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ABSTRACT: Genome minimization ultimately leads to the smallest genome sustaining life of a
given cell, however, growth of this cell may be very slow and may require multiple
supplements e.g. to overcome amino acid auxotrophies. By contrast, genome reduction of
industrially relevant bacteria such as Corynebacterium glutamicum does not aim at generating
minimal cells. Rather chassis cells are developed that are as fit as the wild type with respect
to a target function: for example growth of C. glutamicum in glucose minimal medium. Thus,
a balance between reducing the burden of expressed genes while maintaining fast growth
with glucose without the requirement for supplements such as amino acids is required. Here,
the application of this concept to C. glutamicum is discussed. Moreover, an outlook on how
the advent of genome editing by CRISPR-Cas9 or CRISPR-Cpfl impacts genome reduction and
how highly parallel genome editing must be met by highly parallel strain characterization is
presented. Finally, metabolic engineering approaches for the overproduction of amino acids,
organic acids, terpenoids and diamines making use of genome-reduced C. glutamicum strains

are detailed.
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##.1 Corynebacterium glutamicum: one of the pillars of biotechnology

##.1.1 Role of C. glutamicum in the bioeconomy

It is believed that bioeconomy will play an important role in the world’s future. White
biotechnology, also known as industrial biotechnology, makes use of biotechnology for the
sustainable processing and production of chemicals, materials and fuel [1]. Corynebacterium
glutamicum is a central pillar of white biotechnology. C. glutamicum has a history of more
than fifty years of safe production of food and feed amino acids, an industrial process which
operates at the million-ton scale per annum [2] and shows a compound annual growth rate of
5.6% over 2017-2022 reaching US$25.6 billion by 2022 [3].

Strain development for C. glutamicum has embraced and driven technological development
in the classical [4-5], genetic engineering [6-7], systems biology [8], synthetic biology [2,9],
and systems metabolic engineering eras [2, 10-11]. Currently, this is obvious by the application
and further development of CRISPR interference [12], CRISPR-Cas9 [13] and CRISPR-Cpf1 [14]
genome editing and CRISPR multiplexing [15], biosensor-driven strain selection [16-22] and
flux control [23-24], new process concepts such as co-production [25] and synthetic consortia

[26] that have been applied to C. glutamicum.

##.1.2 C. glutamicum as host for a multitude of production processes

C. glutamicum has been engineered for the production of a broad spectrum of value-added
compounds including specialty amino acids [27-28] such as N-alkylated amino acids [29-31]
and omega-amino acids [32-35], diamines such as putrescine and cadaverine [36-37], organic
acids such as pyruvate [38], succinate [39-42], glutarate [43] and itaconate [44], alcohols such
as isobutanol [45-46] and n-propanol [47], aromatic compounds such as PHBA [48-50], 7-

chloro-L-tryptophan [51], phenylpropanoids [52] and anthocyanine [53], vitamins such as



pantothenate [54] and riboflavin [55], terpenoids such as patchoulol [56] and astaxanthin [57],
polymers such polyhydroxyalkanoates [58], hyaluronic acids [59], chondroitin [60] and
proteins [61-62]. To facilitate biorefinery applications a flexible carbon feedstock concept has
been realized for production processes from various second generation feedstocks without

competing uses in human and animal nutrition [63-64].

##.1.3 C. glutamicum genome and genome-scale tools

C. glutamicum possesses a single circular chromosome with 3.3 Mb [65-66] and more than
3,000 protein encoding sequences (CDS). Genome-scale methods have been developed early
[67-68]. Based on the complete genome sequence [65], genome-scale metabolic models were
reconstructed. The first genome-scale metabolic models followed the approach for the E. coli
genome-scale metabolic model [69] and comprised 446 and 502 reactions, respectively,
involving 441 and 423 metabolites, respectively [70-71]. The genome-scale model iEZ475
added balances for protons and water

(https://www.13cflux.net/models/Corynebacterium glutamicum/index.jsp) and contains

475 metabolic reactions involving 408 metabolites (340 intra- and 68 extracellular) that could
be grouped to central carbon metabolism (about 42 reactions), amino acid synthesis (about
110 reactions) as well as to oxidative phosphorylation, membrane lipid metabolism,
nucleotide salvage pathway, cofactor biosynthesis, biomass formation, alternate carbon
metabolism, and about 90 transport reactions

