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abstract

Recent developments in motion capture technologies such as Microsoft Kinect
and Vicon systems have facilitated motion data acquisition in diverse areas such as
entertainment, sports, medical applications, or security systems. This type of data
typically consists of recorded body parts’ movement through time, which describes a
semantically meaningful action to the domain experts. Coinciding notable growth
in the size of available motion datasets, it is necessary to design machine learning
methods to analyze motions regarding their underlying characteristics systematically.

Although many approaches have been suggested for motion analysis ranging
from component analysis methods to deep learning algorithms, the majority of the
state-of-the-art designs lack in providing semantically interpretable models. Such
particular models for motion data contain building blocks that are connected to
commonalities and particularities semantically understandable by domain experts. In
this dissertation, I propose efficient algorithms to address the interpretable analysis of
motion data from several significant aspects. These algorithms contribute to the state-
of-the-art by introducing interpretable models in four specific categories of metric
learning, sparse embedding, feature selection, and deep learning for the purpose of
motion data analysis.

I propose a novel metric learning algorithm for motion data that benefits from a
flexible time-series alignment. This algorithm can transfer motion data to another
space in which semantically similar motions are located in tighter neighborhoods
while semantically different motions are pushed further away from each other. A
post-processing regularization of the learned metric reduces the usual existing cor-
relations between the dimensions of the motion. As a result, the proposed model
is interpretable by providing a small subset of dimensions (joints) that are closely
relevant to the given discriminative task.

Furthermore, I present novel embedding frameworks that transfer the raw motion
representation to a vector space. The resulting embeddings are non-negative vectorial
representations that are sparse and semantically interpretable. They specifically carry
understandable information about the encoded motions, such as the particularities
of motion classes or commonalities of different motions. Additionally, I extend my
proposed metric learning and embedding algorithms to different feature selection
frameworks. In each framework, a sparse set of motion dimensions is selected that
are semantically connected to the given overarching objective.

The last designed framework in my Ph.D. project focuses on using convolutional
neural networks (CNN) to perform sequence-based labeling on motion data. More
specifically, my developed deep learning algorithm introduces a novel CNN-based
architecture benefiting from the time-series alignment concept in its filters. This
framework learns local patterns in the temporal dimensions of the data. These
temporal patterns are interpreted as significant parts of motion sequences, which
lead to better discrimination of them.

I implement the above frameworks on different real-world benchmarks of mo-
tion data and analyze their performance from the above-discussed perspectives by
comparing them to relevant state-of-the-art baselines.
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1I N T R O D U C T I O N

Generally speaking, motion describes an object’s movement in the real world, which
changes its location or orientation (Elert 1998). In particular, this movement can be applied
to living things such as humans and animals or artificial objects such as robots, vehicles,
or other objects in the Universe. To be more specific, this work focuses on the motion of
objects to which a skeleton body and a Kinematics model can be applied (Beggs 1983).
Typical examples of such motions are movements of humans (Rosenhahn, Klette, and
Metaxas 2008), animals (Muybridge 2012), insects (Woiwood, Reynolds, and Thomas
2001), or robots (M. Müller and Röder 2006). Accordingly, various fields of technology
greatly benefit from or are constructed upon the study of motion-related information.
As some examples, we can cite rehabilitation and physical therapy (Hueter-Becker and
Doelken 2014), human gait analysis (Harris and Smith 2000), robotic motion planning
(Latombe 2012), intelligent sports analysis (Sha et al. 2018), biomechanical studies (T.-W.
Lu and C.-F. Chang 2012), and computational biology (Risse et al. 2017).

Therefore, great attention is paid toward the field of motion data analysis, which
focuses on models and methods to explore important aspects of motion data related
to its specific application (H. Zhou and H. Hu 2008; Durantin, Heath, and Wiles 2017;
Arami et al. 2019; Jalal, Quaid, and K. Kim 2019; Bortolini et al. 2020; Ferdinands 2010)

With notable advances in current recording technologies for multimedia information,
a considerable amount of motion data is available for any further processing (Pouyanfar
et al. 2018). In general, motion data can be collected in various environments, such as
uncontrolled daily human movements in public areas (Weinzaepfel, Martin, and Schmid
2016; Kuehne et al. 2011), expected movement scenarios like sports activities (Karpathy et
al. 2014; Soomro, Zamir, and Shah 2012), controlled laboratory-based motion experiments
(Mandery et al. 2015; Liang et al. 2020), and many other imaginable scenarios. Regardless
of the motion’s source, in a motion capture system (mocap), an object’s movement is
recorded and is represented by multi-dimensional digital signals (Liang Wang, L. Cheng,
and G. Zhao 2010). Currently, several technologies are available for capturing motion
information, which can be generally categorized as optical systems (Guerra-Filho 2005),
inertial systems (Roetenberg et al. 2013), mechanical motion (Rahul 2018), and Magnetic
systems (Yabukami et al. 2000). As the widely used mocap systems for research-based
purposes, we can mention the marker-based optical Vicon (Oxford, UK) technology
(Merriaux et al. 2017) and marker-less infrared KinectTM system (Smisek, Jancosek, and
Pajdla 2013). Hence, depending on the utilized mocap technology, the captured motion
data’s raw representation could be different. However, as a common feature among
motion representations, the captured motion is projected on a skeleton structure, which
corresponds to the body links and joints of the moving subject Figure 1.1. Specifically,
powerful analysis software enables the reconstruction of this underlying skeleton when
dealing with human motion (Bregler 2014; Joon 2010; Baak et al. 2013).

In the area of machine learning, many works specifically focus on the analysis of
motion data. Generally, based on the particular purpose and the target application, it
is possible to categorize these algorithms and methods into individual groups such as
motion classification (Bodor et al. 2009; Cao et al. 2004; Jalal, Quaid, and K. Kim 2019),
learning motion primitives (Kulić et al. 2012; Hauser et al. 2008; Saveriano, Franzel, and
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introduction

Figure 1.1: Capturing joint information of a subject using a marker-based mocap system
and forming its skeleton-based posture description. The image is taken from (Pawlyta
and Skurowski 2016).

D. Lee 2019), motion generation (Arikan and Forsyth 2002; Y. Yan et al. 2017; Z. Xie et al.
2020), retrieval of motion sequences (Kapadia et al. 2013; F. Liu et al. 2003; Q. Xiao and
C. Chu 2017), and motion clustering (Torr and Murray 1994; F. Zhou, De la Torre, and
Hodgins 2012; C. Xie et al. 2019). Such machine learning models’ notable ability in coping
with noise, adjusting to specifics of persons and measurement, and gradual adaptation
to new observations makes them constitute a particularly promising approach for these
motion analysis tasks. In each category, state-of-the-art approaches are usually compared
based on their performance in fulfilling their given tasks and their computational/space
complexity.

Regardless of the reported considerable performance of machine learning models in
analyzing motion data, they are often not easily interpretable. Popular examples of such
models belong to the family of deep neural networks, which constitute the state-of-the-art
in the majority of the mentioned fields (Si et al. 2018; Z. Xie et al. 2020; C. Xie et al.
2019). These algorithms are generally complex in explaining their underlying decision-
making process, which renders them unsuitable, specifically for a practitioner or a domain
expert. Apart from the usual complexity and performance measures, another essential
characteristic of a machine learning algorithm is its trained model’s interpretability.
Model Interpretability focuses on investigating how a trained model makes its prediction
or inference (Molnar 2020; Doshi-Velez and B. Kim 2017). In practice, interpretability
is an essential characteristic for domain practitioners and helps them understand the
designed model’s decision-making mechanism (Murdoch et al. 2019). Relatively, in
natural language processing (NLP), semantic interpretation is considered a mapping
between synthetically analyze information and the meaningful concepts, for humans, it
carries (Hirst 1992). This concept plays a vital role in various NLP applications, such as
named entity recognition and retrieval of semantically related words (Şenel et al. 2018).

By transferring semantic interpretation to motion data analysis in a broad sense, we
investigate a connection or a mapping between the model mechanism and semantically
meaningful information related to motion data (Hosseini and Hammer 2019b; Liang
Wang, L. Cheng, and G. Zhao 2010; V. Krüger et al. 2007). Such a characteristic increases
the model’s usability for practitioners and areas such as human-computer interaction
(Finlay 1997; Gillies et al. 2016; Mohseni, Zarei, and Ragan 2018; Gates et al. 2019). For
example, an interpretable embedding of a motion sample should relate the resulting
vector’s entries to partial or complete movements semantically similar to the original
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motion sample. To be more specific, by interpretable motion analysis, we investigate a
captured movement for its meaningful characteristics for humans. For instance, when
we call an observed movement walking, we apply certain characteristics to that motion
that semantically represent a walking movement in our mind. This means a specific
body formation, particular types of joint movements, and the body parts relevant to us
when we call it walking. Nevertheless, the amount and the depth of such characteristics
depend on the context and the goal of our observation. Such motion models enable
a meaningful retrieval of motion databases since it enables a blending of high-level
semantics and low-level signals. Despite the recent advances in motion analysis methods,
the above concept has not yet been explored for them properly. Therefore, assigning such
characteristic to the existing models will significantly improve their usability in practical
motion analysis problems.

When comparing the samples in a dataset, we can consider two given entities seman-
tically similar when they carry the same semantic meaning (Vigliocco, Vinson, and Siri
2005; Lord et al. 2003; Kandola, Cristianini, and Shawe-taylor 2002). Such a concept can
play a significant role in designing machine learning algorithms that lead to interpretable
models by employing the nearest neighbor search in the space. Talking about the semantic
similarity of motion data, we can categorize the motion samples into specific groups, such
that each group contains motion sequences that are based on human interpretation more
similar to each other than to sequences from other groups. At first sight, this process
might seem approachable by applying any advanced sequential-data classifier to motion
data (Fawaz et al. 2019). However, to have an interpretable model based on semantic
similarity, we are more interested in two other important aspects:

1. Using a proper technique that determines if two given motions are semantically
similar with to a relative extent.

2. Obtaining a motion representation that facilitates the interpretability of the decision
making process by emphasizing the above semantic relationship between motion
sequences.

The first concept can be addressed by measuring the distance between two given data
points (x, y) as a distance function d(x, y). For two semantically similar points (x, y), it is
expected that d(x, y) is considerably small compared to d(x, z), where x and z are not
semantically related. A typically used distance measure for vectorial data is the Euclidean
distance ∥x⃗2 − y⃗2∥2 (Bellet, Habrard, and Sebban 2013). However, for sequential data
forms, other techniques such as dynamic time warping (DTW) (Berndt and Clifford 1994)
and sequence alignment kernel (Saigo, Vert, and Akutsu 2006) are popularly used, which
generally focus on the temporal alignment of two given motions (x⃗, y⃗).

Relevantly, distance-based algorithms such as k-nearest neighbor classifier (kNN ),
k-means clustering (Bishop 2006), and learning vector quantization (Kohonen 1995)
categorize data samples based on their similarity to other locally nearby samples (or
prototypes) in the given data distribution. The relative location of data points in the data
distribution is measured and analyzed by their pairwise distance d(x⃗, y⃗). Application
of those techniques to motion data provides the interpretable classification of motion
samples by relating each motion sequence to its nearby semantically similar data points
(Switonski, Josinski, and Wojciechowski 2019; Petitjean, Forestier, Geoffrey I Webb, et al.
2016; Keskin, Cemgil, and Akarun 2011). Nevertheless, they do not influence the data
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representation in terms of altering the motion distributions such that they better respect
such similarity in their neighborhoods.

On the other hand, metric learning algorithms focus on changing the original data
representation to emphasize the similarity of semantically related data points (Bellet,
Habrard, and Sebban 2013; Kulis 2012). More specifically, current metric learning methods
focus on leaning a linear transform Lx⃗ that modifies the Euclidean distance as dL(x⃗, y⃗) =
∥Lx⃗−Ly⃗∥2. The metric coefficient matrix L is learned with the objective to reduce dL(x⃗, y⃗)
for data points that are considered semantically similar while increasing dL(x⃗, y⃗) for the
semantically distinct points. Ideally, such an objective should yield a new representation in
which similar data points are gathered in condensed and separated local neighborhoods in
the data space. Such representation considerably enhances the interpretability of distance-
based classifiers such as kNN by focusing on those condensed local neighborhoods.

Metric learning has shown promising applications in various areas of machine learn-
ing and data analysis, such as face recognition (Guillaumin, Verbeek, and Schmid 2009),
deep learning (Jian Wang et al. 2017), information retrieval (McFee and G. Lanckriet
2010), and human activity recognition (Tran and Sorokin 2008). However, current metric
learning algorithms are mostly in favor of vectorial representation of data points, in
which x⃗ and y⃗ are vectors in Rd. The available metric learning algorithms for structured
data are mostly applicable to string and tree data forms (Bellet, Habrard, and Sebban
2013). This limitation is a considerable practical barrier for applying metric learning on
structured data such as motions. Accordingly, in order to benefit from metric learning
for interpretable analysis of motion data, I pose the first research question of my work as
the following:

RQ1: Can we apply metric learning on motion data to enhance the interpretability of
distance-based decision making processes based on the resulted data representa-
tion?

To answer this question, I propose a distance-based metric learning framework in
Chapter 3, which brings similar motion samples closer while pushes away dissimilar
data points. In this framework, I use pairwise distances of motion samples as the input,
computed by the DTW algorithm as an elastic alignment technique. My metric learning
framework benefits from DTW’s unique characteristic, a robust alignment of semantically
similar motions (generally time-series). In the space created by the newly learned metric,
each motion sample is assumed to be surrounded mostly by other motions of its type. In
addition to the above interpretation, I use a regularization method to clear the obtained
metric parameters from existing redundant information (Frénay et al. 2014; Strickert et al.
2013). This post-processing step determines the motion dimensions (body joints) that
are significantly relevant to the given task and have more effect on the decision making
process.

Another concern with temporal data such as motion sequences is their space complex-
ity (M. Kim et al. 2019; Deri, Mainardi, and Fusco 2012; Tahmassebpour 2017). Generally
speaking, motion data is created out of recorded frames of body gestures in the temporal
axis. Therefore, the captured motion can quickly become spacious due to an increase in
the frame-rate of recording, size of extracted data per frame, or the length of a movement
(M. Müller 2007). The space complexity can be a barrier to utilizing many advanced
algorithms designed mainly for the vectorial source of information, especially if we
apply them directly to the vectorized raw motion representation (Glardon, Boulic, and
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Thalmann 2004; Guodong Liu and McMillan 2006). One effective solution for such cases
is to find an embedding to the vector space, which considerably reduces data represen-
tation’s space complexity. This idea has already shown its success in different application
areas, such as word embedding (Yang Li and T. Yang 2018), graph embedding (H. Cai,
V. W. Zheng, and K. C.-C. Chang 2018), and computer vision (Schroff, Kalenichenko,
and Philbin 2015). Accordingly, other works such as (S. Li, K. Li, and Fu 2015; Zhen
et al. 2013; C. Kong and Lucey 2019; Zhao Wang, Y. Feng, S. Liu, et al. 2016) applied
that idea to motion data, which resulted in encapsulated representations. Such sparse
encoded vectors could be used efficiently for any further supervised or unsupervised
motion information analysis.

Despite the above achievements in obtaining sparse embeddings for motion and other
structured data, a practical demand is to have representations that are understandable
w.r.t. the semantic information they carry related to the original data source (T. Chen
et al. 2018; N. Li et al. 2018). Transferring this concept to motion data, a practitioner
requires an interpretable embedding for a given motion sample. The constituent elements
of the resulting representation should be connected to specific movement information
that is semantically related to the original motion. In (Yale Song and Soleymani 2019),
this concept is addressed for image embedding by learning several local embeddings for
each given image, which provide partial semantic descriptions for that image. Despite
the promising performance of the available motion encoding algorithms in reducing
the space complexity, as a typical observation, extracting useful information out of their
representations is difficult or maybe impossible in general cases. According to this specific
concern, I formulate my second research question as:

RQ2: Can we obtain a rich embedding of motion data that is sparse and interpretable
regarding its entities?

In Chapter 4, I introduce non-negativity constraints into a specific type of sparse
coding framework. I demonstrate that the resulting novel framework can encode each
motion data by relating it to other semantically similar motions. The obtained encoding
is interpretable in terms of the motion class to which each encoded motion sample is
mainly related. I show that my sparse coding framework and its novel supervised and
unsupervised extensions result in more interpretable and better discriminating sparse
vector encodings throughout empirical evaluations.

As explained, motion data describes the movement of different body joints, which can
be generally addressed as motion dimensions. From that perspective, another relevant and
practical question is that if we can analyze a motion sequence based on the information
that exists in its individual dimensions. In machine learning, the above question is
explored as the feature selection problem. The goal of feature selection is to select a
sufficiently small set of features (dimensions) from the given data while maximizing (or
minimizing) another given objective (Kumar and Minz 2014; Alelyani, J. Tang, and Huan
Liu 2013). According to clinical studies, there is a specific correlation between different
body joints’ movements, even in partial-body actions. For example, in a proper throwing
action, the torso and the lower body parts have a synchronized movement with respect
to the arm motion (Raine, Meadows, and Lynch-Ellerington 2013; Janet and Roberta
2003). Extending this observation to other human motions, considering only a subset of
body joints is sufficient to represent or categorize a motion type. Upon this assumption,
different methods have utilized feature selection in motion analysis problems such as
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motion retrieval (Zhao Wang, Y. Feng, Qi, et al. 2016), classification of motions (Z. Yan,
Zhizhong Wang, and H. Xie 2008), and motion reconstruction (Kusakunniran et al. 2010).

Therefore, an interpretable model for motion representation selects relevant motion
dimensions that have an underlying semantic relationship with the model’s primary
purpose. In other words, we expect to observe a understandable connection between
those selected body joints and the given motion analysis task (Hosseini and Hammer
2015). This specific objective has not been addressed yet in any feature selection methods
related to motion data. Even though I show in Chapter 3 that we can obtain a set of
relevant body joints to the given classification task using post-processing techniques, we
are still interested in models that actively consider the existing redundancy or particu-
larity of information in the motion dimensions. Also, from the perspective of vectorial
motion encoding (RQ2), it is of specific interest to learn the motion dimensions that
directly correspond to the encoding objective. Even as a more optimal framework, the
goal is to find the features that considerably facilitate obtaining such desired enriched
sparse embedding. According to the above problem specifications, the following relevant
question will be raised.

RQ3: How can we extend existing motion analysis models to interpretable feature
selection frameworks, which are formulated by also respecting the main objectives
of these models?

In Chapter 5, I demonstrate that we can extend Chapters 3 and 4’s frameworks to more
general formulations by considering multi-dimensional motion data as a multiple-kernel
source of information (Gönen and Alpaydın 2011). In the models that I propose in this
chapter, I actively involve individual motion dimensions in the learning process of the
model. To be more specific, I address this problem by finding a sparse kernel combination
corresponding to the scaling of feature space. Therefore, the scaling parameters reflect
the relevance of each component’s kernel information and its corresponding motion
dimension. Accordingly, the multiple-kernel extension of my distance-based metric
learning algorithm focuses on learning a sparse set of dimensions, which result in dense
neighborhoods of semantically similar motions.

Besides, I propose two other multiple-kernel frameworks in Chapter 5 as the exten-
sions of my non-negative sparse coding framework (RQ2). The first framework finds a set
of features based on which motions can be efficiently represented by a prototype-based
model. In this model, both the prototypes and the vector encodings are considerably inter-
pretable in terms of their basis motion classes. The second framework learns meaningful
motion attributes, each of which focuses on the movement of a subset of body joints
(motion dimensions). I demonstrate that we can partially encode (and also categorize) an
unobserved motion type with the help of these learned attributes, which mainly focus on
the possible semantic similarity of different motion types in the movements of particular
joint groups.

One fundamental assumption for my interpretable frameworks related to previous
questions is that we need to segment motion data in advance. More specifically, the
distance-based information as the input for my metric learning or sparse coding models
can be computed when motion sequences are temporally synchronized. Even though
my presented solutions can take motions of different lengths, to compute a valid input
for the models, all motion sequences in the dataset need to contain the same number of
movement cycles. This problem is addressed in the literature as temporal segmentation
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of motion data, in which a long stream of motion is split into individual meaningful
subsequences as motion segments (F. Zhou, De la Torre, and Hodgins 2008; Spriggs,
De La Torre, and Hebert 2009). Several unsupervised methods have been suggested to
segment motion sequences into their constituent temporal parts (B. Krüger et al. 2017;
F. Zhou, De la Torre, and Hodgins 2013; C. Lu and Ferrier 2004; Qifei Wang et al. 2015).
These unsupervised algorithms do not require pre-annotated data. However, they usually
result in over-segmentation of a motion stream into its sub-components due to their
unsupervised structure (B. Krüger et al. 2017; F. Zhou, De la Torre, and Hodgins 2013).

The supervised segmentation of temporal data is mainly investigated in other domains
such as speech recognition and text analysis, typically referred to as sequence labeling
(Gehring et al. 2017; Akbik, Blythe, and Vollgraf 2018; X. Ma and Hovy 2016). Such
algorithms usually benefit from deep neural networks’ feature extraction power to both
segments and classify the input sequence’s time-frames. Nevertheless, the application
of these methods on skeleton-based representations is not straightforward and usually
demands hand-coded modifications to the model’s structure.

Additionally, these methods do not provide an expected level of interpretation related
to certain existing properties of the given skeleton-based input motion. For instance, it is
desirable to observe a semantic connection between different joints’ movements of a full-
body motion, such as walking, and the decision making process of the network (Hosseini,
Montagne, and Hammer 2019). Accordingly, the above discussion begs the following
research question:

RQ4 How can we design a deep neural architecture for the segmentation of motion
sequences, which is interpretable based upon semantic components of motion data?

In another closely related area of sequential data analysis, it is shown that by learning
specific exemplar (sub-)sequences, we can retrieve or classify their other semantically
similar sequences in the dataset (Rakthanmanon and E. J. Keogh 2013; Petitjean, Forestier,
Geoffrey I Webb, et al. 2016; L. Ye and E. Keogh 2009). In (C. Ji et al. 2019; L. Ye and
E. Keogh 2009), relatively short time-series are learned as prototypes and can identify
other longer sequences that belong to one specific group of time-series. (Yeh 2018)
discusses that these temporal prototypes contain meaningful information with respect
to the overarching analysis objective, which makes the decision-making model highly
interpretable. Inspired by these works, I emphasize that another valuable semantic
information that one seeks in motion data lies in the temporal aspect of the data. Despite
the success of the works mentioned above in time-series problems, they cannot be directly
applied to skeleton-based sequences, especially for segmentation purposes.

On the other hand, several deep neural architectures have shown promising results in
the classification of motion data, specifically skeleton-based human mocap sequences (Si
et al. 2018; J. Liu, Shahroudy, et al. 2018; H. Wang and Liang Wang 2017; S. Song
et al. 2017). Despite their notable discriminative performance, which is resulted from
their complex architectures, these models suffer from weak interpretability. This issue
prevents them from being exploited by domain-specialists and practitioners. Putting the
above two views together, I formulate my last research question as:

RQ5: Can we design a deep neural network architecture to find relevant information in
the temporal aspect of motion data, leading to an interpretable deep neural model?
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To address the research questions RQ4 and RQ5, I design a novel convolutional
neural network (CNN) in Chapter 6 that is applicable to motion inputs of different
lengths and their sequential concatenations. This network can take in a long stream
of different motion sequences and determine the temporal location and type of its
constituent motions. More specifically, I design the structure of my CNN model such that
it finds significant subsequences in the motion data that are semantically meaningful.
I address them as temporal prototypes. These prototypes enhance the interpretability
of the network by indicating the relevant movement patterns in specific body joints,
resulting in the separation of different motion types according to a given classification
task. Through empirical evaluations on large-scale human action recognition benchmarks,
I show that my proposed convolutional model obtains comparable classification and
segmentation accuracy to the state-of-the-art deep neural architectures while is also
interpretable based on the temporal patterns it finds in the given motion data.

In summary, my work contributes to state-of-the-art:

• A distance-based metric learning framework applicable to motion data, which
concentrates the semantically similar motion samples in the distance space. Fur-
thermore, the regularization of this metric interprets the joints that are semantically
relevant to the given classification task.

• A non-negative sparse coding framework and its variations that provide inter-
pretable encodings of motion samples by relating each motion to its semantically
similar samples.

• Novel multiple-kernel learning frameworks to learn interpretable dimension-based
models for motion data with respect to different goals, such as classification, partial
reconstruction, and prototype learning.

• A deep architecture that learns discriminant temporal prototypes for interpretable
segmentation and classification of full-body motion data by proposing a novel deep
learning architecture.

I have presented individual parts of this work in different renowned international
venues. More specifically, the works which are covered by this thesis are presented in the
following listed publications.

Conference Publications:

• Hosseini, Babak and Barbara Hammer (2015). “Efficient metric learning for the
analysis of motion data”. In: IEEE International Conference on Data Science and
Advanced Analytics (DSAA).

• Hosseini, Babak, Felix Hülsmann, et al. (2016). “Non-negative kernel sparse coding
for the analysis of motion data”. In: International Conference on Artificial Neural
Networks (ICANN). Springer, pp. 506–514.

• Hosseini, Babak and Barbara Hammer (2018a). “Confident kernel sparse coding
and dictionary learning”. In: 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, pp. 1031–1036.
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• — (2018b). “Feasibility Based Large Margin Nearest Neighbor Metric Learning”.
In: 26th European Symposium on Artificial Neural Networks (ESANN).

• — (2018c). “Non-negative Local Sparse Coding for Subspace Clustering”. In:
Advances in Intelligent Data Analysis XVII. (IDA). Ed. by Ukkonen A. Duivesteijn W.
Siebes A. Vol. 11191. Lecture Notes in Computer Science. Springer, pp. 137–150.
doi: 10.1007/978-3-030-01768-2_12.

• — (2019b). “Interpretable Multiple-Kernel Prototype Learning for Discriminative
Representation and Feature Selection”. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. ACM.

• — (2019c). “Large-Margin Multiple Kernel Learning for Discriminative Features
Selection and Representation Learning”. In: 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE.

• — (2019d). “Multiple-Kernel Dictionary Learning for Reconstruction and Clus-
tering of Unseen Multivariate Time-series”. In: 27th European Symposium on Artificial
Neural Networks (ESANN).

• Hosseini, Babak, Romain Montagne, and Barbara Hammer (2019). “Deep-Aligned
Convolutional Neural Network for Skeleton-based Action Recognition and Segmen-
tation”. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE.

Journal Publications:

• Hosseini, Babak, Romain Montagne, and Barbara Hammer (2020). “Deep-Aligned
Convolutional Neural Network for Skeleton-Based Action Recognition and Seg-
mentation (extended article)”. In: Data Science and Engineering. issn: 2364-1541.
url: https://doi.org/10.1007/s41019-020-00123-3.

The structure of my thesis is as follows. In Chapter 2, I discuss the notations and
foundation of the work. Chapter 3 describes the interpretable metric learning framework
for the classification of motion data along with its mathematical improvement. In the
next chapter, I present my proposed sparse coding models, which learn semantically
interpretable encodings. Chapter 5 studies the dimension-based analysis of motion data
and presents my interpretable multiple-kernel models. My proposed deep temporally
interpretable CNN architecture is described and evaluated in Chapter 6, and finally, I
conclude the work in Chapter 7 together with discussing its outlook.
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2F O U N D AT I O N S

In this chapter, I explain the data representation and notations that we use throughout this
work. Furthermore, I explore the standard overarching technologies for analyzing motion
data, the formulation of the concerns and challenges of this field of study that I address
in this work, and the benchmarks that I use to evaluate my algorithms empirically.

2 .1 motion data representation

Regardless of different existing technologies to record motion data, there are two generally
used methods to capture motions: extracting motions from recorded videos and capturing
movement by mounted body sensors or markers. In the first method, the subject’s video
is recorded by a conventional or special camera, and a skeleton structure is fitted to the
subject’s body in each video frame. Hence, the recorded motion data consists of the
movements related to the skeleton structure’s different joints during these video frames.
This group of mocap methods is often considered as low-cost marker-less technologies
(Spiro, Huston, and Bregler 2012; Y. Liu et al. 2013). Specifically, the KinectTM motion
capture system (Smisek, Jancosek, and Pajdla 2013) is one of the pioneer technologies
which uses such a mocap approach.

The other way of capturing motion information is carried out by mounting sev-
eral markers (sensors) on different locations of the subject’s body (usually near the
joints)(Figure 1.1). Then either one or several specially designed cameras track these
markers’ movement, or these markers transmit their movement information to a computer.
Respectively, Vicon (Oxford, UK) technology (Merriaux et al. 2017) and inertial measure-
ment unit (IMU) system (Roetenberg et al. 2013) are examples of these marker-based
technologies.

Regardless of the utilized technology, the motion information can be generally repre-
sented by a multivariate times series

X = (x⃗(1) . . . x⃗(T)) ∈ (Rd)∗. (2.1)

In Equation 2.1, T denotes the time series’ length, which can have arbitrary but finite
values within a given mocap dataset, and x⃗(t) ∈ Rd represents the vector of joint values
at time frame t. As illustrated in Figure 2.1, X consists of d time-series related to different
body joints’ movement. Depending on the utilized mocap technology, there is a mapping
between each skeleton joint and some dimensions of X. For instance, in a 3D point
cloud representation (K.-C. Chan, Koh, and C. G. Lee 2014), each joint’s coordinates are
represented by three specific dimensions of X. There are three dimensions per joint in
a three degree-of-freedom Euler angles coordinate system (Beggs 1983). However, this
number becomes four in a quaternion representation system (Q. Liu, Prakash, et al. 2003).
Although the number of motion dimensions (d) is generally bigger than the number of
joints, I may interchangeably use them in this document to facilitate the understanding
of the main concepts.

Even though motion data is commonly assumed as a full-body motion, we can
represent specific local joints’ movement by a matrix X̃ ∈ (Rd̃)∗ where d̃ < d. The
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multivariate time-series X̃ is formed through a row-selected submatrix of X, where d̃
corresponds to the local joints involved in the motion (Jun Wang et al. 2013; Ko et al.
2005). The pairwise mapping of joint information to time-series dimensions could be
different from one dataset to another. However, it is essential to have this representation
consistent for all motion samples within the same dataset. To extend the notation setting
for this work, for a given matrix A, column-vector a⃗i denotes its i-th column, row-vector
a⃗j or a(j, :) denotes its j-th row, and scalar aji refers to the j-th entry in a⃗i.

2 .2 formulating motion analysis problems

This section explains the base formulations for the particular data-driven problems
related to motion analysis that I address in the following chapters of this thesis. These
problems consist of motion classification, feature selection, motion embedding, and
motion representation.

Motion Classification

One typical way to analyze a motion dataset is via a classification task, in which a model
is designed to project the supervised information into the motion samples correctly
(Alpaydin 2020). In such a setting, we have a training set X = {Xi}N

i=1 containing N
motion samples Xi, and its corresponding binary class label matrix H = [⃗h1, . . . , h⃗N ] ∈
{0, 1}C×N . Accordingly, each h⃗i is a zero vector except in its q-th entry where hqi = 1 if
x⃗i belongs to motion class q in a C-class setting. Hence, the classification model finds a
mapping C : X → H, which is evaluated by finding the class labels for a test set Z from
motion data given that Z ∩X = ∅.

From a another point of view, the classifier C projects X to a space spanned by
columns of H, in which semantically similar motions have identical representations. In a
more relaxed formulation, a mappingM : X → X̃ is desired that projects motion data to
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Figure 2.1: Representation of the captured motion data by a multivariate time series. Here
a subset of motion dimensions is plotted.
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another space, where semantically similar motions are not identical but yet locally close.
This view leads us to interpretable distance-based frameworks such as the family of
metric learning approaches (Bellet, Habrard, and Sebban 2013). These methods generally
try to learn a metric that makes the pairwise distance between semantically similar data
points smaller while resulting in larger distances for distant samples. This objective is
effective for local neighborhoods of the data distribution and makes the decision making
process directly interpretable by the label of nearby neighbors. Therefore, the learned
metric can be seen as a linear or non-linear projection M of data points into a target
space, where semantically similar data points are locally closer to each other than the
original space (Bellet, Habrard, and Sebban 2013). A popular way of evaluating such
mapping’s effectiveness is to use a neighborhood-based method such as the k-nearest
neighbor (kNN ) classifier (Goldberger et al. 2005). The kNN method determines the class
of a motion Z ∈ Z , relying on the assumption that Z is locally surrounded by motion
samples to which it is semantically similar. Therefore, finding a proper mapping can
make the decision making process interpretable by definition.

Feature Selection

Another challenging area related to motion data analysis is performing a feature selection
for such type of data. Denoting S as the feature set of X, we can define the feature
selection problem as a multi-objective optimization:

S̃ = arg min
S̃⊂S

(|S̃|, f (X|S̃)) (2.2)

In Equation 2.2, X|S̃ denotes the submatrix of X formed by selecting the subset S̃ from the
rows of X. The quality of the selected features S̃ is evaluated by a function or measure
f (.). Typically, f (.) is an objective to be minimized according to a defined supervised
(Dash and Huan Liu 1997) or unsupervised (Alelyani, J. Tang, and Huan Liu 2013) task.
Hence, it is always expected to observe Pareto optimal solutions for S̃ as a trade-off
between minimizing the size of selected features and fulfilling the given task.

In feature selection, when the solution to a given task relies on an existing semantic
relationship between motion samples, it is expected that a sparse S̃ leads to a highly
interpretable model by reflecting the semantic connection between the selected features
and the overarching task (Hosseini and Hammer 2019c). As an example for motion data,
when the task is distinguishing between different leg movements, it is anticipated from
a sparse feature selection to choose the dimensions of X that are mostly related to foot
and leg joints. On the other hand, if two given motions Xi and Xj are similar only in
the movement of a specific set of body joints, an interpretable feature selection model
would find a sparse set S̃, which contains mostly dimensions from the shared body joints
between Xi and Xj (Hosseini and Hammer 2019d).

Motion Embedding

Another typical problem associated with motion data, as well as other structured data
types, is that the raw representation of X is not mathematically suitable for many machine
learning algorithms. In fact, such algorithms often require inputs from a vector space of
fixed and finite dimensionality. In some works, the multivariate raw form of the motion
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(matrix X) is directly used as the input to the main algorithm (Glardon, Boulic, and
Thalmann 2004; S. Li, K. Li, and Fu 2015). However, it is shown for structured data that
a proper embedding to a vector space, as E : X → γ⃗ where γ⃗ ∈ Rk, can considerably
reduce the space complexity as well as the computational complexity of the next level
algorithm (Y. Ma and Fu 2011; Yang Li and T. Yang 2018; H. Cai, V. W. Zheng, and
K. C.-C. Chang 2018). Furthermore, a sparse embedding of X can result in a vector γ⃗ with
a limited number of non-zero entries (Zhao Wang, Y. Feng, S. Liu, et al. 2016; M. Zhang
and Sawchuk 2013). Such embedding reduces the existing underlying redundancy in the
raw data. At the same time, γ⃗ is rich enough by carrying mostly the relevant properties of
X. Similar to the feature selection problem in Equation 2.2, we can evaluate an embedding
method by considering the trade-off between the sparseness and quality of the resulting
γ⃗ in satisfying the given supervised or unsupervised task.

Analyzing a motion embedding E from the interpretable point of view, we are inter-
ested in finding embedded vectors γ⃗ with entries that are semantically understandable.
For instance, a γ⃗ representing a walking motion sample should contain specific non-zero
entries that we can consider as the particularities of the walking class of motion. Also,
depending on the model design, some entries in an interpretable γ⃗ may refer to particu-
lar movement types only related to a specific subset of body joints (Qiu, Z. Jiang, and
Chellappa 2011; Hosseini and Hammer 2019d). Evaluation of such properties is possible
by designing measures that particularly depend on the existence of these meaningful
characteristics in the encoding E .

Motion Representatives

Another problem associated with the analysis of motion data is learning a prototype-
based representation for X . Generally speaking, a prototype based representation aims
for a small number of exemplary time series or generalizations thereof, which can serve
as representatives for all data within a given set. The suitability of such representatives
can be measured, e.g., in terms of the information contained in the set that can be covered
by the prototypes already, or approximations thereof such as the quantization error. With
that perspective, there are generally two different yet connected interpretations from
the concept of motion prototypes. In a group of works, a (motion) prototype is either
a real exemplar Xp ∈ X (affinity propagation) or a virtual signal Q ∈ Rd×∗ (kernel
GLVQ, K-means) created as a combination of a set P of samples {Xp}p∈P ∈ X (Guan et al.
2011; Schleif et al. 2011; Bishop 2006; Nienkötter and X. Jiang 2016). We can treat this
type of prototype as a representative for a subset of samples (motions) in X to which
it is semantically similar, or they can be described efficiently based on this prototype
(Hosseini and Hammer 2019a). In a different research branch, a motion prototype is
assumed as another multivariate time series Q ∈ Rd̃×T where d̃ ≤ d, which still provides
the above purposes. However, the structure of Q may share only partial similarity to X
based on the temporal or the joints axis (C. Ji et al. 2019; Yeh, Kavantzas, and E. Keogh
2017; Hosseini, Montagne, and Hammer 2019). More specifically, the prototype’s length
T can be relatively small compared to the input motions’ average length. A semantically
interpretable (or meaningful) prototype Q may carry information about a particular
motion class or signify a semantic movement related to a specific body joints group.
Such information helps us semantically characterize other motion samples based on their
(partial-)similarity to Q.
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2 .3 measuring motions similarity by dtw

A principal part of many machine learning algorithms is calculating the similarity of two
data points x⃗ and y⃗. In a Euclidean space, the similarity between the two vectors (x⃗, y⃗)
can be measured by calculating their pairwise distance ∥x⃗− y⃗∥2, where ∥.∥2 denotes the
l2-norm (Bellet, Habrard, and Sebban 2013). Specifically for motion data, distance-based
methods are often used for the initial analysis or motion retrieval tasks (Vieira et al.
2012; Sedmidubsky and Valcik 2013; Demuth et al. 2006). However, using the above
Euclidean distance for real-world captured motion is not practical nor always possible
(Ratanamahatana and E. Keogh 2004). As a common observation, two motion samples
(Xi, Xj) may semantically belong to the same type of movement; however, due to temporal
shifts and the difference in the movement’s frequency, the value of ∥Xi − Xj∥2 can be
relatively large. For example, a direct comparison of a walking cycle between a child and
a senior person can make a considerable difference. Talking about the possible frequency
difference between Xi and Xj in the temporal axis, we confront another typical real-world
motion data issue: the difference in the temporal length of movement sequences even for
semantically similar samples. Such a difference makes the direct application of Euclidean
distance more difficult and less practical.

Due to the Euclidean distance’s lack of flexibility and robustness in comparing real-
world sequential data, time-series alignment techniques have been proposed for this
type of information. These techniques include several distance measure algorithms such
as complexity-invariant distance (CID), invariant version of Euclidean distance, longest
common sequence distance (LCSS), time warp with edit distance (TWE), dynamic time
warping (DTW), and edit distance with the real penalty (ERP) (Batista et al. 2014; E. Keogh,
Wei, et al. 2009; Bergroth, Hakonen, and Raita 2000; Marteau 2008; Berndt and Clifford
1994; L. Chen and R. Ng 2004). These algorithms focus on a more intuitive comparison
between two given time-series (Xi, Xj), and they mostly differ either in the application
domain or the specific inconsistency they address between Xi and Xj. Nevertheless, the
most widely used technique among those methods is the DTW algorithm (Berndt and
Clifford 1994), which has shown a relatively high degree of robustness and invariance
against typical temporal distortions in real sequential data (Lines and Bagnall 2014). In
comparison, DTW provides a flexible alignment between two time-series based on a non-
linear matching of their time steps. Due to its elastic one-to-many points alignment, DTW
can successfully cope with temporal deformations and frequency differences associated
with real sequential data (F. Zhou and De la Torre Frade 2012; Adistambha, Ritz, and
Burnett 2008; Petitjean, Forestier, Geoffrey I. Webb, et al. 2014).

The DTW algorithm aligns two time series of possibly different lengths according
to warping paths such that the aligned points match as much as possible, respecting
the temporal ordering of the sequence entries. Dynamic programming enables efficient
computation of an optimum match in quadratic time with respect to sequence lengths.
Analogous to what described in (E. Keogh and Ratanamahatana 2005), we have

Definition 2.1 (Dynamic Time Warping). DTW defines a warping path W for the two time-
series X and Y as a sequence of L indices (w1, · · · , wL) ∈ ({1, · · · , M} × {1, · · · , N})∗,
where

w1 = (1, 1), wL = (M, N)

wl+1 − wl ∈ {(1, 0), (0, 1), (1, 1) for all l < L}.
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(a)

(c)

(b)

Figure 2.2: (a)) Two time-series Q and C are similar in shape but different in the frequency
and the phase. (b) DTW finds the optimal warping path to align Q and C sequences. (c)
Q and C are non-linearly aligned by the DTW technique.

Given a warping path W, its warping cost is computed as

dW(X, Y) =
L

∑
l=1

d(X(wl), Y(wl))

where d(X(wl), Y(wl)) is the squared Euclidean distance between X(wl) and Y(wl).
Given the above, the DTW cost is defined with respect to an optimum warping path W:

DDTW(X, Y) = min
W

dW(X, Y).

Therefore, DTW finds a warping path to align the entries of the given two time-series.
Based on its definition, DTW can have a non-linear warping path, which considers the
time frequencies in the time-series. An efficient way to compute the warping path is
using the Bellman equation:

dW(X[1 : i], Y[1 : j]) = d(X(i), Y(j))+
min{dW(X[1 : i− 1], Y[1 : j− 1]),

dW(X[1 : i− 1], Y[1 : j]),
dW(X[1 : i], Y[1 : j− 1])},

(2.3)

which is a part of the dynamic programming that computes DTW in a quadratic time.
However, several ways are suggested to speed up the computations in practice as dis-
cussed in (Al-Naymat, Chawla, and Taheri 2012). Figure 2.2 shows two example time-
series of different lengths and their alignment path using the DTW technique.

As an interesting characteristic, DTW can provide a dissimilarity value ofDDTW(Xi, X j)
for any given two time series Xi and X j of possibly different lengths. This feature makes
DTW a practical technique to compute the similarity/dissimilarity of motion data,
whereas a common observation, even real-world motions of the same type have different
lengths. It is important to note that DTW is not a metric since the triangle inequality does
not hold; rather, it is a pairwise symmetric distance function, which can serve as a data
dissimilarity measure. Nevertheless, we refer to DTW as a metric in some places for the
sake of simplicity, although strong metric properties do not apply.
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There are several variants and extensions of this elastic alignment techniques such
as derivative dynamic time warping (E. J. Keogh and Pazzani 2001), multi-dimensional
DTW (Shokoohi-Yekta et al. 2015), DTW under amplitude offset and scaling (T.-W.
Chen, Abdelmaseeh, and Stashuk 2015), applying a limitation on the warping path
length (Zheng Zhang et al. 2017), and considering a global transformation of the time-
series in the DTW algorithm (J. Zhang and X. Jiang 2020). As another important fact to
consider, although I have chosen the vanilla DTW technique (E. Keogh and Ratanama-
hatana 2005) as a flexible and intuitive distance measure for analyzing motion data, it
is possible to replace it with any other of its variants or also other desirable distance
measures for all the proposed algorithms in this work. The purpose of this work is to
take advantage of any proper alignment technique to perform interpretable analysis on
motion data from the perspectives described in Chapter 1.

2 .4 benchmark motion datasets

In order to empirically evaluate the proposed motion analysis algorithms in this work, I
use the following real-world motion datasets.

CMU Mocap : Carnegie Mellon University’s human motion dataset (CMU. 2007) is an
extensive collection of different human activities (Figure 2.3-a). The data is collected
from 144 subjects, each performing a sequence of different human actions per
recording session. The dataset is captured by Vicon infra-red cameras (Merriaux
et al. 2017) using 41 markers (Figure 2.3-b). However, the Euler angle representation
of the data provided in (CMU. 2007) results in a 62-dimensional time series for
each motion. I use the following four subsets of the CMU Mocap dataset:

Walking: This dataset is collected from 7 different walking styles (normal, fast,
slow, turn right, turn left, veer right, and veer left) carried out by 4 different subjects.
This dataset consists of 49 samples (7 samples per class). This dataset is used for
empirical evaluations of Chapter 3.

Dance: It contains 35 data samples related to two different dance styles, Modern and
Indian, collected from subjects 5 and 94 of the CMU Mocap dataset. This dataset is
used in experiments of Chapters 3 and 4. I use the Dance dataset for the experiment
section of Chapters 3 and 4.

CMU Mocap 9: I combined the movement data of subject 86 from the dataset, which
is a combination of 9 different types of human movements such as walking, running,
clapping. Then, the data is segmented in order to break down the long movements
into smaller segments as single periods of each type of motion. Consequently, we
obtain 9 classes of data with 10 samples per class. This dataset is employed for
empirical evaluations of Chapters 4 and 5.

CMU Mocap Segment: In this subset of the CMU Mocap dataset, our task is to
segment and recognize each recorded session’s performed actions. We collect the
sessions which contain actions from 15 highly observed categories in the whole
dataset. These categories include movements such as walk, punch, wave, run, jump,
and raise. For the segmentation task, we treat the rest of the action classes as blank
spaces (gaps). I use this dataset in experiments of Chapter 6.

Cricket Umpire’s Signals: Cricket Umpire’s Signals is the dataset of different arm move-
ments representing the cricket umpire’s signals (Shepherd 2005). For example, the
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event No-ball is signaled by holding one arm out at shoulder height to indicate
that the ball is delivered while also signifying the player’s fault (Fig. 2.4). I employ
the Cricket dataset of (Ko et al. 2005) for my experiments, which is captured via
accelerometers on the umpire’s wrists while performing the signals (Chambers
et al. 2004). The dataset has 12 classes and 180 samples, while each sample is a
6-dimensional time-series (related to X, Y, and Z coordinates of both hands). This
dataset is employed in empirical evaluations in Chapters 3, 4, and 5.

Articulatory Words: The Articulatory Words dataset contains the recorded movement
of different facial parts while the person utters 25 different English words in
individual trials. The dataset is captured by (Jun Wang et al. 2013) via attaching
12 Electromagnetic Articulograph (EMA) sensors to the person’s different parts of
the forehead, lips, and tongues, resulting in 36 features. I use the 9-dimensional
subset of this dataset (Shokoohi-Yekta et al. 2015), which contains 575 samples.
Each sample is a 3D spatial data (X, Y, and Z) related to the tip of the tongue
(T1), upper lip (UL), and lower lip (LL), which shapes 9 features in total. I use this
dataset to empirically analyzed the methods proposed in Chapters 3, 4, and 5.

Squat dataset: The Squat dataset is collected as a part of the large-scale intelligent
coaching project (Waltemate et al. 2015). The data is a set of squat movements
performed by three coaches while captured by the optical mocap system. Each
squat is segmented into three movement primitives preparation, going down, and
coming up, producing 87 samples of data and 9 class labels (by also distinguishing
the coaches). The Squat dataset is used in some of the experiments in Chapter 5.

UTKinect Actions : This dataset consists of 3D locations of body joints recorded using
Kinect device related to 10 different actions (L. Xia, C.-C. Chen, and J. Aggarwal
2012). The motion classes include walk, push, pick up, stand up, throw, wave, pull,
and clap hands. The dataset is collected from 20 subjects and contains 199 action
instances in total, while all the motions are recorded in pre-segmented settings. I
use this dataset in the experiment sections of Chapters 4 and 5.

HDM05 Mocap : This dataset is recorded using an optimal marker-based mocap system
with a 120 Hz sample rate (M. Müller, Röder, et al. 2007). It consists of 130 actions
related to the performance of 5 actors (non-professional). The data format is 3D
coordinates of 31 body joints. As suggested by (Kyunghyun Cho and X. Chen 2014),
the classification task is defined by putting some of the semantically similar action
classes into one category resulting in a total of 65 motion classes. I include this
dataset in the experiment sections of Chapters 4 and 5.

Montalbano V2 dataset This dataset is related to the "ChaLearn Looking at People"
challenge, which is recorded with Kinect technology as described by (Escalera
et al. 2014). It includes 13,858 samples of 20 different Italian sign gestures, which
are recorded in continuous sequences. This challenge aims to perform action
recognition and segmentation for sign gestures based on the given test and training
streams. This dataset is employed in the experiment section of Chapter 6.

SYSU-3D Human-Object Interaction dataset (SYSU) : The SYSU dataset contains 12
different action classes recorded in 480 video sequences (J.-F. Hu, W.-S. Zheng, Lai,
et al. 2015). SYSU dataset is captured from 40 human subjects. . In each time-frame,
it represents the 3D coordinates of 20 body joints. This dataset is included in the
empirical evaluations of Chapter 6.
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(a)

(b)

Figure 2.3: (a) Examples of different human activities recorded in the CMU Mocap dataset.
(b) The marker locations on the body of the subject to track movements of different joints
during motion activities. Images are taken from CMU mocap website1.

NTU-RGB+D Dataset (NTU) : This action recognition dataset consists of 60 classes of
actions captured from 40 human subjects (Shahroudy et al. 2016). It has 56,000 se-
quences with 4 million frames in total, and the recorded data of 25 main body joints
are used for the action recognition task. There are two typically used evaluation
protocols for this benchmark: The Cross-Subject (CS) recognition task, which uses
data of 20 subjects for training and the rest for testing, and the Cross-View (CV)
task in which the recorded samples from camera 2 and 3 constitute the training
set and the rest is preserved for the test set. I use this dataset for experiments in
Chapter 6.

I also employed the following additional datasets for some of my evaluations, which
are multi-dimensional time-series, but they are not skeleton-based motions:

DynTex++: The DynTex++ benchmark is a large-scale Dynamic Texture dataset, consist-
ing of recorded videos of natural objects’ movements in different environments
(Ghanem and Ahuja 2010). The dataset includes 36 different classes, such as boiling
water, fire, flowers, fountains, plants, sea, and smoke. Each sample data has a size of
50× 50× 50, and each category contains 100 sequences. To convert it to a multi-
dimensional times series, each video frame is mapped to a vector of size 3 using
the descriptors used in (Ghanem and Ahuja 2010). The experiments of Chapter 4
also include implementations on DynTex++ .

Schunk Dexterous : The Schunk Dexterous dataset is the recorded tactile sensors of a
robot’s hand during grasping 10 different objects (Drimus et al. 2014). The objects
have both rigid and deformable types, such as rubber ball, duck, wood block, and
tape. The dataset contains 10 samples per object, while each sample is an 8× 8
pressure grid resulting in a 64-dimensional time-series. This dataset is employed in
the experiment section of Chapters 4 and 5.

1 http://mocap.cs.cmu.edu/info.php
2 https://parkhillcricket.com/2014/04/11/cricket-umpiring-how-to-umpire-knowing-the-basics/
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Figure 2.4: 8 sample classes from the Cricket dataset. Photo is created using the informa-
tion from Park Hill cricket club website2.

2 .5 motion data analysis literature

Due to the discussed relevance of motion data in different application domains, quite
a few approaches have been proposed in the literature focusing on time series analysis
for motion data from different perspectives. These approaches range from supervised
classification tasks, segmentation techniques, and motion prediction to motion retrieval
and further research areas.

For supervised classification of motion data, the objective is to determine the label
vectors h⃗i for the test motion data z⃗i given that the class label matrix H for the training
set X is available. The main technologies for motion data classification include signal
processing-based methods, DTW-based classifiers, and the family of deep neural networks.
As a common practice in the signal processing domain, multiple features are extracted
from the motion or activity time-series. These features are typically extracted using
time-domain characteristics of the time-series signal (Dernbach et al. 2012; Martín et al.
2013; Morales, Akopian, and Agaian 2014; J. Guo et al. 2016) or its frequency domain
transforms (Anguita et al. 2012; Z. He 2010; H. Xu et al. 2016). Hence, the right choice of
extracted features highly affects the performance of the classifier.

The DTW-based classifiers are generally constructed upon using the DTW technique
to compare different motion sequences and measure their similarity or difference. Based
on such relational input, different classifiers and algorithms can be employed to determine
the motion labels (Z. Zeng, Amin, and Shan 2020; Lun and W. Zhao 2015; Ahmed, Paul,
and Gavrilova 2015; Hosseini and Hammer 2015). The success of output these methods
relies on the choice of the next-level classifier and the pre-processing steps for the effective
application of the DTW technique.

The motion classification algorithms that are designed based on deep neural networks
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are mainly constructed from convolutional neural networks (Sijie Yan, Xiong, and D.
Lin 2018; Núñez et al. 2018; Baoding Zhou, Jun Yang, and Q. Li 2019), long short-term
memory architectures (C. Li et al. 2017; J. Liu, Shahroudy, et al. 2018; Saha, Sandha, and
M. Srivastava 2020), or recurrent neural models (Y. Du, Wei Wang, and Liang Wang 2015;
H. Wang and Liang Wang 2017; Uddin et al. 2020). The benefit of these methods is their
automated feature extraction units and their relatively high accuracy compared to other
mentioned approaches.

Another group of approaches related to the analysis of motion data focuses on motion
segmentation. The objective of these methods is to split a long motion into a sequence of
smaller motions, which are semantically meaningful to the domain experts. For instance,
a long series of human activities can be segmented into a sequence of walking, jumping,
kicking, waving, and other activities. To that aim, each time-step of the sequence is
labeled as one specific motion class. Significant motion segmentation works include
unsupervised methods such as (F. Zhou, De la Torre, and Hodgins 2008; Qifei Wang
et al. 2015; B. Krüger et al. 2017; Lichen Wang, Z. Ding, and Fu 2018) and supervised
approaches like (Gehring et al. 2017; X. Ma and Hovy 2016; Alzaidy, Caragea, and Giles
2019; Z. Yang, Salakhutdinov, and Cohen 2016). Generally, the supervised methods have
better segmentation accuracy because they benefit from label information in the training
phase. On the other hand, unsupervised methods do not need any annotation phase to
prepare a training set of motions.

Motion prediction aims to recognize actions before their full execution in the temporal
axis. More specifically, motion prediction approaches focus on predicting the next step(s)
in a given motion sequence. With that purpose, these approaches often overlap with
sequence or trajectory prediction methods, which are applicable to multivariate time-
series (Letham, Rudin, and Madigan 2013; Koppula and Saxena 2015; Y. Wang et al. 2017).
A group of these methods relies on dynamical modeling of the motion sequence (Basharat
and Shah 2009; Kratzer, Toussaint, and Mainprice 2018), while another important group
of motion prediction approaches is constructed upon deep learning architectures (Hua
et al. 2019; Afrasiabi, Mansoorizadeh, et al. 2019; Butepage et al. 2017).

