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Abstract

Context. Modern cosmology relies on the assumption of large-scale isotropy and homogeneity of the Universe. However, locally the
Universe is inhomogeneous and anisotropic. So, how can local measurements (at the ∼ 102 Mpc scale) be used to determine global
cosmological parameters (defined at the ∼ 104 Mpc scale)?
Aims. We connect the questions of cosmological backreaction, cosmic averaging and the estimation of cosmological parameters and
show how they relate to the issue of cosmic variance.
Methods. We use Buchert’s averaging formalism and determine a set of locally averaged cosmological parameters in the context of
the flat Λ cold dark matter model. We calculate their ensemble means (i.e. their global value) and variances (i.e. their cosmic variance).
We apply our results to typical survey geometries and focus on the study of the effects of local fluctuations of the curvature parameter.
Results. We show that in the context of standard cosmology at large scales (larger than the homogeneity scale and in the linear
regime), the issue of cosmological backreaction and averaging can be reformulated as the issue of cosmic variance. The cosmic
variance is found largest in the curvature parameter. We propose to use the observed variance of cosmological parameters to measure
the growth factor.
Conclusions. Cosmological backreaction and averaging are real effects that have been measured already for a long time, e.g. by the
fluctuations of the matter density contrast averaged over spheres of a certain radius. Backreaction and averaging effects from scales in
the linear regime, as considered in this work, are shown to be important for the precise measurement of cosmological parameters.
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1. Introduction

How do inhomogeneities in the matter distribution of the
Universe affect our conception of its expansion history and our
ability to measure cosmological parameters? Typically, these
measurements rely on the averaging of a large number of in-
dividual observations. In an idealised situation we can think of
them as volume averages. To give an example, the power spec-
trum, which is the Fourier transformed two-point correlation
function, may be seen as a volume average with weight eikx.
Measurements of the properties of the large scale structure rely
on the observation of large volumes that have been pushed for-
ward to ever higher redshifts in the last decade, from the two
degree Field survey (2dF, Colless et al. (2001)) over the Sloan
Digital Sky Survey (SDSS, Abazajian et al. (2009)) to the cur-
rent WiggleZ (Drinkwater et al., 2010) and Baryon Oscillation
Spectroscopic Survey (BOSS, Eisenstein et al. (2011)).

A theorem by Buchert states that the evolution of any
volume-averaged comoving domain of an arbitrary irrotational
dust Universe may be described by a Friedmann-Lemaı̂tre model
(Buchert, 2000, 2001). The consequences of this fact have been
studied extensively in perturbation theory (Kolb et al., 2005; Li
& Schwarz, 2007, 2008; Brown et al., 2009a,b; Larena, 2009;
Clarkson et al., 2009) and for non-perturbative models (Marra
et al., 2007; Kainulainen & Marra, 2009; Räsänen, 2008). Apart
from the ongoing debate to what extent the global evolution is
modified due to backreaction effects from small-scale inhomo-
geneities (Räsänen, 2004; Ishibashi & Wald, 2006; Kolb et al.,
2006; Wiegand & Buchert, 2010), Li & Schwarz (2008) showed
that the measurement of cosmological parameters is limited by

uncertainties concerning the relation between observable locally
and unobservable globally averaged quantities.

In contrast to the well studied cosmic variance of the cos-
mic microwave background, most relevant at the largest angular
scales, the theoretical limitation on our ability to predict obser-
vations at low redshift arises not only from the fact that we ob-
serve only one Universe, but also from the fact that we sample a
finite domain (much smaller than the Hubble volume). Both lim-
itations contribute to the cosmic variance. This is different from
the sampling variance due to shot noise, i.e. the limitation of the
sampling of a particular domain due the finite number of SN or
galaxies observed. In the era of precision cosmology, the errors
due to cosmic variance may become a major component of the
error budget.

The purpose of this work is to demonstrate that the questions
of cosmic averaging, cosmological backreaction, and the issues
of cosmic variance and parameter estimation are closely linked.
We demonstrate that cosmic variance is actually one of the as-
pects of cosmological backreaction.

There have already been many studies on the effect of the
local clumpiness on our ability to measure cosmological param-
eters. However, those focused mainly on the fluctuations in the
matter density and on the variance of the Hubble rate. The for-
mer question has gained renewed interest in view of deep red-
shift surveys such as GOODS (Giavalisco et al., 2004), GEMS
(Rix et al., 2004) or COSMOS (Scoville et al., 2007). As the
considered survey fields are small, the variance of the matter
density is an important ingredient in the error budget and it has
been found to be in the range of 20% and more, demonstrated
empirically in SDSS data Driver & Robotham (2010) and calcu-
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lated numerically from linear perturbation theory in Moster et al.
(2010).

The variance of the Hubble rate has been considered in the
setup of this work, i.e. first order linear perturbation theory in
comoving synchronous gauge, in Li & Schwarz (2008). A calcu-
lation of the same effect in Newtonian gauge has been performed
in Clarkson et al. (2009) and Umeh et al. (2010); the two meth-
ods agree. Calculations of the fluctuations in the Hubble rate due
to peculiar velocities alone, have a longer history (Kaiser, 1988;
Turner et al., 1992; Shi et al., 1996; Wang et al., 1998).

There has been less activity in studying the effects of the
third important player besides number density and Hubble ex-
pansion: cosmic curvature. Even if the Universe is spatially flat,
as expected by the scenario of cosmological inflation and consis-
tent with the observations of the temperature anisotropies of the
cosmic microwave background, the local curvature may be quite
different. To answer the question how big this difference actually
is for realistic survey volumes, we extend the analysis of Li &
Schwarz (2007, 2008), where these effects have been estimated
for the first time. For the spatially flat Einstein-de Sitter (EdS)
model, the averaged curvature parameter ΩD

R
has been shown to

deviate from zero by ∼ 0.1 on domains at the 100 Mpc scale.

Here we adapt the analysis of Li & Schwarz (2008) to the
case of a ΛCDM universe, introduce a more realistic power spec-
trum and use observationally interesting window functions, not
restricted to full sky measurements.