(https://www.13cflux.net/models/Corynebacterium glutamicum/index.jsp). Biosynthesis

reactions leading to protein, DNA, RNA and cell-wall components were accounted for based
on their weight fraction of the biomass. The most advanced model (iCW773) has recently been

described and reconstructs 773 genes, 950 metabolites, and 1207 reactions, of which 252 are



transport reactions [72]. Although all these models are named genome-scale, only about 26%
of all ORFs are covered by the most advanced model. These stoichiometric models were
complemented by a regulatory model involving 97 transcriptional regulator proteins and
1,432 regulatory interactions which later was extended to include other corynebacterial
species and E. coli [73].

Transcriptomics was developed for C. glutamicum, first based on DNA microarrays [67], later
by RNAseq [74]. A landscape RNAseq study helped to refine genome annotation with a re-
annotation of 200 gene starts and the finding that among the 2,000 transcriptional start sites
identified, about 33% belonged to leaderless transcripts [74]. Differential RNAseq is nowadays
used to compare global gene expression patterns [75-78]. Proteomics for cytoplasmic
proteins, membrane fraction proteins, cell wall-associated proteins, and secreted proteins are
now available [79-83]. This, for example, led to the discovery of pupylation as post-
translational modification that is relevant for iron release from the iron storage protein ferritin
independent of degradation [84-85]. Metabolomics has been developed for C. glutamicum
[86-87] and, for example, helped to identify a new pathway involving y-glutamyl
transpeptidase and y-glutamyl dipeptides (y-Glu-Glu, y-Glu-Gln, y-Glu-Val, y-Glu-Leu, y-Glu-

Met) were detected by HPLC-MS in concentrations from 0.15 to 0.4 mg/g CDW [88].

##.2 Prophage cured strains

##.2.1 MBO0O1 derived from wild type ATCC 13032

The C. glutamicum genome contains three prophage DNA islands (CGP1, CGP2, and CGP3).
CGP1 comprises genes cg1507 to cg1524 (13.5 kbp), CGP2 genes cg1746 to cg1752 (3.9 kbp),
and CGP3 is the largest prophage region with 187.3 kbp (comprising genes cg1890 to cg2071

[65, 89]. The activity of bacteriophages and phage-related mobile elements is a major source



for genome rearrangements and genetic instability of their bacterial hosts. Genome-wide
expression analysis often revealed differential expression of phage genes [90-91]. Moreover,
the large prophage CGP3 has recently been shown to be excised under SOS-response-inducing
conditions [89]. Single-cell analyses with transcriptional fusions of promoters of phage genes
(Pint2 and Plysin) to fluorescent protein reporter genes revealed that 0.01 to 0.08% of the
cells grown in standard minimal medium induced CGP3 spontaneously, which reduced their
viability. Apparently, spontaneously occurring DNA damage induced the SOS response and as
consequence prophage induction [92]. This process required actively proliferating cells,
whereas sporadic SOS induction was still observed in resting cells [93]. The prophage CGP3-
encoded nucleoid-associated protein CgpS binds AT-rich DNA as prevails in the entire CGP3
prophage region, but is scarce throughout the rest of the genome. In its absence a significantly
increased induction frequency of the CGP3 prophage resulted, whereas a strain lacking the
CGP3 prophage displayed stable growth [94]. Based on the properties of the prophages and
the resulting genetic instability, the first target for genome reduction was the deletion of these
prophage DNA islands [95].

Deletion of the three prophage DNA islands reduced the genome size of C. glutamicum ATCC
13032 by 6% and resulted in strain MBOO1. Its growth properties were unchanged under
standard and stress conditions. Under SOS-response-inducing conditions that trigger CGP3
induction in the C. glutamicum wild type, strain MB0OO1 fared better than the wild type
showing improved growth and fitness. In addition, strain MBO001 exhibited increased
transformation efficiency. This was attributed to the loss of the restriction-modification
system (cg1996-cg1998) located within CGP3. Furthermore, plasmid copy number appeared

to be increased since production of a heterologous model protein (enhanced yellow



fluorescent protein, eYFP) was 30% higher than in the wild type. Similarly, deletion of the
genes for restriction-modification system (cg1996-cg1998) improved eYFP production [95].

