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Super-resolution structured illumination microscopy (SR-SIM) provides an up to twofold enhanced spatial res-
olution of fluorescently labeled samples. The reconstruction of high-quality SR-SIM images critically depends on
patterned illumination with high modulation contrast. Noisy raw image data (e.g., as a result of low excitation
power or low exposure time), result in reconstruction artifacts. Here, we demonstrate deep-learning based SR-SIM
image denoising that results in high-quality reconstructed images. A residual encoding–decoding convolutional
neural network (RED-Net) was used to successfully denoise computationally reconstructed noisy SR-SIM images.
We also demonstrate the end-to-end deep-learning based denoising and reconstruction of raw SIM images into
high-resolution SR-SIM images. Both image reconstruction methods prove to be very robust against image
reconstruction artifacts and generalize very well across various noise levels. The combination of computational
image reconstruction and subsequent denoising via RED-Net shows very robust performance during inference
after training even if the microscope settings change. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416437

1. INTRODUCTION

Fluorescence microscopy remains one of the most powerful
tools for imaging cell biology samples because of its ability
to specifically label molecular structures and to visualize them
in different fluorescence color channels. It also offers exception-
ally high sensitivity and can visualize molecular processes even
below the optical diffraction limit. Several methods that enable
imaging of fluorescently labeled samples down to the nanoscale
have been developed during the last two decades [1]. Super-
resolution structured illumination microscopy (SR-SIM)
is a particularly compelling method, because it works with
the majority of samples and fluorophores commonly used in
cell biology without imposing specific requirements on sample
preparation [2,3]. Therefore, it can even be applied to living
samples [4–12]. SR-SIM in its most common form uses a series
of sinusoidal illumination patterns with a pattern periodicity at
or near the diffraction limit. This patterned excitation light is
phase-shifted laterally and rotated to different discrete angles to
acquire a series of raw images, which are then passed on to an
image reconstruction algorithm to obtain the final super-
resolved SR-SIM image [13]. Several implementations of

reconstruction algorithms that operate in the frequency space
were developed and a number of open access tools are now
available that aim to enhance the speed and spatial resolution,
and minimize reconstruction artifacts in the final reconstructed
image (i.e., fairSIM [14], OpenSIM [15], SIMToolbox [16],
and CC-SIM [17]). The most common property among all
these image reconstruction algorithms is that they require a
series of high-quality raw images to be able to reconstruct a
high-quality super-resolution image. However, reconstruction
in the frequency space fails to reliably reconstruct SR-SIM im-
ages if the signal-to-noise ratio (SNR) is too low (e.g., because
the laser excitation power level was too low), the sample expo-
sure time chosen was too short, or the sample has already
undergone irreversible photobleaching [18]. Recently, several
developments that aim to reduce reconstruction artifacts from
SR-SIM images have been undertaken. Huang et al. used a
fully analytical approach to reduce noise and minimize
reconstruction artifacts using the Hessian matrix theory
[10]. Hoffman and Betzig proposed the reconstruction of
SIM images in lower pixel count tiles with subsequent merger
to reduce reconstruction artifacts [19]. Jin et al., on the other
hand, used deep neural networks to reconstruct the cropped
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regions of SR-SIM images [20]. Christensen et al. used a deep
learning architecture for the reconstruction from synthetic raw
SIM images [21] with subsequent testing on real microscope
images. Ling et al. relied on a special type of convolutional
neural network, a CycleGAN, for the same purpose [22].
And Weigert et al. used deep learning algorithms to enhance
isotropic resolution and the signal-to-noise ratio (SNR) of fluo-
rescence microscopy images in general [23].

Here, we provide a comprehensive study on several
deep-learning based approaches to denoise and reconstruct
SR-SIM images. First, as starting point, we include an end-
to-end deep learning architecture and workflow that is related
to the existing literature combining SIM and deep learning
[20–22] in that a single network is used that receives raw SIM
images as input and produces a super-resolution image as the
output. This approach is named super-resolution residual
encoder–decoder structured illumination microscopy (SR-
REDSIM) in the following discussion. In this case, the entire
SIM reconstruction process is performed by the deep convolu-
tional neural network.

Second, for what we believe, to the best of our knowledge, is
an entirely novel workflow, we combine classical computational
SIM reconstruction with a deep learning network. This work-
flow is called a residual encoder–decoder fairSIM (RED-
fairSIM). RED-fairSIM is a combination of the fairSIM
image reconstruction package [14], which performs image
reconstruction using commonly used frequency domain algo-
rithms and a deep convolutional neural network for subsequent
artifact reduction and denoising. Finally, we also show the
results for a workflow where deep learning is first applied to
the raw SIM images for denoising with subsequent classical
computational SIM reconstruction; thus, exactly the other
way around, as in RED-fairSIM. This approach is named
preRED-fairSIM.

For the main network architecture for all three approaches
we use the residual encoder–decoder network (RED-Net) [24],
which is comparatively lightweight. For training, raw image
data directly from the microscope is used, which offers a
straightforward, practical solution without the need to create
synthetic data or carry out substantive preprocessing in contrast
to the existing literature. We found that the first two methods
are robust in their ability to significantly improve the quality of
the reconstructed SR-SIM images. We show, for what we be-
lieve is the first time, that the trained networks of these two
methods generalize well to real microscopic SIM data with dif-
ferent SNRs. The novel RED-fairSIM workflow shows superior
performance in this regard. Furthermore, we also demonstrate
that RED-fairSIM generalizes better even if the microscope set-
tings are changed after training.

