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Treatment effects on count outcomes with
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The effects of a treatment or an intervention on a count outcome are often of interest in

applied research.Whencontrolling for additional covariates, a negative binomial regression

model is usually applied to estimate conditional expectations of the count outcome. The

difference in conditional expectations under treatment and under control is then defined as

the (conditional) treatment effect. While traditionally aggregates of these conditional

treatment effects (e.g., average treatment effects) are computed by averaging over the

empirical distribution, a recently proposed moment-based approach allows for computing

aggregate effects as a function of distribution parameters. The moment-based approach

makes it possible to control for (latent) multivariate normally distributed covariates and

providesmore reliable inferences under certain conditions. In this paper we propose three

different ways to account for non-normally distributed continuous covariates in this

approach: an alternative, known non-normal distribution; a plausible factorization of the

joint distribution; and anapproximationusing finiteGaussianmixtures.A saturatedmodel is

used for categorical covariates, making a distributional assumption obsolete. We further

extend the moment-based approach to allow for multiple treatment conditions and the

computation of conditional effects for categorical covariates. An illustrative example

highlighting the key features of our extension is provided.

1. Introduction

The evaluation of treatment effects on count outcomes is quite common in the social and

health sciences. Often, covariates are included in the analysis using a negative binomial

regressionmodel (Garrett et al., 2018; Hittner, Owens, & Swickert, 2016; Jobe et al., 2001;

Mazerolle et al., 2019; Nusser & Weinert, 2017; Schaumberg & Flynn, 2017; Sridharan,

Shoda, Heffner, & Bricker, 2019), that is, the conditional expectation for the count

outcome is logarithmically linked to the treatment variable and the covariates. The

difference in conditional expectations under treatment and under control is then defined
as the (conditional) treatment effect. Traditionally, aggregates of conditional treatment

effects (e.g., the average treatment effect) are computed by averaging over the empirical

(joint) distribution of the covariates (Greene, 2007).
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Recently, a moment-based approach was proposed by Kiefer and Mayer (2019, 2020)

enabling aggregated effects to be computed using parameters of the (joint) distribution of

the covariates (e.g., means, variances, and covariances). Instead of computing conditional

effects given the observed covariate values and averaging over their empirical distribu-
tion, the conditional effects are integrated over all possible values of the covariates

weighted by their likelihood given by the (assumed) joint density. While this procedure

would usually have to be carried out by numerically solving an improper integral (e.g., an

integral over conditional effects weighted by amultivariate normal density), the improper

integral is replaced with a moment-generating function in the moment-based approach.

Thus, as most moment-generating functions have closed-form solutions, the moment-

based approach allows for a fast and analytical computation of the aggregated treatment

effects.
The moment-based approach has two major advantages over the traditional empirical

distribution approach. First, the covariate side of the effect calculation is stochastic

instead of fixed, which enables more accurate statistical inferences about conditional and

average treatment effects. In contrast, the traditional approach treats the observed

covariate values as fixed by design (i.e., not varying between samples), which can lead to

an underestimation of standard errors for the aggregated effects. Second, it allows

common factor models for the covariates, meaning that not directly observed (latent)

covariates can be accounted for as well. As the empirical distribution of latent variables is
not observed, the traditional approach cannot dealwith latent variables andwould require

fallible substitutes (i.e., sum scores, factor scores).

However, the extended moment-based approach as suggested by Kiefer and Mayer

(2020) has an Achilles’ heel: covariates are assumed to be multivariate normally

distributed within the treatment groups. In practical settings, this assumption is often

violated, as observed variables in real data sets in the social and health sciences frequently

deviate from the normal distribution (Bono, Blanca, Arnau, & Gómez-Benito, 2017;

Micceri, 1989). For example, Blanca, Arnau, Lopez-Montiel, Bono, and Bendayan (2013)
examined 693 distributions from real psychological data and found that 74.4% presented

slight or moderate deviations from the normal distribution, while 20% exhibited more

extreme deviation. In a simulation study, Lei and Lomax (2005) investigated parameter

and standard error bias in structural equation models when non-normal variables are

introduced into normal distribution-based maximum likelihood estimation. They

conclude that parameter estimation is sensitive to non-normal variables, but the bias

introduced by slight non-normality is moderate. However, severe non-normality leads to

substantial bias in loadings and structural parameters. Similarly, Kiefer and Mayer (2019)
found in their examination of the univariate moment-based approach that missspecifi-

cation of the covariates’ distribution can introduce bias into the average effect estimation.

Thus, in this paper, we propose several extensions of the moment-based approach.

These extensions aim tomake the approachmore flexible with regard to its distributional

assumptions aswell as to provide applied researcherswith amorenuanced effect analysis.

First, to properly account for non-normal covariates, we suggest differentiating between

categorical covariates (e.g., gender, ethnicity) and non-normal continuous (or metric)

covariates (e.g., pre-test count variables). We then describe four different possibilities to
account for non-normal joint distributions. Second, we define and compute average and

conditional treatment effects of interest, for example, the conditional effect given a

treatment condition or given a gender. These kinds of finer-grained effects (as opposed to

the average treatment effect) enable researchers to examine treatment efficacy under

different conditions in amore nuancedway. Third,we consider the case inwhichmultiple
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treatment conditions are to be examined, that is, treatment effects can be modelled and

examined for more than one treatment condition (in comparison to a control group).

This paper is structured as follows. First, we provide general definitions of treatment

effects on count outcomes based on multiple categorical and continuous covariates.
Specifically, we introduce the average treatment effect as well as several conditional

treatment effects. Second, we derive how the moment-based approach can be utilized to

compute these effects, differentiating between a solution for categorical covariates and

three possible approaches for non-normal continuous covariates. Third, we briefly

present the negative binomial multi-group structural equation model as the statistical

framework for simultaneously estimating the parameters of the negative binomial

regression and the covariates’ distribution. Finally, themoment-based approach is applied

to a real data sample to highlight the key features of our proposed extensions.

2. Definition and terminology of treatment effects

Westart by introducing definitions of average and conditional treatment effects on a count

outcome variable Y. Let the discrete treatment variable X have p+1 levels denoted with

values x = 0,1,. . ., p.Wewill takeX = 0 as reference or control group, and thus t = 1,. . .,
p are the values of the remaining treatment conditions.1 Furthermore, we will consider a

single (unfolded) categorical variable K with j+1 levels and values k = 0,1,. . ., j, and a

vector of (latent) variables ξ¼ð1,ξ1,ξ2, . . . ,ξqÞ with z = 1,. . ., q denoting the (z+1) th
element of ξ. We use ξð�Þ to denote values of ξ. For this set of variables, the following

parameterization of E Y jX,K ,ξð Þ always holds:

EðY jX,K ,ξÞ¼ g0ðK ,ξÞþ∑p

t¼1gtðK ,ξÞ � IX¼t (1)

¼∑p

x¼0∑
j

k¼0exp hxkðξÞ½ � � IX¼x � IK¼k: (2)

In equation (1) the conditional expectation of Y is decomposed into an intercept

function g0 and a conditional effect function gt for treatment condition t (cf. Mayer,

Dietzfelbinger, Rosseel, & Steyer, 2016; Steyer &Nagel, 2017). AsY is a count variable, the

conditional expectationE Y jX,K ,ξð Þ can always be presented as in equation (2). Note that

we use a regression with a logarithmic link function for each combination of X = x and
K = k, that is, the function hxkðξÞ is group-specific:

E Y jX ¼ x,K ¼ k,ξð Þ¼ exp hxkðξÞ½ �:

weuse group-specific functionshxkðξÞ, because the effect computations later in this paper

will be based on a multi-group model. The term E Y jX ¼ x,K ¼ k,ξð Þ denotes a partial

conditional expectation. For its definition and further details, see Steyer and Nagel (2017,

Section 14.4).

1We intentionally use two different indices to refer to the values of the treatment variable X, namely x and t.
These will fulfil two distinct purposes later on, that is, we use t to denote the treatment group for which an
average or conditional effect (compared to the control group) is computed, while we use x for marginalizing
(i.e., summing) over ðX ¼ xÞ-conditional distributions. For example, in equation (6) both indices appear and
help to distinguish these two aspects.
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2.1. Conditional effects function

The intercept function g0ðK ,ξÞ denotes the expected values for the control group X = 0,

g0ðK ,ξÞ¼EðY jX ¼ 0,K ,ξÞ
¼∑ j

k¼0exp h0kðξÞ½ � � IK¼k,

and the p effect functions gtðK ,ξÞ represent the expected increase/decrease in Y due to

treatment t, that is, the difference between the conditional expectation of Y under

treatment t compared to the control group:

gtðK ,ξÞ¼E Y jX ¼ t,K ,ξð Þ�E Y jX ¼ 0,K ,ξð Þ
¼∑ j

k¼0 exp htkðξÞ½ ��exp h0kðξÞ½ �ð Þ � IK¼k:

The effect function gtðK ,ξÞ gives a conditional treatment effect for any value of the

covariates K and ξ. The conditional expectations E Y jX ¼ x,K ,ξð Þ reflect the expected
outcome given a treatment condition t. For example, E Y jX ¼ 2,K ¼ 1,ξ1 ¼ 1ð Þ denotes
the expected count of Y given K = 1 for a person who receives training X = 2 and has a

pre-test score of ξ1 ¼ 1.