There has been quite some confusion about the choice of
gauge and the dependence of the averaged quantities on it.
Recently it has been shown (Gasperini et al., 2010) that this is
not an issue if one consistently works in one gauge and then ex-
presses the quantity that is finally observed also in this frame.
This is easier in some gauges than in others, but the result is (as
expected) the same, as is also confirmed explicitly by the fact
that our results are consistent with those of Clarkson et al. (2009)
and Umeh et al. (2010), obtained in Newtonian gauge. The quest
for simplicity explains our choice to use comoving synchronous
gauge, as this is the frame that is closest to the one used by the
observers.

Fig. 1 depicts the theorists and the observers view on the uni-
verse in a schematical way. It points out that in the end it is the
average quantities that we are interested in, but that in an inter-
mediate step, observers like to think of the objects they measure
to lie in a comoving space with simple Euclidian distances. The
comoving synchronous gauge that has a clear notion of today
for a fluid observer sitting like we in a galaxy, helps to define the
things observers measure in a simple way.

In Section 2 we lay down the conceptual framework for the
study of effects of inhomogeneities on observable quantities.
Section 3 and 4 generalize some of the results of Li & Schwarz
(2007, 2008); Li (2008) from an EdS to a ΛCDM background
and implement a more realistic matter power spectrum. Section 5
investigates the effects of various window functions, extending
again the analysis of Li & Schwarz (2008); Li (2008). Section 6
concentrates on deriving the magnitude of curvature fluctuations
for realistic window functions. Section 7 applies the formalism
to the local distance measure DV , determined in the observation
of baryonic acoustic oscillations (BAO). Section 8 is a remark on
a link between the variance of averaged expansion rates at dif-
ferent epochs and the background evolution, before we conclude
in Section 9.

Figure 1. Comparison of the theorist and observers view on
the universe. Our calculation in comoving synchronous gauge
makes it easier to describe the boundaries of the experimentally
investigated regions in our Universe.

2. Inhomogeneity and expansion

We assume that the overall evolution of the Universe is described
by a flat ΛCDM model, which we adopt as our background
model throughout this work. Global spatial flatness does not pre-
vent the local curvature to deviate from zero.

The distribution of nearby galaxies indicates that the scales
at which the Universe is inhomogeneous reach out to at least
100 Mpc. Above these scales it is not yet established if there is a
turnover to homogeneity, as was claimed in Hogg et al. (2005),
or if the correlations in the matter distribution just get weaker
but persist up to larger scales, as is discussed in Labini (2010).
At least morphologically, homogeneity has not been found up to
scales of about 200 Mpc (Kerscher et al., 1998, 2001; Hikage
et al., 2003).

So at least for the description of the local expansion we
need a formalism that is applicable in the presence of inho-
mogeneities. This may be accomplished considering spatial do-
mains D and averaging over their locally inhomogeneous ob-
servables (Buchert, 2000, 2001). Technically one performs a
3+1 split of spacetime. As we will consider pressureless mat-
ter only, we choose a comoving foliation in which the spatial
hypersurfaces are orthogonal to the cosmic time. This means
that the formalism will not be able to take into account light-
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cone effects, and thus is adapted for not too large spatial re-
gions of the universe. The equations then describe the evolu-
tion of the volume of the domain D, given by |D|g :=

∫
D

dµg,
where dµg := [(3)g (t, x)]1/2d3x and (3)g is the fully inhomoge-
neous three–metric of a spatial slice.

To obtain an analogy to the standard Friedmann equations,
one defines an average scale factor from this volume

aD (t) :=
(
|D|g

|D0|g

) 1
3

, (1)

where the subindex 0 denotes today, as throughout the rest of
this work. The definition implies aD0 = 1. In analogy to the
background model HD := ȧD/aD.

The scalar parts of Einstein’s equations for an inhomoge-
neous matter source then become evolution equations for the
volume scale factor

3
äD
aD

= −4πG 〈%〉D + QD + Λ, (2)

3H2
D = 8πG 〈%〉D −

1
2
〈R〉D −

1
2
QD + Λ, (3)

0 = ∂t 〈%〉D + 3HD 〈%〉D . (4)

The expansion of the domain D is determined by the average
matter density, the cosmological constant, the average intrinsic
scalar curvature 〈R〉D and the kinematical backreaction QD. The
latter encodes the departure of the domain from a homogeneous
distribution and is a linear combination of the variance of the
expansion rate and the variance of the shear scalar. The average
used in these equations is defined as

〈 f 〉D (t) :=

∫
D

f (t, x) dµg∫
D

dµg
. (5)

Equations (2) to (4) mean that the local evolution of any in-
homogeneous domain is described by a set of equations that cor-
responds to the Friedmann equations.

The cosmic parameters, defined by

ΩDm :=
8πG
3H2
D

〈%〉D , ΩDΛ :=
Λ

3H2
D

, (6)

ΩD
R

:= −
〈R〉D

6H2
D

, ΩD
Q

:= −
QD

6H2
D

,

are domain dependent. Due to the fluctuating matter density, also
the curvature and the average local expansion rate will fluctu-
ate. When we constrain ourselves to the perturbative regime, the
modification due to QD is important on scales of the order of 10
Mpc (Li & Schwarz, 2008).

Here we are interested in how much the values of the param-
eters (6), vary if we look at different domains of size D in the
Universe. For an ergodic process, this is the same as the vari-
ance of an ensemble average over many universes containing the
domainD. In our case this ensemble average is taken over quan-
tities that are volume averages. This means that for any observ-
able O there are two different averages involved. The domain
averaging, 〈O〉D, and the ensemble average, O. For compact no-
tation we will also use OD := 〈O〉D for the volume average of a
particular domain and OD for its expectation when an ensemble
of domains is considered. We assume that both averaging proce-
dures commute.

The fluctuations are then characterized by the variance with
respect to the ensemble averaging process,

σ (OD) :=
(
O2
D
− OD

2
) 1

2
. (7)

To quantify these fluctuations, we use the theory of cosmological
perturbations. In Li & Schwarz (2007) it has been shown that
to linear order, the QD–term in equations (3) and (2) vanishes.
〈%〉D, 〈R〉D and HD however, have linear corrections.