2. MATERIALS AND METHODS

A. Training Data Generation
Deep learning methods rely on training data, which, in our
case, consist of noisy raw SIM images for the input and ideally
noise and artifact free, super-resolved SIM reconstructions for
the output. Thus, we first need to generate such a data set that
is large enough to effectively train the network, but also cap-
tures all aspects of the SIM imaging process (sample behavior,

instrument imperfections, and data processing artifacts) well
enough.

In principle, the data acquisition process of a SIM micro-
scope can be simulated. In this case, the expected output rep-
resents the ground truth data upon which the simulation is
based, and which is known without SNR or resolution limits.
In addition, the amount of available training data would only
be limited by the processing time, as the generation would be
fully automated and not rely on access to a microscope system.
However, we decided against this pure in silico approach.
Although the basic effects of structured illumination, Poisson-
distributed noise, and even basic optical imperfections are
rather easy to simulate, modeling the response of a full struc-
tured illumination microscope correctly is very complex.
Additionally, such a simulation would likely have to be adjusted
to reflect the properties of a specific SR-SIM instrument to cap-
ture changes (e.g., when switching to a different manufacturer
or even a specific installation of an SR-SIM microscope). The
same argument holds true for the fluorescent samples them-
selves. Although some simulations that provide perfect ground-
truth data exist (e.g., for single molecule localization micros-
copy [25,26]), they, again, do not capture all of the variability
found in real-world samples.

The option chosen for data generation for the work pre-
sented here is to use real microscope data from standard bio-
logical samples. This approach naturally captures all aspects and
imperfections of the samples and of the specific instrument in
question [23], but also poses constraints. Because data collec-
tion requires both instrument time and manual sample prepa-
ration and handling, the amount of training data is naturally
limited. There also is no perfect ground truth available. To ac-
quire the high-quality reference images presented to the net-
works as desired output, we adjusted the instrument to
provide high-SNR raw frames and processed those with the
classical, frequency-domain-based image reconstruction algo-
rithm. While these images are low in noise and reconstruction
artifacts, they are never completely devoid of them. For this
reason, we refer to them by the term “reference image” instead
of “ground truth.” To acquire noisy, low-SNR images as input,
the samples were then photo-bleached by continued exposure
and acquisition of raw SIM images, which naturally reduces the
fluorescent light output over time and results in a series of
images with steadily decreasing SNR. (See Section 2.C for
details.)

B. Sample Preparation and Data Acquisition
U2OS cells were cultured in DMEM supplemented with 10%
FBS and grown on round coverslips of 170� 5 nm thickness
(No. 1.5H). Cells were fixed with 4% PFA for 15 min, fol-
lowed by PBS washes, and permeabilization with 0.5%
Triton-X100 for 3 min. Another two rounds of PBS washes
were done prior to blocking with 3% BSA. For the immuno-
labeling, the microtubuli, cells were stained with anti-tubulin
Ab (Invitrogen Cat. No. 322500) 1:400 for 2 h at room tem-
perature, followed by a PBS wash and one additional hour of
incubation with Alexa 488-conjugated anti-mouse IgG 1:400.
Cells were then briefly washed with PBS before Vectashield was
applied to embed the coverslip onto the standard slide glass for
imaging.
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The DeltaVision|OMX (GE Healthcare, Chicago, IL, USA)
was used to acquire 3D-SIM raw images. A total of 101 ran-
domly selected fields of view were acquired by exposing each
field-of-view to the full laser power of the 488 nm excitation
laser and the exposure time was set at 20 ms for each of the 15
raw image frames. A total of 200 image repetitions were col-
lected at each position without delays. Taking into account
the camera readout and pattern switching time, acquiring 15
raw SIM images, making up one timestamp in the raw image
stack, takes approximately 375 ms.

C. Data Preprocessing
In our work, we used 101 different cell structures (fields of
view). Out of these, 81 were selected for the training data
and the remaining 20 for the test data. Each cell structure
was captured for 200 repetitions. During each repetition, 15
frames were recorded, iterating the phase and orientation of
the sinusoidal SIM illumination pattern, yielding an image
stack of size 15 × 512 × 512 (frames, width, height). During
this time-lapse acquisition, the samples underwent photo-
bleaching, which reduces the amount of active fluorescent
emitters and thus the amount of emitted photons. Therefore,
less and less light is captured and the SNR steadily decreases
during the acquisition of such a time series.

The cell structures from the timestamps 175 to 200 are
therefore considered as noisy training and test input while
the samples from timestamp 0 are considered as clean output
images. All 15 clean raw SIM images of the 101 cell structures
from timestamp 0 are used to reconstruct high-resolution refer-
ence SIM images of size 1024 × 1024 pixels by using
fairSIM, which employs a classic frequency-domain-based
reconstruction. In this work, the input dimension is
15 × 512 × 512 (frames, width, height) whereas the output di-
mension is 1024 × 1024 (width, height) pixels. A total of 2525
samples were further divided into training and test data. The
training data contains 2025 images of the first 81 cell struc-
tures; the test data is composed of 500 test images that are cre-
ated from the remaining 20 cell structures.

The only preprocessing step involved in our work is the lin-
ear scaling of the training and test data to match the overall
brightness between the input and output. In addition, we tested
an image augmentation approach to double the amount of
training data by rotating each image by an angle of 180°.

The data from each time series over 200 repetitions were
subdivided into different noise levels. Noise level 0 stands
for the highest SNR in our data at timestamp 0. In our work,
this is our reference data. The image data from timestamps
175–200 represent the highest noise level 4, the data from
timestamps 125–150 represent noise level 3, the data from
timestamps 75–100 are noise level 2, and the data from time-
stamps 25–50 are noise level 1. In this study, data from noise
level 4 are only used in the training process whereas data from
noise levels 1, 2, 3, and 4 are used in the test phase.