In practical settings, a parameterization is needed for hxkðξÞ, which we will discuss at

the end of this section. For a causal interpretation of the average and conditional effects, it

is crucial that the effect functions gtðK ,ξÞ be causally unbiased. Steyer, Mayer, and Fiege

(2014) provide an overview of causality conditions ensuring unbiasedness of the effect

function, one of which is the independence of the treatment variable from all potential
confounders (e.g., created by randomized treatment assignment as in the ACTIVE study;

see Section 6).

2.2. Average treatment effect

The average treatment effect of treatment X = t compared to control group X = 0 is

defined as the unconditional expectation of the effect function,

AEt0 ¼E gtðK ,ξÞ½ �

¼E ∑
j

k¼0

exp htkðξÞ½ ��exp h0kðξÞ½ �ð Þ � IK¼k

� �
¼ ∑

j

k¼0

R
ξð∗Þ

exp htkðξÞ½ ��exp h0kðξÞ½ �ð Þ � f K ,ξ k,ξð∗Þ
� �

dξð∗Þ

where f K ,ξ k,ξð∗Þ
� �

denotes the density of the joint distribution ofK and ξ, and therefore
reflects the average over the conditional effects given all values of the covariates. The

average effect AEt0 gives the expected effect for a randomly sampled person assigned to
treatment condition X = t compared to the control group X = 0.

2.3. Conditional effects given X and K

In addition to the average effect, finer-grained aggregates of the effect function also exist.

For example, the treatment effect for female participants can be examined. This is

represented as a conditional effect given a value k of the categorical covariate K and

averages over the (K = k)-conditional distribution of the continuous covariates,
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CEt0;K¼k ¼E gtðK ,ξÞjK ¼ k½ �
¼ R

ξð∗Þexp htk ξð∗Þ
� �h i

�exp h0k ξð∗Þ
� �� 	 � f ξjK¼k ξð∗Þ

� �
dξð∗Þ:

For example, ifK represents a participant’s gender, thenCEt0;K¼k provides the aggregated

conditional effect of treatment X = t for all persons with gender K = k.
In a similar vein, the conditional effect given a treatment condition is defined by

CEt0;K¼k ¼E gt K ,ξð ÞjK ¼ k½ �
¼ R

ξð∗Þexp htk ξð∗Þ
� �h i

�exp h0k ξð∗Þ
� �h i

� f ξjK¼k ξð∗Þ
� �

dξð∗Þ:

These effects are of interest when the (X = x)-conditional covariate distribution f K,ξjX¼x

differs among treatment groups, as is the case, for example, in observational studies (i.e.,

without randomization) or in so-called broken experiments (Sagarin et al., 2014). For an

overview, see Geneletti and Dawid (2011). In properly randomized trials, however, we
would expect the conditional effects given a treatment condition to be equivalent to the

corresponding average treatment effect.

Finally, the conditional effects above can also be combined to give the conditional

effect given a value k of K and a treatment condition x of X:

CEt0;X¼x,K¼k ¼E gt K ,ξð ÞjX ¼ x,K ¼ k½ �
¼ R

ξð∗Þexp htk ξð∗Þ
� �h i

�exp h0k ξð∗Þ
� �h i

� f ξjX¼x,K¼k ξð∗Þ
� �

dξð∗Þ:

Again, for a randomized controlled trial, wewould expect these effects to be equivalent to
the corresponding treatment effects given a value of the categorical covariate.

2.4. Regression parameterization and factorization of the covariates’ distribution

Up to this point, we have presented non-parametrical definitions of average and

conditional effects on count outcomes. In order to derive empirically estimable quantities,

we need to introduce a parameterization for the hxkðξÞ functions and an applicable

factorization of the mixed joint density of the categorical covariate K and the continuous
covariates ξ.

We choose a linear parameterization of the function hxkðξÞ,

hxkðξÞ¼ α0xkξ, (3)

where αxk ¼ αxk0,αxk1, . . .,αxkq
� �

is a real-valued vector of regression coefficients with

length q+1. This corresponds to the parameterization widely used in count regression

models, for example, Poisson or negative binomial regression models. Hence, a count
regression is specified for each combination of (X = x, K = k).

As can be seen in the previous subsection, the various average and conditional

treatment effects require unconditional, but also (X = x)-, (K = k)-, and (X = x, K = k)-

conditional distributions of the covariates K and ξ. Hence, we provide a factorization of

the mixed joint distribution f K ,ξðk,ξð∗ÞÞ allowing us to easily derive all of the

aforementioned unconditional and conditional distributions:
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f K ,ξ k,ξð∗Þ
� �

¼∑p

x¼0 f X,K,ξ x,k,ξð∗Þ
� �

(4)

¼∑p

x¼0PðX ¼ x,K ¼ kÞ� f ξjX¼x,K¼kðξð∗ÞÞ (5)

In equation (4), the joint distribution of the covariatesK and ξ is defined as themarginal

distribution of the joint distribution of the treatment variable X, the categorical covariate

K, and the continuous covariate ξ. In equation (5), the joint distribution is decomposed

into a categorical group part P(X = x, K = k) and a group-conditional density

f ξjX¼x,K¼kðξð∗ÞÞ of the continuous variables. This factorization serves two purposes. First,

it allows us to identify the conditional densities required for the computation of the
aforementioned average and conditional effects, namely f K ,ξðk,ξð∗ÞÞ, f ξjK¼kðξð∗ÞÞ,
f K ,ξjX¼xðk,ξð∗ÞÞ, and f ξjX¼x,K¼kðξð∗ÞÞ. Second, we can use a multi-group approach,

namely a multi-group structural equation model, to estimate parameters both of the

negative binomial regression and of the distribution of the covariates.

The choice of a factorization is without loss of generality for our approach, because an

alternative factorization can always be transformed into our factorization. We provide

more information on this aspect in the discussion and in Appendix 1.

Following the linearparameterizationof the functionhxkðξÞ and factorizationof the joint
distribution f K ,ξðk,ξð∗ÞÞ, the average treatment effect, for example, can be computed as

AEt0 ¼ ∑
j

k¼0

R
ξð∗Þ exp htk ξð∗Þ

� �h i
�exp h0k ξð∗Þ

� �h i� �
� f K ,ξ k,ξð∗Þ

� �
dξð∗Þ

¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð ÞRξð∗Þ exp α0
tkξ

ð∗Þ
h i

�exp α0
0kξ

ð∗Þ
h i� �

� f ξjX¼x,K¼k ξð∗Þ
� �

dξð∗Þ:

(6)

Note that the parameterization and factorization are chosen with regard to the statistical

framework for parameter estimation we will discuss later on, that is, negative binomial

regression and multi-group structural equation models. As stated before, for a causal

interpretation of the treatment effects, the effect function gtðK ,ξÞ must be causally

unbiased. Causal unbiasedness goes beyond unbiasedness of the estimated parameters
and means that there are no unobserved confounders of the treatment effects. It can be

achieved, for example, by an (unconditional or conditional) randomized assignment of

persons to the treatment groups or by controlling for all confounders. Tools developed in

the causal inference literature such as propensity scores (Rosenbaum& Rubin, 1983) can

be helpful to meet the ‘no unobserved confounders’ condition. For an overview of

conditions under which causal unbiasedness is achieved, see Steyer et al. (2014). Thus,

applied researchers should carefully evaluate whether the parameterization and

factorization described here fit their hypotheses and assumptions.

3. Moment-based approach assuming multivariate normality

In the previous section we introduced a distinction between categorical and continuous

covariates. Such a distinction has been previously proposed for treatment effect

computation, for example, in the EffectLiteR approach by Mayer et al. (2016). A saturated
model is used, that is, the probability of each occurring value of the categorical covariate is

6 Christoph Kiefer and Axel Mayer



examined. Thus, no further distributional assumption for the categorical covariate is

required.

However, including continuous covariates requires specification of the (X = x,

K = k)-conditional density f ξjK,X of ξ. In their extension of the moment-based approach,
Kiefer and Mayer (2020) suggest assuming (X = x)-conditional multivariate normality.

Adapting this notion to our distinction between categorical covariates K and continuous

covariates ξ and assuming (X = x,K = k)-conditional normality, that is, ξ∼Nxk μxk,∑xk

� �
,

the integration part of the average treatment effect in equation (6) can be substitutedwith

moment-generating functions:

R
ξð∗Þ exp α0

tkξ
ð∗Þ

h i� �
� f ξjX¼x,K¼k ξð∗Þ

� �
dξð∗Þ

¼ exp α0
tkμxkþ

α0
tk∑xkα0

tk

2

� �
�exp α0

0kμxkþ
α0
0k∑xkα0

0k

2

� �
:

Sometimes it might suffice to account for the case of categorical covariates in addition to

normally distributed continuous covariates to obtain unbiased parameter and effect

estimates.