Another stream of work focuses on motion retrieval as finding semantically related
motion sequences in a large dataset. This process is sometimes perceived as another form
of motion classification. A number of these approaches benefits from the DTW technique
to pair and match similar sequences (M. Müller and Röder 2006; Kovar, Gleicher, and
Pighin 2008; E. Keogh, Palpanas, et al. 2004), while some other methods use different
techniques such as graph matching, distance metric learning, dictionary-based models,
and gesture description models (F. Zhou, De la Torre, and Hodgins 2012; Cheng Chen
et al. 2010; Q. Xiao and R. Song 2017; Hachaj and Ogiela 2014). Additionally, some
successful motion retrieval works combined previous ideas with deep learning models
(Q. Xiao and C. Chu 2017; Coskun et al. 2018).

Many of these approaches for motion data analysis are black-box ones, and they do
not provide interpretable models or insight into how to represent motion data such that
it aligns with semantic meaning. In contrast, the focus of this thesis is on approaches that
align with the semantic meaning of motions, which enable some form of interpretation
of why a specific decision is made about a given action. For this purpose, I will look at
different objectives. More specifically, methodologies will follow the avenue of metric
learning, sparse coding, multiple kernel learning, and deep learning, as summarized in
Table 2.1.

21



foundations

Table
2.1:Sum

m
ary

of
the

proposed
approaches

in
this

thesis
and

their
functionalities,features,and

objectives.

Section
M

ethod
I/O

functionality
Features

M
athem

aticalO
bjectives

3.2
L

arge
m

argin
m

etric
learning

based
of

D
T

W
alignm

ent
abbrev.:D

T
W

-LM
N

N
.

Input:D
T

W
-d

istance
m

atrix
for

labeled
M

ocap
d

ata
of

arbitrary
length.
O

utput:
•

Learned
m

etric
that

im
proves

kN
N

classifier’s
perform

ance.
•

R
elevance

profile
for

the
body

joints.

B
ringing

sem
antically

sim
ilar

m
otion

data
closer

in
localneigh-

borhood
s

by
focu

sing
on

D
T

W
-

distance
of

relevant
body

joints.

L
arge

m
argin

nearest
neigh-

bor
error

for
a

com
ponent-w

ise
w

eighted
D

TW
distance.

3.3
Feasibility

based
m

etric
learning

based
on

D
TW

alignm
ent

abbrev.:FTW
-LM

N
N

.

In
p

u
t:

Sam
e

as
for

D
T

W
-

LM
N

N
.

O
u

tp
u

t:
Im

p
roved

D
T

W
-

L
M

N
N

’s
m

etric
by

ru
ling

ou
t

w
eakly-feasible

target
neighbors

from
optim

ization.

A
m

easure
for

validity
oftriplets

by
m

eans
of

their
geom

etry.
D

T
W

-L
M

N
N

objective
w

ith
fea-

sibility
w

eights
of

triplets.

4.2
N

on-negative
K

ernel-based
sparse

encoding
abbrev.:N

N
K

SC
.

In
p

u
t:Sim

ilarity
K

ernel
of

m
o-

tion
dataset.

O
u

tp
u

t:
E

ncod
ing

of
m

otion
sequ

ences
into

sp
arse

non-
negative

vectors.

•
U

nsupervised.
•

D
ictionary-based

encoding.
•

Interp
retable

encod
ing

and
d

ictionary
m

od
el

d
u

e
to

the
non-negative

term
.

•
D

ictionary-based
reconstru

c-
tion

error
of

inp
u

t
m

otion
in

the
feature

space.
•

N
on-negative

constraints
on

dictionary
and

sparse
codes.

•
Sparsity

constraint.

4.2
Label-consistent
N

on-negative
K

ernel-based
sparse

encoding
abbrev.:LC

-N
N

K
SC

.

In
p

u
t:Sim

ilarity
K

ernel
of

m
o-

tion
dataset

(labeled).
O

utput:
•

N
on-negative

sp
arse

encod
-

ing
of

input
m

otions.
•

A
linear

transform
from

sparse
codes

to
labelspace.

•
Su

p
ervised

extension
of

N
N

K
SC

.
•

Encoding
supervised

inform
a-

tion.

•
N

N
K

SC
’s

objective
and

con-
straints.

•
L

inear
d

iscrim
inative

objec-
tive

term
.

22



2 .5 motion data analysis literature

Se
ct

io
n

M
et

ho
d

I/
O

fu
nc

ti
on

al
it

y
Fe

at
ur

es
M

at
he

m
at

ic
al

O
bj

ec
ti

ve
s

4.
3

C
on

fid
en

ce
-b

as
ed

K
er

ne
lS

pa
rs

e
C

od
in

g
ab

br
ev

.:
C

K
SC

In
p

u
t:

Si
m

ila
ri

ty
K

er
ne

l
of

m
o-

ti
on

da
ta

se
t

(l
ab

el
ed

).
O

ut
pu

t:
•

N
on

-n
eg

at
iv

e
sp

ar
se

en
co

d
-

in
g

of
in

pu
t

m
ot

io
ns

.
•

R
ob

u
st

en
co

d
in

g
of

su
p

er
-

vi
se

d
in

fo
rm

at
io

n.

•
Su

p
er

vi
se

d
ex

te
ns

io
n

of
N

N
K

SC
.

•
C

on
si

st
en

t
te

st
an

d
tr

ai
ni

ng
en

co
di

ng
m

od
el

s.

•
N

N
K

SC
’s

ob
je

ct
iv

e
an

d
co

n-
st

ra
in

ts
.

•
E

nc
od

e
ea

ch
se

qu
en

ce
ba

se
d

on
ot

he
r

se
qu

en
ce

s
of

th
e

sa
m

e
cl

as
s.

•
R

ob
u

st
d

is
cr

im
in

at
iv

e
ob

je
c-

ti
ve

te
rm

.

4.
4

K
er

ne
l-

ba
se

d
N

on
-n

eg
at

iv
e

L
o-

ca
lS

ub
sp

ac
e

Sp
ar

se
C

lu
st

er
in

g
ab

br
ev

.:
N

LK
SS

C

In
p

u
t:

Si
m

ila
ri

ty
K

er
ne

l
of

m
o-

ti
on

da
ta

se
t.

O
u

tp
u

t:
Se

lf
-r

ep
re

se
nt

at
iv

e
en

-
co

d
in

g
of

m
ot

io
n

d
at

a
in

to
sp

ar
se

ve
ct

or
s.

U
ns

u
p

er
vi

se
d

en
co

d
in

g
of

m
o-

ti
on

d
at

a
th

at
re

ve
al

s
it

s
u

nd
er

-
ly

in
g

su
bs

pa
ce

s.

•
Se

lf-
re

pr
es

en
ta

tiv
e

re
co

ns
tr

uc
-

ti
on

er
ro

r
in

fe
at

ur
e

sp
ac

e.
•

U
ns

u
p

er
vi

se
d

lo
ca

l
se

p
ar

a-
ti

on
of

da
ta

ne
ig

hb
or

ho
od

s.
•

N
on

-n
eg

at
iv

it
y

co
ns

tr
ai

nt
.

•
Lo

w
-r

an
k

ob
je

ct
iv

e.

5.
2

L
ar

ge
M

ar
gi

n
M

u
lt

ip
le

-k
er

ne
l

Le
ar

ni
ng

ab
br

ev
.:

LM
M

K

In
p

u
t:

C
om

p
on

en
t-

w
is

e
m

u
lt

ip
le

-k
er

ne
l

re
p

re
se

nt
a-

ti
on

of
m

ot
io

n
da

ta
se

t
(l

ab
el

ed
).

O
ut

pu
t:

•
A

d
ia

go
na

l
m

et
ri

c
th

at
im

-
p

ro
ve

s
lo

ca
l

se
p

ar
at

io
n

of
cl

as
se

s
in

R
K

H
S.

•
R

el
ev

an
t

jo
in

ts
(b

as
e

ke
rn

el
s)

to
th

e
kN

N
cl

as
si

fie
r’

s
pe

rf
or

-
m

an
ce

.

•
D

is
cr

im
in

at
iv

e
fe

at
u

re
se

le
c-

ti
on

fo
r

m
ot

io
n

d
at

a
u

si
ng

m
ul

ti
-k

er
ne

li
np

ut
.

•
Su

pe
rv

is
ed

.
•

Sp
ar

se
sc

al
in

g
of

fe
at

u
re

sp
ac

e.

•
N

on
-n

eg
at

iv
e

sc
al

in
g

of
fe

a-
tu

re
sp

ac
e

(k
er

ne
l

co
m

bi
na

-
ti

on
).

•
L

ar
ge

m
ar

gi
n

ne
ar

es
t

ne
ig

h-
bo

r
er

ro
r

in
th

e
fe

at
ur

e
sp

ac
e.

5.
3

In
te

rp
re

ta
bl

e
M

u
lt

ip
le

-K
er

ne
l

P
ro

to
ty

p
e

Le
ar

ni
ng

ab
br

ev
.:

IM
K

PL

In
p

u
t:

C
om

p
on

en
t-

w
is

e
m

u
lt

ip
le

-k
er

ne
l

re
p

re
se

nt
a-

ti
on

of
m

ot
io

n
da

ta
se

t
(l

ab
el

ed
).

O
ut

pu
t:

•
N

on
-n

eg
at

iv
e

cl
as

s-
sp

ec
ifi

c
pr

ot
ot

yp
es

.
•

R
el

ev
an

t
jo

in
ts

to
th

e
p

ro
to

ty
p

e-
ba

se
d

re
p

re
-

se
nt

at
io

n.

•
Pr

ot
ot

yp
es

re
pr

es
en

t
an

d
d

is
-

cr
im

in
at

e
th

ei
r

ne
ar

by
ne

ig
h-

bo
rh

oo
ds

.
•

Su
pe

rv
is

ed
.

•
Sc

al
in

g
of

fe
at

ur
e

sp
ac

e.

•
N

on
-n

eg
at

iv
it

y
co

ns
tr

ai
nt

s.
•

M
u

lt
ip

le
-k

er
ne

l
ex

te
ns

io
n

of
pr

ot
ot

yp
e

le
ar

ni
ng

.
•

Lo
ca

ls
ep

ar
at

io
n

of
da

ta
in

th
e

co
m

bi
ne

d
R

K
H

S.
•

Pr
ot

ot
yp

e
in

te
rp

re
ta

bi
lit

y
ob

-
je

ct
iv

e.

23



foundations

Section
M

ethod
I/O

functionality
Features

M
athem

aticalO
bjectives

5.4
M

u
ltip

le-K
ernel

D
ictionary

Structure
abbrev.:M

K
D

In
p

u
t:

C
om

p
onent-w

ise
m

u
ltip

le-kernel
rep

resenta-
tion

of
m

otion
dataset.

O
utput:

•
P

artial
connection

betw
een

u
nseen

m
otion

and
the

train-
ing

sequences.
•

R
ecognition

and
categoriza-

tion
of

unseen
m

otions.

•
U

nsupervised.
•

Sem
antic

m
otion

attribu
tes

linked
to

ind
ivid

u
al

sets
of

body
joints.

•
N

on-negativity
constraints.

•
Increm

entalhierarchicalclus-
tering

of
unseen

m
otion.

•
P

artial
encod

ing
of

u
nseen

m
otion.

6.3
D

eep
-A

ligned
C

onvolu
tional

N
euralN

etw
ork

abbrev.:D
A

C
N

N

In
p

u
t:

R
aw

u
nsegm

ented
m

o-
tion

sequ
ences

of
arbitrary

length.
O

u
tp

u
t:

Segm
ented

and
classi-

fied
m

otion
subsequences.

•
Sequ

ence
labeling

of
m

otion
data

and
revealing

significant
p

atterns
in

the
m

otion
se-

quence.
•

Supervised.

•
A

lignm
ent

based
com

p
u

ta-
tion

of
the

first
feature

m
ap.

•
C

lassifi
cation

loss
+

sp
arsity

loss.

24



3M E T R I C L E A R N I N G F O R M O T I O N A N A LY S I S

Publications: This chapter is partially based on the following publications.

• Hosseini, Babak and Barbara Hammer (2015). “Efficient metric learning for the
analysis of motion data”. In: IEEE International Conference on Data Science and
Advanced Analytics (DSAA).

• — (2018b). “Feasibility Based Large Margin Nearest Neighbor Metric Learning”.
In: 26th European Symposium on Artificial Neural Networks (ESANN).

Metric learning constitutes a matured field of research for the standard vectorial
setting (data represented by feature vectors) (Bellet, Habrard, and Sebban 2013; Kulis
2012; Schneider, Biehl, and Hammer 2009; Kilian Q. Weinberger and Lawrence K. Saul
2009). In these approaches, usually, quadratic forms are inferred from the given auxiliary
information. This vectorial metric adaptation does not only provide increased model
accuracy, but it also dramatically facilitates model interpretability, and it can lead to
additional functionalities such as a direct data visualization (Biehl, Bunte, and Schneider
2013; Backhaus and Seiffert 2014; Bunte et al. 2012). As another interesting property of
metric learning methods, they generally transform the data distribution such that each
data point is semantically similar to its closest neighboring points in the space. Such
property makes the resulting distribution more interpretable in terms of the semantic
connection between nearby data points.

Studying the content of the learned metric, some researchers have focused on the
validity of the interpretation of its parameters as a profile of relevance weights (Arlt
et al. 2011). However, as pointed out in (Strickert et al. 2013), However, as pointed out in
X, considerable redundancy exists in the derived relevance profile for high-dimensional
or highly correlated data like human motions. Accordingly, it is possible to avoid these
problems by applying an efficient form of metric regularization as detailed in the ap-
proaches (Frénay et al. 2014; Strickert et al. 2013). Thus, the obtained relevance profiles
reveal significantly relevant data dimensions to the given classification problem.

Currently, the mentioned developments regarding metric learning methods mainly
focus on the context of vectorial data. Therefore, they do not apply to distance-based
measures, e.g., in the case of using DTW. A few approaches have recently been proposed
which address metric-parameter learning for complex non-vectorial data, in particular
sequences and sequence alignment (Bernard et al. 2008; Bellet, Habrard, and Sebban
2013; Mokbel et al. 2015). While these approaches lead to increased model accuracy and
interpretability, they have the drawback that their training complexity is very costly:
typically, these techniques adapt metric parameters within sequence alignment, such
that pairwise distances of all data samples have to be recomputed after every metric
adaptation step. This limitation leads us to this follow-up of the research question RQ1:

RQ1-a: How can we apply the metric learning framework to the distance-based repre-
sentation of motion data?
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Also, another relevant objective is to investigate whether the regularization of such
learned metric results in an interpretable relevance profile for body joints.

Another challenge that I address is in particular related to the large margin nearest
neighbors (LMNN) metric learning method, but it can be extended to other similar metric
learning algorithms. Given a local neighborhood of data points, LMNN focuses on bring-
ing semantically similar data (targets) closer while pushing away semantically distinct
samples (Kilian Q. Weinberger and Lawrence K. Saul 2009). Therefore, a significant step
of the LMNN algorithm is the proper selection of neighboring targets in its optimization
framework. For the original LMNN method (Kilian Q. Weinberger and Lawrence K. Saul
2009), this step is performed by the same-class nearest neighbor’s strategy. However, it
is possible to show that the wrong choice of targets can severely shrink the size of the
possible solution set for the metric parameters (Hosseini and Hammer 2015). Accordingly,
the next arising follow-up question for RQ1 is:

RQ1-b: How can we change the optimization framework of LMNN for a better selection
of its target data points?

As a contribution, I employ the component-wise DTW-based dissimilarity representa-
tion of motion data. This strategy is similar to the popular treatment of dissimilarity data
as features, which is detailed in the monograph (Pekalska and Duin 2005). I extend the
application of the powerful LMNN metric learner to a metric adaptation for DTW, which
adjusts the relevance of single joints and their correlations in the Mocap data according
to a given specific classification task. Accordingly, I have the following contributions with
respect to the state-of-the-art of metric learning and its distance-based extension.

• My distance-based extension to the powerful LMNN metric learning method (DTW-
LMNN ) enables us to apply this algorithm to any dissimilarity-based description
of data, such as the DTW-based representation of motion data.

• I show the possibility of transferring auxiliary concepts such as metric regularization
for motion data, based on the learned distance-based metric by the DTW-LMNN al-
gorithm.

• I introduce a feasibility measure to quantify the size of the feasible solutions set
for the selected target points in the LMNN optimization framework. Following
this measure, I propose the effective FDW-LMNN framework, in which the target’s
relevance is treated according to the above measure.

In the next section, I review the formulation of the LMNN algorithm and the metric
regularization. Then, the proposed distance-based metric learning algorithm and its
feasibility-based improvement are explained in its following sections. After that, the
regularization of the metric in the distance space is explained, which is followed by
experiments on the mocap benchmarks and the appropriate conclusion.

3 .1 state of the art

In this section, I review the LMNN algorithm and discuss the way to regularize a metric
transform matrix to diminish random effects caused by data correlations.
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 . ∈Targets
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Figure 3.1: Left: The original distribution of the neighboring points around x⃗i, where the
rectangles (targets) have the same label as that of x⃗i, and circles (impostors) have different
labels. Right: The distribution resulted from LMNN’s mapping, in which targets are
closer to x⃗i while impostors are pushed farther away from it.

Large Margin Nearest Neighbors Metric Learning

LMNN is a metric learning algorithm that learns a quadratic form from given labeled data
(x⃗i, h⃗i) ∈ Rd ×RC, where c denotes the number of classes, to improve the classification
accuracy of the well-known k-nearest neighbors (kNN ) method. As a distance-based
approach, the accuracy of kNN fundamentally relies on its underlying distance measure,
which determines the k nearest neighbors of a given data point. LMNN tries to adjust
this neighborhood structure robustly by learning a parameterized form

DL(x⃗i, x⃗j) = (L(x⃗i − x⃗j))
2 = (x⃗i − x⃗j)

⊤L⊤L(x⃗i − x⃗j) (3.1)

with adjustable linear transformation matrix L ∈ Rd×d which induces a quadratic form
characterized by M := L⊤L.

The objective function of LMNN is based on a fixed k-neighborhood structure. Based
on the intuition of having dense same class neighborhoods (targets), while maximizing
distances of a data point to its neighbors with different labeling (impostors), the costs of
LMNN become

ϵ(L) := (1− µ) ∑
i,j∈N k

i

DL(x⃗i, x⃗j)

+µ ∑
i,j∈N k

i

∑
l∈Ik

i

[
1 +DL(x⃗i, x⃗j)−DL(x⃗i, x⃗l)

]
+

(3.2)

where [·]+ refers to the Hinge loss, and the meta parameter µ ∈ [0 1] makes a trade-off
between the pulling (first) and pushing (second) parts of the objective. The sets N k

i and
Ik

i contain the indices of the k-nearest targets and impostors of x⃗i, respectively.

This objective can be interpreted as the goal to adjust the metric L such that all
points with different class labels are located outside of the data neighborhood with a
fixed margin (Figure 3.1). It has been shown in (Kilian Q. Weinberger and Lawrence K.
Saul 2009) that this optimization problem is equivalent to the following semi-definite
optimization:

min
M

(1− µ) ∑
i,j∈N k

i

DL(x⃗i, x⃗j) + µ ∑
i,j∈N k

i

∑
l∈Ik

i

ξijl

s.t. DL(x⃗i, x⃗l)−DL(x⃗i, x⃗j) ≥ 1− ξijl
ξijl ≥ 0, M ⪰ 0, ∀i, j ∈ N k

i , l ∈ Ik
i .

(3.3)
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Each positive slack variable ξijl is related to a triplet (x⃗i, x⃗j, x⃗l), in which x⃗j and x⃗l are
respectively a target for x⃗i and its impostor located between x⃗i and x⃗j (similar to Figure 3.1-
left). Hence, the scalars ξijl model the costs induced by the existing impostors.

The problem in (3.3) can be optimized efficiently w.r.t. the matrix M. Note that it
is possible to choose a low-rank matrix M which corresponds to a low-dimensional
projection L ∈ Rd̃×d for data vectors, where d̃ < d is the dimension of the data in the
lower-dimensional space. As described in (Kilian Q. Weinberger and Lawrence K. Saul
2009), one can minimize Equation 3.3 with respect to an L matrix while constraining L
to have a rectangular form by choosing d̃≪ d. Although this modification results in a
non-convex optimization problem in terms of L, as discussed by (Torresani and K.-c. Lee
2007), this issue would not lead to poor-quality local minima.

Equation 3.3 constitutes a convex problem with respect to M if the targets N k
i and

impostors Ik
i are fixed (Kilian Q. Weinberger and Lawrence K. Saul 2009). Nevertheless,

different selections for these initial targets can lead to different solution M. As suggested
in (Kilian Q. Weinberger and Lawrence K. Saul 2009; Göpfert, Paassen, and Hammer 2016),
a better strategy is to repeat LMNN’s optimization multiple times (multiple-pass LMNN)
while updating N k

i and Ik
i in each run based on the resulting quadratic form M. Yet, also

this strategy relies on the quality of the initial selection of these two sets (Hosseini and
Hammer 2018b). To mitigate this problem, I propose a modification to the optimization
scheme of Equation 3.3 in Section 3.3. The new formulation focuses on selecting more
promising targets in N k

i and eliminating the less achievable targets of N k
i w.r.t. a linear

transform Lx⃗.

Metric Regularization

The adaptation of a quadratic form as present in LMNN does not only enhance the
classification accuracy, but it can also give rise to increased interpretability of the results.
A quadratic form corresponds to the linear data transformation x⃗i 7→ Lx⃗i. Hence the
diagonal terms of the matrix M

Mkk = ∑
i

L2
ik (3.4)

summarize the influence of feature k on the mapping. Due to this observation, metric
learners are often accompanied by the relevance profile, which is obtained from the diagonal
entries of M; this gives insight into relevant features for the given task, such as potential
biomarkers for medical diagnostics (Arlt et al. 2011).

It has recently been pointed out that this interpretation has problems provided high-
dimensional or highly correlated data are analyzed: in such cases, the relevance profile
and the underlying linear transformation L are not unique, rather data correlations can
give rise to random, spurious relevance peaks. I expect this effect for Mocap data due to
a high correlation of neighboring joints. For vectorial data, this effect is caused by the
following observation, as pointed out in (Strickert et al. 2013): assume X = [⃗x1, . . . , x⃗N ]
refers to the data matrix. Then two linear transformations L1 and L2 are equivalent with
respect to X iff L1X = L2X. This relationship is equivalent to the fact that the difference
(L1 − L2)X vanishes. Hence, by considering the squared form

(L1 − L2)XX⊤(L1 − L2)
⊤ = 0, (3.5)

we can relate this property to the fact that the rows’ differences are given by vectors
that lie in the null space of the data correlation matrix C := XX⊤. This fact gives us a
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unique characterization of the equivalence class of matrix L with respect to the data
transformations for X: equivalent matrices, e.g., matrices which map data X in the same
way as matrix L, differ from L by multiples of eigenvectors related to 0 eigenvalues of C.
Provided the metric learning method does not take this fact into account, its outcome
matrix is random as concerns contributions of this null space.

For LMNN, costs are invariant to null space contributions, e.g., the matrix L is
random in this respect. Albeit this property does not affect the training data X, it
influences the result in two aspects: for test data, the null space is usually different, e.g.,
the generalization ability of the model is affected by random effects of the training data
correlation and the initialization point L for the optimization problem. Second, more
severely, random contributions of the null space of C change the relevance profile Mkk
and can give rise to spurious effects such as high values that are not supported by any
real relevance of the feature k.

Therefore, it is advisable to regularise the matrix L by relying on the representative of
the equivalence class of L with the smallest Frobenius norm. Equivalently we can consider
a projection of L to the space of eigenvectors of C with non-vanishing eigenvalues, or
more precisely, the unique transformation

L̃ := LΦ
where Φ := ∑S

s=1 u⃗s(u⃗s)⊤ with the eigenvectors
u⃗1, . . . , u⃗S of C with nonvanishing eigenvalues.

(3.6)

For vectorial data, the same effect can be obtained by deleting the null space from the data
vectors in the first place employing the principal component analysis (PCA), as a prevalent
preprocessing approach. However, we show in Section 3.4 that this reformulation as
matrix regularization is beneficial to more general data such as the alignment vectors,
where the direct application of PCA is not applicable or is against the resulting metric
transform L.

Metric Adaptation for Dynamic Time Warping

The DTW technique was initially used for the alignment of 1-dimensional sequences (Berndt
and Clifford 1994). However, as addressed in (Shokoohi-Yekta et al. 2015), practitioners
more often have to deal with multi-dimensional sequential data, of which motion is a
specific example. Accordingly, one way to treat the sequence entries’ vectorial nature is
to compute DTW on vectorial sequences directly. Then, DTW’s outcome is determined
by choosing the parameters of the metric used to compare vectorial sequence entries
along the warping path. In other words, crucial metric parameters are those involved in
computing D(x⃗i(t1), x⃗j(t2)), where the warping path determines the time points (t1, t2),
and D : Rd ×Rd → R is a vectorial metric used to compare the vectorial sequences. As
the baseline method, we can simply use the Euclidean distance between two vectors
(x⃗i(t1), x⃗j(t2)) to compute D(x⃗i(t1), x⃗j(t2)) as the DTWD method in (Shokoohi-Yekta
et al. 2015).

Related to the above concern, a few approaches have been proposed while focusing
on the question of how to learn an optimum transformation L provided an alignment
(e.g., DTW) is used for vectors (Bernard et al. 2008; Bellet, Habrard, and Sebban 2013;
Mokbel et al. 2015). However, these techniques face the problem that metric adaptation can
change the form of an optimum warping path, e.g., a computationally costly recalculation
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of the warping path is necessary to obtain stable results. Therefore, I propose a new
approach in the next section, which is based on the dimension-wise computation of
DTW for multivariate sequences. I show that such component-wise DTW formulation
has the benefit that not only LMNN can efficiently be transferred to a novel dissimilarity-
based setting but also other concepts such as metric regularization is applicable to such
formulation.

3 .2 distance-based metric learning

As discussed before, metric learning enables a problem-adapted representation of data,
which is interpretable in terms of local data neighborhoods. When applied to motion data,
this property increases the resulting representation’s usability by making the distance
between semantically similar motion sequences smaller. Nevertheless, the majority of
metric learning methods have been proposed for vectorial data only. In order to tackle
this limitation, I investigate metric learning in the context of dynamic time warping
(DTW), the by far most popular dissimilarity measure used for the comparison and
analysis of motion capture data. I extend the popular principle offered by the LMNN
algorithm via the DTW distance by treating the resulting component-wise dissimilarity
values as individual features. Application of such a model to motion data adjusts the
relevance of single joints and their correlations in the Mocap data according to the given
specific classification task.

Our input motion sequences are multivariate time-series of different lengths. There-
fore, we can compute DTW separately for every dimension of a given time series
x⃗k

i = (xk
i (1) . . . xk

i (T)) ∈ R∗, where k ∈ {1, . . . , d} refers to the component k of the
vectorial sequence entries for motion Xi. For two time series, we thus get a vector of
distances

D⃗ij := (DDTW(x⃗1
i , x⃗1

j ), . . . ,DDTW(x⃗d
i , x⃗d

j )) ∈ Rd (3.7)

of dimensionality d. A real-valued dissimilarity can be computed thereof by a standard
quadratic form:

DDTW−LMNN (Xi, Xj) := (L · D⃗ij)2 =(
L · (DDTW(x⃗1

i , x⃗1
j ), . . . ,DDTW(x⃗d

i , x⃗d
j ))

)2 (3.8)

which is parameterized by a linear mapping L : Rd → Rd (or a low-dimensional coun-
terpart L : Rd → Rd̃ where d̃ < d). In both cases, metric parameters are in the form of a
linear transformation L or corresponding quadratic matrix M = L⊤L, which have to be
adapted according to the given problem for an optimal result.

Therefore, I propose a reformulation of the LMNN approach based on component-
wise DTW vectors (Equation 3.8). This formulation has the benefit that not only LMNN
can efficiently be transferred to a novel dissimilarity-based setting but also recent concepts
for metric regularization apply to such problems. To that aim, for a sequence metric such
as DDTW−LMNN , the LMNN costs (Equation 3.2) become:

ϵ(L) := (1− µ) ∑
i,j∈N k

i

DDTW−LMNN (Xi, Xj)

+µ ∑
i,j∈N k

i

∑
l∈Ik

i

[
1 +DDTW−LMNN (Xi, Xj)−DDTW−LMNN (Xi, Xl)

]
+

(3.9)

Using the component-wise distance computation of Equation 3.8 and following the
same principles as in Section 3.1, we obtain an optimization problem which is similar to
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Equation 3.3:
min

M
(1− µ) ∑

i,j∈N k
i

(D⃗ij)⊤MD⃗ij + µ ∑
i,j∈N k

i

∑
l∈Ik

i

ξijl

s.t. (D⃗il)⊤MD⃗il − (D⃗ij)⊤MD⃗ij ≥ 1− ξijl
ξijl ≥ 0, M ⪰ 0, ∀i, j ∈ N k

i , l ∈ Ik
i .

(3.10)

This problem can be solved by means of semi-definite programming. As suggested by
(Kilian Q Weinberger and Lawrence K Saul 2008), we can use several speedups for both
the training and the test phases of the algorithm. Specifically, to reduce the size of triplet
choices (x⃗i, x⃗j, x⃗l)to check in every iteration of the training, we can employ an active set
strategy suggested by (Kilian Q Weinberger and Lawrence K Saul 2008). Such a strategy
significantly reduces the size of the optimization problem of Equation 3.8 in practice by
limiting the possible triplets for each x⃗i. Additionally, a ball-tree search (Ting Liu et al.
2005) can be employed to reduce the test time of kNN , and it also improves the training
time of the LMNN algorithm by limiting the search size for the imposters (Kilian Q
Weinberger and Lawrence K Saul 2008).

Note that the computational complexity of the DTW-LMNN algorithm is the same
as for vectorial LMNN; further, the convexity of the problem is preserved. Nevertheless,
a pre-training computation time is incurred due to the calculation of DTW distances,
which is O(N3).

Again, as explained in Section 3.1, a restriction to low-rank matrices M and L is
possible, provided the relevant information is located in a low-rank subspace of the full
data space only. In the next section, I discuss the feasibility of target neighbors and the
proposed modification to Equation 3.3, which considers this additional measure to adjust
the selected targets.

3 .3 feasibility based large margin nearest neighbors

This section focuses on the relationship between selected neighboring targets and the
feasible set of LMNN’s optimization problem. I show that the wrong choices of targets
can severely shrink the regime of feasible solutions of the optimization problem. To
mitigate this problem, I introduce a feasibility measure that quantifies the impact of
neighboring points with respect to the size of the feasible set, and I use this measure as a
weighting scheme in a modified version of LMNN. I also extended this modification to
the proposed DTW-LMNN algorithm for motion data and other multivariate time-series.

The optimization problem of the LMNN algorithm (Equation 3.3) constitutes a convex
problem with respect to M if the targets N k

i and impostors Ik
i are fixed (Kilian Q.

Weinberger and Lawrence K. Saul 2009). Nevertheless, different selections for these initial
targets can lead to different solution M. As suggested in (Kilian Q. Weinberger and
Lawrence K. Saul 2009; Göpfert, Paassen, and Hammer 2016), a better strategy is to repeat
LMNN’s optimization multiple times (multiple-pass LMNN) while updating N k

i and
Ik

i in each run based on the resulting quadratic form M. However, this strategy also
relies on the quality of the initial selection of these two sets. In this section, I focus first
on the geometric formation of the targets and impostors and its effect on the feasibility
of a solution M. Then, I propose an extension to the LMNN method, which benefits
from this geometrical analysis to increase LMNN’s robustness against the relevant local
minimums.
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Infeasible Target Neighbors

Considering Equation 3.3, we are interested in finding existing feasible solutions of
this optimization problem that do not require slack variables ξijl > 0. Accordingly, this
feasible regime is given as

S := {M ∈ Rd×d|M ⪰ 0,DM(x⃗i, x⃗j) < DM(x⃗i, x⃗l) ∀i, j ∈ N k
i , l ∈ Ik

i }. (3.11)

For a triplet (x⃗i, x⃗j, x⃗l) the metric constraint in Equation 3.11 can be rewritten as:

tr[QijlM] := tr[((x⃗i − x⃗j)(x⃗i − x⃗j)
⊤ − (x⃗i − x⃗l)(x⃗i − x⃗l)

⊤)M] < 0. (3.12)

Since M is positive semidefinite (PSD), a PSD matrix Qijl leads to the infeasibility of
Equation 3.12, whereby this fact depends on the triplet (x⃗i, x⃗j, x⃗l), only, and not the
specific neighborhood. In this section, I discuss an extremal case, where such a triplet
induces an infeasible constraint for which I propose a proper measure with an exact
geometric interpretation. In the next section, I generalize this measure to a suitable
weighting scheme for more general settings.

Theorem 3.1. A triplet (x⃗i, x⃗j, x⃗l) results in Equation 3.12 being infeasible if (x⃗i − x⃗j) and
(x⃗i − x⃗l) are linearly dependent vectors.

Proof. Refer to Appendix A.1.

As a 2-dimensional (2D) illustration for the infeasible case of Theorem 3.1, consider
a small neighborhood of data points in a 2D space as in Figure 3.2(a) in which x⃗i is
the main data point and (x⃗1, x⃗2, x⃗3) are its targets while x⃗4 is a close imposter point. As
depicted in the figure, x⃗4 lies on the connecting line between x⃗i and x⃗1, which makes
(x⃗i − x⃗1) and (x⃗i − x⃗4) linearly dependent. Hence, if we include the triplet (i, 1, 4) in the
constraints of the optimization problem in Equation 3.10, its solution transform M brings
the target points closer to x⃗i (Figure 3.2(b)). However, the triplet (i, 1, 4) still does not
satisfy the inequality in Equation 3.12. As a result, the nearest neighbor to x⃗i is still the
imposter x⃗4.

The infeasible case in Theorem 3.1 does not allow a feasible solution without slack
variables. In the following, I will argue that the measure r := −λmin(Q)/λmax(Q) consti-
tutes a reasonable weight vector to measure the feasibility of the constraint corresponding
to Q or the size of its feasible domain, respectively. Obviously, r = 0 is the case just
described, an infeasible setting due to the geometry of a⃗ = (x⃗i − x⃗j) and b⃗ = (x⃗i − x⃗l).

Feasibility Measure

I start with a general observation:

Lemma 3.1. Denote the eigenvalues of a matrix Q ∈ Rd×d by λ1(Q) ≥ λ2(Q) ≥ . . . , its
smallest/largest eigenvalue is denoted λmin(Q) and λmax(Q), respectively. Then, for hermitian
Q ∈ Rd×d and symmetric PSD M ∈ Rd×d, it holds λk(Q)λmin(M) ≤ λk(QM) for all k.

Proof. Refer to Appendix A.2.
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x⃗i

x⃗2

x⃗1

x⃗3

x⃗4 x⃗i

x⃗2 x⃗1

x⃗3

x⃗4

(a) (b)

Figure 3.2: A 2-D example of an infeasible triplet set for Equation 3.12. (a) The triplet
(i, 1, 4) is included in the set of constraints of Equation 3.10 while the vectors (x⃗i− x⃗1) and
(x⃗i − x⃗4) are linearly dependent. (b) A linear transform solution M (from Equation 3.10)
still does not provide a feasible inequality for the triplet (i, 1, 4) as it is desired in
Equation 3.12.

Based on Lemma 3.1, we have

λmax(Q)λmin(M) ≤ λmax(QM)

for Q := Qijl as specified in Equation 3.12. In the setting λmin(Q) < 0 < λmax(Q),
we can use the Corollary 10 from (F. Zhang, Qingling Zhang, et al. 2006) to infer
λmin(Q)λmax(M) ≤ λmin(QM). Combining these two inequalities results in the inequality

λmin(Q)λmax(M) + λmax(Q)λmin(M) ≤ tr(QM) (3.13)

Equation 3.12 induces the objective tr(QM) < 0, hence the left hand side of Equation 3.13
should be negative, i.e. − λmin(Q)

λmax(Q)
> λmin(M)

λmax(M)
. Hence a triplet (x⃗i, x⃗j, x⃗l), I defined the

feasibility measure as

r = − λmin(Q)

λmax(Q)
(3.14)

according to the definition of Q in Equation 3.12. Therefore, with a small r, such a triplet
imposes a tight constraint on the eigenvalue formation of M, resulting in an induced
small feasible set Sijl . Later, Note that the metric’s feasible domain S in Equation 3.11
is formed as an intersection of the feasible sets Sijl . I include this observation and the
obtained measure r = rijl into the optimization framework of Equation 3.3 in the form of
a weighting scheme.

Feasibility-based Large Margin Nearest Neighbors Metric Learning

For a vector x⃗i and a given target x⃗j ∈ N k
i , I define Rij := min

x⃗l∈Ik
i

(rijl). Consequently, I for-

mulate feasibility-based LMNN as the following optimization problem, which incorporates
according feasibility weights in its objective:

min
M

(1− µ) ∑
i,j∈N k

i

RijDL(x⃗i, x⃗j) + µ ∑
i,j∈N k

i

Rij ∑
l∈Ik

i

ξijl

s.t. DL(x⃗i, x⃗l)−DL(x⃗i, x⃗j) ≥ 1− ξijl
ξijl ≥ 0, M ⪰ 0, ∀i, j ∈ N k

i , l ∈ Ik
i .

(3.15)
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By definition, Rij applies Equation 3.14 according to the impostor x⃗l with the worst
geometrical formation w.r.t. (x⃗i, x⃗j), where x⃗j is the target for x⃗i. Such weighing choice
comes from the fact that the worst x⃗l for a given target x⃗j limits the feasible set of
M. Therefore, unlike the original LMNN, infeasible or challenging triplets carry less
weighting in this formulation.

In order to extend the problem of Equation 3.15 to its DTW-based version, we can
apply the same feasibility principle to the component-wise DTW vector D⃗ij from Equa-
tion 3.7. To that aim, Qijl from Equation 3.12 is calculated as

Qijl = DijDij⊤ −DilDil⊤,

and consequently, the vectorial optimization problem of Equation 3.15 is extended to

min
M

(1− µ) ∑
i,j∈N k

i

Rij(D⃗ij)⊤MD⃗ij + µ ∑
i,j∈N k

i

Rij ∑
l∈Ik

i

ξijl

s.t. (D⃗il)⊤MD⃗il − (D⃗ij)⊤MD⃗ij ≥ 1− ξijl
ξijl ≥ 0, M ⪰ 0, ∀i, j ∈ N k

i , l ∈ Ik
i .

(3.16)

I dub the resulting algorithm FDW-LMNN, which is implemented by first determining
the neighborhoods, computing corresponding weights Rij, and then solving the convex
optimization problem w.r.t. matrix M. The optimization problem of FDW-LMNN follows
the same principles as for DTW-LMNN with the same computational cost. Nevertheless,
computation of Rij has the time complexity of O(Ntd3), or O(Ntdw) with 2 < w < 2.376
based on (Demmel, Dumitriu, and Holtz 2007), where Nt is the total number of triplets
(x⃗i, x⃗j, x⃗l) in Equation 3.16. As a practical speedup, we can use the active-set and ball-
tree strategies of (Kilian Q Weinberger and Lawrence K Saul 2008), which significantly
reduces Nt and consequently the computational complexity of FDW-LMNN .

For an efficient implementation, as I suggested for DTW-LMNN , a multiple passes
strategy and specific speedups can be used to increase the base performance of the FDW-
LMNN algorithm (Kilian Q Weinberger and Lawrence K Saul 2008; Kilian Q. Weinberger
and Lawrence K. Saul 2009). It is also more practical to choose the neighborhood size
k of FDW-LMNN a few samples larger than that of DTW-LMNN . This way, we can
benefit from the weighting scheme of Equation 3.16, while still using the same number
of effective targets as in DTW-LMNN . Again, analogous to the DTW-LMNN algorithm
in Section 3.2, assuming the given task’s significant information for the given task is
located in a low-rank subspace of the data, it is possible to solve Equation 3.16 for a
low-dimensional counterpart L : Rd → Rd̃ where d̃ < d.

In order to better illustrate the rationale behind the explained feasibility concept and
visualize its effect on LMNN’s solution, I provide an experiment on a synthetic dataset.
The utilized synthetic dataset is a variation of the 2D Zebra stripe data from (Kilian Q.
Weinberger and Lawrence K. Saul 2009) in which two classes of data are alternately
distributed on vertical stripes (Figure 3.3(a)). In contrast to the original Zebra dataset in
(Kilian Q. Weinberger and Lawrence K. Saul 2009), the nearest target(s) x⃗j to each data
point x⃗i is located on the neighboring stripe of x⃗i. In other words, the Euclidean distance
of x⃗i to the closest neighbor on its own vertical stripe is much larger than D(x⃗i, x⃗j) for x⃗j
on a neighboring stripe. Hence, no matter how big the neighborhood radius k is chosen,
the above such target x⃗j will be chosen among N k

i . As depicted in Figure 3.3(a), the
selected nearest target for each x⃗i and its corresponding impostor is almost located on
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Figure 3.3: (a) Zebra dataset created based on alternative stripes of two data classes. The
closest target to each data point is located on a neighboring stripe of the same class,
while an impostor exists near their connecting line. (b) The metric learned by MP-LMNN
transfers the data to a distribution with a similar class-formation as in (a). (c) FB-LMNN
algorithm learns a metric by selecting the more promising targets (on the same stripes)
located farther than the closest neighbors.

a straight line, which results in very tight or infeasible constraints in the optimization
framework of Equation 3.3.

As in Figure 3.3(b), even the multiple-pass LMNN (MP-LMNN) hardly changes
this selection of impostors and targets. Therefore, even repeating LMNN in a loop of
multiple passes is not effective because the infeasible neighboring targets still remain
as the closest neighbors in each pass. Hence, such members in N k

i ∀i yielding in low
feasible constraint sets. Consequently, MP-LMNN converges to a non-optimal solution M
with a classification accuracy of 23.51% (almost the same as kNN ’s). On the other hand,
feasibility-based LMNN (FB-LMNN) assigns small Rij weights to pairs within the same
stripe while bigger weights to pairs located on different stripes. Therefore, it obtains a
different matrix M resulting in a more efficient scaling of the space, as in Figure 3.3(c),
which consequently leads to a classification accuracy of 72.21%.

In the next section, I explore the application of the metric regularization for the
distance-based metric obtained from DTW-LMNN or its feasibility-based variant.
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3 .4 metric regularization

Besides the classification accuracy, we are also interested in the feature relevance profile
which can be obtained from the diagonal entries of M. For DTW-LMNN, this interpreta-
tion directly transfers to a relevance profile for the sequential data related to each feature
component, such as single joints in the case of Mocap data. For the metric obtained from
Equation 3.10, the diagonal entry Mkk summarizes the influence of pairwise distances
computed based on the sensory feature k. From another perspective, relatively large Mkk
entries can indicate a considerable semantic connection between a particular joint(s) of
the body and the given classification task.

Nevertheless, as pointed out in Section 3.1, the obtained profile and the linear trans-
formation L may contain considerable redundant information. This issue typically arises
for high dimensional data or highly correlated features. Therefore, it is always essential
to perform a matrix regularization similar to Equation 3.6 to obtain an equivalent class
of L with the smallest Frobenius norm. This reformulation as matrix regularization has
the benefit that its principle can directly be transferred to more general data such as the
alignment vectors D⃗ij, as we see in the following.

For alignment vectors Equation 3.7 and the distance Equation 3.8, we find

L1D⃗ij = L2D⃗ij for all i, j
⇐⇒ (L1 − L2)D⃗ij = 0 for all i, j.

(3.17)

Hence, similar to Equation 3.5, transformations are equivalent with respect to the given
data iff their difference lies in the null space of the correlation matrix DD⊤ for the distance
matrix D := [D⃗11, . . . , D⃗1N , . . . , D⃗N1, . . . , D⃗NN ], consisting of all d-dimensional vectors
of pairwise distances. Note that this observation enables an effective regularization of
the matrix L (and M = L⊤L) in the same way as for the vectorial case, relying on the
regularization Equation 3.6:

L̃ := LΦ
where Φ = ∑S

s=1 u⃗s(u⃗s)⊤ with the eigenvectors
u⃗1, . . . , u⃗S of DD⊤ with non-vanishing eigenvalues.

(3.18)

As for the vectorial case, this yields the equivalent matrix L̃ of L with the smallest
Frobenius norm, for which an interpretation of the diagonal entries becomes feasible.
Thereby, this principle is applicable for full-rank matrices as well as low-rank counterparts.
We see in the experiments section that matrix regularization has a substantial effect on
the variance of the resulting relevance profile. Further, it can also enable a slightly better
generalization ability since it suppresses noise in the given data.

Following this section, I discuss the experimental results to evaluate the proposed
algorithms DTW-LMNN, FDW-LMNN, and the metric regularization technique.

3 .5 experiments

In this section, I implement my proposed methods DTW-LMNN and FDW-LMNN on dif-
ferent multivariate time-series and compare their performance to alternative approaches.
In addition, I evaluate the proposed metric regularization by performing feature extrac-
tion using the obtained relevance profile.
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Experiments Setup

I use the learned metrics of the proposed LMNN-based methods to classify data using the
k-nearest neighbor (kNN ) method. For all of our experiments, I use k = 3 as the decision
parameter of any implemented kNN algorithm. For all LMNN-based implementations,
I employ the multiple passes strategy of (Kilian Q. Weinberger and Lawrence K. Saul
2009), which reduces the training’s sensitivity to the initial selection of target points.
Additionally, the neighborhood size k and weighting parameter µ for LMNN variants
are chosen using cross-validation (CV) on the training set. I evaluate the proposed
methods based on the classification accuracy (100 × [#correct predictions]/N) in
a 10-fold cross-validation setting (averaged over 10 repetitions), where N is the total
number of test-data. For evaluation and comparison of the proposed approach, I consider
the following human motion capture datasets: Walking , Dance , Cricket , and Words ,
introduced in Section 2.4. The performance of the FDW-LMNN algorithm was also
evaluated on vectorial data. The reader can find the respective experiments in (Hosseini
and Hammer 2018b).

Alternative Methods

I use the following alternatives as baselines for empirical evaluation of the proposed
methods:

kNN : Without applying any metric adaptation, the obtained Euclidean distance-matrix
of the training data is directly used to classify the test data with the kNN algorithm.
When any two given time-series have different lengths, I calculate their pairwise
Euclidean distance by uniformly down-sample the longer sequence according to
the length of the shorter one.

DTW: Without applying any metric learning, I directly use the training data’s computed
DTW distance matrix to classify the test data via the kNN method.

Euc-LMNN: This baseline is obtained by replacing the DTW distance with standard
Euclidean metric in DTW-LMNN. More precisely, I use the LMNN formulation
(3.10) with

D⃗ij := (DEuc(x⃗1
i , x⃗1

j ), . . . ,DEuc(x⃗d
i , x⃗d

j )) ∈ Rd, (3.19)

where DEuc denotes the Euclidean distance between any two time series Xi and Xj.

DTW-SVM: The multi-class support vector machine (SVM) algorithm (Crammer and
Singer 2001) with radial basis function kernel calculated based on the DTW distance-
matrix and the clip eigenvalue correction

K(Xi, Xj) = e(−DDTW(Xi ,Xj)
2/δ),

where DDTW(Xi, Xj) denotes the cumulative DTW distance between Xi and Xj, i.e.
∑d

s=1DDTW(x⃗s
i , x⃗s

j ). The scalar δ is equal to the average distance for all training data
points.

PCA-DTW: For evaluation of the low-rank DTW-LMNN, I compare it to PCA-DTW.
After applying the Principle Component Analysis (PCA) (Jolliffe 2002) to the raw
time-series, the DTW distance matrix is calculated based on the obtained first 3
principal components of the data, followed by the kNN classifier.
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To study the significance of differences in the empirical results, I perform the paired
t-test, which tests the hypothesis that two experiments (two CV results) are generated
from the same distribution. (M. C. Seiler and F. A. Seiler 1989).

Classification Accuracy

I compare the classification performance of the proposed algorithms DTW-LMNN and
FDW-LMNN to the alternative methods. The classification accuracy on the selected
datasets is given in Table 3.1, along with their variances and the calculated p-values.

According to the results, DTW-LMNN and FDW-LMNN outperform the Euclidean
version of the LMNN algorithm for all datasets. This observation supports the expecta-
tion that DTW constitutes a suitable dissimilarity measure for motion data due to its
flexibility regarding motions with different lengths. From another point of view, the
metric adjustment for both Euc-LMNN and DTW-LMNN provides classification accuracy
improvements for all cases compared to the kNN and DTW baselines. Interestingly, it
even causes a slight superiority of the Euclidean metric over DTW for the Dance dataset
when the Euclidean distance matrix benefits from metric adaptation. Based on Table 3.1,
FDW-LMNN outperforms the DTW-LMNN algorithm for Dance and Words datasets. We
can conclude that for these two datasets (especially for the Dance dataset), the feasibility
criteria of FDW-LMNN is effective regarding their class distributions.

Low-rank Matrix Representation

I study the dimensionality reduction performance of DTW-LMNN and FDW-LMNN on
the datasets introduced in Section 3.5. The discriminative quality of the obtained low-rank
representations is judged based on the resulting classification accuracies. As mentioned in
section 3.2, we can have a low-rank solution matrix M or L for the optimization problem
(Equation 3.10). Apart from a compressed representation, this can lead to a significant
increase in the time performance of the kNN classification in the low-dimensional
projection space (Kilian Q Weinberger and Lawrence K Saul 2008). I use a rank 3 matrix
L corresponding to a projection into the space R3. For comparison, I also investigate

Table 3.1: Comparison of the algorithms based on the classification accuracy (%) for the
four selected datasets. The paired t-test checks the hypothesis that the winner and the
runner-up methods are not significantly different. The best result for each dataset is
highlighted.

Method Walking Dance Cricket Words

kNN 90.23 ± 1.45 72.48 ± 2.66 92.16 ± 0.51 94.54 ± 2.31
Euc-LMNN 92.32 ± 0.87 80.41 ± 1.49 95.56 ± 0.38 97.30 ± 1.20
DTW 95.44 ± 0.77 77.51 ± 1.51 99.44 ± 0.18 98.61 ± 1.05
DTW-SVM 95.68 ± 0.46 78.53 ± 1.10 100±0 98.72 ± 1.86
DTW-LMNN 100 ±0 90 ± 1.03 100±0 99.06 ± 1.11
FDW-LMNN 100 ±0 92.4±1.37 100±0 99.17 ± 1.43
p-value – 0.02 – < 0.01
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Table 3.2: Comparison of the algorithms’ low-rank (lr) implementations based on the
classification accuracy (%) for the four selected datasets. Each dataset’s best result is
highlighted according to a paired t-test at a 5% significance level.

Method Walking Dance Cricket Words

Euc-LMNN (lr) 86.6±1.10 75±1.52 96.11±0.46 98.60±0.14
PCA-DTW 96.03±1.08 76±1.51 99.44±0.18 94.24±0.25
DTW-LMNN (lr) 98.8±1.80 95±0.80 100±0 99.12±0.17
FDW-LMNN (lr) 98.8±1.80 97±1.02 100±0 99.46±0.13
p-value < 0.01 0.02 – 0.03

the effect of a rank restriction for the Euclidean version of LMNN, and I investigate the
result of classical PCA for dimensionality reduction of the data before classification. The
results of these low-rank classification pipelines are reported in Table 3.2.

According to the results, the low-rank versions of both DTW-based LMNN algorithms
still have the best classification accuracies compared to other approaches. Furthermore,
their accuracies for Words and Dance datasets are even improved compared to their full
rank versions (Table 3.1). For these two datasets, the low-rank optimization scheme for
DTW-based algorithms provides a more discriminative combination of the original fea-
tures. In addition, DTW-LMNN and FDW-LMNN algorithms classify the Cricket dataset
with 100% accuracy while obtaining a compressed representation as well. In contrast,
PCA-DTW and low-rank Euc-LMNN have lower classification accuracies. The latter
method decreases the accuracy for two datasets compared to full-rank Euc-LMNN,
while PCA-DTW has accuracy improvement only for the Walking dataset. Hence pro-
jection directions learned by LMNN low-optimization (with a low-rank solution) can
potentially enhance the discriminative aspect of DTW alignments in a low-rank matrix
representation.

Regularized Relevance Profiles

In this section, I investigate the resulting relevance profiles for Dance and Walking datasets
for the metrics obtained by DTW-LMNN. I use only two of the four previous datasets to
focus on the matrix regularization’s notable effects. The datasets Words and Cricket are
of little interest for this section due to their comparably low-dimensionality (9 and 6
sensors only, without considerable correlations). On the contrary, the two full-body mo-
tion datasets (Dance and Walking ) have a high number of features (62), with substantial
correlations among their joints. Hence we can expect interesting effects when regularizing
the learned matrix.

Matrix regularization has different effects: (I) It enables a valid interpretation of the
feature relevance profile since it avoids spurious relevance peaks and random effects due
to data correlations. I evaluate this effect by an inspection of the sparsity and variance
of the relevance profile within cross-validation. (II) It suggests the possible ways to
reduce the data dimensionality by eliminating the most irrelevant features according
to the found relevance profile. I investigate this effect by evaluating the classification
performance when the feature dimensions are iteratively selected (or removed) according
to their relevance.
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Figure 3.4: Average (blue bars) and deviation (red lines) of the relevance values for features
of the Dance dataset calculated according to the normalized diagonal values of (L⊤L).
Top: Regularized relevance profile. Bottom: Non-regularized relevance profile.

Dance Dataset

For the Dance dataset, I calculate the relevance values of features as the diagonal entries
of (L⊤L). The transformation matrix L is obtained via DTW-LMNN, which was applied
in section 3.5. The resulting original relevance profile (without any regularization) is
displayed in Figure 3.4-bottom, in which I normalized the profiles to the range [0, 1].
Since the value of L varies for different cross-validation splits, I report the average and
variance of each diagonal entry over all splits. The total variance of the original relevance
profile is 4.47.

In comparison, I regularize matrix L according to Equation 3.18. To that aim, the
eigenvectors u⃗s of matrix DD⊤ that correspond to its non-zero eigenvalues are deter-
mined, where the distance matrix D is computed based on the training set. Figure A.1
shows how I choose 12 effective dimensions (eigenvectors) based on the corresponding
eigenvalue profile of DD⊤ for the Dance dataset to construct the regularization matrix Φ.
The resulting regularized profile, which is obtained from L̃, is shown in Figure 3.4-top. It
is clear that this profile has much fewer high values representing singled out relevant
features compared to the original profile (Figure 3.4-bottom). In comparison, also the
variance of this profile is reduced to 2.86.

Next, I utilize the learned metric for the benefit of feature selection. To that aim, I
sort the input dimensions (features) according to their relevance values in Figure 3.4
in descending order. Then, I select the important features according to this order in
the classifier by removing other rows in L (corresponding to other features) for the
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Figure 3.5: Classification accuracy of the row-reduced transformation LX for the
Dance dataset. Non-zero rows of L correspond to the selected features according to
the profiles in Figure 3.4.

transformation LX. Figure 3.5 shows the result of the above process on the test set’s
classification accuracy for different numbers of selected features. Interestingly, both
relevance profiles in Figure 3.4 let us to remove a large number of sensors without
reducing the classification accuracy. This selection process reaches its optimal point
where only 9 and 26 features are chosen for the regularized and non-regularized profiles,
respectively. Hence, the regularization technique greatly enhances the feature selection
characteristic of the learned metric. The relevant body joints to the selected 9 features are
depicted on the skeleton structure in Figure A.2. Additionally, the semantic meanings of
these features are reported in Table. 3.3.