These results characterized MB0OO1 as an intermediate strain to be improved by further
genome reduction (s. below), e.g. by targeting mobile IS elements, and as a suitable strain for
metabolic engineering (stable, growing as fast as wild type on glucose minimal medium, higher
plasmid copy number and better transformation efficiency). C. glutamicum MB001 was used
as host for the production of various value-added compounds: amino acids [96-100],
phenylpropanoids [49,52,101], isoprenoids [25,57,102-104], alcohols [105], carboxylic acids
[100,106], and proteins [107-110]. In addition, MBOO1 and derivatives have been used to
study Mu-transposition [111], assembly of the septal cell envelope [112], infection with
phages $673 and $674 phages [113], identification of an isoprenoid pyrophosphate-
dependent transcriptional regulator [114], cAMP phosphodiesterase CpdA [115] and cryptic
prophages [94], as basis for ALE towards higher growth rates on glucose minimal medium

[116] and to assemble bacterial microcompartments [117].

##.2.2 Prophage-cured lysine producing model strain GRLys1

The concept of prophage island DNA deletion was transferred from the wild type (see above)
to the lysine producing model strain DM1933 [118]. The prophage DNA sequences of the three
phages CGP1 CGP and CGP3 were deleted from the base strain DM1933 that contained the
following genomic modifications promoting lysine overproduction: Apck, pyc”4%5, hom">?4, 2
copies of lysC™! asd, dapA, dapB, ddh, lysA, and lysE [118]. Derivatives of GRLys1 were used
to overproduce L-pipecolic acid (L-PA) [27-28,119], 5-aminovaleric acid (5AVA) [34], glutarate

[43], and for the coproduction of astaxanthin with lysine [25].



##.3 IS element free strain

##.3.1 MBO0O1 derived IS element free strain CRO99

All copies of IS elements ISCg1 and ISCg2 were deleted from the genome of strain MB0O1. In
addition, it contains mutation A468T in Cg1720 which was inadvertently introduced. Cg1720
encodes the ATPase component of an uncharacterized ABC transporter. This strain was used
to characterize synthetases and a hydrolase of the small alarmone (pp)pGpp [120-121]. Ina
similar approach two IS element-free C. glutamicum strains were derived from ATCC 13032:
one lacking IS elements ISCgla, ISCglb, ISCgic, 1ISCgle and another lacking 1ISCg2b, ISCg2c,
ISCg2e, ISCg2f [122]. Increased protein production was demonstrated in the IS element free

strains [122].

##.4 C. glutamicum chassis strain C1* derived from ATCC 13032

A chassis strain based on C. glutamicum ATCC 13032 was constructed in a targeted top-down
approach. As target function uncompromised growth in glucose minimal medium was chosen.
C. glutamicum MBO0O01 was used as starting strain. Next, genes were classified as known to be
non-essential from prior experiments, likely non-essential based on transposon mutagenesis
screens, unclassifiable or likely essential due to high conservation (Fig. ##.1). From these,
genomic clusters with genes classified as (likely) non-essential were chosen for deletion from
the genome of MB001. The generated deletion mutants were evaluated with respect to
growth in glucose minimal medium. This phenotyping step proved crucial to identify non-
essential gene clusters that are irrelevant for maintaining the biological fitness of the wild type
(WT). A total of 26 gene clusters were found to be non-essential and their individual deletions

shown not to compromise growth in glucose minimal medium.



Based on this mutant collection, combinatorial deletions of these gene clusters was performed
resulting in a library of 28 strains. After statistical analysis of a thorough phenotypic screen
and one genetic correction, the final chassis strain C1* exhibiting a genome reduction of 13.4%
(412 deleted genes; Fig. ##.2), but showing wild-type-like growth behavior in glucose minimal
medium, robustness against several stresses (including oxygen limitation) and long-term
growth stability in defined and complex growth media, was selected [123].

Notably, genome sequencing of the penultimate strain, named C1, revealed a mutation in the
promoter-region of regulatory gene ramA [124], i.e. a promoter-down mutation (TGCACT
instead of the conserved —-10-region TACACT). Moreover, this mutation is located in the SugR
binding sites overlapping the —10 region [125-126]. A transcriptome analysis revealed 6 fold
reduced ramA RNA levels and reduced RNA levels for several genes of the ramA regulon.
Therefore, this point mutation in C. glutamicum C1 was reversed to yield the chassis strain C.
glutamicum C1* [123].

