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a b s t r a c t 

The gradient concept in neuroscience describes systematic and continuous progressions of features of cortical organization across the entire cortex. Recent multimodal 

studies revealed a macroscale gradient from primary sensory to transmodal association areas which is linked to increasing representational abstraction along the 

cortical hierarchy, and which is paralleled by microscale gradients of cytoarchitecture and gene expression profiles. Convergent or divergent evidence from these 

multimodal studies is then used to support inferences about the existence of one common or multiple scale-specific gradients of hierarchical information processing. 

This paper evaluates the validity of such inferences within the framework of multiscale modeling. In branches of physics and biology where multiscale modeling 

techniques are used, the simple averaging of microscale details can introduce errors in macroscale modeling if it ignores structures at the intermediate mesoscales 

of organization which affect system behavior. Conversely, information about mesoscale structures can be used to determine which microscale details are actually 

relevant to macroscale behavior. In this paper, I similarly argue that multiscale modeling of cortical gradients needs to take organization of mesoscale circuits into 

account if it affects the structure-function relation that the models describe. Information about these circuits provides crucial evidence for evaluating inferences from 

micro- and macroscale data to the role of cortical gradients in hierarchical information processing. My application of the multiscale modeling framework reveals 

that the gradient concept tracks multiple overlapping progressions of cortical properties, rather than one overall gradient of hierarchical information processing. 

I support this argument by proposing a mesoscale gradient of connectivity which describes architectural differences between granular and agranular circuits, and 

which helps us better understand the relation between neural connectivity and hierarchical information processing. 
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1 In this paper “hierarchy ” always refers to the anatomical hierarchy along 

which the brain activity represents information over increasingly longer time pe- 
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. Introduction 

The neuroscientific concept of gradients describes how features of

ortical organization exhibit systematic and continuous progressions

hat span the entire cortex ( Sanides, 1962 ; Goulas et al., 2018 ). Clas-

ical studies use invasive methods (e.g., histological staining and in

ivo tract-tracing) to describe gradients of microscale features such as

yelo- and cytoarchitecture. Recent data-driven connectomics stud-

es have extended the gradient concept to non-invasive measures (e.g.

orrelations in activity measured by fMRI), which describe macroscale

eatures such as network architecture. Margulies et al. (2016) , for in-

tance, discovered that the axis of greatest variance in resting state

unctional connectivity runs from primary sensory areas via attention

etworks to the default mode network. This “principal gradient ” is as-

umed to reveal a hierarchy of representational abstraction . According

o Margulies et al. (2016) representational abstraction is defined by

istance from sensory input —how directly/indirectly the network con-

ects to sensory systems —and content heterogeneity —how many sen-

ory modalities and cognitive domains the network represents informa-

ion from. The principal gradient suggests that representational abstrac-

ion is lowest in primary sensory areas which directly represent uni-

odal environmental inputs, and highest in neocortical association ar-

as which integrate diverse types of information independent of current
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nvironmental changes. How does this macroscale hierarchical gradi-

nt of functional connectivity relate to microscale gradients of cyto- and

yeloarchitecture? 

To answer this question, recent multimodal studies have shown that

acroscale gradients of functional connectivity are paralleled by sev-

ral microscale gradients. In humans, the principal gradient is linked

o MRI contrasts which are assumed to indirectly reflect intracortical

yelin. Neocortical association areas have a lower myelin content than

rimary sensory areas ( Huntenburg et al., 2017 ). MRI contrast maps re-

ect this anatomical hierarchy ( Burt et al., 2018 ), even though the sen-

istivity of the contrasts for detecting myelin is debated ( Hagiwara et al.,

018 ). Researchers have used the convergence or divergence of gra-

ients at different scales to support different inferences about cortical

rganization. Fulcher et al. (2019) use the convergence of multimodal

radients in mice and humans to infer one overarching, evolutionar-

ly conserved gradient of hierarchical information processing. Similarly,

ilgetag and Goulas, (2020) argue that gradients of myelo- and cytoar-

hitecture, amongst others, determine macroscale connection patterns

hich underlie hierarchical processing in the visual system. 1 In contrast,
 February 2021 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2021.117846
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.117846&domain=pdf
mailto:philipp.haueis@uni-bielefeld.de
https://doi.org/10.1016/j.neuroimage.2021.117846
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. Haueis NeuroImage 232 (2021) 117846 

P  

d  

i  

f  

c

 

c  

m  

a  

b  

n  

B  

l  

b  

i  

i  

I  

c  

e  

h  

f  

m  

c  

i  

h  

t  

B  

c  

p  

t

 

a  

w  

(  

n  

s  

o  

t  

a  

p  

s  

c  

t  

t  

t  

m  

(  

s  

t  

t  

z  

m  

o  

s  

G  

s  

u  

t  

r

t

c

b

T

h

p

p  

w

 

m  

i  

i  

t  

t  

e  

i  

m  

c  

m  

g  

r

2

m

2

 

t  

o  

(  

w  

T  

p  

i  

d  

c  

a  

t  

s  

w

 

d  

d  

w  

t  

d  

n  

s  

W  

t  

V  

t  

t  

n  

s  

F  

a  

s  

c  

s  

t  

u  

l  
aquola et al. (2019) use the divergence of the principal functional gra-

ient from a microstructural gradient of cytoarchitectonic similarity to

nfer that default mode and frontoparietal networks support cognitive

unctions that require great flexibility, such as cognitive control or social

ognition. How can we evaluate the validity of such inferences? 

In this paper, I propose to evaluate inferences involving the gradient

oncept by adopting the framework of multiscale modeling . Analyses of

ultiscale modeling in physics and biology emphasize that simply aver-

ging microscale details can introduce errors in modeling macroscale

ehavior if it ignores structures at intermediate mesoscales of orga-

ization which affect system behavior ( Green and Batterman, 2017 ;

atterman and Green, 2020 ). Similarly, although finding direct corre-

ations between micro- and macrostructure is an important first step to

etter understand cortical organization ( van den Heuvel et al., 2015 ),

t can introduce errors if it ignores organization at the mesoscale that

s relevant to the relation between structure and function in the brain.

n neuroscience “mesoscale ” is typically defined as the scale of cortical

ircuits ( Mitra, 2014 ). Circuit organization provides crucial evidence to

valuate inferences which connect macro- and microscale gradients to

ierarchical information processing. My transposition of the multiscale

ramework from physics to gradient modeling reveals that micro- and

acroscale gradients can vary with different circuit features, such as re-

urrent excitatory strength, degree of incoming/outgoing connections or

nterlaminar inhibition. These features are related to different aspects of

ierarchical information processing, which this paper tentatively iden-

ifies with integration time, flexibility, or representational abstraction.

ecause scale-specific gradients also terminate in different parts of the

ortex, my analysis suggests that the gradient concept describes multiple

rogressions of cortical properties which only partially overlap, rather

han one overall gradient of hierarchical information processing. 