According to Figure 3.4, the regularization matrix Φ (Equation 3.18) positively affects
the relevance profile. It reduces the profile’s redundancy and produces a sparse represen-
tation for the relevance values of the input’s features. Besides, based on Table 3.3, the
regularized profile has smaller variances in the feature bars than the original profile and
is more reliable regarding feature importances. Furthermore, Figure A.3 illustrates that
for a wide range of effective dimensions in Equation 3.18, the classification accuracy for
the test data stays at its maximum point.

As a semantic interpretation, it can be concluded from Figure A.2 that hands and

Table 3.3: Total variance in the regularized and non-regularized relevance profiles along
with the feature selection result for the Dance dataset.

Value

Profile variance (not-regularized) 4.47
Profile variance (regularized) 2.86
Selected joints (feature IDs) root(6), rthumb(36),

rfemur(49,50,51), rfoot(53),
rhumerus(27,28,29)
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feet are both important discriminative features for this dancing task. From another
perspective, this is a difficult task because each class has different subcategories within
itself, which account for overlaps with other classes; hence the combination of both (hand
and foot) is required to distinguish between the two dance categories. Furthermore, as
another interesting interpretation, only the data related to one side of the body (right
side) is necessary to achieve the highest classification performance. This interpretation
coincides with the fact that dancing is typically a symmetrical whole body movement in
which symmetry can be found between the left and right sides of the body.

Walking Dataset

I repeat the previous experimental setting for the Walking dataset as well, upon which
I select 14 effective dimensions to form the regularization matrix Φ. The obtained
regularized profile is depicted in Figure 3.6, and the total variances of the relevance
profiles before and after the regularization are 10.7 and 2.51, respectively. Again, similar
to the Dance dataset, I perform feature selections using the relevance profiles of Figure 3.6.
Consequently, the resulting classification accuracies and the selected essential joints are
provided in Figure 3.7 and Tab. 3.4 respectively.

Similar to the Dance dataset, the regularization of the learned metric results in a sparse
representation of the relevance profile and a reduced variance (Figure 3.6). Furthermore,
according to Figure 3.7, a classification accuracy of 100% can be achieved while choosing
fewer features (7 features) compared to the not-regularized profile (25 selected features).
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Figure 3.6: Average (blue bars) and deviation (red lines) of the relevance values for features
of the Walking dataset calculated according to the normalized diagonal values of (L⊤L).
Top: Regularized relevance profile. Bottom: Non-regularized relevance profile.
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Figure 3.7: Classification performance of Walking dataset based on the selected features
according to the regularized profile

Based on the observations from Figure A.4, for this dataset (and this classification
task), hands are more important than feet. In addition, as the classes are very similar
(all of them are connected to Walking ), the classification algorithm needs to have input
features from both sides of the body in order to carry out the classification task with a
perfect result. I tested this hypothesis by using Lhand instead of Rhand or deleting Rthumb

(since we already have Lthumb), but in both cases, the performance decreased (around
3% to 4%), showing that those selected joints are all necessary, even though they may
look symmetrical in the skeleton structure.

3 .6 conclusion

In this chapter, I proposed a distance-based extension to the popular LMNN metric
learning algorithm. This extension enables us to apply LMNN on motion data and other
multi-dimensional time-series. By incorporating the DTW dissimilarity measure, which
is particularly suited to mocap data analysis, I introduced the DTW-LMNN method. This
algorithm benefits from a component-wise DTW-based representation of the distances in
the given mocap dataset. Consequently, DTW-LMNN is able to recognize and adjust the
relevance of particular joints that their movement pattern can semantically bring similar
motions closer while keeping them farther away from other types of motions. In other
words, by incorporating this distance-based representation to the LMNN framework,

Table 3.4: Total variance of the regularized and non-regularized relevance profiles and
selected features for the Walking dataset.

Value

Profile variance (not-regularized) 10.70
Profile variance (regularized) 2.51
Selected joints (feature IDs) root(5), lhumerus(40,41),

lowerneck(18), rthumb(36),
rhand(33), lthumb (48)
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we can efficiently adapt the feature ranking and correlation according to their semantic
connection to the classification tasks at hand. In such resulted condensed representa-
tion, a distance-based decision making regarding the class of a given motion is highly
interpretable according to its nearby motion sequence. Judging the quality of the DTW-
LMNN ’s learned metric based on K-nearest neighbor classification of real-world motion
benchmarks, the proposed approach outperforms its Euclidean version as well as the
sole application of DTW distance.

In section 3.5 of this chapter, I showed that the DTW-LMNN algorithm opens up
the possibility of transferring auxiliary concepts such as metric regularization to motion
data. I devised a method to apply metric regularization - which has been proposed for
vectorial data Strickert et al. 2013 - to alignment-based representations. According to
the results in section 3.5, this regularization step is a crucial prerequisite to obtain a
valid interpretation of the relevance profile. This post-processing step removes the highly
correlated dimensions related to the null space of the data correlation matrix. In other
words, the regularization process signifies the specific joints which have a strong semantic
connection to the defined classification task. As a result, it can enhance the semantic
interpretability of the resulting metric. It is essential to mention that the above-proposed
regularization step can be applied to any other dissimilarity-based metric framework as
well.

In addition to the DTW extension of LMNN, I studied the feasibility of the constraints
in LMNN’s optimization problem according to selected target neighbors N k

i for each data
x⃗i. I obtained a mathematical method to measure each target point’s feasibility based on
the distribution of its nearby impostors Ik

i . I showed how some target points could cause
tightly-feasible or even infeasible solution sets for LMNN’s optimization constraints and
therefore affecting the quality of the algorithm’s solution metric in a negative way.

Accordingly, I reformulated the optimization problem to select the target points based
on their feasibility measure. The proposed FDW-LMNN framework focuses more on
targets with less tight constraints and highly feasible solution sets. Hence, it avoids
infeasible targets and also has the potential to yield a more discriminant metric M.
Empirical results on real Mocap benchmarks showed that applying the feasibility measure
can improve the quality of LMNN’s metric for different data types by choosing more
achievable target points in the dataset. Nevertheless, to use FDW-LMNN , one has to
pay the additional computational cost prior to the algorithm’s training phase. Therefore,
a trade-off can be considered in practice between the complexity and accuracy while
deciding between FDW-LMNN and DTW-LMNN .

Relying on the promising results achieved by the proposed DTW-LMNN and FDW-
LMNN frameworks, there is considerable potential for future research on dissimilarity-
based metric learning: the principle can be transferred to other metric learning methods
which are not explicitly linked to the kNN classifier. Furthermore, the feasibility-based
concept can be extended to its local application, which fits the local distance variation
of the LMNN algorithm (Kilian Q Weinberger and Lawrence K Saul 2008). Another
promising research line would be to investigate the application of more advanced reg-
ularization techniques (such as Frénay et al. 2014) on DTW-LMNN to achieve further
enriched relevance profiles.

In this chapter, I performed an interpretable analysis of motion sequences by trans-
forming the motion data into a new distribution, which magnifies the semantic similarity
of motion sequences, and signifies their relevant dimensions to that goal. From another
perspective, in the next chapter, I focus on finding interpretable embedding models for

44



3 .6 conclusion

motion data. These models bring us sparse vector encodings for motion representation,
which are also semantically interpretable w.r.t. the original motion sequences.
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Publications: This chapter is partially based on the following publications.

• Hosseini, Babak, Felix Hülsmann, et al. (2016). “Non-negative kernel sparse coding
for the analysis of motion data”. In: International Conference on Artificial Neural
Networks (ICANN). Springer, pp. 506–514.

• Hosseini, Babak and Barbara Hammer (2018a). “Confident kernel sparse coding
and dictionary learning”. In: 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, pp. 1031–1036.

• — (2018c). “Non-negative Local Sparse Coding for Subspace Clustering”. In:
Advances in Intelligent Data Analysis XVII. (IDA). Ed. by Ukkonen A. Duivesteijn W.
Siebes A. Vol. 11191. Lecture Notes in Computer Science. Springer, pp. 137–150.
doi: 10.1007/978-3-030-01768-2_12.

Recently, extensive applications of sparse coding (SRC) have been carried out in many
areas of data analysis such as action recognition (Yao et al. 2015; W. Ding et al. 2018),
text representation (Yogatama et al. 2015; Yang Li and T. Yang 2018), image classification
(Jia et al. 2016; A. Li et al. 2018), recommendation systems (Qian et al. 2015; Z. Ji et al.
2019), and noise reduction (KyungHyun Cho 2013; Anada et al. 2019). An SRC algorithm
aims to reconstruct an input signal using a weighted combination of a few selected
entries from a set of learned base vectors. The vector of weighting coefficients and the
set of bases are called the sparse codes and the dictionary, respectively. Such resulting
sparse encoding can capture essential intrinsic characteristics of the dataset (T. Kim,
Shakhnarovich, and Urtasun 2010; Rubinstein, Zibulevsky, and Michael Elad 2008), and
can reconstruct a large number of data points using a relatively small set of training
samples (Duarte-Carvajalino and Sapiro 2009). Focusing on semantic commonalities
between similar (motion) data, I hypothesize that the learned dictionary can extract such
meaningful entities by relying on natural priors such as sparsity.

In particular, relying on such representation of data, one can expect to observe similar
characteristics between the sparse encoding of the observed and unobserved data given
that they belong to the same source. This particular view can be extended to the test/train
regime as the evaluation basis of many machine learning tasks. Accordingly, several
data-driven works benefit from the sparse representation of data by applying other
machine learning frameworks to the resulting sparse codes. For example, in (K. Huang
and Aviyente 2007; Quan, Bao, and H. Ji 2016), the classification tasks are carried out
by applying a support vector machine (SVM) classifier to the obtained sparse codes
(K. Huang and Aviyente 2007; Quan, Bao, and H. Ji 2016). Also, in (C.-G. Li, You, and
René Vidal 2017), the spectral clustering method is applied to the sparse codes to cluster
the input data.

Regarding analyzing sequential data such as motion, some works have applied sparse
coding frameworks directly on the raw input time-series (T. Kim, Shakhnarovich, and
Urtasun 2010; Jin Wang et al. 2013; Takeishi and Yairi 2014). However, such applications
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to motion data face the inconsistency in the lengths of input samples as well as the
multi-dimensional form of motion sequences. The first issue contradicts using dictionary
elements of fixed size as a standard building block of a sparse coding framework. Also, the
vectorial solution to the second problem can lead to notably high-dimensional dictionary
elements. Therefore, such issues make these applications practically challenging for
real-world motion data.

In this chapter, I will therefore take another stance, which enables a treatment of
time series of different length by means of a flexible and possibly non-linear sparse
decomposition, by relying on the kernel trick of machine learning and similar approaches.
Accordingly, by considering an implicit mapping of the data to a high-dimensional
feature space, it is possible to formulate SRC using a kernel-based representation of
data (H. V. Nguyen et al. 2013; Z. Chen et al. 2015). Such kernels generally denote the
pairwise similarity of data points in the given dataset. The resulting kernel sparse coding
(K-SRC ) methods can notably extend the application domain of SRC to structured data
such as video processing (L. Xu et al. 2014), frame extraction (G. Xia et al. 2016), image
segmentation (Tong et al. 2019), object recognition (Huaping Liu, D. Guo, and F. Sun
2016), and image classification (S. Gao, I. W.-H. Tsang, and L.-T. Chia 2010).

As observed in Chapter 3, DTW provides an elastic alignment of time series of
possibly different lengths according to their semantic similarity. Therefore, DTW distance
is a suitable candidate to construct a useful similarity kernel to represent sequential data
(Ahmed, Paul, and Gavrilova 2015; Bahlmann, Haasdonk, and Burkhardt 2002; Shi et al.
2019). Fusing DTW-derived motion kernels with a proper kernel-based sparse coding
extracts a dictionary from a given mocap data set, such that it enables a sparse vectorial
representation of motion sequences (Hosseini, Hülsmann, et al. 2016; Huaping Liu, D.
Guo, and F. Sun 2016; Z. Chen et al. 2015). In other words, the application of K-SRC on
motion data results in an embedding from the sequential space to the vector space.
Although such kernel-based frameworks enable us to obtain sparse encapsulated motion
representations, they cannot provide a semantically interpretable encoding in terms of
its constituent elements. More specifically, it is desired to see underlying connections
between non-zero entries of the resulting encoding and semantically meaningful (motion-
wise) parts of the model (the dictionary elements).

It is shown that the non-negative formulation of SRC frameworks can increase the
possibility of relating each input signal to its semantically similar resources. In particular,
such formulations can result in better classification results while also leading to a better
interpretability of the sparse data encoding C. Zhang et al. 2011; Hazan, Polak, and
Shashua 2005. Relatively, some works have proposed kernel-based non-negative matrix
factorization algorithms, which can be considered as the kernel-based extension of SRC
frameworks (Y. Zhang, T. Xu, and J. Ma 2017; D. Zhang, Z.-H. Zhou, and S. Chen 2006;
Wenjun Wang et al. 2017; Yifeng Li and Ngom 2012). However, these algorithms do not
apply any sparseness to their resulting encoding (even the (Y. Zhang, T. Xu, and J. Ma
2017)). Therefore, such kernel-based encodings are challenging to be interpreted with
respect to their building blocks or the entities of their resulted embedded vectors. To
address the above concern, I ask this follow-up question related to RQ2:

RQ2-a: How can we extend the kernel-based sparse coding frameworks to semantically
interpretable embeddings?

From another perspective, it is expected from an interpretable embedding to carry the
essential properties of the data, such as commonalities and supervised information. Such
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embedding constitutes an interface based on which semantic search becomes possible:
motions that decompose into the same/similar dictionary elements have considerable
semantic overlap. This concept is generally addressed as discriminative sparse codings,
which employ discriminant terms in their encoding. Such additional terms usually
incorporate the supervised information to project semantic similarities of the data to the
resulting embedded sparse vectors. There are several variations of discriminative sparse
coding which utilize different supervised terms, such as adding linear discriminants (Z.
Jiang, Z. Lin, and Davis 2013; W. Liu et al. 2015), using regression operators (Bahrampour
et al. 2015; Julien Mairal, Francis Bach, Jean Ponce, Sapiro, and Zisserman 2008; Julien
Mairal, Jean Ponce, et al. 2009), or benefiting from ideas similar to the Fischer Discriminant
(K. Huang and Aviyente 2007). Regardless of their achievements in improving the
encoding’s discriminative representation, they suffer from the lack of consistency between
their training and the recall models (Hosseini and Hammer 2018a). While the supervised
information plays a significant role in learning enriched sparse codes for training data,
lack of that information in the recall phase of the algorithm degrades the quality of the
encoding for the test data. Accordingly, another essential follow-up question for RQ2 is:

RQ2-b: How can we increase the consistency between training and recall models for
K-SRC frameworks to result in an enriched supervised embedding of non-observed
data?

From another related perspective, another challenging task in many real-world motion
datasets is to categorize underlying motion types without having any annotated training
data available. In machine learning and data analysis, this concern is generally formulated
as a clustering problem (R. Xu and Wunsch 2005), for which unsupervised methods try
to discover the hidden structure of the data.

Accordingly, a subset of sparse coding works focus on using the sparse encoding
vectors as the information source for the application of common clustering methods such
as spectral clustering and k-means algorithms (Y. Yang, Zhangyang Wang, et al. 2014;
Y. Yang, J. Feng, et al. 2016; C.-G. Li, You, and René Vidal 2017).

An important group of sparse coding methods for clustering is called sparse subspace
clustering algorithms (SSC) (Elhamifar and Rene Vidal 2013). Assuming the data is
distributed on a union of linear subspaces, SSC methods focus on obtaining a self-
expressive representation, in which each data point is reconstructed by other similar
samples from its underlying cluster (subspace) (X. Peng et al. 2018; Guangcan Liu et al.
2013; René Vidal and Favaro 2014).

Kernel-based SSC methods (K-SSC) extend the above idea to structure data as motions
by relying on the pairwise similarity of data points. K-SSC methods have shown that such
sparse self-expressive encoding can reveal the underlying subspaces in data distribution,
in which data samples are semantically similar (Patel and René Vidal 2014; Yin et al.
2016; Xiaoqian Zhang et al. 2019).

Despite the success of K-SSC methods regarding both structured and vectorial data
types, it is not easy to interpret the entities of their encoding vectors directly. On the one
hand, some of these entities point toward data points in other subspaces based on weak
existing similarities, causing negative redundancies in the obtained encoding. On the
other, sparse encodings naturally create local sub-clusters within each subspace.

These issues makes the interpretation of these embedded vectors challenging for
data types such as motions. As a common observation in motion datasets, many weak
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Figure 4.1: Summary and hierarchy of proposed algorithms in Chapter 4 for sparse
representation of data. The methods are generally divided into two main branches of
sparse coding and subspace sparse clustering. Then, they expand into their supervised /
unsupervised, kernelized / vectorial, or robust variant formulations.

similarities exist between different motion types, while many motion sequences can be
grouped into small sub-clusters. Hence, my next follow-up research question related to
RQ2 is:

RQ2-c: How can we improve the interpretability of self-representative sparse encoding
models?

In this chapter, I propose different supervised and unsupervised sparse coding
and dictionary learning frameworks to investigate the above-proposed questions as
summarized in Figure 4.1. These frameworks are suitable for the sparse encoding of
motion data and other structured data given the kernel-based information is available. In
particular, these proposed algorithms learn interpretable encodings with both supervised
and unsupervised focuses. In addition, I design appropriate optimization algorithms
learning the model parameters of the proposed encoding frameworks. In summary, I have
the following contributions with respect to the state-of-the-art in kernel-based sparse
coding.
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• I propose a non-negative sparse coding framework NNKSC that uses similarity-
based kernel information to encode motion sequences into sparse vectors. Such
embedding represents and reconstructs each motion by using other semantically
similar motion sequences. This specific framework provides an interpretable en-
coding as a suitable basis for further supervised or unsupervised motion data
analysis.

• To enrich the proposed non-negative sparse encoding with supervised information,
I extend my NNKSC algorithm to the supervised framework LC-NNKSC and its
more robust variation CKSC . These algorithms focus on representing each input
motion by contributions mostly taken from the same motion class. The outcome
encoding is sparse, semantically interpretable, and preserves labeling information.

• I introduce a novel kernel-based sparse subspace clustering algorithm for clustering
motion data (and other kernel-based representations). The proposed non-negative
K-SSC method results in a sparse self-representative encoding of a motion dataset,
where each sequences is mostly connected to other sequences of the similar type.
The novel formulation and the post-processing step leads to an interpretable,
unsupervised semantic grouping of motion data.

In the next section, I provide the necessary background for sparse coding and dictio-
nary learning, along with their discriminative and kernel-based extensions. Then, the
proposed non-negative sparse coding framework and its supervised and unsupervised
extensions are explained in the consecutive sections. The chapter is concluded with the
empirical evaluations on motion datasets and the summary of achievements.

4 .1 state of the art

In this section, I briefly study the background and state-of-the-art regarding sparse
coding, its Kernel-based extension, its discriminant variant, and subspace sparse subspace
clustering, which are related to the main principles of my proposed frameworks.

Sparse Coding

Denoting the training data matrix as X = [⃗x1, ..., x⃗N ] ∈ Rd×N , sparse coding is the idea
of approximating each input signal as x⃗i ≈ Dγ⃗i, where D ∈ Rd×k is the dictionary and
Γ = [γ⃗1, . . . , γ⃗N ] ∈ Rk×N is the matrix containing the sparse codes. So, each sparse code
γ⃗i uses a linear combination of the columns of D to reconstruct x⃗i. Additionally, it is
desired to find coefficient vectors γ⃗i which use limited resources from D such that:

min
Γ,D
∥Γ∥0 s.t. X = DΓ, (4.1)

where ∥.∥0 denotes the cardinality of Γ. The exact equality is typically relaxed in practice
and a suitable loss such as squared loss ∥x⃗i−Dγ⃗i∥2

2 is employed. This relaxation converts
Equation 4.1 into

min
Γ,D
∥X−DΓ∥2

F s.t. ∥γ⃗i∥0 < T ∀i, (4.2)
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where ∥.∥F denotes the Frobenius norm. Optimization of Equation 4.2 w.r.t. Γ is an
NP-hard problem. However, its suboptimal solutions can be found using approximate
methods like Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar, and Krishnaprasad
1993) or by relaxing the l0-norm (cardinality) via using other norms such as ∥Γ∥1 (Tib-
shirani 1996). On the other hand, optimizing (4.1) w.r.t. D is called dictionary learning
(DL ) for which various optimization strategies have been suggested such as the K-SVD
algorithm (M. Aharon, M. Elad, and Bruckstein 2006), the Lagrangian method (H. Lee
et al. 2006) and the online DL (Julien Mairal, Francis Bach, Jean Ponce, and Sapiro 2009).
Generally, the problem of Equation 4.2 or its extensions are solved by an alternating
optimization scheme which divides it into the following two individual optimization
problems

Problem A: min
Γ
∥X−DΓ∥2

F s.t. JΓ(Γ)

Problem B: min
D
∥X−DΓ∥2

F s.t. JD(D).
(4.3)

In Equation 4.3, the terms JΓ(Γ) and JD(D) denote the specific constraints applied to
the sparse codes and the dictionary, respectively. These constraints vary based on the
application or the algorithm (M. Aharon, M. Elad, and Bruckstein 2006; X. Lu et al. 2012;
Vu and Monga 2017; M. Yang, H. Chang, and Luo 2017; Zhao Zhang et al. 2017)

Kernel-based SRC

In a vectorial sparse coding framework such as Equation 4.2, the input x⃗i is a vector in
Rd. However, as discussed in Section 2.1, a motion sequence is represented by a matrix
X ∈ ×N. This raw representation is not consistent with the vectorial framework of
Equation 4.2. In methods such as (T. Kim, Shakhnarovich, and Urtasun 2010; Jin Wang
et al. 2013; Takeishi and Yairi 2014) the sparse coding problem is applied to the temporal
axis of X. This is achievable by synchronizing all X in the training set X regarding
their temporal length. It is also required to reduce X to a 1D sequence by dimension
reduction methods such as PCA or by concatenating all dimensions. Nevertheless, the
application of such solutions for real-world motions, with different lengths, is challenging
and inefficient.

On the other hand, it is shown that by incorporating kernel representation of data
into the sparse coding framework, we can extend it to non-linear and non-vectorial
domains (Li Zhang et al. 2011; X.-T. Yuan, X. Liu, and Shuicheng Yan 2012). Denote
Φ : Rd → Rh as an implicit non-linear mapping that can transfer data to a reproducing
kernel Hilbert space (RKHS) with d ≪ h. Therefore, we can use the kernel function
K(Xi, Xj) in the input space, which is associated with the implicit mapping Φ such that

K(Xi, Xj) = ⟨Φ(Xi), Φ(Xj)⟩, (4.4)

where ⟨.⟩ is the inner product operator (Cortes and Vapnik 1995). ComputingK(Xi, Xj)∀i, j
gives us the kernel Gram matrix K(X ,X ), which its entries are determined by the values
K(Xi, Xj). An example of such K(X ,X ) is a similarity matrix, which describes the pair-
wise similarity of data points. Typically, a practical similarity kernel can be computed
using a Gaussian kernel

K(Xi, Xj) = exp(−D(Xi, Xj)/δ),
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or a polynomial kernel

K(Xi, Xj) = D(Xi, Xj)
c,

where D(Xi, Xj) is the distance (dissimilarity) between a pair of {Xi, Xj}. Also, δ and c
are considered as the kernel parameters. According to Section 2.3, the DTW distance
measure is a practical choice for D(Xi, Xj) to construct a similarity kernel for motion
data.

Therefore, by incorporation Equation 4.4 into Equation 4.2, we can extend it to its
kernel-based variation:

min
Γ,D
∥Φ(X )−Φ(D)Γ∥2

F s.t. ∥γ⃗i∥0 < T ∀i (4.5)

in which Φ(D) is a dictionary that is generally defined in the feature space. In exceptional
cases such as (Bahrampour et al. 2015), the kernel functions are explicitly computed
based on vectorial inputs, and hence Φ(D) is traceable in the input space. However,
for structured data such as motion, it is difficult to interpret a general Φ(D) and its
constituent entities due to the lack of direct access to the implicit feature space.

As a workaround to the above issue, it is possible to define a dictionary in the feature
space in the form of Φ(D) = Φ(X )U where U ∈ RN×c (H. V. Nguyen et al. 2013). This
dictionary structure results in the following K-SRC formulation:

min
Γ,U
∥Φ(X )−Φ(X )UΓ∥2

F s.t. ∥γ⃗i∥0 < T ∀i (4.6)

Each column of the dictionary matrix U contains a linear combination of data points in
the feature space. Therefore, to its advantage over Φ(D), the reconstruction term in (4.5)
can be rephrased in terms of the Gram matrix K(X, X)

∥Φ(X )−Φ(X )UΓ∥2
F =

K(X, X) + Γ⊤U⊤K(X, X)UΓ− 2K(X, X)UΓ,
(4.7)

which is traceable in the input space. Furthermore, to optimize the dictionary, we can
directly optimize the entries of U. In Section 4.2, I show how we can benefit from this
specific structure to efficiently interpret the entities of the dictionary model as well as the
sparse encodings of motion data.

Discriminant Sparse Coding

As pointed out before, we are interested in having sparsely encoded vectors that can also
carry supervised information about the original motion sequences. In the sparse coding
family of algorithms, such a concept is generally addressed by designing discriminative
sparse coding frameworks. Considering the label matrix H (as defined in Section 2.2),
discriminative SRC methods focus on designing discriminant objective terms in Equa-
tion 4.2. These terms help the SRC framework to learn an efficient dictionary D, based
on which the sparse codes Γ can also represent the labeling information of H. Generally,
we can categorize discriminative SRC algorithms into disjoint dictionary learning and
discriminant-based formulation.
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Disjoint Dictionary Learning

In a group of sparse coding works (F. Bach et al. 2008; Sivalingam et al. 2011; Jenatton
et al. 2010), the dictionary D is split into C individual class-specific sub-dictionaries
D = [D1D2 . . . DC]. Each Di is separately trained to reconstruct only the i-th class
of data via assuming no existing correlation between different classes. At first sight,
these sub-dictionaries appear highly interpretable, such that each dictionary atom d⃗i
can be associated with only one class of data. Nevertheless, these methods confront
problems when different data classes are close to each other, and some data points
from one class can also be expressed by dictionary atoms related to another class.
Such issues reduce the discriminative quality of their representation. Furthermore, they
cannot model sub-class structures, especially if there is an overlap between the classes.
Therefore, as a typical observation, a test input z⃗ would be reconstructed by selecting
atoms from multiple sub-dictionaries Di related to multiple classes. Such behavior
damages the semantic interpretation of the corresponding γ⃗, and more often, it includes
noisy supervised information in sparse encoding. As the workarounds, some researchers
tried to mitigate the above limitation by learning an additional dictionary module D̃,
which is shared among all of the classes to take care of the class overlaps, or via making
the disjoint dictionaries orthogonal to each other in order to reduce their coherency
(Ramirez, Sprechmann, and Sapiro 2010; N. Zhou et al. 2012; S. Kong and D. Wang 2012).
As another improved strategy, (M. Yang, Lei Zhang, et al. 2011; Vu and Monga 2017) train
all sub-dictionaries together as one unique problem in favor of the reconstruction and
discrimination purposes together. However, the main focus of all the mentioned methods
is improving the classification accuracy without any effort toward the interpretability
of the encoding frameworks. In addition, these frameworks require to have the sub-
dictionary sizes manually defined in advance. As another limitation, such a requirement
relies on an unrealistic assumption that all the classes have similar local and global
distributions.

Discriminant-based Formulation

Another branch of discriminative sparse coding algorithms such as (Mairal, F. Bach, and
Ponce 2012; Z. Jiang, Z. Lin, and Davis 2013; W. Liu et al. 2015; Quan, Y. Xu, et al. 2016)
focus on adding a particular objective(s) to the optimization scheme of Equation 4.2,
which also encodes the label information of the input x⃗ into γ⃗. One particular example
of such frameworks is the LC-KSVD algorithm (Z. Jiang, Z. Lin, and Davis 2013) and its
variations as

min
Γ,D,W

∥X−DΓ∥2
F + α∥H−WΓ∥2

F + λ∥W∥2
F

s.t. ∥γ⃗i∥0 < T ∀i,
(4.8)

where W is the discriminant’s matrix of parameters, and α, λ are the trade-off scalar and
the regularization factor, respectively. Here, the term ∥H−WΓ∥2

F is a linear discriminant
that tries to map the encodings Γ to the labeling space spanned by columns of H. In
other words, the resulting discriminant model is the combination of two mappings,
D : x⃗ ∈ Rd 7→ γ⃗ ∈ Rk and W : γ⃗ ∈ Rk 7→ h⃗ ∈ RC. Such a mapping chain assumes an
optimal D∗ exists that makes the classes linearly separable in span(D∗).

One specific issue that I want to address in the above-mentioned frameworks is
the lack of an integrated optimization scheme in them. As mentioned in Section 4.1,
such frameworks’ parameters are typically optimized in an alternating scheme similar
to Equation 4.3. Therefore, when we optimize one parameter and fix the others, parts
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Figure 4.2: The influence of parameters on each other during the optimization loop of
discriminative sparse coding. A red arrow toward a specific parameter indicates which
other parameters influence it during its optimization. Accordingly, the dashed and empty
arrows show partial and missing links, respectively. LC-KSVD: The values of W and H
have no direct effect on the optimization of D. Task-Driven: The optimization of Γ is not
directly affected by the value of W and H.

of the compound objective function that are constant w.r.t. that parameter are set to
zero. Under this elimination, the parameters cannot be optimized according to a unified
objective, which can either disturb the convergence path or the quality of the convergence
point in the optimization loop. For example, when optimizing Equation 4.8 w.r.t. D, the
discriminant ∥H−WΓ∥2

F and the term ∥W∥2
F are removed as constants terms. However,

those terms are functions of W and Γ. Hence, the current value of W does not have a
direct effect in the optimization of matrix D. Nevertheless, it is expected from such a
framework to train D by also considering the role of the W and H in the whole framework.
This issue is visualized in Figure 4.2-left, where the arrows show the existing effect of
parameters on each other during the optimization phase. According to the figure, D is not
directly influenced by W and H in the optimization loop, while it is partially influenced
by the value of Γ. Although the task-driven algorithm (Mairal, F. Bach, and Ponce 2012)
tries to optimize D directly coupled with the values of W and H, the updating process
of Γ still occurs in a disjointed framework (Fig.4.2-right). In contrast to the mentioned
discriminative sparse coding frameworks, the proposed methods in this chapter have an
integrated optimization scheme.

Consistency Between Training and Recall

Considering the optimization scheme in Equation 4.8 as a typical form of discriminative
sparse coding, the discriminative quality of the learned Γ∗ and the mapping D : X 7→ Γ∗

is greatly influenced by the role of H in the framework. However, H is not available in
the recall phase, which is related to the reconstruction of the test data z⃗ similar to

min
γ⃗
∥⃗z−Dγ⃗∥2

2 s.t.∥γ⃗∥0 < T (4.9)

Therefore, due to the redundancy of the learned D, it is highly probable that recon-
structing z⃗ using only Equation 4.9 results in z⃗ 7→ γ⃗ such that γ⃗ /∈ span{Γ∗} even if we
have z⃗ ∈ span{X} which reduces the discriminative quality of γ⃗. To my knowledge, the
only discriminative sparse coding algorithm that merely aims for such consistency is
the Fisher discriminative sparse coding (M. Yang, Lei Zhang, et al. 2011). That algorithm
aims to encode the test data z⃗ by a sparse vector close enough to ˜⃗γ = 1

N ∑N
i=1 γ⃗i, which is

the representative vector for all encoded training data from the presumed class of z⃗. This
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method tries all the possible classes for z⃗ to find the best fitting solution. However, in
contrast to its base assumption, it is convenient for an SRC model to obtain distributed
clusters of sparse codes, even though they are related to one class. In Section 4.3, I
propose a more consistent sparse coding framework, which incorporates the supervised
training information also in the encoding of test data. Hence, its recall phase provides a
more efficient discriminant mapping for the test data.

Sparse Subspace Clustering

For vectorial data with a matrix of training samples X = [⃗xi]
N
i=1, we can assume X lies

in the union of n linear subspaces ∪n
l=1Sl with corresponding dimensions of {ml}n

l=1.
Subspace clustering tries to categorize data into separate clusters such that each cluster j
contains samples lying in one individual subspace Sj. By assuming that each subspace
holds a semantic similarity between its constituent samples, each data point x⃗i ∈ Sj can
be represented by X̄i as other samples in Sj with a linear combination x⃗i ≈ X̄iγ⃗i. Focusing
on the sparseness of the coding vectors γ⃗i, subspace sparse clustering (SSC ) (Elhamifar
and Rene Vidal 2013) formulates the above concept as

min
Γ
∥Γ∥0 s.t. X = XΓ, γii = 0 , ∀i (4.10)

where the constraint on γii prevents the data points from self-reconstrution as the trivial
solution to Equation 4.10.

An SSC model relies on the assumption that applying a sparsity prior to the encoding
vector γ⃗ represents x⃗ by using only (or mostly) data points semantically similar to x⃗,
which are expected to lie in the same subspace. Therefore, computing an affinity matrix

A = |Γ|⊤ + |Γ| (4.11)

signifies the pairwise similarities of data points in the input space, based on which
graph-based methods such as spectral clustering can reveal the underlying clusters.

The SSC problem in Equation 4.10 is NP-hard to solve in its original format (Elhamifar
and Rene Vidal 2013). As a solution, ∥.∥0 can be relaxed into other norms. For instance,
(Elhamifar and Rene Vidal 2013; Patel and René Vidal 2014; Bian, F. Li, and X. Ning 2016;
S. Gao, I. W.-h. Tsang, and L.-t. Chia 2012) use the l1-norm to achieve sparse Γ, while (You,
D. Robinson, and René Vidal 2016) aims for the approximate solution of Equation 4.10
with having ∥γ⃗i∥0 ≤ T. Another group of SSC methods (René Vidal and Favaro 2014;
S. Xiao et al. 2016; Guangcan Liu et al. 2013; Zhuang et al. 2012) focuses on shrinking
the nuclear norm ∥Γ∥∗ and making Γ low-rank to better represent the global structure of
X. Among SSC algorithms, (Elhamifar and Rene Vidal 2013; Patel and René Vidal 2014)
enforced Γ to provide affine representations by using the constraint Γ⊤⃗1 = 1⃗ based on
the idea of having the data points lying on an affine combination of subspaces. Despite
continuous improvements in clustering results of aforementioned SSC methods, there
is no direct connection between the quality of the encoding model and the subsequent
clustering task. Consequently, they suffer from performance variation across different
datasets and high sensitivity of their results to the parameters choice.

To mitigate the above issue, another group of algorithms called Laplacian sparse
coding encourage the sparse coefficient vectors γ⃗i related to each cluster to be as similar
as possible (S. Gao, I. W.-h. Tsang, and L.-t. Chia 2012; Y. Yang, Zhangyang Wang, et al.
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2014). In their SSC formulation (Equation 4.12) they employ a similarity matrix W in
which each wij measures the pairwise similarity between a pair (x⃗i, x⃗j):

min
Γ
∥X− XΓ∥2

F + λ∥Γ∥1 +
1
2 ∑i,j wij∥γ⃗i − γ⃗j∥2

2 s.t. γii = 0 , ∀i. (4.12)

Nevertheless, optimization frameworks like Equation 4.12 suffer from two main issues:

1. Columns of Γ are forced to become similar to each other while the similarity matrix
W is used as the weighting coefficients. Hence, due to this heavy bias, the sparse
codes γ⃗i obtain a distribution similar to the neighborhoods in W. Consequently,
their performance is at best comparable to kernel-based clustering with direct use
of W as the kernel information.

2. Although Equation 4.12 tries to decrease the intra-cluster distances, the inter-cluster
structure of data is ignored in such frameworks. However, typically both of these
terms have to be adopted when focusing on the separability of clusters.

Investigating the interpretability of SSC algorithms, some works benefit from the
non-negative formulation of the SSC framework (X. Li, Cui, and Dong 2017; S. Xiao et al.
2016; Zhuang et al. 2012). These methods impose non-negative constraints on the entries
of Γ, which enforce it to represent each x⃗ with other data points that are semantically
more similar to x⃗. Such non-negative formulation has the potential to considerably
reduce the overlapping columns of Γ w.r.t. the underlying subspaces. Nevertheless,
these methods still suffer from the above-mentioned issues regarding their optimization
formulations. In addition, such representation more often leads to categorizing the dataset
into many local, distinct sub-clusters within each subspace. Although these sub-clusters
are still similar, they do not have corresponding connections in the affinity matrix A
(Equation 4.11). Those links correspond to redundancies that are drastically removed due
to the significantly sparse form of the columns in Γ.

It is possible to extend most of the mentioned SSC algorithms to their kernel-based
sparse subspace coding (K-SSC ) variation by using the dot-product rule (Equation 4.4)
in their mathematical formulation (Bian, F. Li, and X. Ning 2016; S. Xiao et al. 2016; Patel
and René Vidal 2014). These K-SSC algorithms make the subspace clustering concept
applicable to structured data such as motion sequences or video. Benefiting from the
hidden information in a similarity kernel, K-SSC can reveal the underlying semantic
relations between the data points without the need to employ any supervised information.
In Section 4.4, I propose a novel SSC algorithm (and its kernel-based extension for motion
sequences), which mitigates the addressed limitations of SSC frameworks, especially for
interpretation of the resulted encoding. My post-processing technique can also contribute
to non-negative SSC methods to improve their latent representations by reviving their
broken data links.

In the following sections of this chapter, I discuss my non-negative algorithms for the
interpretable sparse encoding of motion data. I propose my non-negative kernel sparse
coding frameworks in the next section.

4 .2 non-negative kernel sparse coding

As discussed before, we can obtain an embedding for motion data from the sequential
space to the vector space by means of a kernel sparse coding framework. A K-SRC model
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gives us a sparse encapsulated vector of representation for a motion sequence according
to its semantic similarity to other sequences in a mocap dataset. In Chapter 3, we learned
that the DTW is an intuitive distance to construct such a similarity-based kernel. However,
in the context of this dissertation, we are interested in achieving embeddings that are
interpretable in terms of the constituent elements of the resulting encoded vector. As a
contribution of this section, I extend the existing K-SRC framework to its non-negative
variation, which adds the above-desired property to the resulting sparse embedding.
More specifically, the non-negative framework signifies meaningful connections between
different elements of its model (dictionary and the sparse code) and semantically relevant
information (motion sequences). As a result, the proposed method of this section can
encode a motion sequence into a sparse vector, in which its non-zero entries can be easier
interpreted and understood by a practitioner.

Proposed Non-negative Framework

As discussed in Section 4.1, we can obtain a kernel-based representation of a motion
dataset by computing the pairwise similarity between its sequences. As a practical
choice, we can use the DTW distance to derive the similarity-based kernel K(X, X), which
holds the dot-product rule of Equation 4.4. Such representation particularly suits the
variations of motion sequences in the temporal length. Using K(X, X), we can construct
the dictionary matrix Φ(D) = Φ(X )U as suggested by (H. V. Nguyen et al. 2013).
Although the dictionary matrix Φ(D) is defined in the feature space, we can update
the dictionary elements by adjusting the corresponding entries of matrix U ∈ RN×k in
the input space. More precisely, each vector u⃗i constructs a corresponding dictionary
atom Φ(d⃗i) by linear combinations of the training samples from X in the feature space.
Such structure gives us the reconstruction loss term ∥Φ(X ) − Φ(X )UΓ∥2

F similar to
Equation 4.7.

Proposition 4.1. If rank(Φ(X )) < N, there exist U∗ ∈ RN×k, Γ∗ ∈ Rk×N k < N such that
Φ(X ) can be reconstructed as Φ(X ) = Φ(X )U∗Γ∗.

Proof. Refer to Appendix A.4.

This proposition supports the rationale behind choosing the above dictionary struc-
ture. In particular, Proposition 4.1 tells us that via properly defining U as the dictionary
matrix, each Φ(x⃗i) can be optimally reconstructed by the weighted contributions from
the training set Γ. Also, by considering that the test data Φ(⃗z) is sufficiently similar to
the training samples such that Φ(⃗z) ∈ span{Φ(X )}, we can derive the same conclusion
for test data Φ(Z).

In accordance with the RQ2 research question in Chapter 1, we want to obtain a
semantically interpretable encoding for motion sequences. This objective requires U and
Γ to be consequently interpretable from that perspective. To be more specific, we would
like to have a dictionary Φ(X )U such that each of its columns carries characteristics of a
particular motion type. Therefore, a dictionary atom that is a positive linear combination
of input data (uij ≥ 0) naturally selects semantically similar sequences from X . Relevantly,
we need to learn a dictionary such that its representative matrix U uses as few elements
from Φ(Y) as possible (small ∥u⃗i∥1). In other words, it leads to using fewer signals from
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4 .2 non-negative kernel sparse coding

X for representing the motion dataset. Such structure results in a sparse, interpretable
dictionary, each of which atoms can be linked to one type of motion sequence.

Having such a dictionary, the encoding vector γ⃗ links each motion data X to one
or more meaningful motion-based dictionary atoms. Therefore, if non-zero entries of
γ⃗ reconstruct X using similar elements of Φ(X )U, the meaningful content of γ⃗ (and
consequently X) can be more easily interpreted. To enforce such potential, I formulate
the K-SRC problem such that the motion signal would be encoded with a non-negative
coefficient vector as γ⃗ij ≥ 0.

Therefore, based on the above structural proposals, I extend the formulation of Equa-
tion 4.6 to the following novel non-negative kernel sparse coding (NNKSC ) framework:

min
Γ,U

∥Φ(X )−Φ(X )UΓ∥2
F + λ∥U∥2

1

s.t. ∥γ⃗i∥0 ≤ T, uij, γij ∈ R≥0.
(4.13)

In Equation 4.13, parameters λ and T are the scalars that enforce sparseness on the
dictionary matrix U and the encoding matrix Γ, respectively.

To observe the direct effect of the non-negative constraint in NNKSC , we can compare
it with the kernel KSVD algorithm (K-KSVD) from (H. V. Nguyen et al. 2013). K-KSVD
has the same optimization formulation as in Equation 4.13 except the non-negativity
constrains on (Γ, U) and the sparseness objective ∥U∥1 on the dictionary. As depicted in
Figure 4.3, these extra terms in the optimization scheme of NNKSC result in a noticeable
sparseness and compactness of its encoded vectors in Γ (Figure 4.3-a). Primarily, the
non-negativity constraint prevents any redundant combination of columns of Φ(X )U for
the reconstruction of a given x⃗ in the feature space, leading to a considerably compact γ⃗.

On the other hand, the K-KSVD method uses almost all possible dictionary resources
for its reconstruction. That is why in Figure 4.3-a, almost all encoded vectors γ⃗ used their
maximum allowed budget from U (here is T = 20). In the same way, each column of the
trained nA in K-KSVD generously uses contributions from training samples Φ(X ) to
shape dictionary atoms.

Considering the number of connections between each γ⃗ and the training samples in
K-KSVD makes it difficult (or almost not feasible) to interpret the resulting encoding
in most columns of Γ. However, the considerably sparse form of Γ in NNKSC lets us
semantically relate each Φ(Xi) to the few dictionary atoms from which it is reconstructed.
We can have a similar interpretation for the resulting sparse columns of U, which form a
connection between each dictionary atom and its few constructing training sources. In
the ideal case, we prefer to have each atom Φ(X )u⃗i to be related to one type of motion
(one class from X). In the experiment part of this chapter (section 4.5), I numerically
evaluate and measure the above interpretability concept for my proposed methods using
mathematical evaluating measures.

Optimization Framework

In order to solve the optimization problem of Equation 4.13, I use an alternating op-
timization scheme similar to Equation 4.3. In the optimization loop of NNKSC , each
of the matrices (U, Γ) becomes updated in a separate step while the other one is fixed
(Algorithm 4.3). In the following, I discuss the specific optimization steps for updating the
dictionary and the sparse codes, as well as the proposed methods to approach individual
optimization sub-problems.
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(a) The number of non-zero entries in columns of Γ.
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(b) The number of non-zero entries in columns of U.

Figure 4.3: Comparing the sparseness of NNKSC to that of K-KSVD for the
UTKinect dataset. (a): NNKSC has more zero entries in its nX (a more sparse en-
coding) than K-KSVD. (b): Columns of the dictionary matrix U for NNKSC have fewer
contributions from training data compared to U of K-KSVD. Both models trained up to
the same reconstruction error ∥Φ(X )−Φ(X )UΓ∥2

F.
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4 .2 non-negative kernel sparse coding

Algorithm 4.1 The NN-KOMP algorithm: finds an approximate solution to Equation 4.14
as a non-negative sparse encoding of a data sample in the feature space under the
cardinality constraint.

1: Input: Dictionary matrix U, sparseness limit T, kernel matrix K(X, X)
2: Output: Approximate solution γ⃗ to

arg min
γ⃗

∥Φ(⃗z)−Φ(X )Uγ⃗∥2
2

s.t. γj ≥ 0 ∀j, ∥γ⃗∥0 ≤ T

3: Initialize variables as γ⃗ = 0, I = ∅.
4: while ∥γ⃗∥0 < T do
5: τi = [K(⃗z, X)− γ⃗⊤U⊤I K(X, X)]u⃗i, ∀i ̸∈ I
6: imax = arg maxi|τi|, ∀i ̸∈ I
7: I = I ∪ imax
8: γ⃗ = arg min

γ⃗

∥Φ(⃗z)−Φ(X )UI γ⃗∥2
2 s.t γj ≥ 0, ∀j using K-NNLS (Algorithm A.1).

9: end while

Updating the Matrix of Sparse Codes Γ

For the sparse coding part of Equation 4.13, I estimate each individual non-negative sparse
vector γ⃗i ∀i = 1, . . . , N based on the current solution of the dictionary matrix U using
Equation 4.14. This optimization problem focuses on the non-negative reconstructing of
each motion signal Xi in the feature space using non-negative contributions from other
training motion samples in X .

γ⃗i = arg min
γ⃗i

∥Φ(Xi)−Φ(X )Uγ⃗∥2
2

s.t. γ⃗i ≥ 0, ∥γ⃗∥0 ≤ T
(4.14)

To solve Equation 4.14, I propose the NN-KOMP algorithm (Algorithm 4.1) as the
non-negative extension of the KOMP algorithm from (H. V. Nguyen et al. 2013). In step
8 of the algorithm, the non-negative vector γ⃗I corresponding to the currently selected
dictionary atoms UI is estimated by Algorithm A.1 as the kernel-based non-negative least
square method (K-NNLS). I propose the K-NNLS algorithm by kernelizing the active
set fast non-negative least square optimization method (FNNLS) from (Bro and De Jong
1997). According to Algorithm 4.1, NN-KOMP takes O((5T + T2)N

2 + T4.3) steps to find
a solution for each γ⃗i from Equation 4.14 and also requires O(kN2 + k2N) computation
operations to update all Γ.

Updating the Dictionary Matrix U

As the second part of my NNKSC algorithm, I want to find the best dictionary Φ(X )U
which minimizes (Equation 4.13) while using the obtained coefficients Γ as the output
of NN-KOMP in the previous section. Based on (H. V. Nguyen et al. 2013), the error
function ∥Φ(X )−Φ(X )UΓ∥2

F can be reformulated as:

∥Φ(X )Ei −Φ(X )u⃗iγ⃗
i∥2

F, Ei = (I −∑
j ̸=i

u⃗jγ⃗
j). (4.15)

In Equation 4.15, Φ(X )Ei is the reconstruction error using all the dictionary columns
except u⃗i, and γ⃗i is the corresponding coefficients in the i-th row of the updated Γ.
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Algorithm 4.2 The NN-KFISTA algorithm: updates a dictionary atom based on Equa-
tion 4.16 in the presence of a non-negativity constraint.

1: Input: function f (u⃗,K(X, X), E) from Equation 4.17, sparseness weight λ
2: Output: non-negative sparse dictionary atom u⃗ as the approximate solution to

(Equation 4.16)
3: Initialize variables as m = 0, t = 1, 0 < η < 1, α ≥ 0, δ
4: for m ∈N do

5:

i = arg min
i

i

s.t. αm = ηiαm−1
u⃗m+1 = ταmλ(u⃗m − αm∇ f (u⃗m))

f (u⃗m+1)− f (u⃗m) > (u⃗m+1 − u⃗m)⊤∇ f (u⃗m)− ∥u⃗
m+1−u⃗m∥2

2
2αm

i ∈N

6: if f (u⃗m+1) < δ then
7: Stop the algorithm.
8: else
9: tm+1 = (1 +

√
1 + 4t2

m)/2.
10: u⃗m+1 ← u⃗m+1 + (u⃗m+1 − u⃗m)(tm − 1)/tm+1.
11: end if
12: end for

Therefore, dictionary columns can be updated through solving Equation 4.15 for {u⃗i}k
i=1.

As an essential constraint, we have to take into account that the optimal dictionary
should be used along with non-negative coefficients Γ. According to Equation 4.15, we
are looking for the solution of the following optimization problem:

u⃗i = arg min
u⃗i

∥Φ(X )Ei −Φ(X )u⃗iγ⃗
i∥2

F + λ∥u⃗i∥1

s.t. u⃗i ≥ 0
(4.16)

In order to solve the problem of Equation 4.16, I propose the non-negative kernel
FISTA algorithm (NN-KFISTA), which is a combination of the projected gradient tech-
nique (C.-J. Lin 2007) and the first order Shrinkage-Thresholding method (Beck and
Teboulle 2009). In steps 5 and 6 of Algorithm 4.2, values of f (u⃗i), ∇ f (u⃗i), and entries of
τl(u⃗i) are calculated as:

f (u⃗i) = ∥Φ(X )Ei −Φ(X )u⃗iγ⃗
i∥2

F = tr[(Ei − u⃗iγ⃗
i)⊤K(X, X)(Ei − u⃗iγ⃗

i)]
∇ f (u⃗i) = −2K(X, X)(Ei − u⃗iγ⃗

i)γ⃗i⊤

τl(uij) = (uij − l)(sign(uij − l) + 1)/2, ∀j,
(4.17)

where tr(.) denotes the trace operator. The convergence analysis of the NN-KFISTA
algorithm mainly follows the same principles as presented in (Beck and Teboulle 2009)
for the FISTA optimization method, in which it is proven that the FISTA algorithm
(and consequently NN-KFISTA ) has quadratic convergence. Regarding the run-time
complexity of Algorithm 4.2, when excluding the precomputation parts, NN-KFISTA in
the worst case needs O(m[8N2 + (5 + 7s)N + 3s]) steps to converge, where m and s
denote the total iteration for outer-loop and the step 5 of the algorithm, respectively.
Additionally, NN-KFISTA requires O(2kN2) precomputation to update all the columns
in U.

Note: When computing Ei to update u⃗i, matrix U should be used with its recently
updated columns to improve the optimization loop’s convergence speed. For example,
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4 .2 non-negative kernel sparse coding

Algorithm 4.3 The NNKSC algorithm: learns a non-negative dictionary and sparse code
matrices as the approximate solution to the sparse coding problem in Equation 4.13. The
algorithm applies cardinality constraint on the sparse encoding vectors.

1: Input: Sparseness parameters (T, λ), Kernel matrix K(X, X), stopping threshold δ.
2: Output: Approximate solutions (Γ, U) to Equation 4.13
3: Initialization: U← a random matrix with single-entry binary columns.
4: while [objective of Equation 4.13] > δ do
5: Updating Γ based on Equation 4.14 using NN-KOMP (Algorithm 4.1).
6: Updating U based on Equation 4.15 using NN-KFISTA (Algorithm 4.2).
7: end while

when successively updating columns of U in Step 6 of Algorithm 4.3, matrix Ei is
computed based on the current update of U as:

U = {u⃗t
1, u⃗t

2, ..., u⃗(t−1)
i−1 , u⃗(t−1)

i , ..., u⃗(t−1)
k },

where u⃗t
i is the value of u⃗i at iteration t of NNKSC . Moreover, directly after updating each

u⃗i via the NN-KFISTA algorithm, it should be normalized as u⃗i ← u⃗i
∥Φ(X )u⃗i∥2

to prevent
degeneracy during the optimization loop. This step applies the constraint ∥Φ(X )u⃗i∥2

2 = 1
as a bound on l2-norm of the dictionary columns, which is a typical step to prevent the
solution of Equation 4.13 from becoming degenerated (Michael Elad and Michal Aharon
2006).

To sum up, the optimization loop of the NNKSC algorithm consists of solving the
two main optimization problems (Equations 4.14 and 4.15) until a convergence criterion
is reached (Algorithm 4.3).

Label Consistent NNKSC Extension

As discussed in Chapter 1, another research goal is to enrich the resulting sparse motion
embedding with supervised information, i.e., a sparse γ⃗ should also encode the labeling
information about the input motion sequence X. In addition, by aiming for interpretation
of the resulted embedding, we want to learn a γ⃗ that can clearly relate X to other sequences
of its type. As already discussed in the previous subsection, the specific structure of
the dictionary and the sparse codes in the proposed non-negative K-SRC framework
(Equation 4.13) have the required basis to achieve the above. Nevertheless, the common
inter-class overlaps in real data results in the encoding of some data samples by columns
of D (or Φ(X )U) that belong to a different data class. Therefore, it is required to add
discriminative characteristics to the structure of this framework.

Accordingly, I extend my NNKSC algorithm to appropriate discriminative frame-
works, which incorporate the supervised information in order to project semantic simi-
larities of the data (labeling information H) to the resulting embedded sparse vectors
Γ.

One straightforward approach to obtain the above goal is to use the idea of “Label
Consistent SC” from (Z. Jiang, Z. Lin, and Davis 2013) and apply it to our non-negative
model NNKSC . This idea was already kernelized in (Z. Chen et al. 2015) for the K-KSVD
algorithm. To that aim, I extend the optimization problem of Equation 4.13 using the
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label matrix H related to training data:

min
Γ,U

∥Φ(X )−Φ(X )UΓ∥2
F + α∥H−HUΓ∥2

F + λ∥U∥2
1

s.t. ∥⃗⃗γi∥0 ≤ T, ∀i = 1, . . . , N, uij, γij ∈ R≥0,
(4.18)

where the parameter α is chosen with a trade-off between the reconstruction error
and the classification accuracy. Denoting the augmented kernel matrix as K̃(Xi, Xj) =

K(Xi, Xj) + α⟨⃗hi, h⃗j⟩, the optimization problem in Equation 4.18 can be solved by the
proposed Algorithm 4.3.

After training the dictionary matrix U, a test data Z can be encoded by applying
NN-KOMP (Algorithm 4.1) on Equation 4.14. Afterward, the resulting sparse code γ⃗
would be used to determine the label of Z as

l = arg min
i
|1− h⃗iUγ⃗|, (4.19)

where h⃗i denotes the i-th row of H.