D. Architecture and Training of SR-REDSIM
In the first deep-learning based SR-SIM image reconstruction
method, named SR-REDSIM, the reconstruction and denois-
ing of noisy raw SIM images are both performed by a single
deep learning model. This model is a modified version of the

RED-Net. RED-Net is an encoding–decoding framework with
symmetric convolutional–deconvolutional layers along with
skip-layer connections. It was previously used to accomplish
different image restoration tasks such as image denoising, image
super-resolution, and image inpainting [24]. The original
RED-Net architecture is only composed of encoding–decoding
blocks with the size of the network input being the same as the
size of the network output. Therefore, super-resolution with
this architecture has to rely on explicit image pre-upsampling
[24]. In contrast, our modified RED-Net architecture contains
an additional upsampling block after the encoding–decoding
blocks. This upsampling block inside our model has the advan-
tage that the input images are first denoised in their lower-
dimensional space, which reduces the training time and effort.

Most of the super-resolution architectures such as the en-
hanced deep super-resolution network (EDSR) [27] or the
residual channel attention network (RCAN) [28] are very deep
and require a significant amount of training data. In compari-
son, our architecture is comparably lightweight.

SR-REDSIM is based on a modified version of RED-Net.
The complete pipeline of this approach is shown in Fig. 1(a),
whereas the architecture of SR-REDSIM and details about the
model parameters are given in Fig. 2(a). The SR-REDSIM ar-
chitecture consists of three blocks: the encoder, the decoder,
and the upsampling block. SR-REDSIM contains a total of
44 convolutional and deconvolutional layers with symmetric
skip connections. The encoder block is composed of 21
convolutional layers, whereas the decoder contains 21 decon-
volutional layers. The upsampling block consists of two decon-
volutional layers that perform the upsampling task by adjusting
the size of the stride. The SR-REDSIMmodel provides the best
results after training the model for 100 epochs. The SR-
REDSIM model is trained only with high-level noise data from
timestamps 175 to 200. During the training process, the
ADAM optimizer and the L2 loss function, also known as least
squares error, are used, so

Loss �
Xn

i�1

�yi − ŷi�2: (1)

In Eq. (1), yi represents the true pixel intensity, ŷi represents
the predicted pixel intensity, and n is the number of pixels (in
the image).

E. Architecture and Training of RED-fairSIM
The RED-fairSIM is combination of fairSIM and RED-Net.
The pipeline of RED-fairSIM is shown in Fig. 1(b). In this
approach, first fairSIM is used to transform the raw SIM images
into a super-resolved output image by employing a classic, fre-
quency-domain SIM reconstruction algorithm. This output
image now contains noise, which, due to the frequency-domain
algorithm, takes a SIM-specific form, and might show other
reconstruction artifacts. It is subsequently processed by
RED-Net.

1. fairSIM
The fairSIM reconstruction is performed in three steps: param-
eter estimation, reconstruction, and filtering. Mathematical
and algorithmic details are provided in the original publication
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[14]. A synthetic optical transfer function, with NA � 1.4,
λ � 525 nm, and a � 0.31 (a is a compensation parameter
[14,29]), is used. A total of 500 counts of background are sub-
tracted per pixel. SIM reconstruction parameters (pattern ori-
entation and global phase, for example) are automatically
determined by the fairSIM standard in an iterative cross-corre-
lation approach. Filter parameters are set to a generalized
Wiener filter strength of w � 0.05, apodization is set at
1.9× the resolution limit with a bend of 0.8, and a notch-style
filter is implemented as OTF attenuation with a strength of
0.995 and an FWHM of 1.2 μm−1 is in use. For the detailed
meaning and influence of these parameters, please refer to the
fairSIM source code, its accompanying publication [14], and
this general guide to SIM reconstruction parameters [29].

2. RED-Net Architecture
The architecture of RED-Net used in RED-fairSIM consists of
15 convolutional and 15 deconvolutional layers along with
symmetric skip connections, as shown in Fig. 2(b). The output
of fairSIM is propagated into the RED-Net to denoise the re-
constructed noisy sample. During the training phase, the noisy
SR-SIM images of size 1024 × 1024 pixels along with the refer-
ence SR-SIM images of the same size are used as input–output

pairs for the RED-Net. The network is trained for 100 epochs
with the ADAM optimizer and L2 loss.

F. Architecture and Training of U-Net-fairSIM
U-Net is also a popular deep learning architecture that is ex-
tensively used in the domain of image restoration such as image
denoising and super-resolution [23,30,31]. In U-Net-fairSIM,
we simply replaced the RED-Net from the RED-fairSIM ap-
proach with the U-Net architecture. The U-Net is also trained
for 100 epochs with the ADAM optimizer and L2 loss.

3. RESULTS

A. SR-REDSIM: SR-SIM Image Denoising and
Reconstruction Using the Super-resolution REDSIM
Method
SR-REDSIM is an entirely deep-learning based, end-to-end
method. The complete pipeline of SR-REDSIM is shown in
Fig. 1(a) and the architecture of SR-REDSIM, as shown in
Fig. 2(a), is explained in more detail in Section 2.D. During
the training process, we used all 15 raw noisy SIM images (three
angles with five phases each) of size 512 × 512 pixels [i.e., stack
dimensions were 15 × 512 × 512 (frames, width, height)] as
input along with the reconstructed super-resolved SIM image

(a)

(b)