The framework developed below advances existing multiscale

pproaches in three ways. First, it goes beyond network models

hich apply tools from graph theory to networks at multiple scales

 Zednik, 2018 ), e.g. by using a resolution parameter to detect commu-

ities of interconnected brain regions at various sizes ( Betzel and Bas-

ett, 2017 ). Although helpful to detect small communities in functional

r structural connectivity data, it is unclear if this approach is sufficient

o characterize the mesoscale since it does not specify the internal circuit

rchitecture of nodes within a community (cf. Betzel and Bassett, 2017 ,

. 73). The mesoscale gradient proposed below alleviates this issue and

pecifies both circuit architecture and connectivity patterns along the

ortical hierarchy, which can be investigated using graph theoretical

ools. Second, current multiscale network models lack tools to describe

he relation between features at different scales of cortical organiza-

ion (cf. ( Betzel and Bassett, 2017 ) p. 80). By contrast, the multiscale

odeling framework in physics does provide mathematical techniques

boundary conditions and homogenization) to relate upper- and lower-

cale modeling of a system ( Batterman, 2013 ). This paper transposes

his framework to connectomics by identifying the unique roles such

echniques play in relating data from multiple scales of cortical organi-

ation. Third, philosophers of science have only analyzed cases in which

ultiscale modeling is used to explain a particular type of behavior

f the target system, e.g. the cracking of steel or bone under macro-

copic stress ( Wilson, 2017 ; Green and Batterman, 2017 ; Batterman and

reen, 2020 ). My analysis of multiscale modeling of cortical gradients

hows that in addition to explanation, multiscale techniques are also

sed to explore the multiscale organization of a system that is only par-

ially understood. This exploratory use can help scientists to discover
iods, with greater flexibility, and increased degrees of representational abstrac- 

ion (see Burnston and Haueis, 2021 and section 3.1 for discussion). To avoid 

onfusion, I refrain from using other senses of “hierarchy ” such as the brain 

eing a multiscalar hierarchy of nested modules ( Hilgetag and Goulas, 2020 ). 

his restriction avoids terminological confusion when discussing the question 

ow gradients at multiple scales relate to aspects of hierarchical information 

rocessing. 
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2 
atterns relevant to many different types of behavior, and to determine

hich lower-scale features upper-scale data patterns could refer to. 

The paper proceeds as follows: Section 2 transposes the multiscale

odeling framework from multiscale modeling of macroscale behav-

or in physical systems to multiscale modeling of cortical organization

n connectomics. Section 3 applies this transposed framework to mul-

iscale models which relate cortical gradients to hierarchical informa-

ion processing. The analysis shows that micro- and macroscale gradi-

nts co-vary with different gradients of circuit features which terminate

n different parts of cortex. Multiscale models may therefore describe

ultiple overlapping gradients, related to different aspects of hierar-

hical information processing. I support my argument by proposing a

esoscale gradient that is based on architectonic differences between

ranular and agranular circuits ( Hilgetag et al., 2019 ), and discuss its

elation to micro- and macroscale gradients. 

. From modeling multiscale physical systems to multiscale 

odels of brain organization 

.1. Studying physical and neural systems at multiple scales 

Physical systems and biological systems are both organized at mul-

iple spatial, temporal or kinetic scales. The discussion below focuses

n spatial scales of organization, such as spatial scales in a bar of steel

 Fig. 1 A). At the continuum length scale, steel exhibits elastic behavior,

hereas at the atomic length scale, it exhibits a rigid lattice structure.

o explain macroscale behavior (e.g. how a steel bar responds to stress),

hysicists combine continuum and atomic models with models describ-

ng mesoscale organization. Inhomogenous mesoscale structures such as

islocations protect the atomic lattice from macroscopic stress, if they

an move around freely ( Wilson, 2017 ). Once the dislocations pile up

gainst a cementite wall, however, molecular bonds become exposed

o macroscopic stress, which turns the steel bar brittle. To explain the

teel bar’s response to stress, physicists link together different submodels

hich describe the behavior of steel at distinct scales. 

Consider next the different spatial scales at which neuroscientists

escribe cortical organization ( Fig. 1 B). At the macroscale, researchers

escribe the brain in terms of cortical areas which are connected into

hole-brain networks. At this scale, the brain exhibits systematic pat-

erns of slow, low-frequency fluctuations in the blood oxygenation level-

ependent (BOLD) signal measured by resting state functional con-

ectivity studies. The principal gradient of functional connectivity de-

cribes cortical organization at the macroscale ( Margulies et al., 2016 ,

ang et al., 2019 ). Stereotypical patterns of anatomical connectivity be-

ween cortical areas are also situated at the macroscale ( Felleman and

an Essen, 1991 ). In contrast, at the microscale researchers describe

he brain in terms of individual cells or subcellular components. At

his scale, the cortex exhibits differences in neuronal density, myeli-

ation, gene expression or axonal connectivity. Gradients of cell den-

ity ( Paquola et al., 2019 ), gene-expression profiles ( Burt et al., 2018 ;

ulcher et al., 2019 ) and dendritic spine density ( Demirta ş et al., 2019 )

ll describe cortical organization at the microscale. Just as in the case of

teel, however, there exist intermediate scales of organization between

ortical areas/networks and individual neurons. One such intermediate

cale is the mesoscale of cortical circuits . At this scale, researchers describe

he brain in terms of different cell types (e.g. spiny stellate cells in gran-

lar layer 4, excitatory pyramidal projection neurons in infragranular

ayer 5 or inhibitory bouquet cells in supragranular layer 3) and their

tereotypical intrinsic connectivity (e.g. layer 5 pyramidal cells connect

o layer 3 inhibitory cells). A gradient description specific to this scale,

hich is proposed in Section 3.2 , involves intrinsic connectivity differ-

nces based on the spatial extent of granular layer 4 ( Beul and Hilge-

ag, 2015 ). 

The multiscale framework in Fig. 1 B agrees with well-known defi-

itions of the microscale as neurons and synaptic connections and the

acroscale as brain areas and pathways ( Sporns et al., 2005 ). By con-
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Fig. 1. Framework for multiscale modeling. (A) Physical systems such as a steel bar exhibit different structures and behaviors at characteristic length scales. (adapted 

from Green and Batterman (2017) . (B) Cortical organization exhibits gradients at characteristic length scales. A macroscale gradient of functional connectivity runs 

from primary sensory to neocortical association areas (adapted from ( Margulies et al., 2016 ) Margulies et al., 2016 ). A mesoscale gradient of circuit connectivity, 

proposed in Section 3.2 , runs from granular to agranular areas (circuit diagrams adapted from Beul and Hilgetag, 2015 ). At the microscale, different gradients 

quantify changes in dendritic spine, neuron and myelin density. . 
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rast, it is more difficult to define the mesoscale because it is debated

hat the relevant biological units are. Sporns et al. (2005) propose mini-

olumns and their connections, but the functional significance of these

nits is disputed ( da Costa and Martin, 2013 ; Haueis, 2020 ). By con-

rast, Mitra (2014) defines “mesoscale ” as the transitional length scale

t which individual variation becomes negligible while species-typical

rganizational features such as cytoarchitectonic gradients remain vis-

ble. But Mitra’s definition excludes cell types because of our limited

nowledge of this mesoscale feature. It therefore does not capture the

esoscale gradient displayed in Fig. 1 B, which is based on both cytoar-

hitectonic and cell-type specific connectivity in cortical circuits (see

ection 3.2 for discussion). Additionally, distinctions between different

cales are often based on the resolution limits of instruments used to

nvestigate cortical organization (e.g., microscale electrophysiological

ecordings vs. macroscale fMRI recordings). 

Although the multiscale framework developed here does not solve

ll of these terminological or tool-based differences of using "scale" in

euroscience, it does put these distinctions on a more objective basis. In

hysics, researchers distinguish scales based on the dominant behaviors

hat a physical system displays at characteristic length scales ( Green and

atterman, 2017 ). Mesoscale information is conveyed in a representative

olume element , which is defined as the smallest element which is statis-

ically representative of macroscale continuum behavior of the whole,

nd the largest element that is representative of collective microscale

ffects on upper-scale parameters ( Batterman and Green, 2020 ). Simi-

arly, although neuroscientists may use the terms “micro ”, “meso ” and

macro ” differently, they still agree that there are important patterns or

egularities in cortical organization that are discernable at characteristic

ength scales. For example, in the temporal domain, cortical circuits ex-
3 
ibit layer-specific oscillations ( Bastos et al., 2015 ) that are both distinct

rom low-frequency fluctuations in macroscale networks ( Deco et al.,

013 ) and single neuron spike patterns at the microscale. In the spa-

ial domain, Fig. 1 B illustrates that cortical gradients exhibit different

atterns at characteristic length scales. The representative volume el-

ment at which neuroscientists model mesoscale circuit behavior are

mm 

3 patches of cortex, which is the smallest element representative

f macroscale behavior of a cortical area or network, and the largest

lement representative of collective effects of microscale details, such

s the effects of cell or dendritic density on circuit or network activ-

ty ( Potjans and Diesmann, 2014 ). While this length scale is based on

mportant regularities and patterns in primary visual cortex, such as se-

uence regularity of orientation tuning and or cell-type specific vertical

onnection patterns, it excludes other aspects such as patchy horizontal

onnections which extend up to 8 mm ( Schmidt et al., 2018a ). 