Furthermore, Li (2008) argued that there is no second or-
der contribution to the fluctuations for Gaussian density per-
turbations, if their linear contributions is finite. This may be
seen by decomposing the observable O into successive orders
O = O(0) + O(1) + O(2) + · · ·. It is usually assumed that O(1) = 0.
Now, for Gaussian perturbations only terms of even order give
rise to non-trivial contributions. Therefore, (7) may be expressed
as

σ (O) =

√(
O(1))2

1 +

(
O(2))2

−
(
O(2)

)2
+ 2O(1)O(3)

2
(
O(1))2

 , (8)

which shows that the correction to the leading order linear term
is already of third order. This is why we content ourselves for the
evaluation of the fluctuations in the parameters 〈%〉D, 〈R〉D and
HD or ΩDm , ΩD

R
and HD to a first order treatment. This argument

does not apply if
(
O(1))2

= 0, as is the case for QD. In that case
QD and σ(QD) are of second order in perturbation theory.

3. Cosmological parameters and their mean from
local averaging

The analysis of this work is based on standard perturbation the-
ory in comoving (synchronous) gauge and we use results and
notation of Li & Schwarz (2007). The perturbed line element

ds2 = a2 (η)
{
−dη2 +

[(
1 − 2ψ(1)

)
δi j + Di jχ

(1)
]

dxidx j
}

(9)

defines the metric potentials ψ(1)(η, x) and χ(1)(η, x). Below we
use the convention a0 = 1 for today’s scale factor. We use
conformal time η and the traceless differential operator Di j =

∂i∂ j −
1
3δi j∆ on a spatially flat background. The geometrical

quantities of interest are the local expansion rate and the spa-
tial curvature. The former follows from the expansion tensor and
reads

θ =
3
a

(
a′

a
− ψ(1)′

)
, (10)

where ()′ stands for the derivative with respect to conformal
time. Calculating the spatial Ricci curvature from the above met-
ric yields

R =
12
a2

(
2

a′

a
ψ(1)′ + ψ(1)′′

)
. (11)

By the covariant conservation of the energy momentum tensor,
ψ(1) is related to the matter density contrast

δ (η, x) :=
ρ(1)

ρ(0) (12)

by

ψ(1) =
1
3
δ − ζ̄ (x) , (13)
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with ζ̄ (x) denoting a constant of integration. This constant plays
no role in the following, as θ and R involve only time derivatives
of ψ(1).

For dust and a cosmological constant, Einstein’s equations
give the well known relation

δ′′ +
a′

a
δ′ =

4πGρ(0)
0

a
δ, (14)

at first order in perturbation theory. For the ΛCDM model the
solution reads [see, e.g. Green et al. (2005)]

δ (a, x) =
D (a)
D (1)

δ0(x), (15)

where δ0 (x) is the density perturbation today. D (a) is the growth
factor given by

D (a) = a 2F1

(
1,

1
3

;
11
6

;−ca3
)
, with c ≡

ΩΛ

Ωm
(16)

and 2F1 is a hypergeometric function. In the following we denote
today’s value of the growth factor by D0 ≡ D (1).

Plugging this solution into (10) and using (13), we find the
local expansion rate

1
3
θ(a, x) = H0

√
Ωm

a3

√
1 + ca3

(
1 −

1
3

f (a) δ (a, x)
)
, (17)

expressed in terms of the growth rate

f (a) :=
d ln D (a)

d ln a
=

5 a
D(a) − 3

2
(
1 + ca3) . (18)

From (11) we find the local spatial curvature

R(a, x) = 10
1
a2 H2

0Ωm
δ0(x)
D0

. (19)

From these quantities we could define local Ω functions,

Ωm (a, x) =
1

1 + ca3

[
1 +

(
1 +

2
3

f (a)
)
δ (a, x)

]
, (20)

ΩR (a, x) = −

[
1

1 + ca3 +
2
3

f (a)
]
δ (a, x) , (21)

ΩΛ (a, x) =
ca3(

1 + ca3) [
1 +

2
3

f (a) δ (a, x)
]
, (22)

ΩQ (a, x) = 0, (23)

demonstrating that the importance of curvature effects grows
proportional to the formation of structures. A remarkable prop-
erty is that

∑
Ωi(a, x) = 1 holds not only for the FLRW back-

ground, but also at the level of perturbations. For linear pertur-
bations the kinematic backreaction term does not play any role,
but becomes important as soon as quadratic terms are consid-
ered.

Let us now compare these local quantities with the domain-
averaged expansion rate and the spatial curvature (Li & Schwarz,
2008). We reckon from the definition of the average 〈〉D in (5)
that, in principle, fluctuations in the volume element dµg have
to be taken into account. Writing dµg = Jd3x with the func-
tional determinant J = a3

(
1 − 3ψ(1)

)
, the average over the per-

turbed hypersurface agrees with an average over an unperturbed
Euclidean domain〈

O(1)
〉
D

=

∫
D

O(1)Jdx∫
D

Jdx
'

∫
D

O(1)dx∫
D

dx
=:

〈
O(1)

〉
, (24)

if we restrict our attention to linear perturbations.
We express domain-averaged quantities in terms of the vol-

ume scale factor aD, because we assume that the measured red-
shift in an inhomogeneous universe is related to the average scale
factor. This has been advocated by Räsänen (2009), where the
relation

(1 + z) ≈ a−1
D (25)

has been established. Note that in principle one would have to
introduce averaging on some larger scale thanD to connect this
background average on some domain B to the redshift. For the
sake of simplicity, and because we content ourselves with small
redshifts, we use the same domain D. This limits the validity of
the result to small redshifts.

