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Abstract 

Recent progress in sequencing technologies facilitates plant science experiments through the availability of 

genome and transcriptome sequences. Genome assemblies provide details about genes, transposable elements, 

and the general genome structure. The availability of a reference genome sequence for a species enables and 

supports numerous wet lab analyses and comprehensive bioinformatic investigations e.g. genome-wide 

investigations of gene families. After generating a genome sequence, gene prediction and the generation of 

functional annotations are the major challenges. Although these methods were improved substantially over the 

last years, incorporation of external hints like RNA-Seq reads is beneficial. Once a high-quality sequence and 

annotation is available for a species, diversity between accessions can be assessed by re-sequencing. This helps in 

revealing single nucleotide variants, insertions and deletions, and larger structural variants like inversions and 

transpositions. Identification of these variants requires sophisticated bioinformatic tools and many of them were 

developed during past years. Sequence variants can be harnessed for the genetic mapping of traits. Several 

mapping-by-sequencing approaches were developed to find underlying genes for relevant traits in crops. These 

genomic approaches are complemented by various transcriptomic methods dominated by a very popular RNA-Seq 

technology. Transcript abundance is measured via sequencing of the corresponding cDNA molecules. RNA-Seq 

reads can be subjected to transcriptome assembly or gene expression analysis, e.g. for the identification of 

transcripts abundance between different tissues, conditions, or genotypes. 
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Introduction 

The genome of an organism determines its phenotype by setting the range of variability for numerous traits. 

Environmental factors shape the phenotype within this predetermined range. Knowledge about the genome and 

genes of a species facilitates various biological research projects. Research on Arabidopsis thaliana (A. thaliana) 

Columbia-0 was boosted by the availability of the first plant genome sequence [1]. The transcriptome of an 

organism reveals which parts of the genome are ‘active’ at a certain point in time, under specific conditions, and in 

a defined cell type. Since the nucleic acid types DNA and RNA have very similar biochemical properties, the 

investigation of genome and transcriptome can be performed by similar methods. Both omics layers, genomics and 

transcriptomics, are easily accessible by analytic methods, because general biochemical properties of these nucleic 

acids are independent from the actual sequence. The intention of this chapter is 1) to describe genomics and 

transcriptomics workflows which are commonly used in plant research, and 2) to list frequently deployed 

bioinformatic tools for the analysis steps (Fig. 1).  

Sequencing technologies 

Existing sequencing technologies can be grouped into different generations based on their key properties. 

However, there is disagreement in the literature about this classification system and the assignment of 

technologies to different generations [2–9]. Here, we distinguish between three generations: I) Sanger chain 

termination sequencing and Maxam Gilbert sequencing as first generation sequencing technologies, II) Roche/454 

pyrosequencing, IonTorrent, Solexa/Illumina, and Beijing Genomics Institute (BGI) sequencing as second 

generation sequencing technologies, and III) Single molecule real time sequencing (Pacific Bioscience, PacBio) and 

nanopore sequencing (Oxford Nanopore Technologies, ONT) as third generation sequencing technologies. 

Technical details of these sequencing technologies were reviewed elsewhere [2,4,7,8,10–12]. 

Since the invention of chain termination sequencing [13,14], substantial technological advances paved the way for 

cost reductions. Therefore, broad application of high throughput sequencing [2] and more recently long read 

sequencing technologies [15] became possible.  Sanger sequencing generates a single read per sample, while other 

technologies produce large amounts of reads per sample and are hence crucial for many genome sequencing 

projects. Length of reads produced from Roche 454 pyrosequencing and IonTorrent is comparable to Sanger 

sequencing, but have reduced accuracy. Nevertheless, For years, Illumina has been dominating the market for high 

throughput sequencing with substantially short reads due to high accuracy and low costs of sequencing 

technology. The BGI became a serious competitor during past years and is now offering the generation of similar 

sequencing data-sets based on its own technologies. While Illumina sequencing platforms are distributed all 

around the globe, BGI sequencing technology is exclusively available in China. 

Paired-end sequencing provides the opportunity to analyze two ends of the same molecule. Overlapping reads; 

e.g. 2x300nt, can be merged, thus leading to a total length of up to 500 nt. Sophisticated approaches like TrueSeq 

synthetic Long-Reads [16] were developed to maximize the read length of second generation technologies up to 

several thousand nucleotides. Mate pair reads provide information about the distance of both reads in addition to 

the mere sequences of both reads.  In mate pair sequencing technique, long DNA fragments are modified at their 

ends, circularized, and fragmented. Fragments with marks are enriched and finally sequenced as paired-end 

libraries. The size of the initial fragments determines the distance of the two generated reads and can thus be 

considered valuable linkage information during genome assembly processes. 

 



 

Fig.1: Selected genomics and transcriptomics workflows in plant sciences. These workflows are deployed in many 

studies in plant research and the listed tools can be applied to perform the displayed steps. Several alternative and 

additional tools are listed within this chapter. 

