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Summary

In this thesis, we investigate two-dimensional singular stochastic control problems
motivated by di�erent applications in economics and �nance. The main interest is
to characterize the optimal control in the problems, and in particular to characterize
the corresponding free-boundaries. We investigate three di�erent settings, in which
the two-dimensional nature is driven by various aspects. In Section 2, we propose
and solve a dividend problem with capital injections in a �nite time horizon setting.
The surplus process of a �rm is assumed to follow a stochastic dynamic, and due
to the �nite time horizon, the time itself becomes a state variable. In Section 3,
we study a control problem regarding the inventory of a �rm. We assume that
the demand of a good follows some stochastic dynamics. In addition, we assume
that drift and volatility parameters are Markov modulated, representing di�erent
scenarios of the economy. Finally, in Section 4, we study a control problem with
interconnected dynamics. This problem is motivated by di�erent applications as, for
example, the in�ation control. We consider X to be a process with some stochastic
dynamics (e.g. the in�ation rate), in which the drift can be controlled. In this model,
the process X and the drift are state variables, which are interconnected.

In all these applications, we characterize the free-boundaries by combining and
extending di�erent techniques. In particular, in Section 2, we extend a result by
El Karoui and Karatzas [40], which connects a singular stochastic control prob-
lem with a problem of optimal stopping. Hence, we can study the time-dependent
free-boundary of the optimal stopping problem. Moreover, the optimal dividend
strategy can be expressed as a solution to a Skorokhod re�ection problem at the
free-boundary. In Section 3, an application of the dynamic programming princi-
ple is used to derive a system of non-linear equations characterizing the constant
free-boundaries. This system is solved numerically to provide a comparative static
analysis. Finally, in Section 4, we derive the structure of the value function by em-
ploying the connection of the singular stochastic control problem to a Dynkin game
of stopping. Moreover, by characterizing the value function as a viscosity solution
to the corresponding dynamic programming equation, we can derive a second-order
smooth-�t property as well as a necessary system of non-linear functional equations
for the free-boundaries. Furthermore, in a particular modi�cation of the model,
these functional equations can be used to derive a system of �rst-order ordinary
di�erential equations, which is explicitly computable.
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1 Introduction

In many real-world situations, an agent is confronted with an optimization problem
of a certain performance criterion by adjusting the dynamics of the so-called state
process via the so-called control variable. The state processes can be either modelled
as a deterministic or as a stochastic process. Such control problems arise in many
di�erent areas as Finance, Economics, Physics, Engineering and Biology among
others. For example, the state process may describe the evolution of a stock price
(Finance), changes in demand of a good (Economics), or the movement of a certain
particle (Physics).

There are two classical approaches to solve optimal control problems, namely
the maximum principle and the dynamic programming approach. The maximum
principle was developed by L.S. Pontryagin, see Pontryagin et al. [80] in order to
solve deterministic problems. Later, it was also extended to the stochastic case,
see for example Chapter 3 in Yong and Zhou [97]. It states necessary conditions for
optimality, more precisely that an optimal control has to solve a two-point boundary
value problem, the Hamiltonian system, along the optimal state trajectory together
with a maximum condition on the Hamiltonian. In the stochastic case, the Hamilto-
nian system becomes a forward-backward stochastic di�erential equation. Moreover,
the necessary conditions of the maximum principle are also su�cient for the control
problem under additional convexity assumptions, see [97].

The second approach to solve optimal control problems is the dynamic program-
ming principle, which was developed by R. Bellman in the 1950's, see Bellman [10].
He shows that in order to solve a particular control problem, one can examine a fam-
ily of optimal control problems which di�er in the initial values of their state process.
The aim is to �nd a connection between those control problems which, under su�-
cient regularity conditions, leads to a (non-linear) partial di�erential equation (PDE)
for the value function of the control problem in the case of a multi-dimensional state
process. In case of a one-dimensional state space, it reads as an ordinary di�erential
equation (ODE). This is the so-called Hamilton-Jacobi-Bellman (HJB) equation (or
just Bellman equation in the deterministic case). More precisely, the HJB equa-
tion is a �rst-order PDE (ODE) in the deterministic case and a second-order PDE
(ODE) in the stochastic case. In case a classical solution to the HJB equation ex-
ists, it can be used to obtain an optimal (feedback) control for the control problem.
This method is known as the veri�cation technique or guess-and-verify-approach, see
Chapter 4 in [97]. However, it must be mentioned that the necessary existence of a
classical solution to the HJB equation is often all but trivial to establish.

In 1983, Crandall and Lions, see [30], used the notion of viscosity solution, intro-
duced by Evans in 1980, see [42], to study HJB equations arising in control problems.
For a more recent introduction to viscosity solutions, see Fleming and Soner [49].
Roughly speaking, the viscosity solution solves the HJB only in a generalized sense.
Therefore, it does not need to be smooth. Nevertheless, this is �exible enough to
allow for existence, stability under uniform limits, and uniqueness. The limitation
of the viscosity approach is that it usually only provides information about optimal
controls if one is able to upgrade the regularity of the value function to a degree
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allowing for a veri�cation theorem. In Section 4 we use this approach to solve a
two-dimensional control problem with interconnected dynamics.

In this thesis, two classes of continuous-time stochastic control problems are ex-
amined: Singular stochastic control (SSC) problems and problems with controls of
bounded-velocity. In SSC problems, the control a�ects the state process instanta-
neously. Moreover, the control variable denotes the cumulative amount of actions
up to a certain point in time. Mathematically, the control process belongs to the
set of processes with bounded variation. Furthermore, in a Markovian setting, the
corresponding HJB equation becomes a second-order PDE (ODE) with a local gra-
dient constraint, and as such it is related to a free-boundary problem. The optimal
strategy is usually described by two regions, which split the state space: the waiting
and the action region. As long as the state process lies inside the waiting region,
no control is exerted. In the action region, it is optimal to exert as much control as
needed in order to bring the controlled state process back to the waiting region. In
mathematical terms, the optimal control in this particular setting is related to the
solution of Skorokhod re�ection problem, see Skorokhod [90]. To construct a solution
of the Skorokhod re�ection problem, it is essential to understand the geometry of the
state space and, in particular, to specify properties like monotonicity, continuity or
locally Lipschitz continuity of the free-boundary between the action and the waiting
region.

One way to obtain these important regularity properties consists of exploiting a
characteristic feature of SSC problems, namely, the link to optimal stopping (OS)
problems, see El Karoui and Karatzas [40], [41], Karatzas and Shreve [58], among
others. Typically, the gradient of the value function of a SSC in the direction of
the controlled variable can be expressed as the value function of an OS problem. In
particular, the waiting region in a SSC problem coincides with the waiting region of
the associated OS problem, where the underlying process is uncontrolled. Therefore,
to study the geometry of the waiting region in a SCC problem, one can use the
literature and methodology available for OS problems. As a matter of fact, such a
connection SSC-OS serves as (one of) the main tools to tackle the SSC problems in
Section 2 and Section 4. In Section 2, the link SSC-OS enables us to solve an optimal
dividend problem with capital injections by constructing the optimal control as a
solution to the corresponding Skorokhod re�ection problem. While in Section 4, the
link SSC-OS is one of the key elements that is needed to determine the geometry of
the state space and the properties of the value function in a two-dimensional SSC
problem with interconnected dynamics. These properties allow us later to upgrade
the regularity of the value function in such a way that we can derive necessary
equations for the free-boundaries.

In Section 3, beside to singular controls, we consider controls with bounded-
velocity. This class of models dates back to V.E. Bene² in 1973, see [11]. In such a
setting, the controls are assumed to have trajectories that are absolutely continuous
(w.r.t. the Lebesgue measure). In contrast to SSC problems, the control acts only
with a rate on the state variable, but not instantaneously. Therefore, the HJB equa-
tion in bounded-velocity control problems has no longer a local gradient constraint
and, furthermore, one can not establish an exploitable connection to a correspond-
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ing OS problem. In Section 3, we solve the considered optimal control problem for
both controls of singular and of bounded-velocity type and we provide a comparison
across the resulting optimal policies.

The focus of the thesis lies on two-dimensional SSC problems motivated by var-
ious economic applications. Despite that there is a comprehensive literature on
one-dimensional SSC, the literature on multi-dimensional settings is still limited.
One explanation might be that, as mentioned above, in case of multi-dimensional
control problems the HJB equation takes the form of a second-order PDE with local
gradient constraint, for which explicit solutions are typically not available. As a
consequence, the guess-and-verify approach can not be employed in order to solve
the control problem, unless speci�c degenerate settings are investigated (see [2],
[33], [34], [70], [71], and [74] as well as the references in the next subsections). In
the mentioned papers, the authors can guess the geometry of the state space and,
by imposing suitable smoothness on a candidate value function, they perform a
veri�cation theorem to provide the optimal solution.