In order to relate a and aD we start from

HD =
1
3
〈θ〉D =

ȧD
aD

=
1
a

a′
D

aD
=

1
a

(
a′

a
−

〈
ψ(1)′

〉)
. (26)

To first order this relation gives

aD = a
(
1 −

1
3

(
〈δ (a)〉D − 〈δ (1)〉D

))
. (27)

We finally obtain the averaged Hubble rate

HD = H0

√
Ωm

a3
D

√
1 + ca3

D

1 − 5 aD
D(aD) − 3 D0

D(aD)

6(1 + ca3
D

)
D(aD)

D0
〈δ0〉D

 (28)

and the averaged spatial curvature

〈R〉D = 10 Ωm
H2

0

a2
D

〈δ0〉D

D0
. (29)

For later convenience we also define the function

fD (aD) :=
5 aD

D0
− 3

2(1 + ca3
D

)
, (30)

which is our modified version of the growth rate of Eq. (18),
multiplied by D (a) /D0. It basically encodes the deviation of the
time evolution of the Hubble perturbation from the time evolu-
tion of the ensemble averaged Hubble rate

HD (aD) = H0

√
Ωm

a3
D

√
1 + ca3

D
, (31)

as may be seen from the resulting expression

HD = HD (aD)
(
1 −

1
3

fD (aD) 〈δ0〉D

)
. (32)

In the Einstein-de Sitter limit (c→ 0 and Ωm → 1) we arrive
at

HD =
H0

a3/2
D

(
1 −

1
3

aD 〈δ0〉D

)
, (33)

〈R〉D = 10
H2

0

a2
D

〈δ0〉D . (34)

In order to compare this with the results of Li & Schwarz (2007,
2008), we define the peculiar gravitational potential ϕ (x) via

∆ϕ (x) ≡ 4πGρ(1)a2 =
3
2

H2
0
δ

a
=

2
3

1
t2
0

δ

a
(35)

4
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and obtain

HD =
2

3t0
a−3/2
D

[
1 −

1
2

aDt2
0 〈∆ϕ〉

]
(36)

and

〈R〉D =
20
3

a−2
D 〈∆ϕ〉 . (37)

While our results agree for the spatial curvature, HD is differ-
ent from the result in Li & Schwarz (2008), because there the
assumption a � 1 was made when applying (27).

Let us now turn to the dimensionless ΩD-parameters. To first
order, they may be expressed as

ΩDm (aD) =
1

1 + c a3
D

[
1 +

(
1 +

2
3

fD (aD)
)
〈δ0〉D

]
, (38)

ΩD
R

(aD) = −

 1
1 + c a3

D

+
2
3

fD (aD)
 〈δ0〉D , (39)

ΩDΛ (aD) =
c a3
D

1 + ca3
D

[
1 +

2
3

fD (aD) 〈δ0〉D

]
, (40)

ΩD
Q

(aD) = 0. (41)

When taking the limit D → 0 in Eqs. (38) – (41), we recover
the point-wise defined Ω-parameters defined in Eqs. (20) – (23).
This provides a self-consistency check of the averaging frame-
work.

From the expressions for the ΩD-parameters one can eas-
ily calculate the ensemble averages and the ensemble variance.
〈δ0〉D = 0, since the domain-averaged overdensity ofD, in gen-
eral non-zero, averages out when we consider a large number of
domains of given size and local density fluctuations drawn from
the same (Gaussian) distribution.

Here we adopt the common view that linear theory is a
good description of the present universe at the largest observable
scales (which has been questioned recently in Räsänen (2010)).
We then find the ensemble average of the curvature parameter
ΩD
R

to vanish. For the matter density parameter Eq. (38) yields

ΩDm (aD) =
(
1 + c a3

D

)−1
. (42)

This may be used to verify, that the relation ΩDm + ΩD
Λ

= 1 holds.

In addition, this relation implies that ΩDm
(
aD0

)
corresponds to

today’s background matter density parameter:

ΩDm
(
aD0

)
= Ωm + O

(〈
δ2

0

〉
D

)
. (43)

However, this is true at first order in the density contrast only,
as in this case ensemble averages agree with background quan-
tities. At higher orders, the ensemble averages differ from the
background quantities.

4. Variances of locally averaged cosmological
parameters

After having convinced ourself that the expectations of the av-
eraged ΩD-parameters are identical to their ΛCDM background
values up to second order corrections, we now turn to the study
of their ensemble variances.

All variances of domain averaged cosmological parameters
can be related to the variance of the overdensity of the matter
distribution, σ

(
〈δ0〉D

)
.

In order to specify 〈δ0〉D, we introduce the normalized win-
dow function WD (X) and write

〈δ0〉D =

∫
R3
δ0 (x) WD (x) d3x

=

∫
R3
δ̃0 (k) W̃D (k) d3k, (44)

A tilde denotes a Fourier transformed quantity. With the defini-
tion of the matter power spectrum

δ̃0 (k) δ̃0 (k′) = δDirac (
k + k′

)
P0 (k) , (45)

where δDirac denotes Dirac’s delta function, the ensemble vari-
ance of the matter overdensity becomes

(σD)2 := σ2 (
〈δ0〉D

)
=

∫
R3

P0 (k) W̃D (k) W̃D (−k) d3k. (46)

For a spherical window function, this expression is the well
known matter variation in a sphere, often used to normalize the
matter power spectrum by fixing its value for a sphere with a
radius of 8h−1Mpc (σ8). To calculate this variance we assume
a standard ΛCDM power spectrum in the parametrization of
Eisenstein & Hu (1998). Knowing σD at a particular epoch of
interest, we can calculate all the fluctuations in the cosmic pa-
rameters. They read:

δHD =
1
3

HD (aD) fD (aD)σD , (47)

δΩDm = ΩDm (aD)
(
1 +

2
3

fD (aD)
)
σD , (48)

δΩD
R

= ΩDm (aD)

1 +
2
3

fD (aD)

ΩDm (aD)

σD , (49)

δΩDΛ = ΩD
Λ

(aD)
2
3

fD (aD)σD , (50)

δΩD
Q

= O
(
(σD)2

)
, (51)

where δOD denotes the square root of the variance, δOD :=
σ (OD). ΩDm , HD and fD (aD) were defined in Eq. (42), (31) and
(30) and ΩD

Λ
= 1 −ΩDm .

These variances are the minimal ones that one can hope to
obtain by measurements of regions of the universe of size D.
They do not include any observational uncertainties, nor biasing
or sampling issues. They are intrinsic to the inhomogeneous dark
matter distribution that governs the evolution of the Universe.