 



However, length of reads generated from mate-pair sequencing is inferior to those generated by Oxford Nanopore 

Technologies (ONT) and Pacific Biosciences. From ONT, the longest sequenced DNA molecule has been reported to 

be over 2 Mbp till date [17] and the longest single reads is close to 1 Mbp [18]. Dropping sequencing costs and the 

rise of long read technologies enabled sequencing projects for numerous plant species [19–21]. Nevertheless, 

short reads are still valuable in projects; e.g. RNA-Seq or re-sequencing projects, where a high number of tags is 

more important than the read length.  

In addition to generating extremely long reads at low costs, ONT also provides the first portable sequencers, 

namely MinION and Flongel, that can be deployed in field applications [22,23]. Sequencing in the field opens up 

opportunities, to monitor pathogens in the field accurately [24] and to assess the biodiversity [23]. Real time base 

calling and the start of downstream analysis before completion of a sequencing run are beneficial when decisions 

are time critical [25]. Moreover, it also allows researchers to stop the sequencing process once sufficient data is 

generated and to commit the remaining sequencing capacity to other projects [26]. 

Genomics 

Genome assembly 

Quality control and preprocessing. Quality checks via FastQC [27] or MultiQC [28] are usually the first steps to 

assess the quality of sequencing data. Next, reads need to be preprocessed prior to a de novo assembly, while this 

is not necessary for other applications like read mapping. Low quality sequences and remaining adapter fragments 

are removed during the trimming process, e.g. by trimmomatic [29]. Removal of adapter sequences is especially 

important for de novo genome assemblies, because these sequences can occur in independent reads and cause 

the miss-join of random sequences into contigs. 

Assembly concept. A read can only represent a fraction of a complete genome sequence. Hence, intense manual 

work or the application of sophisticated bioinformatic tools is necessary to reconstruct complete genome 

sequences based on sequence reads [30–32]. Initial sequencing projects involved the cloning of genomic fragments 

into vectors like bacterial artificial chromosomes (BACs) prior to sequencing. Genome sequences were generated 

by sequencing several BACs consecutively and combining the BAC sequences almost manually. 

Second generation genome assemblies. Especially, the rise of high throughput sequencing methods caused a shift 

from manually curated BAC‑based high continuity genome sequences towards whole genome shotgun draft 

assemblies. Dedicated assemblers were developed to harness the full potential of the available data types, for 

example combinations of paired-end and mate-pair data. SOAPdenovo2 [33], ALLPATHS-LG [34], Platanus [35], and 

the proprietary CLC assembler [36] are examples for tools which were successfully deployed for the assembly of 

plant genomes, but there are also many alternatives (Table 1). Modification of parameters, especially k-mer sizes, 

should be optimized empirically [37–40]. In addition, the best combination of data from multiple sequencing 

libraries and sequencing technologies needs to be identified. After the generation of contigs in the assembly 

process, the information of mate pair and paired-end data-sets can be used to connect contigs to scaffolds without 

knowing the sequence enclosed between contigs of a scaffold. While some assemblers provide this functionality, 

dedicated tools like SSPACE [41] are available. Next, gaps between contigs within a scaffold can be partially closed, 

e.g. via GapFiller [42] or Sealer [43]. The reduced sequencing costs allowed the assembly of plant genome 

sequences by single groups [44], but most genome sequences were highly fragmented. More recently, the 

proprietary NRGene assembler (DeNovoMAGICTM) and the competing open source alternative TRITEX [45] are 

promising substantially improved assemblies.  

 



Table 1: Assembler for second generation sequencing data. This table is an incomplete list of tools that can be 

applied for the de novo plant genome assembly based on second generation sequencing data. 

Name Availability Link Reference 

CLC Licence required https://www.qiagenbioinformatics.com/products/clc-
main-workbench 

[36] 

SOAPdenovo2 Binary available https://github.com/aquaskyline/SOAPdenovo2 [33] 

Velvet Installation required https://github.com/dzerbino/velvet [46] 
ALLPATHS-LG Installation required http://software.broadinstitute.org/allpaths-

lg/blog/?page_id=12 
[34] 

Ray Installation required http://denovoassembler.sourceforge.net [47] 

Newbler Installation required http://sequencing.roche.com [11] 
MaSuRCA Installation required https://github.com/alekseyzimin/masurca [48] 
SGA Installation required https://github.com/jts/sga [49] 
Platanus Installation required http://platanus.bio.titech.ac.jp [35] 

 

Third generation genome assemblies. The assembly situation changed again when long reads became available, 

thus enabling the generation of high continuity genome assemblies for numerous plant species with moderate 

effort [50–53]. The technological boost on the sequencing side caused an explosion in the development of novel 

assemblers and read correction tools which can handle noisy long reads efficiently (Table 2). FALCON [54], Canu 

[55], Flye [56], Miniasm [57], and wtdbg2 [58] are examples for frequently applied assemblers. Depending on the 

sequencing coverage and repeat content, the computational costs of assemblies can be high. Several hundred CPU 

hours, some hundred GB of RAM, and several TB of disc space are often required to assemble plant genomes. 