The transposition of the multiscale modeling framework from

hysics to connectomics aims to show that researchers require in-

ormation about mesoscale circuits to properly link micro- and

acroscale descriptions of cortical organization. Consider the study of

aquola et al. (2019) , which compared the macroscale functional gradi-

nt (G FUNC ) to a microscale histological gradient (G HIST ), which quan-

ifies neuron density in Merker-stained slices of human cortex at the

esolution of 100 𝜇m. As mentioned above, they found that G FUNC runs

rom sensory to neocortical association areas, and G HIST runs from sen-

ory to paralimbic areas. Because Merker stain does not differentiate

etween different neuron types , however, G HIST is insensitive to any cell-

ype specific differences between mesoscale circuits along each gradient.

o these differences follow G HIST towards paralimbic areas, or G FUNC 

owards neocortical association areas, or do they run in yet a different
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2 The structural model makes no explicit assumptions about function. It is 

widely held, however, that structural connections strongly constrain how brain 

regions can communicate with one another ( Pandya et al. 2015 ). Therefore, 

the relation between architecture and connections presupposed in the structural 

model strongly constrain how information is processed in the brain. 
irection? According to the multiscale framework developed here, these

uestions can be answered by taking information about mesoscale cir-

uit architecture in these areas into account. This kind of information

s also crucial to evaluate the validity of inferences that connect micro-

nd macroscale data. For example, Paquola et al.’s inference would re-

eive additional support if circuit organization in neocortical association

reas supports more flexible processing than the circuit organization in

aralimbic areas. The next section explains why mesoscale information

as this crucial role in multiscale modeling. 

.2. The evidential role of mesoscale information in multiscale modeling 

Unlike existing philosophical accounts, the transposed multiscale

odeling framework shows that mesoscale information plays two dif-

erent roles when used to link microscale details and macroscale pat-

erns. In multiscale modeling of physical systems, mesoscale informa-

ion is crucial to explain a particular type of macroscale behavior. In

onnectomics, however, mesoscale information is crucial to determine

hich anatomical or physiological features underlie a macroscopic data

attern (e.g., functional connectivity). The upper-scale pattern and the

ower-scale features are not only relevant to one type of behavior. They

re relevant to many different types of brain function. Multiscale mod-

ling is thus used to explore the relation between micro- or mesoscale

eatures and macroscale patterns, rather than to explain their role in a

articular type of behavior. 

To understand this contrast, consider how multiscale modeling is

sed to explain a particular type of behavior (e.g., a steel bar crack-

ng under repeated macroscopic stress). They describe only mesoscale

ehavior (e.g., dislocations pile-up at a cementite wall) relevant to ex-

lain the macroscale behavior. Rather than searching for microscale de-

ails in the entire system (here: brittle molecular bonds), researchers

se a mathematical boundary condition to restrict microscale modeling

o regions where the mesoscale behavior is most likely to occur. Besides

sing boundary conditions to link upper- to lower-scale models, multi-

cale modeling also uses the mathematical operation of homogenization

o incorporate lower-scale information back into the upper-scale model.

his operation takes an asymptotic limit to describe the heterogenous

esoscale structure (e.g. disclocations) as a fictitious homogenous mate-

ial which exhibits the same behavior ( Batterman, 2013 ). The homoge-

ized description can then be used in the macroscale model. Like bound-

ry conditions, homogenization allows physicists to link explanatorily

elevant information across scales. 

By contrast, mesoscale information plays another role in multiscale

onnectomic models because they differ in aim and structure from mul-

iscale modeling in physics. Connectomic models do not explain one

ype of behavior but instead aim to discover features of brain organiza-

ion relevant to many different types of brain functions ( Ankeny, 2000 ;

aueis and Slaby, 2017 ). Neuroscientists can use information from con-

ectomic models to explain different types behaviors of the system. In-

tead of selecting information based on its relevance to one type of be-

avior, connectomic models select information based on a fundamental

resupposition about the organization of the brain ( Ankeny, 2000 ). A fun-

amental presupposition specifies the relation between neural structure

nd function in a class of nervous systems. Information in a connectomic

odel will be relevant to explain the behaviors in any neural system

or subsystem) which realizes the structure-function relationship pre-

upposed in the model. Consider two presuppositions of connectomics

odels that are commonly used in multiscale modeling of cortical gradi-

nts. First, macroscale connectivity models of the macaque visual system

lassify tract-tracing data based on the fundamental presupposition that

ifferences in laminar connectivity patterns underlie a hierarchy of in-

ormation processing ( Felleman and Van Essen 1991 ; Section 3.1 ). Such

ierarchical models of the visual system contain information which can

e used in explanations of various visual functions, such as motion per-

eption or face recognition ( Burnston and Haueis, 2021 ). Second, con-

ider the mesoscale model of the canonical microcircuit or CMC ( Fig. 1 B,
4 
iddle). This model selects information based on the fundamental pre-

upposition that form follows function , which emphasizes basic common-

lities in functional mechanisms across brain areas ( Douglas and Mar-

in, 1992 ). Based on this presupposition, the CMC model posits the

mallest number of neuron types and connections consistent with the

ecorded physiological data ( Douglas and Martin 1992 , Potjans and

iesmann, 2014 ). It therefore describes a circuit infrastructure which

an underlie a variety of functions, such as direction-selectivity in pri-

ary visual cortex ( Douglas and Martin 1992 , Fig. 15.5) or activity driv-

ng eye-saccade behavior in the frontal eye field ( Heinzle et al., 2007 ).

ultiscale models of cortical gradients both use hierarchical presuppo-

itions and the CMC as one kind of model of mesoscale architecture

 Chaudhuri et al., 2015 ; Schmidt et al., 2018a ). These models also aim

o discover features of brain organization that are relevant to different

ypes of cortical functions along the cortical hierarchy ( Section 3.1 ). 

In multiscale systems such as the brain, many different features can

ealize the structure-function relationship presupposed by a connec-

omics model. Researchers therefore also need scale-specific modeling as-

umptions to link data types to scale-specific features characterized by

ultiscale gradient modeling. For example: a microscale assumption is

hat layer-specific differences in histological intensity profiles reflect dif-

erences in cytoarchitectonic similarity ( Paquola et al., 2019 ). This as-

umption links G HIST values to degrees of laminar and cytoarchitectonic

ifferentiation. These features realize the organization presupposed by

he structural model, according to which areas with similar cytoarchi-

ecture are more strongly connected than architectonically dissimilar

reas. 2 A mesoscale modeling assumption is a modified version of Pe-

ers’ rule, which states that the probability of a synaptic connection is

roportional to the length of the dendrites of a layer-specific neuron type

 Potjans and Diesmann, 2014 ; Schmidt et al., 2018a ). This assumption

llows researchers to link reconstructions of individual cell morpholo-

ies and in-vivo physiological recordings to cell-type specific connectiv-

ty patterns ( da Costa and Martin, 2013 ). Finally, a macroscale modeling

ssumption is that the spatial and connectivity distance from primary

ensory areas reflects the degree to which a large-scale network can

ntegrate different types of information independently of transient en-

ironmental changes ( Margulies et al., 2016 ). This assumption provides

 link between task-independent, low-frequency BOLD-fluctuations and

he position of a resting state network along the gradient of increasing

epresentational abstraction. A multiscale model in connectomics com-

ines scale-specific modeling assumptions to link distinct data types to

eatures of brain organization which are relevant to many different types

f brain function. 