Equations (47) to (51) are interesting in two respects: Firstly,
our expression for δHD is simpler than the one in Umeh
et al. (2010), nevertheless both results agree with each other.
Secondly, Eqs. (47) to (51) quantify the connection between
fluctuations in cosmological parameters and inhomogeneities in
the distribution of matter. If we choose ”today” as our reference
value, (47) to (50) allow us to predict the domain averaged cos-
mological parameters:

HD = H0 ±
1
3 H0 fD0 σD0

ΩDm = Ωm ± Ωm

(
1 + 2

3 fD0

)
σD0

ΩD
R

= 0 ±
(
Ωm + 2

3 fD0

)
σD0

ΩD
Λ

= ΩΛ ±
2
3 ΩΛ fD0 σD0

(52)

with

fD0 ≡ fD
(
aD0

)
=

Ωm

2

(
5D−1

0 − 3
)
≈

{
0.5 ΛCDM
1.0 EdS , (53)
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Figure 2. The two survey geometries considered (separately). A
simple cone with one single opening angle α and a slice given
by two angles β and γ.

where we assumed Ωm = 0.3 for ΛCDM. More generally, for
Ωm > 0.1, fD0 may be approximated by (Lahav et al., 1991;
Eisenstein & Hu, 1998)

fD0 ≈
1

140

(
2 + 140 Ω4/7

m −Ωm −Ω2
m

)
. (54)

From the knowledge of σD we may therefore easily derive
the variation of cosmological parameters. To make contact to
real surveys, we elaborate in the next section, on how to calculate
σD for several survey geometries.

5. The Effect of the survey geometry

Observations of the universe are rarely full sky measurements
and typically sample domains much smaller than the Hubble vol-
ume. We therefore must address the issue of the geometry of the
survey. Effects from a limited survey size are in particular im-
portant for deep fields, as studied for example in Moster et al.
(2010). While in their case, for small angles and deep surveys,
approximating the observed volume by a rectangular geometry
is appropriate, it probably is not for the bigger survey volumes
that we have in mind.

We therefore choose two different geometries that resemble
observationally relevant ones. Firstly, we use a simple cone with
a single opening angle α. The second geometry is a slice de-
scribed by two angles β and γ for the size in right ascension and
declination respectively. In the radial direction we assume a top
hat window, whose cut off value corresponds to the depth of the
survey. Both shapes are shown in Fig. 2.

To calculateσD for both geometries, we use a decomposition
into spherical harmonics. This allows us to derive an expression
for the expansion coefficients in terms of a series in cos (2nα) for
the cone and a similar one for the slice, depending on trigono-
metric functions of β and γ. The radial coefficients are calculated
numerically using the ΛCDM power spectrum of Eisenstein &
Hu (1998), including the effect of baryons on the overall shape
and amplitude of the matter power spectrum, but without baryon
acoustic oscillations.

All plots use best-fit ΛCDM values as given in Komatsu et al.
(2011); Ωb = 0.0456, Ωcdm = 0.227 and ns = 0.963. The power
spectrum is normalized to σ8 = 0.809.

To ensure that the result of our calculation for the slice-
like geometry and a standard ΛCDM power spectrum is reason-
able, we compare it with an analysis of SDSS data by Driver

Volume Hh0.7
3 Mpc3L

Σ
D

in
%

Figure 3. The variance of the matter density,σD, as a function of
the observed domain volume. Data are derived from the SDSS
main sample by Driver & Robotham (2010). The dashed (red)
line shows the fit of Driver & Robotham (2010) to the data,
the solid (green) line is our result including the sample variance
[solid (blue) line at the bottom].

& Robotham (2010). In Fig. 3 we show this comparison of
their r.m.s. matter overdensity σD obtained from the SDSS main
galaxy sample, in terms of its angular extension (and hence the
volume). The dashed line going through the points shows their
empirical fit to the data. The solid green line shows our result for
the cosmic variance of a slice with respective angular extension
(for β = γ), plus their sample variance. Note that our result is not
a fit to SDSS data, but is a prediction based on the WMAP 7yr
data analysis. Additionally, the real SDSS window function is a
bit more complicated than our simplistic window, thus perfect
agreement is not to be expected.

For the full SDSS volume, σD is shown in Fig. 4. For com-
parison we also added the smaller, southern hemisphere 2dF sur-
vey and a hypothetical full sky survey. For the two surveys, we
assume an approximate angular extension of 120°×60° for SDSS
and for the two fields of the 2dF survey 80°×15° and 75°×10°.
The ongoing BOSS survey corresponds to the plot for the SDSS
geometry as it will basically have the same angular extension. As
it will target higher redshifts it is however not in the range of our
calculation. As a rough statement (the precise value depends on
the redshift) one may say that the 2dF survey is a factor of 5 and
the SDSS survey a factor of 2.5 above the variance of a full sky
survey. This is interesting as the SDSS survey covers approxi-
mately only 1/6 of the full sky and the 2dF survey only 1/20.
This is due to the angular dependence of σD. We find that fluc-
tuations drop quickly as we increase small angles and flattens at
large angles.

From Fig. (4) we see that the cosmic variance of the matter
density for the SDSS geometry is 5% at a depth of z ≈ 0.08 and
still 1% out to z ≈ 0.23. Note however that, the extension of
the domain of (spatial) averaging to a redshift of 0.35 is clearly
not very realistic as lightcone effects will become relevant with
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Figure 4. The variance of the matter density, σD, for survey ge-
ometries resembling the 2dFGRS, the SDSS and a hypothetical
full sky survey as a function of maximal redshift considered. We
find that the determination of the local σD below redshifts of
0.1 (corresponding to ∼ 400 Mpc) is fundamentally limited by
cosmic variance to the 1% level.

increasing extension of the domain. The assumption that this
domain would be representative for a part of the hypersurface
of constant cosmic time becomes questionable. We expect how-
ever, that in this range, evolution effects will only be a minor
correction to the result presented here.

Finally it should be noted, that for large volumes the actual
shape of the survey geometry is not very important. As long as
all dimensions are bigger than the scale of the turnover of the
power spectrum, the deviation of the cosmic variance for our
shapes, compared to those of a box of equal volume, is at the
percent level. To get this result, we compared σD for the slice
like geometry to its value for a rectangular box of the same vol-
ume. We use a slice for which β = γ. The box is constructed
to have a quadratic basis and the same depth as the slice in ra-
dial direction. Therefore the base square of the box is smaller
than the square given by the two angles of the slice. The result
of this comparison is, that the deviation of σrect

D
from the value

for the slice is at most 6% for angles above β ≈ 10°. For smaller
angles the deviation gets bigger and redshift dependent. This is
due to the changing shape of the power spectrum at small scales.
The large angle behaviour confirms an observation of Driver &
Robotham (2010). They found that the cosmic variance in the
SDSS dataset was the same for both of the two geometries they
considered.

