindow 0,Nuh,0,1
G_klines 0 ¢ G_vlines O

G_label 'Sample Uniform'

Now we are turning to the bottom left quarter: the 5-W-corner. We will have to compute
a couple of pairs {(z,Ae™*%) in order to draw the density of the exponential function. The z-
values lying in the interval (0,X0) will be used to compute the distribution function 1 —¢™**.

That is why they are stored in X.

{initialise S-W-corner ) =

2 2 G_setviewport 2 1

'rxInyfnxsnys 'G_setwindow 0,X0,0,Nph

G_hlines 0 ¢ G_vlines O

G_lines X,[1.5]1(X+50 egcl 0,X0)d_exponential L
G_label 'Expo .Density’

Le‘’s continue with the upper right quarter: the N-E-corner. ¢c_exponential computes
the distribution function F' of an exponential, d_exponential which was called in the last
section computes the density f. We will need the distribution function from time to time

to refresh the display. The computed pairs of points are stored into XY.

{initialise N-E-corner ) =

? 2 G_setviewport 1 2
‘nxfnyfnxsnys'G_setwindow 0,X0,0,1
G_hlines ¢ ¢ G_vlines 0O

G_lines XY+X,[1.851X c_exponential L
G_label *Expo .Distr.'

We should add some variables to the list of local variables.
{Local Variables of DRAW_EXPO ) + =

X, Xy

There is only one part left the — you got it right — S-E-corner.

(initialise S-E-corner ) =
2 2 G_setviewport 2 2

‘nyfnxfnxsnys 'G_setwindow 0, X0,0,8ph
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G_hlines 0 ¢ G_vlines 0
G_label'Sample Expo.'

Before we are turning to the stepwise execution of the experiment, let’s talk about the
end of the demonstration. As announced, the graph of the density is to be drawn in the

S-E-corner. Furthermore the whole picture must be closed.

(end global ) =

2 2 G_setviewport 2 2
‘nxfnyfnxsnys'G_setwindow 0,X0,0, Fph
G_lines X,{1.5]X d_exponential L

A Stop graphic

G_end

The core of the experiment is the run through the following loop:

N-W draw a random value P from a (0,1)-uniform distribution. Raise the corresponding

pillar.

N-E compute PP as the inverted distribution function at P. Draw the line from (0,P) to
(PP,P) and from (PP,P) to (PP,0).

S-E raise the pillar of the histogram class containing PP.

refresh check, if refreshing is necessary. There is no way to avoid the destruction of the
graph by the drawing and deleting in the second step. The solution to the problem is
the refreshing after every fifth step.

Each window is processed in the same way.

1. Select the viewport.
2. Fix the window.

3. Compute and draw the new values — the graphic is built step by step.

The control of the loop is selfexplaining. (At least we hope so.)

(locpovern ) =
LZ2Z:2 2 G_setviewport 1 1
‘nxfnyfnxsnys'G_setwindow 0,Nuh,0,1
G_setcolor'white'
uh [i]euh [iv+/uk<P+UNIFORM 1]+1
00.051 1 G _bars 1 2p(0.5x+/uk{i,i+1]),uh[i]
2 2 G_setviewport 1 2
'nxfnyfnxsnys'G_setwindow 0,X0,0,1
XX+2 4p(eps+0),P,(PP-eps),P,PP,{P-eps),(PP+P i_exponential L), 0+eps

st
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G_singlelines XX

G_setcolor'black’

G.singlelines XX

G.setcolor'white'

2 2 G_setviewport 2 2
‘nxfayfnxsnys'G_setwindow 0, X0,0, Nph
phlileph [i+201+/pk<PP]+¥X0h
(0,X0h,1)G_bars 1 2p(0.5x+/pk[i,i+1]),ph[i]
~LOx10#56|T

2 2 G_setviewport 1 2
‘nxfnyfnxsnys'G_setwindow 0,X0,0,1
G_hlines 0 ¢ G_vlines O

G.lines XY

LO:+L2Z % N2T+T+1

The Function DRAW_EXPO is almost complete. We only have to declare some more

variables to be local.