While scale-specific modeling assumptions link data types to features

f brain organization, they do not connect these scale-specific types of

nformation to each other. To link information across scales, connec-

omic modelers need an equivalent to upper-scale boundary conditions

nd homogenized lower-scale descriptions in multiscale modeling in

hysics. Recall that in the physics case, the function of these mathemat-

cal operations was to restrict the modeling domain and select informa-

ion that is relevant to explain a particular macroscopic behavior (e.g.,

esponse to macroscopic stress). In contrast, multiscale connectomics

odels link information across scales to explore how a macroscale data

attern is relevant to various types of brain functions in different parts

f the brain. Instead of restricting the model domain via boundary con-

itions, they use the macroscale data pattern to parametrize the values of

 mesoscale model across the entire brain. Similarly, the function of ho-

ogenized lower-scale descriptions is not to select information relevant

o one macroscopic behavior. Rather the function of homogenization is
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n  
o explore what lower-scale feature the upper-scale pattern could refer

o. 

To illustrate the role of parametrization and homogenization in mul-

iscale connectomic modeling, consider another mesoscale model often

sed in multiscale modeling of cortical gradients. Deco et al. (2013) de-

eloped the mean dynamic field model (MFM) to explore the link be-

ween mesoscale circuit features and macroscale functional connectivity

atterns measured by fMRI. The MFM approximates mesoscale circuit

ctivity by looking only at the intra-areal mean and interareal covari-

nce of the synaptic gating variable S . To link this mesoscale model

o macroscale functional connectivity patterns, Deco et al. used the

alloon-Windkessel model which translates S into the fMRI BOLD signal.

hey then used empirically observed functional connectivity patterns to

arametrize the MFM: they systematically varied w , the recurrent exci-

atory strength within the circuit model, and the global coupling factor

 , which is multiplied with empirically measured structural connection

trength C between two cortical areas. The parametrized MFM picks

 and G values which maximize the statistical similarity between ob-

erved and simulated functional connectivity patterns across the entire

rain. Multiscale models of cortical gradients similarly use macroscale

ata patterns to parametrize MFM values across the entire brain (see

ection 3.1 ). 

Deco et al. (2013) also used homogenized descriptions to determine

hat mesoscale features the macroscale functional connectivity patterns

efer to. By using the inter-areal mean and interareal covariance of S ,

he MFM homogenizes a full spiking model that describes neural activ-

ty in a cortical area as the sum of synaptic activity of excitatory and

nhibitory populations. In multiscale modeling in physics, homogeniza-

ion has proven more successful than microscale averaging to explain

ow a collection of heterogeneous lower-scale behaviors contribute to

acroscale behavior ( Batterman, 2013 ). In the physics case, mean and

ovariance are used to upscale a lower-scale model because they describe

ow interacting lower-scale entities behave collectively. The MFM also

ses covariance to describe how mesoscale circuit dynamics vary in re-

ation to activity in other areas. But covariance alone cannot be used to

pscale the MFM: S values cannot to be directly compared to macroscale

unctional connectivity patterns, which are calculated from BOLD val-

es. So, to upscale S values, researchers use the Balloon-Windkessel

odel. Instead of upscaling the spiking model, the homogenization of

 allows the researchers to “explore the parameter space of the model ”

 Deco et al., 2013 , p. 11247), i.e. to find G and w values that fit the

bserved functional connectivity pattern. For these researchers, homog-

nization is “essential because it allows a thorough investigation of the

rain system and a more exhaustive optimization of multiple parame-

ers ” ( Deco et al., 2013 , p. 11248). Based on the homogenized S values,

hey discovered that the parametrized G and w values lie close to a crit-

cal point where the low activity state of the network becomes unsta-

le and switches to higher activity states. Critical behavior is relevant

or many different brain functions because it could help us understand

he brain’s ability to switch from resting state to various task-specific

atterns of functional connectivity ( Deco et al., 2013 , p. 11250). And

nformation about critical behavior was discovered by determining that

esting state functional connectivity patterns (in part) refer to a fea-

ure of mesoscale circuit architecture —recurrent excitatory strength en-

oded by w . Homogenization can thus help researchers understand what

esoscale features their macroscale data patterns refer to. 

The analysis of parametrization and reference determination com-

letes the transposition of the multiscale modeling framework to con-

ectomics ( Table 1 ). According to this framework, information about

he mesoscale is crucial if researchers want to use macroscale data pat-

erns appropriately to parametrize models of circuit architecture, and if

hey want to homogenize microscale details to determine what features

f brain organization the macroscale data patterns refer to. 

The evidential role of mesoscale information for multiscale model-

ng suggests that inferences which directly link micro- and macroscale

radients can be problematic if they ignore mesoscale organization
5 
hat realizes the structure-function relationship under study. Consider

gain Paquola et al. (2019) , who infer from the divergence of micro-

nd macroscale gradients in transmodal association areas that “re-

uced hierarchical constraints enable functional diversity and flexibil-

ty ” ( Paquola et al., 2019 , p. 14). This inference about the hierarchi-

al structure-function relations in different parts of the brain is based

n scale-specific modeling assumptions which link three gradient mea-

ures to features of cortical organization. First, microscale G HIST is linked

o cytoarchitectonic similarity which predicts similar connectivity be-

ween areas (structural model). Based on this assumption, the diver-

ence of G FUNC from G HIST supports the idea that transmodal associa-

ion areas have diverse connectivity profiles, allowing them to integrate

nd broadcast different information types ( Buckner and Krienen, 2013 ).

econd, G MRI , which is based on T1 w 

/T2 w 

MRI maps, is linked to “in-

reasing mean myelin content as well as a gradual transition in the rel-

tive myelin content around the midsurface ” ( Paquola et al., 2019 , p.

). This assumption can be taken to support the claim that “diverse con-

ectivity profiles in transmodal cortices are likely related to heightened

ynaptic plasticity ( García-Cabezas et al., 2017 ) that enables more flex-

ble reconfigurations of functional relationships ” ( Paquola et al., 2019 ,

. 13). According to García-Cabezas et al. (2017) various molecular

arkers inhibiting synaptic plasticity, including intracortical myelin,

re reduced in select prefrontal areas. Therefore, lower G MRI values at

he transmodal end of G FUNC imply that transmodal association areas

ave lower mean myelin content than primary sensory areas, which

nhances synaptic plasticity. Because Paquola et al.’s study does not

se a mesoscale circuit model, it links G FUNC directly to microscale fea-

ures (myeloarchitectonic and cytoarchitectonic similarity). Such direct

inking is not itself problematic if microscale features can be used to

orrectly infer how a system realizes a structure-function relation like

ortical hierarchy. It is, however, problematic if this relationship does

epend on mesoscale organization which cannot be detected by sim-

le averaging of microscale details ( Batterman and Green 2020 ). This

s exactly what the use of homogenization in multiscale modeling of

eco et al. (2013) showed: that functional connectivity patterns —the

asis of G FUNC —are also related to recurrent excitation strength w ,

hich is a mesoscale parameter. Thus, the validity of inferences involv-

ng G FUNC also depends on the relation between mesoscale circuit fea-

ures and aspects of hierarchical information processing such as flexibil-

ty. To describe this relation adequately, neuroscientists should move be-

ond direct comparisons of micro- and macroscale gradients and model

esoscale organization explicitly when linking cortical gradients to hi-

rarchical information processing. 

. The role of mesoscale circuits in multiscale modeling of 

ortical gradients 

.1. Mesoscale information in current multiscale gradient models 

Multiscale gradient models often assume that scale-specific gradient

easures track one and the same hierarchical gradient which runs along

he same spatial trajectory through cortex (from primary sensory to as-

ociation areas). The following analysis of the role of mesoscale informa-

ion in these models suggests that contrary to this common assumption,

cale-specific gradient measures seem to track multiple overlapping gra-

ients. The reason is that macro- and microscale descriptions of cortical

radients vary with distinct features of mesoscale circuits. Each of these

eatures forms a progression that terminates in a different part of the

ortex and is related to a different aspect of hierarchical information

rocessing. 