,

Fig. 1. Schematics of the deep learning CNN architecture of the two different SR-SIM image denoising (RED-fairSIM) and image denoising and
reconstruction (SR-REDSIM) methods. In both approaches, a stack of 15 raw (noisy) SIM images (three angles with five phases each) is used as
input. The output is the reconstructed SR-SIM image. (a) SR-REDSIM is composed of three main blocks. The encoding block contains mainly the
convolutional layers whereas the decoding block consists of deconvolutional layers and the upsampling block of deconvolutional upsampling layers.
(b) In the RED-fairSIM method, fairSIM is first used to computationally reconstruct noisy SR-SIM images that are then further propagated into the
RED-Net for denoising. The architecture of RED-Net is composed of the encoder and the decoder blocks.
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of size 1024 × 1024 pixels as output. The output was generated
by the fairSIM software from raw SIM images recorded with
the highest SNRs, while the input images were taken from
noise level 4. Note that Section 2.C offers an explanation of
the noise levels. The trained network was tested afterward
on unseen test data from noise level 4. The super-resolution
images obtained during this test are depicted in column 2
of Fig. 3, whereas columns 1 and 5 show the results of noisy
fairSIM (reconstructed by fairSIM from noisy raw SIM images;
noise level 4) and reference fairSIM (reconstructed by fairSIM
from raw SIM images with the highest SNR). The comparison
of these images and of specific regions of interest (ROIs) be-
tween fairSIM in Fig. 3 (column 1, all rows) and SR-
REDSIM (column 2, all rows) clearly shows that the noise
is completely removed by SR-REDSIM. However, in the
reconstruction by SR-REDSIM, fine cell structures are partly

suppressed compared to the reference output (compare column
2, row 2, ROI 1 in Fig. 3 with column 5, row 2, ROI 1). In
rows 3/4 and 5/6 of Fig. 3, the structure of the cell is well
denoised and reconstructed by SR-REDSIM. Moreover, the
evaluation of the SR-REDSIM method on the basis of peak
SNR (PSNR) and structural similarity index measurement
(SSIM) [32] values in Table 1 shows a significant improvement
compared to fairSIM.

B. RED-fairSIM: SR-SIM Reconstruction of Noisy
Input Data by Using a Combination of fairSIM and
RED-Net
One of the well-known open-source reconstruction algorithm
implementations is fairSIM. It is widely used for super-resolu-
tion tasks among the other tools in SIM microscopy. However,
it cannot reconstruct a clean, high-quality super-resolution

(a)

(b)

Fig. 2. The architecture of the networks used in this work. (a) SR-REDSIM architecture is composed of three different blocks. The encoding and
decoding blocks contain 21 convolutional and deconvolutional layers, respectively, whereas the upsampling blocks consist only of two upsampling
layers. This architecture was used in the SR-REDSIM method to denoise and reconstruct the raw SIM images. (b) The complete RED-Net ar-
chitecture contains 15 convolutional and 15 deconvolutional layers along with the additive symmetric skip connection layers. This architecture was
used in the RED-fairSIM and preRED-fairSIMmethods for denoising (in preRED-fairSIM, the input and output have a size of only 512 × 512 × 1).
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Fig. 3. Super-resolution SIM (SR-SIM) images of three different test samples (U2OS osteosarcoma cells, tubulin cytoskeleton labeled with anti-
tubulin-Alexa488) at high-level noise (time stamps 175–199; noise level 4). Each column represents a different reconstruction approach: fairSIM
(first column), SR-REDSIM (second column), U-Net-fairSIM (third column), and RED-fairSIM (fourth column). The fifth column depicts the
reconstructed reference images which were generated by applying fairSIM image reconstruction to high SNR image data at noise level 0 (lowest noise
level; i.e., timestamp 0). All reconstructed SR-SIM images have 1024 × 1024 pixels. The first, third, and fifth rows correspond to the full-size SR-
SIM images, whereas the second, fourth, and sixth rows depict magnified ROIs of the white squares (bounding boxes) indicated in the full-size
images. The extracted ROIs of size 100 × 100 pixels were upsampled to 300 × 300 pixels using bicubic interpolation for illustration purposes. Scale
bar: 4 μm.

Table 1. Mean PSNR and SSIM Values along with the Standard Deviation for All Methods Calculated on 500 Test Images
with Respect to the Reference (Highest SNR) Images

Mean PSNR (STD) and SSIM (STD) Values at Different Noise Levels

Noise level 1 Noise level 2 Noise level 3 Noise level 4

PSNR(STD) SSIM(STD) PSNR(STD) SSIM(STD) PSNR(STD) SSIM(STD) PSNR(STD) SSIM(STD)

fairSIM 28.84(2.47) 0.69(0.10) 25.83(1.70) 0.45(0.09) 24.12(1.64) 0.32(0.07) 23.61(1.54) 0.29(0.07)
SR-REDSIM 26.73(1.93) 0.69(0.07) 26.65(1.55) 0.64(0.07) 26.66(1.73) 0.64(0.07) 26.62(1.79) 0.69(0.09)
U-Net-fairSIM 27.44(1.71) 0.75(0.08) 27.23(1.76) 0.69(0.09) 26.85(1.70) 0.65(0.09) 26.80(1.65) 0.68(0.10)
RED-fairSIM 28.75(1.86) 0.80(0.07) 28.67(1.99) 0.75(0.08) 28.18(2.06) 0.70(0.09) 27.97(2.01) 0.71(0.09)
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image from noisy raw SIM images. In the RED-fairSIMmethod,
fairSIM is first used to reconstruct the SIM samples of noisy
raw SIM images and then RED-Net is used to denoise the out-
put of fairSIM and to generate high-quality super-resolution
images. During the reconstruction process, the stack of 15
noisy images (three angles, five phases) of size 512 × 512 pixels
is again propagated into the fairSIM reconstruction algorithm
that then generates a single noisy reconstructed image of size
1024 × 1024 pixels. The noise and artifacts found in these im-
ages do not follow a typical distribution (e.g., Poisson or
Gaussian), but have a distinct form that comes from the
frequency-based reconstruction algorithm. This single noisy re-
constructed image is further passed into the RED-Net architec-
ture to achieve the final result, which can be seen in Fig. 3
(column 4). The complete pipeline of the RED-fairSIM method
can be seen in Fig. 1(b) and the architecture of RED-
Net is shown in Fig. 2(b). The parameters that were used to
generate the SIM reconstructed samples from the raw SIM im-
ages are explained in Section 2.E.1. RED-Net was trained in a
supervised way where the input–output pairs contain the noisy
and reference reconstructed images.