6. Fluctuations of the curvature parameter

After the general study of the effect of the shape of the observa-
tional domain D on σD0 , one may ask for which parameter the
fluctuations are most important.

The three lowest lines in the plot of Fig. 5 show, that this
is the case for the curvature fluctuations. The two lowest lines,
showing the fluctuations δΩm and δHD0/HD0 for the full sphere,
lie a factor of 1.6 and 3.8 resp. below the resp. curvature fluctu-
ations δΩD

R
. Therefore the fluctuations of Ωm play a smaller role

for all universes with Ωm < 1. The uncertainty in HD0 , which has
been in the focus of the investigations so far (Shi et al. (1996);
Li & Schwarz (2008); Umeh et al. (2010)), contributes even less
to the distortion of the geometry as we shall discuss in Section 7.

Figure 5. The top three lines show the expected r.m.s. fluctuation
of the curvature parameter, δΩD

R
, for geometries resembling the

2dFGRS, the SDSS and a full sky. The two lowest lines are the
expected r.m.s. fluctuations of the parameters Ω

D0
m and HD0 for

a full sky survey extending to the respective redshift. The curva-
ture fluctuations turn out to be larger than all other fluctuations.

What this means for real surveys, like the 2dF or the SDSS
survey, is shown by the three upper lines in Fig. 5. They compare
δΩD
R

for the slices observed by these surveys to the one of a full
sky measurement. δΩD

R
is bigger than one percent up to a redshift

of 0.18 for the SDSS and 0.28 for the 2dF survey and it does not
drop under 0.001 for values of z as large as 0.5. This may seem
very small, but it has been shown that getting the curvature of the
universe wrong by 1h already affects our ability to measure the
dark energy equation of state w (z) (Clarkson et al. (2007)). Of
course one has to keep in mind that for large redshifts one has
to be careful with the values presented here as they are based
on the assumption that the observed region lies on one single
spatial hypersurface. As this approximation gets worse when we
go beyond a redshift of 0.1, there may be additional corrections
to the size of the fluctuations stemming from lightcone effects.

To investigate the curvature fluctuations for more general ge-
ometries, we show in Fig. 6 the angular and radial dependence
of the curvature fluctuation δΩD

R
(α) for the cone-like window of

Fig. 2.
On the l.h.s. of Fig. 6 we evaluate the angular dependence.

For a survey that goes only up to a redshift of 0.1, the fluctuations
are still bigger than 0.01 for a half sky survey. It is interesting to
note that for a deeper survey, δΩD

R
(α) grows much faster when

α is reduced than for a shallow survey. This is because σD (R)
changes from a relatively weak R−1 decay to a R−2 decay on
larger scales. For the z = 0.35 case, this latter behaviour domi-
nates and a decrease in α increases σD (R, α) stronger than in the
R−1 regime.

On the r.h.s. of Fig. 6 we show the dependence of δΩD
R

on the survey depth for some opening angles of the cone-like
window. For small windows the fluctuation in ΩD

R
stays large,

even beyond the expected homogeneity scale of 100h−1Mpc. For
R = 200h−1Mpc and a 6° window, for example, it is still at
δΩD
R
≈ 0.2. For smaller beams these fluctuations persist even out

to much larger distances. Therefore they play an important role
for deep field galaxy surveys as shown in Moster et al. (2010);
Driver & Robotham (2010) for the matter density fluctuations.
But even for larger angles, fluctuations in curvature persist on
sizeable domains. If one recalls that the distance given for the

7
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Figure 6. The cosmic variance of the curvature parameter. Left panel: Dependence of δΩD
R

on the opening angle of the cone-like
survey geometry of Fig. 2 for different top hat depths of the survey. Right panel: Dependence of δΩD

R
on the depth of the survey.

For a small cone of 6° opening angle we expect curvature fluctuations of 10% up to 450h−1Mpc.

full sphere of 360° is its radius, this means that regions in the
universe as big as 540h−1Mpc have typical curvature fluctuations
of order 1%. This is actually not that small as the last scattering
surface at z ≈ 1100 is only 9600h−1Mpc away. One of these
regions therefore fills more than 5% of the way to that surface.

To put these values into perspective, we compare the
WMAP 5yr confidence contours (Komatsu et al., 2009) on the
curvature parameter with the ones that may in principle be de-
rived from the 2dF or the SDSS survey in Fig. 7. As they only
sample a finite size of the universe one cannot be sure that this
value is really the background value and not only a local fluctu-
ation. The cosmic variance induced by this finite size effect is,
for the 2dF survey volume up to z ≈ 0.2, shown by the two sec-
ond largest (red) ellipses. The two innermost (blue) ones depict
the minimal possible error using the SDSS survey volume up to
z ≈ 0.3. It becomes clear that the determination of ΩD

R
may per-

haps be improved by a factor of two if one was to eliminate all
other sources of uncertainty. This may be less if lightcone effects
play a non negligible role already for z ≈ 0.3.

Fig. 8 shows the dependence of the curvature fluctuation on
the considered cosmology. For this study we fix the spectral in-
dex and the normalization of the spectrum to ns = 0.963 and
σ8 = 0.809 respectively. We vary each of the other parameters
one after another, while keeping the remaining ones fixed to the
concordance values. We use the SDSS geometry out to a redshift
of z = 0.09 as a reference value at which we conduct this inves-
tigation, as the concordance values lead to a δΩD

R
of 0.01 for this

configuration. Interestingly enough, the dependence on the Ωm
parameter is very weak. So the value does not differ much for
the flat ΛCDM model and the EdS model. This is surprising, be-
cause the prefactor of σD in (49) changes by a factor of 3 from
about 5/11 for ΛCDM to 5/3 for EdS. This rise, however, is com-
pensated by a drop of the value of σD. The reason for this drop
is, that a higher Ωm leads to more power on small scales. As we
keep the integrated normalization fixed by a given value of σ8,
this means less power on large scales, i.e. at z = 0.09. Also a
variation of the Hubble constant h and the baryon fraction fb has
only a small effect around the concordance value. Only for more
extreme values of fb and h, δΩD

R
changes significantly.