4. Accounting for non-normal continuous covariates

In the following subsections we present three different ways to incorporate non-normal

continuous covariates into themoment-based approach. All three ways follow the basic idea

of the moment-based approach, that is, (at least partly) substituting improper integrals with

moment-generating functions. The suggested solutions depend on the level of information

available for the non-normal continuous variables: (1) an alternative, non-normal joint

distribution is known; (2) aplausible factorizationof the jointdistributioncanbeconstructed;

and (3) an approximation of the covariates’ joint distribution is required. Note thatwe do not
suggest that one of these approaches is generally preferable to the others. Rather, which

approach to use depends on the concrete data situation one is confronted with.

All of the aforementioned approaches have in common that we use the joint density of

the covariates in a maximum likelihood framework to estimate parameters and treatment

effects. As these models contain negative binomial regressions, multi-group parts,

measurement models and parameters of the non-normal distributions, they can involve

many parameters. Thus, large sample sizes may be required for a solution to converge

(Jackson, 2003). For smaller samples or cases in which none of the three proposed
approaches is feasible, Bayesian modelling and estimation can be an alternative. We

discuss Bayesian alternatives in the Discussion section.

4.1. Case 1: Known non-normal joint distribution

The first and probably simplest case is a known alternative non-normal (X = x, K = k)-

conditional joint distribution for ξ. In this case, we can substitute the density andmoment-

generating functions for effect computation with the ones from the alternative
distribution. For example, if we want to account for a slight skew in our continuous

variables, the multivariate skew-normal distribution (Azzalini & Valle, 1996) is a viable

alternative to the normal distribution. Admittedly, the case of knowing a number of

suitable non-normal multivariate distributions and their moment-generating function

might not be very common, especially for applied researchers.
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However, another important scenario for known alternative distributions is (X = x,

K = k)-conditional independence of the covariates ξ1,ξ2, . . ., because then the product of
univariate distributions corresponds to the marginal distribution. While the (X = x,

K = k)-conditional independence of the covariates might be a strong assumption, it is
helpful to see that the joint moment-generating function can be decomposed into the

product of the univariate moment-generating functions in this case. For example, if we

consider two continuous covariates ξ1 and ξ2 with (X = x, K = k)-conditional indepen-

dence ξ1?ξ2jX ¼ x,K ¼ k, the corresponding density can be decomposed

f ξ1,ξ2 ¼ f ξ1 � f ξ2, and thus the moment-generating function can be written as the product

of univariate moment-generating functions,

Mξ1,ξ2jX¼x,K¼kðt1, t2Þ¼Mξ1jX¼x,K¼kðt1Þ �Mξ2jX¼x,K¼kðt2Þ,

where t1,t2 are the evaluation points of the moment-generating functions. See Kiefer and
Mayer (2019) for an overview of univariate moment-generating functions and their

performance within the moment-based approach.

4.2. Case 2: Factorization of joint distribution

Sometimes, it might be impossible to find a suitable joint distribution, and the assumption

of conditional independence might be too strong. A notable example of this case was
chosen for our illustrative example: a continuous latent variable (i.e., depression) and a

discrete, yet non-categorical count variable (i.e., baseline count of correctly answered

items). To our knowledge, no joint distributions for count and continuous variables have

been proposed to date. However, when examining count outcome variables, researchers

often wish to account for the respective baseline count as well.

We suggest a practical workaround for these cases: finding a plausible factorization of

the joint distribution. For example, this might be decomposing the joint distribution of ξ
into a marginal and a conditional distribution, that is,

f ξjX¼x,K¼k ¼ f ξmjX¼x,K¼k � f ξc jX¼x,K¼k,ξm¼ξð∗Þm
,

wherewe specify themarginal distribution of ξm ¼ ξm1
,ξm2

, . . .
� �

with indexmi identifying

a subset of covariates, and the conditional distribution of ξc ¼ ξc1,ξc2, . . .ð Þ given ξm with

index ci identifying the remaining covariates in ξ. In general, this factorization makes it

possible to simplify the integration part of the average effect in equation (6) as

R
ξð∗Þ exp α0

tkξ
ð∗Þ

h i
�exp α0

0kξ
ð∗Þ

h i� �
� f ξjX¼x,K¼k ξð∗Þ

� �
dξð∗Þ

¼ R
ξð∗Þm

exp α0
tk;mξ

ð∗Þ
m

h i
M

ξcjξm¼ξð∗Þm
ðαtk;cÞ�exp α0

0k;mξ
ð∗Þ
m

h i
M

ξcjξm¼ξð∗Þm
ðα0k;cÞ

� �
� f ξmjX¼x,K¼k ξð∗Þm

� �
�dξð∗Þm :

The factorization approach is challenging to integrate into the moment-based

approach, because it does not yield a comprehensive moment-generating function for
the factorized joint distribution. Consequently, a combination of moment-generating

functions and numerical integration is required for effect estimation. In our illustrative

example, we will further delineate these computations for the factorization approach.

In practical terms, the construction of a conditional distribution for some covariates

can be achieved using a regression approach, that is, a parameterization of

E ξcjX ¼ x,K ¼ k,ξmð Þ. In our illustrative example, this relation will be estimated using a
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regression with a logarithmic link function. From a causal perspective, such a regression

can be problematic, because baseline variables do not necessarily have a temporal order,

and we do not suggest that one baseline variable causes another baseline variable. Thus,

the factorization approach is a technicalworkaround and its regressionparameters are not
necessarily of interest.

4.3. Case 3: Approximation with finite Gaussian mixtures

Finally, when no alternative joint distribution or plausible factorization can be found, it is

possible to approximate the joint distribution of ξ. One possible approach is to

approximate the non-normal joint distribution of ξ by using a finite mixture of M

multivariate normal distributions, that is, f ξjX¼x,K¼k ξð∗Þ
� �

¼∑M

m¼1wm� f ξjX¼x,K¼k;m ξð∗Þ
� �

wherewm areweights and ξ∼Nxk;m μxk;m,∑xk;m
� �

. In practice, this approximation of the

distribution of ξ can be estimated using a finite mixture or latent class approach

(McLachlan & Peel, 2000). Researchers can control the degree of approximation by
specifying the numberM of latent classes, where only the expected values μxk;m and the

variance ∑xk;m are allowed to vary among latent classes. This approach has previously

been applied in the computation of average and conditional effects in a nonlinear

regression setting by Mayer, Umbach, Flunger, and Kelava (2017) and can be estimated

using nonlinear structural equation mixture models (Kelava & Brandt, 2014; Kelava,

Nagengast, & Brandt, 2014). However, it is notable that an increasing number of latent

classes M can lead to convergence problems in maximum likelihood estimation.

With respect to effect estimation, the finite-mixture approach yields a comprehensive

(X = x, K = k)-conditional moment-generating function for ξ, as we can use a weighted

sum of normal moment-generating functions for the integration part from equation (6),

R
ξð∗Þ exp α0

tkξ
ð∗Þ

h i
�exp α0

0kξ
ð∗Þ

h i� �
� f ξjX¼x,K¼k ξð∗Þ

� �
dξð∗Þ

¼ ∑
M

m¼1

wmexp α0
tkμtk;mþα0

tk∑tk;mα0
tk

2

� �
�exp α0

0kμ0k;mþα0
0k∑0k;mα0

0k

2

� �
,

which is similar to the original extended moment-based approach by Kiefer and Mayer

(2020), with the exception of the summation over the latent classes.

5. Negative binomial multi-group structural equation model

In this section, we introduce the negative binomial multi-group structural equationmodel

(NB-MG-SEM) as a statistical framework for parameter and effect estimation. The NB-MG-

SEM provides maximum likelihood estimation. The model involves the count outcome

variable Y, the categorical treatment variable X with p levels, the (unfolded) categorical

covariate K with j levels, and the vector of continuous covariates ξ¼ 1,ξ1, . . .,ξq
� �

containing latent covariates measured by observed variables z¼ Z1,Z2, . . .,Zsð Þ. The NB-
MG-SEM consists of (at least) the following parts:

z¼ νþΛξþ ε, (7)
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μY ¼ exp α0
xkξ

� �
, (8)

logðnxkÞ¼ κxk, (9)

where v is a vector of measurement intercepts; Λ is a matrix of loadings; ϵ is a vector of
measurement error variables with mean zero and covariance matrix Θxk; µY is the

conditional expectation of the count outcome; αxk is a vector of regression coefficients;

and κxk is a parameter for the log-transformed expected group frequency nxk of group

(X = x, K = k). The probability for a group (X = x, K = k) can be computed with

P X ¼ x,K ¼ kð Þ¼ exp κxkð Þ=∑p

x∗¼0∑
j

k∗¼0expðκx∗κ∗Þ
TheNB-MG-SEM presented in equations (7) to (9) is a least common denominator with

regard to the cases of non-normally distributed covariates identified in the previous

section and can be extended with respect to the given case at hand. In our illustrative

example, we will add another regression with a logarithmic link function specifying the

relation between two covariates. We provide detailed information on the maximum

likelihood estimation of the NB-MG-SEM for our illustrative example in Appendix 2. For

brevity, we present the four main parts and assumptions of the likelihood functions

constituting the joint distribution of the variables considered:

ηxk ∼PxkðexpðκxkÞÞ,
Y ∼NB μY ,ϕxkð Þ,

z∼Nxk νþΛξ,Θxkð Þ,
ξ depending on case:

The joint distribution of the covariates ξ depends on which of the three aforementioned

cases is applied. In our illustrative example, we will factorize the distribution of ξ into a

marginal and a conditional distribution (i.e., case 2 scenario), where the conditional

distribution depends on a μξ2 and the parameters of the marginal distribution are implied
by the measurement model. Illustration of the other cases is provided in the online

Appendix S1.