In the experiments (Section 4.5), we observe that the LC-NNKSC extension benefits
from both the favorable compact encoding of NNKSC and the class-based interpretability
of the resulting model. Nevertheless, the LC-NNKSC algorithm still lacks consistency
between its training and recall phases as a common issue of discriminative sparse coding
frameworks, which was pointed out in Section 4.1. In the next section, I propose a more
robust extension of the NNKSC to a discriminative framework, which mitigates the above
concern.

4 .3 confidence based kernel sparse coding

In Section 4.2, the designed NNKSC algorithm can encode motion sequences to sparse
interpretable encoded vectors. Also, LC-NNKSC can extend that algorithm to a dis-
criminative framework, which provides class-based interpretability for the encoding.
Nevertheless, as pointed out in the previous section, the LC-NNKSC framework, similar
to other discriminative SRC algorithms, suffers from inconsistency between its training
and test models. In this section, I propose a novel confident K-SRC and dictionary learn-
ing algorithm (CKSC ), which employs the supervised information in both of the training
and recall models. Such formulation provides more consistency in the CKSC frame-
work compared to other discriminative sparse codings, which improves the class-based
encoding of the test data as well as its interpretability.

I propose a novel kernel-based discriminative sparse coding algorithm with the
following training framework

Train : min
Γ,U

R(X , Γ, U) + αF (H, Γ, U)

s.t. ∥γ⃗i∥0 < T, ∥Φ(X )u⃗i∥2
2 = 1,

∥u⃗i∥0 ≤ T, uij, γij ∈ R≥0 ∀ij
(4.20)

and its relevant recall framework as

Recall : min
γ⃗
R(X , Z, U, γ⃗) + αG(H, γ⃗, U)

s.t. ∥γ⃗∥0 < T, γi ∈ R≥0 ∀i
(4.21)
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In these two frameworks, R is the same reconstruction loss function as in NNKSC sparse
coding algorithm (Equation 4.13), and {F ,G} are the novel discriminative loss terms I
introduce in this section for the CKSC algorithm. Parameter T applies the l0-norm sparsity
constraint on the columns of {U, Γ}, and α is the control factor between the reconstruction
and the discriminant terms. In the following sub-sections, I discuss the mathematical
detail of these objective terms (as presented in Equation 4.27 and Equation 4.28) and
explain my particular design choice motivations.

Reconstruction Term R(X , U, Γ)

Similar to the K-SRC framework of NNKSC , I define the reconstruction objective of
Equation 4.20 as

R(X , Γ, U) = ∥Φ(X )−Φ(X )UΓ∥2
F. (4.22)

Based on Proposition 4.1 and discussion of Section 4.2, Φ(X )U is a proper structure for
an interpretable kernel-based dictionary.

Proposition 4.2. Using the dictionary structure of Equation 4.22, sparse reconstruction of
sequence Φ(X) necessitates to bound the value of ∥u⃗i∥0.

Proof. Refer to Appendix A.6.

Proposition 4.2 justifies the need to have a constraint on ∥u⃗i∥0, which leads to the
sparse representation of each X in terms of other samples in X . Such constraint facil-
itates the interpretation of the encoding vector γ⃗. Accordingly, I choose ∥u⃗i∥0 ≤ T in
Equation 4.20, which places a more specific bound on the sparseness of U compared to
NNKSC . Nevertheless, due to this constraint in Equation 4.20, I use another optimiza-
tion algorithm to update columns of U rather than Algorithm 4.2. Also, similar to the
optimization of U in NNKSC , the constraint ∥Φ(X )u⃗i∥2

2 = 1 prevents the solution of
(4.20) from becoming degenerated (Michael Elad and Michal Aharon 2006).

Discriminative Objective F (H, U, Γ):

Before discussing the mathematical content of F (H, U, Γ), I explain the motivation
behind my specific choice of F as the discriminant term. If Φ(X) is reconstructed as
Φ(X) = Φ(X )Uγ⃗, then the entries of HUγ⃗ ∈ RC show the share of each class in the
reconstruction of Φ(X). Hence, as an extreme case, if we assume that X belongs to
the class q and Φ(X) is lying on the subspace of class q in the feature space, we have
h⃗sUγ⃗ = 0 ∀s ̸= q. Vector h⃗s denotes the s-th row of the label matrix H. Proposition 4.3
generalizes this extreme case to a more realistic condition that Φ(X) is lying on a union
of subspaces.

Proposition 4.3. If sequence Φ(X) belongs to the class q and is lying on a union of subspaces
with arbitrarily small contributions from the subspaces s ̸= q, then the non-negative discriminant
combination {U, γ⃗} can reconstruct Φ(X) such that

∑s ̸=q h⃗sUγ⃗

h⃗qUγ⃗
≤ ϵ

for an arbitrarily small ϵ.
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Proof. Refer to Appendix A.7.

Proposition 4.3 provides the following remarks.

Remark 4.1. Via focusing on Uγ⃗, it is possible to obtain a discriminative reconstruction
of X in the feature space by using data points from all of the classes, as long as the class
of X holds the largest share of contributions. This relaxation results in a more flexible
dictionary U regarding both the reconstruction and classification purposes.

Remark 4.2. From a classification point of view, I denote HUγ⃗ as the decision vector. The
largest entry of HUγ⃗ represents the class that its subspace reconstructs the biggest part
of Φ(X) in the feature space and can be considered the class to which X belongs.

In addition, Proposition 4.3 provides the rationale for having the non-negative con-
straints on U, Γ in Equation (4.20). According to the above discussion, I define

F (H, U, γ⃗) = ∑
s ̸=q

h⃗sUγ⃗,

which is the sum of contributions from other classes. Hence, for all Γ we have

F (H, U, Γ) = ∑
i
F (H, U, γ⃗i) = tr((1−H⊤)HUΓ) (4.23)

where 1 ∈ RN×C is a matrix of one, and tr(.) denotes the matrix trace. Function F (H, U, Γ)
is a linear term respecting each γ⃗i and u⃗i individually. Therefore, it does not violate the
convexity of the optimization problem in Equation 4.20. Considering the optimization
framework of Equation 4.27, F is employed along with the additional term β∥UΓ∥2

F.
This term preserves the consistency between the training and the recall models and is
explained in the next subsection.

Remark 4.3. In contrast to other discriminative sparse coding frameworks such as (Mairal,
F. Bach, and Ponce 2012; Z. Jiang, Z. Lin, and Davis 2013; W. Liu et al. 2015), my proposed
discriminant term is a compact function of (H, U, Γ). This structure directly involves
the supervised information H in the optimization of both U and Γ (Figure 4.4), which
improves the discriminative quality of the learned dictionary.

Discriminative Recall Term G(H, γ⃗, U):

For the encoding of a test sequence Z, we use the optimization problem of Equation 4.21.
In that case, the reconstruction loss is employed as

R(X , Z, U, γ⃗) = ∥Φ(Z)−Φ(X )Uγ⃗∥2
F. (4.24)

We can assume that Φ(Z) ∈ span{Φ(X )} and belongs to the class q such that its
projection on subspace q as ∥Φ(Z)q∥2 is arbitrarily larger than ∥Φ(Z)∥2 − ∥Φ(Z)q∥2.
Therefore, based on Preposition 4.3 and via using the learned U from Equation 4.20, there
exists a γ⃗ that reconstructs the test data as Φ(⃗z) = Φ(X )Uγ⃗ with more contributions
chosen from the class q. Consequently, the class label h⃗Z is predicted as a zero vector
with only h⃗Z(j) = 1, where

j = argmax
j

h⃗jUγ⃗ (4.25)
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H

U Γ

Figure 4.4: The influence of parameters on each other during the optimization loop of
CKSC algorithm. An arrow toward a specific parameter indicates other parameters that
influence it during its optimization step. The variables Γ and U have direct effects on
each other in their individual optimization steps. They are also directly influenced by the
value of H in the optimization framework.

In other words, h⃗z is determined by the class of data that has the most contribution to
the reconstruction of Z.

Since we do not have access to the labeling information for the test data, I propose a
cross-entropy-like loss for Equation 4.21 as

G(H, γ⃗, U) = ∑
i
(∑

s ̸=i
πs)πi where πi := h⃗iUγ⃗ (4.26)

Proposition 4.4. The proposed term G in Equation 4.26 is non-convex and has a non-negative
gradient.

Proof. Refer to Appendix A.8.

Although Proposition 4.4 shows that G is non-convex, having a non-negative model
of {γ⃗, U} results in a non-negative G, which can have its global optima where G(γ⃗∗) = 0.
Denoting π⃗∗ = HUγ⃗∗, besides the trivial solution of π⃗∗ = 0, the loss term reaches
its global optima when π⃗∗ contains only one non-zero value in its i-th entry. This is
equivalent to finding γ⃗∗ such that it reconstructs Z using contributions only from one
class of data.

Consequently, the non-trivial minima of both regularization terms in Equation 4.23
and Equation 4.26 occur at similar points where the decision vector HUγ⃗ has approxi-
mately a crisp form regarding only one of its entries. Therefore, adding G increases the
consistency between training and the test frameworks.

Proposition 4.5. Define

V := K(X ,X ) + αH⊤(1− IC×C)H

and β := −min
i

λi, with {λi}N
i=1 as the eigenvalues of V. Adding β∥Uγ⃗∥2

2 to the objective term

G (Equation 4.26) makes Equation 4.21 a convex optimization problem.

Proof. Refer to Appendix A.9.
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In order to preserve the consistency between the test and training models, I also
add the term β∥UΓ∥2

F to the discriminant loss F of Equation 4.23, which results in the
complete training framework of Equation 4.27. By doing so, we want to make sure
the dictionary U has a consistent role in both train and test optimization problems.
Furthermore, parameter β is independent of the test data and is computed only once and
prior to the optimization phase.

Remark 4.4. The added term ∥Uγ⃗∥2
2 to Equation 4.21 has a similar effect to the l2-norm

regularization term used in the elastic net formulation from (Zou and Hastie 2005) in the
vectorial case:

min
γ⃗
∥x⃗− Xs∥2

2 + β∥s∥2
2 + α∥s∥1.

Hence, this term relaxes the model’s sparseness according to the weighting scalar β, which
is similar to the grouping effect in the above elastic net problem (Zou and Hastie 2005).
Nevertheless, this added term does not apply any restriction regarding the discriminative
structure of γ⃗.

Distinguishing CKSC from the Related Work

Due to the extensive discriminative sparse coding frameworks existing in the literature, I
want to compare the structure of my proposed CKSC algorithm to the related work from
the following explicit aspects:

• Compared to the methods such as (F. Bach et al. 2008; N. Zhou et al. 2012; S. Kong
and D. Wang 2012), which mainly define multiple isolated dictionaries for each
class of data, CKSC uses a single seamless dictionary for all classes. However, each
dictionary column is still formed based on the contributions mostly from one class
of data. This structure makes the dictionary efficient also for the reconstruction of
the inter-class overlaps in the data.

• Some algorithms, such as (Z. Jiang, Z. Lin, and Davis 2013; W. Liu et al. 2015; Quan,
Y. Xu, et al. 2016), employ H in their discriminant models via using additional
parameters (such as W in Equation 4.8). However, as explained in Section 4.1, the
optimization of U is not directly influenced by H (Figure 4.2-a). In contrast, the linear
discriminant term in the CKSC directly involves the value of H in the optimization
of the dictionary. This formulation incorporates the underlying formation of the
classes into the structure of the learned dictionary.

• Different from algorithms such as (Mairal, F. Bach, and Ponce 2012; Z. Jiang, Z. Lin,
and Davis 2013; W. Liu et al. 2015; Quan, Y. Xu, et al. 2016), my proposed method
considers a discriminative term also for the recall phase to influence the resulting γ⃗
toward achieving a more confident discriminative representation.

In the next section, I explain the optimization steps regarding frameworks of Equa-
tion 4.20 and Equation 4.21.
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4 .3 confidence based kernel sparse coding

Optimization Scheme

By rewriting Equation 4.20 and Equation 4.21 using the provided descriptions of F and
G in the previous section, we obtain the following optimization framework of training

Train : min
Γ,U

∥Φ(X )−Φ(X )UΓ∥2
F + β∥UΓ∥2

F

+αtr{(1−H⊤)HUΓ}
s.t. ∥γ⃗i∥0 < T, ∥Φ(X )u⃗i∥2

2 = 1,
∥u⃗i∥0 ≤ T, uij, γij ∈ R≥0, ∀ij

(4.27)

and its relevant recall problem as

Test : min
γ⃗
∥Φ(Z)−Φ(X )Uγ⃗∥2

F + β∥Uγ⃗∥2
F

+α(γ⃗⊤U⊤H⊤(1− I)HUγ⃗)
s.t. ∥γ⃗∥0 < T, γi ∈ R≥0 ∀i

(4.28)

Although the optimization problem of Equation 4.27 is not convex w.r.t. {U, Γ} together,
we can train the discriminantive sparse coding model in 2 alternating convex optimization
steps. At each step, I update one of the parameters while fixing the other one, as presented
in Algorithm 4.4.

Update of the Sparse Codes Γ

The entire objective function in Equation 4.27 has a column-separable structure w.r.t. Γ,
and it can be optimized for each γ⃗i individually. Therefore, after removing the constant
terms, Equation 4.27 is rewritten w.r.t. each γ⃗i as

min
γ⃗i

γ⃗⊤i
[
U⊤(K+ βI)U

]
γ⃗i

+
[
α(1− h⃗⊤i )HU− 2K(x⃗i, X)U

]
γ⃗i

s.t. ∥γ⃗i∥0 < T, γij ∈ R≥0 ∀ij,

(4.29)

where K stands for K(X ,X ). This optimization framework is a non-negative quadratic
programming problem with the constraint ∥γ⃗i∥ < T. Furthermore, K + βI is a PSD
matrix, and consequently Equation 4.29 is a convex problem. In order to optimize such
problems, I propose the Non-negative Quadratic Pursuit (NQP) algorithm, which is a
particular generalization of the Matching Pursuit approach (M. Aharon, M. Elad, and
Bruckstein 2006). NQP is presented in Algorithm 4.5 and discussed in a later section.

Update of the Dictionary U

Similar to Equation 4.29, it is also possible to reformulate the objective terms of Equa-
tion 4.27 w.r.t. each dictionary column u⃗i separately. Its reconstruction part R(X , Γ, U)
can be rewritten as Equation 4.15 for NNKSC using the additional matrix Ei. Likewise,
the rest of the objective parts in Equation 4.27 can be written in terms of u⃗i as

βu⃗⊤i (γ⃗
iγ⃗i⊤I)u⃗i + αγ⃗i(1−H⊤)Lu⃗i + 2βγ⃗i(I− E⊤i )u⃗i,
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Algorithm 4.4 The CKSC algorithm: finds an approximate solution to Equation 4.20
as a non-negative sparse encoding of motion sequences in the feature space under the
cardinality constraint and while preserving supervised information.

1: Parameters: discriminant weight α, sparseness limit T, and stopping threshold δ.
2: Input: Labels H, kernel matrix K(X ,X ).
3: Output: Sparse coefficients Γ, discriminant dictionary U.
4: Initialization: Computing β based on Proposition 4.5.
5: while R(X, Γ, U) + αF (H, Γ, U) > δ in Equation 4.20 do
6: Update Γ based on Equation 4.29 using NQP.
7: Update U based on Equation 4.30 using NQP.
8: end while

where the constant parts are eliminated. So, by using the kernel function K(X ,X ), I
reformulate Equation 4.27 for updating u⃗i as

min
u⃗i

βu⃗⊤i (γ⃗
iγ⃗i⊤(K+ βI))u⃗i

+γ⃗i[α(1−H⊤)L + 2β(I− E⊤i )− 2E⊤i K
]
u⃗i

s.t. ∥Φ(X )u⃗i∥2
2 = 1, ∥u⃗i∥0 ≤ T , uij ∈ R≥0 ∀j

(4.30)

Similar to Equation 4.29, the above framework has the non-negative quadratic form with
the cardinality constraint ∥u⃗i∥0 ≤ T and is a convex problem as well. Consequently, its
solution can be approximated using the proposed NQP method (Algorithm 4.5).

Note: The same considerations regarding computing Ei based on the updated value of
U in each step and normalization each Φ(X )u⃗i should be taken similar to the NNKSC al-
gorithm (Section 4.2).

Update of the Recall Phase γ⃗:

To reconstruct the test sequence Z, its corresponding sparse code γ⃗ is approximated via
expanding Equation 4.28 as follows

min
γ⃗

γ⃗⊤U⊤
[
K+ αH⊤(1− I)H + βI

]
Uγ⃗

−2K(⃗z, X)Uγ⃗
s.t. ∥γ⃗∥0 < T, γj ∈ R≥0 ∀j

(4.31)

The convexity of this optimization problem is guaranteed based on Proposition 4.5, and
can be approximately solved by the NQP algorithm similar to the update of Γ and U.

Non-negative Quadratic Pursuit (NQP)

Consider a quadratic function f (γ⃗) := 1
2 γ⃗⊤Qγ⃗ + c⃗⊤γ⃗, in which γ⃗ ∈ Rn, c⃗ ∈ Rn, and

Q ∈ Rn×n is a hermitian positive semidefinite matrix. Non-negative quadratic pursuit
algorithm (NQP) is an extended form of the Matching Pursuit problem (M. Aharon,
M. Elad, and Bruckstein 2006) and is inspired by by (H. Lee et al. 2006). Its objective is to
approximately minimize f (γ⃗) in an NP-hard optimization problem similar to

γ⃗ = arg min
γ⃗

1
2 γ⃗⊤Qγ⃗ + c⃗⊤γ⃗

s.t. ∥γ⃗∥0 ≤ T , γi ≥ 0 ∀i,
(4.32)
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where at most T ≪ n elements from γ⃗ are permitted to be positive while all other
elements are forced to be zero. As presented in Algorithm 4.5, I compute ∇γ⃗ f (γ⃗) at each
iteration of NQP to guess the next promising dimension of γ⃗ (denoted as γj), leading to
the largest decrease in the current value of f (γ⃗I ), where I denotes the set of currently
chosen dimensions of γ⃗ based on the previous iterations. I look for a γ⃗ ≥ 0 solution
in each iteration. Also, the entries of γ⃗ corresponding to new possible dimensions are
all initially zero. Therefore, similar to the Gauss-Southwell rule in coordinate descent
optimization (Nesterov 2012), I choose the dimension j that is related to the smallest
negative entry of ∇γ⃗ f (γ⃗) as

j = arg min
j∈S

q⃗⊤j γ⃗ + cj s.t. q⃗⊤j γ⃗ + cj < 0. (4.33)

In Equation 4.33, q⃗j is the j-th column of Q. Then, by adding j to I , the resulting
unconstrained quadratic problem can be solved using the closed-form solution γ⃗I =
−QII−1⃗cI . Accordingly, I repeat this process until reaching ∥γ⃗∥0 = T stopping criterion.
Corresponding to the set I , notations QII and c⃗I indicate the principal submatrix of Q
and the subvector of c⃗, respectively.

In order to preserve non-negativity of the solution γ⃗ in each iteration t of NQP, in
case of having a negative entry in γ⃗t

I , a simple line search is performed between γ⃗t
I and

γ⃗
(t−1)
I . The line search chooses the nearest zero-crossing point to γ⃗

(t−1)
I on the connecting

line between γ⃗
(t−1)
I and γ⃗t

I .

In addition, to reduce the computational cost, I use the Cholesky factorization QII =
LL⊤ (Van Loan 1996) to compute γ⃗ with a back-substitution process. Furthermore,
because matrix Q in equations (4.32) is PSD, its principal sub-matrix QII should be
either PD or PSD theoretically (Johnson and H. A. Robinson 1981), where the first case is
a requirement for the Cholesky factorization. However, by choosing T << rank(Q) in
practice, the optimization loop has never encountered a singular condition. Nevertheless,
to avoid such rare conditions, I do a non-singularity test for the selected dimension j by
examining qjj ̸= v⊤v after obtaining v (Step 12 in Algorithm 4.5). In case the resulting v
does not fulfill that condition, I choose another j based on Equation 4.33.

The Convergence of NQP

NQP does not guarantee the global optimum as it is a greedy selection of rows/columns
of matrix Q to provide a sparse approximation of the NP-hard problem in Equation 4.32;
nevertheless, its convergence to a local optimum point is guaranteed.

Theorem 4.1. The Non-negative Quadratic Pursuit algorithm (Algorithm 4.5) converges to a
local minimum of Equation 4.32 in a limited number of iterations.

Proof. Refer to Appendix A.10.

The Computational Complexity of NQP

We can calculate the computational complexity of NQP by considering its individual
steps. Iteration t contains computing Qγ⃗ + c⃗ (nt + t operation), finding minimum of
∇γ⃗ f (γ⃗) w.r.t. the negative constraint (2n operations), computing v (t2 operation for the
t× t back-substitution), computing γ⃗t

I (two back-substitutions resulting in 2t2 operation),
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Algorithm 4.5 The non-negative quadratic pursuit algorithm: finds an approximate
solution to the optimization problem of Equation 4.32, which is a non-negative quadratic
problem in the presence of a carnality constraint.

1: Parameters: Carnality limit T, stopping threshold ϵ.
2: Input: Q ∈ Rn×n and c⃗ ∈ Rn from Equation 4.32.
3: Output: An approximate solution γ⃗.
4: Initialization: γ⃗ = 0 , I = {} , S = {1, ..., n} , t = 1.
5: do
6: j = arg min

j∈S
q⃗⊤j γ⃗ + cj s.t. q⃗⊤j γ⃗ + cj < 0

7:
8: if j = ∅ then Convergence.
9:

10: I := I ∩ j;
11:
12: q⃗I j := created via selecting rows I and column j of matrix Q.
13:
14: c⃗I := a subvector of c based on selecting entries I of vector c⃗.
15:
16: if t > 1 then
17: v := Solve for v

{
Lv = q⃗I j

}
;

18:

19: L :=

[
L 0

v⊤
√

qjj − v⊤v

]
20:
21: else
22: L = qjj
23: end if
24: γ⃗t

I := Solve for x
{

LL⊤x = c⃗I
}

;
25:
26: if ∃j ∈N; (γt

j < 0) then

27: γ⃗t
I := the nearest zero-crossing to γ⃗

(t−1)
I via a line search.

28:
29: S := S − {zeros entries in γ⃗t

I}
30: end if
31: S := S − j
32:
33: t = t + 1
34: while (S ̸= {}) ∧ (∥γ⃗∥0 < T) ∧ ( 1

2 γ⃗⊤Qγ⃗ + c⊤γ⃗ ≥ ϵ)

and checking negativity of entries of γ⃗t
I along with the probable line-search which has 3t

operations in total. Hence, the total runtime of iteration t is bounded by

Tt = (n + 4)t + 2n + 3t2,

, and the total runtime of the algorithm is

TNQP = ∑T
t=1(n + 4)t + 2n + 3t2

= 2nT + T(T + 1)[ n+2T+5
2 ].

(4.34)

Hence, its computational complexity is bounded by O(n(2T + T2

2 ) + T3

2 ). When one uses
NQP for estimating the sparse codes, its run-time would be linear in terms of the dictio-

72



4 .4 motion clustering using non-negative kernel sparse coding

nary size k. In contrast, the NN-KNOP method’s run-time complexity (Algorithm 4.1) is
O((5T + T2)N

2 + T4.3) which is linear in terms of data size N.

Although both algorithms look for maximum T elements to estimate γ⃗, due to the non-
negativity constraint and convexity of the problem, both algorithms converge in a small
number of iterations (usually smaller than 20), which is independent of the dictionary
or data size or the value of T. Hence, without investigating a rigorous mathematical
analysis, both algorithms show superlinear convergence empirically.

In addition, as it is discussed in Section 4.5, we can choose k based on T and C in
practice. Therefore, dictionary size k is not dependent on data size N and more often, it is
saturated to a specific value for large N. This facts results in having a fixed upper bound
for run-time complexity of NQP when estimating γ⃗, while NN-KOMP computations are
linearly affected by the data size (even for each encoding vector γ⃗).

From another point of view, when updating a dictionary atom u⃗i, the NN-KFISTA method
for NNKSC and LC-NNKSC algorithms (Section 4.2) has O(N2) runtime complexity for
big values of N. In comparison, updating each u⃗i using NQP optimization has an O(N)
complexity. Furthermore, since NQP is applicable to quadratic problems, we can assume
that NN-KOMP addresses a subset of the NQP application domain. Based on the above
facts, I can claim that NQP is more efficient than both NN-KOMP and NN-KFISTA in
terms of run-time complexity and the application domain.

4 .4 motion clustering using non-negative kernel sparse coding

As discussed before, K-SSC methods can obtain a particular sparse encoding of non-
vectorial datasets. This encoding reveals the underlying categories of data given that no
supervised information is provided. The K-SSC sparse coding models are constructed
upon the self-representation of the data distribution. For example, for mocap data,
each motion sequence would be directly represented by other sequences based on a
given underlying semantic similarity (kernel information). As cited in Section 4.1, K-
SSC methods’ non-negative variations enhance the interpretation of the self-representative
encoding vectors for non-vectorial data such as motion sequences. In this section, I
propose a novel K-SSC that improves the quality of the self-representation encoding w.r.t.
revealing the underplaying subspaces in the data distribution. To that aim, I propose a
novel optimization framework for the K-SSC problem and a post-processing algorithm to
enhance the obtained encoding for the clustering purpose.

In the following, I first introduce my proposed SSC algorithm, non-negative local
subspace sparse clustering (NLSSC ), for the general case of vectorial input data. Later, I
extend this algorithm to its kernel-based variation NKLSSC, which is also applicable to
other input types such as motion sequences.

Non-negative Local Subspace Sparse Clustering

Considering vectorial data representation x⃗ and the dataset matrix X, I formulate my non-
negative local SSC algorithm (NLSSC ) using the following self-representative framework:

min
Γ
∥Γ∥∗ + λ

2 ∥X− XΓ∥2
F + µElsp(Γ, X)

s.t. Γ⊤⃗1 = 1⃗, γij ≥ 0, γii = 0 ∀ij,
(4.35)
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where γii = 0 prevents data points from being represented by their own contributions
as trivial solutions. The constraint Γ⊤⃗1 = 1⃗ focuses on the affine reconstruction of data
points, which coincides with having the data lying in an affine union of subspaces ∪n

l=1Sl .
The nuclear norm regularization term ∥Γ∥∗ = trace(

√
Γ∗ Γ) is employed to ensure the

sparse coding representations are low-rank. This term specifically helps the sparse model
to capture the global structure of data distribution more appropriately.

The non-negativity constraint of Equation 4.35 on γij is employed to enforce the data
combinations to happen mostly between similar samples. In other words, this term aids
the sparse encoding to become more interpretable regarding the semantic meaning of its
entries. The novel term Elsp(Γ, X) is a loss function that focuses on the local separation of
data points in the coding space according to columns of Γ. Accordingly, scalars λ and µ
are constant weights, which control the contribution of these objective terms.

The goal of minimizing Elsp(Γ, X) in the SSC model is to reduce intra-cluster distance
and increase inter-cluster distance. To that aim in an unsupervised setting, I define:

Elsp(Γ, X) :=
1
2 ∑

i,j

[
wij∥γ⃗i − γ⃗j∥2

2 + bij(γ⃗
⊤
i γ⃗j)

]
, (4.36)

in which the binary regularization weighting matrices W and B are computed as

wij =

{
1, if x⃗j ∈ N k

i

0, otherwise
, bij =

{
1, if x⃗j ∈ F k

i

0, otherwise
(4.37)

The two sets N k
i and F k

i refer to the k-nearest and k-farthest data points to x⃗i. These
sets are determined via computing Euclidean distance ∥x⃗i − x⃗j∥2 between each x⃗i and x⃗j.
Defining

J (W, Γ) := ∑i,j wij∥γ⃗i − γ⃗j∥2
2

S(B, Γ) := ∑i,j bij(γ⃗
⊤
i γ⃗j),

(4.38)

minimizing J (W, Γ) part reduces the distance between (γ⃗i, γ⃗j) if they belong to N k
i ,

while minimizing S(B, Γ) reduces the incoherency of each pair of (γ⃗i, γ⃗j) if they are
members of F k

i .

We can compare J (W, Γ) to the last loss term in Equation 4.12. However, the similarity
matrix W in Equation 4.12 defines a global distribution of similarity values between each
x⃗i and the rest of dataset. Hence, using such W as the weighting scheme in Equation 4.12
stretches the neighborhoods in the space spanned by columns of Γ, which naturally
leads to overlapping γ⃗i vectors among different subspaces in such space. On the other
hand, my proposed W in Equation 4.37 locally connects similar data samples in X.
Employing such W in J (W, Γ) to localize the neighborhoods in Γ, which better projects
the underlying existing data subspaces. Adding to the above, decreasing S(B, Γ) in
Elsp generally increases J (B, Γ) as the distance between distant neighborhoods, which
globally makes the neighborhoods in the encoding space more separated. As a result,
minimizing the loss term Elsp results in having localized and condense neighborhoods in
the sparse codes Γ by making the sparse codes of the neighboring samples more similar
(identical in the ideal case) while making those of faraway points incoherent (orthogonal
in the ideal case). It also provides the desired condition by which the local neighborhoods
in Γ can better respect the class labels l⃗ and leading to a better alignment between Γ and
the underlying subspaces.

74



4 .4 motion clustering using non-negative kernel sparse coding

Algorithm 4.6 The Link-Restore algorithm: performs post-processing on the encoded
sparse vectors from Equation 4.35, which revives the broken links in the representation
graph corresponding to Γ.

1: Input: Sparse code γ⃗, data matrix X, threshold τ ∈ [0, 1].
2: Output: Corrected γ⃗ by restoring its connections to other data points.
3: Initializing variables I = {i | γi ̸= 0} (except index of x⃗)

4: for all i ∈ I do
5: ˆ⃗γ = γ⃗.
6: Ī := {s | (x⃗⊤s x⃗s − 2x⃗⊤i x⃗s) < (τ − 1)x⃗⊤i x⃗i , γs = 0}.
7: γ̂i = γi(x⃗⊤i x⃗i/∑s∈{ Ī∪i} x⃗⊤i x⃗s).
8: γ̂s = γ̂i(x⃗⊤i x⃗s/x⃗⊤i x⃗i) , ∀s ∈ Ī.
9: γ⃗ = ˆ⃗γ, I = I\{i}.

10: end for

Clustering based on Γ

Similar to other SSC algorithms, the resulting sparse coefficient matrix Γ is used to
construct an adjacency matrix

A = Γ + Γ⊤, (4.39)

which defines a sparse representation graph G. This undirected graph consists of non-
negative weighted connections between pairs of (x⃗i, x⃗j), representing the local connections
of data points in the input space. Therefore, we can use A as the affinity matrix in the
spectral clustering algorithm (Y. Yang, Zhangyang Wang, et al. 2014) to find the data
clusters.

Link-Restore

After constructing the affinity matrix based on Γ, it is desired to observe positive weights
in the representation graph G between every two points of a given data cluster. However,
it is possible to see non-connected nodes (broken links) even inside condense clusters in
practice. This happens due to the redundancy issue related to sparse coding algorithms. In
Equation 4.35, X is used as an over-complete dictionary to reconstruct each x⃗i. Therefore,
we can assume x⃗i ≈ Xγ⃗i. Nevertheless, as a common observation in sparse coding models,
the solution for the value of γ⃗i is suboptimal because of the utilized ∥γ⃗i∥p relaxations.
Thus for x⃗s as a close data point to x⃗i, it is possible to have x⃗s ≈ Xγ⃗s, but with a big γ⃗⊤i γ⃗s.
This observation means γ⃗i and γ⃗s are not similar in the entries. Consequently, aij can be
small, resulting from distinct γ⃗i and γ⃗s, albeit x⃗i and x⃗s are very similar.

As a workaround to the mentioned issue, I propose the Link-Restore method (Al-
gorithm 4.6) as an effective step regarding these situations. It acts as a post-processing
step on the obtained Γ before the application of spectral clustering. Link-restore corrects
entries of each γ⃗ by restoring the broken connections between x⃗ and other points in
the dataset. To do so, it first obtains the current set of data points connected to x⃗ as
I = {i | γi ̸= 0}, where γi denotes the i-th entry in vector γ⃗. Then for each γ⃗i that i ∈ I,
the algorithm collects the indices Ī of data points close to x⃗i but not used in the sparse
code of x⃗ (line 6). To that aim, for each x⃗s ∈ Ī the criterion ∥x⃗i − x⃗s∥2

2/∥x⃗i∥2
2 < τ should

be fulfilled, where 0 ≤ τ ≤ 1. Then, to incorporate members of Ī into γ⃗, the entry γi is
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projected to Ī ∪ i based on the value of x⃗⊤i x⃗s

x⃗⊤i x⃗i
∀s ∈ Ī while also maintaining the affinity

constraint on γ⃗ (lines 7-8). It is essential to point out that the pre-assumption for the
above is that γi ≥ 0 ∀i. Therefore the link-restore method can be assumed as a proper
post-processing method for non-negative subspace clustering algorithms.

Kernel Extension of NLSSC

In order to apply the proposed NLSSC to non-vectorial data such as motion, we can
use the kernel representation of data as K(X ,X ), where the set X contains motion
sequences. Even using such representation for vectorial data, we can benefit from the
non-linear characteristics of this implicit mapping to obtain better representation for the
data. Accordingly, I can reformulate my NLSSC method (Equation 4.35) into its kernel
extension as the non-negative local kernel SSC algorithm (NLKSSC ):

min
Γ
∥Γ∥∗ + λ

2 ∥Φ(X)−Φ(X)Γ∥2
F + µElsp(Γ, Φ(X))

s.t. Γ⊤⃗1 = 1⃗, γij ≥ 0, γii = 0 , ∀ij
(4.40)

Comparing to Equation 4.35, the second term in the objective of Eq.4.40 means a self-
representation in the feature space, and the local-separability term (Elsp) is equivalent
to the one used in 4.35. However, W and B in Elsp are computed based on the entries
K(x⃗i, x⃗j) which directly indicate the pairwise similarity of each data x⃗i to its surrounding
neighborhood. The benefit of having a kernel representation of X is that a proper kernel
function leads to the more efficient role of Elsp in Equation 4.35. As we see in Sec. 4.4, we
can use the same optimization regime for both NLSSC and NLKSSC . Also, to kernelize
the link-restore algorithm, simply the lines 6-8 of the Algorithm 4.6 would be modified
by replacing any x⃗⊤i x⃗j with K(x⃗i, x⃗i) according to the above dot-product rule.

Optimization Scheme of NLKSSC

By putting Equation 4.36 into Equation 4.40, the following optimization framework is
derived

min
Γ
∥Γ∥∗ + λ

2 ∥X− XΓ∥2
F +

µ
2 ∑i,j

[
wij∥γ⃗i − γ⃗j∥2

2 + bij(γ⃗
⊤
i γ⃗j)

]
s.t. Γ⊤⃗1 = 1⃗, γij ≥ 0, γii = 0 , ∀ij

(4.41)

To simplify the third loss term in (4.41), I symmetrize W as W← W+W⊤
2 and do the same

for B. Then, I compute the Laplacian matrix L = D−W according to (Von. Luxburg 2007),
where D is a diagonal matrix such that dii = ∑j wij. Then, we can rewrite Elsp(Γ, X) =
tr(ΓLΓ⊤) + 1

2 tr(ΓBΓ⊤) with simple algebraic operations and reformulate Equation 4.41
as:

min
Γ
∥Γ∥∗ + λ

2 ∥X− XΓ∥2
F + µtr(ΓL̂Γ⊤)

s.t. Γ⊤⃗1 = 1⃗, γij ≥ 0, γii = 0 , ∀ij
(4.42)

where tr(.) is the trace operator and L̂ = (L + 1
2 B). The objective of Equation 4.42

is the sum of convex functions (trace, inner-product, and convex norms). Hence, the
optimization problem is a constrained convex problem and can be solved using the
alternating direction method of multipliers (ADMM) (Boyd et al. 2011) as presented
in Algorithm 4.7. Optimizing Equation 4.42 coincides with minimizing the following
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Algorithm 4.7 Optimization Scheme of NLSSC

1: Input: X, λ, µ, k, ∆ρ = 0.1, ρmax = 106.
2: Output: Sparse coefficient matrix Γ

3: Initialization: Compute {W, B, L̂}. Set all {Γ+, Γ, U, α+, αU , α⃗1} to zero
4: do
5: Updating Γ by solving Equation 4.44.
6: Updating U based on (J.-F. Cai, Candès, and Z. Shen 2010)(Equation 2.2).
7: Updating Γ+, α+, αU , α⃗1 based on Equation 4.45.
8: while Convergence criteria of Equation 4.46 is not met

augmented Lagrangian, which is derived by adding its constraints as penalty terms in
the objective function.

Lρ (Γ, Γ+, U, α+, αU , α⃗1) = ∥U∥∗ + λErep(X, Γ) + µElsp(X, Γ)
+ ρ

2∥Γ− Γ+∥2
F + tr(α⊤+(Γ− Γ+)) +

ρ
2∥Γ−U∥2

F
+tr(α⊤U(Γ−U)) + ρ

2∥Γ⊤⃗1− 1⃗∥2
2 + ⟨α⃗1, Γ⊤⃗1− 1⃗⟩,

(4.43)

in which Erep := 1
2∥X− XΓ∥2

F, and (Γ+, U) are auxiliary matrices related to the non-
negativity constraint and the term ∥Γ∥∗. Eq 4.43 contains the Lagrangian multipliers
α+, αU ∈ RN×N and α⃗1 ∈ RN , and the penalty parameter ρ ∈ R+. Minimizing Lρ

Equation 4.43 is carried out in an alternating optimization framework, such that at each
step of the optimization, all of the parameters {Γ, Γ+, U, α+, αU , α⃗1} are fixed except one.
Therefore, the updating steps are described as follows.
Updating Γ: At iteration t of ADMM, via fixing (Γt

+, Ut, αt
+, αt

U , α⃗t
1), the matrix Γt+1 is

updated as the solution to this Sylvester linear system of equations (Kirrinnis 2001)

[2λX⊤X + 2ρI + 1⃗⃗1⊤]Γt+1 + Γt+1[2µL̂] = ρ[Γt
+ + Ut + 1⃗⃗1⊤]− αt

U − αt
+ − 1⃗α⃗t⊤

1 (4.44)

Updating U: Updating Ut+1 which is associated with ∥Γ∥∗ can be done via fixing other
parameters and using the singular value thresholding method (J.-F. Cai, Candès, and
Z. Shen 2010) as Ut+1 = T1/ρ(Γ) where term T (.) is the thresholding operator from
(J.-F. Cai, Candès, and Z. Shen 2010)(Equation 2.2).
Updating Γ+, α+, αU , α⃗1, ρ: The matrix Γ+ and the multipliers are updated using the

following projected gradient descent and gradient ascent steps

Γt+1
+ = max(Γ + 1

ρ αt
+, 0), αt+1

+ = αt
+ + ρ(Γ− Γ+)

α⃗t+1
1 = α⃗t

1 + ρ(Γ⊤⃗1− 1⃗), ρt+1 = min(ρt(1 + ∆ρ), ρmax)
(4.45)

in which (∆ρ, ρmax) are the update step and higher bound of ρ, respectively.
Convergence Criteria: The algorithm reaches its convergence point when for a fixed ϵ > 0
we have

∥Γt − Γt−1∥∞ ≤ ϵ, ∥Γt
+ − Γt∥∞ ≤ ϵ

∥Ut − Γt∥∞ ≤ ϵ, ∥Γt⊤⃗1− 1⃗∥∞ ≤ ϵ (4.46)

Optimizing NLKSSC:

As mentioned in Section 4.4, the kernel-based extension of the NLSSC model (NLKSSC ) is
also optimized by using Algorithm 4.7. However, the kernel trick Φ(x⃗i)

⊤Φ(x⃗j) = K(x⃗i, x⃗j)

should be applied in advance to replace X⊤X of the optimization steps by matrix K(X ,X )
in Equation 4.44.
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4 .5 experiments

In this section, I evaluate the performance of my proposed Kernel-based sparse cod-
ing frameworks respecting the interpretability and discriminative quality of the re-
sulting encodings. I implement my approaches on real-world motion datasets, where
LC-NNKSC and CKSC are evaluated in a supervised setting while the performance of
NLKSSC is determined by unsupervised (clustering) measures.

Supervised Setting

In this section, I empirically evaluate the performance of the proposed supervised sparse
coding frameworks LC-NNKSC and its improved version CKSC w.r.t. to the enriched
encoding of mocap data.

For experiments, I consider the following datasets: Schunk , DynTex++ , Dance ,
UTKinect , HDM05 , and CMU-9, introduced in Section 2.4. Except for the last two
datasets, which are generally multi-dimensional time-series, other selected datasets are
human motion capture benchmarks. For these datasets, I compute the kernel represen-
tations based on the pairwise DTW distance between motion sequences. Specifically, I
employ the global alignment kernel (GAK) (Cuturi et al. 2007), which guarantees the
resulting K(X ,X ) is PSD without performing any manual eigenvalue correction to the
resulting Gramm matrix. Due to this change of kernel function, the results could be
in some cases better than the reported ones in my relevant publication (Hosseini and
Hammer 2018a). Exceptionally, the kernel for DynTex++ is computed as described in
(Quan, Bao, and H. Ji 2016). Also, prior to the application of GAK on Utkiect, I use the
preprocessing from (Vemulapalli, Arrate, and Chellappa 2014) to obtain the Lie Group
representation.

Parameters Tuning

In order to tune the parameters α and T related to the optimization frameworks of
CKSC in (Equation 4.20 , Equation 4.21) and LC-NNKSC in Equation 4.18, I perform
5-fold cross-validation using train and validation sets. I carry out the same procedure
for the baselines to find their optimal choice of parameters. The parameter k (dictionary
size) is determined as :

k = {# classes} × T

However, as a working parameter setting for CKSC and LC-NNKSC in practice, we can
choose a value around α = 0.1. Parameter T (and the dictionary size) generally depends
on class distributions and the complexity of the dataset. However, based on empirical
evidence choosing big T does not improve the performance of CKSC and just increases
the dictionary redundancy.

Alternative Methods

To properly analyze the performance of my kernel-based sparse coding algorithms (LC-
NNKSC and CKSC ), I select the following alternatives among kernel-based discriminative
sparse codings: K-KSVD (H. V. Nguyen et al. 2013), JKSR (Huaping Liu, D. Guo, and
F. Sun 2016), LC-KKSVD (Z. Chen et al. 2015), LP-KSVD (W. Liu et al. 2015), KGDL
(Harandi et al. 2013), and EKDL (Quan, Bao, and H. Ji 2016). These algorithms are
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Figure 4.5: Average IP value for UTKinect , DynTex++ , CMU-9, UTKinect , and
HDM05 datasets.

known as state-of-the-art kernel-based sparse coding algorithms, which learn dictionaries
for sparse and discriminative data representation provided the input’s kernel-based
representation.

I empirically compare the proposed methods based on the interpretability of sparse
encodings and their discriminative quality, and for the basis of evaluations, I use 10-
fold cross-validation averaged over 10 repetitions. It is important to emphasize that the
purpose of my sparse coding frameworks is to obtain a discriminative sparse encoding
of motion sequences based on its precomputed kernel representation. Therefore, instead
of comparing the results to all the available top classifiers in the literature such as Deep
Neural Networks and others, I only select the recent kernel-based alternatives which fit
the above description.

Interpretability of the Encoding

As discussed before, by using non-negativity constraints, I aimed to obtain an encoding
model that is more interpretable in terms of its constituent building blocks. Already in
Figure 4.3, we observed the effect of the non-negativity constraint on the sparseness of the
resulting model. Although both NNKSC and its constraint-free counterpart K-KSVD were
trained to obtain the same ∥Φ(X)−Φ(X)UΓ∥2

F as the reconstruction error, NNKSC uses
less training samples and dictionary atoms to shape the encoding vectors. Therefore, it
would be much easier to trace back from an encoded motion vector γ⃗i to other motion
samples to which Xi is related.

Apart from the sparseness level of the model, it is desired to have dictionary atoms
that could be assigned to mostly one class of data. Having such a model, we can interpret
an end encoding γ⃗i based on the motion type(s) to which Xi belongs. To measure such
characteristic in the sparse coding models, I define the interpretability measure IPi for
each u⃗i as

IPi = max
j

(⃗ρ⊤j u⃗i)/(⃗1⊤Hu⃗i),

where 1⃗ ∈ RC is a vector of ones. IPi becomes 1 if u⃗i uses data instances related only
to one specific class. Figure 4.5a presents the IP value for the algorithms CKSC, EKDL,
LC-NNKSC , KGDL, and LP-KSVD related to their implementations on the datasets
DynTex++ , CMU-9, UTKinect , UTKinect , and HDM05 . Based on the results, CKSC and
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(a) The Kernel-KSVD model. (b) The NNKSC model.

(c) The EKDL model. (d) The CKSC model.

Figure 4.6: Studying the contribution of training samples in the formation of 9 dictionary
atoms for (a) K-KSVD, (b) NNKSC , (c) EKDL, and (d) CKSC algorithms on a dense
neighborhood in the HDM05 dataset. Each small shape is a training sample related to
one class of data, and each type of big shape represents one dictionary atom Φ(X )u⃗i and
indicates the training samples on which it is built corresponding to the non-zero entries
of u⃗i.

LC-NNKSC achieved the highest IP values as they use similar non-negative constraints in
their training frameworks. Among other methods, EKDL presents better interpretability
results due to the incoherency term it uses between the dictionary atoms u⃗i.

Figure 4.6 visualizes the formation of dictionary atoms based on non-zero entries
of columns of U for the HDM05 dataset. I already zeroed the relatively small entries of
each u⃗i such that the remaining coefficients point toward significant training samples
for the given dictionary atom. As we can observe for the K-KSVD model (Figure 4.6-a),
each u⃗i uses several data points from various classes and with both positive and negative
coefficients. The IP value for this model on the HDM05 dataset is 0.32. Hence, we cannot
semantically relate any of Φ(X )u⃗i atoms to an specific class of data (motion type).

On the other hand, dictionary vectors of NNKSC model (Figure 4.6-b) are considerably
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sparse and compact. Each u⃗i is formed mostly from 4 to 6 specific training samples,
which makes the dictionary atom highly transparent regarding its constituent resources.
This dictionary formation corresponds to the IP value of 0.87 for NNKSC . Despite that
quality, the u⃗i vector takes contributions from 2 or 3 different motion classes in several
cases. This observation happens because NNKSC uses no supervised information for the
optimization of its dictionary atoms. Hence, we may observe contributions from samples
of different motion classes that are in a relatively close neighborhood of each other. For
example, in the NNKSC model, one u⃗i may use samples from 2 or 3 close leg-movement
motion classes. In contrast, this combination in the K-KSVD model typically occurs
between leg-movement, hand-gesture, and dance classes.

In comparison, the dictionary vectors of the EKDL method have more overlap regard-
ing their contributing classes (Figure 4.6-c). This cross-class contribution for the formation
of each u⃗i is still smaller compared to K-KSVD due to the discriminative structure of
EKDL, resulting in an IP value of 0.76. However, the dictionary atoms are generally not
interpretable as they are for NNKSC . On average, each u⃗i is connected to data samples
from 3 different classes, and almost all the sequences are used to construct the dictionary
matrix U.

As depicted in Figure 4.6-d, the CKSC model provides dictionary vectors u⃗i with a
similar sparseness level as NNKSC . However, its dictionary atoms are mostly related to
one type of motion data among the training samples. As a result, when a γ⃗i encodes a
motion sample Φ(Xi) using the square, hexagram, and upright triangle dictionary atoms, we
can interpret that Φ(Xi) has the characteristic of the circle class of motion. Accordingly,
the IP value of CKSC for this dataset is 0.94, which is the highest among other methods.

Discriminative Quality of the Encoding

In addition to the sparseness of the encoded vectors and the interpretability of dictionary
atoms, we are interested to see how the sparse encoding respects the labeling of data. In
other words, in an interpretable sparse model, the encoded vector γ⃗i would represent the
motion sample Xi using resources (columns of U) that links Xi majorly to training data
of its own type (class).

By the specific way that I determined the label of each test data in Equation 4.25,
we can use the classification accuracy of test data to measure the above characteristic of
the sparse models directly. To that aim, the classification accuracy of the implemented
sparse coding approaches is measured as Acc = (100× [#correct predictions]/N)
and reported in Table 4.1, where N is here the total number of test data.

According to the given results, my CKSC algorithm obtains the highest classification
performance for all of the benchmarks, which shows that the designed frameworks of
Equation 4.20 and Equation 4.21 provide better discriminative representations compared
to other K-SRC algorithms.

CKSC, EKDL, LP-KSVD, and LC-NNKSC can be considered the runner-up group
with competitive classification accuracy. This observation is due to the embedded labeling
information in their discriminant terms, which improves their discriminative representa-
tions in contrast to K-KSVD, JSRC, and KGDL. Nevertheless, there is a variation in the
comparison results of these methods. I can conclude that although they use different
strategies to obtain a discriminant model, their recall model does not necessarily comply
with their training model. In contrast, CKSC demonstrated a more efficient embedding
of the supervised information in both the training and the recall framework.
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Table 4.1: Average classification accuracies (%) ± standard deviations for the selected
datasets.

Datasets K-KSVD JKSRC LC-NNKSC LP-KSVD

Schunk 83.42±0.35 87.49±0.57 89.96±0.64 89.62±0.51
CMU-9 82.62±1.02 83.68±0.79 90.94±0.67 90.21±0.57
DynTex++ 89.22±0.47 89.95±0.35 93.22±0.37 93.12±0.47
Dance 92.26±0.78 91.43±0.69 96.46±0.68 96.51±0.71
UTKinect 84.38±0.31 85.67±0.44 88.43±0.30 89.35±0.32
HDM05 83.91±0.92 87.44±0.56 88.12±0.45 87.46±0.41

KGDL EKDL CKSC

Schunk 88.17±0.43 88.39±0.24 91.42±0.34
CMU-9 87.34±0.87 90.88±0.71 92.68±0.79
DynTex++ 92.83±0.31 93.51±0.46 94.36±0.32
Dance 94.74±0.58 95.37±0.76 97.75±0.53
UTKinect 88.18±0.29 89.02±0.27 90.97±0.24
HDM05 88.85±0.58 88.31±0.30 91.87±0.43

The best result (bold) is according to a two-valued t-test at a 5% significance level.

LC-NNKSC uses a non-negative framework similar to the basis of CKSC’s structure;
additionally, by comparing the results of LC-NNKSC to those of LP-KSVD and EKDL, we
observe that its non-negative framework obtains a competitive performance. Although
LP-KSVD and EKDL employ extra objective terms in their models, the non-negative
structure of LC-NNKSC can achieve a similar outcome accuracy without the need to
use such extra terms. Relevantly, CKSC benefits from this non-negative optimization
framework as a basis for its confidence-based model, leading to its superior performance
compared to other baselines.

Putting the above results next to the interpretability performance of the methods
(Figure 4.5), I conclude that the CKSC algorithm learns a highly interpretable dictionary
atoms u⃗i, while also providing an efficient discriminative encoding of motion sequences.

Effect of the Parameter Setting

In order to study the sensitivity of CKSC to the parameter settings, I carry out experiments
via changing the algorithm’s parameters (α, T). Implementing on the Schunk dataset,
I apply CKSC in 2 individual settings via changing one parameter throughout each
experiment when the other one is fixed. As observed in Figure 4.7-a, the right choice for
α lies in the interval [0.1, 0.4]. However, the discriminative objective can outweigh the
reconstruction part when α is close to 1, and it results in over-fitting and performance
reductions.

Regarding the dictionary size, I increase T from 1 to 20 with a step-size of 1, which
changes the size of U in the range [20, 400] with step-size 20 (average number of data
samples per class). According to Figure 4.7-b, having T between 4 and 8 keeps the
performance of CKSC at an optimal level for the Schunk dataset. As it is clear, small
values of T put a tight limit on the number of available atoms u⃗i for reconstruction
purpose which reduces the accuracy of the method. On the other hand, larger values of T
increase dictionary redundancy and loosen up the sparseness bound on Γ; nevertheless,
NQP algorithm and the non-negativity constraints intrinsically incur sparse characteristics
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Figure 4.7: Effect of changes in CKSC ’s hyper-parameters α (a) and T (b), and the
convergence curve (c) of the algorithm for Schunk dataset.

to Γ and U via combining together only the most similar resources. Therefore, increasing
T does not degrade the performance of CKSC in a dramatic way.

Complexity and Convergence of CKSC

To calculate the computational complexity of CKSC per iteration, I analyze the update
of {Γ, U} separately. In each iteration, Γ and U are optimized using the NQP algorithm,
which has the computational complexity of O(n T2

2 ) (based on section 4.3), where T
and n are the sparsity limit and size of Q in Algorithm 4.5. Therefore, optimizing Γ

and U in each iteration takes O(kN T2

2 + (2k + C)N2 + kCN) and O(kN T2

2 + (8k + C)N2)
steps, respectively. In the above computation, N, k, and C denote the number of training
samples, the dictionary size, and the number of classes, respectively.

As shown in Figure 4.7b, we can practically choose T ≤ 10, and also we have
C ≪ k. Therefore, the dominant run-time complexity for one iteration of Algorithm 4.4 is
O(8kN2), which is mainly due to the matrix multiplications as the pre-optimization step
for updating U in Equation 4.29. Nevertheless, for datasets that N/C is relevantly large,
the size of U should be chosen such that k≪ N. Otherwise, it increases the redundancy
in the dictionary without having any added-value.

On the other hand, the optimization framework of CKSC in Equation 4.27 is non-
convex when considering {U, Γ} together. However, each of the sub-problems defined
in Equation 4.29 and Equation 4.30 are convex. Therefore, the alternating optimization
scheme in Algorithm 4.4 converges in a limited number of steps. Consequently, in practice,
the approximate computational complexity of CKSC becomes O(N2), especially for large
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datasets. Using the information given in Section 4.2 about the computational complexity
of NN-KOMP and NN-KFISTA in optimizing the LC-NNKSC algorithm (as my primary
supervised K-SRC model), we can show that it has a similar computational complexity
of O(N2) under the above implementation setting.

For instance, Figure 4.7c shows the convergence curve of CKSC for the Schunk dataset
based on the changes in the value of the objective term in Equation 4.29. According to
this curve, the algorithm reaches a stationary point in a reasonable number of iterations
(15 total iterations).

Unsupervised Encoding

In this section, I evaluate the performance of my NLKSSC algorithm w.r.t. the quality of
the resulting self-representative encoded vectors in revealing the underlying subspaces
in the mocap dataset.

For the implementation of NLKSSC , I select the following datasets: Schunk , Cricket ,
UTKinect , Words , and CMU-9, which are explained in Section 2.4. All selected datasets
are human motion capture benchmarks (full body or partial body) except the first
one, which is a general multi-dimensional time-series. Additionally, the performance
of NLSSC respecting vectorial data is reported in my relevant publication (Hosseini
and Hammer 2018c) by its application on other real benchmark datasets. Similar to the
supervised experiments, the kernel matrix (̨X ,X ) is computed based on pairwise DTW
distance between motion sequences.