0.4 0.5 0.6 0.7 0.8 0.9
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

WL
D

W
RD

Figure 7. Minimal confidence contours in ΩD
Λ

and ΩD
R

achiev-
able in different volumes due to fluctuations of matter. The green
(outermost) ellipses are the 95% and 60% contours for the vol-
ume from which the HST data are drawn. The next inner (red)
ones are for a survey of the size of the 2dF survey up to z = 0.2.
In the middle there is a small double ellipse in blue showing the
values for the SDSS volume up to z = 0.3. The background im-
age depicts the results from WMAP 5 (Komatsu et al. (2009)).
They give the experimental values and uncertainties on these pa-
rameters for a combination of various experimental probes.

7. Fluctuations of the acoustic scale

Let us now turn to the effect of fluctuations due to inhomo-
geneities on the local distance estimates. An important distance
measure, recently used in BAO experiments, is DV . It was intro-
duced in Eisenstein et al. (2005) and mixes the angular diameter
distance and the comoving coordinate distance to the BAO ring.
It is measured through the BAO radius perpendicular to the line
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Figure 8. Dependence of δΩD
R

on some cosmological parame-
ters for a spherical domain extending to z = 0.09. The basis is
the ΛCDM model with Ωb = 0.0456, Ωcdm = 0.227, h = 0.7,
ns = 0.963 and σ8 = 0.809. For this model and for the cho-
sen redshift, δΩD

R
≈ 0.01. We then vary Ωm = Ωb + Ωcdm,

fb = Ωb/Ωm and h between 0 and 1, holding the other param-
eters fixed at their aforementioned values. As σ8 is fixed, the
fluctuation in ΩD

R
is nearly independent on Ωm.

of sight r⊥ and the comoving radius parallel to the line of sight
r‖.

rbao :=
(
r‖r2
⊥

) 1
3

= DV (z) ∆θ2 ∆z
z

(55)

One can, therefore, determine the distance DV to the correspond-
ing redshift, if the comoving radius of the baryon ring rbao is
known. This may be achieved by a measurement of the angle of
the BAO ring on the sky ∆θ and its longitudinal extension ∆z/z.
The precise definition of DV is derived from the expressions of
the comoving distances r‖ and r⊥:

r‖ =

z+∆z∫
z

c
H(z′)

dz′ ≈
c∆z
H(z)

=
cz

H(z)
∆z
z
, (56)

r⊥ = (1 + z) DA(z)∆θ, (57)

from which we find

DV (z) =

(
cz

H(z)
D2

M(z)
) 1

3

, (58)

where DM is the comoving angular distance

DM(z) = c
( √

ΩkH0

)−1
sinh

( √
ΩkI (z)

)
, (59)

with

I(z) =

z∫
0

H0

H(z′)
dz′. (60)

As already mentioned above, the term ΩD
Q

vanishes in our first
order treatment and the curvature contribution scales as a−2

D
.

Therefore we may express the Hubble rate as

HD(z)
HD0

=
[
(1 + z)3ΩD0

m + (1 + z)2Ω
D0
R

+ (1 −ΩD0
m −Ω

D0
R

)
] 1

2 , (61)

Figure 9. Errors on the distance DV for various survey geome-
tries as a function of maximal redshift. For comparison the error
induced by the finite number of BAO modes in the correspond-
ing full sphere volume, calculated with the fitting formula of
Seo & Eisenstein (2007), is shown (insufficient volume). This
error is about a factor of 10 bigger than the error from the lo-
cal volume distortion due to inhomogeneities that we calculated.
Adding a shot noise term, corresponding to a galaxy density of
n = 3 × 10−4h3Mpc−3 typical for SDSS and BOSS, we find that
the cosmic variance of DV is a subdominant contribution to the
error budget.

where we assumed the relation between redshift and average
scale factor of Eq. (25). We may now calculate the fluctuation
of DV ,

δr‖
r‖

=
δHD0

HD0

+

∣∣∣∣∣∣∣1 − (1 + z)2

2

H2
D0

HD(z)2

∣∣∣∣∣∣∣ δΩD0
R

+

∣∣∣∣∣∣∣1 − (1 + z)3

2

H2
D0

HD(z)2

∣∣∣∣∣∣∣ δΩD0
m (62)

δr⊥
r⊥

=
δDM

DM0

=
δHD0

HD0

+

∣∣∣∣∣∣ I(z)2

6
+

I′(z)
I(z)

∣∣∣∣∣∣ δΩD0
R

+

∣∣∣∣∣ I′(z)
I(z)

∣∣∣∣∣ δΩD0
m (63)

δDV

DV
=

1
3
δr‖
r‖

+
2
3
δr⊥
r⊥

(64)

where I′(z) denotes a partial derivation with respect to the re-
spective parameter, i.e. Ω

D0
R

or Ω
D0
m . Note that I′(z) and I(z) are

evaluated on the background (ΩD0
R

= 0 and Ω
D0
m = Ωm).

We evaluate the magnitude of the fluctuations in DV , based
on the cosmological parameters of the concordance model, as
presented in Fig. 9. Fluctuations as small as one per cent are
reached for much smaller domains than for the cosmic variance
of the Ω-parameters. Thus, at first sight it might seem that the
BAO measurement of DV could essentially overcome the cosmic
variance limit. Closer inspection of this result reveals that this is
not the case. In fact the much smaller variation of the distance
DV means that a precise knowledge of the distance measure DV
does not lead to an equivalently good estimate of the cosmic
parameters.

That the systematic uncertainty that we calculated is only
a minor effect, compared with the errors intrinsic to the actual
measurement of the acoustic scale, becomes clear from the com-

9
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parison of the three solid (green) lines of Fig. 9. The lowest one
is the fluctuation of the scale DV for full spheres of the cor-
responding size at different places in the universe. It is there-
fore the possible local deformation due to statistical over- or
underdensities. The possible precision of a measurement of DV
by BAOs, however, depends also on the number of observable
modes. This induces an error if the volume is too small, and in
particular when it is smaller than the BAO scale a reasonable
measurement is no longer possible. So even for a perfect sam-
pling of the observed volume, the error will not be smaller than
the solid (green) lines in the middle. If one adds shot noise due to
imperfect sampling by a galaxy density of n = 3×10−4h3Mpc−3,
typical for SDSS and BOSS, the error increases further. This
means that for the realistic situation where we do not have a suf-
ficiently small perfect ruler, to allow for large statistics already
for the small volumes considered here, the deformation uncer-
tainty that we calculated remains completely subdominant.