Assembled contigs can be joined into scaffolds based on additional information like genetic linkage [51,59], optical 

mapping information, e.g. from Bionano Genomics and OptGen [60–62], and Hi-C [60,63,64]. Genetic linkage can 

rely on molecular markers measured in the lab [51] or on sequencing of multiple individual plants of a segregating 

population by a high throughput method [59]. Optical mapping is a size estimation of large DNA fragments which 

are generated by enzymatic restriction digest and cut site specific coloring with fluorescent dyes. Hi-C measures 

the 3D distances of genomic loci and assumes that neighboring sequences are also likely to be co-located in 2D. 

Due to the high error rate in long reads, raw assemblies require several polishing steps. Firstly, long reads are 

aligned for correction, e.g. via BLASR [65] and minimap2 [66]. Arrow [54] can be applied to polish assemblies based 

on PacBio reads, while nanopolish [67] is the best choice for ONT reads. Secondly, highly accurate short reads are 

mapped to the assembly to further correct the sequence in single copy regions. Paired-end or mate pair reads 

provide higher specificity during the mapping compared to single end reads. BWA-MEM [68] is a suitable read 

mapping tool and Pilon [69] can be used for the detection and correction of assembly errors. Iterative rounds of 

correction are possible. There is still an ongoing debate about the optimal number of polishing rounds that should 

be performed [55,70]. Since the most frequent error types are insertions/deletions, open reading frames are often 

affected by apparent frameshifts and premature stop codons. Therefore, the contribution of polishing approaches 

can be benchmarked based on an increase/decrease of frameshifts and premature stop codons in protein 

encoding genes. The optimal number of correction rounds can be determined by minimizing the number of these 

variants. 

Table 2: Third generation assembler. This table is an incomplete list of tools that can be applied for the de novo 

plant genome assembly based on third generation sequencing data. 



Name Availability Link Reference 

FALCON SMRT Link https://www.pacb.com/training/smrt-link-overview [54] 
Canu Installation required https://github.com/marbl/canu [55] 
Flye Installation required https://github.com/fenderglass/Flye [56]  
Miniasm Installation required https://github.com/lh3/miniasm [57] 
wtdbg2 Installation required https://github.com/ruanjue/wtdbg2 [58]  

 

Assembly validation. After combining reads into contigs, the correctness of these connections needs to be 

assessed. This assembly validation can be performed by mapping all reads back to the generated sequence, e.g. via 

BWA-MEM [68], and analyzing the distances of paired reads in this mapping, e.g. via REAPR [71]. Alternative 

approaches like implemented in KAT [72] inspect the assembly based on included k-mers. Most genome 

sequencing projects involve the generation of multiple assemblies with different tools and parameter settings. 

Selection of the best assembly can be challenging and criteria depend on the proposed research questions. The 

largest reasonable assembly, the assembly with the highest continuity, or the assembly resolving the highest 

number of genes might be of interest. Benchmarking Universal Single‑Copy Orthologs (BUSCO) [73] is a frequently 

applied method to assess the assembly completeness and correctness. The underlying assumption is that all 

benchmarking genes should appear exactly once in the assembly. Different benchmarking sets exist for different 

taxonomic groups [74]. Due to a large phylogenetic distance to other sequenced species, this might not be 

perfectly accurate for the species of interest. However, the detection of single copy and complete genes is a good 

indicator for a high quality assembly. High numbers of duplicated BUSCOs can indicate separated haplophases. 

Recently, DOGMA [75] was released as an alternative tool for the analysis of sequence set completeness which 

also comes with an online version (https://domainworld-services.uni-muenster.de/dogma). 

Gene prediction 

After generation and polishing of an assembly, the prediction of genes is often the next step. Besides protein 

encoding genes, there are also various RNA genes, transposable element genes, and numerous repeats which 

should be annotated as part of a genome project. In general, predictions are distinguished into I) intrinsic 

approaches, which rely only on sequence properties, and II) extrinsic approaches, which harness sequence 

similarity to previously annotated sequences to transfer annotation. However, frequently applied tools are 

designed to harness the power of both approaches (Table 3). AUGUSTUS [76,77] and GeneMark derivatives [78–

81] can predict genes ab initio without any external information. BUSCO can be applied to generate parameter files 

for this gene prediction process by assessing the gene structure of BUSCO genes [82]. In contrast to these ab initio 

approaches, GeMoMa [83,84] combines external hints to construct a gene annotation based on sequence 

alignments. The exon intron structure of plant genes is posing a challenge to the gene prediction process, because 

tools need to account for interruptions of an open reading frame by on average four to five introns per gene [85]. 