C. glutamicum C1* showed slightly impaired growth with some alternative carbon sources
such as acetate, pyruvate, arabitol and gluconate. These results are possible since the target
function chosen was uncompromised growth with glucose as sole carbon and energy source.
However, these physiological peculiarities have to be remembered when constructing and
evaluating C1* derived strains for production purposes. As in the case of reversion of the ramA
promoter down mutation present in C1, other SNPs may have to be reverted to allow for fast
growth with acetate, pyruvate, gluconate or arabitol.

For all glucose-based production purposes, C. glutamicum C1* is an ideal starting point for

metabolic engineering as a biotechnologically relevant chassis.

##.5 Applications of genome reduced strains



##.5.1 Applications of prophage-cured strain MB001 and derivatives

C. glutamicum MBO001 found manifold biotechnological applications (Table ##.1). Derivatives
of this prophage-cured strain were used for the production of proteins [107], citrulline [96-
97], proline [98], lysine [99], decaprenoxanthin [102-103], astaxanthin [25,57], ciprofloxacin-
triggered glutamate and oxoglutarate production [100], valencene [104], 3-hydroxypropionic
acid [106], coproduction of 1,3-propanediol and glutamate [105], and phenylpropanoids
[49,52,101].

As an example, the construction and use of strain MB0OO1(DE3) for protein production based
on an IPTG-inducible T7 expression system will be discussed. Part of the DE3 region from the
protein production host E. coli BL21(DE3) including the T7 RNA polymerase gene 1 driven by
the E. coli lacUV5 promoter, which also is active in C. glutamicum, was integrated into the
chromosome of C. glutamicum MBO0O01 [107]. The corresponding expression vector pMKEx2
was developed to express a) the lacl gene encoding E. coli lac repressor and b) genes of
interest under the control of a T7 promoter followed by lacO1 for induction by IPTG [107]. The
inducibility of the system was shown to be 450 fold when expression of the fluorescence
protein reporter gene eyfp was analyzed. Fully IPTG-induced T7 RNA polymerase-dependent
expression was about 3.5 times higher than expression from the fully IPTG-induced tac
promoter in a control strain with the endogenous RNA polymerase. Importantly, fully IPTG-
induced T7 RNA polymerase-dependent expression led to a uniform population with 99% of
all cells showing high fluorescence as shown by flow cytometry [107]. As an impressive
application example, overexpression of the endogenous pyruvate kinase gene pyk was
demonstrated. The already very high pyk gene expression in the wild type (leading to a specific

pyruvate kinase activity of 2.6 U/mg) was boosted about 50 fold (135 U/mg) [107].



##.5.2 CORYNEX

Besides, C. glutamicum strain ATCC13869 was commercialized as a protein expression system
under the trademark CORYNEX® by the Japanese company Ajinomoto. When using the
CORYNEX® strain YDKO10, secretion of the Fab fragment of human anti-HER2 was low.
Deletion of the genes encoding penicillin-binding protein (PBP1a), which is involved in cell wall
peptidoglycan synthesis, and the surface (S)-layer protein CspB, showed a synergistic effect
allowing efficient Fab production using the CORYNEX® system. This indicated at least two

major permeability barriers to Fab secretion, i.e. peptidoglycan and the S-layer [127].

##.5.3 Applications of prophage-cured strain GRLys1 and derivatives

Derivatives of GRLys1 were used to overproduce 5AVA [34], L-PA [27-28,119], glutarate [43],
and for the coproduction of astaxanthin with lysine [25].