8. Fluctuations of the Hubble scale

Local fluctuations of the Hubble expansion rate have already
been considered in the literature (Turner et al., 1992; Shi et al.,
1996; Wang et al., 1998; Umeh et al., 2010). Here we wish to
add two new aspects.

The first one is on the measurement of H(z) itself.
Experiments that try to measure H as a function of z, like the
WiggleZ survey (Blake et al., 2011), do this by measuring a “lo-
cal” average H(zm) in a region around the redshift zm. These re-
gions should not be too small in order to keep the effects of local
fluctuations small. On the other hand they cannot be enlarged in
an arbitrary way as then the redshift zm becomes less and less
characteristic for the averaging domain. In other words, for a
thicker and thicker shell ∆z, the evolution of H(z) begins to play
a role. Therefore, one may find the optimal thickness of the av-
eraging shells over which the variation in the expansion rate

Var [H(z)] =
1

VD

∫
H[z(r)]2WD (r) d3r

−

(
1

VD

∫
H[(z(r)]WD (r) d3r

)2

(65)

equals the variance imposed by the inhomogeneous matter distri-
bution. The corresponding shells are shown in Fig. 10. It should
be noted that the error for the first bin is certainly underesti-
mated in our treatment which rests on linear perturbation the-
ory. Taking into account higher orders, that become dominant at
small scales, will certainly increase it. Of course, in these mea-
surements the survey geometries will not necessarily be close to
the SDSS or the 2dF geometry, but they are shown to illustrate
survey geometries that do not cover the full sky.

Secondly, we wish to note that the relation between fluctua-
tions in the Hubble expansion rate and fluctuations in the matter
density offers the interesting possibility to determine the evo-
lution of the growth function for matter perturbations from the
variances of the Hubble rate measured at different redshifts. A
direct measurement of the growth function by a determination of
σ8 at different epochs is difficult, as one never examines the un-
derlying dark matter distribution. Therefore one has to assume
that the observed objects represent the same clustering pattern
as the underlying dark matter (this is the issue of bias). It is well
known that there is bias and its modelling typically has to rely
on assumptions.

An interesting bypass is to look at the variation of local ex-
pansion rates at different redshifts. The assumption, that the lu-
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Figure 10. Optimal thickness of shells to minimize the variance
of H (z) (see text for the two competing effects). The respective
error corresponds to the height of the bars, the shells necessary
for this purpose to their width.

minous objects follow the local flow, is more likely and the as-
sumption that this local flow is generated by the inhomogeneities
of the underlying dark matter distribution is also reasonable. A
similar idea leads to the attempt to use redshift-space distortions
to do so (Percival & White, 2009). The fact that one considers
fluctuations means that we would not have to know the actual
value of H (z), but only the local variation at different redshifts.

This variation, defined as

δH =
HD − HD(aD)

HD(aD)
, (66)

has the fluctuations of Eq. (47)

σ (δH) =
1
3

HD (aD) fD (aD)σD . (67)

If we were to measure this quantity at different redshifts we
could without knowledge of the absolute normalization of HD (z)
only from the variance determine fD (aD) and therefore the con-
stant c = ΩΛ/Ωm.

Note that in the standard case, where the background redshift
is identified with the observed one, fD (aD) is simply replaced
by the growth rate f (a) =

d ln D(a)
d ln a and measuring the Hubble

fluctuations would yield a direct measurement of f . In the real
world where the redshift captures the structure on the way from
the source to us, it is not directly the background redshift. One
would rather measure the modified ”growth rate” fD (aD). The
difference between these two quantities is however small in our
range of validity for fD (aD) (corrections of linear order in the
perturbations).

9. Conclusion

For the first time, we brought together the well established per-
turbative approach to incorporate inhomogeneities in Friedman-
Lemaı̂tre models (the theory of cosmological perturbations) and
the ideas of cosmological backreaction and cosmic averaging in
the Buchert formalism. Focusing on observations of the large
scale structure of the Universe at late times, we show that the
cosmic variance of cosmological parameters is in fact the lead-
ing order contribution of cosmological averaging.

10
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We studied volume averages, their expected means and vari-
ances of the cosmological parameters H0,ΩR,Ωm,ΩΛ in this
work (ΩQ is of higher order in perturbation theory). The central
result of this work is summarized in (47)–(51).

Our extension of the backreaction study of Li & Schwarz
(2008) to the ΛCDM case enabled us to study fluctuations for
a wider class of cosmological models. We could confirm for
the fluctuations in the Hubble rate, that our results in comoving
synchronous gauge agree with the ones found in Poisson gauge
(Umeh et al., 2010).

The use of general window functions allowed us to consider
realistic survey geometries in detail and to calculate the fluctua-
tions in the matter density, empirically found in the SDSS data
by Driver & Robotham (2010), directly from the underlying DM
power spectrum. Converting this information into curvature fluc-
tuations, we found that regions of 540h−1Mpc diameter may still
have a curvature parameter of ∼ 0.01, even if the background
curvature vanishes exactly. We found that cosmic variance is a
limiting factor even for surveys of the size of the SDSS survey.
A volume limited sample up to a redshift of 0.5 could nail down
the local curvature to 0.1 per cent.

Finally we investigated the distortions of the local distance
to a given redshift and find that it is less affected by the fluc-
tuations of the local cosmic parameters than one might expect.
The distance measure DV , used in BAO studies, is accurate to
0.2 percent for samples ranging up to z ≈ 0.35. This means that
BAO studies are not limited by cosmic variance, rather by is-
sues as sampling variance and insufficient volume, as discussed
in section 7.

In a next step one should incorporate the second order effects
into the expected means of the cosmological parameters. There
are no second order corrections to the variances, as argued in
section 2. Thus a complete second order treatment seems feasi-
ble.

The limitation of our approach comes from the fact that
Buchert’s formalism relies on spatial averaging. Averaging on
the light cone would be more appropriate (Gasperini et al.,
2011), thus the study in this work has been restricted to redshifts
� 1, where we expect light cone effects to play a subdominant
role.
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