Multiscale gradient models have hierarchical fundamental presuppo-

itions, i.e. they assume that a set of feedforward, feedback, and lateral

onnections underlies a signal processing hierarchy of input-output re-

ations ( Felleman and van Essen, 1991 ; Burnston and Haueis, 2021 ).

he subsequent analysis focuses on three aspects of hierarchy promi-

ent in the gradient literature: representational abstraction, integration



P. Haueis NeuroImage 232 (2021) 117846 

Table 1 

Different types of multiscale models. 

Multiscale modeling of brain organization Multiscale modeling of physical behavior 

Aim of multiscale modeling Discovery of patterns in brain organization that are 

relevant to many different brain functions 

Explanation of a particular behavior of the physical system 

Feature determination Fundamental presupposition determines features of brain 

organization realizing structure-function relationship 

Macroscale physical behavior determines explanatorily 

relevant features of the system 

Utility of scale-specific models Scale-specific modeling assumptions link data types to 

feature of brain organization 

Scale-specific mathematical equations to model dominant 

behavior 

Utility of upper-scale information Upper-scale values are used to parametrize lower-scale 

model across entire domain 

Upper-scale boundary conditions are used to restrict 

lower-scale model domain 

Utility of lower-scale information Lower-scale information is homogenized to determine the 

referent of upper-scale data pattern 

Lower-scale information is homogenized to explain 

upper-scale behavior 
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3 To simplify the discussion, I speak of w values in both models, although 

the Demirta ş model parametrizes excitatory-to-excitatory and excitatory-to- 

inhibitory connections separately. Both parameters increase towards neocortical 
ime and flexibility. Note, however, that the resulting labeling of gra-

ients is tentative, since the precise meaning of notions such as repre-

entation is debated in neuroscience and philosophy ( Villarroya, 2017 ;

hea, 2018 ). The first aspect, representational abstraction , can be de-

ned by (i) distance from sensory input and (ii) content heterogeneity

 Margulies et al., 2016 ). Regarding (i), unimodal sensory areas primar-

ly interconnect via short-range connections, whereas heteromodal and

ransmodal association areas increasingly interconnect via long-range

onnections ( Oligschläger et al., 2018 ). Regarding (ii), the connectivity

f transmodal areas allows them to integrate multiple unimodal sensory

epresentations into categorical and rule-based ones ( Mesulam, 1998 ;

andya et al., 2015 ). Second , integration time increases along the hierar-

hy: areas are longer active when they integrate information from multi-

le modalities ( Murray et al., 2014 ). Third, flexibility increases along the

rocessing hierarchy, either due to (a) increases in diverse connectivity

r (b) increases in synaptic plasticity. Unlike traditional sensorimotor hi-

rarchies that link specific sensory inputs to motor outputs, neocortical

ssociation areas connect to a diverse set of areas, which allows them to

a) flexibly route their informational outputs to support multiple kinds

f cognitive or motor functions ( Buckner and Krienen, 2013 ). Unlike

rimary sensory areas, some prefrontal areas also show markers for in-

reased synaptic plasticity ( García-Cabezas et al., 2017 ), which allows

hem to (b) adapt their activity patterns more strongly to momentary

ask demands ( Duncan, 2010 ). 

Multiscale models link cortical gradients to these particular aspects

f hierarchical information processing. The first four models ( Table 2

eft) presuppose that the laminar pattern of connections determines

n area’s position in the hierarchy. These models identify features of

ortical organization which underlie a gradient of increasing integra-

ion time from primary sensory to prefrontal cortex ( Chaudhuri et al.,

015 , Burt et al., 2018 , Fulcher et al., 2019 ). The last three models

n Table 2 presuppose a sensory-fugal network gradient which termi-

ates in a distributed set of neocortical association areas. The models

ink this gradient either to increased flexibility ( Paquola et al., 2019 see

ection 2.2 ), representational abstraction ( Wang et al., 2019 ), or inte-

ration time ( Demirta ş et al., 2019 ). 

Table 2 reveals two essentially different kinds of using multiscale

nformation in multiscale gradient models. The first kind includes

esoscale information in a data-driven description of cortical organi-

ation, summarizing cortical properties at multiple scales. ( Burt et al.,

018 ; Fulcher et al., 2019 , and Paquola et al., 2019 ). This data-driven

se links scale-specific features via reference determination (e.g., that

acroscale gradient measures could refer to dendritic spine density or

yelination). Additionally, these models use correlations with cytoar-

hitectonic types to support inferences about convergent ( Fulcher et al.,

019 ) or divergent gradients ( Paquola et al., 2019 ). As discussed in

ection 2.2 , these inferences are difficult to assess because the data-

riven use provides no top-down modeling constraint to link these cor-

elations to specific features of circuit architecture. 

The second kind of using mesoscale information alleviates this is-

ue because it provides a circuit model which can be parametrized

ith upper-scale data values. ( Chaudhuri et al., 2015 ; Schmidt et al.,
 a

6 
018a , Wang et al., 2019 , Demirta ş et al., 2019 ). To assess whether

he model-based use reveals one unified or multiple overlapping gradi-

nts at multiple scales, consider how Wang et al. (2019) and Demirta ş

t al. (2019) parametrize the MFM. Both studies parametrize recurrent

xcitation strength (parameter w ) to maximize the statistical similar-

ty with either empirical resting state functional connectivity patterns,

r with T1 w 

/T2 w 

values. Although both parametrizations produce a

esoscale gradient of w values from primary sensory to neocortical as-

ociation areas, they produce opposing results: in Wang et al. (2019 , Fig.

) w values are lowest for transmodal association networks, whereas

n Demirta ş et al. (2019 , Fig. 2), w values are highest in these areas. 3 

he discrepant values are a robust result because parametrizations use

ifferent optimization procedures but both produce a better fit of simu-

ated and empirical RSFC than the parametrization with homogenous w

alues ( Deco et al., 2013 ). 

Assuming that the discrepant w values are no methodological arte-

act, the multiscale framework suggests that they indicate multiple

verlapping gradients. Demirta ş and Wang et al. use scale-specific as-

umptions to link the parametrized w values to different circuit fea-

ures and aspects of hierarchical information processing. Demirta ş

t al. (2019) link their parametrization to integration time because they

ssume that increasing w values refer to increases in dendritic spine den-

ity of layer 3 pyramidal neurons. They follow Burt et al. (2018) who in-

er from anatomical and genetic data that low T1 w 

/T2 w 

values provide a

omogenized description of increased recurrent excitation in cortical as-

ociation areas. This increase is mediated by higher hhigehr higher den-

ritic spine densities of layer 3 pyramidal neurons. Since higher spine

ensity allows these neurons to receive more excitatory synaptic inputs,

t “may endow cortical circuits in association cortex with extended tem-

oral integration ” in comparison to primary sensory areas ( Burt et al.,

018 , p. 1253). By justifying high w values with this reference determi-

ation, Demirta ş et al. (2019) link their parametrization to integration

ime along the information processing hierarchy. 

In contrast, Wang et al. (2019) link their parametrization to repre-

entational abstraction because they assume that increasing w values are

inked to content heterogeneity, while decreases in subcortical input I

re linked to distance from sensory input. The parametrized MFM model

roduces the highest I values in primary sensory areas and the lowest

nes in the default mode network (DMN). Consequently, strong subcor-

ical input to sensorimotor networks “might correspond to the flow of

ensory information from the external environment via subcortical re-

ays ”, whereas weak subcortical input suggests that the DMN lacks “a

irect flow of information from the external milieu ” ( Wang et al., 2019 ,

. 7). Conversely, strong recurrent excitation could support “specialized

ocal processing ”, such as the unimodal representation of stimulus fea-

ures. By contrast, “weak recurrent connections might be consistent with

he default network’s putative role as a hub of transmodal information
ssociation areas. 
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Table 2 

Comparison of multiscale modeling studies of cortical gradients. Legend: ~ correlation, CMC: Canonical microcircuit, G FUNC : principal gradient of functional con- 

nectivity, SC: Structural connectivity, RSFC: Resting state functional connectivity, T1 w /T2 w : weighted longitudinal over weighted transverse relaxation time, MFM: 

mean dynamic field model, w: recurrent excitatory strength. 