( Local Variables of DRAN_EXPO ) + =
P,PP, XX

7 Writing a Paper Not a Program

This section is meant as a first proof of the before mentioned statement: you do not have
to be a computer scientist to use your computer effectively when teaching statistics. What
we will demonstrate here might be put under the heading APL and literate programming.
For those who are not familiar with D.E. Knuth’s idea of literate programming we would
mention his paper [7]: Literate programming in The Computer Journal 1984. But we believe
the main ideas and the flavour of this approach will become clear in the sequel. Instead of
lecturing about literate programming let us practice literate programming. To this end let
us discuss a small statistical problem. Talking about the problem and its solution will be

done in a mixture of natural language, mathematical language and APL.

1. a-trimmed mean. As we all know the mean Z is quite sensitive regarding “outliers”. Observations z,
whose absolute value differ widely from all other observations tend to disturb the interpretation of # as a
measure of location for the bulk of chservations.

If one wants to stick to this — in one way reasonable — interpretation one has to get rid of these outliers
before % is calculated.

The so called a-trimmed mean is one possibility to do this. The idea is quite simple. Remove the «
percent smallest and the « percent largest observations from the data set. Then the mean is calculated as
usual.

An APL-function which achieves this shall be developed. The value of « is the left argument, right.

argument is the vector of observations. As an explicit result the calculated a-lrimmed mean is returned.

V rvalpha trimmean x |
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See also section 2.

2. The body of the function can be outlined quite easily.
I. Sort x in ascending or descending order.
2. Drop a percent of the observations on either end.
3. Calculate the mean of the remaining part.

This boils done to the following program steps.
V+ rvalpha trimmean x 1
(sort x 3}

{trimx  4)

{mean x 5)

3. Thanks to the powerful APL-language (e.g. 4) the coding is almost no problem. At first let us do the

sorting

(sort x 3) =
xex[dx]

This code is used in section 2.

4. now the trimming step

(trimx  4) =
x+ni(-n+lalphaxpx)ix

This code is used in section 2.

5. and last but not least the calculation of the mean.

{meanx 5) =
re(+/x)+px

This code is used in secticn 2.

6. We did not pay any attention to the special structure of x, we just assumed that x is a data vector.
But one thing we ought to do is to clean up our environment. So let us make as many variables local as
possible.

{Local Variables of trimmean(1) 6)

]

n

We hope everybody will agree that this small paper inside our papcr is a clear discussion
of a statistical method and its implementation. (We would confess that there still is room
for criticism based on personal taste etc.) So it should be no problem to implement the
outlined function. But if it is such an easy task — everything what can be said and should

be said has been said — why not let a friendly ghost do the work.

,.ﬂ#ﬁ e
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Wouldn’t it be nice to find somewhere a file containing the described function. To
transfer this code into an APL-workspace then should be no problem  just think of OFX.
Here is the magic file.

rvalpha trimmean x;n

a Initially declared in WEB-file <trimmean.web>>, line 22

A Main WEB-file <work.web>

Av trimmean: 1

a6 n

a2, 3:

x+-x (hx]

A:3, 4

x+~nd(-n+alphaxpx)ix

A :4, 5

{+/x)+px

a5, 2

T0_expand

A Main WEB-file: work.web

How was this achieved? The structure of the system we use let us call it APLWEB-

system — is made explicit in the following picture.

The APLWEB-system

weave idea.tex ¥ paper

Orx

' idea.web

tangle ™ idea.apl

.
(workspace

The starting point is the WEB-file incorporating our ideas. This is the file we create -
using an editor which can handle more than one code table. The ideas are expressed in

natural language. mathematical language, graphical language, etc. whatever is appropriate.
We may include as many commands to a formatter — our choice is TEX — as we wish. The

APLWEB-system can be controlled by just a few commands. Those used in the small example

are:
@%* starts a main section
@, starts a section

@< starts a top level description, must be closed by @>.

V starts function definition mode.
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There are some more. But as it is not our main theme to introduce the APLWEB-system for
APL we will not go further into the details. Hopefully it was sufficient to give an impression
of this terrific tool. If the reader cannot understand how he managed to live without WEB

up to now, we were successful. We would like to praise our colleague Christoph v. Basum
(1] for this byproduct of his Ph.D.-thesis.
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