Parameter Setting

In order to tune the parameters λ, µ, k for NLKSSC , I utilize a grid-search method. I do
the search for λ in the range of {1, 1.5, ..., 7}, for µ in the range of {0.1, 0.2, ..., 1} and k in
{3, 4, ..., 8}. I implement a similar parameter search for the baselines to find their best
settings. Although for the link-restore parameter, τ = 0.2 generally works well, one can
do a separate grid-search for τ.

Alternative Methods

I compare my algorithms’ performance to baseline methods KSC (Von. Luxburg 2007),
NNKSC (Section 4.2), KSSC (Patel and René Vidal 2014), KSSR (Bian, F. Li, and X. Ning
2016) and RKNNLRS (S. Xiao et al. 2016). These algorithms are selected from major
sparse coding-based clustering approaches applied to kernel information.

The evaluation basis is the clustering error as CE = # of miss-clustered samples
Total samples using the

posterior labeling of the clusters (Hammer, Hasenfuss, et al. 2007) and the normalized
mutual information (NMI) (Ana and Jain 2003). For each method, an average CE is
calculated over 10 runs of the algorithm. As an external measure, CE can be approximately
compared to 1− Acc

100 values of the supervised experiments in the previous sub-section.
NMI measures the amount of information shared between the clustering result and the
ground-truth which lies in the range of

[
0, 1

]
with the ideal score of 1. As mentioned

in Section 4.4, the label information of the dataset has no role in the decision-making
process of the NLKSSC algorithm. However, I only use that information as the ground
truth to evaluate the method’s clustering performance.
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Table 4.2: Average clustering error (CE) and NMI for CMU, Words, Cricket, UTKinect,
and Schunk datasets.

Dataset KSC KSSC KSSR

CE NMI CE NMI CE NMI

CMU-9 0.2715 0.7206 0.2266 0.7429 0.2454 0.7355
Words 0.1921 0.8436 0.1564 0.8725 0.1873 0.8359
Cricket 0.3042 0.7442 0.2542 0.7041 0.2616 0.7228
UTKinect 0.3315 0.6724 0.2717 0.7318 0.3156 0.6776
Schunk 0.3194 0.6652 0.2974 0.7273 0.3066 0.7374

RKNNLRS NNKSC (Algorithm 4.3) NLKSSC (proposed)

CE NMI CE NMI CE NMI

CMU-9 0.2016 0.7516 0.2287 0.8150 0.1723 0.8623
Words 0.1424 0.8636 0.1613 0.8022 0.0947 0.8725
Cricket 0.2478 0.7984 0.2846 0.7083 0.2073 0.8066
UTKinect 0.2732 0.7138 0.2841 0.7624 0.2314 0.8011
Schunk 0.2621 0.7741 0.2962 0.7456 0.1929 0.7954

The best result (bold) is according to a two-valued t-test at a 5% significance level.

As explained in Section 4.4, each algorithm’s sparse codes are used to construct the
corresponding sparse representation graph G with weighted connections (Equation 4.39).
However, I use A = Γ⊤Γ for the NNKSC method as its Γ is not symmetric. The spectral
clustering step of the baselines is performed via using the correct number of clusters. For
KSC as the kernel-based spectral clustering baseline, I specifically use the kernel matrix
K(X ,X ) directly instead of Γ in Equation 4.39 to compute the adjacency matrix.

Clustering Results

According to the results summarized in Tables. (4.2), the proposed subspace clustering
algorithm NLKSSC outperformed the benchmarks regarding the clustering error. This
result supports my claim regarding the effect of the specific clustering-based formulation
I proposed in Equation 4.40 in finding the underlying subspaces in the data. The KSC
algorithm obtains the minimum accuracy for all datasets and is treated as the baseline for
evaluating other methods. The clustering result of my NNKSC algorithm shows that the
non-negative dictionary-based structure of this framework can also be effective compared
to the KSSR method or KSSC (for CMU and Schunk).

On the other hand, RKNNLRS performance shows that its non-negative model is more
practical for the clustering goal compared to the NNKSC method. This evidence suggests
that having a subspace-based structure and low-rank characteristic is more successful than
a dictionary-based representation in an unsupervised setting. By comparing NLSSC (the
proposed algorithm) to other algorithms with low-rank regularizations in their models, I
can conclude that the proper combination of the locality term and the affine constraints
has aided NLKSSC to obtain higher performance. Also, it is clear from Table. 4.2 that the
KSSR algorithm’s accuracy is close to the baseline method KSC for all datasets. This weak
performance is due to the lack of any strong regularization term in its model regarding
the subspace structure of data.

Since CE is chosen as an external clustering measure, one can compare the perfor-
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Table 4.3: Application of the link-restore method on the non-negativity based approaches.

Dataset RKNNLRS NNKSC(proposed) NLKSSC (proposed)

CE NMI CE NMI CE NMI

CMU 0.1875 0.7684 0.2036 0.8117 0.1572 0.8355
Words 0.1369 0.8203 0.1658 0.8357 0.0926 0.9536
Cricket 0.2234 0.7830 0.2574 0.7870 0.1846 0.8004
UTKinect 0.2473 0.7522 0.2656 0.7393 0.2185 0.7527
Schunk 0.2592 0.7706 0.2993 0.7366 0.1914 0.7629
The best result (bold) is according to a two-valued t-test at a 5% significance level.

mance of unsupervised methods to that of supervised approaches from Table 4.1. By
loosely considering CE ≈ 1− Acc

100 , we observe that all supervised methods (Table 4.1) out-
perform the clustering methods of Table 4.2 for CMU-9, Schunk , and UTKinect datasets
due to their access to the supervise information during their training phase. Nevertheless,
we can conclude that the proposed NLKSSC clustering method and the supervised
K-KSVD algorithm have comparable accuracies for CMU-9 dataset.

On the other hand, both NNKSC and K-KSVD are unsupervised methods, and
NNKSC has a better class-specific dictionary formation (Figure 4.6). However, the reason
behind the wide distances between the classification performance of these two methods is
their labeling strategy. While the label assignment for NNKSC in experiment of Table 4.2
is performed by applying spectral clustering on the sparse codes, the K-KSVD results of
Table 4.1 are based on applying the SVM classifier on the sparse vectors, which is heavily
biased by the supervised information of the training set.

Effect of Link-Restore

To investigate the effect of the proposed link-restore algorithm, I apply it to the non-
negative K-SSC methods RKNNLRS, NNKSC , and NLKSSC as a post-processing step.
This selection is based on the fact that link-restore is designed based on the non-negativity
assumption about columns of Γ. According to Table 4.3, the application of link-restore was
effective regarding in all cases. It reduced the clustering error of all the relevant methods
to some extent, demonstrating its ability to correct broken links in the representation

(a) (b)

Figure 4.8: A subset of the affinity matrix resulted from the implementation of NLKSSC on
the Words dataset: (a) Before application of link-restore. (b) After the application of link-
restore.
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graph G.

Nevertheless, its effect on the NLKSSC method varies among the utilized datasets. For
Words and Schunk datasets, the post-processing method did not add any non-trivial link
to the graph G, which consequently did not change the value of CE. However, for CMU,
Cricket, and UTKinect datasets, the amount of decreases in CE shows the effectiveness
of link-restore in correcting the missing connections in G.

In addition, Figure 4.8 visualizes the affinity matrix for the implementation of NKLSSC
on the Words dataset. The figure is zoomed in on clusters showing that the representation
graph contains more intra-cluster connections after applying link-restore (figure 4.8-b). It
is clear from this figure that the encoding vectors are more interpretable after reviving
more significant connections by the application of link-restore.

Sensitivity to the Parameter Settings

I study the sensitivity of NLKSSC to the choice of parameters for the UTKinect dataset
(with the highest CE in Table. 4.2 by implementing 3 different experiments. In each
experiment, I fix two parameters from {λ, µ, k}, and change the other one while study
the effect of this variation on clustering error (CE). Based on Figure 4.9, the algorithm
sensitivity to λ is acceptable when 2 ≤ λ ≤ 4.5. Having λ ≥ 6 does not change CE since
it makes the loss term Erep := ∥Φ(X)− Φ(X)Γ∥2

F more dominant in the optimization
problem of Equation 4.40.

By choosing 0.25 ≤ µ ≤ 0.5, the algorithm’s performance does not change drastically.
However, NLKSSC shows a considerable sensitivity if µ goes beyond 0.6. High values of
µ weaken the role of Erep (the primary loss term) in the sparse coding model.
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Figure 4.9: Sensitivity analysis of NLKSSC to parameter selection (a)λ, (b)µ, and (c)k for
the UTKinect dataset.
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Studying the sensitivity curve of k shows that its starting point has a similar CE to the
start of µ sensitivity curve, as in both cases effect of Elsp becomes zero in the optimization.
Figure 4.9-b shows that k ∈ {3, 4, 5} is a proper choice. However, with k ≤ 3 the objective
term Elsp is not effective enough. On the other hand, with k ≥ 10 the CE curve does
not follow any constant pattern but generally becomes worse because large values of k
removes the local effect of Elsp in Equation 4.35. It is important to note that even a small
neighborhood radius (e.g., k = 4) can significantly impact the global representation if the
local neighborhoods overlap. Generally, similar sensitivity behaviors are also observed
for the other datasets.

4 .6 conclusion

This chapter proposed a novel framework for embedding mocap data into the vector
space, which is sparse and semantically interpretable. More specifically, I presented a
novel non-negative kernel-based sparse coding frameworks NNKSC , LC-NNKSC , CKSC ,
and NLKSSC for the sparse encoding of motion sequences. The NNKSC provides the
basis dictionary-based model to obtain such interpretable encoding of motion sequences,
while LC-NNKSC and CKSC methods extend it to the supervised setting. On the other
hand, the proposed NLKSSC algorithm employs the concept of non-negative sparse
encoding to obtain unsupervised enriched embedding of the mocap dataset.

Given a kernel-based representation of motions is available (e.g., via a pairwise
distance matrix), the proposed NNKSC method constructs its dictionary atoms via
linear combinations of motions samples in the features space. The non-negativity sparse
model forces each dictionary atom to be constructed from other sequences of similar
type. In addition, each motion sample is encoded in NNKSC by dictionary atoms that
are semantically similar to the input motion sequence. Therefore, the NNKSC model
is interpretable in terms of its dictionary atoms and the resulting sparse codes. This
characteristic makes this non-negative framework suitable for obtaining encoding of
motion sequence, which is interpretable through its meaningful (motion-based) building
blocks.

In order to enrich the sparse encoding with supervised information such as data label-
ing, I extended NNKSC to two novel discriminative K-SRC frameworks LC-NNKSC and
CKSC . Generally, these two sparse coding algorithms enforce the reconstruction of
motion sequences in the feature space based on dictionary atoms that can be associ-
ated with specific motion classes. These models focus on obtaining an encoding that
its building blocks are interpretable based on the sparsely incorporated data classes.
The LC-NNKSC algorithm employs a linear discriminative objective in its optimization
framework, while CKSC proposes a more robust discriminative framework. The novel
framework of CKSC particularly aims for the class-based encoding of motion sequences,
which leads to a better discriminative encoding.

In order to solve the respecting optimization problems of LC-NNKSC and CKSC ,
I proposed different optimization algorithms such as NN-KFISTA , NN-KOMP , and
NQP. These methods differ in their optimization problem, the sparsity constraint they
provide, and their computational complexity. In comparison, the NQP method can be
applied to more general problems while being more scalable compared to NN-KOMP and
NN-KFISTA . My empirical evaluations on real mocap datasets and other multivariate
time-series showed that both LC-NNKSC and CKSC algorithms successfully obtain
enriched sparse encodings. These algorithms outperform other relevant kernel-based
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sparse coding methods regarding the interpretability of their base elements and the
discriminative quality of the obtained encodings. Their superior performance mainly
relies on their non-negative interpretable basis framework (NNKSC ) and their specific
discriminative formulations.

As another contribution of this chapter, I proposed NLKSSC as a novel kernel-based
subspace sparse clustering framework, which obtains self-representative encoding of a
mocap dataset. My NLKSSC method encodes each motion sequence directly in terms
of a sparse set of other semantically similar sequences in its local neighborhood. Such
specific encoding can reveal the underlying subspaces in the data distribution when
no supervised information is given. Additionally, the non-negative property of the
encoding along with the proposed post-processing step enhance the interpretation of
the resulted encodings. The NLKSSC framework employs a novel locality objective and
low-rank, affine sparse embedding of motion sequences. Implementations on real motion
benchmarks and comparison with other state-of-the-art K-SSC algorithms show that
the encoded vectors resulted from NLKSSC are locally more separable in terms of the
underlying motion clusters.

Furthermore, I proposed the novel link-restore post-processing algorithm to mitigate
the issue of common redundancy in non-negative K-SSC encodings. This algorithm
corrects the broken links between close data points in the encoding’s representative
graph. Empirical evaluations demonstrated that link-restore can act as an effective post-
processing step for different types of K-SSC methods that use non-negative sparse coding
models.

In the next chapter, I extend the proposed ideas of Chapters 3 and 4 to multiple-kernel
analysis of motion data. I propose frameworks that benefit from the component-wise
representation of motion data for feature selection, prototype-based representation, and
encoding of unobserved motion classes.
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5M U LT I P L E K E R N E L L E A R N I N G F O R M O T I O N A N A LY S I S

Publications: This chapter is partially based on the following publications.

• Hosseini, Babak and Barbara Hammer (2019b). “Interpretable Multiple-Kernel
Prototype Learning for Discriminative Representation and Feature Selection”. In:
Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. ACM.

• — (2019c). “Large-Margin Multiple Kernel Learning for Discriminative Features
Selection and Representation Learning”. In: 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE.

• — (2019d). “Multiple-Kernel Dictionary Learning for Reconstruction and Clus-
tering of Unseen Multivariate Time-series”. In: 27th European Symposium on Artificial
Neural Networks (ESANN).

Multiple kernel learning (MKL) algorithms utilize different data representations in
the feature space (base kernels) to obtain an optimal representation upon their combina-
tion (F. R. Bach, G. R. Lanckriet, and Jordan 2004). A multiple-kernel (multiple-kernel)
representation of the data can carry non-redundant pieces of information about essential
properties of the data (F. R. Bach, G. R. Lanckriet, and Jordan 2004; Teng, Y.-R. Lin, and
Wen 2017). We can generally formulate an MKL problem as the minimization of a loss
term defined in the Reproducing Kernel Hilbert Space to fulfill a given task.

For instance, in a classification setting, this formulation aims to better separate data
classes in the RKHS by finding an optimal multiple-kernel representation of data in
the features space (Gönen and Alpaydın 2011). Unlike sparse coding, which optimizes
the representation of data in terms of (few) basic constituents, multiple kernel learning
optimizes the coordination of basic kernels such that an optimum classification result
can be derived based thereon. Depending on the problem’s definition, MKL can be seen
as either finding the best parameter values for a specific type of kernel function (W. Jiang
and Chung 2014; J. Ye, S. Ji, and J. Chen 2008; Niazmardi, Safari, and Homayouni 2017;
Gönen and Alpaydın 2011) or learning a weighting vector associated to the pre-computed
base kernels (Y.-Y. Lin, T.-L. Liu, and Fuh 2011; Dileep and Sekhar 2009; H. Xue, Yu Song,
and H.-M. Xu 2017; P. Du et al. 2017; Z. Xu, Jin, J. Ye, et al. 2009).

MKL has shown its benefit in different data-driven applications. In image processing
problems, it is a common practice to derive specific representations by utilizing different
image descriptors. Therefore, an MKL algorithm can learn which descriptors provide
more discriminative representations of the data classes (Y.-Y. Lin, T.-L. Liu, and Fuh 2011;
Dileep and Sekhar 2009; C. Singh and J. Singh 2019; Mukundan, Tolias, and Chum 2017).
In other applications such as hyper-spectral imaging, specially designed sensors can
capture many narrow spectral channels of high resolution. Hence, an MKL algorithm
can properly combine such sensory information for the purpose of higher classification
or segmentation (Gu, Chanussot, et al. 2017; Tianzhu Liu et al. 2016; Pinar et al. 2015) As
expected, another relevant domain of MKL methods is multi-variate time-series (MTS),
where each dimension of the MTS data can be represented by one or several kernels.
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There are different problems in this area to which MKL algorithms are applied, such
as time-series predication (X. Wang and Han 2014), anomaly detection (Das et al. 2010),
video processing (F. Yan et al. 2009), and pattern recognition (Sanchez-Martinez et al.
2017).

When considering the multi-component characteristic of motion data, it is convenient
to construct its multiple-kernel representation. Accordingly, such basic kernels can be
given by (i) kernels derived from comparisons of single joints or modalities of the motion
capture, or (ii) kernels derived from a comparison to a specific observed motion. This
representation is specifically intuitive when the movement of different parts of the body
is considered separately. Note that, in the second case, a mathematical similarity to kernel
sparse coding can be observed in particular in the case of sparse dictionaries. Therefore,
several works benefited from MKL ideas to process human actions. A group of these
methods relies on obtaining joint or trajectory-based kernels, where the MKL framework
looks for an efficient combination of such skeleton-based information (Althloothi et al.
2014; J. Sun et al. 2009). Other methods design their input kernels based on specific
video-based descriptors (Yan Song et al. 2011; Ikizler-Cinbis and Sclaroff 2010), which
signify human actions from different views.

In an MKL framework, when computing each base kernel from one specific dimension
(or feature) of the data, the weighting scheme of the kernels can be seen as a weighted
feature selection. Such perspective becomes more notable when several entities in such a
weighting vector become zero. Investigating such idea in a discriminative framework,
MKL can function as a discriminative feature selection method by assigning larger
weights to the most discriminative dimensions of the data (Dileep and Sekhar 2009;
Z. Xu, Jin, J. Ye, et al. 2009; Varma and Babu 2009; H. Xue, Yu Song, and H.-M. Xu 2017).
From a specific perspective, any MKL algorithm can be used as a multiple-kernel feature
selection method, given that it takes pre-computed kernels as the inputs. In particular,
MKL methods such as (Rakotomamonjy et al. 2008; Tianzhu Liu et al. 2016; Z. Xu, Jin,
H. Yang, et al. 2010; Gu, G. Gao, et al. 2014) exaggerate this kernel selection by employing
sparsity constraints or objectives in their optimization problem.

Although multiple-kernel learning algorithms has obtained considerable results in
various applications, significant well-studied methods are designed and restricted only to
binary-classification problems (S.-J. Kim, Magnani, and Boyd 2006; Aiolli and Donini 2015;
H. Xue, Yu Song, and H.-M. Xu 2017; Z. Xu, Jin, H. Yang, et al. 2010; Rakotomamonjy et al.
2008; Dileep and Sekhar 2009). It is possible to apply these binary MKL methods to multi-
class problems using their ensemble (Gu, G. Gao, et al. 2014; Dileep and Sekhar 2009;
Jingjing Yang et al. 2012). However, such strategy results in several kernel combinations
for a single given task, that are not interpretable in terms of finding a unanimous set of
relevant base kernels.

On the other hand, a different group of multiple-kernel learning methods extends
their framework to multi-class problems by focusing on separating data classes in the
combined RKHS space (J. Ye, S. Ji, and J. Chen 2008; Y.-Y. Lin, T.-L. Liu, and Fuh 2011;
W. Jiang and Chung 2014; Gu, Qingwang Wang, et al. 2015; Qingwang Wang, Gu, and
Tuia 2016; Gu, C. Wang, et al. 2012). However, their mathematical formulations either
aim for a linear separation of classes in the features space or try to make each data class’s
distribution globally condensed. Nevertheless, as a common observation in real data,
some classes consist of sub-clusters located on different regions of the feature space
(e.g., having an XOR distribution in the feature space). For such problems, the principal
assumption of the above multiple-kernel learning frameworks about obtaining that ideal
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target RKHS is not plausible. These shortcomings are fundamentally problematic for
classifiers that rely on linear separation of classes in the feature space, such as kernel-
based SVM (K-SVM ) (Cristianini, Shawe-Taylor, et al. 2000).

As illustrated in Chapter 3, motion sequences can be compared to each other based
on the semantic similarity of their pairwise joints’ movement. Such component-wise
alignment of motion data can result in a multiple-kernel representation, in which each
base kernel is associated with one individual body joint. Furthermore, by applying a
post-processing regularization step on my DTW-LMNN , I showed that by even using a
small set of significant body joints (features), a classifier such as DTW-LMNN can reach
its optimal performance. This observation is due to the considerable redundancy that
exists among the movement of different body joints. As another point, eliminating some
motion dimensions from the preprocessing steps, such as computing DTW distance,
can lead to a notable reduction in computation time when the application of alignment
techniques, such as DTW, is required. Therefore, it is of great interest to investigate a
multiple-kernel-based feature selection for motion data that signifies relevant features,
especially for practitioners.

As we observed in Chapter 3, the application of metric learning algorithms such as
LMNN (Kilian Q. Weinberger and Lawrence K. Saul 2009) on motion data improves the
classes’ local separation in small neighborhoods in the space. The enhancement of the
data distribution on such space, which is spanned by component-wise distance vectors,
is specifically beneficial to neighborhood-based classifiers such as kNN (Goldberger et al.
2005; Shalev-Shwartz, Singer, and A. Y. Ng 2004). Given such motivation, the follow-up
to the research question RQ3 is:

RQ3-a: Can we use the multiple-kernel representation of motion sequences in a metric
learning framework such as LMNN to perform an efficient feature selection for
mocap data?

From a different perspective, domain specialists and practitioners are notably in
favor of prototype-based (PB) models in the area of machine learning and knowledge
representation. Cognitive psychology claims that human categorizes different data classes
in his mind by finding their most representative prototypes (examples) (Rosch 1975). A
supervised prototype learning algorithm constructs representatives in the input space,
and predicts the class label based on their distances to the given data point (Friedman,
Hastie, and Tibshirani 2001). In a mocap database, such representatives could be ex-
emplar sequences which are selected or constructed according to their representative
or discriminative quality. Apart from the straightforward interpretation of PB models,
their decisions are highly explainable (e.g., for a practitioner) by the direct inspection
of the prototypes to which each test data is assigned (Hammer, Hofmann, et al. 2014).
Accordingly, several kernel-based algorithms exist, which makes PB models applicable
to structured data such as motions sequences. In particular, kernel K-means (Shawe-
Taylor and Cristianini 2004; S. Wang, Gittens, and Mahoney 2019) and kernelized LVQ
variants (Hofmann et al. 2014; Coelho and Barreto 2019) represent the well-known unsu-
pervised and supervised prototype learning algorithms, respectively. By considering the
earlier discussion about multiple-kernel representation of data, an interesting question is
if we can benefit from such representation in PB models. In such a framework, the base
kernels are combined with a weighting scheme that results in more efficient prototypes
regarding representation and discrimination of data samples.
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Generally speaking, there has been no significant multiple-kernel prototype learning
framework proposed yet to combine various pre-computed base kernels effectively.
Nevertheless, in a group of methods similar to (J. Wang J. Yang, Bensmail, and X. Gao
2014; X. Zhu et al. 2017; Gan et al. 2018), the multiple-kernel learning framework is
joined with sparse coding. Such a combination aims to improve the learned dictionary’s
reconstruction and discrimination quality by optimizing it on an efficiently combined
RKHS. From a different perspective, one can consider the dictionary atoms as a set
of representative prototypes, representing input data through a sparse encoding and
possibly revealing their supervised properties. Despite the discriminative performance
of these methods and their intuitive structure, another significant concern is to learn
interpretable prototypes, which represent condensed data neighborhoods without any
inter-class overlap (Friedman, Hastie, and Tibshirani 2001). Usually, this concern induces
a trade-off between the discriminative and interpretative quality of the prototypes (Bien,
Tibshirani, et al. 2011), and more often, the model sacrifices one of them in favor of the
other. Hence, the learned dictionary atoms of multiple-kernel sparse coding methods
either suffer from the weak interpretation or cannot discriminatively represent data
classes. Accordingly, a follow-up research question for RQ3 is raised:

RQ3-b: How can we reformulate a prototype learning problem as a multiple-kernel
sparse coding framework, which results in interpretable and discriminative motion
prototypes to represent other sequences.

Observing new motion categories in the recall phase of a motion recognition task is a
common real-world challenge, especially when the motion is captured from daily human
movements in a public environment. Furthermore, there is a considerable diversity in
human activity categories, which makes it difficult to learn/define all the possible classes
(D. Lu, J. Guo, and X. Zhou 2016).

In areas of machine learning, such a problem is generally formulated as zero-shot
learning (ZSL), which is the problem of recognizing novel categories of data when no
prior information is available during the training phase (Alabdulmohsin, Cisse, and
Xiangliang Zhang 2016; Lampert, Nickisch, and Harmeling 2009; Socher et al. 2013; Wei
Wang et al. 2019). One practical approach to such transfer learning is the incorporation of
semantic attributes as descriptive features to map the input data to an intermediate space,
in which different unseen categories can be separated into distinct clusters (Lampert,
Nickisch, and Harmeling 2009; Socher et al. 2013; Y. Long et al. 2018).

Due to observing considerable number of new classes in multivariate time-series
(MTS) such as audio signals and human motions, several ZSL methods focused on MTS
problems (H.-T. Cheng et al. 2013; D. Lu, J. Guo, and X. Zhou 2016; Al-Naser et al. 2018;
Choi et al. 2019). Different from images and video, MTS do not possess any general
spatial dependency between its dimensions. Therefore a majority of ZSL algorithms are
not applicable to such structured data. Nevertheless, the ZSL works on MTS data usually
try to find semantic attributes shared between different time-series classes. Despite the
achievements in learning unseen MTS data, either the existing methods depend on having
prior information about the novel classes (e.g., samples/labels) (D. Lu, J. Guo, and X.
Zhou 2016), or their representation for unseen data is not interpretable in terms of their
learned attributes.

As discussed in Chapter 4, sparse coding frameworks can capture the intrinsic
characteristics of a given dataset. These characteristics can be considered semantic
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attributes that are encoded by the sparse code or the learned dictionary. Accordingly,
some ZSL works have benefited from sparse coding methods in designing more effective
attributes for dealing with unseen data classes (Qiu, Z. Jiang, and Chellappa 2011; Ziming
Zhang and Saligrama 2015; Kolouri et al. 2017). However, these efforts are mainly limited
to the image (spatial) and video (spatiotemporal) datasets. Considering the potentials
of K-SRC models in providing sparse encoding of motion data (Chapter 4), it is highly
expected to benefit from such models for ZSL of motion sequences or other structured
data types.

As a relevant observation in motion data, specifically human motions, it is highly
expected to find similarity between specific joint movements of different motion se-
quences (Hosseini and Hammer 2019d). As a familiar daily life example, people perform
many actions with their upper body joints while their lower body joints are engaged in
the walking movement. We can mention some typical actions, such as reading, waving,
calling, and drinking, being performed while walking. Such partial similarity between
different motion classes can be used as semantic attributes, which also provides an inter-
pretable encoding of an unseen motion sequence without any prior knowledge about its
class label. This partial encoding can be used to categorize unseen motion sequences into
their distinct underlying subspaces, and gives us some meaningful information about
each encoded motion. Moreover, another related concern in this area of research is the
partial or complete encoding of unseen motion classes based on their relation to some
learned attributes or motions from the training data (P. Peng et al. 2018; Qiu, Z. Jiang, and
Chellappa 2011). With that perspective, one can achieve an interpretable representation
of an unseen motion based on its piece-wise relations to other known motion categories.
Analyzing and comparing mocap data based on their partial components in the above
paradigms raise another follow-up research question for RQ3:

RQ3-c: How can we employ the multiple-kernel representation of motion sequences
in a sparse coding framework to obtain descriptive semantic attributes for the
interpretable encoding of unseen motion sequences?

Accordingly, the following follow-up research question for RQ3 is raised:

In this chapter, I propose different supervised and unsupervised multiple-kernel
frameworks to To address the above research questions. These approahces are sum-
marized in Figure 5.1. These algorithms improve the analysis of motion data given its
dimension-based kernel transfers to RKHSs are available. Each of these algorithms has
individual goals, which explain the need for their specific formulations. As a result, their
outcome regarding the specific intake of motion dimensions is different and in favor of
their specifically defined purpose. In summary, I have the following contributions with
respect to the relevant state-of-the-artalgorithms.

• I propose a large-margin multiple-kernel algorithm (LMMK ), which sparsely
combines the given base kernels (derived from motion dimensions) to improve the
classes’ local separation in a resulting RKHS. LMMK learns a scaling of the feature
space which signifies the relevant motion dimensions to the kNN classifier.

• I extend the application of prototype-based learning to multiple-kernel data repre-
sentation. My proposed interpretable multiple-kernel prototype learning (IMKPL )
algorithm transfers data to a combined RKHS, in which the learned prototypes
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are interpretable by class-specific local neighborhoods. IMKPL optimization partic-
ularly shapes prototypes to be representative and discriminative regarding their
neighboring points in RKHS. RKHS.

• I design a novel multiple-kernel dictionary structure that its atoms are constructed
by specific combinations of the computed base kernels (corresponding to motion
dimension). These dictionary atoms are used as semantic attributes, upon which
unseen classes of motions can be recognized and categorized in an unsupervised
way. My MKD algorithm also provides a partial reconstruction of unseen motions
in the feature space with an interpretable encoding.

In the next section, I provide the necessary background for multiple-kernel learning

Multiple-kernel Representation of Motion Data

Algorithm: LMMK
Novelty: 
i)  Metric learning in feature space
ii) Sparse scaling of feature space

Features: 
i)  Supervised
ii) Local separation of classes in a 

resulting RKHS.
iii)Relevant joints (base kernels) to the 
kNN classifier’s performance.
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Algorithm: IMKPL
Novelty: 
i) Non-negative prototypes
ii) Multiple-kernel extension of prototype 

learning
iii) Flexible class-specific prototypes
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Algorithm: MKD
Novelty: 
i) Semantic motion attributes based on kernels derived from single joints. 
ii) Incremental hierarchical clustering for unseen data
  
Features: 
i)  Unsupervised
ii) Partial reconstruction of unseen motions
iii)Interpretable encoding of unseen motions
iv)Recognition and categorization of unseen motions by the resulted encoding
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Figure 5.1: Summary of different proposed algorithms in Chapter 5 for interpretable
representation of (motion) data based on multiple-kernel information. The methods are
specifically distinguished according to the supervised / unsupervised, discriminative /
representative, or the sparsity characteristics in their formulations.
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and related multiple-kernel state-of-the-art. Then, the proposed large-margin multiple-
kernel algorithm, interpretable multiple-kernel prototype learning framework, and multiple-
kernel dictionary structure are introduced in the sequence of individual sections. Af-
terward, all proposed algorithms are empirically evaluated in the experiments Section
followed by the chapter’s conclusion.

5 .1 state of the art

In this chapter, I review the preliminaries for multiple-kernel learning and multiple-
kernel dictionary learning. I also discuss the important works in those areas upon which
I design my proposed LMMK , IMKPL , and MKD frameworks.

Multiple Kernel Learning

Similar to previous chapters, I consider a mocap training set as X = {Xi}N
i=1 containing

N motion sequences Xi ∈ (Rd)∗, which are d-dimensional time-series of different lengths.
Hence, we can implicitly assume d non-linear mapping functions

{Φm : (Rd)∗ → Rdm}d
m=1 (5.1)

exist which map X into d individual RKHSs (F. R. Bach, G. R. Lanckriet, and Jordan 2004;
J. Wang J. Yang, Bensmail, and X. Gao 2014). Therefore, we can obtain a scaling of the
feature space based on the following weighted concatenation:

Φ̂(X) = [
√

β1Φ⊤1 (X), . . . ,
√

βdΦ⊤d (X)]
⊤, (5.2)

where vector Φ̂(X) is the implicit mapping to the resulting RKHS, and β⃗ is the combi-
nation vector. Due to the finiteness of training samples Xi, it can be assumed that the
target of each implicit mapping Φm is a finite-dimensional Hilbert space which validates
the concatenation of its corresponding embedding in Equation 5.2. By relating each
Φm(X) to a kernel function Km(Xi, Xj) = Φ⊤m(Xi)Φm(Xj), we can compute the weighted
kernel function K̂(Xi, Xj) corresponding to Φ̂(X) as the additive combination (Dileep and
Sekhar 2009)

K̂(Xi, Xj) =
d

∑
m=1

βmKm(Xi, Xj) = Φ̂(Xi)
⊤Φ̂(Xj). (5.3)

Generally, one can formulate the MKL frameworks as variants of the following
optimization problem:

β⃗ = arg min
β⃗∈S

loss({Km(X ,X )}d
m=1, β⃗, h⃗), (5.4)

where Km(X ,X ) is the m-th kernel matrix for the training data X . In Equation 5.4, the
loss term is a cost function that its minimization reflects the given classification task
and is also defined by considering the classifier’s model. The set S defines the set of
employed constraints on β⃗ based on the MKL algorithm.

If we apply each kernel function Km only on the m-th dimension of the training data
(resulting in d feature-kernels), we can assume each corresponding Φm in Equation 5.2
maps the m-th dimension of the data into one individual RKHS. In that case, each
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solution for Equation 5.4 represents a weighted feature selection obtained by the MKL
algorithm based on the defined discriminative function loss and the constraints in S . It is
practical to apply a non-negativity constraint on each βm to make the resulting kernel
weights interpretable as the relative importance of each feature representation to the
given discriminative task (Gönen and Alpaydın 2011).

Furthermore, by deriving each base kernel from a different source of information in
the data, it is highly possible to observe substantial redundancy between these representa-
tions(P. Du et al. 2017). Therefore, it is desirable to reduce this redundancy in favor of the
model’s interpretation and its discrimination power. In the works similar to SimpleMKL
(Rakotomamonjy et al. 2008) and class-specific MKL (Tianzhu Liu et al. 2016), they
imposed sparsity on the weights of the base kernels by using a convex combination in
the MKL problem. As an improvement, Group Lasso-MKL fused the MKL problem with
the lp-norm based on the group Lasso optimization (Tibshirani 1996) to enforce better
the sparsity concern (Z. Xu, Jin, H. Yang, et al. 2010). In comparison, SparseRMKL (Gu,
G. Gao, et al. 2014) benefits from an l1-norm constraint in its optimization framework,
which provides a better classification performance as well as an enhanced interpretation
by specifying the most discriminative contributions among the set of the base kernels.

As a common characteristic among multi-class multiple-kernel algorithms, they try
to learn the optimal kernel weights independently of the later on classifier’s structure.
Inspired by the Fisher Linear Discriminant Analysis (LDA) (Duda and Hart 1973), algo-
rithms similar to DKL (J. Ye, S. Ji, and J. Chen 2008), MKL-DR (Y.-Y. Lin, T.-L. Liu, and Fuh
2011) and MKL-TR (W. Jiang and Chung 2014) are focused on reducing the intra-class
covariances via using the scatter matrices of data in different RKHSs. In particular, the
MKL-DR and MKL-TR methods employ low-dimensional projections, while the latter
also applies the convex combination of the base kernels. As a different approach, the
RMKL method (Gu, C. Wang, et al. 2012) performs singular value decomposition to
find the base kernels, leading to maximum variation in the space spanned by them. It is
claimed that this decomposition finds a more discriminative kernel combination than
the original RKHS. Similarly, KNMF-MKL (Gu, Qingwang Wang, et al. 2015) was pro-
posed by reformulating the RMKL approach using the non-negative matrix factorization
framework (NMF) (D. D. Lee and Seung 2001).

To emphasize the considerable shortcomings of the existing MKL algorithms, I
distinguish them into two general categories: First group of algorithms similar to (Dileep
and Sekhar 2009; H. Xue, Yu Song, and H.-M. Xu 2017; Rakotomamonjy et al. 2008; Aiolli
and Donini 2014; Aiolli and Donini 2015) focus on learning a multiple-kernel mapping
to a target RKHS in which a classifier can linearly separate the different classes from
each other. This objective coincides with the basic principle of the kernelized SVM’s
structure (Cristianini, Shawe-Taylor, et al. 2000), which is the linear separation of the
classes in the feature space. Nevertheless, obtaining such an ideal representation is
usually not affordable for real-world data, or it demands considerable domain knowledge
for the specific design of such efficient kernels. This category generally includes binary
MKL algorithms.

The other group of MKL methods includes algorithms such as (S.-J. Kim, Magnani,
and Boyd 2006; J. Ye, S. Ji, and J. Chen 2008; Y.-Y. Lin, T.-L. Liu, and Fuh 2011; Qingwang
Wang, Gu, and Tuia 2016) which follow methodologies analogous to the kernelized
LDA’s design scheme (Mika, Rätsch, and K.-R. Müller 2001). They focus on obtaining
a condensed representation of data classes in the resulting RKHS, which is beneficial
to multi-class problems. However, they don’t perform well on real-data when data
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classes have distinct sub-clusters in the feature space. In such a case, a globally condense
representation is difficult to achieve even with a multiple-kernel scheme, especially
without doing any feature engineering (I. W. Tsang, Kocsor, and Kwok 2006).

In contrast, I propose a multiple-kernel learning framework in Section 5.2, which
focuses on obtaining a local separation of motion classes in a combined RKHS. By
using neighborhood-based decision-making, such a framework can mitigate the above
limitation in the current multiple-kernel learning methods.

The goal of multiple-kernel dictionary learning (MKDL) is to find an optimal MK
dictionary Φ̂(D) on the combined RKHS to reconstruct the inputs as Φ̂(X ) ≈ Φ̂(D)Γ in
this space. A basic MKDL framework can be formulated as a variant of the following

min
Γ,U

∥Φ̂(X )− Φ̂(X )UΓ∥2
F

s.t. ∥β⃗∥1 = 1, βi ∈ R≥0, ∥γ⃗i∥0 ≤ T,
(5.5)

where the objective term Jrec = ∥Φ̂(X )− Φ̂(X )UΓ∥2
F measures the reconstruction quality

of the data on the resulting RKHS. Similar to the dictionary model of Equation 4.6,
the dictionary in Equation 5.5 is modeled as Φ̂(D) = Φ̂(X )U, where each column of
U defines a linear combination of data points in the resulting combined RKHS. The
constraint ∥β⃗∥1 = 1 applies an affine combination of the base kernels and also prevents
the trivial solution β⃗ = 0. The role of β⃗ in Φ̂(X ) is to enhance the discriminative power
of the learned dictionary atoms {Φ̂(X )u⃗i}k

i=1 by increasing the dissimilarity between the
different-label columns in Φ̂(X ).

Although Jrec is a common term in MKDL methods, it varies based on the multiple-
kernel or dictionary-learning part’s formulation. In (Thiagarajan, Ramamurthy, and
Spanias 2014), the vector β⃗ was individually optimized to improve the linear separability
of the classes on the RKHS. In contrast, (Shrivastava, Pillai, and Patel 2015) jointly
optimized {U, β⃗} by pre-defining class-isolated sub-dictionaries in U and enforcing the
orthogonality of each class to the dictionaries of other classes on the RKHS; and (X. Zhu
et al. 2017) utilized an analysis-synthesis class-isolated dictionary model along with a
low-rank constraint on Γ.

Compared to these frameworks, my proposed multiple-kernel learning algorithm
in Section 5.3 explicitly shapes the dictionary atoms as interpretable prototypes, which
improve local representation and discrimination of the classes effectively. However, none
of the major MKDL methods adequately provide such a PB model.

In this next section, I explain our proposed multiple-kernel frameworks with respect
to their specific objectives, their formulations, and the individual optimization algorithms
I use or proposed to solve them.

5 .2 large-margin multiple kernel learning for discriminative feature

selection

By focusing on discriminative tasks, multiple-kernel learning has been used successfully
for feature selection and finding the data’s significant modalities. In such applications,
each base kernel represents one dimension of the data or is derived from one specific
descriptor (e.g., in image processing). Therefore, multiple-kernel learning finds an optimal
weighting scheme for the given kernels to increase classification accuracy. Nevertheless,
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the majority of the works in this area focus on only binary classification problems
or aim for linear separation of the classes in the kernel space, which are not realistic
assumptions for many real-world problems. In this section, I propose a novel multi-class
multiple-kernel learning framework that improves state-of-the-art by enhancing the local
separation of the classes in the feature space. Besides, by using a sparsity term, my large-
margin multiple-kernel algorithm (LMMK ) performs discriminative feature selection by
aiming to employ a small subset of the base kernels. For motion datasets, the base kernels
coincide with the different dimensions related to body joints. Therefore, the application
of the LMMK algorithm on motion data results in a discriminative feature selection that
determines a set of relevant motion dimensions to the given classification task.

I apply the metric learning concept to the data distribution in the feature space, such
that it results in having dense neighborhoods of classes in which the different classes
can be locally separated. Assuming that the dimensions of the feature space are related
to individual RKHSs as in Equation 5.2, I employ metric learning to find the effective β⃗
that serves the above purpose. However, direct application of Equation 3.3 in the feature
space has the following limitations:

First, via applying the Mahalanobis metric of Equation 3.1 to the feature space,
the dimensions of the resulting Φ̃(X) lose their interpretability. Denoting Φ(X) as the
non-weighted concatenation of the base kernels in Equation 5.2 (setting βm = 1 ∀m),

Φ̃(X)(i) = ∑
j

lijΦ(X)(j) having Φ̃(X) = LΦ(X), (5.6)

in which Φ(X)(i) and Φ̃(X)(i) denote the i-th entry of the vectors Φ(X) and Φ̃(X),
respectively in the feature space. Consequently, each dimension of Φ̃(X) in the resulting
RKHS loses its physical interpretation, as it is a weighted combination of the dimensions
of the original RKHS.

Second, computing Equation 3.1 in the feature space (as in Equation 5.6) requires
direct access to the dimensions of each Φm(X) in the feature space. This requirement
cannot be directly fulfilled because it contradicts our assumption about the implicit
definition of Φm(X).

To overcome the above issues, I propose the following optimization scheme with the
same notations as used in Equation 3.3:

min
β⃗

(1− µ) ∑
i,j∈N k

i

Dϕ

β⃗
(Xi, Xj)

+µ ∑
i,j∈N k

i

∑
l∈Ik

i

ξijl + λ ∑m βm

s.t. Dϕ

β⃗
(x⃗i, x⃗l)−D

ϕ

β⃗
(x⃗i, x⃗j) ≥ 1− ξijl

ξijl ≥ 0, βm ≥ 0.

(5.7)

In Equation 5.7, the distance metric Dϕ

β⃗
(Xi, Xj) is defined in the feature space as:

Dϕ

β⃗
(Xi, Xj) = [Φ(Xi)−Φ(Xj)]

⊤B[Φ(Xi)−Φ(Xj)], (5.8)

where B is a diagonal matrix formed based on the entries of β⃗. Equation 5.8 defines a
Mahalanobis metric in the feature space with a diagonal covariance matrix B. Therefore, I
name Dϕ

β⃗
(Xi, Xj) a diagonal metric. Consequently, each learned βm in Equation 5.7 acts as
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a selection weight for the m-th representation of the data in the original RKHS to locally
discriminate the classes in the feature space (similar to Figure 3.1). Additionally, the
last objective term in this optimization problem applies an l1-regularization to enforce
the selection of the most relevant feature-kernels Φm(X) to the defined discriminative
objective. Therefore, my LMMK framework in Equation 5.7 is an MKL optimization
problem designed for discriminative feature selection and representation learning.

Optimization

Based on Equation 5.3, the pairwise distance between each couple of (Xi, Xj) in the
feature space is computed as

Dϕ

β⃗
(Xi, Xj) =

∑d
m=1 βm[Km(Xi, Xi) +Km(Xj, Xj)− 2Km(Xi, Xj)].

(5.9)

Hence, I can compute Dϕ

β⃗
(Xi, Xj) without performing any explicit calculation in the

feature space in contrast to Equation 3.1. In addition, we have Km(Xi, Xi) = 1 for all the
input vectors and base kernels by normalizing the kernel matrices of the training set.
Therefore, after eliminating the constant terms, the optimization problem of Equation 5.7
is simplified to

min
β⃗

(1− µ)( ∑
i,j∈N k

i

[1−K(:)(Xi, Xj)])β⃗

+µ ∑
i,j∈N k

i

∑
l∈Ik

i

ξijl + λ ∑d
m=1 βm

s.t. 2[1 +K(:)(Xi, Xj)−K(:)(Xi, Xl)]β⃗ ≥ 1− ξijl
ξijl ≥ 0, βm ≥ 0,

(5.10)

where K(:)(Xi, Xj) := [K1(Xi, Xj), . . . ,Kd(Xi, Xj)] ∈ Rd. This optimization framework is a
convex problem subject to the advance selection of the targets and impostors indexed by
N k

i and Ik
i , respectively. Hence, it is an instance of the non-negative linear programming

(LP), and we can efficiently optimize it via using solvers such as YALMIP (Lofberg n.d.)
or CVX (Grant, Boyd, and Y. Ye 2008). Additionally, similar to a practical hint from
(Kilian Q. Weinberger and Lawrence K. Saul 2009), I repeat the optimization loop for
a few iterations while updating N k

i and Ik
i at the end of each run. These few extra

repetitions can lead to more optimal solutions.

Classification of Test Data

I perform the classification of each test motion sequence Z by using the kNN algorithm
based on the distances in the resulting RKHS. To that aim, I compute Dϕ

β⃗
(Z, Xi) as the

distance between Z and each training sample using the learned diagonal matrix B in the
feature space analogous to Equation 5.9.

Complexity and Convergence of LMMK

The optimization framework of Equation 5.10 is an LP problem, and consequently, it
converges in limited t steps to an optimal solution. On the other hand, an LP solver
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optimizes β⃗ with the computational complexity of O(t(2d + 3Nl) + dNj + 2dNl), in
which Nl and Nj are the total number of targets and the size of ξ⃗, respectively. Based

on the definition of the targets and impostors, we have Nl ≈ N2(C−1)
C and Nj = kN.

Also, for common real-world datasets, we observe N >> t in practice; hence, the total
time complexity of the algorithm is approximately O(N2). This complexity is almost
comparable to computing the base kernel matrices for each dataset before running the
algorithm.

Comparison to DTW-LMNN with Metric Regularization

As explained in Chapter 3, the proposed DTW-LMNN algorithm is applied to the
vector of distances D⃗ij, as pairwise distances between the components of each two
given motion sequences in the dataset. Also, after learning the metric transform L, the
regularization method of Section 3.4 finds a small set of relevant dimensions in the mocap
data. Such process in to some extent analogous to what I proposed in this section as
the LMMK algorithm. Nevertheless, these two methods can be distinguished from the
following aspects:

1. The DTW-LMNN does not have any feature selection objective while learning its
metric coefficients, and it is more of a feature transformation algorithm than feature
selection. On the other hand, the LMMK method is specifically formulated such
that feature selection is one of its primary objectives. Therefore, even though we can
select a small set of features from DTW-LMNN by regularizing its transform matrix
L, it is expected to achieve a sparser set of discriminative features from LMMK than
DTW-LMNN .

2. The feature selection part in Chapter3 is distinct from the metric learning part. So,
the main goal of DTW-LMNN is to learn a metric for better classification of the
data. In contrast, the model obtained from LMMK is directly influenced by the
sparseness target of β⃗, i.e., the feature selection scheme. Therefore, LMMK is used
when feature selection has a significant role in the overarching task.

3. Although DTW-LMNN benefits from a complete metric transform (a full coefficient
matrix L) compared to LMMK (a sparse vector of coefficients β⃗), the discriminative
performance of LMMK can be still comparable to of DTW-LMNN depending on
the data distribution and the used kernel. For example, a Gaussian kernel naturally
concentrates the data neighborhoods due to its radial basis function, which can
improve the local separation of classes in RKHS compared to that in the distance
space in DTW-LMNN . Additionally, the sparseness of the resulting diagonal
metric in LMMK can better affect the accuracy compared to the full metric of
DTW-LMNN depending on the amount and effect of the redundant information in
the motion dimensions. Therefore, these methods have slightly different views on
the discriminative problem, leading them to individual discriminative solutions.

The above aspects are empirically validated and discussed in the experiments of
Section 5.5 related to the LMMK algorithm. In the next section, I propose my multiple-
kernel dictionary learning method, which has a prototype-based view of the multiple-
kernel problem while benefiting from the basic formulation of sparse coding frameworks.
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That method is useful for learning discriminative and representative prototypes for
motion (structured) data given a multiple-kernel representation of data is available,

5 .3 interpretable multiple-kernel prototype learning

From a different perspective, prototype-based methods are of particular interest for do-
main specialists and practitioners because these models summarize a dataset by a small
set of representatives. Explicitly talking about motion data, prototype-based learning can
result in a set of motion prototypes base on which other motion samples can be repre-
sented and classified. Therefore, in a classification setting, the prototypes’ interpretability
is as significant as the prediction accuracy of the algorithm. Nevertheless, the state-of-
the-art methods make an inefficient balance between these concerns by sacrificing one
in favor of the other, especially if the given data has a kernel-based (or multiple-kernel)
representation. In this section, I propose a novel interpretable multiple-kernel prototype
learning (IMKPL ), which benefits from the multiple-kernel representation of motion
data to construct highly interpretable prototypes in the feature space. These prototypes
are effective for the discriminative representation of the data. My method focuses on
the local discrimination of the classes in the feature space and shapes the prototypes
based on condensed class-homogeneous data neighborhoods. Besides, IMKPL learns
a combined embedding in the feature space in which the above objectives are better
fulfilled.

I want to learn an MK dictionary that its constituent prototypes (atoms) reconstruct
the data while presenting discriminative characteristics interpretable in terms of the class
labels. To be more specific, I aim for the following specific objectives:
Ob1: Assigning prototypes to the local neighborhoods in the classes to efficiently dis-
criminate them on the RKHS regarding their class labels (Figure 5.3-d).
Ob2: Learning prototypes which can be interpreted by the condensed class-specific
neighborhoods they represent (Figure 5.2-b)
Ob3: Obtaining an efficient MK representation of the data to assist the above objectives
and improve the local separation of the classes in the resulting RKHS (Figure 5.3).

Definition 5.1. Each X is represented by a set of prototypes {Φ̂(X )u⃗i}i∈I on the combined
RKHS if ∥Φ̂(X)− Φ̂(X )Uγ⃗∥2

2 < ϵ for a small ϵ > 0 and ∀i ∈ I, γi ̸= 0.

Based on Definition 5.1, I call {u⃗i}k
i=1 the prototype vectors to represent the columns

of Φ̂(X ), and I propose the interpretable multiple-kernel prototype learning algorithm
to learn them while adequately addressing the above objectives. IMKPL has the novel
optimization scheme of:

min
β⃗,Γ,U

∥Φ̂(X )− Φ̂(X )UΓ∥2
F + λJdis + µJls + τJip

s.t. ∥γ⃗i∥0 < T, ∥β⃗∥1 = 1, ∥Φ̂(X )u⃗i∥2
2 = 1,

∥u⃗i∥0 ≤ T, uji, βi, γji ∈ R≥0,

(5.11)

in which λ, τ, and µ are trade-off weights. The cardinality and non-negativity constraints
on {U, Γ} coincide with the dictionary structure Φ̂(X )U as discussed in Section 4.3.
They motivate each prototype Φ̂(X )u⃗i to be formed by sparse contributions from similar
training samples in Φ̂(X ) to increase their interpretability (Bien, Tibshirani, et al. 2011).
Although each u⃗i is loosely shaped from the local neighborhoods in the RKHS, it cannot
fulfill the objectives Ob1 and Ob2 on its own (Figure 5.2-a). Similar to K-SRC frameworks
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in Chapter 4, having ∥Φ̂(X )u⃗i∥2
2 = 1 prevents the solution of u⃗i from being degenerated

(Rubinstein, Zibulevsky, and Michael Elad 2008).

At first sight, the optimization problem of Equation 5.11 may look similar to the
proposed CKSC framework in Chapter 4. In particular, when we neglect the role of β⃗,
the reconstruction objective of Equation 5.11 (the 1st term) becomes identical to that of
Equation 4.22. Even though Φ̂(X )u⃗i has the same mathematical formulation in both of
the mentioned optimization frameworks, fulfilling the proposed objectives Ob1 and Ob2
will add specific characteristics to Φ̂(X )u⃗i, which differentiate it from a typical dictionary
atom as in Equation 4.22. Such properties let us treat each resulted Φ̂(X )u⃗i as a prototype
for motion data, which locally represents and discriminates a condense neighborhood
of motion sequences, and can be meaningfully (semantically) assigned to one specific
motion class. However, we cannot generally assign such characteristics to the learned
atoms in the CKSC framework. In the following subsections, I explain the novel terms
{Jdis,Jls,Jip} and how they address the objectives Ob1-Ob3.

Discriminative Loss Jdis(U, Γ, β⃗)

By rewriting Φ̂(X )Uγ⃗ = Φ̂(X )⃗ν, the vector ν⃗ ∈ RN reconstructs a vector Φ̂(X) based on
other samples in matrix Φ̂(X ). Hence, by aiming for Ob1, we learn the prototype vectors
{u⃗i}k

i=1 such that they represent each Φ̂(X) with a corresponding vector ν⃗ using mostly
the local same-class neighbors of Φ̂(X). Accordingly, I define the loss term Jdis as:

Jdis(U, Γ, β⃗) =

1
2

N

∑
i=1

[
N
∑

s=1
u⃗sγ⃗i (⃗h⊤i h⃗s∥Φ̂(Xi)− Φ̂(Xs)∥2

2 + ∥⃗hi − h⃗s∥2
2)].

(5.12)

Proposition 5.1. The objective Jdis in Equation 5.12 has its minimum if ∀Xi, Φ̂(Xi) ≈
Φ̂(X )Uγ⃗i s.t. ∀t : γti ̸= 0, ∀s : ust ̸= 0, h⃗i = h⃗s and ∥Φ̂(Xi)− Φ̂(Xs)∥2

2 ≈ 0.

Proof. Refer to Appendix A.11.

Although Proposition 5.1 describes the ideal situations, in practice, it is common
to observe ∥Φ̂(Xi) − Φ̂(Xs)∥2

2 < ϵ for a small, non-negative ϵ when Xs is among the
neighboring points of Xi. This condition results in small non-zero minima for Jdis.
Besides, for a given Xi, if its cross-class neighbors lie closer to its same-class neighbors,
Ωsi obtains higher values by choosing Xs s.t. h⃗s ̸= h⃗i in favor of better minimizing Jrec
(e.g., the squares in Figure 5.2-b which is a part of u⃗1).