Chaudhuri et al. 

(2015) 

macaque 

Schmidt et al. 

(2018 a) 

macaque 

Burt et al. (2018) 

human/macaque Fulcher et al. (2019) 

mouse 

Paquola et al. (2019) 

human 

Wang et al. 

(2019) 

human 

Demirta ş 

et al. (2019) 

human 

Fundamental 

presupposition 

Supra-granular 

projections 

determine 

hierarchy 

Architectural 

types 

determine 

hierarchy 

Multiscale 

gradient of 

hierarchical 

integration 

Multiscale 

gradient of 

hierarchical 

integration 

Sensory-fugal 

gradient of 

hierarchy 

Sensory-fugal 

gradient of 

hierarchy 

Sensory-fugal 

gradient of 

hierarchy 

Macroscale 

modeling 

29 ×29 SC 

matrix 

Simulated RSFC 

32 ×32 SC 

matrix 

Network 

community 

structure 

T1 w /T2 w T1 w /T2 w G FUNC 

G MRI ( = 
T1 w /T2 w ) 

Empirical RSFC 

G FUNC 

T1 w /T2 w map 

Empirical RSFC 

T1 w /T2 w 
diffusion MRI 

SC 

Mesoscale 

modeling 

CMC CMC, laminar 

connectivity, 

architectural 

types 

cytoarchitectural 

types 

cytoarchitectural 

types, cell type 

composition 

cytoarchitectural 

types 

MFM with 

gradient of w 

(primary 

sensory to 

DMN) 

MFM with 

gradient of w 

(primary 

sensory to 

DMN) 

Microscale 

modeling 

Spine density 

gradient 

(primary visual 

to prefrontal 

cortex) 

Gradient of 

indegree 

Areal neuron 

den- 

sity + number 

Gradient of 

gene 

expression 

(cell type, 

layers) 

Gradient of 

gene 

expression 

(receptors, cell 

type, myelin) 

G HIST 

(primary 

sensory to 

paralimbic) 

none T1 w /T2 w ~

spine density 

gradient 

Parametrization Scale 

excitatory 

inputs with 

position in 

hierarchy 

Architectural 

type to fit con- 

nection + cell 

densities 

None none none Empirical RSFC 

to fit w and I 

T1 w /T2 w to fit 

w and G 

Reference 

determination 

Spine density 

gradient 

reduces 

FC ~ SC 

Layer 4 

neurons 

receive 

feedback 

signals 

T1 w /T2 w ~

spine density 

gradient 

T1 w /T2 w ~

NMDA subunit 

T1 w /T2 w ~

in-degree 

T1 w /T2 w ~ cell 

type density 

T1 w /T2 w ~

G HIST 

T1 w /T2 w ~ w 

w & I 

distinguish 

primary & 

transmodal 

areas 

Parametrized 

w increases 

simulated FC 

fit 

Fig. 2. Multiple overlapping gradients track different mesoscale 

circuit features. For acronyms, see legend of table 2 . 
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ntegration ” ( Wang et al., 2019 , p. 8). Thus Wang et al. justify low w

alues by linking their parametrization to representational abstraction. 

The example of conflicting w values provides two reasons why cur-

ent multiscale modeling studies may describe mesoscale circuits with

ultiple overlapping gradients. On the one hand, the two parametriza-

ions reveal that w parameter MFM lumps different circuit features to-

ether (dendritic spine density, myelin and intracortical connectivity

trength). On the other hand, the fact that opposing w values are linked

o different aspects of hierarchical information processing suggests that

acroscale gradient measures correlate with different features lumped

n the w parameter. Such macroscale gradient measures thus seem to

rack multiple overlapping gradients which link mesoscale circuit fea-

ures to different aspects of hierarchical information processing. 

Fig. 2 visualizes the relations between three gradient measures and

esoscale circuit features. First, T1 /T2 maps are related to den-
w w 

7 
ritic spine density ( Burt et al., 2018 ) and indegree ( Fulcher et al.,

019 ), which are linked to increasing integration time. Second,

acroscale G FUNC seems related to a circuit feature linked to represen-

ational abstraction. Interlaminar circuit connectivity is one candidate

 Section 3.2 ), but current gradient models already imply that the feature

s not identical to dendritic spine density. DMN regions such as poste-

ior cingulate and tempoparietal cortex have high degrees of abstrac-

ion ( Margulies et al., 2016 ) but exhibit heterogeneous dendritic spine

ensities ( Elston et al., 2005 ). Third, the microscale measure G HIST de-

ects cytoarchitectonic similarity, which is linked to flexibility. If flexi-

ility means that a brain part supports multiple types of cognitive/motor

unctions via diverse, noncanonical connectivity profiles ( Buckner and

rienen, 2013 ), then flexibility and representational abstraction have

onvergent endpoints in neocortical association areas. By contrast, if

exibility means how quickly a brain part reconfigures activity and con-
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ection patterns in response to momentary task demands, then flexibil-

ty and representational abstraction may diverge. In both cases, how-

ver, flexibility does not coincide with the endpoint of T1 w 

/T2 w 

maps

nd dendritic spine density in the prefrontal cortex. Therefore, the differ-

nt scale-specific measures may not characterize one overarching mul-

iscale hierarchical gradient, but instead refer to multiple overlapping

radients in the cortex. 

.2. Proposal for a mesoscale connectivity gradient 

Although multiscale gradient models already use mesoscale infor-

ation, current approaches conceal circuit details that are relevant to

ssess inferences from gradient descriptions to hierarchical organiza-

ion. Multiscale models using the MFM lump together circuit features

hat underlie inferences to different aspects of hierarchical processing

integration time, representational abstraction). Approaches using the

MC often assume that intrinsic circuit connectivity is qualitatively sim-

lar across areas ( Chaudhuri et al., 2015 ; Schmidt et al., 2018a ), which

dealizes away circuit differences in granular, dysgranular and agranu-

ar cortices ( Beul and Hilgetag, 2015 ). Moreover, none of the existing

radient measures explicitly characterizes how outdegree of mesoscale

ircuits varies between cortical areas. In this section I propose a quali-

ative model of a mesoscale gradient which includes these features and

hich sheds a new light on macroscale gradients. This gradient syn-

hesizes and extends the work from the Hilgetag group by combining

ranularity-based differences in circuit architecture ( Beul and Hilge-

ag 2015 ) with the architectonic type principle ( Hilgetag et al., 2019 ).

ranularity-based modeling differs from microscale modeling because

t includes layer-specific cell types and their connections, and not just

icroscale properties of individual neurons (cell size, density). It also

iffers from macroscale modeling because it adds laminar origin to de-

criptions of interareal (extrinsic) connectivity patterns. Cell-type and

ayer-specific connectivity patterns underlie regular behaviors distinct

rom microscale neuronal or macroscale network activity, such as layer-

pecific oscillations ( Bastos et al., 2015 ). The mesoscale gradient cap-

ures these facts in the fundamental presupposition that architectonic

ype membership determines the layout of extrinsic connections which

nderlie hierarchical message passing ( Schmidt et al., 2018a , b ). 