6. Illustrative example

To illustrate the use of our extension to themoment-based approach,we use data from the
AdvancedCognitive Training for Independent andVital Elderly (ACTIVE) study (Ball et al.,

2002; Jobe et al., 2001; Tennstedt et al., 2005). The ACTIVE study is a large randomized

controlled trial designed to examine the effectiveness of cognitive interventions among

older adults.Wewill investigate the effects of these interventionswhile controlling for the

(non-normal) count pre-test score, (latent) baseline depression, and participants’ gender.

As count outcome Y, we investigate post-test performance on an inductive reasoning

assessment (i.e., letter sets). Letter sets evaluate how well an individual can recognize a

pattern among several sets of letters. Thus, Y reflects the count of correctly answered
items. The ACTIVE data subset analysed is publicly available; a link is provided in the

online Appendix S1.

In this paperwedonot present a comprehensive analysis of the ACTIVE study. Instead,

the primary goal of this paper is to illustrate how non-normally distributed covariates can
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be integrated into the moment-based approach when estimating average and conditional

treatment effects. The NB-MG-SEM and treatment effects were estimated using R (R Core

Team, 2018) and the CountEffects package. The CountEffects package is an implemen-

tation of themoment-based approach assuming (X = x,K = k)-conditionallymultivariate
normally distributed covariates, which we extended with functions to estimate all three

proposed approaches to deal with non-normal covariates for our illustrative example. In

the online Appendix S1, we provide information on how to install CountEffects and how

to estimate treatment effects based on the multivariate normal assumption and all three

cases. Our findings indicate that the three non-normal cases yield similar results for the

illustrative example, while the normal case yields differing estimates for some effects.

However, in this section we will only describe the estimation and results of the case 2

scenario. We used listwise deletion in our analyses in order to keep the supplementary R
code accessible for interested readers. However, we also ran a full-information maximum

likelihood estimation for our model (using Mplus; Muthén &Muthén, 1998–2015) which

yielded similar results.

6.1. Sample

The total sample size for our analysis was N = 2,363. The participants were randomly

assigned to one of four conditions: a no-contact control group (X = 0, N = 592), a
memory training (X = 1,N = 589), a reasoning training (X = 2,N = 590), and a speed of

processing training condition (X = 3, N = 606). Each treatment condition consisted of a

ten-session training intervention. In a baseline assessment, the participants took several

cognitive functioning tests and completed a self-report questionnaire of psychological

measures. The post-test assessment was conducted in the first 10 days after the last

training session. The participants were predominantly female (75.8%, K = 1).

6.2. Measures

6.2.1. Depression

Depressive symptoms were assessed using the 12-item version of the Center for
Epidemiological Studies Depression Scale (CESD-12; Radloff, 1977). Participants rated the

frequency of several depressive symptoms (e.g., feeling sad) during the last week on a

four-point scale from 0 = never to 3 = 5–7 days. We modelled baseline depression as

latent variable ξ1, measured by three parcels (i.e., sum scores of four items each; Z11, Z12,

Z13).We used random itemparcels for simplicity in our illustrative example. Forwarnings

about the use of parcels, see Marsh, Lüdtke, Nagengast, Morin, and von Davier (2013) and

Sterba and Rights (2016).

6.2.2. Letter sets

The count of correctly answered items on a letter sets task was used as outcome Y (i.e.,

post-test score) and covariate ξ2 (i.e., pre-test score) in our analysis. Letter sets evaluate

howwell an individual can find rules or patterns that make different sets of letters alike in

some way. Each problem had five sets of letters with four letters in each set. Participants

were given 15 different problems and had 7 min to complete the task.
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6.3. Model

Our effect analysis was based on a multi-group structural equation model with a group-

invariant linear measurement model and a structural model with two linear predictors,

logarithmic link functions, and a negative binomial distribution with overdispersion
parameter ϕ fixed to zero (i.e., a Poisson distribution) for the respective dependent

variable.2 The measurement model was chosen to be τ-congeneric, as we had no a priori

assumption about the true scores (e.g., τ-equivalence). The first indicator was chosen as

reference indicator. The measurement model is expressed as:

Z11

Z12

Z13

0B@
1CA¼

0

v12

v13

0B@
1CAþ

1

λ12

λ13

0B@
1CA �ξ1þ

ɛ11
ɛ12
ɛ13

0B@
1CA:

The latent variable ξ1 was assumed to have an (X = x, K = k)-conditional normal
distribution

ξ1 ∼Nxkðμxk,σxkÞ

Our structural model with two linear predictors, logarithmic link functions, and

Poisson distribution for the respective dependent variable was

E Y jX ¼ x,K ¼ k,ξ1,ξ2ð Þ¼ exp αxk0þαxk1ξ1þαxk2ξ2ð Þ,
E ξ2jX ¼ x,K ¼ k,ξ1ð Þ¼ exp γxk0þ γxk1ξ1ð Þ,

Note that the second regression E ξ2jX ¼ x,K ¼ k,ξ1ð Þ is specified for technical reasons,

that is, to model a factorized joint distribution of ξ1 and ξ2. We do not assume a causal

relation, where the values of ξ2 are predetermined by ξ1. Hence, it would also be possible

to factorize the joint distribution with E ξ1jX ¼ x,K ¼ k,ξ2ð Þ. We chose the first

factorization, because it yields some facilitative properties for the numerical integration
procedures required in effect estimation (i.e., Gauss–Hermite quadrature; for more

information, see Appendix 3).

Finally, the model for group sizes nxk was expressed as

κxk ¼ logðnxkÞ:

The whole model is displayed in Figure 1. Note that regressions with a logarithmic link

function are indicated by curved arrows, in contrast to straight lines for linear regressions.

6.4. Average and conditional treatment effects

With regard to our three proposed scenarios of non-normal continuous covariates, the
specification of a baseline count variable and a continuous variable falls under case 2: as no

suitable joint distribution is available, a factorization of the joint distribution into a known

marginal and a known conditional distribution can be specified. In the previous section,

we stated that we assumed latent baseline depression is (X = x, K = k)-conditionally

2 In our analysis, we fixed the overdispersion parameter ϕ = 0 for technical reasons, as the log-likelihood
estimation did not converge for non-zero overdispersion parameters. We discuss the issue of estimation
difficulties at the end of the paper.
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Figure 1. Path diagram for our illustrative example depicting the group invariant measurement

models for latent baseline depression ξ1 and the baseline count of correctly answered items ξ2, the

structural model specifying the regressions with a logarithmic link function (indicated by curved

arrows) of the post-test count of correctly answered items Y on the baseline variables ξ1 and ξ2 in

each of the eight groups.
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marginally normally distributed ξ1 ∼Nxkðμxk,σxkÞ and is related to the baseline count of

correctly answered items via a Poisson regression with ξ2 ∼PxkðλxkÞ with

λxk ¼ exp γxk0þ γxk1ξ1ð Þ. In this scenario, the average treatment effect can be computed as

ATE¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ � ∑
H

h¼1

wh exp αtk0þαtk1ξ
∗
1h

� � �Mξ2jξ1,X¼x,K¼k αtk2ð Þ�
�exp α0k0þα0k1ξ

∗
1h

� � �Mξ2jξ1,X¼x,K¼k α0k2ð Þ�,

where ξ∗1h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2xkahþμxk

p
andah,wh areGauss–Hermite quadrature points andweights.

A detailed derivation of this formula is provided in Appendix 3. The moment-generating

function for the Poisson distribution is:

Mξ2 αxk2ð Þ¼ exp λxk exp αxk2ð Þ�1½ �ð Þ
¼ exp exp γxk0þ γxk1ξ1½ � exp αxk2ð Þ�1½ �ð Þ:

The conditional effects are then computed analogously to our definitions above. For

example, the conditional effect given a value of the gender covariate K is computed as

CEt0;K¼k ¼ ∑
p

x¼0

P X ¼ x,K ¼ kð Þ � ∑
H

h¼1

wh exp αtk0þαtk1ξ
∗
1h

� � �Mξ2jξ1,X¼x,K¼k αtk2ð Þ�
�exp α0k0þα0k1ξ

∗
1h

� �
Mξ2jξ1,X¼x,K¼k α0k2ð Þ�,

where ξ∗1h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2xkahþμxk

p
are integration points at which the function is evaluated and

ah,wh are Gauss–Hermite quadrature points and weights.