Intron borders are often detected based on their conserved sequences: GT at the 5’ end and AG at the 3’ end. 

However, an average of at least 5% of all plant genes contains non‑canonical splice sites, i.e. deviations from the 

GT-AG combination [85,86]. Most gene prediction tools exclude non-canonical splice sites at least in the ab initio 

mode, because the number of possible gene models increases substantially when permitting many more possible 

intron positions. Therefore, external hints for intron positions are crucial to achieve an accurate prediction. If the 

identification of all isoforms of a gene is of interest, the accurate annotation of all exon intron borders is especially 

important. Expressed sequence tags (ESTs), contigs of a transcriptome assembly, or unassembled RNA-Seq reads 

can be aligned to the genomic sequence to generate hints. These sequences should originate from a broad range 

of different samples, e.g. collected under different environmental conditions, from different tissues, and different 

developmental stages. The accurate alignment of transcript sequences to an assembly requires dedicated tools to 



account for introns. While BLAT [87] can align long sequences, STAR [88,89] is well suited for the split alignment of 

RNA-Seq reads. Dedicated tools like exonerate [90] allow the alignment of previously annotated peptide 

sequences from other species. Resulting alignments can be converted into gene prediction hints. Annotation 

pipelines like MAKER2 [91], BRAKER1 [92], and Gnomon [93] can integrate the information from different hint 

sources with ab initio prediction. While the prediction of protein encoding parts of a gene works relatively well, the 

annotation of untranslated regions (UTRs) and other non-coding sequences is still associated with a higher 

insecurity [86,94,95]. Quality of the gene prediction process is in general not keeping pace with the rapid 

improvement of sequencing capacities and the frequent generation of highly contiguous assemblies [96]. 

Technological progress allows the systematic investigation of non-protein encoding genes; e.g. through RNA-Seq 

experiments committed to the analysis of short RNAs. INFERNAL [97] and tRNAscan-SE2 [98] are tools for the 

prediction of pure RNA genes. 

Masking of repeats, e.g. via RepeatMasker [99], is frequently performed prior to the prediction of protein encoding 

genes, but this can actually have almost no or even detrimental effects on the prediction accuracy of certain gene 

families [100]. Although transposable elements and other repeats account for the major proportion of many plant 

genomes [101,102], the annotation of repeats is often performed poorly or omitted completely [103–105]. There 

is a plethora of annotation tools like RepeatScout [106] and RepeatMasker [99]. Bioinformatic pipelines were 

developed to account for weaknesses of single tools and to combine the strengths of many individual tools [107–

109]. One major issue with the TE and repeat annotation is the lack of a universal benchmarking study which could 

hint to the best tool for certain purposes [105,110]. While the annotation of protein encoding genes can be 

checked for completeness based on BUSCO [73] and DOGMA [75,111], there is no such benchmarking data-set 

available for TEs. 

Table 3: Plant gene prediction tools. This table is an incomplete list of tools that can be applied for gene prediction 

on plant genome assemblies. 

Name Availability Link Reference 

AUGUSTUS Installation required https://github.com/Gaius-Augustus/Augustus [76] 
BRAKER1 Installation required https://github.com/Gaius-Augustus/BRAKER [92] 
GeneMark Installation required http://exon.gatech.edu/GeneMark/license_download.cgi [79–81] 
GeMoMa Jar file http://www.jstacs.de/index.php/GeMoMa [83,84] 
Gnomon Installation required ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT [93] 
MAKER2 Registration required https://www.yandell-lab.org/software/maker.html [91] 
SNAP Installation required https://github.com/KorfLab/SNAP [112] 

 

Application examples. Sequencing the genome of a plant species can provide insights into specific adaptations to 

local environmental conditions. Crucihimalaya himalaica is distributed at high altitudes at the Himalaya and the 

genome sequence reveals a reduced number of pathogen response genes as well as an increased number of DNA 

repair genes as response to a reduced amount of pathogens and an increased UV exposure, respectively [111]. 

Re-sequencing and variant calling 

Once a suitable reference genome sequence is available, re-sequencing projects can by-pass the laborious and 

expensive assembly step. Reads can be mapped to a reference sequence to identify differences between 

individuals of the same species or even between closely related species. Since the re-sequencing dataset does not 

need to provide sufficient data for a de novo assembly, the costs for re-sequencing are low compared to the initial 

genome project. Re-sequencing of over 1,135 A. thaliana accessions revealed insights into the genomic diversity of 



this species [113]. Since accessions are adapted to local environmental conditions, this project can reveal insights 

into adaptation mechanisms. Sequencing data also advances the understanding of population structures, genomic 

diversity between accessions, and genome evolution. 