Based on Proposition 5.1, minimizing Jdis enforces the framework in Equation 5.11
to learn U such that each prototype Φ̂(X )u⃗i is shaped by a concentrated neighborhood
in RKHS, providing a discriminative representation for its nearby samples. However,
Jdis is still flexible in tolerating small cross-class contributions in the representation of
each Xi in case of having overlapping classes in the data. For example, although a square
sample in Figure 5.2-b has contributed to the reconstruction of X via u⃗1 (due to their
small distance), X is still represented mostly by samples of its own class (circles).
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(a) (b)

u⃗1 u⃗1u⃗2

X

(0.63 u⃗1+0.45 u⃗2) (0.93 u⃗1+0.12 u⃗2)

RKHS RKHS

u⃗2
X

Φ⃗(X)≈Φ(X ) Φ⃗(X)≈Φ(X )

Figure 5.2: The effect of Jdis in Equation 5.11. (a): When λ = 0, prototypes (u⃗1, u⃗2)
(hatched selections) are shaped and reconstruct Φ̂(X) by its neighboring samples from
both classes (circles and squares). (b): When λ ̸= 0, these prototypes are formed s.t.
Φ̂(X) is approximately represented by u⃗1, which is mostly shaped by its local, same-class
neighbors (circles).

Interpretability Loss Jip(U)

Definition 5.2. Prototype Φ̂(X )u⃗i is interpretable as a local representative of the class q
if the set {Xt|uti ̸= 0} forms a concentrated neighborhood in the RKHS, and h⃗q u⃗i

∥Hu⃗i∥1
≈ 1.

When the class-overlapping is subtle, minimizing Jdis can result in interpretable
prototypes (e.g., in Figure 5.2-b, u⃗1 can still be interpreted as a local representative for
the circle class). However, a relatively large overlap of the classes results in having more
than one large entries in each s⃗ = Hu⃗i (similar to u⃗1 in Figure 5.2-a). Therefore, to better
satisfy objective Ob2, I define Jip(U) = ∥HU∥1, such that its minimization reduces ∥⃗s∥1
for each prototype vector. This term (together with) Jdis results in a significantly sparse
Hu⃗i, such that h⃗qu⃗i/∥Hu⃗i∥1 obtains a value close to 1. Such a situation improves the
interpretability of each Φ̂(X )u⃗i according to Definition 5.2.

Local-Separation Loss Jls(β⃗)

According to Eqs. (5.2 and (5.11, the weighting vector β⃗ is already incorporated into
Jrec and Jdis via its role in Φ̂(X ). Hence, minimizing them w.r.t. to β⃗ optimizes the
combined embedding in the features spaces to fulfill the objectives Ob1 and Ob2 better.
Besides, as a practical complement, I optimize β⃗ to separate the classes locally in k-size
neighborhoods. I propose Jls as the following novel, convex loss:

Jls(β⃗) = ∑N

i=1

[
∑

s∈N k
i

∥Φ̂(Xi)− Φ̂(Xs)∥2
2 + ∑

s∈N k
i

Φ̂(Xi)
⊤Φ̂(Xs)

]
, (5.13)

where N k
i specifies the same-label k-nearest neighbors of Xi on the RKHS, and N k

i is its
corresponding k-size set for the different-label neighbors of Xi. Equation 5.13 reaches its
minima when for each Xi, we have both of:

1. The summation of its distances to the nearby same-label points is minimized.
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Figure 5.3: Effect of Jls on the local separation of each Φ̂(Xi) from its different-label
neighbors in RKHS when k = 4 (b compared to a), which concentrates the classes locally
(d compared to c) and improves the interpretation of the prototypes {Φ̂(X )u⃗i}k

i=1 (the
stars) by the class-neighborhood to which they are assigned (their colors).

2. It is dissimilar from the nearby data of other classes (Figure 5.3-b).

Therefore, having Jls in conjunction with other terms in Equation 5.11 makes the classes
locally condensed and distinct from each other, facilitating learning better interpretable,
discriminative prototypes (Figure 5.3-d). In the next section, I explain how to solve the
optimization problem of Equation 5.11 efficiently.

Optimization Scheme of IMKPL

After rewriting the optimization problem of Equation 5.11 using the given definitions for
{Jdis,Jls,Jip}, I optimize its parameters {U, Γ, β⃗} by adopting the alternating optimiza-
tion scheme.

Proposition 5.2. Denoting U ∈ RN×k, Γ ∈ Rk×N , β⃗ ∈ Rd, and

G(U, Γ, β⃗) = ∥Φ̂(X )− Φ̂(X )UΓ∥2
F

+λ 1
2

N

∑
i=1

[
N
∑

s=1
u⃗sγ⃗i (⃗h⊤i h⃗s∥Φ̂(Xi)− Φ̂(Xs)∥2

2 + ∥⃗hi − h⃗s∥2
2)]

+µ∑N

i=1

[
∑

s∈N k
i

∥Φ̂(Xi)− Φ̂(Xs)∥2
2 + ∑

s∈N k
i

Φ̂(Xi)
⊤Φ̂(Xs)

]
+ τ∥HU∥1,

the objective function G(U, Γ, β⃗) is multi-convex in terms of {Γ, U, β⃗}.

Proof. Refer to Appendix A.12.
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Benefiting from Proposition 5.2, at each of the following alternating steps, I update
only one of the parameters while fixing the others (Algorithm 5.1). The derivation of the
following sub-problems is provided in the supplementary material.

Updating the Matrix of Sparse Codes Γ

By fixing {U, β⃗}, using Equation 5.3, and removing the constant terms, I reformulate
Equation 5.11 w.r.t. each γ⃗i as:

min
γ⃗i

γ⃗⊤i (U
⊤K̂U)γ⃗i + [λK̃(i, :)− 2K̂(i, :)]Uγ⃗i

s.t. ∥γ⃗i∥0 < T, γji ∈ R≥0,
(5.14)

where K̃ = 1− (H⊤H)⊙ K̂, and ”⊙ ” denotes the Hadamard product operator. This op-
timization problem is a non-negative quadratic programming problem with a cardinality
constraint on γ⃗i. The matrix U⊤K̂U is positive semidefinite (PSD) because K̂ is PSD and
U is non-negative. Hence, Equation 5.14 is a convex problem, and I efficiently solve it by
using the proposed NQP algorithm of Section 4.3 (Algorithm 4.5). Hence, I update the
columns of Γ individually.

Updating Prototype Matrix U

Similar to the approximation of Γ, the prototype vectors u⃗i are updated sequentially. I
rewrite the reconstruction objective Jrec in Equation 5.11 as

∥Φ̂(X)Ei − Φ̂(X)u⃗iγ⃗
i∥2

F, Ei = (I−∑j ̸=iu⃗jγ⃗
j), (5.15)

where I ∈ RN×N is an identity matrix. By using Equation 5.15 and writing Jdis in terms
of u⃗i, I reformulate Equation 5.11 as

min
u⃗i

u⃗⊤i (γ⃗
iγ⃗i⊤K̂)u⃗i + [γ⃗i(−2E⊤i K̂+ λK̃) + τ⃗1⊤H]u⃗i

s.t. ∥u⃗i∥0 < T, ∥Φ̂(X )u⃗i∥2
2 = 1, uji ∈ R≥0.

(5.16)

Analogous to Equation 5.14, this is a convex non-negative quadratic problem in terms of
u⃗i with a hard limit on ∥u⃗i∥0. Hence, I update the prototype vectors {u⃗i}k

i=1 by solving
Equation 5.16 using the NQP algorithm. For updating each u⃗i, I update its corresponding
Ei and normalize vector u⃗i afterward, similar to the update steps of the CKSC method in
Section 4.3.

Updating Kernel Weights β⃗

By normalizing each base kernel Km in advance, I can simplify Equation 5.11 to the
following linear programming (LP) problem

min
β⃗

(E⃗rec + λE⃗dis + µE⃗ls)
⊤ β⃗

s.t. ∑d
m=1 βm = 1, βm ∈ R≥0,

(5.17)

where I derive the entries of E⃗rec, E⃗dis, and E⃗ls by incorporating Equation 5.3 into the
terms Jrec, Jdis, and Jls, respectively. I compute their m-th entries (m = 1, . . . , d) as

Erec(m) = tr[Km(I− 2UΓ) + Γ⊤U⊤KmUΓ],
Edis(m) = tr(K̃mUΓ),

Els(m) =
N

∑
i=1

∑
s∈N k

i

[2− 2Km(Xi, Xs)] + ∑
s∈N k

i

Km(Xi, Xs),
(5.18)
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Algorithm 5.1 Interpretable Multiple-Kernel Prototype Learning algorithm: learns a set
of prototypes {u⃗i}k

i=1, a weighting scheme of the given kernels, and the matrix of sparse
codes Γ as the approximate solution to Equation 5.11.

1: Parameters: Weights {λ, µ, τ}, sparsity T, neighborhood size k, and stopping thresh-
old δ.

2: Input: Label matrix H, kernel functions {Km(X ,X )}d
m=1.

3: Output: Prototype vectors {u⃗i}k
i=1, kernel weights β⃗, encoding matrix Γ.

4: Initialization: Computing {K̃, {K̃m}d
i=1, E⃗ls}, β⃗ = 1⃗.

5: while [whole objective of Equation 5.11] > δ do
6: Computing K̂(X ,X ) = ∑d

m=1 βmKm(X ,X ).
7: Updating Γ based on Equation 5.14 using NQP.
8: Updating U based on Equation 5.16 using NQP.
9: Updating β⃗ based on Equation 5.17 using an LP solver.

10: end while

where K̃l is derived by computing K̃ while replacing K with Km. Therefore, I can effi-
ciently solve the LP in Equation 5.17 using conventional linear solvers (Strayer 2012).
Algorithm 5.1 provides an overview of all the optimization steps for my IMKPL frame-
work.

Representation of the Test Data

To represent (reconstruct) a test data Z by the trained U and β⃗, I compute the sparse code
γ⃗test using Equation 5.14 while setting λ = 0. The relational values of the entries in γ⃗test
show the main prototypes that are used to represent Z.

Complexity and Convergence of IMKPL

In order to calculate the computational complexity of IMKPL per iteration, I analyze
the update of each {Γ, U, β⃗} individually. In each iteration, the update of Γ and U are
done using the NQP algorithm, which has the time complexity of O(nT), where n is
the number of dimensions in the quadratic problem. I also set k = CT as an effective
choice in my model, while in practice, the maximum number of non-zero elements of γ⃗i

in Equation 5.16 is smaller than N
C .

Therefore, optimizing Γ and U leads to O(CNT2 + CTN2) and O(CNT2 + TN2 +

CN) computational costs, respectively, and optimizing β⃗ with an LP solver has the
computational complexity of O(2td + dN2 + dkN), where t is the convergence iteration
of the LP-solver. The time-consuming matrix multiplications of Equation 5.18 are already
carried out while solving Equation 5.14 and 5.16.

As in the implementations, we observe/choose C, T, k << N (eps. for large-scale
datasets), the computational complexity of IMKPL in each iteration is approximately
O(dN2 + N2). Therefore, IMKPL is more scalable than its alternative MK algorithms
(X. Zhu et al. 2017; Thiagarajan, Ramamurthy, and Spanias 2014; Shrivastava, Pillai, and
Patel 2015) which have complexity close to O(dN3).
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In the experiments of Section 5.5, I present the convergence curve of the IMKPL al-
gorithm, which stops in less than 20 iterations for all the selected real-datasets. Despite
that, the following theorem guarantees the convergence of Algorithm 5.1:

Theorem 5.1. The iterative updating procedure in Algorithm 5.1 converges to a locally optimal
point in a limited number of iterations.

Proof. Refer to Appendix A.13.

Comparison to the CKSC Algorithm from Chapter 4

We can convert the problem of Equation 5.11 into a single-kernel formulation by setting
all entries of β equal to 1. In that case, we obtain a kernel-based prototype learning
algorithm as the single-kernel variant of the IMKPL algorithm (ISKPL ). At first sight,
the formulation of ISKPL may look similar and comparable to the proposed CKSC frame-
work of Chapter 4. Although IMKPL is constructed upon the NNKSC ’s non-negative
framework, it principally differs from the CKSC algorithm from the following specific
points:

• The ISKPL formulation focuses explicitly on local same-class construction of dictio-
nary atoms, while CKSC has more freedom in that regard. Therefore, in comparison,
it is expected from ISKPL to learn a dictionary Φ(X )U with more interpretable
entries Φ(X )u⃗i.

• On the other hand, these methods also differ regarding their discriminative terms,
which encode the supervised information into the sparse vectors. While ISKPL fo-
cuses on representing data points in the feature space by their neighboring pro-
totypes for better interpretation, CKSC represents a more consistent test/train
framework which shows more robustness regarding the discriminative encoding of
motion sequences.

Therefore, while ISKPL is more practical for the prototype-based representation of motion
data, CKSC is more effective for discriminative encoding of such data. Regardless of
the above differences, I empirically demonstrate in the experiments of Section 5.5 that
both methods perform better than other state-of-the-art alternative methods w.r.t. model
interpretation and the discriminative quality of their encoding.

5 .4 multiple-kernel dictionary structure

Although there are many annotated benchmark motion datasets, a typical observation
for real-world motion analysis tasks is encountering unseen motion classes. This is a
significant problem for uncontrolled environments such as CCTV camera recordings
or social robots in public environments. In zero-shot learning, as a specific branch of
machine learning, there exist many approaches for description and recognition of unseen
classes in datasets. Nevertheless, it becomes a challenging problem when dealing with
multivariate time-series (MTS) (e.g., motion data), where we cannot directly apply such
vectorial algorithms to the temporal inputs.
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On the other hand, in previous sections of this chapter, we observed that component-
wise analysis of motion sequences might reveal more semantic characteristics about
the underlying movement. More specifically, some joint (dimensions) movements can
represent particularities, while others can reveal commonalities between different classes
of motion.

Based on the above perspective, I propose a novel multiple-kernel dictionary (MKD )
learning in this section, which learns semantic attributes based on specific combinations
of MTS dimensions in the feature space. Hence, the MKD can fully or partially reconstruct
the unseen classes by means of interpretable connections to the observed training samples
(seen classes). Furthermore, the sparse encodings of unseen classes based on the attributes
of the learned MKD are used in a proposed incremental clustering algorithm to categorize
the unseen MTS classes in an unsupervised way.

I consider the training set of mocap sequences X = {Xi}N
i=1 belongs to C distinct

data classes with the corresponding label set H = {1, · · · , C}. Accordingly, the set of
unseen sequences Z belongs to the label set Q, such that Q∩H = ∅. Based on the above
description, we are interested in:

1. Obtaining semantic attributes that create interpretable relations between sequences
Zi ∈ Z and the seen classes in X (Figure 5.4).

2. Using the learned attributes for efficient clustering of the unseen set Z .

Similar to Figure 5.4, it is common to observe for real-world MTS data (e.g., human
motions) to find partial similarities between different data classes when considering
a subset of their dimensions. Therefore, these similarities can lead to an interpretable
description for a novel data sample (from Z) via its relation to the seen classes (from
X ). Furthermore, such a description leads to a better clustering of novel data points
Zi without having any prior information on their class labels. To achieve the above, I
propose an MKD model trained based on X and learns semantic attributes similar to
Figure 5.4-left. To be more specific, MKD combines dimensions of similar MTS samples
in the feature space under non-negativity constraints. These attributes can encode each
unseen Zi ∈ Z as an interpretable description of its dimensions and better separate it
from previous (unknown) classes in Z (Figure 5.4-right).

Encoding 

via MKD

Learning
MKD

Unseen data Input space

Semantic Description:

● L-hand is raised.

● R-hand is ?

Seen Classes

?

Partial 

Reconstruction

Clusters

True labels

1 2 3 4

L-hour Out N-Ball Six

Semantic Attributes:

● L-hand is raised ?

● R-hand is stretched out ?

● L-hand is bent ?

● R-hand is raised ?

● ...

ΦB(U )

ΦB(U )

Figure 5.4: General overview of the MKD framework. The dictionary learns the semantic
attributes based on the seen classes. These attributes are used for the interpretable
description of unseen class data, which leads to categorizing and partial reconstruction
of the data.
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For a d-dimensional motion sequence, I assume there exist d non-linear implicit kernel
functions {Φm(X)}d

m=1 to map each dimension of X into an individual Reproducing
Kernel Hilbert Spaces as Φm : (Rd)∗ → Rdm . Hence, defining Φ(X, β⃗) as

Φ(X, β⃗) = [
√

β1Φ⊤1 (X), . . . ,
√

βdΦ⊤d (X)]
⊤ (5.19)

describes a weighted combination of these kernels with the non-negative coefficient
vector β⃗ ∈ Rd, which induces an embedding of the data into the feature space. I can
apply this embedding to the whole training data via

Φ(X , β⃗) := [Φ(X1, β⃗) · · ·Φ(XN , β⃗)]. (5.20)

On the other hand, it is rational to assume structures of different class-specific subspaces
in the feature space correspond to k different weighting schemes of the individual kernels
as {β⃗i}k

i=1. Hence, based on a weighting matrix

B = [β⃗1 · · · β⃗k] ∈ Rd×k, (5.21)

I define my novel multiple-kernel dictionary (MKD ) matrix ΦB(U) as

ΦB(U) := [Φ(X , β⃗1)u⃗1 · · ·Φ(X , β⃗k)u⃗k] where U = [u⃗1 . . . u⃗k] ∈ RN×k. (5.22)

Each dictionary column Φ(X , β⃗i)u⃗i in Equation 5.22 is a weighted combination of selected
dimensions and selected samples from X based on the value of β⃗i and u⃗i, respectively.
Due to the relation of Φ(X , β⃗i)u⃗i to different dimensions of X , its columns can learn
semantic attributes similar to those of Figure 5.4.

To make a comparison between the structure of ΦB(U) and a more conventional
multiple-kernel dictionary structure as in IMKPL algorithm (Φ̂(X )U), one must consider
each individual atom thereof. More specifically, each all the dictionary atoms of Φ̂(X )U,
as in Equation 5.11, are formed in the same features space under the scaling vector β⃗. In
contrast, each column of ΦB(U) from Equation 5.22 is shaped in an individual RKHS
scaled by one column of B (Equation 5.21). Applying that to motion data, each atom of
the proposed MKD structure can be related to the movement of a specific set of body
joints, while all atoms of Φ̂(X )U are connected to a global set of body joints.

To fit (U, B) to the data efficiently, I aim for the reconstruction of training samples in
the feature space as Φ(X ) ≈ ΦB(U)Γ with a sparse encoding matrix Γ. Hence, I propose
the following MKD sparse coding framework (MKD-SC) for training the dictionary
parameters (B, U) and sparse codes Γ:

min
B,Γ,U

∥Φ(X )−ΦB(U)Γ∥2
F

s.t. ∥γ⃗i∥0 < T, ∥u⃗i∥0 < T,
∥Φ(X , β⃗i)u⃗i∥2

2 = 1, uij, βij, γij ∈ R≥0, ∀ij,
(5.23)

The loss term in Equation 5.23 measures the encoding’s reconstruction error given the
multiple-kernel dictionary ΦB(U) and the sparse codes Γ. Similar to other sparse coding
frameworks in this chapter and Chapter 4, the l2-norm constraint on Φ(X , β⃗i)u⃗i prevents
the optimization solutions from becoming degenerated (Rubinstein, Zibulevsky, and
Michael Elad 2008).

The dictionary ΦB(U) in Equation 5.23 contains attributes (columns) that are weighted
combinations of different exemplars and dimensions from X . The non-negativity con-
straints on (B, Γ, U) leads to a combination of similar semantically similar sequences in
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such formulation. In addition, applying the sparsity limit T on the cardinality of each γ⃗i
and u⃗i motivates the encoding model to learn significant, non-redundant information in
the data. As a result, the model proposed in Equation 5.23 learns attributes as columns of
ΦB(U), which lead to interpretable encoding vectors γ⃗i. Each entry in an encoded γ⃗i can
be interpreted according to the specific dimensions in the particular motion sequences to
which it is connected.

In the following sections, I show how one can benefit from this proposed MKD model
to categorize and partially reconstruct unseen motion sequences (or, in general, MTS
data).

Partial Reconstruction of Unseen Motions

In real-world MTS datasets such as human motions, it is expected to observe partial
similarities between different motion classes’ dimensions. Therefore, some body move-
ments in one motion can be described by the same body movements in another motion.
For example, one can make a similarity mapping between the leg movements in two
generally different actions performed while the subject is walking. In such a scenario,
given the first motion (X) is from the training set and the latter is an unseen sequence (Z),
we can reconstruct (or represent) the leg movement of Z by addressing the leg dimension
of X. In other words, we can partially encode Z.

To obtain an encoding vector γ⃗ for an unseen Z, we can minimize the problem of
Equation 5.23 only regarding γ⃗ as follows

γ⃗ = arg min
γ⃗

∥Φ(Z)−ΦB(U)γ⃗∥2
F

s.t. ∥γ⃗∥0 < T, γi ∈ R≥0

(5.24)

To find the dimensions in Z which can be partially encoded according to the resulting γ⃗,
I define the following error measure:

J Srec(Z, B, U) = ∥ISΦ(Z)−ΦBS (U)γ⃗∥2
2/∥ISΦ(Z)∥2

2, (5.25)

in which S denotes the index set of selected dimensions from Z. Notations BS and IS
are B and an identity matrix, respectively, where all their entries are zero except the rows
in B and diagonal elements of I corresponding to the index set S .

Consequently, the learned dictionary ΦB(U) can partially reconstruct the unseen
time-series Z for the subset S of its dimensions, if for a chosen relatively small ϵ:

S = arg max
S

|S|

s.t. J Srec(Z, B, U) < ϵ
(5.26)

The parameter ϵ in Equation 5.26 makes a trade-off between the quality of the encoding
and the number of dimensions from Z that are reconstructed in RKHS.

As the primary step to compute Equation 5.25, based on the dot-product rule in Equa-
tion 5.3 for each individual kernel Km(X ,X ) and the definition of MKD in Equations 5.22
and 5.20, I denote the following

Kij
BS
(Xη , Xξ) := Φ(Xη , β⃗i)

⊤Φ(Xξ , β⃗ j) = ∑
m∈S

βmiβmjKm(Xη , Xξ). (5.27)
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Algorithm 5.2 Incremental Clustering algorithm: incrementally categorizes the encoded
unseen motion sequence Z based on its dimension-wise reconstruction. The clustering
algorithm constructs the dendrogram H for those sequences in an online fashion.

1: Input: The encoding matrix R from Equation 5.29, the current tree H.
2: Output: Place of Z in the hierarchy H.
3: if ∃Cn such that d(Z, Cn) ≤ d̄(Cn) then
4: if Cn is a leaf node then
5: add Z to Cn.
6: if (d̄(Cn1) + d̄(Cn2))/2d̄(Cn) ≤ kclust then.
7: split Cn into Cn1 and Cn2 using k-means.
8: if (d̄(Cn1) + d̄(Cn2))/2d̄(Cn) ≤ krmv then
9: Replace Cn with Cn1 and Cn2.

10: else
11: add {Cn1, Cn2} as the children of Cn.
12: end if
13: end if
14: else
15: Create a new child for Cn as Cnt and add z to it.
16: end if
17: else
18: Create a new leaf at the top level containing Z.
19: end if

In Equation 5.27, the matrix Km(Xη , Xξ) is the kernel function associated with the m-th
implicit mapping Φm(X) and is computed based on the m-th feature of the motion
sequences. Using Equation 5.27, we can rewrite Equation 5.23 in terms of the parameters
(U, B, Γ) and update each parameter individually. Hence, we can be compute

J Srec(Z, B, U) = [γ⃗⊤Mγ⃗ + v⃗⊤γ⃗ + ∑
m∈S
Km(Z, Z)]/ ∑

m∈S
Km(Z, Z), (5.28)

where mij = u⃗⊤i K
ij
BS
(X ,X )u⃗j and vj = −2K1j

BS
(Z,X )u⃗j are the entries of M and v⃗,

respectively. The term K1j
BS

denotes using a vector of ones instead of βi in Equation 5.27.

In the next section, I propose a clustering method based on the above interpretable
encoding which describes a partial similarity between the unseen sequence Z and the
members of the training set X in RKHS.

Incremental Clustering of Unseen Motions

I propose Algorithm 5.2 that relies on the partial similarity of different motion classes and
the descriptive quality of the learned attributes of MKD. This algorithm incrementally
clusters the unseen sequences of Z into a dendrogram H in an online fashion and also
finds their potential sub-clusters. To that aim, for each unknown motion sequence Z, I
prepare an encoding matrix R ∈ RN×d, i-th column of which represents the weights of
contribution from X in the reconstruction of the i-th dimension of Z. Therefore, matrix R
is constructed as

rji =
k

∑
t=1

βitujtγt (5.29)
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where rji denotes the j-th entry of the i-th column of R. This matrix is considered as a
rich encoded descriptor for dimensions of Z based on X and is used in Algorithm 5.2 to
compare Z to the previously categorized unseen data in H to find the best place for Z in
the dendrogram. Line 3 of the algorithm finds Cn as the most similar node to Z based on
the distance term d(Z, Cn) = ∥RZ −RCn∥2

F, and the intra-cluster distance for each node
Cn as d̄(Cn) = EZi∈Cn [d(RZi , RCn)], where RCn = EZi∈Cn [RZi ]. Regarding line 8, I choose
krmv = 0.3 in our experiments, which results in an acceptable clustering outcome.

Optimization Scheme

I optimize the parameters U, Γ, and B in alternating steps, such that at each update
step, I optimize Equation 5.23 with respect to one parameter while fixing the others. In
the following update steps, the notation Kij

B(Xη , Xξ) refers to Kij
BS
(Xη , Xξ) while the full

matrix B is used instead of BS . Consequently, the entries of matrix Kij
B(X ,X ) are filled

with the corresponding values of Kij
BS
(Xη , Xξ) ∀ξ, η = 1, . . . , N. Using this summarized

notation, we can rewrite Equation 5.23 in terms of each parameter (U, B, Γ), and update
that parameter individually.

Updating Sparse Codes Γ

By fixing U and B and removing the constant terms w.r.t. Γ, the optimization problem of
Equation 5.23 is reduced to the following framework, which optimizes each individual
sparse code γ⃗ corresponding to each single input X

min
γ⃗

1
2 γ⃗⊤Mγ⃗ + v⃗⊤γ⃗

s.t. ∥γ⃗∥0 < T, γi ∈ R≥0, ∀i,
(5.30)

in which mij = 2u⃗⊤i K
ij
B(X ,X )u⃗j and vj = −2K1j

B (X,X )u⃗j are the entries of M and v⃗,

respectively. The term K1j
B denotes using a vector of ones instead of βi in Equation 5.3.

The optimization problem in Equation 5.30 is a non-negative quadratic programming
problem with an l0-norm constraint on γ⃗. Therefore, it can be optimized via the NQP
algorithm from Section 4.3 (Algorithm 4.5).

Updating the Dictionary Matrices U, B

I update the vectors associated with the dictionary atoms individually. To do so, for each
pair of {u⃗i, β⃗i}, the loss terms of Equation 5.23 can be reformulated as

Jrec(X , Γ, U, B) = ∥Φ(X )− ∑
i ̸=j

Φ(X , β⃗ j)u⃗jγ⃗
j −Φ(X , β⃗i)u⃗iγ⃗

i∥2
F (5.31)

Via further simplifying Jdic loss, Equation 5.23 can be re-formulated in terms of u⃗i as

min
u⃗i

u⃗⊤i [(γ⃗
iγ⃗i⊤Kii

B(X ,X ))

−2γ⃗i[K1i
B (X ,X )− ∑

i ̸=j
Kij

B(X ,X )u⃗jγ⃗j]⊤u⃗i

s.t. ∥u⃗i∥0 < T, ∥Φ(X , β⃗i)u⃗i∥2
2 = 1, uji ∈ R≥0 ∀j,

(5.32)

114



5 .5 experiments

in which 1⃗ is a vector of ones, and the diag(.) operator creates a vector based on the diag-
onal elements of its matrix argument. Similarly, via using Equation 5.31, the optimization
problem for updating β⃗i is simplified as

min
β⃗i

1
2 β⃗⊤i Hβ⃗i + c⃗⊤ β⃗i

s.t. ∥Φ(X , β⃗i)u⃗i∥2
2 = 1, β ji ∈ R≥0 ∀j

(5.33)

where, M elements of M and v⃗ are computed as:

mjj = 2[γ⃗iγ⃗i⊤u⃗⊤i Kj(X ,X )u⃗i + λdiag(Kj(X ,X ))⊤ −Kj(X ,X )]
vj = 2[∑

j
βl j(u⃗⊤i Kj(X ,X )u⃗jγ⃗

iγ⃗j⊤)− γ⃗iKj(X ,X )u⃗i]. (5.34)

Based on Equation 5.34, the off-diagonal elements of M are all zero.

The optimization problem in Equation 5.32 is an instance of non-negative quadratic
programming with an l0-norm constraint on u⃗i. Therefore, it can be optimized via
the NQP algorithm from Section 4.3 (Algorithm 4.5). However, Equation 5.34 is an
unconstrained non-negative quadratic problem, which can be solved by a non-negative
QP method such as (Brand and D. Chen 2011; X. Xiao and D. Chen 2014). Furthermore,
after updating each u⃗i or β⃗i, they are adjusted as follows to normalize the dictionary
atom Φ(X , β⃗i)u⃗i.

u⃗i ← u⃗i
∥Φ(X ,⃗βi)u⃗i∥2

= u⃗i√
u⃗⊤i Kii

B
u⃗i

,

β⃗i ← β⃗i

∥Φ(X ,⃗βi)u⃗i∥2
= β⃗i√

u⃗⊤i Kii
B

u⃗i

(5.35)

Considering the above updates steps, the following represents the training loop for
optimizing Equation 5.23:

1. Updating γ⃗i ∀i = 1, . . . , N

2. Updating u⃗i and β⃗i in a subsequent order ∀i = 1, . . . , k

In the next section, I implement the proposed multiple-kernel methods of this chapter
on real-world mocap benchmarks and evaluate their performance based on their specific
purposes.

5 .5 experiments

This section evaluates the performance of my proposed multiple-Kernel algorithms
LMMK , IMKPL , and MKD-SC on real-world data. Since the proposed algorithms have
different goals, I implement them with different setups and evaluate them via using their
specific metrics. Particularly, for evaluation of LMMK and IMKPL , i use supervised
settings, while the performance of MKD-SC is determined by unsupervised (clustering)
measures.
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Evaluating Large-Margin Multiple Kernel Learning

In this section, I implement my proposed LMMK algorithm on different motion datasets
and evaluate its performance by carrying out empirical comparisons to other MKL alterna-
tive algorithms. For these experiments, I chose the following datasets: Schunk , , UTKinect ,
HDM05 , and CMU-9, CLL_SUB_111 , and TOX_171 , which are introduced in Section 2.4.
Except for the last two datasets, which are high-dimension vectorial data, other selected
datasets are human motion capture benchmarks. The CLL_SUB_111 and TOX_171 are
specifically chosen to evaluate the performance of LMMK against high-dimensional,
non-temporal data types. Additionally, more experiments on image benchmarks are also
available in (Hosseini and Hammer 2019c), which analyzes the representation learning
performance of my LMMK algorithm.

For all datasets, the base kernels {Km(X ,X )}d
m=1 are computed using the global

alignment kernel (GAK) (Cuturi et al. 2007). Each Km(X ,X ) is computed based on the
pairwise DTW distances between motion sequences while considering only the m-th
dimension. Hence, each base kernel represents one specific dimension of the motion
sequence. Exceptionally for UTKinect , prior to GAK’s application, I use the preprocessing
from (Vemulapalli, Arrate, and Chellappa 2014) to obtain the Lie Group representation.

Parameters Tuning

The LMMK algorithm’s hyper-parameters (k, µ, λ) are tuned throughout the cross-
validation (CV) on the training set. However, based on practical evidence (Section 5.5),
having 0.4 ≤ µ ≤ 0.6 and choosing the neighborhood radius as 1 ≤ k ≤ 5 can lead to
satisfactory performance. Furthermore, I advise the reader to tune (µ, k) first and find the
optimal sparsity weight (λ) afterward. The above strategy can significantly reduce the
parameter search space. Likewise, I tune the hyper-parameters of the baseline algorithms
based on performing CV on the training set.

Alternative Methods

To have a proper evaluation, I make my comparisons between LMMK and the following
major MKL algorithms: MKL-TR (W. Jiang and Chung 2014), MKL-DR (Y.-Y. Lin, T.-L.
Liu, and Fuh 2011), DMKL (Qingwang Wang, Gu, and Tuia 2016), KNMF-MKL (Gu,
Qingwang Wang, et al. 2015), and RMKL (Gu, C. Wang, et al. 2012). These algorithms
are designed for multi-class MKL problems; hence, we can inspect their results from
discriminative feature selection. For comparison, I also include the implementation result
of my distance-based metric learning method DTW-LMNN from Chapter 3. As the
baseline classifiers, I also implement multi-class SVM (C.-C. Chang and C.-J. Lin 2011)
and kNN using the average of the base kernels resulting in SVM-ave and kNN -ave,
respectively.

It is important to emphasize that the purpose of my sparse coding frameworks
is to perform discriminative feature selection of motion data given multiple-kernel
representation of data is available. Hence, although there exist various deep learning
classifiers or object detection methods specially designed for image or video datasets,
they do not fit the multiple-kernel scope of my comparisons. Furthermore, there exist
state-of-the-art algorithms specifically designed for the classification of temporal data.
They generally perform temporal segmentation or frame-based analysis of each data
sequence. Therefore, these algorithms do not belong to the intended multiple-kernel
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Table 5.1: Comparison of accuracies (Acc) and ∥β⃗∥0 on the MTS datasets.

Method UTKinect CMU-9 Schunk

Acc ∥β⃗∥0 Acc ∥β⃗∥0 Acc ∥β⃗∥0

kNN -ave 85.70 60 85.34 62 82.32 64
SVM-ave 87.17 60 88.32 62 84.24 64
DLK 87.71 41 88.95 34 87.32 44
RMKL 90.09 55 89.57 50 88.47 56
KNMF-MKL 90.48 48 90.37 57 87.63 53
MKL-DR 90.84 31 91.73 40 88.91 37
DMKL 92.31 24 93.31 34 91.81 27
MKL-TR 93.20 20 93.66 21 92.73 11
DTW-LMNN 98.92 17 95.94 15 96.82 24
LMMK(proposed) 98.55 14 96.72 12 96.25 12

HDM05 CLL_SUB_111 TOX_171

Acc ∥β⃗∥0 Acc ∥β⃗∥0 Acc ∥β⃗∥0

kNN -ave 83.66 93 71.49 11340 78.26 5748
SVM-ave 85.74 93 74.52 11340 82.45 5748
RMKL 89.85 88 77.61 7563 84.57 3780
KNMF-MKL 87.81 89 76.23 6390 85.38 3579
MKL-DR 90.54 57 77.56 410 86.47 479
DMKL 92.71 36 79.34 87 89.73 89
MKL-TR 94.17 20 83.89 224 92.41 132
DTW-LMNN 97.06 23 85.32 383 97.43 105
LMMK(proposed) 97.07 23 84.63 118 98.04 53
The best result (bold) is according to a two-sample t-test at a 5% significance level.

scope of my experiments. Nevertheless, as a suggested extended experimental setting,
one can use such methods as preprocessing techniques to obtain more discriminative
base kernels for the multiple-kernel learning methods.

I evaluate the performance of the selected MKL algorithms based on classification
accuracy Acc = 100 × [#correct predictions]/N. In order to evaluate the feature
selection performance of the selected baselines, besides the classification accuracy (Acc),
I also measure the number of selected features of the data (base kernels) via ∥β⃗∥0.
For DTW-LMNN , ∥β⃗∥0 is obtained by regularizing the relevance profile of its learned
metric the way described in Section 3.5. Consequently, a large Acc along with a small
∥β⃗∥0 describes an ideal discriminative feature selection, in which the classes could be
distinguished with high accuracy while using a few selected features. All the experiments
are done using 10-fold CV averaged over 10 repetitions. To preserve the possibility of
comparing results against the experiments of Chapter 4, I use the exact CV indexes from
that chapter.

Discriminative Feature Selection Results

Table 5.1 contains the implementation results of LMMK and other MKL algorithms on
the selected MTS benchmarks. The LMMK algorithm outperforms other MKL baselines
regarding classification accuracy. While LMMK has 7.63% and 4.7 higher accuracy
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compared to the best multiple-kernel learning baseline for TOX_171 and UTKinect datasets,
this advance is 0.74% for the CLL_SUB_111 dataset. This observation shows that the local
class-separation strategy’s effectiveness varies among different datasets and depends
on their class-distributions. Comparing the accuracy of LMMK to kNN , my proposed
algorithm significantly increases the nearest neighbor classifier’s performance. Specifically
for the TOX_171 dataset, - in which kNN -ave has a relatively low accuracy due to its
large number of features (11340) - LMMK optimization leads to a 19.78% increase in the
performance of kNN . Considering other baselines, DMKL and MKL-TR alternatively take
the second position in classification accuracy, which shows that the discriminative effect of
the low-rank model in MKL-TR may vary depending on the given dataset. It is interesting
to see that DTW-LMNN has a slightly better accuracy than LMMK for UTKinect ,
Schunk , and CLL_SUB_111 datasets, while LMMK outperform it for CMU Mocap and
TOX_171 datasets. Hence, the sparse metric and centralized kernel representation used
in LMMK can result in a more discriminative representation of the data compared to
DTW-LMNN if its model suits the given class distribution. Generally, the comparison
between discriminative quality of these two methods depends on the class distribution
of the given task.

Regarding the feature selection performance, the value of ∥β⃗∥0 has ranked LMMK among
the small-feature group of methods (DMKL, MKL-TR, LMMK), which is due to the
direct application of an l1-norm sparsity term in the optimization scheme of Equa-
tion 5.7. In comparison, MKL-TR obtained smaller values for ∥β⃗∥0 in CLL_SUB_111 and
HDM05 datasets, while DMKL has the smallest feature set for Schunk . Nevertheless,
these two methods showed lower classification accuracy in return. Therefore, I can claim
that LMMK achieves more discriminative feature-selections even for these cases. To
explain other baselines’ feature selection results, DMKL and MKL-TR use a convex
combination constraint on β⃗, which directly enforces sparsity, while MKL-DR and DLK
have quadratic constraints on the kernel weights, which applies a weaker restriction on
the number of non-zero kernel weights. On the other hand, KNMF-MKL and RMKL do
not have any constraint in their optimization framework related to the sparseness of the
selected features, which leads to a relatively poor feature selection result.

Compared to the DTW-LMNN method from Chapter 3, LMMK shows a slightly
better feature selection. Although both methods have a similar optimization framework,
the diagonal metric and the active sparsity objective of LMMK leads to selecting a tighter
set of base kernels to represent motion sequences in a combined RKHS. However, as
mentioned before, this small set of selected features may not always lead to better accuracy
compared to DTW-LMNN . Therefore, we cannot make a unanimous vote regarding
comparing the discriminative feature selection performance of these two methods.

Effect of the Parameter Setting

In this section, I study the effect of the parameters (λ, k, µ) on the performance of LMMK.
As described in Figure 5.5, I perform three experiments on the CMU dataset, for each
of which I study the algorithm’s performance by changing one of the above parameters
while fixing the two others.

At first, I change λ in the range [0 14] as in Figure 5.5-a. Based on the observations, I
conclude that increasing the value of λ leads to a stronger sparsity force in Equation 5.7
and consequently results in a smaller set of selected features for both datasets. Figure 5.5-b
shows that limited increases in λ can improve the classification accuracy, but large values
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Figure 5.5: Effects of parameter changes on LMMK’s performance for the CMU-9.

of λ would damage the discriminative property of the resulting RKHS. It is essential
to indicate that the points λ = 0 in Figure 5.5-a and Figure 5.5-b are related to the
performance of LMMKλ=0, which is the LMMK’s algorithm without having the sparsity
term in Equation 5.7. Based on the figures, LMMKλ=0 has an accuracy of 93.78% for the
CMU dataset, which is comparable to the performances of DMKL and MKL-TR (as the
best baselines in Table 5.1). This evidence proves my claim regarding the effectiveness
of focusing on the classes’ local discrimination in the feature space, even without the
sparsity objective. Additionally, making a comparison between LMMKλ=0 and sparse
LMMK reveals the notable benefit of the l1-norm sparsity term to both feature selection
and classification accuracy.

Figure 5.5-c demonstrates the effect of the trade-off between the first two objec-
tive terms in Equation 5.7. For the Pascal dataset, balancing the pulling and pushing
terms (with 0.35 ≤ µ ≤ 0.6) leads to the highest accuracy. Based on the experimental
observations like the above, tuning µ around 0.5 generally results in a good performance.

According to the classification accuracy curves of Figure 5.5-d, the best choice for
the value of k depends on the distribution of the classes; nevertheless, selecting large
values for this parameter (e.g., 10 ≤ k) is expected to reduce the Acc dramatically. As an
explanation, by increasing the size of neighborhoods (k), LMMK can no longer preserve
its local property.
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Evaluating Interpretable Multiple-Kernel Prototype Learning

As the second set of experiments, I implement the proposed IMKPL algorithm on the same
selected datasets from the previous section. Therefore, the base kernels are computed as
described in that section. Nevertheless, I evaluate its performance by making empirical
comparisons to different baseline methods and also by employing additional performance
measures to those from the previous section.

Parameters Tuning

I perform 5-fold cross-validation on the training set to tune the hyper-parameters
{λ, µ, T, τ} in Equation 5.11. I carry out a similar procedure regarding the parame-
ter tuning of other baselines. For IMKPL , I determine the number of prototypes as
k = CT and the neighborhood radius k = T. As the rationale, the constraint ∥u⃗i∥0 ≤ T
and the term Jdis in Equation 5.11 make each u⃗i effective mostly on its T-radius neighbor-
hood. In practice, choosing λ = µ = τ ∈ [0.2 0.4] is a good working setting for IMKPL to
initiate the parameter tuning (e.g., Figure 5.9).

Alternative Methods

I compare my proposed method to the following state-of-the-art prototype-based learning
or multiple-kernel dictionary learning methods: KRSLVQ (Hofmann et al. 2014), PS (Bien,
Tibshirani, et al. 2011), MKLDPL (X. Zhu et al. 2017), DKMLD (Thiagarajan, Ramamurthy,
and Spanias 2014), and MIDL (Shrivastava, Pillai, and Patel 2015). The KRSLVQ algorithm
is the sparse variant of the kernelized-robust LVQ (Hammer, Hofmann, et al. 2014), and
for the PS algorithm, I use its distance-based implementation. These two algorithms
are implemented on the average-kernel inputs (β⃗ = 1⃗). I also implement ISKPL as the
single-kernel variant of IMKPL on that input representation. We can compare ISKPL to
its multiple-kernel version to investigate the individual effect of its multiple-kernel
part. Additionally, one can make a comparison between ISKPL and the sparse coding
framework CKSC , which was proposed in Chapter 4. This comparison is of particular
interest due to the general similarity of these two methods’ structures.

It is important to emphasize that I exclusively select the baselines that can be evaluated
according to my specific research objectives (Ob1-Ob3) in Section 5.3. For each method, I
evaluate the quality of the learned prototypes on the resulting RKHS (based on {U, β⃗})
by utilizing the following measures, which coincide with the objectives Ob1-Ob3 in
Section 5.3. Furthermore, all the experiments are done using the same CV scheme from
the previous experiment section (for LMMK ).

Interpretability of the Prototypes (IP) As discussed in Section 5.3, I have two main
preferences regarding the interpretability of each prototype Φ̂(X )u⃗i:

1. Its formation based on class-homogeneous data samples.

2. Its connection to local neighborhoods in the feature space.

Therefore I use the following IP term to evaluate the above criteria based on the values
of the prototype vectors {u⃗i}k

i=1:

IP = 100× 1
k

k
∑

i=1

h⃗q u⃗i
∥Hu⃗i∥1

exp(−∑
s,t

usiuti∥Φ̂(Xs)− Φ̂(Xt)∥2
2), (5.36)

120



5 .5 experiments

Table 5.2: Comparison of baselines regarding IP(%) and DR(%).

Methods UTKinect CMU-9 Schunk HDM05 CLL_SUB TOX_171

IP DR IP DR IP DR IP DR IP DR IP DR

IMKPL 96 91 94 87 96 90 98 92 91 75 95 89
ISKPL 92 82 92 83 91 84 96 84 88 70 93 79
MKLDPL 78 60 71 64 77 70 76 72 75 57 82 66
DKMLD 74 52 66 61 74 64 70 64 67 51 71 60
MIDL 69 50 58 58 70 61 61 59 66 50 69 60
KRSLVQ 77 – 70 – 80 – 71 – 69 – 76 –
PS 79 – 74 – 83 – 82 – 78 – 80 –

in which q = arg max
q

h⃗qu⃗i is the class to which the i-th prototype is assigned. The first

part of this equation obtains the maximum value of 1 if each u⃗i has its non-zero entries
related to only one class of data, while the exponential term becomes 1 (maximum) if
those entries correspond to a condensed neighborhood of points in RKHS. Hence, IP
becomes close to 100% if both of the above concerns are sufficiently fulfilled. For the PS
algorithm, I measure IP based on the samples inside the ϵ-radius of each prototype (Bien,
Tibshirani, et al. 2011).

Discriminative Representation (DR) In order to properly evaluate how discriminative
each prototype Φ̂(X )u⃗i is I define the discriminative representation term as

DR = 100× 1
k

k

∑
i=1

∑s:⃗hs=q γis

∥γ⃗i∥1
, (5.37)

where q is the same as in IP measure, and Γ is computed based on the test set. Hence, DR
becomes 100% (maximum) if each prototype i which is assigned to class q only represents
(reconstructs) data from that class; i.e., the prototypes provide exclusive representation
of their corresponding classes. Vector γ⃗i is the i-th row of Γ, which shows the role of u⃗i
in the encoding of all data samples. Based on the given definition in Equation 5.37, DR
is also dependent on the quality of class-based interpretation of each dictionary atom.
The DR measure does not fit the models of KRSLVQ and PS algorithms.

Classification Accuracy of Test Data (Acc) For each test data Xtest, I predict its class
as q = arg max

q
h⃗qUγ⃗test, meaning that the q-th class provides the most contributions in

the reconstruction of Xtest. The accuracy value Acc is defined similar to the evaluation of
LMMK in the previous section.

Results: Efficiency of the Prototypes

In Table 5.2, I compare the baselines regarding the interpretability and discriminative
qualities of their trained prototypes. Considering the IP values, IMKPL significantly out-
performs both the MKDL and prototype-based learning algorithms. As the best result, for
the Schunk dataset, my method has a margin of 19% compared to the best baseline algo-
rithm (MKLDPL). Also, the ISKPL algorithm obtains higher interpretability performances
than the single-kernel and multiple-kernel baselines, which shows the effectiveness of
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the prototype leaning parts of the design (Jdis and Jip). Besides, the difference between
the IP values of ISKPL and IMKPL signifies the role of the Jls objective in enhancing
the interpretation of IMKPL ’s prototypes by learning a suitable MK representation.
Comparing the IP value of both IMKPL and ISKPL to CKSC from Chapter 4 (Figure 4.5)
shows that ISKPL and its multiple-kernel version have more interpretable models in
terms of their base elements. Specifically, the ISKPL framework focuses on the local
representation of data and the formation of its prototypes by exemplars from condensed
neighborhoods. Hence, its prototypes have better interpretation w.r.t. the class labels.
Other algorithms show weak results in learning class-specific and locally concentrated
prototypes.

We observe similar behaviors by comparing the algorithms based on the discrimi-
native DR measure. Table 5.2 shows that the prototypes learned by IMKPL are more
efficient regarding the exclusive representation of the classes on a combined RKHS. For
instance, IMKPL outperforms MKLDPL (best baseline) with the DR margin of 31% on
the UTKinect dataset. Furthermore, the ISKPL has a higher DR than other multiple-
kernel methods (except IMKPL ), which shows its prototypes are both interpretable and
discriminative to a considerable extent.

Results: Accuracy and Feature Selection

Each base kernel Ki is derived from one dimension of the data. Therefore, I evaluate
the feature selection performance of the algorithms by comparing ∥β⃗∥0 and Acc among
them. As presented in Table 5.3, IMKPL has the best prediction accuracy for all datasets.
It outperforms other baselines with relatively significant Acc-margins (e.g., 4.50% com-
pared to MKLDPL on UTKinect ). Particularity, comparing the Acc value of IMKPL to

Table 5.3: Comparison of IMKPL to selected baselines regarding Acc (%) and ∥β⃗∥0.

Methods UTKinect CMU-9 Schunk

Acc ∥β⃗∥0 Acc ∥β⃗∥0 Acc ∥β⃗∥0

IMKPL 98.82 14 94.58 22 95.21 22
ISKPL 90.32 – 90.07 – 91.23 –
MKLDPL 94.32 32 93.87 34 93.46 32
DKMLD 91.64 30 92.11 27 92.58 16
MIDL 91.01 47 90.46 51 91.36 40
KRSLVQ 88.75 – 88.54 – 88.47 –
PS 85.89 – 86.38 – 84.52 –

HDM05 CLL_SUB TOX_171

Acc ∥β⃗∥0 Acc ∥β⃗∥0 Acc ∥β⃗∥0

IMKPL 96.37 30 81.73 204 97.21 72
ISKPL 91.03 – 77.95 – 88.07 –
MKLDPL 94.95 40 79.63 310 94.72 347
DKMLD 92.74 18 78.25 101 90.49 130
MIDL 91.41 50 77.24 452 87.63 571
KRSLVQ 88.90 – 74.66 – 86.21 –
PS 84.64 – 74.03 – 82.47 –

The best result (bold) is according to a two-valued t-test at a 5% significance level.
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ISKPL shows the effectiveness of the multiple-kernel formulation of IMKPL (role of β⃗
in Equation 5.11) in locally separating data classes in RKHS. For TOX_171 , IMKPL has
9.16% classification accuracy than the ISKPL algorithm.

On the other hand, comparing the prediction accuracy of ISKPL to KRSLVQ and PS (as
the major prototype-based learning methods) demonstrates the significant discriminative
performance of my prototype-based algorithm even for single-kernel input. Even though
ISKPL obtained lower Acc values than MKLDPL and DKMLD (as it does not optimize
β⃗), its higher DR values show its design’s effectiveness (Jdis and Jip) regarding our
expectations from an interpretable prototype-based representation. The reason for the
higher DR value of ISKPL is partially connected to the high IP value of its learned
prototypes. Comparing the prediction accuracy of ISKPL to the proposed CKSC algorithm
from Chapter 4 (Table 4.1) illustrates that CKSC obtains higher classification accuracy
than ISKPL . This observation reveals that the CKSC model performs better with respect
to encoding the supervised information related to motion classes. Although ISKPL has
a more interpretable model, CKSC presents a more robust discriminative encoding,
specifically relying on its consistent test and train model.

In addition, comparing the accuracy of IMKPL to LMMK (Table 5.1) shows that
LMMK has a higher classification accuracy than IMKPL . This observation is due to
the fact that the formulation of LMMK only aims for a better separation of data classes
in the resulting RKHS. However, besides discriminative encoding of motion sequences,
LMMK has other objectives in its model, which aims for the prototype-based encoding
of motion sequences and their interpretability. Therefore, its specifically combined RKHS
would sacrifice its discriminative performance in favor of these additional objectives.

Studying ∥β⃗∥0 in Table 5.3 demonstrates that IMKPL obtains the smallest set of
selected features on three of the datasets (CMU Mocap , UTKinect , and TOX_171 )
compared to other multiple-kernel prototype-based baselines. It particularly shows
a significant feature selection performance on TOX_171 by obtaining 97.21% accuracy

Figure 5.6: 2-dimensional embedding of the UTKinect dataset (based on the average-
kernel) which visualizes the relative overlap of the classes (colored figure).
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Table 5.4: Number of prototypes assigned to each class of the UTKinect dataset.

Classes 1 2 3 4 5

Names walk sit down stand up pick up carry
# Prototypes 7 2 2 8 8

Classes 6 7 8 9 10 All

Names throw push pull wave clap
# Prototypes 6 5 4 3 5 50

while selecting 72 features out of the total 5748 dimensions. Regarding other datasets
(CLL_SUB_111 , HDM05 , and Schunk ), also considering the Acc value next to ∥β⃗∥0

reveals that the multiple-kernel optimization of IMKPL (role of β⃗ in Equation 5.11)
finds an efficient set of features that leads to a discriminative PB model with a high
performance (but not necessarily the smallest feature set).

Comparing IMKPL to LMMK , the metric learning approach yields a more compact
feature selection (smaller ∥β⃗∥0) on almost all datasets (except UTKinect ). While the
main objective of LMMK is to find a sparse set of features that increase the separation
of data classes, the IMKPL model also aims for the reconstruction of data as well as
the interpretable formation of the prototypes. Therefore, in order to fulfill these extra
objectives, IMKPL needs to use more resources from the data (as input dimensions).

Detail Analysis of Prototypes

It is a pre-requisite feature for many prototype-based methods to fix the number of
prototypes for each class of data through the training phase (e.g., MKLDPL, DKMLD,
and KRSLVQ). However, as a common observation in real-world datasets, data classes

(a) The MKLDPL model. (b) The IMKPL model.

Figure 5.7: The contribution of training samples in the formation of dictionary atoms for
(a) MKLPLD, (b) IMKPL on a dense neighborhood in the HDM05 dataset. Each small
shape is a training sample related to one class of data. Each big shape type represents
one dictionary atom Φ(X )u⃗i and indicates the training samples on which it is built
corresponding to the non-zero entries of u⃗i.
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Figure 5.8: Visualization of overlapping classes for the TOX_171 dataset based on the
average-kernel combination (left) and the optimized β⃗-combined embedding (right).
Clearly, the kernel weighting scheme has reduced the overlap between the classes.

are not distributed homogeneously. Even having the same number of data per class, their
local distributions can be significantly diverse.

In our IMKPL model, although we decide in advance about the total number of
prototypes to learn for each dataset as k = CT, IMKPL automatically assigns the proper
number of prototypes to each class of data to fulfill the defined objectives Ob1-Ob3
better. Table 5.4 represents the number of prototypes learned per motion class for the
UTKinect dataset, which shows a notable variation among them. Also, by considering the
2D embedding of the UTKinect dataset in Figure 5.6 (using the t-SNE algorithm (Maaten
and G. Hinton 2008)), it is clear that IMKPL assigns more prototypes to classes that suffer
from significant overlap (e.g., pick up and carry) and fewer representatives to the more
condensed classes (e.g., sit down and stand up).

Accordingly, Figure 5.7 visualizes the formation of dictionary atoms based on non-
zero entries of columns of U for the HDM05 dataset. The relatively small entries of each u⃗i
are zeroed, such that the remaining coefficients point toward significant training samples
for the given dictionary atom. As we can observe for the MKLDPL model (Figure 5.7-a),
its dictionary vectors have considerable overlap regarding their contributing classes. The
cross-class contributions for the formation of each u⃗i is much higher compared to the
IMKPL model (Figure 5.7-b), resulting in the IP value of 78. On average, each u⃗i from
MKLDPL is connected to data samples from 3 to 4 different classes, and the majority of
the sequences are used to construct the prototype vectors in U. In contrast, the prototypes
of the IMKPL model are mostly constructed from one class of data, resulting in an IP
value of 98%. Comparing IMKPL to CKSC (IP = 94%) from Chapter 4 (Figure 4.6-c),
IMKPL results in fewer overlapping prototypes in terms of the data sequence they use.
This formation is dues to the dense data neighborhoods from which prototypes are
constructed.