The performance of this method on the unseen test sam-
ples is the best among our experiments with respect to PSNR
and SSIM values, as shown in Table 1, as well as visually. The
ROIs in Fig. 3 show clearly that the output images generated
by RED-fairSIM are of high quality with fine details and
smooth lines. They are superior compared to the noisy
fairSIM, the reference fairSIM, and the SR-REDSIM. Even
the artifacts introduced by fairSIM in the reference images
are completely removed by RED-fairSIM. It might appear
as if the contrast in the denoised SR-REDSIM and RED-
fairSIM images in Fig. 3 is weaker when compared to the
reference image. This, however, is not the case. The images
shown in Fig. 3 are original image data as produced by the
various denoising or reconstruction methods without further
image processing (i.e. contrast adjustments). Part of the ap-
parent higher contrast in the reference image can also be
attributed to graininess of the image, which is caused by un-
even antibody staining of the tubulin filaments (a typical phe-
nomenon of antibody staining). It should be noted that the
DL-based denoising methods also (at least partly) remove this
unevenness.

Furthermore, preliminary tests of RED-fairSIM and SR-
REDSIM concerning their ability to generalize to different
SIM imaging conditions were carried out, as shown in Fig. 4.
As before, U2OS cells were stained for microtubuli, but a dark-
red dye with illumination shifted to 642 nm was used, which
subsequently also shifts the spatial frequencies of the illumina-
tion pattern. The RED-fairSIM approach is able to denoise
these images and remove SIM reconstruction artifacts, while
the SR-REDSIM approach creates heavy ghosting artifacts.
This is unsurprising, as in the case of SR-REDSIM, all specific
properties of the SIM pattern (spatial frequencies, orientation,
phases) are learned by the network. In the RED-fairSIM ap-
proach, parameters specific to the SIM pattern are absorbed by
the classic, frequency-domain-based reconstruction, and only
reconstruction artifacts are carried into the network. Those ar-
tifacts might still depend on the SIM imaging parameters, so

further cross-checks should be carried out. As an initial result,
RED-fairSIM seems to generalize well to different SIM pattern
settings.

1. U-Net-fairSIM
In the pipeline proposed for RED-fairSIM, we replaced the
RED-Net by U-Net and analyzed the resulting super-resolu-
tion images. We named this approach as U-Net-fairSIM.
Figure 3 (column 3) shows that U-Net-fairSIM also produces
better results as compared to the noisy, reference, and SR-
REDSIM images. However, it does not surpass RED-
fairSIM. Similarly, the U-Net-fairSIM approach outperforms
all other counterparts except for RED-fairSIM concerning
the PSNR and SSIM values in Table 1. Comparing RED-
fairSIM and U-Net-fairSIM directly, as in Fig. 5, the cell struc-
tures reconstructed by RED-fairSIM are smoother.
Furthermore, they are more faithful when taking the reference
as “gold standard” into account. For these reasons, we have fo-
cused the presentation in this paper on RED-fairSIM.

2. Data Augmentation
During all of the reported experiments, we did not carry out
any preprocessing on the input or output images such as down-
sampling or cropping, as discussed in Section 2.C. Nonetheless,
we tested whether or not image augmentation yields any sig-
nificant improvement in the results. For this purpose, each im-
age was rotated by an angle of 180° and added in this form to
the training set. This increased the amount of training data
from 2025 to 4050 images. The mean PSNR and SSIM values
after training the methods with the augmentation approach are
reported in Table 2. While the image augmentation did not

Fig. 4. These SR-SIM images show the difference between the out-
put of the SR-REDSIM and RED-fairSIM methods when applied to
imaging conditions that the underlying network was not trained for.
To evaluate the generalization capabilities of these methods, we again
collected tubulin structure (on U2OS cells), but with a different ex-
citation wavelength. Here, the cell is illuminated by light with a wave-
length of 642 nm instead of 488 nm (the latter used for the images in
the training set). The different wavelength also changes the spatial fre-
quency of the SIM patterns. This cell structure with unseen illumina-
tion properties is then propagated through the pretrained models of
both SR-REDSIM and RED-fairSIM. The resulting SR-SIM image
shows that RED-fairSIM is more robust against changed microscope
settings than SR-REDSIM. Scale bar: 4 μm.
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provide a noticeable advantage overall and did not change the
performance-wise ordering of the proposed methods, and in-
stead doubled the training time and increased the preprocessing
effort, we decided to focus this paper on the results without
image augmentation.