BWA-MEM [68] and bowtie2 [114] are frequently applied tools for the mapping of reads to a reference sequence 

(Table 4). The removal of PCR duplicates is necessary to avoid introducing a bias into following coverage analyses 

or variant callings. PCR duplicates are reads originating from a DNA fragment, which was amplified by PCR during 

the sequencing library preparation step. Functions like MarkDuplicates of Picard tools [115] allow the identification 

and removal of reads or read pairs originating from identical PCR products. This removal can be based on identical 

read sequences or identical positions in the mapping to a reference sequence. The detection of copy number 

variations depends on the equal representation of all genomic parts in the reads. PCR duplicates could cause the 

identification of false positive duplications by producing a high numbers of identical reads which could display an 

apparent variant caused by a PCR error in an early amplification step. The identification of sequence variants is 

sensitive to PCR duplicates, because a certain number of reads displaying a variant is frequently used as filter 

criteria to remove false positive variant calls. 

Table 4: Read mapping tools. This table is an incomplete list of tools which can be applied to map reads from 

second generation sequencing technologies against a reference sequence. While some tools are suitable for the 

continuous alignment of DNA reads, others can generate split alignments for RNA-Seq reads. 

Name Availability Link DNA/RNA Reference 

BWA-MEM Installation 
required 

https://github.com/lh3/bwa DNA [68] 

Bowtie 2 Installation 
required 

https://github.com/BenLangmead/bowtie2 DNA [114]  

GEM 3 Installation 
required 

https://github.com/smarco/gem3-mapper DNA [116] 

bbmap Jar file available https://sourceforge.net/projects/bbmap DNA [117] 
Novoalign Trial available http://www.novocraft.com/products/novoalign DNA [118] 
NextGenMap Installation 

required 
https://github.com/Cibiv/NextGenMap DNA [119] 

MAQ Installation 
required 

http://maq.sourceforge.net/maq-man.shtml DNA [120] 

RMAP Installation 
required 

https://github.com/smithlabcode/rmap DNA [121] 

MOSAIK Installation 
required 

https://github.com/wanpinglee/MOSAIK DNA [122] 

segemehl Installation 
required 

https://www.bioinf.uni-
leipzig.de/Software/segemehl 

RNA [123] 

STAR Installation 
required 

https://github.com/alexdobin/STAR RNA [88] 

HISAT2 Binary available https://ccb.jhu.edu/software/hisat2/manual.shtml RNA [124] 

 

There are numerous tools for the detection of genomic differences based on a short read mapping (Table 5). 

Genome Analysis Tool Kit (GATK) [125,126], samtools/bcftools [127], and VarDict [128] can detect single 

nucleotide variations (SNVs) and small insertions/deletions (InDels). The rise of long read sequencing technologies 

added substantially to the sensitivity of the insertion/deletion detection. Moreover, it allows the identification of 

large scale structural rearrangements. GraphMap [129], marginAlign [130], and PoreSeq [131] can align long reads 

to a reference sequence to call variants. Other tools like SVIM [132] rely on alignments generated by dedicated 



long read aligners like minimap2 [66] or BLASR [65]. Identified variants can be subjected to downstream filtering; 

e.g. based on the number of supporting and contradicting reads. 

Table 5: Variant callers. This table is an incomplete list of tools which can be applied to identify sequence variants 

based on reads mapped against a reference sequence. While some tools are restricted to the identification of 

small variants, other can detect large structural variants. 

Name Availability Link Variants Reference 

DeepVariant Installation required https://github.com/google/deepvariant Small [133] 
GATK Jar file https://software.broadinstitute.org/gatk/downloa

d 
Small [125,126] 

SNVer Installation required http://snver.sourceforge.net Small [134] 
SAMtools Jar file http://samtools.sourceforge.net Small [127] 
VarDict Installation required https://github.com/AstraZeneca-NGS/VarDict Small [128] 
VarScan 2 Jar file http://varscan.sourceforge.net Small [135] 
LoFreq Binary available https://csb5.github.io/lofreq/installation Small [136] 
Platypus Installation required https://github.com/andyrimmer/Platypus Small [137] 
SOAPsnp Installation required https://sourceforge.net/projects/soapsnp Small [138] 
Atlas-SNP2 Installation required https://sourceforge.net/projects/atlas2 Small [139] 
FreeBayes Installation required https://github.com/ekg/freebayes Small [140] 
SVIM Installation required https://github.com/eldariont/svim Large [132] 
marginAlign Installation required https://github.com/benedictpaten/marginAlign Large [130] 
GraphMap Installation required https://github.com/isovic/graphmap Large [129] 
PoreSeq Installation required https://github.com/tszalay/poreseq Large [131] 

 

Once the variants are identified, it is possible to assign functional annotations. Established tools for this purpose 

are SnpEff [141] and ANNOVAR [142]. Based on the structural annotation of the reference sequence, SnpEff and 

ANNOVAR assign functional implications like “premature stop codon” or “frameshift” to single variants. Since 

these tools are predicting the effect for a single variant at a time, NAVIP [143] was developed for the integrated 

annotation of all variants within one coding sequence. NAVIP accounts for combined effects of neighboring 

variants, e.g. two short InDels which are both causing a frameshift on their own, but result in a few substituted 

amino acids when considered together. 