Visualization of the Learned Kernel

To visualize the effect of the learned kernel weights (β⃗) on the distribution of classes, we
visualized the 2-dimensional embeddings of the TOX_171 dataset in Figure 5.8 (using the
t-SNE method). Clearly, the optimized β⃗ has lead to better local separation of the classes
in the resulting RKHS (Figure 5.8-left) compared to the average-kernel representation of
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Figure 5.9: The isolated effect of changing the parameters {λ, µ, τ} (a) and T (b) on the
performance measures Acc and IP for the Schunk dataset.

the data (β⃗ = 1⃗/d) in Figure 5.8-right. This observation complies with the role of Jls in
Equation 5.11.

Effect of Parameter Settings

We study the effect of parameters {λ, µ, τ, T} on the Acc and Ip performance of IMKPL by
conducting four individual experiments on the Isolet dataset. Each time, we change
one parameter while fixing others by their values related to results in Table 5.3.

As illustrated by Figure 5.9-(left), the performance is acceptable when λ, µ, τ ∈
[0.1 0.5], but Acc and IP may decrease outside of this range. Specifically, τ has a slight
effect on Acc, but it increases the value of IP almost monotonically. In comparison, µ
and λ influence Acc more significantly. Nevertheless, they have small effects on IP when
they are small (in [0 0.6]), but λ has a productive and µ a slight destructive effect for their
larger values. When the data classes have large overlap in the RKHS, focusing only on
Jls (large µ) does not necessarily provide the best prototype-based solution.

Figure 5.9-(right) shows that increasing T generally improves Acc up to an upper
limit. Since k = CT, large values of T leads to learning redundant prototypes. Besides,
increasing T generally degrades the IP value, but it almost reaches a lower bound value
for large T (≈ 87% for Schunk ) because of the minimum interpretability induced by the
non-negativity constraint uji ∈ R≥0 in Equation 5.11.

Running Time and Convergence Curve

To evaluate the computational complexity of IMKPL , we compare the training running
time of the selected methods on CLL_SUB, UTKinect , and CMU datasets. As reported in
Table 5.5, IMKPL has a smaller computational time than other MK algorithms (MKLDPL,

Table 5.5: Training run-time of baseline algorithms (seconds).

Dataset IMKPL (proposed) MKLDPL DKMLD MIDL KRSLVQ PS

CLL_SUB 2.58e2 2.85e4 4.08e4 8.76e4 1.24e2 2.32e0
UTKinect 8.09e0 8.83e2 1.67e3 3.57e3 1.47e1 7.36e-2
CMU-9 1.59e0 8.31e1 1.32e2 3.25e2 1.34e0 1.49e-2
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Figure 5.10: The convergence curves of IMKPL on the selected datasets.

Table 5.6: Average of DRA measure (%) for the reconstruction of the unseen classes.

Cricket CMU-9 Words Squat

DRA (%) 76.4 84.5 80.2 62.6

DKMLD, and MIDL) and is even faster than or comparable to KRSLVQ (as a single-kernel
method) when the number of features d is small in relation to N (UTKinect and CMU).
Although the PS algorithm has a shorter running time than IMKPL , it is not applicable
to the multiple-kernel data.

In Figure 5.10, I plot the changes in the value of the whole objective function of
Equation 5.11 during the training iterations. Based on this figure, Algorithm 5.1 is
considered converged when the above value becomes relatively small, which occurs
rapidly on all the selected datasets in the experiments (less than 20 iterations).

Evaluating Multiple-Kernel Dictionary Structure

To evaluate the performance of my MKD-SC framework for representation and discrimi-
nation of unseen data, I choose the MTS datasets CMU Mocap , Cricket , Words , and
Squat with the descriptions provided in Section 2.4. For all the datasets, the dimension-
specific kernels are computed as in Section 5.5.

For tuning T and the dictionary size in Equation 5.23, I use 5-fold cross-validation.

Partial Reconstruction Results

In order to evaluate the reconstruction quality for each unseen data Z, I define the
dimension-reconstruction accuracy measure as

DRA :=
|S|
d

S from Equation 5.26 for ϵ = 0.1.

Furthermore, each reconstructed dimension of Z that satisfies the above threshold is
interpreted via the class of data with the most contribution as in Section 5.4. Table 5.6
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reports the DRA values for the selected MTS datasets, where the CMU and Words datasets
have higher DRA values due to their diverse set of training classes, which increases the
dimension-level similarity between seen and unseen classes. As an example, I illustrate
the dimension-level reconstruction of two unseen categories from the Cricket dataset in
Figure 5.11, In that experiment, the No ball class is fully reconstructed via its relation to
the movement of the left hand in the Short class and to that of the right hand in the Wide
class.

Incremental Clustering Results

To evaluate the incremental clustering of Section 5.4, I use the average clustering error
(CE) and normalized mutual information (NMI) (Wencheng Zhu, J. Lu, and J. Zhou 2018).
To that aim, I cut each dendrogram from where it has an equal number of clusters to
the ground truth. Therefore, the average CE is calculated over 10 clustering repetitions
for each algorithm. The NMI measures the amount of information shared between the
clustering and the ground-truth, which lies in the range of

[
0, 1

]
, while the ideal score

of 1 means totally independent clusters. As the most relevant baseline, I choose the
self-learning algorithm (D. Lu, J. Guo, and X. Zhou 2016) without its novelty detection
part. Besides, I implement the spectral clustering algorithm (SC) on the original kernel
matrix K(Z,X ) to compare my framework to the regular clustering of Z . As another
baseline, I also use the NNKSC algorithm (Section 4.2) as the single-kernel predecessor
of MKD-SC, for which the R matrix becomes an N-dimensional vector.

According to the clustering results in Table 5.7, the proposed MKD-SC method pro-
vides encodings that lead to better clustering of the unseen data compared to the baselines.
The superiority of the spectral-clustering over NNKSC and self-learning methods (e.g.,

(a) no ball → {short + wide} (b) out→ {six}

Figure 5.11: Dimension-level interpretation of no-ball and out (Cricket) based on the
training classes. Related dimensions are specified using same-color rectangles.
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(b) Cricket dataset

Figure 5.12: Incremental clustering dendrograms for unseen classes of Squat (a) and
Cricket (b).
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Table 5.7: Clustering error (CE) (%) and NMI for the unseen categories.

Methods Words Squat CMU-9 Cricket

CE NMI CE NMI CE NMI CE NMI

MKD-SC(Proposed) 12.31 0.89 0 1 9.28 0.92 0 1
Self-learning 18.75 0.84 0 1 14.25 0.87 16.63 0.85
NNKSC 21.61 0.78 15.74 0.88 18.88 0.85 12.45 0.87
SC 27.51 0.76 13.04 0.90 23.45 0.76 8.04 0.89

for Cricket dataset) depends on the discriminative quality of the original kernels. The
self-learning method can have a better performance than NNKSC and spectral-clustering
when its descriptor-based features can better discriminate between the different categories
of the unseen classes.

Based on clustering dendrograms in Fig. 5.12, the unseen Squat and Cricket classes are
well categorized, which shows the effectiveness of the learned attributes for the distinct
representation of the unknown classes. The incremental clustering also categorized these
unseen classes into a few sub-clusters. For Squat (Fig. 5.12-a), the 3 sub-clusters for the
Go-down class are related to different performance styles of the dataset’s 3 participants
regarding this specific phase of the squat. Similarly, for each unseen category of the
Cricket dataset (Fig. 5.12-b), there are sub-clusters recognized for each of the distinct
main clusters, which reveal the existing structured variation within each of these classes.

5 .6 conclusion

In this chapter, I proposed three multiple-kernel learning frameworks which focus on
transferring data to a combined RKHS in favor of their specific supervised or unsuper-
vised objectives. The new RKHS is formed as a linear combination of individual kernels
that correspond to the input motion sequence’s individual dimensions. From another
perspective, each framework provides a specific feature selection according to its defined
goal.

My proposed LMMK algorithm performs discriminative multiple-kernel learning
for multi-class classification problems. This algorithm focuses on increasing the local
separation of the classes in the feature space, which improves the kNN classifier’s perfor-
mance classifier for the motion sequences. To that aim, I applied metric learning to the
feature space by defining a diagonal multiple-kernel metric in the RKHS. Furthermore,
I employed an l1-norm sparsity term in the formulation of LMMK to find a sparse
weighted combination of the base kernels. This sparse set of selected kernels can be
interpreted as semantically relevant dimensions of the input motion sequence to the
given supervised task. I implemented my algorithm on real-world mocap benchmarks
(as instances of multi-class multidimensional time-series), which shows that LMMK out-
performs other multiple-kernel learning algorithms in terms of discriminative feature
selection. Based on my empirical evaluations, the LMMK method is comparable to the
DTW-LMNN algorithm of Chapter 3 regarding classification accuracy, but it outperforms
DTW-LMNN with a more effective feature selection.

As another multiple-kernel learning framework, my IMKPL algorithm focuses on the
interpretable prototype-based representation of motion data in the feature space. This
framework is constructed upon a multiple-kernel dictionary learning formulation. This
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algorithm learns semantically interpretable prototypes as the local representatives of
motion classes in RKHS (e.g., a subset of similar walking sequences) while effectively
discriminating the classes from each other in that space. To that aim, the IMKPL method
performs an efficient feature selection for motion data, which is beneficial to the defined
prototype-based representation. Empirical evaluations on both vectorial and motion do-
mains validate the superiority of IMKPL over other prototype-based baselines regarding
the interpretability and discriminative power of its specific model. The implementations
showed that IMKPL cannot outperform the LMMK method in terms of discriminative fea-
ture selection. Nevertheless, its highly interpretable prototype-based model is particularly
beneficial to practitioners and domain experts.

As the last proposed algorithm in this chapter, I proposed an unsupervised multiple-
kernel framework, which provides an interpretable analysis of unseen classes in a motion
dataset. My MKD-SC algorithm is constructed based on a novel multiple-kernel dictionary
structure, which uses the multiple-kernel representations of motion dimensions to learn
semantic attributes. Based on these attributes, my unsupervised MKD-SC framework
reconstructs the unseen classes (partially or entirely) in the feature space according to
the relation of their dimensions to those of the seen categories. Such particular encoding
provides an interpretable description for the observed novel motion types. Benefiting
from the obtained sparse encoding, I proposed an online clustering, which incrementally
categorizes novel motions into distinct clusters upon their observation. Experiments on
real mocap benchmarks show the effectiveness of my MKD-SC framework in obtaining
interpretable descriptions for unseen MTS classes. Additionally, the designed incremental
clustering algorithm outperforms other baselines in terms of clustering accuracy, when
the baselines are directly applied to the input kernels.

In the chapters up to here, I proposed motion data analysis models for which the input
data consists of already segmented motion sequences. In addition, those models treat
each sequence as a pack without focusing on individual regions of the input time-series
in the temporal axis. Even by referring to DTW as a method that analyze the temporal
content of the input, its analysis is not actively affected by the next-level supervised or
unsupervised task. Regarding this concern, I design a novel deep learning framework
in the next chapter, which directly analyzes the temporal content of motion sequences
according to the given supervised task. Specifically, it finds interpretable discriminative
patterns in long sequences of motions. Such temporal patterns are beneficial to both
activity recognition and temporal segmentation problems in motion data and improve
the interpretability of the network.
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6I N T E R P R E TA B L E M O T I O N A N A LY S I S W I T H
C O N V O L U T I O N A L N E U R A L N E T W O R K

Publications: This chapter is partially based on the following publications.

• Hosseini, Babak, Romain Montagne, and Barbara Hammer (2019). “Deep-Aligned
Convolutional Neural Network for Skeleton-based Action Recognition and Segmen-
tation”. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE.

• — (2020). “Deep-Aligned Convolutional Neural Network for Skeleton-Based
Action Recognition and Segmentation (extended article)”. In: Data Science and
Engineering. issn: 2364-1541. url: https://doi.org/10.1007/s41019- 020-
00123-3.

Skeleton-based action recognition is a specific domain of motion analysis in which the
mocap data describes the movements of skeleton-joint, and its purpose is to classify the
actions represented by the movement sequences (Jake K Aggarwal and Ryoo 2011). In
recent years, skeleton-based action recognition has become an interesting problem for
many deep learning algorithms such as convolutional neural networks (CNNs) (Y. Du,
Fu, and Liang Wang 2015; Ke et al. 2017; Sijie Yan, Xiong, and D. Lin 2018) and recurrent
neural networks (RNN) (Y. Du, Wei Wang, and Liang Wang 2015; S. Song et al. 2017;
J. Liu, Shahroudy, et al. 2018). RNN methods can learn the temporal dynamics of the
sequential data; nevertheless, they have practical shortcomings in training their stacked
structures (M. Liu, Hong Liu, and Chen Chen 2017; H. Wang and Liang Wang 2017).
Compared to RNN architectures, CNN-based methods provide more effective solutions
by extracting local features from their input and finding discriminative patterns in the
data (Gehring et al. 2017; Ke et al. 2017).

Regardless of CNN’s promising feature extraction capability, its specific convolutional
structure is designed originally for image-based input data and primarily relies on spatial
dependencies between the neighboring points. In contrast, such a direct relationship does
not generally exist in skeleton-based action datasets. Although some works tried to solve
this problem by using 1-dimensional filters (only for the temporal dimension), it is still
not an efficient solution to this specific shortcoming of CNN-based frameworks (Y. Zheng
et al. 2014). Therefore, as a common strategy, CNN models are combined with other
methods such as long short term memory (LSTM), reinforcement learning (RF), and
graph-based model as the preprocessing or post-processing step of the deep architecture
(Núñez et al. 2018; Y. Tang et al. 2018; Sijie Yan, Xiong, and D. Lin 2018).

Despite the notable performance of deep neural networks in classification tasks,
their model interpretation is always of particular interest for practitioners and domain
experts (Patterson and Gibson 2017). Accordingly, several methods are proposed that
particularly focus on the interpretation of CNN models. Some techniques modify the
network architecture to add such characteristics to it (Kuo et al. 2019; Quanshi Zhang,
Nian Wu, and S.-C. Zhu 2018; Bolei Zhou et al. 2016; S. Shen et al. 2019), while other
methods focus on interpreting the decision-making process of the network (A. Nguyen,
Yosinski, and Clune 2016; Montavon, Lapuschkin, et al. 2017; Montavon, Samek, and K.-R.
Müller 2018; Kuo 2016; Fong and Vedaldi 2017). Regardless of the improvements in this
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area, the majority of these techniques are only applicable to the standard form of a CNN
model (LeCun et al. 1989), which generally have a weak classification accuracy on motion
data. Furthermore, the mentioned high-performance combination of CNN with other
action recognition methods prevents the whole architecture from becoming interpretable
and makes it unsuitable for applying the mentioned interpretation techniques.

Regarding the classification of temporal data, it is shown that via comparing each
data sequence to some predefined or learned sequences, we can classify the data samples
with high accuracy (Anagnostopoulos et al. 2006; Rakthanmanon and E. J. Keogh 2013).
Such methods rely on the semantic similarity and temporal alignment of time-series
(such as DTW) (Petitjean, Forestier, Geoffrey I Webb, et al. 2016). In algorithms similar
to (L. Ye and E. Keogh 2009; C. Ji et al. 2019), finding a small distinct subsequence in
the input data (called shapelet) can reveal its classification label. These subsequences
are constructed of short time-series which present semantic similarity to specific parts
of longer sequences. In the context of motion analysis, one can consider these short
sequences as temporal prototypes, which carry meaningful information about the given
data or the defined task (Yeh 2018). For instance, to distinguish the walking class from
other types of motions, a few leg movement frames might be enough to declare a motion
sequence as walking. Therefore, to benefit from the highly interpretable property of such
temporal prototypes, I like to address the follow-up research question of RQ4:

RQ4-a: How can we incorporate the above concept of temporal prototype-aliment into a
CNN architecture to make it more interpretable for motion data classification?

Working on motion data analysis, a crucial step before applying many algorithms on
such sequential data is the temporal segmentation of the motions. In that initial step, we
need to split the long stream of recorded data into meaningful non-overlapping actions
in the time axis (F. Zhou, De la Torre, and Hodgins 2013). The semantic notion of the
action segments depends on the application and the defined overarching task. However,
the manual segmentation of such data is considerably time-consuming, especially due to
the ever-increasing growth in the size of such datasets. Accordingly, several unsupervised
algorithms are proposed for temporal segmentation of motion data, which does not
use any prior knowledge about its constituent actions (B. Krüger et al. 2017; F. Zhou,
De la Torre, and Hodgins 2013; S. Li, K. Li, and Fu 2015; Tierney, J. Gao, and Yi Guo 2014).
These methods mostly rely on the self-similarity or temporal clustering of time-frames in
the given motion stream. However, due to their unsupervised nature, they are prone to
over-segmentation of actions into smaller sub-sequences that do not coincide with the
actions’ semantic priors.

On the other hand, no major supervised segmentation method has been proposed
yet for general skeleton-based data. In that context, (Lichen Wang, Z. Ding, and Fu
2018) and (T. Zhou et al. 2020) proposed supervised frameworks, which extend the
temporal clustering of motion frames to a transfer learning problem, which benefit from
supervised information. However, such methods still need to solve their optimization
problem per test sequence and required prior knowledge about the test data. In some
cases, supervised domain-specific segmentation methods are proposed, which benefit
from deep architecture (Escalera et al. 2014; J. Y. Chang 2014; Neverova et al. 2016).
Nevertheless, these networks have skeleton-specific architectures according to a particular
segmentation problem and are not applicable to general skeleton-based mocap data.

Extending the segmentation problem to the temporal classification of motion se-
quences aims to segment and predict the action to which each time-frame belongs.
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Temporal classification is a popular concept in other sequential data domains such as
speech recognition and text analysis, where it is known as the sequence labeling of the
input data stream (Gehring et al. 2017). Several deep learning models are proposed for
such application based on CNN, RNN, or LSTM networks (Lample et al. 2016; X. Ma
and Hovy 2016; Z. Yang, Salakhutdinov, and Cohen 2016; Alzaidy, Caragea, and Giles
2019; Tsai et al. 2019). The majority of these techniques rely on employing a Conditional
Random Field (CRF) module (Lafferty, McCallum, and Pereira 2001) in their architec-
ture, which considers dependencies between the time-frame predictions. Although these
methods are effective regarding classification accuracy and computational complexity,
their implementation on skeleton-based motion data requires domain-specific data pre-
processing. Moreover, those methods that rely on specific world embeddings require
substantial changes in the network’s structure to make them applicable to motion se-
quences. According to the notable performance of deep neural networks in segmentation
and classification of temporal data, my next follow-up research question of RQ4 is:

RQ4-b: How can we design a deep neural network which can effectively perform tem-
poral classification specifically for motion data?

Regarding the above research questions, I propose the deep-aligned convolutional
neural network (DACNN) as a novel deep neural architecture for skeleton-based action
recognition and segmentation (SBARS). This network has a CNN model in its core design
while introducing a new type of interpretable filter in its primary layer inspired by the
time-series alignment concept. Compared to the state-of-the-art deep neural architecture
for SBARS problems, DACNN has a more interpretable structure and is also flexible in
terms of the input size and the complexity of the given problem. To be more specific,
I have the following contributions with respect to the state-of-the-art in the temporal
classification of motion data:

• I introduce the alignment kernels (Al-filters) in the context of CNN, which are more
efficient than the convolutional filters regarding the temporal feature extraction
and classification of skeleton-based action data.

• DACNN learns temporal sub-sequences in the data as essential local patterns,
making the network’s decision-making process more interpretable and leading to
more accurate predictions.

• As another crucial contribution to the state-of-the-art, my DACNN architecture can
incrementally extend its depth (number of middle layers) based on the quality and
length of the learned Al-filters during the learning process and without disrupting
the training phase.

In the next section, I summarize the most relevant work in segmentation and temporal
classification literature. Then, I introduce the alignment filters based on which I propose
the novel architecture of the DACNN model. The proposed architecture is empirically
evaluated on mocap benchmarks, and the chapter is concluded afterward.

6 .1 state of the art

Generally, it is possible to split the skeleton-based action recognition methods into two
general categories:
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The first group includes methods with a preprocessing step to extract features (usually
hand-coded) that best represent the skeleton information. For instance, in (Jiang Wang et
al. 2012), the local occupancy pattern was proposed based on the joints’ depth appearance
and an ensemble action recognition model. In (Hussein et al. 2013), they proposed a
discriminator based on the covariance matrix of joints locations, while in (Vemulapalli,
Arrate, and Chellappa 2014), the algorithm was designed based on the 3D geometric
relationships between different regions of the body. Methods similar to (Si et al. 2018)
are constructed upon the spatial processing of individual groups of motion dimensions
related to particular human parts (such as hands, legs, and shoulders.)

The second category benefits from the general strength of deep neural networks in
performing enriched feature extraction. These methods are generally designed based on
CNN and RNN models with architectural modifications or in combination with other
techniques. Among RNN frameworks, a regularized LSTM architecture is proposed
in (Wentao Zhu et al. 2016) for co-occurrence feature extraction. A spatiotemporal
attention-based model is utilized in (S. Song et al. 2017) to assign different weights to
different frames, and a trust-gate technique was proposed in (J. Liu, Shahroudy, et al.
2018) to deal with the noise in skeleton-based data.

Regarding the approaches based on CNN models, Tang et al. (Y. Tang et al. 2018)
combined CNN with a reinforcement learning module to learn the most efficient video
frames. In (Ke et al. 2017), cylindrical coordinates were utilized to present a new skeleton
representation. The skeleton data was transformed into images in (M. Liu, Hong Liu,
and Chen Chen 2017) to be more appropriate for CNN architecture, while in (H. Wang
and Liang Wang 2017) two CNN models were trained individually based on the joint
position and velocity information to perform skeleton-based action recognition.

A standard convolutional neural network has the same structure as a feedforward
neural network that replaces its matrix multiplications with convolutional operators (Le-
Cun et al. 1989). A CNN architecture consists of several convolutional layers (conv. layers),
one or few fully connected layers (FC layers), and a final output layer. The network takes
in the raw input and gives an output vector. Similar to feed-forward networks, the output
vector has the same size as the number of classes in the data distribution. Each element
of this vector shows the likelihood for one class of data in the given classification task.
The original CNN architecture takes 2D input sizes. However, several works such as
(Y. Zheng et al. 2014; Lea et al. 2016; L. Sun et al. 2015) showed that CNN models
with employed 1D architectures could lead to more efficient processing of multivariate
time-series (such as motion sequences).

A 1D architecture works upon the 1D convolution operator between an input x⃗ ∈ R1×n

and a filter w⃗ ∈ R1×k , resulting in an output vector o⃗ such as :

s(t) = (w⃗ ∗ x⃗)(t) =
k
2

∑
i=− k

2

w(i) · x(t + i), (6.1)

where the ∗ denotes the convolution operator. Based on the above formulation, the lth
conv. layer of the network has the filter with parameter tensor Wl ∈ Rdl−1×dl×k, which
means the l-th layer has dl set of d(l−1)-channel filters of length k. Assuming the input
to later l is a feature map O(l−1) ∈ Rdl−1×T(l−1) , the output of layer l is computed as
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O(l) = σl(Sl), where σ is the activation function for layer l, and matrix Sl is computed as

sl(j, t) =
d

∑
i=1

[wl(i, j, :) ∗ o(l−1)(i, :)](t) + bl(j). (6.2)

In Equation 6.2, b⃗l is the bias vector for layer l, similar to the bias concept in a multilayer
perceptron (MLP) layer (Rosenblatt 1957).

The typical activation operator for conv. layers is the ReLU operator, which only
passes the positive values to its output, seeking relevant patterns in each feature map.
Some works suggested improved replacements to ReLU such as leaky ReLU (B. Xu
et al. 2015), parametric ReLU (K. He et al. 2015), and ELU (Clevert, Unterthiner, and
Hochreiter 2015), which try to mitigate the dying ReLU issue (always having negative
inputs) (Connie et al. 2017).

As a typical abstraction operation in CNN models, the time axis of O(l) is scanned by
a max-pooling operator similar to the convolution in Equation 6.1, except that for each
time-frame t, its output is the maximum of x((t− 1)m + i + 1) for i = − p

2 , . . . , p
2 . Such

operation results in O(l) ∈ Rdl×T(l) such that T(l) =
T(l−1)

m , where (m, p) are the stride and
kernel size of the pooling operator, respectively. As illustrated in Figure 6.1, the input
sequence X ∈ Rd×T is scanned by several conv. layers in sequential order, through which
the time-length of X is divided by the pooling operators while its number of channels
(depth) is increased according to the filter’s channels. Therefore, after passing the signal

through q consecutive conv. layers, the resulting feature map is O(q) ∈ R
dq× T

pq . This
process extracts the relevant information from X.

After concatenating the elements of O(q) (flattening), they are fed to a fully connected
(FC) layer (or a sequence of them). For each FC layer with dout neurons and input sized
of din, resulting in the weight matrix W ∈ Rdout×din , its output is computed as

O(out) = σ(W×O(in) + b⃗), (6.3)

where b⃗ is the bias vector, and σ(x) is the activation function, typically the sigmoid
function 1

1+e−x or the ReLU operator. The last layer of the network results in a score
vector y⃗ ∈ RC, each entry of which shows the likelihood of the corresponding class for
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Figure 6.1: The typical structure of a 1D convolutional neural network with multivariate
sequential input X and a likelihood output vector y⃗.
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the given input sequence X. Given the label of X as a one-hot vector h⃗, the network loss
can be defined as a cross-entropy cost function or its variant:

LOSS(X) = −
C

∑
i=1

hilog(yi) (6.4)

The training of a CNN network follows the same backpropagation principle of
feedforward neural networks (Rumelhart, G. E. Hinton, and Williams 1986), in which the
loss term of Equation 6.4 is minimized for all data points by finding optimal network
parameters. The general optimization algorithm for neural networks is the stochastic
gradient descent (SGD) (Robbins and Monro 1951), or its variants, which updates each
network parameter w as

wi+1 = wi − λi∇LOSS(wi), (6.5)

where i and λi denote the optimization iteration and its update step, respectively. The
gradient ∇LOSS(wi) is calculated based on the partial derivative of the loss term with
respect to w and is averaged over a batch of data samples (Krizhevsky, Sutskever, and G. E.
Hinton 2017). Several enhancements are already proposed for more efficient training of a
CNN architecture, such as batch normalization of each layer’s input (Ioffe and Szegedy
2015) to reduce its overfitting and speed up the training or using dropouts for FC layers
to improve the generalization capability of the convolutional network (N. Srivastava et al.
2014).

Despite the high-performance of well-known deep CNN models such as VGG, ResNet,
Inception, and Xception (Simonyan and Zisserman 2014; K. He et al. 2016; Szegedy et al.
2015; Chollet 2017) in extracting enriched features from input data, their architectures
take fixed-size inputs and result in vectorial outputs. In some applications, input data is
collected in a laboratory setting; and hence, all images can easily be re-scaled into a fixed
size. Face recognition (Georghiades, Belhumeur, and Kriegman 2001; Gross et al. 2010)
or gesture classification (Ren, J. Yuan, and Zhengyou Zhang 2011; Ohn-Bar and Trivedi
2014) datasets are the typical examples of such data. Nevertheless, such a workaround
is not generally effective against real-world images or segmentation problems where
multiple classes may exist in a single image (J. Long, Shelhamer, and Darrell 2015). A
commonly used solution is to crop the image into several small sub-images and train or
recall the network based on them (Girshick 2015).

On the other hand, the concept of using flexible input sizes in convolutional networks
was first introduced in (Matan et al. 1992; Wolf and Platt 1994) for image classification.
These methods replace the final fully connected layer of the CNN with another conv
layer, which produces a score output that is a down-scaled feature map of the input
image. Hence, the output’s spatial size would change proportional to the input’s size.
Several works like (F. Ning et al. 2005; Pinheiro and Collobert 2014; Sermanet et al.
2013) used fully convolutional inference in their network for image segmentation and
restoration problems. Specifically, the proposed fully convolutional network (FCN) in (J.
Long, Shelhamer, and Darrell 2015; Tompson et al. 2014) is trained end-to-end. The FCN
in (Tompson et al. 2014) is designed for a binary pose estimation problem, while (J. Long,
Shelhamer, and Darrell 2015) proposes a more general multiclass FCN architecture for
image segmentation as in Figure 6.2. Its network produces an output likelihood map
with the same spatial size as the input image and the depth channels for each segment
class.
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Figure 6.2: The fully convolutional neural network replaces the final FC layer with another
conv. layer and proper up-sampling, which results in an output likelihood map with the
same spatial size of the input. The image is taken from (J. Long, Shelhamer, and Darrell
2015)

Temporal segmentation of motion data aims to split the time-frames of an input
motion sequence into several non-overlapping subsequences. These subsequences (seg-
ments) could be temporally connected, or several continuous time-frames separate them
from each other. Those time-frames are generally named the gap segments (F. Zhou,
De la Torre, and Hodgins 2013). For ease of reading in the rest of this document, I use
the segmentation term to replace the temporal segmentation. Unsupervised motion
segmentation methods do not use annotations or labeled data. Therefore, the majority
of them benefit from clustering methods to assign particular parts of the motion into
separate clusters in the time domain. However, their main difference lies in the way they
pre-process the time-frames before the clustering step.

In (F. Zhou, De la Torre, and Hodgins 2008) and its successor version (F. Zhou, De la
Torre, and Hodgins 2013), the segmentation problem is performed by the combination of
DTW and kernel k-means clustering. Their optimization scheme minimizes the clustering
cost by finding segments that are optimally aligned to their repetitions in the long
motion stream. In methods similar to (Yi Guo, J. Gao, and F. Li 2013; Tierney, J. Gao,
and Yi Guo 2014; S. Li, K. Li, and Fu 2015), the time-frames are directly clustered
using the temporal clustering method as the temporal extension of sparse subspace
clustering (Elhamifar and Rene Vidal 2013). In such clustering frameworks, the general
aim is to enforce the encoding of consecutive time-frames similar to cluster them into
the same segment. However, such temporal regularizers commonly lead to overlapping
segment borders in the unsupervised setting. In a different group of unsupervised
motion segmentation works such as (Stollenwerk et al. 2016; B. Krüger et al. 2017), the
motion’s self-similarity matrix is constructed by calculating the pairwise distance of the
time-frames. In (Stollenwerk et al. 2016), a clustering technique is directly applied to
such representation for segmentation of articulated hand motions, while (B. Krüger et al.
2017) performs further analysis such as graph-based relation of neighboring time-frames
before applying the final clustering stage.

Even though the unsupervised segmentation methods show considerable progress
over time, their performance is generally dependent on some assumptions about the
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underlying segments. Usually, it is required to know the approximate number of unique
segments, observe segment repetitions in the stream, or fine-tune the parameter which
controls the segmentation resolution.

On the other hand, supervised segmentation tries to benefit from annotated training
data (already segmented motions) to remove the above domain-specific limitations and
improve segmentation performance. Specifically for motion segmentation, (Lichen Wang,
Z. Ding, and Fu 2018; T. Zhou et al. 2020) formulate the problem as a transfer learning
framework. They find a linear mapping between time-frames of a test motion and that of
a train motion followed by a temporal clustering application. However, such frameworks
require pre-assumptions such as knowing the exact number of segment clusters or having
a temporal coincidence between the segments of test and train motion (T. Zhou et al.
2020). There exist several supervised methods similar to (J. Y. Chang 2014; Neverova
et al. 2016), which are proposed for specific motion segmentation problems (Escalera
et al. 2014). They usually rely on specific spatial or geometrical processing of the problem
or benefit from the available additional modalities. Regardless of their high performance
for the particular problem, their application on other segmentation tasks is limited.

In the area of speech and text analysis, the combination of segmentation and classifi-
cation problems for sequential data is addressed as the sequence labeling problem (N.
Nguyen and Yunsong Guo 2007). The most effective sequence labeling methods are
deep neural architectures constructed upon CNN, RNN, or LSTM networks. A majority
of these proposed deep learning algorithms take advantage of CRF for the temporal
segmentation of their input stream. The CRF is a probabilistic modeling technique, which
considers dependencies between the neighboring time-frames in a graphical model (Laf-
ferty, McCallum, and Pereira 2001). In works similar to (Zhiheng Huang, W. Xu, and Yu
2015; Lample et al. 2016; X. Ma and Hovy 2016), they add a CRF layer to the last layer of
an LSTM network to perform sequence labeling. As a different method, the CRF layer
is combined with a deep gated RNN in (Z. Yang, Salakhutdinov, and Cohen 2016) for
word labeling. In (Gehring et al. 2017), they propose a temporal labeling architecture
entirely based on CNNs and combined with gated units and attention modules. Their
method is efficient regarding the accuracy and computational complexity. Despite the
high performance of these methods for sequence labeling of text and speech input, their
application on skeleton-based motion data may require finding a proper preprocessing
stage or applying substantial changes in the networks’ architecture.

As a difference to the state-of-the-art mentioned above, my proposed algorithm
performs the segmentation and classification of the skeleton-based actions in an end-to-
end architecture, which takes flexible input sizes and results in an interpretable model
for sequential input data. In the next section, I introduce the idea of alignment kernels
for CNN models, upon which I propose my novel convolutional network.

6 .2 alignment kernels for cnn

A typical CNN architecture designed for image processing tasks has 2D convolution
filters in its conv. layers (LeCun et al. 1989). It is easy to observe that filters in the first
conv. layer of the network mathematically behave as degree-1 polynomial kernels. In
particular, applying a convolution filter W (conv-filter) with an n× n receptive field to
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an image patch X of the same size computes the feature value o as

o =
n

∑
i,j=1

xijwij + b = (x⃗⊤w⃗ + b)1 = Kpol1(x⃗, w⃗), (6.6)

where b is the filter bias, and (x⃗, w⃗) are the vectorized forms of (X, W), respectively. In
Equation 6.6, Kpol1(x⃗, w⃗) denotes the polynomial kernel of degree-1 between x⃗ and w⃗,
which measures the similarity between the input patch X and the filter W. Extending
Equation 6.6 to all the filters in the first layer of CNN and all parts of the input data,
the first layer of a CNN can be interpreted as a multiple-kernel function (Gönen and
Alpaydın 2011), which measures the similarity of the given input to some exemplars/fil-
ters. However, in kernel-based classification problems, it is known that employing the
squared exponential kernel (A.K.A Gaussian kernel) can better discriminate the input
space compared to polynomial kernels (Camps-Valls and Bruzzone 2005). This superiority
results from the flexibility and large input domain of Gaussian kernels. Although such a
perspective gives us a motivation to design squared exponential filters, in the following,
I discuss that employing such filters can also result in a more interpretable architecture.

Alignment Filters

In a C-class temporal classification task, we can define a frame-based labeling matrix
H ∈ RC×T corresponding to each skeleton-based motion sequence X ∈ Rd×T. In H, each
entry hct = 1 if the t-th frame of X belongs to class c (when having more than one action
in X). Hence, the matrix H is zero elsewhere and c ∈ {1, . . . , C} in a C-class setting.
Hence, we are interested in predicting the true value of H for each input X in an SBARS
task. Therefore, the input layer of a CNN consists of d separate channels {x⃗j}d

j=1 ∈ R1×T,
each of which contains the temporal skeleton data related to one dimension of X. Based
on the discussed rationale in the previous section, I propose the following distance-based
non-linear kernel as the fundamental feature extraction unit of my DACNN architecture
(Alignment layer in Figure 6.3):

g(x⃗j|tt0
, f⃗ 1

i ) = e−∥ f⃗ 1
i −x⃗j|tt0∥

2
2 , ∀i = 1, . . . , d1, (6.7)
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where { f⃗ 1
i }

d1
i=1 ∈ R1×t are the alignment filters (Al-filter) with the receptive field of t, and

x⃗j|tt0
denotes a subsequence of length t starting from the t0-th frame of channel x⃗j. After

scanning each channel of X by these filters with a stride s (Figure 6.4), we obtain a tensor
V ∈ Rd1×T×d as the activation map. Each entry vjik from V represents the similarity
between the j-th window in channel x⃗i and the filter f⃗k, and summing V over its second
dimension results in the more summarized activation map V1 ∈ Rd1×T (Figure 6.4).

To make an analogy to a regular CNN structure, I can also reformulate the introduced
alignments as an l2-norm operator layer (∥ f⃗ 1

i − x⃗j|tt0
∥2

2) followed by an activation-layer of
f (x) = e−x units. This reformulation is conceptually similar to the convolution and ReLU
layers of a regular CNN architecture. Therefore, designing a proper classification-based
training scenario can find discriminative patterns in V1 with high activation values (close
to 1 peak). In other words, the goal is to train filters f⃗i to distinguish the data classes
based on their similarities to the local parts in the input channels {x⃗j}d

j=1. Hence, these
filters can be seen as temporal patterns that signify relevant discriminative information
in the input sequence’s time axis.

Vanishing Gradient and Saturated Activation

The gradient of g(x⃗, f⃗ ) in Equation 6.4 can be computed w.r.t. its parameter vector as

∇ f⃗ g = −2e−∥ f⃗−x⃗j|tt0∥
2
2( f⃗ − x⃗j|tt0

). (6.8)

Hence, when ∥ f⃗ − x⃗j|tt0
∥2

2 becomes large, the activation function of Equation 6.7 and its
gradient obtain infinitesimal values. This condition leads to zero updates of the Al-filter
parameter f⃗i in a gradient-based optimization scheme (training phase). This behavior
can be observed in Figure 6.5-a and Figure 6.5-b(blue curve) for the values of a length 2
filter and its elements gradient curve, respectively. Such a condition may occur when a
filter f⃗i has a large distance to all subsequences in X (e.g., lousy initialization) or when
the learning rate is too high.
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Figure 6.4: The alignment layer of the network. Each Al-filter f⃗ 1
i is applied to all f⃗ channels

in the input to form the i-th row in the alignment map V1. Adding V1 to the alignment
maps of other Abs-filters derives the augmented map V̄.
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Figure 6.5: The value of the activation function g(x⃗, f⃗ ) for Al-filter of length 2 (a) and
the original and modified gradients of each of its elements (b). The original gradient
in Equation 6.8 becomes zero for large values of ∥x⃗− f⃗ ∥2

2, but its modified version in
Equation 6.10 prevents the vanishing issue when the gradient tends to fade.

As a systematic workaround for computing the activation map V1, I replace the
g(x⃗, f⃗ ) of Equation 6.7 with the following function

g(x⃗, f⃗ ) = (1 + a)e−∥x⃗− f⃗ ∥2
2 − a, (6.9)

where a is a small constant scalar (I use a = 0.1 in implementations). Hence, when
∥x⃗ − f⃗ ∥ is large, the activation function’s tale in Equation 6.9 becomes saturated at
a small negative value −a, which allows the filter f⃗ to become still updated in the
backpropagation phase. This condition preserves the sparseness effect of the activation
function when computing V1 and leads to faster convergence.

However, the gradient of g(x⃗, f⃗ ) in Equation 6.9 regarding each entry fi is

∇ fi g = −2(1 + a)e−∥x⃗− f⃗ ∥2
2(xi − fi),

and its second derivative with respect to fi is computed as

∇2
fi

g = [−2 + 4(xi − fi)
2](1 + a)e−∥x⃗− f⃗ ∥2

2 .

The value of ∇2
fi

g becomes zero when (xi − fi)
2 = 0.5, which also corresponds to the

extremum points in Figure 6.5-b(blue). Extending this point to higher dimensional
activation functions corresponds to the contour of ∥x⃗− f⃗ ∥2

2 = 0.5. Hence, I employ it
as a threshold, after which the update of filter f⃗ becomes difficult due to the vanishing
gradient issue. Therefore, in order to prevent this situation, we can compensate for the
vanishing effect by adding a proportional term −2(x⃗− f⃗ ) to the gradient value, which is
equivalent to assuming a regularization term of −∥x⃗− f⃗ ∥2

2 being added to the activation
function.

Based on the above analysis, I propose the modified gradient for updating f⃗ for the
backpropagation phase of training as

∇ f⃗ g =

{
−2(1 + a)e−∥δ⃗∥

2
2 δ⃗ ∥δ⃗∥2

2 ≤ 0.5
−2[(1 + a)e−∥δ⃗∥

2
2 + 1]⃗δ + 2

√
0.5 sign(⃗δ) ∥δ⃗∥2

2 > 0.5
, (6.10)
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Figure 6.6: Abstract filters { f⃗4, f⃗3} result in sparse alignment maps {v4, v3}, and f⃗4 can be
interpreted as the representative of a whole arm movement in the raise action.

where δ⃗ = x⃗ − f⃗ , and the switching threshold of
√

0.5 is related to the point from
which the gradient of Equation 6.7 starts to decrease toward zero. In Equation 6.10,
the regularization term is applied via the considered threshold contour. The extra
term 2

√
0.5 sign(∆⃗) in Equation 6.10 is used to preserve the gradient’s continuity in

the switching point. In Figure 6.5-b, we can compare the original gradient curve of
Equation 6.8 to the modified one in Equation 6.10. The modified version compensates
for the fading effect of the gradient values smoothly, starting from the point that it
dramatically decreases. In such a case, the value of the gradient becomes −2(x⃗j|tt0

− f⃗ )
when ∥ f⃗ − x⃗j|tt0

∥2
2 has a relatively large value and prevents the filter weights from

becoming saturated Figure 6.5-b(red curve).

Therefore, in the training phase, the activation values are computed based on Equa-
tion 6.9, while its gradient is obtained via Equation 6.10. This way, I can preserve the
one-sided sparseness effect of the filter for faster convergence (analogous to a ReLU
activation) while still preventing the filter weights from becoming saturated.

Abstract Filters

Although the proper training of the Al-filters can fit them to the small local patterns in X
that are relevant to the given classification task, we are also interested in finding longer
interpretable patterns in the action data. The benefits of finding these patterns are two
folds:

1. Applying longer filters on the data leads to sparser activation maps (Figure 6.6:
{v4, v3} vs. {v1, v2}).

2. Long patterns are semantically more meaningful than short ones, and hence, en-
hancing the interpretability (Figure 6.6: v4 represents a complete action).

To that aim, I define the abstract filters (Abs-filter) { f⃗ p
i }

dp
i=1 with the 1D receptive field

of length pt, where p ∈N. Each f⃗ p
i is a temporal concatenation of p smaller Al-filter of

size t as
f⃗ p
i = ⊕

j∈I
f⃗ 1
j ,
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where ⊕
j∈I

concatenates a selection of Al-filters f⃗ 1
j according to an index order given by a

set I for f⃗ p
i . To find f⃗ p

i filters automatically, I select the potential candidates among the
Al-filters as the first step.

Definition 6.1. Two Al-filters { f⃗ 1
i , f⃗ 1

j } of size t are candidates to form an Abs-filter if we
can find a window of size t starting at the time-frame t0 of a data channel x⃗k such that

ρ( f⃗ 1
i , f⃗ 1

j , x⃗k|tt0
) := g(x⃗k|tt0

, f⃗ 1
i )g(x⃗k|2t

t0+t, f⃗ 1
j ) ≥ r, (6.11)

where r is a meta-parameter scalar with a value sufficiently close to 1.

Based on definition 6.1, when ρ( f⃗ 1
i , f⃗ 1

j , x⃗k|tt0
) has a value close to 1, there exists a

temporal pattern in a channel of X that fits the concatenation of ( f⃗ 1
i , f⃗ 1

j ). Accordingly, by
using a moderate threshold in Equation 6.11 (I used r = 0.8 in experiments), I collect all
the candidate Al-filters f⃗ 1

i in the forward pass (Figure 6.3) and form a binary-weighted
graph G. In this graph, the filters { f⃗ 1

i }
d1
i=1 are the nodes, those of which correspond to the

definition 6.1 have undirected links of weight −1 between them. Now, I find the existing
Abs-filters of different sizes via finding the shortest paths between connected nodes of
G, which is efficiently solved by the Floyd Warshall algorithm (Hougardy 2010). Hence,
those Abs-filters that are subsets of the longer ones are detected and eliminated.

After finding M sets of Abs-filters as { f⃗ p
1 , · · · , f⃗ p

dp
}M

p=2, for each p ≤M, I can apply

the created filters { f⃗ p
i }

dp
i=1 on the channels of X analogous to the description in Section 6.2.

This application results in M abstract feature maps {Vp ∈ Rdp×T}M
p=2 with different first

dimensions. Nevertheless, I enrich the content of V1 by fusing these abstract maps to the
values of its rows resulting in the augmented map

V̄ = f use(V1, Vp)p=2,··· ,M. (6.12)

The sub-fusion operator f use(V1, Vp) adds the content of v⃗p(i, :) to the entries of v⃗1(s, :)
if the corresponding Abs-filter f⃗ p

i has a form of [ f⃗ 1
s . . . ]. By doing the same for all rows

of {Vp}M
p=2, I obtain the augmented alignment map V̄ in Figure 6.4. In that case, if f⃗ p

i
closely matches a significant pattern in the time-frame t0 of a channel in X, we should
observe a relatively large peak (near 1) in both v⃗p(i, t0) and v⃗1(s, t0). But, we cannot
expect the same observation in the t0 frames of other rows in V1, even if any of them
correspond to the constituent Al-filters in the remaining of the specific Abs-filter f⃗ p

i . As
an illustration, although the Abs-filter ( f⃗3, f⃗4) in Figure 6.6 have f⃗2 in their sequences,
the alignment maps v3 and v2 do not match in the time-frames of their peaks. However,
they both have a large peak in the same time-frame that v1 has a peak too, as they both
start with f⃗1. Consequently, the amplitude of the corresponding peak in the first row of
the resulting V̄ is intensified by adding v3 and v4 to it. Therefore, the immediate benefit
of these long filters is the sparse alignment patterns we obtain in each row of V̄, which is
an enriched feature map.

In the next section, I explain how to use the introduced temporal filters as an enriched
feature extraction part of my proposed convolutional framework (Figure 6.3) to increase
the outcome model’s interpretability (Figure 6.6).
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Figure 6.7: Examples of similar subsequences (red curves), which are found among
different body joints and in different temporal locations related to a skeleton-based
movement.

6 .3 deep-aligned cnn

In Section 6.2, I introduced the alignment kernels as the important feature extraction
layer of my skeleton-based action recognition algorithm (Figure 6.3). Now, I discuss the
role and rationale of the remaining parts in the DACNN architecture.

For each real-life skeleton-based motion data X, different data channels (dimension)
contain streams of continuous changes in the values of different joint’s orientations. These
values particularly lay in the range of [0 2π] throughout normalization (or in [θ0 2π] due
to physical limitations). Therefore, it is highly expected to find short subsequences in
different dimensions and temporal locations in X (or long patterns in symmetrical joints),
which have similar shapes or curvatures (Figure 6.7). A similar characteristic can also be
observed in the quaternion representation of the X.

Based on the above observation, we can extract the relevant patterns from dimensions
of X by applying each filter f⃗ p

i to all the channels. As a direct benefit, this structure
notably reduces the network’s number of parameters and avoids an unnecessary model
complexity. Therefore, the augmented activation map V̄ of Equation 6.12 is obtained by
applying each filter f⃗ p

i across all channels of X.

I feed the derived V̄ (as in Figure 6.4) to a regular CNN, which contains 1D convolution
filters (1D-conv.) with the specific architecture of Figure 6.8. Each deep layer q of the
network contains two consecutive 1D-conv. layers following a max-pooling layer with
the stride of 2. The 1D-conv. and pooling operations are similar to the vanilla CNN
explained in Section 6.1 (Figure 6.1). The combination of conv. and pooling layers results
in a dq-channel feature map Oq for each deep layer q with the temporal size of T

2q , i.e.,

Oq ∈ Rdq× T
2q . Hence, the data representation becomes more abstract as we go through

these deep layers.

As a complementary choice to Section 6.2, I apply the ELU operator (Clevert, Un-
terthiner, and Hochreiter 2015) to the input of each max-pooling layer as
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Figure 6.8: The architecture of the 1D-CNN unit in the DACNN framework. It maps the
augmented alignment map V̄ (input) to the prediction map O (output ).

ω(x) =

{
x x ≥ 0
ex − 1 x < 0

, (6.13)

while dω
dx |x=0 = 1 lets the gradients flow through the layers of 1D-CNN even if they

belong to any saturated filter.

Prediction Layer

I want my network structure to take inputs of different sizes and also to fit both the
segmentation and classification problems. To that aim, I design a convolutional prediction
layer (inspired by (J. Long, Shelhamer, and Darrell 2015)) to obtain a prediction map
Y ∈ RC×T as the output of 1D-CNN (last layer in Figure 6.8). Each entry yct should
represent the network’s confidence in assigning the t-th time-frame of X to class c.

To achieve the above, I first compute the score-map S1 by applying a conv. layer
with parameter matrix Ws ∈ Rdq×C×k (C output channels ) to the last activation map
(Oq in Figure 6.8). This process maps the abstract features to a score-map of size C× T

2q .
I would like each entry i from channel c of S1 to represent the likelihood of class c
for the downsampled time-frame i. Hence, the prediction map Y can be computed by
applying a ×2q upsampling on the S1 score-map. The upsampling is performed using C
deconvolution filters with the stride of 2q as in (Dumoulin and Visin 2016). Finally, to
calculate the prediction error (cost) of the network, I compare the obtained prediction Y
to the target label matrix H using a cross-entropies loss function as

LOSS = −
C

∑
c=1

T

∑
t=1

hctlog(yct). (6.14)

Therefore, after DACNN is converged to an optimal point, we can predict the label
matrix H̃ of a test data X as

h̃ct =

1 c = arg max
c

∥1− yct∥2
2

0 otherwise
∀c, t, (6.15)
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Figure 6.9: Fine-prediction module of DACNN. The skip-connections from score-maps
of specific Abs-filters result in a fine-grained segmentation compared to Figure 6.8. The
alignment map Vp in the block diagram corresponds to the largest Abs-filters of size
p = 2q̃ for q̃ ≥ 2. Nevertheless, the fine-grain process is also extended for the smaller
Abs-filters of such size.

where h̃ct determines if an individual time-frame t in X belongs to the activity class c.
However, in a classification setting where the whole X sequence belongs to only one class,
I determine the class label of X as

c = arg min
c

∥⃗11×T − y(c, :)∥2
2, (6.16)

in which y(c, :) denotes the c-th row of Y. Nevertheless, the training phase of DACNN
is the same for both segmentation and classification tasks using the defined cost term
LOSS in Equation 6.14.

Fine-Prediction Module

According to the structure of 1D-CNN, each pooling layer downsamples its input feature
map by a factor of 2. Hence, for a network with q deep layers, the resulting score-map S1
of width T

2q would be upsampled in one step to provide the prediction map Y with T
time-frames. This one-step extreme upsampling, especially for large q, results in a large
time-frame abstraction for the entries of Y. Although this abstraction can be appreciated in
a single-class activity recognition problem, it reduces the network’s prediction resolution
for segmentation problems. This issue escalates, especially in segment borders or in
alternating activity repetitions.

As a workaround, I employ a specific skip-connection structure via the fine-prediction
module of my DACNN framework (Figure 6.3) to have a fine-grained prediction map Y.
As illustrated in Figure 6.9, I obtain score-maps for the available alignment map (related
to learned Abs-filters) and fuse them with the upsampling path of 1D-CNN. More
precisely, I start with the largest Abs-filters of length p, such that p = 2q̃, q̃ ≥ 2. Then,
after downsampling their alignment map Vp by a max-pooling of size 2q̃ and applying a

score-conv layer (with C output channels), we obtain the score-map of S̃2 ∈ R
C× T

2q̃ . On
the other side, the score-map S1 of a q-layer 1D-CNN would be upsampled throughout
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the deconvolution of stride 2(q−q̃), which results in an intermediate score-map S2 with
the width of T

2q̃ . Hence, S̃1 would be added to S1 to improve its current resolution.

As a rationale, each Vp has a sparse activation-map with gap intervals of pt between
the extracted matching patterns, especially when p ≥ 2 (e.g., Figure 6.6). Hence, p-factor
downsampling preserves the essential information existing in Vp while it still increases
the resolution of O by order of 2(q−q̃) when q̃ < q. Additionally, this skip-connection
module intensifies the role of the Al-filters in the prediction task due to the weight-sharing
between them and the Abs-filter, which increases their discriminative quality.

The above process is extended by also using other alignment maps {Vp|p = 2q̃}q
q̃=2.

The application of the downsampling and score-convolution on each of these Vp maps (in
parallel passes) obtains their corresponding score-maps S̃i, i = 1, . . . , q̃. On the other side,
S1 is upsampled sequentially by the factor of 2 (after doing the first 2(q−q̃) upsampling)
to provide the score-maps Si with temporal resolutions corresponding to the S̃i maps in
the fine-prediction paths.

Incremental Depth Increase

Besides finding different patterns in the input data, one aim of increasing the depth
(number of middle layers) in a CNN model is to spatially/temporally compress the
representation of the data. Consequently, the extracted feature maps are downscaled
as deeper we go through the layers of a CNN. Nevertheless, the necessary level of
compression depends on several factors, such as the complexity of the problem, the
input size, network architecture, and several other factors. Considering this concern in
our SBARS problem, one key element influencing the model’s necessary depth is the
temporal length of the essential patterns in the input data. Therefore, sequence length
should help us better decide on the required depth of such a network in an SBARS task.

According to Figure 6.8, the depth of 1D-CNN (number of its deep layers) defines
the extent of necessary temporal abstraction made throughout its layers. More precisely,
the degree of this abstraction should coincide with the temporal length of the distinctive
patterns in the dataset, which on the other hand, has a close relation to the length
of the learned Abs-filters f⃗ p. To benefit from this relationship, I propose and add an
incremental depth increase (IDI-module) to the DACNN framework (Figure 6.3). This
module increases the depth of the 1D-CNN network as the training phase learns Abs-
filters with bigger lengths.

Assume 1D-CNN has q deep layers in the current epoch, meaning that S1 ∈ RC× T
2q

(Figure 6.8), and the biggest Abs-filter is f⃗ p where p < 2(q+1). Now, if I find an Abs-layer
f⃗ p̂ in the next forward pass of DACNN where p = 2(q+1), I construct the layer q + 1 by
replacing the first score-conv of 1D-CNN with another stack of 1D-conv. and max-pooling
layers followed by a new score-conv layer of the proper size. Hence, the new score-map

becomes S1 ∈ R
C× T

2(q+1) .

However, before connecting the (q + 1)-th layer to 1D-CNN, the IDI-module first
pre-trains its layers’ initial weights in an isolated backpropagation loop (Figure 6.10).
Considering S̃1 as the initial score-map of layer q + 1 and Ŝ1 as its factor-2 upsampled
map, I train the weights of the (q + 1)-th layer to minimize the following cost function:

err(q, q + 1) = ∥S1 − Ŝ1∥2
F, (6.17)
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Figure 6.10: The IDI-module increases the deep layers of 1D-CNN while measuring the
error of this extension.

where err(q, q + 1) indirectly indicates the current distance between the dynamic states
of the new layer and DACNN.