In this thesis, we propose three di�erent two-dimensional SSC problems for which
we are able to provide a detailed description of the value functions and the free-
boundaries splitting the state spaces. The two-dimensional nature of the problem is
due to the presence of a �nite time horizon in the considered optimization problem
in Section 2, due to the problem's coe�cients that are Markov-modulated in Section
3 and due to a two-dimensional degenerate state variable in Section 4. Basing on
the di�erent two-dimensional nature of the problems, we use di�erent approaches to
tackle the problems.

We now continue with a more detailed view on the problems treated in this
dissertation. In particular, we introduce the studied model, describe the solution
approach and discuss the contribution to the literature for each Section.

An Optimal Dividend Problem with Capital Injections over a
Finite Horizon1 [Section 2]

The literature on optimal dividend problems started in 1957 with the work of de
Finetti [36]. He proposes, for the �rst time in the literature, to measure an insurance
portfolio by the discounted value of its future dividends' payments. Since then, the
literature in Mathematics and Actuarial Mathematics experienced many scienti�c
contributions on the optimal dividend problem, which has been typically modeled
as a stochastic control problem subject to di�erent speci�cations of the control
processes and the surplus dynamics (see, among many others, the early works by
Jeanblanc-Piqué and Shiryaev [51], Shreve et al. [89], the more recent works by
Akyildirim et al. [1], De Angelis and Ekström [32] and Jiang and Pistorius [53], the
review by Avanzi [5], and the book by Schmidli [87]).

Starting from the observation that ruin occurs almost surely when the fund's
manager pays dividends by following the optimal strategy of de Finetti's problem, in
Dickson and Waters [37], the authors proposed several modi�cations to the original

1Parts of this Introduction and of Section 2 are already published in a joint work with Giorgio
Ferrari, see [47].
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formulation of the optimal dividend problem. In particular, Dickson and Waters
[37] suggest a model in which the shareholders are obliged to inject capital in order
to avoid bankruptcy. This is the so-called optimal dividend problem with capital
injections.

The literature on the optimal dividend problem with capital injections is not as
rich as that on the classical de Finetti's problem. Kulenko and Schmidli [65] study
an optimal dividend problem with capital injections in which the surplus process
is re�ected at the origin and evolves according to a classical Cramér-Lundberg risk
model on (0,∞). Schmidli [86] solves an optimal dividend problem with capital
injections and taxes in a di�usive setting. In Lokka and Zervos [69], the shareholders
can choose the capital injections' policy and, in absence of any interventions, the
surplus process follows a Brownian motion with drift. Other works in which the
surplus process evolves as a general one-dimensional di�usion are the ones by Ferrari
[46], Zhu and Yang [96], and Shreve et al. [89]. Optimal dividends and capital
injections in a jump-di�usion setting are determined by Avanzi et al. [6]. In all
these papers, the optimal dividend problem with capital injections is formulated as
a SSC problem for a re�ected process (i.e. a so-called re�ected follower problem)
over an in�nite time horizon. Given the stationarity of the setting, in these works
it is shown that (apart from a possible initial lump sum payment) it is optimal to
pay just enough dividends in order to keep the surplus process in the interval [0, b],
for some constant b > 0, endogenously determined.

In Section 2, we propose and solve, for the �rst time in the literature, an optimal
dividend problem with capital injections over a �nite time horizon T ∈ (0,∞). This
horizon might be seen as a pre-speci�ed future date at which the fund is liquidated.

As it is common in the literature, in absence of any interventions, the surplus
process evolves as a Brownian motion with drift µ and volatility σ (see [1], [32] and
[69], among many others). This dynamics for the fund's value can be obtained as a
suitable (weak) limit of a classical dynamics à la Cramér-Lundberg (see Appendix
D.3 in Schmidli [87] for details). We assume that, after time-dependent transaction
costs/taxes have been paid, shareholders receive a time-dependent instantaneous net
proportion of leakages f from the surplus. Moreover, shareholders are forced to inject
capital whenever the surplus attempts to become negative. By injecting capital,
they incur a time-dependent marginal administration cost m. Finally, a surplus-
dependent liquidation reward g is obtained at liquidation time T . Notice that, under
suitable requirements on f , m and g (see Remark 2.4), injecting capital at the origin
turns out to be optimal within the class of dividends/capital injections that keeps
the surplus non-negative at any time with probability one (see also Kulenko and
Schmidli [65], Scheer and Schmidli [85] and Schmidli [86]).

Within this setting, the fund's manager takes the point of view of the sharehold-
ers and thus aims at solving

V (t, x) := sup
D

E
[ ∫ T−t

0

f(t+ s) dDs −
∫ T−t

0

m(t+ s) dIDs + g(T,XD
T−t(x))

]
, (1.1)

for any initial time t ∈ [0, T ] and any initial value of the fund x ∈ R+. In (1.1) the
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fund's value evolves as

XD
s (x) = x+ µs+ σWs −Ds + IDs , s ≥ 0,

and the optimization is performed over a suitable class of non-decreasing processes
D. The quantity Ds represents the cumulative amount of dividends paid to share-
holders up to time s, whereas IDs is the cumulative amount of capital injected by
the shareholders up to time s. We take ID as the minimal non-decreasing process
which ensures that XD stays non-negative, and it is �at o� {t ≥ 0 : XD

t = 0}.
If we attempt to tackle problem (1.1) via a dynamic programming approach, the
HJB equation for V takes the form of a parabolic PDE with gradient constraint (i.e.
a variational inequality), and with a Neumann boundary condition at x = 0 (the
latter is due to the fact that the state process X is re�ected at the origin through
the capital injections process). Proving that a solution to this PDE problem has
enough regularity to characterize an optimal control is far from trivial.
Starting from the observation that the optimal dividend problem with capital in-
jections (1.1) is actually a re�ected follower problem (see, e.g., Baldursson [7], El
Karoui and Karatzas [39] and Karatzas and Shreve [59] as early contributions) with
costly re�ection at the origin, and inspired by the results of El Karoui and Karatzas
[40], we solve (1.1) without relying on PDE methods. Instead, we relate (1.1) to a
(still complex but) more tractable optimization problem; i.e., to an optimal stopping
problem with absorption at the origin and with value function u (cf. (2.6)).
If the optimal stopping time for this problem is given in terms of a continuous and
strictly positive time-dependent boundary b( · ) (cf. the structural Assumption 2.5),
it follows that Vx = u, and the optimal dividends' payments strategy D? is triggered
by b (see Theorem 2.6). In fact, if the optimization starts at time t ∈ [0, T ], the
couple (D?, ID

?
) keeps the optimally controlled fund's value XD?

s non-negative and
below the time-dependent critical level b(s+ t) at any instant in time s ∈ [0, T − t].
This result is obtained via an almost exclusively probabilistic study in which we
suitably integrate in the space variable two di�erent representations of the value
function u of the auxiliary optimal stopping problem. It is worth noticing that al-
though we borrow arguments from the study in El Karoui and Karatzas [40] on the
connection between re�ected follower problems and questions of optimal stopping
(see also Karatzas and Shreve [59]), di�erently to El Karoui and Karatzas [40], in
our performance criterion (1.1) we have a cost of re�ection which requires a careful
and not immediate adaptation of the ideas and results of El Karoui and Karatzas
[40].
We then show that the structural Assumption 2.5, which is needed to establish the
relation between (1.1) and the optimal stopping problem, does indeed hold in a
canonical formulation of the optimal dividend problem with capital injections. In-
deed, the marginal bene�ts and costs are constants discounted at a constant rate,
and the liquidation value at time T is proportional to the terminal value of the fund.
In particular, we show that the optimal dividend strategy is given in terms of an
optimal boundary b that is decreasing, continuous, bounded, and null at terminal
time.
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Optimal Production Under Regime Switching2 [Section 3]

The literature dealing with optimal production problems in continuous-time is very
comprehensive. For example, Bensoussan et al. [14], Sethi and Thompson [88] and
Khmelnitsky et al. [62] consider the demand of a product to be constant. Fleming
et al. [48] consider the demand as a continuous-time Markov chain with a �nite
state space and Cadenillas et al. [19] investigate a cumulative demand that evolves
as a drifted Brownian motion or as a geometric Brownian motion. Moreover, in
both cases the drift and the variance parameters are modulated by a continuous-
time Markov chain representing the regime of the economy. Among these, only [14]
imposes the realistic assumption that the production rate is non-negative.