Similar to micro- and macroscale gradients, primary sensory areas

1 and A1 lie at the beginning of the mesoscale gradient. These ar-

as are clear cases of granular cortex: they have a high number of

ranule cells and a highly differentiated layer 4; overall cell density

s high whereas soma size is small. Both excitatory and inhibitory con-

ections exist between infra- and supragranular layers ( Fig. 3 C, circuit

iagram I). The gradient proceeds to mostly granular areas such as pri-

ary somatosensory area and rostrolateral prefrontal areas, which have

 clearly differentiated layer 4 but less overall and granule cell density

 Ongür et al., 2003 ). Mostly granular circuits lack inhibitory connec-

ions between infra- and supragranular layers ( Fig. 3 C, circuit diagram

I). Next are dysgranular areas such as the posterior DMN regions and

ateral orbital and ventromedial prefrontal areas. In lack of anatomical

ata, the gradient postulates similar intrinsic connectivity as for mostly

ranular areas, while incorporating further decreases in neuron density

aralleled by increases in soma size and dendrite numbers ( Fig. 3 C, cir-

uit diagram III). Finally, the gradient terminates in agranular areas such

s primary motor cortex and paralimbic areas ( Fig. 3 A, left). In agran-

lar circuits, soma size and dendrite density are highest while neuron

ensity is lowest, and inhibitory connections between layers are absent

 Fig. 3 C, circuit diagram IV). Assuming that synapse volume density re-

ains constant, the concomitant increase in dendrites and decrease in

euron density means that the average indegree is increasing along the

radient ( Schmidt et al., 2018a , b ). Assuming intrinsic similarities be-

ween mostly granular and dysgranular areas, the average outdegree is

igher in the middle of the gradient than at the ends because areas send

ut more local than long-distance connections. 
8 
The mesoscale gradient combines transitions from granular to agran-

lar cortex with extrinsic, layer-specific connectivity ( Schmidt et al.,

018a , b ). High-to-low type (‘feedforward’) connectivity is dominated

y supragranular projections whereas low-to-high type (‘feedback’) con-

ectivity is dominated by projections to infragranular layers ( Fig 3 B,

eft and right). Horizontal connectivity shares features of both patterns

 Fig. 3 B middle). The mesoscale gradient relates these extrinsic connec-

ivity patterns to granularity-based differences in circuit architecture.

or example, L2/3 pyramidal neurons in dysgranular circuits connect

o agranular excitatory and inhibitory L5/6 populations because agran-

lar circuits lack L4 neurons. Moreover, granular and mostly granular

ircuits have similar feedforward connectivity patterns, whereas agran-

lar and mostly granular circuits have similar feedback connectivity pat-

erns. 

Before using the mesoscale gradient to assess inferences linking

icro- and macroscale gradients, we need to know the limitations of this

odel. First, despite discrete categories in Fig. 3 A and C, the gradient

haracterizes both stepwise and continuous transitions from granular to

granular circuits. In many cases shifts between architectonic types are

harp and run along macroscopic brain boundaries (e.g. the granular-

o-agranular shift along the central sulcus, Fig. 3 A, left). In other cases,

owever, there are gradual transitions between architectonic types, such

s the progression from agranular to granular areas in the dorsal paral-

mbic cortex ( Sanides 1962 , p. 107, Pandya et al., 2015 , p. 297). 

Second, the biological realism of the CMC model is debated since it

s based on statistical analyses and not dense connectomic reconstruc-

ions ( da Costa and Martin 2013 ). Although the mesoscale gradient is

tself an abstract description, it increases the biological realism because

t incorporates granularity-based connectivity differences neglected by

revious gradient models. Thus, the use of the CMC in the mesoscale

radient follows a ‘middle out strategy’ that includes bottom-up details

hile simultaneously using top-down constraints to maintain generality,

hich is a strength of mesoscale modeling ( da Costa and Martin 2013 ,

. 27, Batterman and Green 2020 ). 

Third, some experiments suggest that motor cortex may not be agran-

lar, since it has layer 4-like neurons which receive strong thalamic

nput and have feedforward excitatory projections ( Yamawaki et al.,

014 ). Note, however, that unlike traditional accounts of layer 4

 Felleman and Van Essen, 1991 ; Douglas and Martin, 1992 ), the

esoscale gradient follows recent multiscale models which reveal that

ayer 4 receives substantial feedback connections, and that inhibitory

onnections dominate excitatory ones in simulations of spontaneous

ranular circuit activity ( Schmidt et al., 2018a , b ). Further research is

eeded to address how these novel insights affect the debate about

granular motor cortex. Yet the conclusions drawn below are somewhat

ndependent from this debate because they are based on granularity dif-

erences between prefrontal and paralimbic areas rather than motor cor-

ex. 

Fourth, using the gradient in Fig. 3 C as a description of human

esoscale architecture assumes anatomical similarities between hu-

an, nonhuman primate and rodent brains. For example: laminar con-

ectivity patterns ( Fig. 3 B) are derived from macaque visual cortex

 Schmidt et al., 2018a ), and the circuit architecture for agranular and

ysgranular CMCs ( Fig. 3 C) is drawn from studies in rodent cortex

 Beul and Hilgetag, 2015 ). If further research discovers relevant in-

erspecies differences for these mesoscale features, Fig. 3 C should be

evised accordingly. Yet the mesoscale gradient follows other connec-

omics models and assumes that connectivity patterns and circuit archi-

ecture are to some extent prototypical or canonical across a broader

lass of systems and species ( Douglas and Martin, 1992 ; Ankeny, 2000 ;

aueis and Slaby, 2017 ; Goulas et al., 2018 ). 

Despite its limitations, the mesoscale gradient provides a novel per-

pective on multi-scale modeling of cortical gradients. First, return to

aquola et al. (2019) , who found that G HIST and G MRI run from primary

ensory to paralimbic areas, rather than neocortical association areas.

 HIST and G MRI thus parallel the mesoscale gradient, because primary
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Fig. 3. (A) Left: distribution of granule cells and layer 4 in human cortex (lateral view adapted from Beul and Hilgetag (2015) , anterior insula recoded as agranular; 

medial view based on von Economo (2009), Fig. 7. Right: Architectonic types defined by cell density, soma size, dendrite density and granularity. Connections between 

different architectonic types vary in density and laminar origin ( Hilgetag et al., 2019 ). (B) Cell-type specific interlaminar connectivity between different architectonic 

types. High-to-low connections are predominantly supragranular, whereas low to high connections are predominantly infragranular. Horizontal connections show 

intermediate patterns (adapted from Schmidt et al., 2018b ). (C) Mesoscale gradient of circuit connectivity links the cytoarchitectonic type principle and cell-type 

specific connection patterns to shifts in circuit architecture from granular to agranular areas (circuit diagrams modified from Beul and Hilgetag, 2015 ). . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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d  
ensory areas are granular while most paralimbic areas are agranular.

urthermore, low G HIST values (indicating high cell density in granular

ayer 4) are located in primary sensory areas, and high G HIST values (in-

icating low cell density in layer 4) are located in agranular paralimbic

reas ( Paquola et al., 2019 ; Fig. 2B and C). In humans, these areas are

nterior insula, anterior cingulate area 32, prelimbic area 32, areas 24,

5 and area 14c ( Ongür et al., 2003 ). The are also sparsely myelinated,

hich may explain why paralimbic G MRI values are maximally distinct

rom values in primary sensory areas ( Paquola et al., 2019 . Fig, 3C and

). 

This correspondence has three implications. First, Paquola’s infer-

nce that the divergence of G FUNC from G HIST and G MRI supports flexible

rocessing runs together two features of cortical organization that form

wo distinct gradients. Paquola et al. relate increased flexibility both

o (a) diverse connectivity profiles and (b) enhanced synaptic plastic-

ty in the default mode and fronto-parietal network. With regard to (a)

t is true that diverse connectivity profiles (divergence of G FUNC from

 HIST ) allow these networks to integrate multiple types of information

nd broadcast the resulting representations to support multiple cogni-

ive functions. This notion of flexibility is roughly equivalent to con-

ent heterogeneity, and therefore linked to representational abstraction

 Margulies et al., 2016 ). Regarding (b), however, both networks do not

ave the highest synaptic plasticity, even though they are more plas-

ic than primary sensory regions. For example: the frontoparietal and
9 
efault mode network consists of areas in the rostrolateral and medial

rontal gyrus. Their homolog macaque areas 9/46d and area 10m are

ostly granular and have increased molecular markers for inhibiting

ynaptic plasticity ( García-Cabezas et al., 2017 , Figs. 2 –4). By contrast,

aralimbic prefrontal areas 25 and 32 exhibit increased molecular mark-

rs for enhanced synaptic plasticity Garcia-Cabezas et al. 2017, Figs, 5–

). This means that paralimbic circuits at the endpoint of G HIST and the

esoscale gradient are more flexible to plastically change their synap-

ic connectivity than prefrontal areas in the frontoparietal and default

ode network. 