I perform the above backpropagation parallel to the main training loop of DACNN
until err(q, q + 1) becomes sufficiently small. Afterward, the weights of layer q + 1 are
updated by the main backpropagation loop of DACNN. Figure 6.13 provides an example
of the smooth learning curve resulted from using IDI-module.

Sparse Activation Maps

As a crucial observation in SBARS tasks, it is rare for a temporal pattern to occur in many
channels of {x⃗i}d

i=1 at an arbitrary time-frame t. Even in synchronized motions, this may
happen only in 2-4 symmetrical joints (e.g., simultaneously raising both hands or both
legs). In addition, in each action segment, a specific temporal pattern may occur a small
number of times in each x⃗i channel. Even by considering the temporal repetitions of one
action, this number would be neglectable compared to T as the temporal length of x⃗i.

Considering that the alignment filters are meant to represent relevant temporal
patterns in the input data, I can project the above concepts directly to the training of
these filters.

Knowing that all Abs-filters { f⃗ p
i }p≥2 share the same parameters with their constituent

Al-filters f⃗ 1
i , I apply a sparsity objective Sp = ∑M

p=1 ∥Vp∥1 to the backpropagation of

DACNN to compute the optimal value of each f⃗ 1
i as

f⃗ 1∗
i = arg min

f⃗ 1
i

LOSS( f⃗ 1
i ) + λSp( f⃗ 1

i ), (6.18)

in which λ is the scalar that controls the sparsity gain in the training phase. I can
reformulate Sp( f⃗ 1

i ) = ∑t,k v̂tki, where v̂tki considers the entries in all {Vp}M
p=1 in which

f⃗ 1
i is involved. Consequently, I optimize Equation 6.18 based on the following chain rule:

∂LOSS( f⃗ 1
i )

∂ f⃗ 1
i

= ∑
t,k
(

∂LOSS( f⃗ 1
i )

∂v̂tki
+ λ)

∂v̂tki

∂ f⃗ 1
i

, (6.19)
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where ∂v̂tki
∂ f⃗ 1

i
= −2g(x⃗j|t, f⃗ 1

i )(x⃗j|t − f⃗ 1
i ). In practice, the sparsity term Sp redirects the

training path toward the efficient use of the resources (Al-filters) in finding the most
distinctive local patterns in the given data, which can significantly reduce the network’s
complexity and prevent it from overfitting (Changpinyo, Sandler, and Zhmoginov 2017).

By putting the detail of all building units in Figure 6.3 together, we provide a complete
description of the framework in Figure A.5. In the next section, In the next section, I
empirically analyze the proposed DACNN network’s performance with applications on
mocap benchmarks.

6 .4 experiments

In this section, I implement my DACNN framework on real-world action recognition
benchmarks to obtain an empirical evaluation of its performance in SBARS tasks. I
compare DACNN to different state-of-the-art alternatives in two segmentation and
classification settings, for which I employ different performance measures. Furthermore,
I perform additional analysis to study the proposed DACNN from various perspectives.

Implementation Setup

In the implementation of DACNN, I choose the kernel size of t = 3 for Al-filters and
1D kernels with the receptive field of k = 3 for the conv-filters. This choice of t for
Al-filters provides them enough angular freedom to learn any local curvature in the data.
I also apply dropout (N. Srivastava et al. 2014) with a rate of 0.30 to prevent DACNN
from overfitting. Specifically, during the training phase, 30% of output channels in each
conv. layer is removed by sampling from the Bernoulli distribution. I train DACNN
using the Adam approach (Kingma and Ba 2014), and the skeleton data is normalized
per dimension, which allows the filters to be aligned to local parts of different joints
(channels of X). The sparsity control parameter λ in Equation 6.18 is chosen via cross-
validation on the training set for λ ∈ [0.01 0.5]. Regarding the implementation of the
baseline algorithms, either I use their publicly available codes and tune their parameters
with cross-validation on the training set or refer to their reported results in the relevant
publications. For each dataset, I use its typical evaluation setting reported in the literature.

I use a warm initialization for the Al-filters before starting the training phase. I
assign their values by random choice of t-length subsequences from different X data
sequences. This strategy prevents the filters from becoming saturated initially and results
in a convergence speed-up. Additionally, it is practical to perform subsampling for high-
resolution inputs. This strategy reduces the required depth of the network. As another
solution, it is possible to choose a larger t (e.g., t ∈ [5, 7, 11, 13]) as the basic length of the
Al-filters { f⃗ 1

i } which reduces the required depth in the 1D-CNN unit without reducing
the resolution of the data. However, the first solution is easier to implement in practice.

The Abs-filters in my network share weights with their constituent Al-filters { f⃗ 1
i }

d1
i=1.

Therefore, we only need to update the weights of the base Al-filters in the training phase.
For instance, if f⃗ 3

5 = [ f⃗ 1
4 f⃗ 1

3 f⃗ 1
1 ], in the backpropagation phase, directly learning the weights

of { f⃗ 1
4 , f⃗ 1

3 , f⃗ 1
1 } would also update the parameters of f⃗ 3

5 as well. In addition, to have the
same temporal length T for all alignment maps {Vp}M

p=2, I apply a zero padding of size
pt
2 for each filter with the receptive field of size pt and put zeros for the remaining pt

2 + 1
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Table 6.1: Segmentation accuracy for Montalbano V2 and CMU Mocap based on Jaccard
Index (JI).

Montalbano CMU Mocap

Method JI Method JI

Terrier (2015) 53.9 HACA (2013) 71.4
Quads (2015) 74.6 SSSM (2017) 75.7
Ismar (2015) 74.7 TSC (2015) 73.5
LRT (2018) 74.8 LRT (2018) 82.1
Gesture Labeling (2014) 78.4 BiLSTM-CRF (2019) 86.1
BiLSTM-CRF (2019) 78.7 ConvS2S (2017) 86.4
CNN+LSTM2 (2018) 79.5 RNN-CRF (2016) 88.1
End2End (2016) 81.7 End2End (2016) 88.4
RNN-CRF (2016) 82.2
Moddrop (2016) 83.3

DACNN (Proposed) 87.2 DACNN (Proposed) 92.5

entries. This specific zero-padding gives the chance of checking the alignment between a
filter and an unfinished input pattern at the input sequence’s end-border.

Regarding the debugging of the framework, in general, the progress in learning the
abs-filters shows whether the network structure suits the given task’s complexity. As a
common observation, when no (or limited number of) Abs-filter is formed in the training
phase, it is required to increase the number of used Al-filters (d1). Also, regarding the
network’s initial design, we can start the training without having the sparsity term (λ = 0)
or the IDI-module. Without using the IDI-module, the learned Abs-filter’s length and
quality can be checked manually to see if the learning progress is sensible, especially
regarding the size of convolutional layers in 1D-CNN and the number of Al-filters used
in the Alignment-layer of DACNN. As the next step, I add the IDI-module and the
sparsity term in the loop to let DACNN grow its depth appropriately. Generally, I advise
trying for a satisfactory result without the sparsity term at first and tuning λ afterward
to improve the outcome. Although the above guideline is not always the most optimal
step for tuning and debugging, it provides a straightforward routine to initialize the
experiments for any new dataset.

Action Segmentation

In this set of experiments, I evaluate my designed DACNN framework with respect to
the segmentation task. The segmentation task is applied to CMU Mocap -segment and
Montalbano V2 datasets (Section 2.4), for which I predict the label of each time-frame in
the input motion X using Equation 6.15. The action segmentation performance of each
algorithm would be evaluated by using the Jaccard index

J I =
H̃∩H
H̃∪H

. (6.20)
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CMU Mocap -segment:

The segmentation performance of DACNN on the CMU Mocap dataset is evaluated
by its comparison to SSSM (B. Krüger et al. 2017), TSC (S. Li, K. Li, and Fu 2015), and
HACA (F. Zhou, De la Torre, and Hodgins 2013) as unsupervised temporal segmentation
approaches, and to LRT (Lichen Wang, Z. Ding, and Fu 2018), ConvS2S (Gehring et al.
2017), End2End (X. Ma and Hovy 2016), BiLSTM-CRF (Alzaidy, Caragea, and Giles 2019),
and RNN-CRF (Z. Yang, Salakhutdinov, and Cohen 2016) as supervised segmentation
frameworks. Except for the LRT algorithm, which is a transfer learning segmentation
method, other selected supervised approaches are deep sequence labeling frameworks.
In the methods that use word embedding input, I replace the embedding layer with the
joints’ quaternion values through the time-frames.

As reported in Table 6.1, deep learning algorithms’ performances have substantial
distances from the unsupervised methods. Compared to them, DACNN outperforms
the best method (End2End) with a notable margin of 4.1%. This result supports the
effectiveness of the DACNN architecture regarding the supervised segmentation of
skeleton-based action data. Generally, the supervise methods show a netter segmentation
accuracy compared to the unsupervised approaches. This difference is due to the super-
vised algorithms’ access to prior knowledge in the form of training data. In comparison,
the LRT method has a place between the above two groups as it benefits from annotated
training data, but it still relies on a final unsupervised clustering step.

In Figure 6.11, the segmentation results of some baselines are visually evaluated on
one of the challenging sequences from the CMU dataset (Subject 86, trial 03). Compared
to the unsupervised method SSSM, the supervised algorithms better identify the gaps
(insignificant actions) because they are optimized by the relevant label information in
the training phase. Additionally, SSSM finds sub-clusters in some segments (e.g., walk
and kick), which is not the desired outcome in supervised temporal segmentation. The
LRT transfer learning has fewer segmentation mistakes than SSSM due to its supervised
mapping. However, its regional regularizer produces dramatic mistakes regarding the
correct location of the segment borders.

The algorithms DACNN and DACNN-nf (without fine-prediction unit) have fewer
mistakes in the results, especially in the gap areas. Besides, DACNN obtains fewer
overlapping segments and better predictions in the gap areas compared to DACNN-

DACNN

GT

SSSM

End2End

DACNN-nf

LRT

Walk Run Jump Roll Kick Gap

Figure 6.11: The segmentation results on the CMU dataset (Subject 86, trial 03). GT: ground
truth segments. DACNN-nf: the DACNN framework without the fine-prediction unit.
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nf, which emphasizes the positive effect of the fine-prediction module in DACNN. In
comparison, End2End has lower performance than DACNN and DACNN-nf regarding
the gap areas and segments.

Comparing DACNN and other supervised algorithms to SSSM and ground truth,
the supervise methods do not split the long segments (e.g., several continuous walking
cycles) into their small sub-sequences (each walking cycle). This behavior is due to the
annotation regime used for training data, which labels all time-frames of each action
the same way. Nevertheless, given that an algorithm can recognize a wide segment
correctly, it is easy to identify the repeated subsequences inside it using self-similarity
information (B. Krüger et al. 2017). Such an application is particularly simplified for most
unsupervised segmentation methods when we know all the subsequences belong to one
action cluster.

Montalbano V2 Dataset:

For this dataset, I compare DACNN to the following baselines regarding the temporal
segmentation accuracy: Terrier (Escalera et al. 2014), Quads (Escalera et al. 2014), Is-
mar (Escalera et al. 2014), Gesture Labeling (J. Y. Chang 2014), Moddrop (Neverova et al.
2016), CNN+LSTM2 algorithm (Núñez et al. 2018), End2End (X. Ma and Hovy 2016),
BiLSTM-CRF (Alzaidy, Caragea, and Giles 2019), and RNN-CRF (Z. Yang, Salakhutdinov,
and Cohen 2016). The algorithms YNL, Terrier, Quads, and Ismar are the officially re-
ported segmentation methods designed and proposed for the Montalbano competition
(Escalera et al. 2014). The original Moddrop network uses the three different modalities
(video, Mocap, and audio) in parallel paths, and its architecture is specifically designed by
considering the domain knowledge for this dataset. However, I only use its mocap-based
version in my experiments, such that its outcome could be comparable to other baselines.
The CNN+LSTM2 algorithm does not perform any segmentation and can only be applied
to a pre-segmented version of Montalbano. Hence, I only use it as a baseline classifier
that is applied to this dataset in the literature (Núñez et al. 2018).

According to Table 6.1, my proposed method obtained a higher performance than
the best baseline (2.9% higher Jaccard index compared to Moddrop). The best alternative
approach (Moddrop) has a convolutional architecture designed based on the specific
geometrical description of the given gesture segmentation problem, which explains its
relatively high performance on this dataset. The other general sequence-based labeling
methods, such as End2End and RNN-CRF, obtained the next best places after Moddrop.
Although DACNN is a general sequence labeling method too, its specific prototype-
based architecture could perform effective labeling of data frames even better than a
domain-specific method such as Moddrop.

Table 6.2: Recognition accuracy (%) for SYSU-3D dataset.

Method Acc. Method Acc.

LAFF(SKL) (2016) 55.2 CNN+DPRL (2018) 76.7
Dynamic Sk. (2015) 75.2 GCA-LSTM (2017) 78.6
ST-LSTM+TG (2018) 76.7 VA-LSTM (2017) 77.8
SR-TSL (2018) 82.0 DACNN (Proposed) 84.3
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Action Recognition Results

To empirically evaluate my DACNN algorithm for action recognition tasks, I evalu-
ate it on SYSU and NTU datasets (Section 2.4) in a classification setting. Hence, for
each test data sample X, the network predicts its corresponding class label c via Equa-
tion 6.16. To recognition performance of the utilized algorithms are evaluated based on
the classification accuracy

Acc = 100× #correctly classified sequences
N

. (6.21)

SYSU Dataset:

For the empirical evaluations, I compare my DACNN algorithm to other baselines,
including CNN+DPRL (Y. Tang et al. 2018), ST-LSTM+Trust Gate (J. Liu, Shahroudy,
et al. 2018), Dynamic Skeletons (J.-F. Hu, W.-S. Zheng, Lai, et al. 2015), LAFF(SKL) (J.-F.
Hu, W.-S. Zheng, L. Ma, et al. 2016), SR-TSL (Si et al. 2018), VA-LSTM (P. Zhang et
al. 2017), and GCA-LSTM (J. Liu, G. Wang, et al. 2017). Several of these methods are
constructed from the combination of powerful yet complex deep learning algorithms,
such as LSTM, graph-based NN, and deep RL. In Table 6.2, my proposed DACNN
framework outperforms the best state-of-the-art method (SR-TSL) with a 2.3% margin. It
is important to consider that SR-TSL benefits from graph-based spatial analysis of the
skeleton information before applying its parallel LSTM-based temporal data processing
blocks.

NTU Dataset:

For the NTU dataset, I evaluate DACNN in comparison to the state-of-the-art methods
from the literature: HBRNN-L (Y. Du, Wei Wang, and Liang Wang 2015), Dynamic
Skeletons (J.-F. Hu, W.-S. Zheng, Lai, et al. 2015), LieNet-3Blocks (Zhiwu Huang et al.
2017), Part-aware LSTM (Shahroudy et al. 2016), ST-LSTM+Trust Gate(J. Liu, Shahroudy,
et al. 2018), CNN+LSTM2 (Núñez et al. 2018), Two-Stream RNN (H. Wang and Liang
Wang 2017), STA-LSTM (S. Song et al. 2017), GCA-LSTM (stepwise) (J. Liu, G. Wang,
et al. 2017), Clips+CNN+MTLN (Ke et al. 2017), View invariant (M. Liu, Hong Liu, and
Chen Chen 2017), CNN+DPRL (Y. Tang et al. 2018), VA-LSTM (P. Zhang et al. 2017),

Table 6.3: Recognition accuracy (%) for NTU dataset regarding Cross-View (CV) and
Cross-Subject (CS).

Method CS CV Method CS CV

HBRNN-L (2015) 59.1 64.0 Clips+CNN (2017) 79.6 84.8
Dynamic Sk. (2015) 60.2 65.2 View invariant (2017) 80.0 87.2
LieNet-3Blocks (2017) 63.1 68.4 CNN+DPRL (2018) 82.3 87.7
Part-aware LSTM (2016) 62.9 70.3 VA-LSTM (2017) 79.5 87.9
CNN+LSTM2 (2018) 67.5 76.2 ST-GCN (2018) 81.5 88.3
ST-LSTM+TG (2018) 69.2 78.7 Two-Stream CNN (2015) 83.1 89.1
Two-Stream RNN (2017) 72.1 79.7 CNN+LSTM (2017) 82.9 91.0
STA-LSTM (2017) 74.1 81.8 SR-TSL (2018) 84.8 92.4
GCA-LSTM (2017) 76.3 84.5 DACNN (Proposed) 83.8 90.7
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JumpingThrowingSitting Walking Waving

Figure 6.12: Visualization of the Abs-filters learned by DACNN on the NTU dataset and
the classes to which they are mostly related. Red links indicate the body parts in which
the Abs-filters have high alignment values.

ST-GCN (Sijie Yan, Xiong, and D. Lin 2018), CNN+LSTM (C. Li et al. 2017), Two-Stream
CNN (Y. Du, Fu, and Liang Wang 2015), and SR-TSL (Si et al. 2018).

As I can see in Table 6.3, DACNN did not beat SR-TSL and CNN+LSTM in recognition
accuracy. Nevertheless, It still achieves a competitive result compared to other recent
state-of-the-art algorithms, such as ST-CGN, CNN+DRPL, and VA-LSTM, and even
outperforms CNN+LSTM in the CS settings. It is important to note that the NTU dataset
is recorded in a very constrained experimental setting, which is an advantage for the
methods that considerably rely on the spatial processing of human poses (such as SR-TSL
and CNN+LSTM).

Further Empirical Evaluations

In this section, I analyze my DACNN framework also from other empirical perspectives.
Mainly, my concern is to study the interpretation of the Abs-filters, the performance of
IDI-module, and the effect of sparsity regulation. I also investigate the role of different
modules of the DACNN architecture and their effect on the outcome.

Interpreting the Abs-filters

Apart from the action recognition and segmentation performance, one important motiva-
tion for the specific design of DACNN was its interpretable model. Accordingly, we are
interested in visualizing the learned Abs-filters of DACNN to investigate any semantic
(meaningful) pattern among them. Relatively, a particular strength of DACNN compared
to other deep neural networks is its simplicity in visualization and interpretation of its
trained filters (Abs-filters). To that aim, I associate each filter f⃗ p

i to a class c if

c = arg max
c

∑
X∈class c

∥v⃗p(i, :)|X∥2
2, (6.22)

in which v⃗p(i, :)|X denotes the i-th row of the alignment map Vp after applying f⃗ p
i on all

channels (dimensions) of X. In Figure 6.12, I visualize some of the Abs-filters learned
by DACNN after being trained on the NTU dataset. These filters are mostly related to
the action classes walking, waving, sitting, jumping, and throwing. It is clear that each filter
has learned a semantic subsequence from one joint of the whole action. For instance,
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Figure 6.13: The effect of IDI-module in the learning curve of DACNN on Montalbano
V2. The squares show the epochs when a new deep layer is initialized, and the circles
indicate when the IDI-module finishes the pre-training of that layer and adds it to the
main loop of DACNN.

one Abs-filter is aligned with the left foot’s movement in the jumping action before the
subject’s foot is detached from the ground. As another example from Figure 6.12, another
filter has learned half of a walking cycle on the right foot as a relevant temporal pattern in
distinguishing walking sequences from other motion types. Considering other Abs-filters
illustrated in Figure 6.12, each of them has recognized a specific temporal pattern that
facilitates the separation of that class from others.

Incremental Layer Extension

I investigate the IDI-module’s individual effect on training performance via the im-
plementation of DACNN on the Montalbano V2 dataset. As in Figure 6.13, I initialize
DACNN with 2 deep layers in its 1D-CNN module (depth 2). Then, as the network
constructs the Abs-filters during the training, the IDI-module increases its depth incre-
mentally until this progress becomes saturated at a depth of 4. Figure 6.13 also contains
the accuracy curve related to the training of DACNN-5 and DACNN-direct without
IDI-modules. DACNN-5 has a fixed depth of 5 during its training, while I incrementally
increase the depth of DACNN-direct, but without the pre-training (Figure 6.10) of its
new layers.

According to Figure 6.13, although DACNN and DACNN-5 both converge to the same
accuracy performance, DACNN (with IDI-module) presents a notably faster convergence
and also chooses only up to 4 deep layers as the necessary level of complexity for training
DACNN on this dataset. Also, the trained DACNN-5 learns Abs-filters up to the size
of 54 = 3× 18. However, the minimum filter size that triggers the initiation of depth
5 is 3× 25. Hence, DACNN-5 could not find any discriminative pattern that is large
enough to justify the necessity of having the 5th depth in its structure. Furthermore,
DACNN-direct shows dramatic decreases in its learning curve each time a new deep
layer is added to its network, which is due to the disturbance the new untrained initial
weights cause in training.
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Role of Sparsity

To better study the role of the sparsity loss Sp in the recognition performance, I repeat
the experiment on the NTU dataset by varying the parameter λ of Equation 6.18 in the
range [0 1]. Based on Table 6.4, this term positively affects the accuracy and convergence
speed when λ is in the range [0.2 0.5]. However, very large or minimal values of λ lead
to low accuracy and slow convergence, respectively.

Ablation Study

To study the individual role of each module in DACNN (Figure 6.3), I perform an ablation
study by repeating the action recognition experiments for the DACNN framework
variants (Table 6.5). In DACNN-nf, I remove the fine-prediction module, and I do not
employ any Abs-filter in DACNN-Al. The DACNN-1D network is similar to DACNN-Al,
but it uses 1D-conv. filters instead of the Al-filters. According to the results in Table 6.5,
the lower performance of DACNN-nf compared to DACNN shows the positive effect
of the Abs-filter skip-connections (Figure 6.9) in improving the accuracy of the final
prediction in 1D-CNN.

Nevertheless, the accuracy of DACNN-nf is still close to DACNN and is even higher
than the state-of-the-art for SYS-3D and Montalbano. Removing the Abs-filters from
DACNN causes a notable decrease in the performance of DACNN-Al, which justifies the
significant role of these filters in extracting the essential patterns in the data. However,
DACNN-Al obtains higher accuracies than DACNN-1D, which proves how effective the
alignment filters are regarding the SBARS problems. I already demonstrated the individ-
ual effect of the fine-prediction unit (in segmentation) and IDI-module by Figures 6.11
and 6.13, respectively.

Stability of DACNN

The DACNN framework has a stable training phase due to its specific structure. The
1D-CNN module has a similar structure to the fully-convolutional neural networks (J.
Long, Shelhamer, and Darrell 2015), and the alignment layer contains convex operation
units, which are fully differentiable. Hence, the main body of DACNN follows a routine
training procedure similar to other typical CNN networks. One example of the learning
curve is provided by Figure 6.13, which studies the progress of the network’s training
with and without the IDI-module.

Regarding the construction of the Abs-filters, fine-prediction layers, and the IDI-
module, it is crucial to notice that the functionality of these designed modules principally
relies on some Al-filters that are trained sufficiently and already reached the stable
regions of the optimization space. For instance, a portion of { f⃗ 1

i }
d1
i=1 can possess specific

Table 6.4: Effect of the sparsity parameter λ on accuracy (%) and convergence epoch (C.ep.
) for the NTU dataset.

λ Acc. C.ep. λ Acc. C.ep. λ Acc. C.ep.

0 89.3 310 0.4 90.4 231 0.8 87.8 176
0.1 89.8 289 0.5 90.0 210 0.9 87.7 169
0.2 90.5 273 0.6 88.4 195 1.0 86.5 161
0.3 90.7 254 0.7 88.1 190 - - -
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Table 6.5: Ablation Study: Prediction accuracies (%) for partial implementations of
DACNN on three selected datasets.

Method SYS-3D NTU CS NTU CV Mont.

DACNN-1D 71.8 70.5 75.5 70.54
DACNN-Al 78.4 77.4 85.3 82.53
DACNN-nf 82.5 81.8 88.9 84.15
DACNN (Figure 6.3) 84.3 83.0 90.7 85.2

patterns inside the data, but they need to be fine-tuned. In particular, the IDI-module
starts to learn the initial parameters of a new deep layer when DACNN already reached
the low-slope part of its learning curve (Figure 6.13). Additionally, the new deep layer
has fewer parameters to update than the main DACNN framework, making their fusion
notably fast and smooth.

6 .5 conclusions

In this chapter, I proposed a deep-aligned convolutional neural network for skeleton-
based action recognition and temporal segmentation. As a significant difference between
this framework and those of previous chapters, DACNN directly analyzes the temporal
content of input sequences and seeks relevant information in that axis specifically for
the given classification task. This network is constructed upon introducing the novel
concept of temporal alignment filters for CNN architectures. Employing these filters
in the first layer of a CNN model is an efficient choice for skeleton-based motion data
classification compared to regular convolution filters. They extract crucial local patterns
in the temporal dimensions of the data to better discriminate the action classes. Besides
the competitive performance of my DACNN framework compared to the state-of-the-
art, its extracted features (learned Abs-filters) are easily interpretable regarding their
semantic contents. On the other hand, the existing advanced state-of-the-art frameworks
are typically combinations of CNN models and other deep architectures. Therefore, we
can expect that incorporating such novel filter types can also enhance the performance of
such advanced architectures.

Furthermore, I designed an IDI-module to smoothly increase my network’s depth
according to the data structure without disrupting the training process. My empirical
evaluation of DCANN on different SBARS benchmarks supports my claims regarding
the performance and benefits of my network. I believe that the idea of incorporating
alignments in CNNs can be further studied in other relevant areas, such as relevance
analysis and generative adversarial networks. The layer extension idea can also be further
studied regarding its application to other general deep architectures such as RNN or
LSTM.
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In this dissertation, I have addressed the motion data analysis problem with a specific
focus on the interpretability and explainability aspects. To that aim, I have proposed
novel semantically interpretable models in four machine learning areas of metric learning,
sparse embedding, feature selection, and deep learning. The proposed models are empir-
ically evaluated in each category by implementations on real-world motion benchmarks
and using appropriate performance measures.

In Chapter 3, I have applied metric learning on motion data to improve its represen-
tation in favor of distance-based supervised tasks. More specifically, I have proposed a
novel distance-based metric learning framework, which benefits from DTW as a robust
alignment technique for motion sequences. The proposed framework transfers motion
data to another space in which semantically similar motions are located in tighter neigh-
borhoods while semantically different motions are pushed further away from each other.
Empirically, I have demonstrated that the nearest-neighbor classification of motion bench-
marks is improved in the space obtained by the learned metric. Therefore, the learned
metric has improved the representation of motion data in local neighborhoods of the
distance space.

Furthermore, I have shown in Chapter 3 that the proposed distance-based metric
learning algorithm gives us the possibility to perform also auxiliary analysis such as
metric regularization on motion data. This post-processing regularization step interprets
the obtained metric in terms of the most relevant body joints. To that aim, it reduces
the typically existing correlations between motion dimensions (body joints movements)
and reveals the semantically significant dimensions to the given supervised task. As
another presented topic of Chapter 3, I have discussed the effect of target selections on the
performance of neighborhood-based metric learning. Mathematically, I have addressed
the connection between the geometric formation of the selected targets and the feasibility
of obtaining an optimal metric. Furthermore, I have shown how we can benefit from
the introduced concept to improve the target selection and, consequently, the learned
metric’s quality for real-world benchmarks.

Another practical concern in the processing of motion data is obtaining a sparse
embedding to the vector space. Such embedding can considerably reduce the repre-
sentation’s space complexity and also opens up the possibility of applying advanced
algorithms on motion data, which are mainly designed for a vectorial source of infor-
mation. The existing sparse embedding models for data types similar to motion are
not meaningfully interpretable w.r.t. the original motion resources. However, this is an
essential property required by a practitioner or a domain expert. In Chapter 4, I have
shown that by benefiting from the semantic similarity between motion sequences of
the same category, we can obtain a sparse and interpretable encoding for each motion
sample. To that aim, I have proposed a kernel-based non-negative dictionary learning
framework that encodes each motion data by its connections to other similar motion se-
quences by means of learning an intermediate dictionary. I have shown that the proposed
framework’s non-negativity property improves the interpretation of the resulting sparse
encoding relying on its meaningful (motion-based) building blocks.

I also have extended the proposed non-negative sparse coding framework of Chap-
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ter 4 to two supervised models, which can enrich the sparse encodings in case supervised
information such as data labeling is available. These frameworks have different for-
mulations and consequently differ in their discriminative performance as well as their
computational complexity. I have proposed suitable optimization algorithms o train
each encoding framework efficiently. Experimentally, I have demonstrated that both
proposed supervised algorithms obtain enriched sparse encodings of motion data, which
outperform the other alternatives in terms of the model’s semantic interpretability and
the discriminative quality of the obtained encodings. Furthermore, as an unsupervised
extension of the base proposed non-negative sparse coding framework, I have proposed
a novel kernel-based subspace sparse clustering. This algorithm encodes each motion
sequence directly in terms of a sparse set of other semantically similar samples in the
feature space’s local neighborhoods. The non-negativity term makes the obtained self-
representative graph of the mocap dataset interpretable regarding its local connections
between similar motion sequences. Through empirical evaluations, I have demonstrated
that the obtained unsupervised encoding can reveal the underlying subspaces in which
individual motion categories lie.

When considering the multivariate description of motion data, another challenge
in motion data analysis is to obtain interpretable feature selection models. A motion
sequence is represented in such desired models by selecting specific features that provide
semantic connections between the movement of particular body joints and the given
overarching analysis task. In Chapter 5, benefited from the multiple-kernel representation
of motion data and the proposed frameworks of Chapters (3 and 4), I have designed
interpretable multiple-kernel models, which perform feature selection (or scaling) for
motion data with different supervised or unsupervised objectives.

As the first MKL algorithm, I have extended the metric learning concept to the
multiple-kernel representation, aiming to increase the local separation of the motion
classes in the feature space. Specifically, my proposed LMMK framework employs a
diagonal metric that allows us to perform metric learning as the scaling of the feature
space. Furthermore, using a sparsity objective in this formulation leads to scaling a sparse
set of dimensions in the RKHS, which can be interpreted as relevant motion dimensions
to the given discriminative task. Based on my empirical evaluations on real-world mocap
benchmarks, LMMK outperforms other multiple-kernel learning algorithms in terms of
discriminative feature selection. Although its discriminative performance is comparable
to the DTW-LMNN algorithm of Chapter 3, it results in a smaller set of relevant features.

As another part of Chapter 5, I have transferred the multiple-kernel learning problem
to the prototype-based representation of motion data. More specifically, I have proposed
a framework that provides an interpretable prototype-based representation of motion
data in a combined RKHS. This model, which is specifically beneficial to practitioners
and domain experts, learns interpretable motion prototypes as the local representatives
of motion classes in RKHS and effectively discriminates the classes from each other
in that space. The feature selection part of the IMKPL framework selects the base
kernels that are relevant to the aimed prototype-based representation. My experimental
evaluations have shown this model’s superiority over other prototype-based alternatives
in providing semantically interpretable and discriminative multiple-kernel prototypes.
Although IMKPL is outperformed by LMMK based on discriminative feature selection
performance, its highly interpretable prototype-based model is of substantial value to
practitioners.

In the last part of Chapter 5, I have mitigated the typical real-world challenge of
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confronting unseen motion classes with respect to a given annotated mocap dataset.
Accordingly, I have designed a novel multiple-kernel dictionary learning framework
that learns semantic attributes, which rely on the exiting similarities and dissimilarities
in particular body joints’ movements in different motion classes. These attributes are
particularly interpretable based on their connections to particular dimensions of known
motion categories. Based on experimental evaluations, I have shown that the learned
semantic attributes can be used for interpretable encoding of unseen motion classes.
I have also proposed an incremental clustering method, which can efficiently cluster
unseen motion sequences upon their partial or complete encoding results.

Another important focus of motion analysis is the segmentation of long motion
sequences into understandable shorter temporal parts. This is of particular interest when
motions are recorded as long streams in uncontrolled environments, making their manual
annotation considerably time-consuming. Furthermore, a temporal analysis of motion
data can reveal the motion time-series’ relevant regions to the given classification task.
In Chapter 6, to address that concern using a deep neural network, I have proposed a
deep-aligned convolutional network that performs temporal segmentation and sequence
labeling of skeleton motions. In this architecture, I have introduced the novel concept of
temporal alignment filters for CNN models. By using such filters, the network can learn
significant temporal patterns in long motions, which are semantically understandable
while also discriminative in distinguishing different motion categories from each other.
The empirical evaluation of my deep learning architecture demonstrates its competitive
performance in the recognition and segmentation of skeleton-based human actions, while
it also finds interpretable temporal prototypes for the given mocap dataset.

Limitations: The proposed methods in this thesis can still benefit from further improve-
ment in several aspects.

First, all the algorithms in Chapters 3, 4, and 5 highly rely on having the motion data
segmented in advance and synchronized according to the number of action repetitions per
sequence. Although this requirement is easily provided in laboratory-based experiments,
it may bring difficulties while capturing data from open-world and public environments.

Second, the proposed kernel-based or distance-based methods in Chapters 3, 4, and 5
require storing the training data for the prediction of test samples. Such a requirement can
quadratically increase the spacious complexity of the algorithms, especially for large-scale
datasets.

Third, despite the effective power of the proposed deep architecture in Chapter 6,
similar to other deep neural networks, it requires a relatively large number of anno-
tated mocap samples for its training phase. Such a prerequisite can limit its applicable
benchmarks as the production and annotation of mocap databases is dramatically more
time-consuming than other data forms such as videos or images.

Fourth, even though the proposed non-negative quadratic optimization algorithm in
Section 4.3 has linear complexity (compared to the quadratic complexity of its alterna-
tives), the whole sparse coding framework has a quadratic computational complexity (or
cubic for high-dimensional data). Although this complexity is one degree smaller than
their alternative methods, it can become prohibitive for large-scale high-dimensional
datasets. Nevertheless, due to the large share of kernel pre-computation steps in the
complexity of each algorithm, one general effective workaround can be using kernel
linearization methods similar to (Golts and Michael Elad 2016)
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Finally, besides the significant improvements of the proposed methods compared
to their predecessors in terms of their interpretability, that property is still ill-posed
regarding its definition in the field of machine learning. Also, despite the measure that I
used to quantify it in the experimental sessions approximately, measuring interpretability
as an absolute value is still an open challenge in this field of science. Therefore, it is
most often not possible to compare the models from different works, which are claimed
to be interpretable, w.r.t. that property. Furthermore, the concept of semantic and the
way one should apply it to structured information such as motion data are not always
well defined. Even in many cases, this concept is still ill-posed among practitioners and
domain experts, which makes it subject to the person’s point of view and prone to be
changed over time and experience.

Outlook: Besides mathematically enhancing the specific algorithms proposed in this
thesis, my work opens significant research possibilities from several scopes.

First, in different parts of this work, I showed how we could obtain interpretable
models for motion data analysis from different perspectives and with different objectives.
Nevertheless, the major part of this work is applicable to any structured or even vectorial
data, given that a pairwise similarity-based relationship between data entities is available.
Therefore, some of these methods are already tried on non-temporal datasets as reported
in the relevant publications (Hosseini and Hammer 2018b; Hosseini and Hammer 2019c;
Hosseini and Hammer 2018c; Hosseini and Hammer 2019a). This characteristic motivates
us to employ the proposed methods in various applications. For instance, a practically
usable data representation in health-cares systems highly relies on obtaining clinically
understandable models, which depends on the interpretability and explainability of the
model and its entities by a domain expert (Velikova et al. 2014; Lopez and Blobel 2008;
Stiglic et al. 2020). Therefore the particular connections that my proposed methods find
between the model’s entities and semantically understandable input knowledge can be
incorporated as the underlying building blocks of overarching large-scale applications to
advance the current state of model interpretation in this domain. Considering interpreta-
tion as the quality of a machine learning model to explain its specific decisions (Molnar
2020), such characteristic is the necessary building block of many different traits such
as fairness, privacy, reliability, causality, and trust, which have their own specific ap-
plications and methods (Doshi-Velez and B. Kim 2017). Therefore, the application of
my proposed views toward interpretable modeling can be further investigated as a
constituent early-stage building block of the solutions in those areas.

Second, in Chapter 3, I have focused on the efficiency of target selections for metric
learning algorithms (specifically for LMNN). Even though this dimension of the problem
generally converts it to an NP-hard problem, I have shown that we can incorporate
geometrical analysis on the global data distribution to mitigate this issue. On the other
hand, it has been shown that investigating local metrics or formulating learning in a
multi-task framework can better approach multi-class problems (Kilian Q Weinberger
and Lawrence K Saul 2008; Parameswaran and Kilian Q Weinberger 2010). Therefore,
an interesting research line is to investigate further the target analysis path that I have
opened up in more advanced variants of metric learning frameworks. Furthermore, my
introduced component-wise view to the distance-based metric learning can be transferred
to such frameworks as well.

Fourth, although the sparse coding frameworks in Chapter 4 work on the similarity-
based relationship of data entities, one can investigate the proposed methods’ extension
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to frame-based models. Inspired by methods similar to (Lichen Wang, Z. Ding, and Fu
2018; S. Li, K. Li, and Fu 2015; T. Zhou et al. 2020), it could be possible to incorporate
the novelties of this thesis into such frameworks. The resulting model would perform
frame-based processing of motion data while also providing interpretable characteristics
regarding prototype-base representation, feature selection, interpretable encoding.

Fifth, in Chapter 6, I have demonstrated the positive effect of alignment kernels on
the performance and interpretability of convolutional neural architectures for motion
data analysis. Therefore, an interesting research line is to incorporate such form of
filters in other more complex and more advanced deep neural networks which have
convolutional modules as their building blocks (Núñez et al. 2018; Y. Tang et al. 2018;
Ke et al. 2017; Sijie Yan, Xiong, and D. Lin 2018; C. Li et al. 2017). Those frameworks
have shown notable performance in the classification of motion data. Therefore, it is
expected that the proposed incorporation can improve their accuracy and interpretability
while reducing their complexity. As a reason for this reduction, these filters process such
specific input more effectively while using fewer parameters in comparison. Additionally,
the introduced idea of the conditional extension of a neural network’s depth during
its training phase can be further investigating in other architectures such as LSTM and
RCNN. However, appropriate trigger mechanisms should be employed to increase the
network’s complexity when required.
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AA P P E N D I X

a .1 proof of theorem 3 .1

In Section 3.3, I formulated the following theorem.

A triplet (x⃗i, x⃗j, x⃗l)results in Equation 3.12 being infeasible if (x⃗i − x⃗j) and (x⃗i − x⃗l)
are linearly dependent vectors.

Proof. A matrix Q := Qijl as in Equation 3.12 can be written in the form of a⃗⃗a⊤ − b⃗⃗b⊤,
i.e., its eigenvectors are obviously located in the span of a⃗ and b⃗. Hence, the rank of Q
is at most 2 by denoting its two possibly non-zero eigenvalues as λmin(Q) ≤ λmax(Q).
Therefore, we can find a basis of Rn whose first two elements are a⃗ and b⃗. With respect
to this basis, the matrix Q has the form

a⃗ · a⃗ a⃗ · b⃗ ∗ · · · ∗
−⃗a · b⃗ −⃗b · b⃗ ∗ · · · ∗

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Since this is a block upper triangular matrix, the λmin(Q)λmax(Q) product is equal to the
determinant of its first diagonal block as

− ∥⃗a∥2∥⃗b∥2 + (⃗a · b⃗)2 = −∥⃗a∥2∥⃗b∥2 sin2 θ (A.1)

in which θ is the angle between the two vectors a⃗ and b⃗.

Considering the sign and possible values of Equation A.1, λmin(Q) ≤ 0 < λmax(Q) if
the two vectors are linearly independent (unless vectors themselves are degenerate). The
equality λmin(Q) = 0 corresponds to linearly dependent vectors a⃗ and b⃗, namely θ = 0.
In that case, Q is a PSD matrix, and Equation 3.12 becomes infeasible.

a .2 proof of lemma 3 .1

In Section 3.3, I formulated the following lemma.

Denote the eigenvalues of a matrix Q ∈ Rd×d by λ1(Q) ≥ λ2(Q) ≥ . . . , its small-
est/largest eigenvalue is denoted λmin(Q) and λmax(Q), respectively. Then, for hermitian
Q ∈ Rd×d and symmetric PSD M ∈ Rd×d, it holds λk(Q)λmin(M) ≤ λk(QM) for all k.

Proof. M is PSD, and Q and M are symmetric. Hence,

λk(QM) = λk(Q
√

M
√

M) = λk(
√

MQ
√

M),
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Figure A.1: Eigenvalue profile of the learned metric for the Dance dataset, which is sorted
according to the size of matrix DD⊤’s eigenvalues. The green circle indicates the selected
dimension as the effective dimension for the regularized coefficients Φ.

where
√

M is the principal square root of M. Using the min-max theorem we find

λk(QM) = min
dim(F)=k

(
maxx∈F\{0}

⟨Q
√

Mx,
√

Mx⟩
⟨
√

Mx,
√

Mx⟩
⟨Mx,x⟩
⟨x,x⟩

)
≥ λmin(M) min

dim(F)=k

(
maxx∈F\{0}

⟨Q
√

Mx,
√

Mx⟩
⟨
√

Mx,
√

Mx⟩

)
,

because ⟨Mx,x⟩
⟨x,x⟩ ≥ λmin(M). Again using the min-max theorem we get

λk(QM) ≥ λmin(M)λk(Q).

a .3 additional figures for section 3 .5

Related to the experiments of Section 3.5 for regularizing the relevance profiles, Figure A.1
shows how I choose 12 effective dimensions (eigenvectors) based on the corresponding
eigenvalue profile of DD⊤ for the Dance dataset to construct the regularization matrix Φ
in Equation 3.18. As the result of feature selection on the Dance dataset in Section 3.5,
the relevant body joints to the selected 9 features are depicted on the skeleton structure
in Figure A.2. Relevantly, Figure A.3 illustrates that for a wide range of effective dimen-
sions in Equation 3.18, test data classification accuracy stays at its maximum point (the
Dance dataset).

The feature selection part of Section 3.5 on the Walking dataset results 7 selected
features with the corresponding body joints as depicted on the skeleton structure of
Figure A.4.
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 Body Stick Figure (Dance)

Figure A.2: Stick figure of different body parts related to the Dance dataset. Red markers
are the selected important inputs according to the regularized relevance profile of the
features.

a .4 proof of proposition 4 .1

In Section 4.2, I formulated the following proposition.

If rank(Φ(X )) < N, there exist U∗ ∈ RN×k, Γ∗ ∈ Rk×N k < N such that Φ(X ) can be
reconstructed as Φ(X ) = Φ(X )U∗Γ∗.

Proof. Knowing that rank(Φ(X )) < N, there exists U∗ ∈ RN×k k < N such that Φ(X ) ∈
span{Φ(X )U∗}. This means that the columns of Φ(X ) can be reconstructed in a linear
combination as Φ(X ) = Φ(X )U∗Γ∗, where Γ ∈ Rk×N .
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Dance dataset

Figure A.3: Classification accuracy for training and test set of the dance dataset based on
the selected effective dimensions in Equation 3.18. The green diamond represents the
highest accuracy for the test set for 12 effective dimensions. The green circle refers to the
non-regularized coefficients, and the triangle to only one effective dimension.
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Figure A.4: Stick figure of different body parts related to the Walking dataset. Red markers
are the selected important inputs according to the regularized relevance profile of the
features.

a .5 the k-nnls algorithm

In Section 4.2, I proposed the K-NNLS algorithm by kernelizing the active set fast
non-negative least square optimization method (FNNLS) from (Bro and De Jong 1997).

Algorithm A.1 The K-NNLS algorithm: finds an approximate solution to step 8 of
Algorithm 4.1 as a non-negative encoding of a data sample z⃗ in the feature space given a
subset dictionary matrix.

1: Input: Subset dictionary matrix UI ∈ RN×k, kernel matrix K(X, X)
2: Output: Solution γ⃗ to arg minγ⃗∥Φ(⃗z)−Φ(X)UI γ⃗∥2

2, s.t γj ≥ 0, ∀j
3: Initialization: γ⃗ = 0, P = ∅, R = {1, . . . , k}, w⃗ = U⊤I K(⃗z, X)⊤

4: while R ̸= ∅ do
5: j = arg maxi∈R(wi)
6: P = P ∪ {j}, R = R\{j}
7: s⃗P = [(U⊤I K(X, X)UI)

p]−1[(K(⃗z, X)UI)
p]⊤

8: if min(⃗sP) < 0 then
9: Q = {i|sp

i < 0, ∀i ∈ P}
10: α = −mini[

γi
γi−si

], ∀i ∈ Q
11: γ⃗ := γ⃗ + α(⃗s− γ⃗)
12: Q = {i|γi < 0, ∀i ∈ P}
13: R = R ∪Q, P = P\Q
14: s⃗P = [(U⊤I K(X, X)UI)

p]−1[(K(⃗z, X)UI)
p]⊤

15: s⃗R = 0
16: end if
17: γ⃗ = s⃗
18: w⃗ = U⊤I [K(⃗z, X)−K(X, X)UI γ⃗]

⊤

19: end while
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a .6 proof of proposition 4 .2

a .6 proof of proposition 4 .2

In Section 4.3, I formulated the following proposition.

Using the dictionary structure of Equation 4.22, sparse reconstruction of sequence
Φ(X) necessitates to bound the value of ∥u⃗i∥0.

Proof. For each training sample Φ(X), we have

Φ(X) = Φ(X )Uγ⃗ = Φ(X )⃗s,

where s⃗ ∈ RN denotes the weighting vector for the reconstruction of X based on other
training samples in X . Therefore,

∥⃗s∥0 = ∥Uγ⃗∥0 ≤ {max
i
∥u⃗i∥0} × ∥γ⃗∥0.

With U being unbounded as ∥u⃗i∥0 < TU, we have ∥⃗s∥0 ≤ TUT. Therefore, having no
specif bound on the column-carnality of U leads to ∥⃗s∥0 ≤ N, i.e., it practically removes
any upper bound on the reconstruction of Φ(X).

a .7 proof of proposition 4 .3

In Section 4.3, I formulated the following proposition.

If sequence Φ(X) belongs to the class q and is lying on a union of subspaces with arbi-
trarily small contributions from the subspaces s ̸= q, then the non-negative discriminant
combination {U, γ⃗} can reconstruct Φ(X) such that

∑s ̸=q h⃗sUγ⃗

h⃗qUγ⃗
≤ ϵ

for an arbitrarily small ϵ.

Proof. Denote Xq ⊂ X as the set of sequences from class q and Xq̄ as its complement.
Based on the assumption, we have

Φ(X) = Φ(X)q + Φ(X)⊥,

such that Φ(X)q ∈ span{Φ(Xq)} and Φ(X)⊥ ∈ span{Φ(Xq̄)}, while ∥Φ(X)⊥∥2 is arbi-
trarily small.
Therefore, we can write

Φ(X) = Φ(Xq )⃗s + Φ(Xq̄ )⃗s̄,

such that the spanning vectors (⃗s,⃗̄s) are non-negative and ∑i s̄i
∑i si
≤ ϵ for an arbitrarily small

ϵ.
Now, denote Uq as the sub-matrix of U with non-zero entries corresponding to members
of Φ(X )q and Uq̄ as its complement. Hence, we can obtain the non-negative matrices
(U, γ⃗) such that s⃗ = Uqγ⃗ and ⃗̄s = Uq̄γ⃗, which holds Φ(X) = Φ(X )Uγ⃗.
Consequently, since ⃗̄s = ∑s ̸=q h⃗sUγ⃗, we derive

∑s ̸=q h⃗sUγ⃗

h⃗qUγ⃗
≤ ϵ
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a .8 proof of proposition 4 .4

In Section 4.3, I formulated the following proposition.

The proposed loss term G in Equation 4.26 is non-convex and has a non-negative
gradient.

Proof. We can rewrite
G(H, γ⃗, U) = γ⃗⊤U⊤H⊤(1− I)HUγ⃗, (A.2)

where 1 ∈ RC×C is the matrix of ones, and I is the identity matrix. Hence, the matrix
(1− I) has one positive eigenvalue C and C− 1 eigenvalues with the magnitude of -1.
Hence, according to the quadratic form of G w.r.t. γ⃗, it has (k− C) zero eigenvalues and
C non-zero eigenvalues with the same structure as in (1− I), which makes G(γ⃗) a non-
convex function. In addition, its gradient w.r.t. γ⃗ is computed as ∇γ⃗G = 2(1− I)HUγ⃗,
which has non-negative entries given that HUγ⃗ is a non-negative vector.

a .9 proof of proposition 4 .5

In Section 4.3, I formulated the following proposition.

Define
V := K(X ,X ) + αH⊤(1− IC×C)H

and β := −min
i

λi, with {λi}N
i=1 as the eigenvalues of V. Adding β∥Uγ⃗∥2

2 to the objective

term G (Equation 4.26) makes Equation 4.21 a convex optimization problem.

Proof. After adding β∥Uγ⃗∥2
2 to objective terms G(H, U, γ⃗) and R(X , Z, U, γ⃗) from Equa-

tion 4.26 1 and Equation 4.24, the quadratic terms can be rewritten as

γ⃗⊤U⊤(V + βIN×N)Uγ⃗.

Based on Proposition 4.4, the eigenvalues of V can include both negative and positive
values. Therefore, choosing β = −mini λi makes (V + βIN×N) a positive semi-definite
matrix (PSD), and consequently, the whole objective becomes PSD due to its quadratic
form. Hence, Equation 4.21 becomes a convex problem via adding this term.

a .10 proof of theorem 4 .1

In Section 4.3, I formulated the following theorem.

The Non-negative Quadratic Pursuit algorithm (Algorithm 4.5) converges to a local
minimum of Equation 4.32 in a limited number of iterations.

Proof. The algorithm consists of 3 main parts:

1. Gradient-based dimension selection

2. Closed-form solution

1 Using the reformulation of G from Equation A.2 can facilitate this algebraic derivation.
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a .11 proof of proposition 5 .1

3. Non-negative line search and updating I .

It is clear that the closed-form solution γ⃗ via selecting a negative direction of the gradient
∇γ⃗ f (γ⃗) always reduces the current value of f (γ⃗t) as γ⃗t has to be non-negative and
initially γj = 0. Moreover, the zero-crossing line search in iteration t can guarantee
to reduce the value of f (γ⃗(t−1)) strictly. It finds a non-negative γ⃗t

new between the line
connecting γ⃗

(t−1)
I to γ⃗t

I , and since f (γ⃗) is convex, f (γ⃗t
new) < f (γ⃗(t−1)

I )

Consequently, each of the above steps guarantees a monotonic decrease in the value
of f (γ⃗). Therefore, having ∥γ⃗(t+i)∥0 > ∥γ⃗(t)∥0 implies f (γ⃗(t+i)) < f (γ⃗(t)). Also, the
algorithm structure guarantees that in any iteration t, It ̸= Ii ∀i < t, meaning that
NQP never gets trapped into a loop of repeated dimension selections. Furthermore,
we have ∥γ⃗∥0 ≤ nT, meaning that the total number of possible selections in I is
bounded. Inferring from the above, the NQP algorithm converges in a limited number of
iterations.

a .11 proof of proposition 5 .1

In Section 5.3, I formulated the following proposition.

The objective Jdis in Equation 5.12 has its minimum if ∀Xi, Φ̂(Xi) ≈ Φ̂(X )Uγ⃗i, such
that ∀t : γti ̸= 0, ∀s : ust ̸= 0, h⃗i = h⃗s and ∥Φ̂(Xi)− Φ̂(Xs)∥2

2 ≈ 0.

Proof. The objective term Jdis is constructed upon summation and multiplication of
non-negative elements. Hence, its global minima would lie where Jdis(U, Γ) = 0 holds.
This condition can be fulfilled if for each γ⃗i:

[
N

∑
s=1

u⃗s (⃗h⊤i h⃗s∥Φ̂(Xi)− Φ̂(Xs)∥2
2 + ∥⃗hi − h⃗s∥2

2)]γ⃗i = 0.

Since the trivial solution γ⃗i = 0 is avoided due to Jrec in Equation 5.11, we can find a set
I s.t. ∀t ∈ I , γti ̸= 0 holds. Therefore, ∀t ∈ I , ∑N

s=1 ustΩsi = 0, where

Ωsi = h⃗⊤i h⃗s∥Φ̂(Xi)− Φ̂(Xs)∥2
2 + ∥⃗hi − h⃗s∥2

2.

It is clear that

Ωsi =

{
2 h⃗i ̸= h⃗s

∥Φ̂(Xi)− Φ̂(Xs)∥2
2 h⃗i = h⃗s,

which means that ∀s, ustΩsi = 0 holds in either of the following cases:

1. ust = 0, meaning that the data point Xs does not contribute to the t-th prototype
(e.g., consider the squares in Figure 5.2-b that are not a part of u⃗1) .

2. u⃗t uses Xs that lies in the same class as Xi (e.g., the circles in Figure 5.2-b as the
main constituents of u⃗1).

Putting all the above conditions together, Jdis = 0 happens only in case the condition
described by the proposition is fulfilled.
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a .12 proof of proposition 5 .2

In Section 5.3, I formulated the following proposition.

Denoting U ∈ RN×k, Γ ∈ Rk×N , β⃗ ∈ Rd, and

G(U, Γ, β⃗) = ∥Φ̂(X )− Φ̂(X )UΓ∥2
F

+λ 1
2

N

∑
i=1

[
N
∑

s=1
u⃗sγ⃗i (⃗h⊤i h⃗s∥Φ̂(Xi)− Φ̂(Xs)∥2

2 + ∥⃗hi − h⃗s∥2
2)]

+µ∑N

i=1

[
∑

s∈N k
i

∥Φ̂(Xi)− Φ̂(Xs)∥2
2 + ∑

s∈N k
i

Φ̂(Xi)
⊤Φ̂(Xs)

]
+ τ∥HU∥1,

the objective function G(U, Γ, β⃗) is multi-convex in terms of {Γ, U, β⃗}.

Proof. Each of the defined functions in {Jrec,Jdis,Jls,Jip} is convex w.r.t. any individual
member of {U, Γ, β⃗} while the other parameters are fixed. This conclusion is derived
because:

1. Matrices Ki ∀i = 1, . . . , d are positive semi-definite by definition.

2. The objective Jls is linear in terms of β⃗.

3. The term Jrec is an F-norm operator.

Therefore, the total objective G(U, Γ, β⃗) is multi-convex in terms of {Γ, U, β⃗}.

a .13 proof of theorem 5 .1

In Section 5.3, I proposed the following Theorem.

The iterative updating procedure in Algorithm 5.1 converges to a locally optimal
point in a limited number of iterations.

Proof. Based on Proposition 5.2 and Theorem 4.1, each optimization sub-problem in
Algorithm 5.1 reduces the objective function of Equation 5.11 monotonically. In addition,
all the individual objective terms in Equation 5.11 are bounded from below by zero
according to their definitions. Therefore, convergence to at least a local minimum solution
is guaranteed under a limited number of iterations.

a .14 complete architecture of dacnn from section 6 .3

The complete architecture of DACNN proposed in Section 6.3 is depicted in Figure A.5,
including the detail of building units of Figure 6.3.
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a .14 complete architecture of dacnn from section 6 .3
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