Standard errors for the estimated treatment effects can be derived using the delta
method (cf. Boos & Stefanski, 2013, p. 237).3 In our analysis, we computed symmetric

confidence intervals based on the standard errors, because the estimated treatment effects

are asymptotically normally distributed and our sample was comparatively large.

However, in smaller samples confidence intervals based on, for example, a bootstrap

approach are recommended.

6.5. Results
It is currently not possible to evaluate the complete model fit using a χ2 test or other fit
statistics, as these are based on the χ2 value of themodel implied covariancematrix for the

observed variables. For models with a logarithmic link function, the implied covariance

matrix is not an appropriate description of the dependencies among the variables due to

the nonlinearity.

6.5.1. Model parameters

Themaximum likelihood estimates for themodel parameters are given in Table 1.Wewill

not discuss them in detail here, but rather present some notable findings to illustrate the

interpretation of these parameters.

3 For a historical side note on the question of who invented the delta method, see Ver Hoef (2012).
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Pre-test depression had no significant effect on the post-test count of correctly

answered items in either group (e.g., α001 = 0.048, 95% confidence interval (CI) [−0.129,
0.033]), except for female participants receiving the memory training (α111 = −0.037,

Table 1. Maximum likelihood results for group-specific model parameters

Parameter Estimate SE p Parameter Estimate SE p

X = 0, K = 0 X = 0, K = 0

Estimates for E Y jX ¼ 0,K ¼ 0,ξ1,ξ2ð Þ Estimates for E Y jX ¼ 1,K ¼ 1,ξ1,ξ2ð Þ
α000 1.324 0.103 <.001 α010 1.218 0.061 <.001
α001 −0.048 0.041 .241 α011 -0.034 0.018 .061

α002 0.099 0.011 <.001 α012 0.103 0.007 <.001
Estimates for E ξ2jX ¼ 0,K ¼ 0,ξ1ð Þ Estimates for E ξ2jX ¼ 0,K ¼ 1,ξ1ð Þ
γ000 1.970 0.059 <.001 γ010 1.904 0.035 <.001
γ001 0.148 0.049 .002 γ011 -0.109 0.020 <.001
Estimates for ξ1jX ¼ 0,K ¼ 0 Estimates for ξ1jX ¼ 0,K ¼ 0

µ00 1.113 0.087 <.001 µ01 1.571 0.072 <.001
σ200 0.792 0.128 <.001 σ201 1.629 0.149 <.001
X = 1, K = 0 X = 1, K = 1

Estimates for E Y jX ¼ 0,K ¼ 0,ξ1,ξ2ð Þ Estimates for E Y jX ¼ 1,K ¼ 1,ξ1,ξ2ð Þ
α100 1.141 0.110 <.001 α110 1.256 0.057 <.001
α101 0.016 0.031 .602 α111 -0.037 0.016 .019

α102 0.111 0.013 <.001 α112 0.102 0.007 <.001
Estimates for E ξ2jX ¼ 1,K ¼ 0,ξ1ð Þ Estimates for E ξ2jX ¼ 1,K ¼ 1,ξ1ð Þ
γ100 1.938 0.053 <.001 γ110 1.890 0.030 <.001
γ101 -0.057 0.034 .094 γ111 -0.077 0.017 <.001
Estimates for ξ1jX ¼ 1,K ¼ 0 Estimates for ξ1jX ¼ 1,K ¼ 1

µ10 1.296 0.109 <.001 µ11 1.440 0.074 <.001
σ210 1.298 0.201 <.001 σ211 1.955 0.176 <.001
X = 2, K = 0 X = 2, K = 1

Estimates for E Y jX ¼ 2,K ¼ 0,ξ1,ξ2ð Þ Estimates for E Y jX ¼ 2,K ¼ 1,ξ1,ξ2ð Þ
α200 1.335 0.103 <.001 α210 1.340 0.053 <.001
α201 0.004 0.026 .890 α211 -0.013 0.014 .345

α202 0.102 0.011 <.001 α212 0.099 0.006 <.001
Estimates for E ξ2jX ¼ 2,K ¼ 0,ξ1ð Þ Estimates for E ξ2jX ¼ 2,K ¼ 1,ξ1ð Þ
γ200 2.002 0.052 <.001 γ210 1.785 0.033 <.001
γ201 -0.098 0.031 .001 γ211 -0.024 0.016 .145

Estimates for ξ1jX ¼ 2,K ¼ 0 Estimates for ξ1jX ¼ 2,K ¼ 1

µ20 1.411 0.127 <.001 µ21 1.641 0.074 <.001
α20 1.879 0.303 <.001 α21 1.879 0.171 <.001
X = 3, K = 0 X = 3, K = 1

Estimates for E Y jX ¼ 3,K ¼ 0,ξ1,ξ2ð Þ Estimates for E Y jX ¼ 3,K ¼ 1,ξ1,ξ2ð Þ
α300 1.274 0.101 <.001 α310 1.210 0.057 <.001
α301 0.016 0.026 .532 α311 -0.009 0.017 .581

α302 0.095 0.012 <.001 α312 0.107 0.007 <.001
Estimates for E ξ2jX ¼ 3,K ¼ 0,ξ1ð Þ Estimates for E ξ2jX ¼ 3,K ¼ 1,ξ1ð Þ
γ300 1.936 0.051 <.001 γ310 1.823 0.033 <.001
γ301 -0.081 0.030 .007 γ311 -0.052 0.018 .005

Estimates for ξ1jX ¼ 3,K ¼ 0 Estimates for ξ1jX ¼ 3,K ¼ 1

µ30 1.416 0.126 <.001 µ31 1.526 0.067 <.001
α30 1.861 0.277 <.001 α31 1.515 0.137 <.001
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95% CI [−0.069, 0.006]). Furthermore, pre-test depression was significantly negatively

related to the pre-test count of correctly answered items in most groups (e.g.,

γ011 = −0.109, 95% CI [−0.148, 0.070], γ201 = −0.098, 95% CI [−0.758, 0.038], and
γ301 = −0.081, 95% CI [−0.139, 0.022]). For example, for male participants in the
reasoning training, each one-unit change in pre-test depression was linked to a 9%

decrease in correctly answered items at baseline (i.e., γ201, exp(−0.098) = −0.91). In two

groups, this relationship was not significant (γ101 = −0.057, 95% CI [−0.123, 0.010] and
γ211 = −0.024, 95% CI [−0.056, 0.008]).

Pre-test count of correctly answered items was a significant positive predictor of post-

test count of correctly answered items in all groups. For example, for female participants

in thememory group, each additional correctly answered item at baselinewas linkedwith

an 11% increase in correctly answered items at post-test (i.e., α112, exp(0.102) = 1.11).
The intercept coefficients reflect the expected post-test count of correctly answered

items for a male person with depression score (ξ1 ¼ 0) and zero correctly answered items

at baseline (ξ2 ¼ 0). For example, in the reasoning training (i.e., α200 = 1.335), the

expected count is Ê Y jX ¼ 2,K ¼ 0,ξ1 ¼ 0,ξ2 ¼ 0ð Þ¼ expð1:335Þ¼ 3:80.

6.5.2. Average effects

An overview of all average and conditional treatment effects estimated for our illustrative
example is given in Table 2. Remember that the letter sets test was part of a cognitive

assessment measuring reasoning performance. Hence, we would expect the reasoning

training in particular to have a significant effect, while the memory and speed of

processing training might not necessarily affect reasoning performance. In line with this,

the average treatment effect of the memory training (cAE10 ¼ 0:084, 95% CI [−0.203,
0.372], ES = 0.030) and the average treatment effect of the speed of processing training

(cAE30 ¼ 0:237, 95% CI [−0.052, 0.525], ES = 0.083) on the count of correctly answered

items were not significant. The average treatment effect of the reasoning training,
however, was significant (cAE20 ¼ 0:783, 95% CI [0.487, 1.080], ES = 0.275), that is,

participants in this condition correctly answered 0.849 items more on average compared

to baseline.

6.5.3. Conditional effects given (K = k)

The conditional treatment effects given a gender are given in detail in Table 2. Here, we

examine differential treatment effects depending on the participants’ gender.
For the memory training, we found a slightly negative treatment effect for male

participants (cCE10;K¼0 ¼�0:152, 95% CI [−0.750, 0.446], ES = −0.053) and a positive

treatment effect for female participantsK = 1 (cCE10;K¼1 ¼ 0:161, 95% CI [−0.167, 0.489],
ES = 0.057). While the effect sizes differed in direction and magnitude, both effects were

not statistically significant.

The reasoning training had significant effects for both men and women. The

conditional effect for female participants (cCE20;K¼0 ¼ 0:819, 95% CI [0.482, 1.156],

ES = 0.288) was higher than the conditional effect for male participants
(cCE20;K¼0 ¼ 0:674, 95% CI [0.052, 1.297], ES = 0.237).