C. Alternative Approaches

1. preRED-fairSIM
Similarly, we also tried to generate high-quality super-resolu-
tion SR-SIM images by another method called preRED-
fairSIM. The pipeline of preRED-fairSIM is shown in
Fig. 6. However, preRED-fairSIM failed to deliver usable re-
sults at the end. In preRED-fairSIM, each noisy SIM image
from a different phase and orientation is denoised separately
and then the whole stack of all 15 denoised images is propa-
gated into the fairSIM algorithm to reconstruct a final super-
resolution image. In the preRED-fairSIM approach, we trained
a 30-layer RED-Net for one selected phase and orientation and
then performed transfer learning [33] (which implies in our
scenario no retraining and no changes in the network
weights) and fine tuning [34] (which implies adaptation

Table 2. Mean PSNR and SSIM Values along with
Standard Deviations (STD) for Noise Level 4 after
Applying Data Augmentation (Computed on 500 Test
Images)

PSNR(STD) SSIM(STD)

SR-REDSIM 26.37(2.07) 0.66(0.10)
U-Net-fairSIM 28.05(2.10) 0.71(0.09)
RED-fairSIM 28.09(2.04) 0.72(0.09)

Fig. 5. Reconstruction of SR-SIM images of two different test samples with the fairSIM, U-Net-fairSIM, and RED-fairSIM methods. Each
column represents the results of the corresponding method. The first and third rows show the resulting SR-SIM images, whereas the second
and fourth rows contain the extracted enlarged ROIs from the full-size images in the rows directly above. The cell structures reconstructed by
RED-fairSIM are smoother compared to the U-Net-fairSIM and fairSIM (reference) cell structures. Furthermore, they are more faithful than
U-Net-fairSIM when taking the reference as the “gold standard” into account. Scale bar: 4 μm.
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of a subset of the network weights) to other phases and
orientations.

The results of transfer learning and fine-tuning are quite
promising in terms of the achieved SSIM and PSNR values.
The model trained with data of phase 0 and orientation 0
has a mean PSNR = 33.22 dB and a mean SSIM = 0.90 on
the test data. Averaged over all other combinations of phase
and orientation, transfer learning yields a PSNR = 31.03 dB
and an SSIM = 0.89 during testing. After fine-tuning the first
and last five layers of the pretrained model, the mean values
over all combinations of phase and orientation amount to a
PSNR = 33.32 dB and an SSIM = 0.89. These numbers suggest
that the denoising of the raw SIM images works well for all
orientation phases.

The empirical results of this approach on the image level are
shown in Fig. 7 (with fine-tuning applied). They also prove that
the raw SIM images are well denoised in the first step of this
method. However, fairSIM fails to reconstruct super-resolution
images of sufficient quality from the denoised raw images. The
resulting reconstructed images contain some additional new ar-
tifacts. These artifacts can likely be traced to higher harmonics
introduced by the RED-Net in the preRED denoising step,
which become very clear in the Fourier power spectrum of
the denoised images (see Fig. 7), and then appear similarly
as artifacts in the Fourier spectrum of the fully reconstructed
image. This is to be expected, as the fairSIM method works in
the frequency domain, and highly relies on the precise phases,
orientations, and harmonics of the SIM pattern, which the
denoising step obviously breaks.

2. Hessian SIM
Hessian SIM [10] is a conventional, frequency-space-based fil-
tering approach, tailored specifically to reduce noise in the
band-limited signal of methods such as structured illumination
microscopy. Compared to the other methods presented here
and compared against, Hessian SIM aims to reduce noise by

taking into account both the spatial and temporal frequency
distribution in the signal. Thus, while the spatial filtering it
offers can be applied to single images, it is most successful when
applied to time-lapse data with high temporal sampling. This
biases the comparison somewhat in favor of Hessian SIM, be-
cause applying the algorithm to the time-lapse data as needed
for full performance allows it to see more data than the other
algorithms, which can only be applied to a single image.
Despite using time-lapse data, the Hessian SIM algorithm does
not provide good results for noise level 4, as shown in column 4
of Fig. 8, compared to Red-fairSIM and SR-REDSIM.
However, the performance of Hessian SIM was reasonable
for the data of lower noise levels.

3. BM3D
BM3D is a conventional state-of-the-art image denoising method
from the field of computer vision [35]. During this work, we also
used BM3D to denoise the noisy super-resolution images recon-
structed by fairSIM. BM3D is able to remove the noise success-
fully from reconstructed noisy SIM samples, as shown in column
3 of Fig. 8, but fails to recover lost information.

D. SIM Reconstruction at Varying Noise Levels
The raw SIM data in this study was collected as a time-lapse of a
fixed sample undergoing photobleaching. Thus, data was col-
lected at different noise levels, which can be assembled into five
noise level groups, with noise level 0 representing the lowest
and noise level 4 representing the highest level of noise found
in the data. As we have previously discussed, the models were
trained with input from the highest noise level. Therefore, we
investigated whether these pretrained models will also be useful
for the SIM images of other lower noise levels. To verify this,
we considered only the two best methods from our work: SR-
REDSIM and RED-fairSIM are used to evaluate the raw SIM
images at different levels. No fine-tuning [34] or transfer
learning [33] was performed on these pretrained models.

Fig. 6. The complete pipeline of the preRED-fairSIM method. In this pipeline, the raw SIM images [512 × 512 (width × height)] of all phases
and orientations are denoised separately with the RED-Net architecture. The complete architecture of RED-Net is shown in Fig. 2. The denoised
SIM images of each phase and orientation are then propagated into the fairSIM software in the form of a stack (15 frames) to reconstruct the super-
resolution SIM image.
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Figure 9 shows the results of this attempt. In this figure, one
specific sample was captured at different noise levels. If we fur-
ther examine the ROIs of all the super-resolution images, it can
be seen that both methods show high-quality, super-resolved
images at all of the five different noise levels with a slight deg-
radation toward higher noise levels regarding smoothness and
clarity of the cell structures. Furthermore, it is again noticeable
that the results of RED-fairSIM are overall visually more ap-
pealing compared to the other methods.