This motivated us to study a production problem with a non-negative production
rate and in which the demand process follows a stochastic dynamic. We assume
that a manager of a �rm is faced with the problem of controlling the inventory of
a certain product under regime switching. An exogenous given �nite-state Markov
chain ε = {εt, t ≥ 0} describes the current regime of the economy. The demand3 of
the product evolves as

dDt = µεt dt+ σεt dWt.

The objective of the manager is to maintain the inventory level as close as possible to
a �xed target value depending on the state of the economy. In order to increase the
inventory of the good, and thus to control it, the manager chooses a non-negative
production strategy P to increase the inventory of the good, whose dynamic is given
by

dXt = dPt − dDt.

In this setting, the manager aims at solving

V (x, i) = inf
P

E
[∫ ∞

0

e−δsαεs (Xs − Iεs)
2 ds+

∫ ∞
0

e−δskεs dPs

]
(1.2)

for an initial inventory level x and an initial regime i. We develop two versions of
the model. In the �rst one, there is no upper bound for the production rate and the
model is expressed as a singular stochastic control problem with regime switching.
In the second one, an upper bound for the rate of production is introduced, and
we consider a classical bounded-velocity stochastic control problem with regime
switching in the spirit of V.E. Bene² [11]. To obtain explicit solutions, we concentrate
on the case with two regimes. One regime may stand for a recessionary period, in
which the demand is very low, and a second one that represents an expansionary
period with high demand.

Applying dynamic programming to Problem (1.2), we show that the HJB equa-
tion solved by V takes the form of a system of second-order ODEs with gradient
constraints in the case of singular controls, and we perform a guess-and-verify ap-
proach. Moreover, we derive an analytical representation for V and show that in

2This project started during a research visit at the University of Edmonton under the super-
vision of Abel Cadenillas.

3A possible negative demand can be seen as an oversupply of the good.
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both versions that the optimal control is triggered by constant boundaries bi for
each state. In fact, in the case of singular controls the optimal production is such
that the inventory level X stays always above the boundaries bi and in the case of
bounded-velocity controls the rate of production is maximal as long as the inventory
is below the level bi.

Furthermore, we are able to derive a system of non-linear equations for the
boundaries and the coe�cients in the analytical representation. Unfortunately, this
system can only be solved numerically. Based on the numerical solutions, we provide
a comparative statics analysis of the free-boundaries with respect to some model
parameters. In particular, we are able to show that unexpectedly the boundaries
in the two versions show di�erent behavior with respect to demand uncertainty σi,
which depends on the state. Indeed, the boundaries are decreasing with respect to
σi in the SSC but not in the bounded-velocity control case. Moreover, we show that
the boundaries in the bounded-velocity case are larger than in the singular case.
Finally, if the upper bound for the bounded-velocity control diverges to in�nity, we
show that the value function and the free-boundaries of the �rst case converges to
the value function and the boundaries of the singular control case.

A singular stochastic control problem with interconnected dy-
namics4 [Section4]

In this Section, we study a singular stochastic control problem with interconnected
dynamics. A purely controlled process Y , given by

Yt = y + ξ+
t − ξ−t , y ∈ R,

a�ects the drift component of a di�usive process X. The process X follows the
dynamics

dXt = αYt − θXt dt+ η dWt, X0 = x,

hence it evolves as an Ornstein-Uhlenbeck process for θ > 0 and as a drifted Brow-
nian Motion for θ = 0.

The objective of a decision maker is to minimize a total expected cost functional,
which consists of a time-integral over running costs plus proportional costs arising
from adjusting the drift component Y . The problem is modeled as a Markovian two-
dimensional degenerate singular stochastic control problem with controls of bounded
variation. Our model can be seen as a generalization of the bounded-velocity con-
trol of a scalar Brownian motion, introduced by V.E. Bene² in 1974 [11], which has
stimulated a subsequent large literature allowing for di�erent speci�cations of the
performance criterion and incorporating also other features like discretionary stop-
ping and partial observation (see [4], [12], [54], [55], [56], [73], among many others).
In whose formulation, the drift is chosen from a bounded set, e.g. [−1, 1], and the
resulting optimal control results to be of the so-called bang-bang type (see [11], [54],

4Parts of this introduction and of Section 4 are already published in two joint works with
Giorgio Ferrari and Salvatore Federico, see [44] and [45].
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[55], [56], among others, or Section 3 of this thesis). In opposite to them, our control
and hence the drift is unlimited, and the resulting optimal control is of singular type.

The fact that the two state processes are coupled makes this problem quite
involved and a guess-and-verify approach seems not to be applicable. The closest
papers from the literature to our problem are Federico and Pham [43] and Chiarolla
and Haussmann[26]. In fact, from a mathematical point of view, our model can
be seen in between that of [26] (see also Chiarolla and Haussmann [25] for a �nite
time horizon version) and that of [43] (see also Merhi and Zervos [74]). On the one
hand, we propose a degenerate version of the fully non-degenerate two-dimensional
bounded-variation stochastic control of [26]; on the other hand, the problem of [43]
can be obtained from our when the dynamics of the two components of the state
process decouple. It is exactly the degeneracy of our state process that makes the
determination of the structure of the value function possible in our problem, and it
is the coupling between X and Y that makes our analysis much more involved than
that in [43].

To the best of our knowledge, the only other paper dealing with a degenerate
two-dimensional singular stochastic control problem where the dynamics of the two
components of the state process are coupled are Koch and Vargiolu [64] and Pierre,
Villeneuve and Warin [81]. In [81] the authors consider a dividend and investment
problem for a cash constrained �rm, and both a viscosity solution approach and a
veri�cation technique are employed to get qualitative properties of the value func-
tion. It is important to notice that, in contrast to our model, the problem in [81] is
not convex, thus making it hard to prove any regularity of the value function further
than its continuity. In [64] the authors study a two-dimensional singular stochas-
tic control problem with interconnected dynamics and a �nite fuel constraint, in
which the control is assumed to be monotone. This problem, motivated by irre-
versible installation of solar panels, is solved explicitly and it turns out that the
free-boundary can be characterized by a �rst-order ODE completed by a boundary
condition, which is implied by the �nite fuel constraint. Their problem is similar to
our model in the case θ > 0, as we also consider a mean-reverting state process (in
[64] the price solar electricity) with drift a�ected by the purely controlled process (in
[64] the amount of installed solar panels). However, in contrast to them, our control
is not assumed to be monotone, and no �nite fuel condition is imposed, which leads
to several additional di�culties.

Therefore, in order to tackle our problem, we choose a direct approach instead
of a guess-and-verify approach. First of all, we show for both formulations that the
value function is di�erentiable with (locally) Lipschitz derivatives. Moreover, by
exploiting a suitable approximation procedure, we can use a result of [26] to show
that the derivative Vy is the value function of a related Dynkin game of optimal
stopping. This fact, combined with the convexity of the value function V , provides
�rst information about the state space of the problem. In particular, we show the
existence of two monotone curves (free-boundaries) dividing the state space into
three connected regions (continuation and action regions). Next, we show that V
is a viscosity solution to the corresponding HJB equation (an ODE with gradient
constraints). Moreover, from this result we show that V is also a classical solution in
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the continuation region (the region between the two monotone curves). Furthermore,
we improve the regularity of V by proving a second-order smooth �t property for
the mixed derivative. Together with the structure of V , this allows us to derive a
necessary system of non-linear functional equations for the free-boundaries, which
coincides, in the case of decoupled dynamics, with that of Proposition 5.5 in [43].
In [43], due to the decoupled dynamics, this system can be derived by an analytical
approach, while, in our setting, we employ the local-time-space calculus of Peskir [76]
and properties of one-dimensional regular di�usions (see Borodin and Salminen [17]).
Since our system is highly complex, a statement about uniqueness of the solution
is far from trivial. In addition, we show that Vyxx 6= 0 at the free-boundaries, so
that, by an application of the implicit function theorem, we can show that the free-
boundaries are locally Lipschitz. In the case where X evolves as a drifted Brownian
Motion, this property allows us to di�erentiate the system of necessary equations
for the free-boundaries and to derive a system of (explicitly computable) �rst-order
ODEs. Moreover, this implies that the free-boundaries are actually continuously
di�erentiable with locally Lipschitz derivatives (see Theorem 4.30). To the best
of our knowledge, in the context of a fully degenerate two-dimensional singular
stochastic control problem with interconnected dynamics, this result appears here
for the �rst time. Unfortunately, the question of uniqueness still remains open, since
no initial condition for the system of ODEs is derived, di�erently from [64], where it
is instead implied by the �nite fuel condition. Finally, we also discuss the structure
of the optimal control rule.