Mapping by sequencing 

Forward genetics. Forward genetics describes the genetic screening of mutants which have been isolated based on 

an outstanding phenotype [144]. Crossing a mutant with a wild type plant and selfing of the F1 offspring leads to a 

segregating F2 population. A large segregating population forms the basis for a forward genetics screen. Such a 

population contains members with the wild-type and mutant phenotypes, respectively. Except for the causal locus, 

the genotypes of this population should display a random distribution of alleles. Since this population is used for 

genetic mapping, it is called a mapping population. Genetic markers located near the causal mutation will co-

segregate with this mutation. As a result of this linkage between the causal locus and flanking markers, one allele 

of the flanking markers should be over-represented in the mutant plants. Due to a gradually decreasing linkage, 

the frequency of the coupled marker allele should drop when moving away from the causal locus. Therefore, the 

allele frequency can be used to pinpoint loci of interest. Originally, the identification of the location of the causal 

mutation in the genome of a mutant has been a long-lasting procedure requiring a high number of genetic 

markers. Once a target region has been identified, this region was screened for candidate genes. In order to 

validate the link between the assumed candidate gene and the expected phenotype, complementation 



experiments were frequently conducted. In following studies, the molecular function of the mutated gene was 

often elucidated. 

Next generation forward genetics. Technological advances in next generation sequencing enable the use of small 

sequence variants as genetic markers. Since these small sequence variants occur in large numbers, the resolution 

of the resulting genetic map is extremely high. Allele frequencies at all sequence variants are calculated for 

identification of genomic regions associated with the phenotype of interest [145]. First approaches used bulk 

segregant analysis (BSA), where DNA from the mapping population is pooled based on the phenotypes of 

individuals and then sequenced, i.e. one pool comprises the wild type allele of a certain locus and the other pool 

the mutant allele of the respective locus. Next, reads are mapped against a reference genome sequence to detect 

sequence variants. In the next step, allele frequencies for all small sequence variants are calculated. High allele 

frequencies can indicate linkage with the causal locus. This approach is also known as mapping-by-sequencing 

(MBS) and allows the fast and simple identification of causal mutations through allele frequency deviations [144]. 

Mutagenesis. Natural variation can provide mutants, but it is also possible to generate mutant plants via 

mutagenesis. DNA damaging agents deployed in these mutagenesis experiments can be classified as physical 

mutagens (e.g. gamma radiation and fast neutron bombardment) or chemical mutagens (e.g. ethyl 

methanesulfonate, diepoxybutane, sodium azide) [146]. In order to achieve maximal genetic variation with a 

minimum decrease in viability, mutagenic dosage and specific properties of the mutagen need to be considered 

[146]. High mutagenic dosages likely result in a high number of mutations in the individual genome, thus the high 

diversity around a causal mutation might impede the identification [144]. If a mutagen introduces large genomic 

rearrangements (e.g. deletions or translocation of large regions), the resulting mutation density is typically low 

compared to a mutagen, which causes predominantly single nucleotide variations. Furthermore, large genomic 

rearrangements might impede or even prevent the identification of the causal mutation by breaking apart a set of 

linked genes.  

Biological material. Mapping-by-sequencing (MBS) can be based on four different sets of biological material. A 

classical mapping population scheme was frequently used during the first MBS experiments. This involved 

outcrossing of mutagenized plants with diverged strains followed by one round of selfing to generate the mapping 

population [147,148]. Sequencing was performed on two genomic F2 pools of mutant and wildtype plants, 

respectively. Starting with A. thaliana, this method was rapidly applied to other model organisms [149,150]. An 

isogenic population is generated by crossing homozygous mutants with the non-mutagenized progenitor, resulting 

in segregation of subtle phenotypic differences in the F2 population [151]. Therefore, the only segregating genetic 

variation is that induced by mutagens. MBS is performed as described above. Homozygosity mapping uses only the 

genomes of affected individuals, originally in the context of recessive disease alleles in inbred humans [152]. In 

order to identify the causal homozygous mutation, the genomes are screened for regions with low heterozygosity. 

This approach enables MBS for species where a generation of a mapping population is not feasible [152,153]  and 

no prior knowledge about the parental alleles [154] or crossing history is needed [155]. Sequencing of individual 

mutant genomes [144] is an expensive, but even more powerful approach. Phenotyping errors can contaminate 

pools in MBS, but this approach allows an in silico pooling. 

Resolution and accuracy. In general, correct phenotyping of each individual of the mapping population is essential 

for the accuracy of MBS approaches. Contamination of the mapping population with incorrectly phenotyped 

individuals results in a larger mapping interval, thus complicating the identification of the causal mutation [156]. 