While the average treatment effect of the speed of processing training was not

significant, we found a slightly non-significant conditional effect for female participants

(cCE30;K¼1 ¼ 0:325, 95% CI [−0.002, 0.652], ES = 0.114). Conversely, for male partic-

ipants, the speed of processing training did not yield a significant effect
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(cCE30;K¼0 ¼�0:035, 95% CI [−0.750, 0.446], ES = −0.053). This differential effect

illustrates why examining conditional effects can be crucial when evaluating a treatment.

6.5.4. Conditional effects given (X = x) and (X = x, K = k)

The conditional treatment effects given a treatment condition (and gender) are given in

detail in Table 2. As the ACTIVE study was a randomized controlled trial, the (X = x,

K = k)-conditional distributions of depression ξ1 and baseline test scores ξ2 should not
differ across levels of X. Thus, the conditional effects given a treatment condition are

expected to be close to the corresponding average treatment effects. The same applies to

conditional effects given treatment and gender. We will not discuss all of these effects in

detail here, but rather illustrate their interpretation using one example.

Table 2. Estimated average and conditional effects of memory training (X = 1 versus X = 0),

reasoning training (X = 2 versus X = 0), and speed of processing training (X = 3 versus X = 0)

compared to the control group

Effect Estimate SE ES Effect Estimate SE ES

Estimated average and conditional effects of memory training

Average effect cAE10 Conditional effects cCE10;X¼x,K¼kcAE10 0.084 0.147 0.030 cCE10;X¼0,K¼0 −0.238 0.302 −0.084
Conditional effects cCE10;X¼x

cCE10;X¼0,K¼1 0.161 0.166 0.056cCE10;X¼0 0.053 0.147 0.019 cCE10;X¼1,K¼0 −0.130 0.314 −0.046cCE10;X¼1 0.094 0.151 0.033 cCE10;X¼1,K¼1 0.167 0.171 0.059cCE10;X¼2 0.093 0.147 0.033 cCE10;X¼2,K¼0 −0.109 0.321 −0.038cCE10;X¼3 0.095 0.147 0.034 cCE10;X¼2,K¼1 0.157 0.167 0.055

Conditional effects cCE10;K¼k
cCE10;X¼3,K¼0 −0.119 0.309 −0.042cCE10;K¼0 −0.152 0.305 −0.053 cCE10;X¼3,K¼1 0.160 0.167 0.056cCE10;K¼1 0.161 0.167 0.057

Estimated average and conditional effects of reasoning training

Average effect cAE20 Conditional effects cCE20;X¼x,K¼k
cCE20;X¼x,K¼kcAE20 0.784 0.151 0.275 cCE20;X¼0,K¼0 0.598 0.317 0.210

Conditional effects cCE20;X¼x
cCE20;X¼0,K¼1 0.814 0.171 0.286cCE20;X¼0 0.756 0.152 0.266 cCE20;X¼1,K¼0 0.697 0.325 0.245cCE20;X¼1 0.786 0.156 0.276 cCE20;X¼1,K¼1 0.814 0.178 0.286cCE20;X¼2 0.797 0.152 0.280 cCE20;X¼2,K¼0 0.715 0.329 0.251cCE20;X¼3 0.789 0.151 0.277 cCE20;X¼2,K¼1 0.831 0.171 0.292

Conditional effects cCE20;K¼k
cCE20;X¼3,K¼0 0.697 0.319 0.245cCE20;K¼0 0.674 0.318 0.237 cCE20;X¼3,K¼1 0.817 0.171 0.287cCE20;K¼1 0.819 0.172 0.288

Estimated average and conditional effects of speed of processing training

Average effect cAE30 Conditional effects cCE30;X¼x,K¼kcAE30 0.237 0.147 0.083 cCE30;X¼0,K¼0 −0.102 0.308 −0.036
Conditional effects cCE30;X¼x

cCE30;X¼0,K¼1 0.321 0.166 0.113cCE30;X¼0 0.207 0.147 0.073 cCE30;X¼1,K¼0 −0.025 0.320 −0.009cCE30;X¼1 0.234 0.152 0.082 cCE30;X¼1,K¼1 0.317 0.172 0.111cCE30;X¼2 0.254 0.148 0.089 cCE30;X¼2,K¼0 −0.015 0.326 −0.005cCE30;X¼3 0.250 0.147 0.088 cCE30;X¼2,K¼1 0.340 0.167 0.120

Conditional effects cCE30;K¼k
cCE30;X¼3,K¼0 0.011 0.314 0.004cCE30;K¼0 −0.035 0.310 −0.012 cCE30;X¼3,K¼1 0.322 0.166 0.113cCE30;K¼1 0.325 0.167 0.114
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For example, the conditional treatment effect of the memory training for the non-

treated (cCE10;X¼0 ¼ 0:053, 95% CI [−0.234, 0.340], ES = 0.019) is similar to the average

effect of the memory training. This refers to the expected effect if participants who were

assigned to the no-contact control group had instead been assigned to the memory
training. These effects being close to the average treatment effect cAE10 reflects that

differences in baseline variables are small across groups. Note that for observational

studies or broken experiments, these effects would not be necessarily close to each other

due to possible baseline differences.

7. Summary and conclusions

In this paper we presented and illustrated a new method of accounting for non-normal

covariates when estimating average and conditional treatment effects for count

outcomes. We extended the moment-based approach by Kiefer and Mayer (2019,

2020) in three respects. First, we presented four ways to account for non-normal

covariates: (1) for categorical covariates, applying a saturated model; for continuous

covariates, we suggested either (2) the use of an alternative, known non-normal joint

distribution (e.g., skew-normal distribution), (3) a plausible factorization into marginal
and conditional distributions, or (4) approximation via a finite Gaussian mixture

distribution. Second, we extended the effect analysis to multiple treatment conditions,

making it possible to evaluate the effectiveness of several treatments simultaneously.

Third, we introduced conditional effects given a treatment condition and/or values of the

categorical covariates into themoment-based approach, allowing for a finer-grained effect

analysis. Finally, we provided an illustrative example to show how our extensions of the

moment-based approach can be applied to real data. In our example, three cognitive

training conditions were compared to a no-contact control group regarding the count of
correctly answered items in a cognitive reasoning test. We considered as covariates the

baseline count of correctly answered items (non-normal covariate), baseline depression

(latent covariate), and gender (categorical covariate). The corresponding negative

binomial multi-group structural equation model and the average and conditional

treatment effect estimations were carried out in R. We have made these functions

conveniently accessible for applied researchers in an R package.

The aforementioned advancements bring the benefits of the moment-based approach

for statistical inference to a broader range of applied scenarios in psychological, social,
and health sciences. In contrast to earlier approaches, the moment-based approach treats

observed group sizes and covariate values as random and not predetermined by the

experimenter. Ignoring this randomnesswould lead to underestimation of standard errors

and, thus, inflated Type I error rates and decreased power, which has previously been

shown for stochastic covariates (Li, McLouth, & Delaney, 2020; Liu, West, Levy, & Aiken,

2017) and stochastic group sizes (Mayer & Thoemmes, 2019). In addition, the moment-

based approach allows accounting for measurement error in covariates. For an overview

of consequences of measurement error in nonlinear regression models, see Carroll,
Ruppert, Stefanski, and Crainiceanu (2010). However, in the social and health sciences,

observed variables in real data sets often deviate from the normal distribution (Bono et al.,

2017;Micceri, 1989).While Kiefer andMayer (2020) proposed amoment-based approach

assuming strictlymultivariate normally distributed covariates, we relaxed this assumption

in this paper, offering several alternatives for non-normally distributed variables. Thus, the
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moment-based approachwith our extension should better fit typical applications in social

and health sciences.

7.1. Limitations and further research

There are some aspects not covered in this paper that could provide starting points for

further research and refinements of the approach:

In equation (3), we assumed a linear parameterization for the predictor function

hxkðξÞ. While this is the standard parameterization of, for example, generalized linear

models (McCullagh & Nelder, 1996) and for effect analysis with linear link function (e.g.,

Mayer et al., 2016), sometimes nonlinear predictor functions might be of substantial

interest. For example, Mayer et al. (2017) investigated the effectiveness of autonomy
support by ninth-grade teachers in reducing students’ state of boredom. They hypoth-

esized a quadratic relationship between boredom and self-efficacy, which means that the

treatment could be most effective for medium values of self-efficacy and less for both

extremes. Similarly, Liu and West (2015) use trigonometric terms to predict cyclic

patterns in daily report (count) data. The inclusion of quadratic or other nonlinear terms

might also be of interest for count outcomes and regressionmodelswith a logarithmic link

function. We presume that the moment-based approach would not yield analytical effect

formulas for nonlinear predictor functions, but effect computation using numerical
integration would be an alternative.