9



2 An Optimal Dividend Problem with Capital In-

jections over a Finite Horizon 5

2.1 Problem Formulation

In this section we introduce the optimal dividend problem that is the object of
our study. Let (Ω,F ,F := (Ft)t≥0,P) be a complete �ltered probability space rich
enough to accommodate an F-Brownian motion W := (Wt)t≥0. We assume that
the �ltration F satis�es the usual conditions. We assume that the fund's value is
described by the one-dimensional process

XD
s (x) = x+ µs+ σWs −Ds + IDs , s ≥ 0,

where x ≥ 0 is the initial value of the fund, µ ∈ R, σ > 0, and W is an F-standard
Brownian motion. For any s ≥ 0, Ds represents the cumulative amount of dividends
paid to shareholders up to time s, whereas IDs is the cumulative amount of capital
injected by the shareholders up to time s in order to avoid bankruptcy of the fund.

De�ne the (nonempty) set

A =

{
ν : Ω× R+ → R+ : F− adapted s.t. s 7→ νs(ω) is a.s.

non-decreasing and left-continuous, and ν0 = 0 a.s.

}
.

For �xed x ≥ 0, we assume that the fund's manager can pick a dividends' distribution
strategy among the processes D ∈ A and such that a.s.

Ds+ −Ds ≤ XD
s (x) for all s ≥ 0; (2.1)

that is, bankruptcy can not be obtained with a single lump sum dividend's pay-
ment. For any such dividend policy D, the capital injections process ID is given
as the minimal cumulative amount of capital needed to ensure that XD(x) stays
non-negative, and which is �at o� {t ≥ 0 : XD

t (x) = 0}. In particular, for x ≥ 0, we
take the couple (XD(x), ID) as the unique solution to the (discontinuous) Skorokhod
re�ection problem (see, e.g., Chaleyat-Maurel et al. [23] and Ma [72]):

Find(XD(x), ID) s.t.



ID ∈ A, XD
s (x) = x+ µs+ σWs −Ds + IDs , s ≥ 0,

XD
s (x) ≥ 0 a.s. for any s ≥ 0,∫ ∞

0
XD
s (x)d(IDs )c = 0 a.s.,

∆IDs := IDs+ − IDs = 2XD
s+(x) ∀s ∈ {s ≥ 0 : ∆IDs > 0}.

(2.2)

Here, (ID)c denotes the continuous part of ID. Notice that, given (2.1), the process

IDt := 0 ∨ sup
0≤s≤t

(Ds − (x+ µs+ σWs)) , t ≥ 0, ID0 = 0,

5This Section is already published in a joint work with Giorgio Ferrari, see [47].
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2.1 Problem Formulation

uniquely solves (2.2) and t 7→ IDt is continuous (see, e.g., Propositions 2 and 3 in
[23], or Theorem 3.1 and Corollary 3.2 in [59]). As a consequence, the last condition
in (2.2) is not binding, since ∆IDt = 0 a.s. for all t ≥ 0.

Given a time horizon T ∈ (0,∞) representing, e.g., a �nite liquidation time,
the fund's manager takes the point of view of the shareholders, and is faced with
the problem of choosing a dividends' distribution strategy D maximizing the per-
formance criterion

J(t, x;D) = E
[∫ T−t

0

f(t+ s) dDs −
∫ T−t

0

m(t+ s) dIDs + g(T,XD
T−t(x))

]
, (2.3)

for (t, x) ∈ [0, T ]×R+ given and �xed. That is, the fund's manager aims at solving

V (t, x) := sup
D∈D(t,x)

J(t, x;D), (t, x) ∈ [0, T ]× R+. (2.4)

Here, for any (t, x) ∈ [0, T ] × R+, D(t, x) denotes the class of dividend payments
belonging to A and satisfying (2.1), when the surplus process XD starts from level
x and the optimization runs up to time T − t. In the following, any D ∈ D(t, x) will
be called admissible for (t, x) ∈ [0, T ]× R+.

In the reward functional (2.3) the term E[
∫ T−t

0
f(t + s) dDs] is the total ex-

pected cash-�ow from dividends. The function f might be seen as a time-dependent
instantaneous net proportion of leakages from the surplus received by the share-
holders after time-dependent transaction costs/taxes have been paid. The term
E[
∫ T−t

0
m(t + s) dIDs ] gives the total expected costs of capital injections, and m

is a time-dependent marginal administration cost for capital injections. Finally,
E
[
g(T,XD

T−t(x))
]
is a liquidation value.

The functions f , m, and g satisfy the following conditions.

Assumption 2.1. f : [0, T ] → R+,m : [0, T ] → R+, g : [0, T ] × R+ → R+ are
continuous, f and m are continuously di�erentiable with respect to t, and g is con-
tinuously di�erentiable with respect to x. Moreover,

(i) gx(T, x) ≥ f(T ) for any x ∈ (0,∞),

(ii) m(t) > f(t) for any t ∈ [0, T ].

Remark 2.2. Requirement (i) ensures that the marginal liquidation value is at
least as high as the marginal pro�ts from dividends. This will ensure that the value
function of the optimal stopping problem considered below is not discontinuous at
terminal time. From an economic point of view, it means that the additional pro�t
of an unit is at least as high as paying this unit as dividends, which is a plausible
assumption.

Condition (ii) means that the marginal costs for capital injections are bigger than
the marginal pro�ts from dividends. Notice that in the case in whichm < f the value
function might be in�nite, as it shown in the next example. Take f(s) = η, m(s) = κ
for all s ∈ [0, T ], and η > κ. For arbitrary β > 0 consider the admissible strategy
D̂s := βs, and notice that ÎDs = sup0≤u≤s(−x−µu−σBu+βu)∨0. Then ÎDs ≤ βs+Ys,
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2.1 Problem Formulation

with Ys := sup0≤u≤s(−x − µu − σBu) ∨ 0, and using that g ≥ 0 we obtain for the

sub-optimal strategy D̂

V (t, x) ≥ βη(T − t)− βκ(T − t)− κE[YT−t]

= β(T − t)(η − κ)− κE[YT−t].

However, the latter expression can be made arbitrarily large by increasing β if η > κ.
On the other hand, by taking m(t) = f(t) = e−rt, is has been recently shown in

Ferrari [46] for a problem with T = +∞ (see Theorem 3.8 therein) that an optimal
control may not exist, but only an ε-optimal control does exist.

In order to avoid pathological situations as the ones described above, here we
assume Assumption 2.1-(ii).

Remark 2.3. Notice that our formulation is general enough to accommodate also a
problem in which pro�ts and costs are discounted at a deterministic time-dependent
discount rate (rs)s≥0. Indeed, if we consider the optimal dividend problem with
capital injections

V̂ (t, x) := sup
D∈D(t,x)

E
[ ∫ T−t

0

e−
∫ t+s
t rαdα f̂(t+ s) dDs −

∫ T−t

0

e−
∫ t+s
t rαdα m̂(t+ s) dIDs

+ e−
∫ T
t rαdαĝ(T,XD

T−t(x))

]
,

then, for any (t, x) ∈ [0, T ]× R+ we can set

f(t) := e−
∫ t
0 rαdα f̂(t), m(t) := e−

∫ t
0 rαdα m̂(t), g(t, x) := e−

∫ t
0 rαdαĝ(t, x),

and V (t, x) := e−
∫ t
0 rαdα V̂ (t, x) is of the form (2.4).

In Section 2.4 we will consider a problem with constant marginal pro�ts and
costs discounted at a constant rate r > 0 (see (2.77), (2.78) and (2.79) in Section
2.4).

Remark 2.4. Notice that in our model shareholders are forced to inject capital
whenever the surplus process attempts to become negative; that is, the capital
injection process is not a control variable of their, and shareholders do not choose
when and how to invest in the company.

Injecting capital at the origin, under the condition that bankruptcy is not al-
lowed, can be shown to be optimal in the canonical formulation of the optimal
dividend problem of Section 2.4 in which marginal costs and pro�ts are constants
discounted at a constant interest rate. Indeed, in such a case, due to discounting,
shareholders will inject capital as late as possible in order to minimize the total
costs of capital injections. See also Kulenko and Schmidli [65] and Schmidli [86] for
a similar result in stationary problems. More in general, the policy �inject capital
at the origin� is optimal when m is decreasing and mint∈[0,T ] m(t) > gx(T, x) for all
x ∈ R+. Under these conditions, shareholders postpone injection of capital, and
inject only as much capital as necessary since any additional capital injection can
not be compensated by the reward at terminal time.
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2.2 The Main Result

The dynamic programming equation for V takes the form of a parabolic partial
di�erential equation (PDE) with gradient constraint, and with a Neumann boundary
condition at x = 0 (the latter is due to the fact that the state process X is re�ected
at the origin through the capital injections process). Indeed, it reads

max
{
∂tV +

1

2
σ2∂xxV + µ∂xV, f − ∂xV

}
= 0, on [0, T )× (0,∞),

with boundary conditions ∂xV (0, t) = m(t) for all t ∈ [0, T ], and V (T, x) = g(T, x)
for any x ∈ (0,∞). Proving that such a PDE problem admits a solution that has
enough regularity to characterize an optimal control is far from being trivial. Hence,
a direct guess and verify approach will not work at this point.