In addition to visual inspection, quantitative results are
given in Table 1, which contains the mean PSNR and
SSIM values of 500 test inputs from each noise level. Here,
U-Net-fairSIM is included in the comparison. Both RED-
fairSIM and U-Net-fairSIM show a gradual decrease in PSNR
and SSIM values from noise level 1 (weak noise) to noise level 4
(strong noise). SR-REDSIM performs similarly, but with

noticeably smaller PSNR and SSIM values. The results of
fairSIM without denoising deteriorate quickly when moving
to higher noise levels. The most important takeaway from
Table 1 and Fig. 9 is that the networks—although trained
for a specific high noise level—generalize well to conditions
with a better SNR.

The reconstruction of the lower noise level 0 through SR-
REDSIM and RED-fairSIM highlights a second use case. At
this noise level, the SNR of the raw frames is high enough
to provide the reference data sets, which, as discussed before,
are of high quality, but still feature some SIM reconstruction
artifacts. Those artifacts are successfully removed by both SR-
REDSIM and RED-fairSIM. A reasonable assumption is that,
like noise, reconstruction artifacts are random enough in
nature, so they are not picked up by the network during
training, and thus cannot be reproduced. This effect is well

(a)

(b)

Fig. 7. Results for preRED-fairSIM. (a) Three blocks of images where each block consists of six images. The first block depicts the images from
phase 0 and orientation 0, the second block from phase 1 and orientation 1, and the third block from phase 2 and orientation 2. The left image in the
first row of each block represents a noisy raw SIM image from noise level 4. The second image in each block is the denoised version, whereas the
reference image (rightmost in each block) is the ground truth. The Fourier spectra of the images are shown below each image. The dimensions of
each image in these blocks are 512 × 512 (width × height). Scale bar: 8 μm. (b) Three images reconstructed by fairSIM along with their Fourier
spectrum directly below. The noisy image (left) is reconstructed using 15 noisy raw SIM images and the parameter fit summary is: resolution
improvement is �x:1.90, y:1.90, z:1.90�, and the modulation estimation is �x:0.310, y:0.341, z:0.332� with the assessment as “weak.” Similarly,
the preRED-fairSIM image (middle) is generated using 15 denoised SIM images and the parameter fit summary is: modulation estimation is
�x:0.310, y:0.341, z:0.332� and the assessment “weak”; however, there is no improvement in the resolution. The reference image (right) is recon-
structed from the raw SIM images with the highest SNR and the parameter fit summary is: resolution improvement is �x:1.90, y:1.90, z:1.90�, and
the modulation estimation is �x:0.558, y:0.580, z:0.578� with an assessment of “usable.” The Fourier spectrum of preRED-fairSIM shows additional
artifacts (white spots) that do not exist in the Fourier spectrum of the reference or the noisy output. Scale bar: 4 μm.
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known in applications such as Noise2Noise [36], where the
inability of a neural network to learn random (noisy) data is
explicitly used for denoising.

4. DISCUSSION

The results of this study provide sufficient evidence that SR-
REDSIM and RED-fairSIM can both be employed to denoise
and reconstruct high-quality SR-SIM images. In contrast,
preRED-fairSIM in its current form is not suitable for this pur-
pose because the output of RED-Net, although successfully
denoised, contains additional artifacts noticeable in Fourier
space, which spoil the performance of the subsequent classical
computational SIM reconstruction. We also investigated the
robustness of the successful methods (SR-REDSIM and
RED-fairSIM) and showed that high-quality reconstruction of
SIM samples is possibly irrespective of the noise level in the raw
SIM images. The SR-REDSIM and RED-fairSIM methods
outperform their counterparts, as shown in Figs. 3 and 4.
Furthermore, these approaches are useful even in the absence

of clean ground-truth data, as we have shown especially for
RED-fairSIM where the reference data used for training con-
tains many reconstruction artifacts. We have also shown in col-
umn of Fig. 9 that the proposed methods SR-REDSIM
and RED-fairSIM can be used to remove the reconstruction
artifacts from the reference image after training, so even if high
SNR data can be acquired easily, SR-REDSIM and RED-
fairSIM still offer an improvement over the classical
reconstruction approaches.

A recent study [22] used cycle-consistent generative adver-
sarial networks (CycleGANs) [37] to reconstruct SR-SIM im-
ages by using three to nine clean raw SIM images. A CycleGAN
contains two generators and two discriminators with multiple
losses that are trained in a competitive process. Therefore,
CycleGANs are generally very difficult to train.
Furthermore, the authors did not address the challenge of
denoising. Christensen et al. [21] trained deep neural networks
by using synthetic data instead of real microscope SIM images
to reconstruct SR-SIM images. Although the synthetic data
used in their studies for training is unrelated to real micro-

Fig. 8. The reconstructed SR-SIM images of two test samples with different methods. The Fourier spectrum of each SR-SIM image is shown
directly below. Each image contains an enlarged ROI at the lower-left bottom. The analysis of ROI of all the methods clearly shows that the results of
RED-fairSIM (sixth column) are smoother and more faithful compared to all other methods. Similarly, the Fourier spectra of the RED-fairSIM do
not show any additional artifacts in the Fourier space. The SR-SIM images and ROI of SR-REDSIM (fifth column) also show good results; however,
there are some artifacts in the high-frequency region of the Fourier spectrum. The ROIs of Hessian SIM (fourth column) do not outperform RED-
fairSIM and SR-REDSIM, but do show better results than BM3D (third column). BM3D produces a suppressed cell structure in both of the
resultant images. Furthermore, the Fourier spectrum of the BM3D result for the second test sample shows artifacts in both low and high-frequency
regions. Scale bar: 4 μm.
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scopes, they were successful in generating output comparable to
computational tools like fairSIM. However, they did not use
real noisy microscope data to test the denoising performance
of their networks, and their approach was also not completely
successful in the case of (simulated) high-level noise. Jin et al.
[20] used multiple concatenated U-Nets to reconstruct SR-
SIM images by using three to 15 raw SIM images. They trained
their models on cropped and resized SIM samples and
manually discarded tiles with only background information.
These preprocessing steps are time-consuming, and the training
of two adjacent U-Net models is also computationally
expensive.