As example, glutarate production based on the prophage-cured lysine model producer strain
GRLys1 will be discussed (Fig. ##.1). Systems metabolic engineering included flux
enforcement, which refers to coupling a biosynthetic production pathway to a metabolite
pathway required for growth. This strategy has previously been applied to amino acid
production by E. coli and C. glutamicum. Coupling of a production pathway involving a 2-
oxoglutarate dependent hydroxylase to growth by deletion of 2-oxoglutarate dehydrogenase
subunit gene sucA has first been shown for 4-hydroxy-L-isoleucine production by E. coli [128]
and later for 4-hydroxy-L-proline production [129]. Thus, these production pathways became
part of an artificial TCA cycle. This concept was extended in succinyl-CoA synthetase-negative
(AsucCD), lysine producing C. glutamicum strains. In this case, the succinylase branch of L-
lysine production metabolically complemented the TCA cycle disrupted due to the sucCD

deletion [130]. Also coupling of the major ammonium assimilating enzyme glutamate



dehydrogenase to transamination reactions were used for flux enforcement when
cadaverine/putrescine transaminase PutA and GABA/5AVA amino transferase GabT
introduced for glutarate production metabolically complemented for the absence of
glutamate dehydrogenase [43]. This prophage-cured, flux enforced strain in addition required
expression of a heterologous gene for lysine decarboxylase for glutarate production. In this
five step synthetic pathway, lysine was decarboxylated to cadaverine by lysine decarboxylase,
and cadaverine converted to glutarate by two transamination (catalyzed PutA, GabT) and two

oxidation steps (catalyzed by PutD and GabD) to the targeted product glutarate [43].

##.6 Outlook on construction and testing of new genome-reduced strains

Targets for gene deletions relevant for genome reduction can be scored by CRISPR
interference [131] as applied first to C. glutamicum with respect to lysine production [12].
Evaluation of groups of genes for combined deletion can be done by multiplex CRISPRi [132].
Sequential or parallel targeted genome deletions and replacements in C. glutamicum by
CRISPR genome editing is facile since this bacterium lacks efficient non-homologous end-
joining. Although genome reduction in C. glutamicum has until now relied on genome
editing by two-step homologous recombination using the conditionally lethal levansucrase
(sacB) for positive selection [133], genome editing by CRISPR/Cas9 or CRISPR/Cpf1 as
developed for C. glutamicum [13-15, 134-136] will find application in further genome
streamlining.

Highly parallel strain characterization relies on microbioreactor systems that are based either
on shaken microtiter plate cultivation devices or on down-scaled stirred tank reactors [137].
These systems allow for optical, non-invasive, online monitoring of important process

parameters such as biomass concentration, dissolved oxygen, pH, or reporter protein



fluorescence. Their use is potentiated by combination with liquid handling robots for
automatization of operation procedures. On-line and off-line strain phenotyping under
industrially relevant conditions enables identification of the optimal combination of producer
strain and bioprocess control strategy. Of course, the strain collections generated in genome
reduction projects can be scored very well using microbioreactor systems as has been shown
for characterizing growth [138], protein secretion [108-109] or amino acid production

[17,95,118,123,139].



Table ##.1 Biotechnological applications using genome-reduced C. glutamicum strains

butyrate

Product Base strain | Production parameter(s) Reference
3-hydroxy- [106]
propionic acid
arginine MB001 Y:0.30g-g*! [98]
C:1.7mgg!DCW;V:0.4mgLth
astaxanthin MBO001 L [57,25]
noreugenin MBO001 T: 53 mg/L [140]
Citrulline MBO001 ;:gﬁl;'T::Io?'sszr:'(\)/l.b\{':'l?fh%? o [96-97]
coproduction of
1,3-propanediol [105]
and glutamate
coproduction of sszt;xa nT irll: -(I;: 122'33 ng_-lL‘hl_;lY=
. 2z gg s rulamgL -
j\fittilezttg':qaw MB001 Glutamate: T: 0.05 g L'L : 013 | 12
g-g™% V: 005 g-L™*-h?
coproduction of Astaxanthin: T: 10 mg-L™%; C: 0.4
astaxanthin GRLys1 mgg?; ¥Y=0.07 g-g™* [25]
with lysine Lysine: T: 48 g-L™%; ¥: 0.35 g-g™*
conroduction of Decaprenoxanthin: T: 8.66
dezaprenoxanth mg-L"L; Y= 0.97 g-g”%; P: 0.05
it MB001 mg-L"1-h? [25]
glutamate Glutamate: T: 0.02 g-L™%; Y: 0.48
ggV:0.18 g-.L %-h?
Decaprenoxanthin: T: 6.10
coproduction of mg-L™%; Y= 0.34 g-g; P: 0.19
decaprenoxanth | GRLys1 mg-L"1-h1 [25]
in with lysine Lysine: T: 2.79 g-.L'%; ¥: 0.15 g-g™%;
V:0.09 g-L"L-h?
:?] ecaprenoxanth | /0501 C:0.4 mg g DCW [102-103]
Glutamate
(triggered by MBO001 T:37mM;Y:0.13gg? [100]
ciprofloxycin)
lycopene MBO001 C:0.43 mgg!DCW [57,25]
lysine [99]
ornithine MBO001 Y:0.52 g-g*? [98]
Oxoglutarate
(triggered by MBO001 T:18 mM [100]
ciprofloxycin)
4-hydroxy- MB001 T:33gg? [49]