In order to solve the optimal dividend problem (2.4) we then follow a di�erent
approach, and we relate (2.4) to an optimal stopping problem with absorbing con-
dition at x = 0. This is obtained by borrowing arguments from the study of El
Karoui and Karatzas in [40] on the connection between re�ected follower problems
and questions of optimal stopping (see also Baldursson [7] and Karatzas and Shreve
[59]). However, di�erently to [40], in our performance criterion (2.3) we also have a
cost of re�ection which requires a careful and not immediate adaptation of the ideas
and results of [40].

In particular, introducing a problem of optimal stopping with absorption at the
origin, we show that a proper integration of the value function of the latter leads to
the value function of the optimal control problem (2.4). This result is stated in the
next section, and then proved in Section 2.3.

2.2 The Main Result

Let S(x) := inf{s ≥ 0 : x+ µs+ σWs = 0}, x ≥ 0, and for any s ≥ 0, introduce the
absorbed drifted Brownian motion

As(x) :=

{
x+ µs+ σWs, s < S(x),

∆, s ≥ S(x),
(2.5)

where ∆ is a cemetery state isolated from R+ (i.e. ∆ < 0).
Introducing the convention gx(T,∆) := 0, for (t, x) ∈ [0, T ] × R+, consider the

optimal stopping problem

u(t, x) := sup
τ∈[0,T−t]

E
[
f(t+ τ)1{τ<(T−t)∧S(x)} +m(t+ S(x))1{τ≥S(x)}

+ gx
(
T, x+ µ(T − t) + σWT−t

)
1{τ=T−t<S(x)}

]
= sup

τ∈T (T−t)
E
[
f(t+ τ)1{Aτ (x)>0}1{τ<T−t} +m(t+ S(x))1{Aτ (x)≤0}

+ gx
(
T,AT−t(x)

)
1{τ=T−t}

]
,

(2.6)

where T (T − t) denotes the set of all F-stopping times with values in [0, T − t] a.s.
Problem (2.6) is an optimal stopping problem for the absorbed process A.
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2.2 The Main Result

To establish the relation between (2.4) and (2.6) we need the following structural
assumption, which will be standing in this section and in Section 2.3. Its validity
has to be veri�ed on a case by case basis. In particular, it holds in the optimal
dividend problem considered in Section 2.4.

Assumption 2.5. Assume that the continuation region of the stopping problem
(2.6) is given by

C := {(t, x) ∈ [0, T )× (0,∞) : u(t, x) > f(t)}
= {(t, x) ∈ [0, T )× (0,∞) : x < b(t)} , (2.7)

and that its stopping region by

S := {(t, x) ∈ [0, T )× (0,∞) : u(t, x) ≤ f(t)} ∪
(
{T} × (0,∞)

)
= {(t, x) ∈ [0, T )× (0,∞) : x ≥ b(t)} ∪

(
{T} × (0,∞)

)
,

for a continuous function b : [0, T ) → (0,∞). We refer to the function b as to the
optimal stopping boundary of problem (2.6). Further, assume that the stopping time

τ ?(t, x) := inf{s ∈ [0, T − t) : As(x) ≥ b(t+ s)} ∧ (T − t) (2.8)

(with the usual convention inf ∅ = +∞) is optimal; that is,

u(t, x) = E
[
f(t+ τ ?(t, x))1{τ?(t,x)<(T−t)∧S(x)} +m(t+ S(x))1{τ?(t,x)≥S(x)}

+ gx(T, x+ µ(T − t) + σWT−t)1{τ?(t,x)=T−t<S(x)}

]
. (2.9)

For any (t, x) ∈ [0, T ]×R+, and with b the optimal stopping boundary of problem
(2.6) (cf. Assumption 2.5), we de�ne the processes I?(t, x) and D?(t, x) through the
system

D?
s(t, x) := max

{
0, max

0≤θ≤s

(
x+ µθ + σWθ + I?θ (t, x)− b(t+ θ)

)}
,

I?s (t, x) := max

{
0, max

0≤θ≤s

(
− x− µθ − σWθ +D?

θ(t, x)
)}

,

(2.10)

for any s ∈ [0, T−t], and with initial valuesD?
0(t, x) = I?0 (t, x) = 0 a.s. The existence

and uniqueness of the solution to system (2.10) can be proved by an application of
Tarski's �xed point theorem following arguments as those employed by Karatzas in
the proof of Proposition 7 in Section 8 of [57]. It can be easily shown from (2.10) and
the positivity of b that D? satis�es (2.1), and, consequently, that I? has continuous
paths. The latter property of I? implies that t 7→ D?

t is continuous apart for a
possible initial jump at time zero of amplitude (x − b(t))+. We can now state the
following result.

Theorem 2.6. Let Assumption 2.5 hold. Then, the process D? de�ned through
(2.10) provides the optimal dividends' distribution policy, and the value function V
of (2.4) is such that

V (t, x) = V (t, b(t))−
∫ b(t)

x

u(t, y) dy, (t, x) ∈ [0, T ]× R+. (2.11)
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2.3 On the Proof of Theorem 2.6

Assume further that limt↑T b(t) =: b(T ) <∞. Then

V (t, b(t)) = −µ
∫ T−t

0

f ′(t+ s)s ds+

∫ T−t

0

f ′(t+ s)b(t+ s) ds

+ g(T, b(T )) + f(T )µ(T − t) + f(t)b(t)− f(T )b(T ). (2.12)

Consistently with the result of El Karoui and Karatzas in [40] (see also Karatzas
and Shreve [59]), we �nd that also in our problem with costly re�ection at the origin
the value of an optimal stopping problem (namely, problem (2.6)) gives the marginal
value of the value function (2.4). The optimal stopping boundary b thus triggers
the timing at which it is optimal to pay an additional unit of dividends. Moreover,
once the optimal stopping value function u and its corresponding free-boundary
b are known, (2.11) and (2.12) provide a complete characterization of the optimal
dividend problem's value function V . Notice that the condition b(T ) <∞ is satis�ed
in the case study of Section 2.4, where we actually prove that b(T ) = 0. The proof
of Theorem 2.6 is quite lengthy and technical, and it is relegated to Section 2.3.

2.3 On the Proof of Theorem 2.6

This section is entirely devoted to the proof of Theorem 2.6. This is done through
a series of intermediate results which are proved by employing mostly probabilistic
arguments. Assumption 2.5 will be standing throughout this section.

2.3.1 On a Representation of the Optimal Stopping Value Function

Here we derive an alternative representation for the value function of the optimal
stopping problem (2.6), by borrowing ideas from El Karoui and Karatzas [40], Sec-
tion 3. In the following we set gx(T,∆) = 0.

The idea that we adopt here is to rewrite the optimal stopping problem (2.6) in
terms of the function b of Assumption 2.5. To accomplish that, for given (t, x) ∈
[0, T ]×R+, de�ne the payo� associated to the admissible stopping rule �never stop"
as

G(t, x) := E
[
m(t+ S(x))1{S(x)≤T−t} + gx(T,AT−t(x))

]
, (2.13)

where we have used that gx(T,AT−t(x))1{T−t<S(x)} = gx(T,AT−t(x)) because of (2.5)
and the fact that gx(T,∆) = 0.

Also, introduce the function g̃ : [0, T ]×R+×R+ → R (depending parametrically
on t) as

g̃(α, q, y; t) :=

{
gx(T, y), α < q,

m(t+ q), α ≥ q,
(2.14)

and notice that v := u−G admits the representation

v(t, x) = sup
τ∈T (T−t)

E
[
(f(t+ τ)− g̃(T − t, S(x), AT−t(x); t))1{τ<S(x)∧T−t}}

]
. (2.15)

Clearly, the stopping time τ ? de�ned by (2.8) is also optimal for v since G is
independent of τ ∈ T (T − t). Therefore, we can expect that v can be expressed
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2.3 On the Proof of Theorem 2.6

in terms of the optimal stopping boundary b. Following [40], we obtain such a
representation for v by means of the theory of dual previsible projections (�balayée
prévisible"), as it is shown in the following. From now on, (t, x) ∈ [0, T ] × R+ will
be given and �xed.