Our proposed methods use raw SIM images in their original
size, which does not involve any major preprocessing steps. The
amount of training data used, about 100 fields of view for train-
ing and test data together, is also small enough that specific
training, capturing both a given instrument and a specific bio-
logical structure of interest, should often be feasible. While SR-
REDSIM has similarities to other proposed end-to-end deep
learning approaches for SIM [20–22], to the best of our knowl-
edge, RED-fairSIM is a completely novel deep learning ap-
proach for SIM which is, as our data shows, superior to SR-
REDSIM.

While both SR-REDSIM and RED-fairSIM provide high-
quality reconstruction, an obvious difference between them is

their ability to generalize to different SIM imaging settings. As
an initial test, we varied the spatial frequency of the SIM pat-
tern [using a 642 nm (instead of 488 nm) excitation light],
which commonly happens when designing experiments and
choosing dyes, as shown in Fig. 4. We then performed
reconstruction with RED-fairSIM and SR-REDSIM, both
trained on the original 488 nm data. Here, the RED-
fairSIM approach, where the change in spatial frequency of
the pattern is absorbed by the classic reconstruction step, still
works very well in suppressing noise and SIM artifacts. SR-
REDSIM, on the other hand, where the SIM pattern has been
learned by the network, created heavy ghosting artifacts. While
further validation and cross-testing are needed, this suggests
that RED-fairSIM should be able to generalize to different
SIM microscopes, excitation wavelengths, and probably illumi-
nation types (three-beam, two-beam, TIRF-SIM), while SR-
REDSIM would require retraining whenever larger changes
in these parameters occur.

Besides visual impression, the quantitative measures chosen
for our comparisons are PSNR and SSIM. As a microscopy
technique, obviously spatial resolution estimates would present
another desirable parameter. Both Fourier ring correlation
(FRC) [38,39] and image decorrelation analysis (IDA) [40]
are typically chosen for this task, because they offer a quanti-
tative resolution estimate that is not dependent on manual

Fig. 9. Reconstructed SR-SIM images at different noise levels with the SR-REDSIM and RED-fairSIM methods for a single field of view. Noise
level 0 represents the reference image at timestamp 0, noise level 1 comprises the images from timestamps 25–50, noise level 2 from timestamps 75–
100, noise level 3 from timestamps 125–150, and noise level 4 from timestamps 175–200. Each full image contains an enlarged ROI in the bottom
left. The images reconstructed by fairSIM in the first row show a significant degradation in quality as the noise level increases. In contrast, the results
produced by SR-REDSIM and RED-fairSIM in the second and third columns are far less, depending on the noise level. Scale bar: 4 μm.
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measurement of single structural features, which easily introdu-
ces bias. However, much care is needed to correctly apply these
methods, as they are based on strict assumptions about the in-
put data, regarding the statistically independent and spatially
uncorrelated distribution of noise. Even slight correlation, in-
troduced, for example, by camera readout electronics [41], will
yield an overestimation of spatial resolution. We have per-
formed FRC analysis and IDA on the datasets presented here,
and while some results seem reasonable, others are clearly un-
physical. As we cannot assume that the denoised output fulfills
the assumptions of FRC or IDA, we would argue against using
unmodified FRC or IDA to estimate resolution in these images.
We believe further research into robust resolution estimation
that works more independently of the data generation process
is needed.

We also compared our set of deep-learning based approaches
to classical denoising algorithms, with BM3D as a general ap-
proach and Hessian SIM as a noise filter tailored to ideally time-
lapsed SIM data. Both of the classical algorithms do not reach
the denoising performance of the deep learning methods.
However, these algorithms do not require any prior knowledge,
in the form of training data, of the sample. Thus, in contrast to
deep learning methods, they can be applied to arbitrary, un-
known structures. They can also serve as a cross-check, if con-
cerns arise that the deep-learning based approaches generate
artifacts stemming from their training data.

5. CONCLUSION

In this work, we presented two different methods, SR-
REDSIM and RED-fairSIM, to reconstruct super-resolution
SIM images from raw SIM images with low SNR. We demon-
strated that these methods are robust against different noise
intensities and do not need any retraining or fine-tuning even
if the SNR is varied between the training and application.
However, the generalization ability of RED-fairSIM under dif-
ferent SIM imaging conditions (i.e., changed microscope set-
tings) is superior compared to SR-REDSIM. This shows that
the combination of fairSIM for reconstruction and RED-Net
for denoising is more promising than an end-to-end deep learn-
ing approach like SR-REDSIM. Both methods are particularly
useful for SIM images with a low SNR since the traditional
reconstruction algorithms cannot denoise and generate
reconstruction artifacts in the SR-SIM images. Both of our pro-
posed methods can remove these reconstruction artifacts. The
overall results also show that our methods outperform other
classical denoising methods like BM3D to denoise the noisy
SR-SIM images. Furthermore, the proposed methods can po-
tentially be used in the future to handle live-cell SIM imaging
data as well as the reconstruction and denoising of SIM images
with low SNR from other biological structures.
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