Therefore, the resolution of MBS depends on the sampling size of correctly phenotyped and genotyped individuals 

in the mapping population [144]. However, the resolution is only slightly affected by the number of backcrossed 

generations [157]. As with conventional methods (e.g. classic genetic markers), re-sequencing data can be used to 



fine map the trait(s) of interest in a crossing population [158]. The higher the number of recombinants analyzed, 

the narrower the final mapping interval. All variants can be considered as markers and thus the variant with the 

closest link to the trait hints towards the genomic position of the underlying locus. Due to the high marker density 

derived from natural polymorphisms in the recombinant mapping population, a stringent marker selection 

decreases the number of false-positive markers. However, at the same time the risk of excluding causal mutations 

increases, leading to a critical trade-off.  

Mapping-by-sequencing applications. SHOREmap demonstrated the applicability of MBS in A. thaliana [144,147]. 

Following projects applied MBS to various crop species including sugar beet [159], rice [151], maize [160], barley 

[161], and cotton [162]. Liu et al. applied a modification of MBS to maize for the identification of a drought 

tolerance locus: BSR-Seq [160]. BSR-Seq uses RNA-Seq reads for the identification of causal mutations without any 

prior knowledge about polymorphic markers. As a proof of concept, RNA-Seq was performed for the recessive 

glossy3 (gl3) mutation in a segregating F2 population. The gl3 gene encodes a putative R2R3 type myb 

transcription factor, which regulates the biosynthesis of very-long-chain fatty acids, which are precursors of 

epicuticular waxes. Rice seedlings lacking glossy3 show an extremely thick epicuticular wax on juvenile leaves. By 

using this alternative MBS approach the gl3 locus was mapped to an interval of approximately 2 Mb. In summary, 

mapping-by-sequencing is a powerful technique, which will lead to (crop) plants that are well adapted to biotic and 

abiotic stresses in the future. 

 

Transcriptomics 

RNA-Seq 

RNA-Seq, the sequencing of cDNAs, emerged as a valuable method for 1) gene expression analysis, 2) de novo 

transcriptome assembly, and 3) the generation of hints for the gene annotation. The Illumina sequencing workflow 

of cDNA is very similar to the sequencing of genomic DNA. Besides RNA-Seq, the direct sequencing of RNA became 

broadly available with ONT sequencing [163]. In addition, PacBio provides Iso-Seq to reveal the sequence of full 

length transcripts, which can facilitate gene annotation in plants [164]. 

Gene expression analysis. Short RNA-Seq reads replaced previous methods for systematic gene expression 

analyses like microarrays almost completely [165–167]. Without any prior knowledge about the sequence, the 

abundance of transcripts can be quantified [165,168,169], e.g. by generating a de novo transcriptome assembly 

based on the RNA-Seq reads (see below) [170,171]. RNA-Seq even allows to distinguish between different 

transcript isoforms of the same gene [165,168,169]. Saturation of the signal as observed for microarrays is no 

longer an issue as the number of reads is proportional to the transcript abundance [165,167]. Low amounts of 

samples can be analyzed and transcripts with low abundance can be detected, because a single read would be 

sufficient to reveal the presence of a certain transcript [165,172]. Transcript quantification can be performed 

based on alignments against a reference sequence, e.g. using STAR [88], or alignment-free, e.g. via Kallisto [173] 

(Table 6). Information about the transcript abundance can be subjected to downstream analysis like the 

identification of differentially expressed genes between samples e.g. via DESeq2 [174]. An alternative approach is 

the identification of co-expressed genes or the construction of co-expression networks as described in [175] and 

references therein.  

 



Table 6: RNA-Seq gene expression tools. This table is an incomplete list of tools related to RNA-Seq analyses. 

Some tools allow the quantification of transcript abundances, while others are involved in the statistical analysis of 

the resulting abundance values. 

Name Availability Link Function Reference 

featureCounts Binary 
available 

http://bioinf.wehi.edu.au/featureCounts/ Read counting [176] 

HTSeq Installation 
required 

https://htseq.readthedocs.io/en/release_0.11.1/ Read counting [177] 

Kallisto Installation 
required 

https://pachterlab.github.io/kallisto/about  [173] 

DESeq2 R package https://www.bioconductor.org/packages//2.12/
bioc/html/DESeq2.html 

Differential 
gene 
expression 
analysis 

[174] 

Limma R package https://bioconductor.org/packages/release/bioc
/html/limma.html 

Differential 
gene 
expression 
analysis 

[178] 

PIANO R package https://bioconductor.org/packages/release/bioc
/html/piano.html 

GO / pathway 
enrichment 
analysis 

[179] 

WEGO Online http://wego.genomics.org.cn/ GO 
enrichment 
analysis 

[180] 

gProfiler Online https://biit.cs.ut.ee/gprofiler/gost GO 
enrichment 
analysis 

[181] 