Throughout the paper, we factorized the joint distribution of the covariates into a

marginal distribution of the categorical variables (i.e., treatmentX and covariatesK) and a

(X = x, K = k)-conditional distribution of the continuous covariates. Our choice can

seem restrictive, as alternative factorizations might be more suitable for some cases. For

example, Kiefer and Mayer (2019) used a converse factorization, that is, a marginal

distributed continuous covariate Z and a (Z = z)-conditional probability of the binary

treatment X. However, we would argue that for a given joint distribution multiple
equivalent factorizations exist. In the aforementioned example, the joint distribution can

be equivalently rewritten in our factorization, that is, a marginal distribution of the binary

treatment and an (X = x)-conditional distribution of Z (for a derivation, see Appendix 1).

We used maximum likelihood estimation to obtain parameter estimates for the

negative binomial multi-group structural equation model, but in applied settings

alternative statistical frameworksmight bemore suitable.Maximum likelihood estimation

can suffer from non-convergence issues in complex models (Deng, Yang, & Marcoulides,

2018). We also exhibited this phenomenon in our illustrative example, where we had to
exclude overdispersion parameters from the model in order to achieve convergence.

Thus, we recommend three solutions to address non-convergence issues. First, a

pragmatic workaround would be to specify a more parsimonious model, because non-

convergence might be a consequence of overparameterization (Jackson, 2001, 2003).

Second, a Bayesian structural equationmodelling framework canbe applied. TheBayesian

approach can typically handle complex models much easier than maximum likelihood

estimation (Merkle & Rosseel, 2015). For an overview of Bayesian estimation of structural

equation models based on finite-mixture distributions or distributions based on the
exponential family, see Lee (2007, Chapters 11 and 13). Third, recent factor score

approaches (e.g., Devlieger & Rosseel, 2017) might also help achieving convergence by

simplifying the measurement model and, thereby, the numerical integration part of the

maximum likelihood estimation. However, if the factor scores depend on a distributional
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assumption, it would be wise to use the same distributional assumption within the

moment-based approach.

In our illustrative example, we examined the effectiveness of cognitive training using a

pre–post design. The ACTIVE study also contains several follow-up measurements
allowing long-term effectiveness of the cognitive training to be investigated. In future

developments, it might be fruitful to incorporate this longitudinal information into effect

analyses.We suggest twoways for doing so. First, when examining long-term effects using

a follow-up measurement, earlier measurements (e.g., post-test) could be included as

mediators. In this scenario, total, direct, and indirect effects of the treatment can be

distinguished (Mayer, Thoemmes, Rose, Steyer, &West, 2014). This can help researchers

understand, for example, which post-test characteristics foster a long-term effect of the

cognitive training. Second, several measurement occasions can be summarized or
contrasted, for example, using a growth curve model (McArdle & Epstein, 1987) or

growth component model (Kiefer, Rosseel, Wiese, & Mayer, 2018; Mayer, Steyer, &

Mueller, 2012) among follow-up measurements. In this case, the outcome of interest

would be a latent slope or growth component instead of the count outcome.

In non-randomized observational studies the treatment effects discussed in this paper

are not necessarily causal effects. However, causality theories, such as Rubin’s causal

model (Rubin, 2005) or the stochastic theory of causal effects (Steyer et al., 2014) provide

causality conditions under which causal effects can be estimated. Usually, these
conditions require a careful selection of covariates, which then are controlled for with

regression adjustment (e.g., Mayer, 2019; Mayer et al., 2016) or propensity scoremethods

(Rosenbaum&Rubin, 1983). For an overviewof design and analysis in quasi-experimental

settings, see also Reichhardt (2019).
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Appendix S1 Instructions on estimation and comparison of our illustrative example

using an R package.

Appendix 1:

Factorization of the joint distribution

In equations (4) and (5), we claimed that our factorization of the joint distribution was

without loss of generality. This can be shown using two properties of distribution
functions. Let us consider two random variables A and Bwith joint distribution fA,B(a,b).

Then

f A,Bða,bÞ¼ f AðaÞ � f BjA¼αðbÞ¼ f BðbÞ � f AjB¼bðaÞ,
f AðaÞ¼

R
b
f A,Bða,bÞdb:

If the marginal distribution fB(b) and the conditional distribution fA|B=b(a) are known,
the corresponding distributions fA(a) and fB|A=a(b) can directly be computed with

f AðaÞ¼
R
b
f BðbÞ � f AjB¼bðaÞdb,

f BjA¼aðbÞ¼
f BðbÞ � f AjB¼bðaÞ

f AðaÞ
¼ f BðbÞ � f AjB¼bðaÞR

b
f BðbÞ � f AjB¼bðaÞdb

:

Consequently, if one version or factorization of the joint distribution is known,

equivalent factorizations for the same joint distribution can be derived.

Let us now consider a simple example of the moment-based approach, with a single

covariate Z and a binary treatment variableX. In contrast to our factorization in equations

(4) and (5), we now consider

f ZðzÞ �P X ¼ xjZ¼ zð Þ

as the known factorization of the joint distribution, where Z ∼N μZ ,σ
2
Z

� �
and the

conditional probability of X = x is given by
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P X ¼ xjZ ¼ zð Þ¼ expðυ0þυ1zÞ
1þexpðυ0þ υ1zÞ

� �x
� 1� expðυ0þυ1zÞ

1þexpðυ0þυ1zÞ
� �ð1�xÞ

,

that is, as a logistic function of the covariate Z. This kind of joint distribution can be useful

if self-selection of participants into treatment X = 1 or control X = 0 depending on the

covariate Z is assumed.
Nevertheless, our factorization from equation (5) can be obtained from these known

marginal and conditional distributions by computing

PðX ¼ xÞ¼ R
z
f ZðzÞ �P X ¼ xjZ¼ zð Þdz,

f ZjX¼x ¼
f ZðzÞ �P X ¼ xjZ ¼ zð ÞR

z
f ZðzÞ �P X ¼ xjZ¼ zð Þdz :

Note that these transformations are generally required for effect computation only.

Themaximum likelihood estimationwould, nevertheless, be based on fZ(Z) and P(X = x|
Z = z) in this example. In contrast, when trying to estimate the likelihood function based

on P(X = x) and fZ|X = x, it might be tempting to estimate P(X = x) directly instead ofR
z
f ZðZÞ �PðX ¼ xjZ¼ zÞdz. However, introducing a parameterization for P(X = x)

would lead to redundancies, because P(X = x) is already determined by µZ, σ2Z ,υ0, and
υ1. Consequently, additional estimation of P(X = x) would lead to a non-invertible

covariance matrix of the parameter estimates and, thus, standard errors could not be

computed. The redundant parameter would remain at its starting value, and thus would

not yield a trustworthy estimate. The likelihood function should only contain parameters

µZ, σ2Z ,υ0, and υ1. Corresponding parameters from our factorization and their standard

errors can then be computed for effect estimation using the delta method.

Appendix 2:

Model estimation

In this section we present details on the maximum likelihood estimation of the NB-MG-

SEM for our illustrative example. Let us consider a count outcome variable Y, a treatment

variable X with four levels, a binary categorical covariate K, and a vector of continuous

covariates ξ¼ ξ1,ξ2ð Þ containing a latent covariate ξ1 measured by three observed

indicator variables z = (Z1,Z2,Z3), and a count covariate ξ1. We want to estimate a

statistical model as presented in equations (7) to (9) using maximum likelihood
techniques. Assuming a sample of N independently and identically distributed observa-

tions, the complete-data likelihood is given by

LðθjY ,X,K ,z, ξ Þ¼
YN
i¼1

f ðyi,xi,ki,zi, ξð∗Þi jθÞ,

where yi, xi, ki, zi ξ
ð∗Þ
1 are the ith observed values of the aforementioned variables. As we

do not have observed values ξð∗Þ1 i.e., latent covariate), we actually have to optimize the

observed-data likelihood:
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L θjY ,X,K ,z,ξ2ð Þ¼ QN
i¼1

f yi,xi,ki,zi,ξ
ð∗Þ
2i jθ

� �
¼ QN

i¼1

R
ξ1
f yi,xi,ki,zi,ξ

ð∗Þ
i jθ

� �
dξð∗Þ1 :

Note that marginalizing over the joint density of the complete data is only one way to

optimize this likelihood. It would also be possible to use an EM algorithm (Dempster,

Laird, &Rubin, 1977) to solve the complete data likelihood, but this is beyond the scope of

this paper.
The joint density f ðyi,xi,ki,zi, ξð∗Þi jθÞcan be factorized into five conditional densities:

f ðyi,xi,ki,zi, ξð∗Þi jθÞ¼ f ðnxiki jθ1Þ

f ðyijθ2,xi,ki, ξð∗Þi Þ

f ðzijθ3,xi,ki, ξð∗Þ1i Þ

f ð ξð∗Þ2i jθ4,xi,ki,ξ1iÞ

f ð ξð∗Þ1i jθ5,xi,kiÞ:

In the last step, we decomposed the parameter vector θ¼ðθ1,θ2,θ3,θ4,θ5Þ into four

parts corresponding to the four conditional densities. The parameters to estimate in the

respective densities are:

θ1 ¼ðκ00,⋯,κpjÞ,

θ2 ¼ðα00,⋯,αpjÞ,

θ3 ¼ðν,Λ,Θ00,⋯,ΘpjÞ,

θ4 ¼ðγ00,⋯,γpjÞ,

θ5 ¼ðμ00,⋯,μpj,σ
2
00,⋯,σ2pjÞ:

In the NB-MG-SEM, the conditional densities are defined by the model assumptions.