We de�ne the process (Cα)α∈[0,T ] such that for any α ∈ [0, T − t]

Cα(t, x) := −
∫ α∧S(x)∧T−t

0

f ′(t+ θ)dθ (2.16)

+
[
f(T ∧ (t+ S(x)))− g̃(T − t, S(x), AT−t(x); t)

]
1{0<T−t∧S(x)≤α},

as well as the stopping time

σα(t, x) := inf {θ ∈ [α, T − t) : Aθ(x) ≥ b(t+ θ)} ∧ (T − t), (2.17)

with the convention inf ∅ = +∞. The process C·(t, x) is absolutely continuous on
[0, T − t) ∧ S(x) with a possible jump at (T − t) ∧ S(x), and α 7→ σα(t, x) is a.s.
non-decreasing and right-continuous.

Since the stopping time σ0(t, x) is optimal for u(t, x) by Assumption 2.5, and
therefore also for v(t, x) = (u−G)(t, x), by using (2.16) we can write from (2.15)

v(t, x) = E
[
CT−t(t, x)− Cσ0(t,x)(t, x)

]
= E

[
C̃T−t(t, x)

]
, (2.18)

where we have introduced

C̃α(t, x) := Cσα(t,x)(t, x)− Cσ0(t,x)(t, x), α ∈ [0, T − t]. (2.19)

The process C̃·(t, x) is of bounded variation, since it is the composition of the
process of bounded variation C·(t, x) and of the non-decreasing process σ·(t, x), but it
is not F-adapted. However, being v an excessive function, it is also the potential of an
adapted, non-decreasing process Θ·(t, x) (cf. Section IV.4 in the book of Blumenthal
and Getoor [16]), which is the dual predictable (or previsible) projection of C̃·(t, x)
(see, e.g., Theorem 21.1 in Chapter VI of the book by Rogers and Williams [83] for
further details on the dual predictable projection). In the following we provide the
explicit representation of Θ·(t, x). This is obtained by employing the methodology
of El Karoui and Karatzas in [41], Section 7.

Theorem 2.7. The dual predictable projection Θ(t, x) of C̃(t, x) exists, is non-
decreasing and it is given by

Θα(t, x) =

∫ α

0

−f ′(t+ θ)1{Aθ(x)>b(t+θ)} dθ

+
[
f(T ∧ (t+ S(x)))− g̃(T − t, S(x), AT−t(x); t)

]
1{AT−t(x)>b(T )}1{0<T−t∧S(x)≤α}

=

∫ α∧S(x)

0

−f ′(t+ θ)1{x+µθ+σWθ>b(t+θ)} dθ (2.20)

+
[
f(T ∧ (t+ S(x)))− g̃(T − t, S(x), AT−t(x); t)

]
1{AT−t(x)>b(T )}1{0<T−t∧S(x)≤α}

for any α ∈ [0, T − t].
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Theorem 2.7 can be proved by carefully adapting to our case the techniques
presented in Section 7 of [41] (see also, Section 3 of [40]). In particular, di�erently
to Section 7 of [41], here we deal with an absorbed drifted Brownian motion as a
state variable of the optimal stopping problem (2.6) (instead of a Brownian motion).
However, all the arguments and proofs of Section 7 of [41] carry over also to our
setting with random time horizon (T − t) ∧ S(x) (up to which the process A is in
fact a drifted Brownian motion) upon using representation (2.15) of v (in which the
function g̃ takes care of the random time horizon (T −t)∧S(x)) together with (2.17)
and (2.19).

A consequence of Theorem 2.7 is the next result.

Corollary 2.8. It holds that

(i)
[
f(T ∧ (t+ S(x)))− g̃(T − t, S(x), AT−t(x); t)

]
1{AT−t(x)>b(T )} = 0 a.s.

(ii) {t ∈ [0, T ) : f ′(t) ≤ 0} ⊇ S;

Proof. (i) On the set {AT−t(x) > b(T )} we obtain by the de�nition of g̃ (see (2.14))
that

f(T ∧ (t+ S(x)))− g̃(T − t, S(x), AT−t(x); t) = f(T )− gx(T,AT−t(x)). (2.21)

Since Θ·(t, x) is non-decreasing, the last term in (2.21) has to be positive, thus
implying f(T )−gx(T,AT−t(x)) ≥ 0 on {AT−t(x) > b(T )}. However, by Assumption
2.1-(i) one has f(T ) ≤ gx(T, x) for all x ∈ (0,∞). Hence the claim follows.

(ii) Since α 7→ Θα(t, x) is a.s. non-decreasing, it follows from (i) above and (2.20)
that f ′(t+θ)1{Aθ(x)>b(t+θ)} ≤ 0 a.s. for a.e. θ ∈ [0, T−t]. But f ′(·), A·(x) and b(t+ ·)
are continuous up to (T − t) ∧ S(x), and therefore the latter actually holds a.s. for
all θ ∈ [0, T − t]. Hence, {t ∈ [0, T ) : f ′(t) ≤ 0} ⊇ S.

Remark 2.9. As a byproduct of Corollary 2.8-(i) (see in particular (2.21)), As-
sumption 2.1-(i), and of the fact that AT−t(x) has a transition probability that is
absolutely continuous with respect to the Lebesgue measure on R+ (cf. (A.4)), one
has

(
f(T )− gx(T, y)

)
1{y>b(T )} = 0 for y ≥ 0.

We can now obtain an alternative representation of the value function u of prob-
lem (2.6).

Theorem 2.10. For any (t, x) ∈ [0, T ]× R+ one has

u(t, x) = E
[ ∫ (T−t)∧S(x)

0

−f ′(t+ θ)1{x+µθ+σWθ≥b(t+θ)} dθ

+m(t+ S(x))1{S(x)≤T−t} + gx(T,AT−t(x))

]
. (2.22)

Proof. Since by Theorem 2.7 Θ(t, x) is the dual predictable projection of C̃(t, x),
from (2.18) we can write for any (t, x) ∈ [0, T ]× R+

v(t, x) = E
[
C̃T−t(t, x)

]
= E [ΘT−t(t, x)] . (2.23)
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Due to (2.20) and Corollary 2.8-(i), (2.23) gives

v(t, x) = E

[∫ (T−t)∧S(x)

0

−f ′(t+ θ)1{x+µθ+σWθ≥b(t+θ)} dθ

]
. (2.24)

Here we have also used that the joint law of S(x) and of the drifted Brownian motion
is absolutely continuous with respect to the Lebesgue measure in R2 (cf. (A.2)) to
replace 1{x+µθ+σWθ>b(t+θ)} with 1{x+µθ+σWθ≥b(t+θ)} inside the expectation in (2.20).

However, since by de�nition v = u − G, we obtain from (2.24) and (2.13) the
alternative representation

u(t, x) = v(t, x) +G(t, x) = E
[ ∫ (T−t)∧S(x)

0

−f ′(t+ θ)1{x+µθ+σWθ≥b(t+θ)} dθ

+m(t+ S(x))1{S(x)≤T−t} + gx(T,AT−t(x))

]
.

Remark 2.11. Notice that representation (2.22) coincides with that one might ob-
tain by an application of Itô's formula if u were C1,2([0, T )×(0,∞))∩C([0, T ]×R+),
and satis�es (as it is customary in optimal stopping problems) the free-boundary
problem 

∂tu+ 1
2
σ2∂2

xxu+ µ∂xu = 0, 0 < x < b(t), t ∈ [0, T )

u = f, x ≥ b(t), t ∈ [0, T )

u(T, x) = gx(T, x), x > 0

u(t, 0) = m(t), t ∈ [0, T ].

(2.25)

Indeed, in such a case an application of Dynkin's formula gives

E
[
u(t+ (T − t) ∧ S(x), Z(T−t)∧S(x)(x))

]
= u(t, x) + E

[∫ (T−t)∧S(x)

0

f ′(t+ θ)1{Zθ(x)≥b(t+θ)} dθ

]
,

where we have set Zs(x) := x+ µs+ σWs, s ≥ 0, to simplify exposition. Hence,
using (2.25) we have from the latter

u(t, x) = E
[
m(t+ S(x))1{S(x)≤T−t} + gx(T, x+ µ(T − t) + σWT−t)1{S(x)>T−t}

−
∫ (T−t)∧S(x)

0

f ′(t+ θ)1{Zθ(x)≥b(t+θ)} dθ

]
= E

[
m(t+ S(x))1{S(x)≤T−t}

+ gx(T,AT−t(x))1{S(x)>T−t} −
∫ (T−t)∧S(x)

0

f ′(t+ θ)1{Zθ(x)≥b(t+θ)} dθ

]
= E

[
m(t+ S(x))1{S(x)≤T−t} + gx(T,AT−t(x))

−
∫ (T−t)∧S(x)

0

f ′(t+ θ)1{Zθ(x)≥b(t+θ)} dθ

]
,
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2.3 On the Proof of Theorem 2.6

where in the last step we have used that gx(T,AT−t(x))1{S(x)>T−t} = gx(T,AT−t(x))
because of (2.5) and the fact that gx(T,∆) = 0.