Mercator Online https://www.plabipd.de/portal/web/guest/merc
ator4 

Pathway 
analysis 

[182] 

MapMan Online https://plabipd.de/portal/mapman Pathway 
analysis 

[182] 

BioMart Online http://plants.ensembl.org/biomart/martview Pathway 
analysis 

[183] 

Plant 
Reactome 

Online https://plantreactome.gramene.org Pathway 
analysis 

[184] 

 

De novo transcriptome assembly. RNA-Seq reads contain comprehensive information about the transcript 

sequences. Therefore, a de novo assembly can be generated to reveal the sequences of transcripts present in the 

analyzed sample [185]. De novo transcriptome assemblies were frequently applied to discover candidate genes 

which are responsible for a certain trait of interest [170,186,187]. One of the most popular transcriptome 

assemblers is Trinity [188] which comprises three sequentially applied modules. Trinity performs an in silico 

normalization of the provided reads, i.e. identical reads are filtered out to achieve a similar coverage depth for all 

transcripts. Supplying stranded RNA-Seq reads, i.e. reads originating from a specified strand, enables to distinguish 

between reads originating from mRNAs and reads originating from regulatory antisense transcripts. Trinity 

performed well in benchmarking studies [189,190], but there are more tools that can be evaluated on a given data 

set (Table 7). Several transcriptome assemblers including Cuffllinks [191], Trinity [188], and StringTie [192] allow 

the integration of a genome sequence for reference-based or genome-guided assembly. 



After generation of an initial assembly, very short sequences as well as bacterial and fungal contamination 

sequences are usually filtered out based on sequence similarity to databases. Since no introns are included in 

assembled transcript sequences, the identification of protein coding regions can be performed by searching for 

open reading frames of sufficient length. ORFfinder [193], OrfPredictor [194], and Transdecoder [188] can perform 

this task. Collapsing very similar sequences is sometimes required and can be performed by CD-HIT [195,196]. 

Once a final set of sequences is identified, the assignment of a functional annotation is usually the next step. 

Sequence similarity to functionally annotated databases like swissprot [197,198] can be harnessed to transfer the 

functional annotation to the newly assembled sequences. InterProScan5 [199] assigns functional annotations 

including gene ontology (GO) terms and identifies Pfam domains. 

Table 7: De novo transcriptome assembly tools. This table is an incomplete list of tools which can be applied to 

generate plant transcriptome assemblies based on RNA-Seq data. 

Name Availability Link Reference 

Trinity Installation required https://github.com/trinityrnaseq/trinityrnaseq [188]  
rnaSPAdes Binary available http://cab.spbu.ru/software/rnaspades [200] 
SPAdes Binary available http://cab.spbu.ru/software/spades [201]  
Trans-ABySS Installation required https://github.com/bcgsc/transabyss [202] 
Bridger Installation required https://github.com/fmaguire/Bridger_Assembler [203] 
SOAPdenovo-Trans Installation required https://github.com/aquaskyline/SOAPdenovo-Trans [204] 
Oases Installation required https://github.com/dzerbino/oases [205] 
IDBA-Tran Installation required https://github.com/loneknightpy/idba [206] 
BinPacker Installation required https://github.com/macmanes-lab/BinPacker [207] 
Shannon Installation required https://github.com/sreeramkannan/Shannon [208] 
 

Gene prediction hints. Since RNA-Seq reads reveal transcript sequences, they can be incorporated in the 

prediction of genes. The alignment of RNA-Seq reads to a genome assembly indicates the positions of introns 

through gaps in the alignment. In addition, continuously aligned parts of RNA-Seq reads reveal exon positions. 

STAR [88] and HISAT2 [124] are suitable tools for the mapping of RNA-Seq reads. If reads are already assembled 

into contigs, exonerate [90] could be utilized to align transcript sequences to an assembly. Dedicated alignment 

tools also allow the incorporation of peptide sequences as hints by aligning the sequences of well annotated 

species against the new assembly. Examples for such peptide alignment tools are exonerate [90] and BLAT [87]. 

Future directions 

Recent developments in sequencing technologies enabled the cost-efficient generation of genome and 

transcriptome sequences for numerous plant species of interest [19,20]. Most of the traditional plant research 

already benefits from the availability of sequence information for the respective species of interest. This 

technological progress enables completely new research projects like comparative genomics of large taxonomic 

groups. Re-sequencing projects, which rely on a reference sequence for comparison, might be replaced by 

independent de novo genome assemblies for all samples of interest [20]. 

The availability of large sequence data-sets will also lead to more data-based studies which just re-use the existing 

sequence data-sets. These publicly available data-sets can be harnessed to answer novel questions which could 

not have been addressed before [85]. 



Availability of plant genome sequences can foster the research on and usage of orphan crops [209] and help during 

de novo domestication of crops [210]. Intensifying research activity in this field is especially important to cope with 

global warming and climatic changes. 
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