Here, f ðnxiki jθ1Þreflects the model for group sizes nxk, which are assumed to be Poisson

distributed. The group-specific Poisson regressionofY on ξ is givenby f ðyijθ2,xi,ki, ξð∗Þi Þ,
the group-specific and ξ1 ¼ ξð∗Þ1i -conditional distribution of the observed indicators z is
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given by f ðzijθ3,xi,ki, ξð∗Þ1i Þ, the group-specific Poisson regression of ξ2 on ξ1 is given by

f ðξð∗Þ2i jθ4,xi,ki, ξð∗Þ1i Þ, and the group-specific marginal distribution of the latent variable ξ1
is given by f ð ξð∗Þ1i jθ5,xi,kiÞ. Thus, the conditional densities in our case are

f ðnxiki jθ1Þ¼
expðκnxiki

xk Þ
nxiki !

expð�exp½κxk�Þ,

f yijθ2,xi,ki,ξð∗Þi

� �
¼
exp α0

xkξ
ð∗Þ
i

� �yi

yi!
exp �exp½α0

xkξ
ð∗Þ
i �

� �
,

f zijθ3,xi,ki,ξð∗Þ1i

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3jΘxkj
q exp �1

2
ðzi� ξð∗Þ1i Þ

0
Θ�1

xk ðzi� ξð∗Þ1i Þ
� �

,

f ξð∗Þ2i jθ4,xi,ki,ξð∗Þ1i

� �
¼
exp γ0xkð1,ξð∗Þ1i Þ

0� �ξð∗Þ2i

ξð∗Þ2i !
exp �exp γ0xkð1,ξð∗Þ1i Þ

0h i� �
,

f ξð∗Þ1i jθ5,xi,ki
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2xk

p exp �
ξð∗Þ1i �μxk

� �2

2σ2xk

0B@
1CA:

As the group weights do not depend on the latent covariate ξ2, we can simplify the
observed-data density as follows:

f yi,xi,ki,zi,ξ
ð∗Þ
2i jθ

� �
¼ R

ξ1
f yi,xi,ki,zi,ξ

ð∗Þ
i jθ

� �
dξð∗Þ1

¼ f ðηxiki jθÞ �
R
ξ1
f yi,zi,ξ

ð∗Þjθ,xi,ki
� �

dξð∗Þ1 :

Hence, the corresponding log-likelihood is

logL θjY ,X,K ,z,ξð Þ¼ ∑
N

i¼1

log f ηxiki jθ
� �� 	þ ∑

N

i¼1

log

Z
ξð∗Þ1

f yi,zi,ξ
ð∗Þ
i jθ,xi,ki

� �
dξð∗Þ1

" #

As there is no closed-form solution for
R
ξð∗Þ1

f ðyi,zi, ξð∗Þi jθ,xi,kiÞd ξð∗Þ1 , numerical

integration is required. In our implementation, we use Gauss–Hermite quadrature which

approximates the integral over ξ1with a finite sum
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R
ξð∗Þ1

f yi,zi,ξ
ð∗Þ
i jθ,xi,ki

� �
dξð∗Þ1

≈ ∑
H

h¼1

wh � f yijθ2,xi,ki,ξð∗Þ
∗
1h,ξ

ð∗Þ
2i

� �
� f zijθ3,xi,ki,ξð∗Þ∗1h
� �

� f ξð∗Þ2i jθ4,xi,ki,ξð∗Þ
∗
1h

� �
,

where ξ∗1h ¼
ffiffiffiffiffiffiffiffiffi
2σ2xk

p
ahþμxk andah,wh areGauss–Hermite quadrature points andweights.

Appendix 3:

Effect estimation

In this section we provide details on the derivation of the average and conditional effect

formulas used in our illustrative example. Let us consider a count outcome variable Y , a

treatment variable X with four levels, a binary categorical covariate K , and a vector of

continuous covariates ξ ¼ðξ1,ξ2Þ containing a latent covariate ξ1 measured by three

observed indicator variables z¼ðZ1,Z2,Z3Þ, and a count covariate ξ2. In the model

section, we already stated that we assume latent baseline depression is XK -conditionally

marginally normally distributed ξ1jX ¼ x,K ¼ k~Nxkðμxk,σxkÞ and is related to the baseline
count of correctly answered items via a Poisson regression with

ξ2jX ¼ x,K ¼ k,ξ1 ~PxkðλxkÞ where λxk ¼ expðγxk0þ γxk1ξ1Þ.
Beginning with the general definition of the average treatment effect for these

variables,

ATE¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ �R
ξð∗Þ1

R
ξð∗Þ2

exp α0
0kξ

� 	� �
� f ξ1jK ,X ξð∗Þ1 jk,x

� �
f ξ2jK ,X ξð∗Þ2 jξð∗Þ1 k,x

� �
dξð∗Þ1 dξð∗Þ2

the integration part can be rewritten as a difference of integrals,

¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ

� R
ξð∗Þ1

R
ξð∗Þ2

exp α0
tkξ

� 	 � f ξ1,K ,X ξð∗Þ1 jk,x
� �

f ξ2jξ1,K,X ξð∗Þ2 jξð∗Þ1 ,k,x
� �

dξð∗Þ1 dξð∗Þ2

� �
�R

ξð∗Þ1

R
ξð∗Þ2

exp α0
0kξ

� 	 � f ξ1,K ,X ξð∗Þ1 jk,x
� �

f ξ2jξ1,K ,X ξð∗Þ2 jξð∗Þ1 ,k,x
� �

dξð∗Þ1 dξð∗Þ2

� �
,

where the decomposition of the joint distribution of ξ1 and ξ2 into a marginal and a

conditional distribution enables the formation of an inner and an outer integral,

¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ

� R
ξð∗Þ1

exp αtk0þαtk1ξ1½ � R
ξð∗Þ2

exp αtk2ξ2½ � � f ξ2 jξ1,K ,X ξð∗Þ2 jξð∗Þ1 ,k,x
� �

dξð∗Þ2

h i
f ξ1,K ,X ξð∗Þ1 ,k,x

� �
dξð∗Þ1

� �
�R

ξð∗Þ1

exp α0k0þα0k1ξ1½ � R
ξð∗Þ2

exp α0k2ξ2½ � � f ξ2jξ1,K ,X ξð∗Þ2 jξð∗Þ1 ,k,x
� �

dξð∗Þ2

h i
f ξ1,K ,X ξð∗Þ1 ,k,x

� �
dξð∗Þ1

� �
:

The inner integral resembles a univariate (conditional) expectation and can therefore

be substituted with a univariate moment-generating function:
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R
ξð∗Þ2

exp αxk2ξ2½ �� f ξ2jξ1,K ,X ξð∗Þ2 jξð∗Þ1 ,k,x
� �

dξð∗Þ2 ¼E exp αxk2ξ2½ �jX,K ,ξ1ð Þ
¼Mξ2jξ1,K ,Xðαxk2Þ:

Consequently, the computation of the average treatment effect simplifies to

ATE¼ ∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ

� R
ξð∗Þ1

exp αtk0þαtk1ξ1½ � Mξ2jξ1,K,Xðαtk2Þ
� 	

f ξ1jK ,Xðξð∗Þ1 jk,xÞdξð∗Þ1

� �
�R

ξð∗Þ1

exp α0k0þα0k1ξ1½ � Mξ2jξ1,K ,Xðα0k2Þ
� 	

f ξ1jK ,Xðξð∗Þ1 jk,xÞdξð∗Þ1

� �
,

and as both outer integrals have the same domain, we can go back to a single integral,

∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ

�R
ξð∗Þ1

exp αtk0þαtk1ξ1½ �Mξ2jξ1,K ,Xðαtk2Þ�exp α0k0þα0k1ξ1½ �Mξ2jξ1,K ,Xðα0k2Þ
� 	

f ξ1jK ,X ξð∗Þ1 jk,x
� �

dξð∗Þ,1

where we integrate over the density of the XK -conditionally normally distributed ξ1,
which allows us to approximate the integral using a Gauss–Hermite quadrature

∑
p

x¼0

∑
j

k¼0

P X ¼ x,K ¼ kð Þ

∑
H

h¼1

wh exp αtk0þαtk1ξ
∗
1h

� 	
Mξ2jξ1,K ,Xðαtk2Þ�exp α0k0þα0k1ξ

∗
1h1

� 	
Mξ2jξ1,K ,Xðα0k2Þ

� 	
,

where ξ∗1h ¼
ffiffiffiffiffiffiffiffiffi
2σ2xk

p
ahþμxk andah,wh areGauss–Hermite quadrature points andweights.
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