resveratrol MBO001 T: 158 mg L*! [101,52]
Proline MBO001 Y:0.29g-g! [98]
Proteins MBO001 Pyruvate kinase: sp.act. 135 U/mg | [107]
Zrotocatechuat MBOO1 T2gg? [49]
Putrescine MBO001 Y:0.17 g-g* [98]
zeaxanthin MBO0O1 C:1.2mgg?!DCW [102-103]
[B-carotene MBO001 C:12mgg'DCW;V:3.4mglLth?l|[57,25]

Abbreviations: T: titer or concentration in culture broth, Y: product yield on substrate (unless

otherwise indicated glucose was used as substrate); V: volumetric productivity; C: cellular

content; CDW: cell dry weight.
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Fig. ##.1. Definitions and workflow for the construction of a chassis organism of
Corynebacterium glutamicum (Copyright © 2015 Unthan, Baumgart, Radek, Herbst, Siebert,
Briihl, Bartsch, Bott, Wiechert, Marin, Hans, Kramer, Seibold, Frunzke, Kalinowski, Riickert,
Wendisch, Noack; reproduced from [118]). (A) Definitions considering the interplay of gene
set, cultivation medium, and application range for different types of organisms. (B) Scheme of

our targeted top-down approach toward a chassis covering only genes that are relevant for



growth on defined medium and maintaining the broad application range of the wild-type

organism.
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Fig. ##.2. C. glutamicum ATCC 13032 genome map with classification results of essential,
nonessential and unclassifiable genes. (Copyright © Reprinted with permission from
Baumgart M, Unthan S, Kloss R, Radek A, Polen T, Tenhaef N, Muller MF, Kuberl A, Siebert D,
Bruhl N, Marin K, Hans S, Kramer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J,
Ruckert C, Wendisch VF, Noack S (2018) Corynebacterium glutamicum Chassis C1*: Building
and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS
Synth Biol 7 (1):132-144. Copyright 2018 American Chemical Society. [123]). All clusters
deleted in C1* are shown in blue. Clusters that could not be deleted or deletions leading to
impaired growth in defined CGXIl medium are shown in yellow. Black arrows are pointing
toward glycolysis genes pgi (cg0973), pfkA (cg1409), fda (cg3068), tpi (cg1789), gap (cg1791),
pgk (cg1790), gpmA (cg0482), eno (cgl111), pyk (cg2291), aceE (cg2466), Ipd (cg0441), and

sucB (cg2421).
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Fig. ##.3 Schematic representation of the metabolic engineering strategy for glutarate
production by recombinant C. glutamicum (Copyright © 2018 Pérez-Garcia, Jorge, Dreyszas,
Risse and Wendisch; reproduced from [43]). The biosynthetic pathway for glutarate
production was implemented by heterologous expression in a L-lysine producer and coupled
with endogenous L-glutamate synthesis. PPP, pentose phosphate pathway; TCA, tricarboxylic
acid cycle; AR, anaplerotic reactions; glnA, glutamine synthase gene; gl/tBD, glutamine
aminotransferase complex genes; gdh, glutamate dehydrogenase; IdcC, L-lysine
decarboxylase; patA, putrescine transaminase; patD, y-aminobutyraldehyde dehydrogenase;
gabT, GABA/5AVA amino transferase gene; gabD, succinate/glutarate-semialdehyde
dehydrogenase gene. Magenta arrows depict transamination reaction in the 5AVA pathway.

Green arrows depict transamination reaction in the glutarate pathway. Gray shadowed genes



are originally from E. coli and were added by heterologous overexpression. Green shadowed
genes are originally from C. glutamicum, P. putida, P. syringae, or P. stutzeri and were added

by heterologous overexpression.
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