Remark 2.12. Notice that the representation (2.22) immediately gives an integral
equation for the optimal stopping boundary b. Indeed, since (2.22) holds for any
(t, x) ∈ [0, T ] × R+, by taking x = b(t), t ≤ T , on both sides of (2.22), and by
recalling that u(t, b(t)) = f(t), we �nd that b solves

f(t) = E
[ ∫ (T−t)∧S(b(t))

0

−f ′(t+ θ)1{b(t)+µθ+σWθ≥b(t+θ)} dθ

+m(t+ S(b(t)))1{S(b(t))≤T−t} + gx(T,AT−t(b(t)))

]
. (2.26)

By adapting arguments as those in Section 25 of Peskir and Shiryaev [77], based on
the superharmonic characterization of u, one might then prove that b is the unique
solution to (2.26) among a suitable class of continuous and positive functions.

The next result follows from (2.22) by expressing the expected value as an inte-
gral with respect to the probability densities of the involved processes and random
variables. Its proof can be found in the Appendix for the sake of completeness.

Corollary 2.13. The function u(t, ·) is continuously di�erentiable on (0,∞) for all
t ∈ [0, T ).

In the next section we will suitably integrate the two alternative representations
of u (2.9) and (2.22) with respect to the space variable, and we will show that such
integrations give the value function (2.4) of the optimal dividend problem. As a
byproduct, we will also obtain the optimal dividend strategy D?.

2.3.2 Integrating the Optimal Stopping Value Function

In the next two propositions we integrate with respect to the space variable the two
representations of u given by (2.9) and (2.22). The proofs will employ pathwise
arguments. However, in order to simplify exposition, we will not stress the ω-
dependence of the involved random variables and processes.

Proposition 2.14. Let b the optimal stopping boundary of problem (2.6), recall

I0
s (x) = max

0≤θ≤s
{−x− µθ − σWθ} ∨ 0, s ≥ 0,

and de�ne

Rs(x) := x+ µs+ σWs + I0
s (x), s ≥ 0. (2.27)

Then for any (t, x) ∈ [0, T ]× R+ one has∫ b(t)

x

u(t, y) dy = N(t, b(t))−N(t, x), (2.28)
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2.3 On the Proof of Theorem 2.6

where

N(t, x) := E
[
−
∫ T−t

0

(
Rs(x)− b(t+ s)

)+
f ′(t+ s) ds−

∫ T−t

0

m(t+ s) dI0
s (x)

+ g(T,RT−t(x))

]
. (2.29)

Proof. To prove (2.28) we use representation (2.22) of the value function of the
optimal stopping problem (2.6). Using Fubini-Tonelli's Theorem we obtain∫ b(t)

x

u(t, y) dy =

∫ b(t)

x

E
[ ∫ (T−t)∧S(y)

0

−f ′(t+ s)1{y+µs+σWs≥b(t+s)} ds

+m(t+ S(y))1{S(y)≤T−t} + gx(T,AT−t(y))

]
dy

= E
[
−
∫ (T−t)

0

f ′(t+ s)

(∫ b(t)

x

1{y+µs+σWs≥b(t+s)}1{s≤S(y)} dy

)
ds (2.30)

+

∫ b(t)

x

m(t+ S(y))1{S(y)≤T−t} dy +

∫ b(t)

x

gx(T,AT−t(y)) dy

]
.

In the following we investigate separately the three summands of the last term on
the right-hand side of (2.30).

Recalling S(x) = inf{u ≥ 0 : x+ µu+ σWu = 0} it is clear that

S(y) ≥ s⇔Ms ≤ y (2.31)

for any (s, y) ∈ R+ × (0,∞), where we have de�ned

Ms := max
0≤θ≤s

(−µθ − σWθ), s ≥ 0. (2.32)

We can then rewrite (2.27) in terms of (2.32) and obtain

Rs(x) = (x ∨Ms) + µs+ σWs, s ≥ 0. (2.33)

By using (2.31) we �nd

∫ b(t)

x

1{y+µs+σWs≥b(t+s)}1{S(y)≥s} dy =

∫ b(t)∨
[
b(t+s)−µs−σWs

]
x∨
[
b(t+s)−µs−σWs

] 1{S(y)≥s} dy

=

∫ b(t)∨
[
b(t+s)−µs−σWs

]
x∨
[
b(t+s)−µs−σWs

] 1{Ms≤y} dy

=
[
(b(t) ∨ (b(t+ s)− µs− σWs) ∨Ms)− (x ∨ (b(t+ s)− µs− σWs) ∨Ms)

]
=
[
(b(t) ∨Ms) ∨ (b(t+ s)− µs− σWs)− (x ∨Ms) ∨ (b(t+ s)− µs− σWs)

]
=
[(

[(b(t) ∨Ms) + µs+ σWs] ∨ b(t+ s)
)
−
(
[(x ∨Ms) + µs+ σWs] ∨ b(t+ s)

)]
=
[(
Rs(b(t)) ∨ b(t+ s)

)
−
(
Rs(x) ∨ b(t+ s)

)]
=
[(
Rs(b(t))− b(t+ s)

)+ −
(
Rs(x)− b(t+ s)

)+]
. (2.34)

20



2.3 On the Proof of Theorem 2.6

For the third summand of the last term of the right-hand side of (2.30) we have,
due to the fact that gx(T,∆) = 0,∫ b(t)

x

gx(T,AT−t(y))dy =

∫ b(t)

x

gx(T, y + µ(T − t) + σWT−t)1{S(y)>T−t}dy

=

∫ b(t)

x

gx(T, y + µ(T − t) + σWT−t)1{MT−t<y}dy (2.35)

=

∫ b(t)∨MT−t

x∨MT−t

gx(T, y + µ(T − t) + σWT−t)dy

= g(T,RT−t(b(t)))− g(T,RT−t(x)),

where in the last step we use (2.33). To prove that∫ b(t)

x

m(t+ S(y))1{S(y)≤T−t}dy

=

∫ T−t

0

m(t+ s)dI0
s (x)−

∫ T−t

0

m(t+ s)dI0
s (b(t)) (2.36)

we have to distinguish two cases. In the following we let (t, x) ∈ [0, T ]×R+ be given
and �xed, and we prove (2.36) by taking x < b(t). The arguments are exactly the
same if b(t) < x by reversing the roles of x and b(t).

Case 1. Here we take x ∈ {y ∈ R+ : S(y) ≥ T − t}; that is, the initial point
x > 0 is such that the drifted Brownian motion is not reaching 0 before the time
horizon. This implies that Rs(x) in (2.27) equals x+µs+σWs and so I0

s (x) = 0 for
all s ∈ [0, T − t]. Hence, we can write∫ b(t)

x

m(t+ S(y))1{S(y)≤T−t}dy = 0 =

∫ T−t

0

m(t+ s)dI0
s (x)

−
∫ T−t

0

m(t+ s)dI0
s (b(t)), (2.37)

where we have used that S(y) > S(x) ≥ T − t for any y > x and {x} has zero
Lebesgue measure to obtain the �rst equality, and the fact that 0 = I0

s (x) ≥
I0
s (b(t)) ≥ 0 since x < b(t).