Second, the correspondence of G HIST and the mesoscale gradient im-

lies that cortical gradients for integration time, flexibility and repre-

entational abstraction only overlap in some but not other parts of neo-

ortex. Multiscale gradient models commonly assume that these aspects

re inseparable components of the same hierarchical processing gra-

ient ( Elston, 2003 ; Fulcher et al., 2019 ). In contrast, the mesoscale

radient suggests that whereas dendritic spine density and integration

ime are highest in agranular circuits such as anterior cingulate cortex

 Elston et al., 2005 ), these circuits have lower degrees of representa-

ional abstraction than transmodal association cicruits. Agranular par-

limbic areas connect to a diverse set of multimodal and prefrontal ar-

as which allows them to represent heterogenous contents ( Lavenex and

maral 2000 ; Pandya et al., 2015 , ch. 11). But these areas have reduced

istance to sensory inputs because they are strongly connected to olfac-
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ory, gustatory, somatosensory cortex and the amygdala. Based on these

nputs, agranular paralimbic circuits contribute to visceral functions, the

rocessing of olfactory and gustatory information, pain perception, as

ell as linking mood to cognition ( Pandya et al., 2015 , p. 315). This

unctional profile of the agranular end of G HIST and the mesoscale gra-

ient is in sharp contrast to the transmodal end of G FUNC , where ac-

ivity correlates with functions such as social cognition, verbal seman-

ics, autobiographical memory and internal mentation more generally

 Margulies et al., 2016 ; Wang et al., 2019 ). 

Third, the granularity-based differences ( Fig. 3 A) imply that neocor-

ical association areas at the end of G FUNC are situated in the middle

f the mesoscale gradient. For example, posterior components of the

MN predominantly belong to the dysgranular type: although laminar

ifferentiation varies, most areas of posterior cingulate cortex have a

ysgranular layer 4 ( Vogt et al., 1995 ). Precuneus similarly has a small

ut differentiated layer 4 ( Scheperjans et al., 2008 ). Prefrontal DMN re-

ions like orbitofrontal and medial prefrontal cortex are composed of

ostly granular and dysgranular circuits ( Ongür et al., 2003 ). This sug-

ests that high levels of representational abstraction in DMN areas may

e supported by heterogenous connectivity patterns at the mesoscale of

ortical circuits, even though this network exhibits homogenous func-

ional connectivity patterns at the macroscale. 

The mesoscale gradient can furthermore help answer why DMN re-

ions display low w values in Wang et al.’s (2019) parametrization of

he MFM. Because dysgranular circuits possess interlaminar inhibitory

onnections whereas agranular ones do not, recurrent excitation should

e weaker in these circuits than in agranular ones. Wang et al.’s re-

ults support this interpretation at least in part because w values in

aralimbic areas are higher than in neocortical association areas, al-

hough not as large as in primary sensory and motor cortex ( Wang et al.,

019 , -Fig. 2A). The mesoscale gradient thus helps to determine ex-

ctly which circuit features —dendritic spine density and interlaminar

nhibition —were lumped together in the w parameter of the MFM. Dis-

inguishing these features with separate modeling parameters helps us

ppreciate that increased excitatory input is not the only feature rele-

ant to representational abstraction. Interlaminar inhibition also seems

o contribute to the integration of various types of informational input

n neocortical association networks. 

Besides distinguishing circuit features via reference determina-

ion, researchers can also parametrize the mesoscale gradient with

acroscale functional connectivity values. For example: one end of the

econd gradient of functional connectivity ( Fig. 1 B, top) summarizes

ver mostly granular somatosensory and agranular motor cortex. Multi-

cale studies could inquire whether these areas have similar macroscale

onnectivity patterns because mostly granular and agranular circuits

hare similar interlaminar feedback patterns ( Fig. 3 C). The mesoscale

radient thus can help multiscale modeling to summarize similar cir-

uit features in the same parameter and distinguish dissimilar features

n different ones 

onclusion 

This paper argued that the mesoscale of cortical circuits is crucial to

ink micro- and macroscale models to different aspects of hierarchical

nformation processing. To assess inferences in the gradient literature, I

ransposed the framework of multiscale modeling from physics to neu-

oscience. Going beyond existing philosophical accounts of multiscale

odeling ( Wilson, 2017 ; Green and Batterman, 2017 Batterman and

reen 2020 ), the transposition showed multiscale models of cortical

radients do not aim at explaining a particular type of behavior but

o discover patterns of brain organization which are relevant to many

ifferent types of neural functions. Multiscale models in physics use

oundary conditions and homogenization to restrict the model domain

nd select explanatorily relevant information. Connectomic multiscale

odels use parametrization and reference determination to explore the

ntire lower-scale model domain and to assess what features of cortical
10 
rganization are represented by upper-scale data values. The multiscale

ramework therefore advances the field of connectomics by highlight-

ng which tools connectomics researchers can use for “understanding,

pecifically, how network properties at one spatial scale are related to

roperties at another ” ( Betzel and Bassett, 2017 , p. 80). 

I used the framework to analyze the role of mesoscale information

n multiscale models of cortical gradients, which frequently assume

hat different features of cortical organization are organized into one

nd the same cortical gradient of hierarchical information processing

 Burt et al., 2018 ; Fulcher et al., 2019 ). My analysis shows instead that

radient measures are related to different circuit features such as inde-

ree or recurrent excitatory strength, or interlaminar inhibition. This

esult supports the view that cortex is organized into multiple overlap-

ing gradients ( von Bonin and Bailey 1951 ; Paquola et al., 2020 ). The

resent analysis tentatively labelled these gradients in terms of represen-

ational abstraction, integration time and flexibility. While gradients for

ifferent aspects of hierarchical information processing coincide in oc-

ipital cortex (cf. Hilgetag and Goulas, 2020 , p. 8) they diverge towards

ifferent spatial endpoints in prefrontal cortex. There, the gradient con-

ept describes both agranular paralimbic circuits, which are an interface

or interoceptive and exteroceptive information with high synaptic flex-

bility and low distance to sensory inputs; and the default mode and

rontoparietal networks, which have a high distance to sensory input

ut lower synaptic flexibility. 

Whereas this paper focused on the role of mesoscale anatomy and

hysiology in multiscale gradient models, further research should ex-

lore how gradients of hierarchical information processing are related to

he computational, dynamic and topological organization of the brain.

omputational models could use the mesoscale gradient to explain how

nterlaminar inhibition contributes to the transformation of multiple in-

ormation types in an abstract representation. In a predictive coding

ramework, for instance, interlaminar inhibition of supragranular neu-

ons minimizes updating of expectations by lower-level prediction er-

ors ( Bastos et al., 2012 ). To explain how a specific circuit creates an

bstract representation, researchers need to add area-specific incom-

ng connections to this computational model, because they over which

ypes of information the circuit computes a prediction. Multiscale mod-

ls are also helpful to study dynamic features because they relate them

o distinct connectivity measure. For example, Schmidt et al. (2018a , p.

1244 p. 1424) show that synaptic indegree is related to time-averaged

pike rates whereas interareal connection probabilities are related to the

orrelation of time series. Here, mesoscale information is crucial: mod-

ling layer-specific indegrees is necessary to link microscale studies of

ortical dynamics, which measure spike rates, and macroscale studies

f functional connectivity dynamics, which measure correlations. The

elation to degrees of connection furthermore points towards the im-

ortance of topological organization for understanding dynamics along

ortical gradients. Topological analyses of hierarchy focus on the ability

f a part of the brain to integrate, broadcast, or gate information, but

re neutral with respect to representational abstraction ( Burnston and

aueis, 2021 ). Future multiscale studies could use graph-theoretical

ools to analyze in- and outdegrees along different parts of the gradient

f representational abstraction to explicitly explore the relation between

epresentational and topological hierarchies. 
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