Case 2. Here we take x ∈ {y ∈ R+ : S(y) < T − t}; i.e., the drifted Brownian
motion reaches 0 before the time horizon. De�ne

z := inf{y ∈ R+ : S(y) ≥ T − t}, (2.38)

with the usual convention inf ∅ = +∞. In the sequel we assume that z < +∞, since
otherwise there is no need for the following analysis to be performed. Note that,
by continuity in time and in the initial datum of the paths of the drifted Brownian
motion, we have S(z) ≤ T − t. Furthermore, it holds for all y ∈ [x, z] that (cf.
(2.32))

y + I0
s (y) = Ms, ∀s ≥ S(y), (2.39)
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2.3 On the Proof of Theorem 2.6

I0
s (y) = 0, ∀s < S(y). (2.40)

Using (2.39), (2.40), (2.31), and the change of variable formula in Section 4 of
Chapter 0 of the book by Revuz and Yor [82] (see also equation (4.7) in Baldursson
and Karatzas [8]) we obtain

∫ z∧b(t)

x

m(t+ S(y))1{S(y)≤T−t}dy =

∫ z∧b(t)

x

m(t+ S(y))dy

=

∫ S(z∧b(t))

S(x)

m(t+ s)dMs =

∫ S(z∧b(t))

S(x)

m(t+ s)
(
dI0

s (x)− dI0
s (z ∧ b(t))

)
) (2.41)

=

∫ T−t

0

m(t+ s)
(
dI0

s (x)− dI0
s (z ∧ b(t))

)
=

∫ T−t

0

m(t+ s)dI0
s (x)−

∫ T−t

0

m(t+ s)dI0
s (z ∧ b(t)).

For the integral
∫ b(t)
z∧b(t) m(t+S(y))1{S(y)≤T−t} dy we can use the result of Case 1 due

to the de�nition of z (2.38). Then, combining (2.37) and (2.41) leads to (2.36).
Ù
By (2.34), (2.35) and (2.36), and recalling (2.29) and (2.30) we obtain (2.28).

Proposition 2.15. Let (D?, I?) be the solution to system (2.10). Then, for any
(t, x) ∈ [0, T ]× R+ one has∫ b(t)

x

u(t, y) dy = M(t, b(t))−M(t, x), (2.42)

where b is the optimal stopping boundary of problem (2.6) and

M(t, x) := E
[∫ T−t

0

f(t+ s) dD?
s(t, x)−

∫ T−t

0

m(t+ s) dI?s (t, x)

+g(T,XD?

T−t(x))
]
. (2.43)

Proof. For this proof we use instead the representation of u (cf. (2.9))

u(t, x) = E
[
f(t+ τ ?(t, x))1{τ?(t,x)<T−t∧S(x)} +m(t+ S(x))1{τ?(t,x)≥S(x)}

+ gx(T,AT−t(x))1{τ?(t,x)=T−t<S(x)}

]
.

The proof is quite long and technical and it is organized in four steps. Moreover,
in order to simplify exposition from now we set t = 0. Indeed, all the following
arguments remain valid if t ∈ (0, T ] by obvious modi�cations.

If x ≥ b(0), then (2.42) clearly holds. Indeed,
∫ b(0)

x
u(0, y) dy = −(x − b(0))f(0)

since τ ?(0, y) = 0 for any y ≥ b(0). Also, from (2.43) M(0, b(0)) − M(0, x) =
M(0, b(0))−

[
(x− b(0))f(0) +M(0, b(0))

]
, since D?(0, x) has an initial jump of size
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2.3 On the Proof of Theorem 2.6

(x− b(0)) which is such that XD?

0+ (x) = b(0). Hence, in the following we prove (2.42)
assuming that x < b(0).

Step 1. Here we take x ∈ {y ∈ R+ : τ ?(0, y) < S(y)}; that is, the initial point
x > 0 is such that either the drifted Brownian motion reaches the boundary before
hitting the origin, or the time horizon arises before hitting the origin. De�ne the
process (Ls)s≥0 such that

Ls := max
0≤θ≤s

{µθ + σWθ − b(θ)}, 0 ≤ s ≤ T.

Then we have that for all y ∈ [x, b(0)]

{τ ?(0, y) ≤ s} = {Ls ≥ −y}, (2.44)

{τ ?(0, y) = T} = {LT ≤ −y}, (2.45)

D?
s(0, y) =

{
0, 0 ≤ s ≤ τ ?(0, y),

y + Ls, τ ?(0, y) ≤ s ≤ S(y),
(2.46)

and

XD?

s (y) =

{
y + µs+ σWs, 0 ≤ s ≤ τ ?(0, y),

µs+ σWs − Ls, τ ?(0, y) ≤ s ≤ S(y),

and in particular (cf. (2.10)) I?s (0, y) = I?s (0, b(0)) = 0 for any s ∈ [0, τ ?(0, y)].
Moreover, it follows by de�nition of τ ?(0, x), S(x) and XD?(x) that for all y ∈

[x, b(0)] we have
0 = τ ?(0, b(0)) ≤ τ ?(0, y) ≤ τ ?(0, x),

τ ?(0, y) < τ ?(0, x) < S(x) ≤ S(y), (2.47)

and
on {τ ?(0, x) < T}: XD?

s (y) = XD?

s (x), ∀s > τ ?(0, x). (2.48)

With these results at hand, we now show that for all x ∈ [0, b(0)] such that
τ ?(0, x) < S(x) it holds that∫ b(0)

x
f(τ?(0, y))1{τ?(0,y)<S(y)}dy =

∫ T

0
f(s) dD?

s(0, b(0))−
∫ T

0
f(s) dD?

s(0, x), (2.49)

∫ b(0)

x
gx(T, y+µT + σWT )1{τ?(0,y)=T<S(y)} dy = g(T,XD?

T (b(0)))− g(T,XD?

T (x)) (2.50)

and∫ b(0)

x

m(S(y))1{τ?(0,y)≥S(y)}dy =

∫ T

0

m(s) dI?s (0, x)−
∫ T

0

m(s) dI?s (0, b(0)). (2.51)

We start with (2.49). By (2.48) we have that dD?
s(0, x) = dD?

s(0, b(0)) for all
τ ?(0, x) < s ≤ T . By (2.46), and since τ ?(0, b(0)) = 0 one also has

D?
s(0, b(0)) = b(0) + Ls, ∀s ∈ [0, S(b(0))]. (2.52)
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Hence the right-hand side of (2.49) rewrites as∫ T

0

f(s) dD?
s(0, b(0))−

∫ T

0

f(s) dD?
s(0, x) =

∫ τ?(0,x)

0

f(s) dD?
s(0, b(0))

−
∫ τ?(0,x)

0

f(s) dD?
s(0, x) =

∫ τ?(0,x)

0

f(s) dD?
s(0, b(0)) =

∫ τ?(0,x)

0

f(s) dLs,

(2.53)

where we have used that dD?
s(0, x) = 0 for all s ∈ [0, τ ?(0, x)] by (2.46). However,

by using a change of variable formula as in Baldursson and Karatzas [8], equation
(4.7), we obtain∫ b(0)

x

f(τ ?(0, y))1{τ?(0,y)<S(y)}dy =

∫ b(0)

x

f(τ ?(0, y))dy =

∫ τ?(0,x)

0

f(s) dLs, (2.54)

where we have used (2.47) in the �rst step, and the fact that L· is the left-continuous
inverse of τ ?(0, y) (cf. (2.44)) in the last equality. Combining (2.53) and (2.54)
equation (2.49) holds.

Next we show (2.50). Using (2.52) and again (2.48) we obtain for the right-hand
side of (2.50) that

g(T,XD?

T (b(0)))− g(T,XD?

T (x))

= [g(T, µT + σWT − LT )− g(T, x+ µT + σWT )]1{τ?(0,x)=T}.

Also, (2.45) and (2.47) yields∫ b(0)

x

gx(T, y + µT + σWT )1{τ?(0,y)=T} dy =

∫ b(0)

x

gx(T, y + µT + σWT )1{y≤−LT } dy

= [g(T, µT + σWT − LT )− g(T, x+ µT + σWT )]1{τ?(0,x)=T}.

Hence, we obtain (2.50).
Finally, for (2.51) there is nothing to show. In fact, the left-hand side is equal 0

by (2.47), while the right-hand side is zero since the processes I?(0, x) = I?(0, b(0))
coincide (cf. (2.48)).

Step 2. Take x ∈ {y ∈ R+ : τ ?(0, y) > S(y), τ ?(0, q) < S(q) ∀q ∈ (y, b(0))}.
For a realization like that, such an x is such that the drifted Brownian motion
touches the origin before hitting the boundary, but it does not cross the origin. This
in particular implies that I?s (0, x) = 0 for all s ≤ τ ?(0, x). Hence the same arguments
employed in Step 1 hold true, and (2.49) � (2.51) follow.

Step 3. Here we take x ∈ {y ∈ R+ : τ ?(0, y) > S(y)}; that is, the drifted
Brownian motion hits the origin before reaching the boundary.

De�ne
z := inf {y ∈ [0, b(0)] : τ ?(0, y) < S(y)} (2.55)

which exists �nite since y 7→ τ ?(0, y) − S(y) is decreasing and τ ?(0, b(0)) = 0 and
S(0) = 0 a.s. We want to prove that
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∫ z

x

m(S(y))1{τ?(0,y)≥S(y)} dy =

∫ T

0

m(s) dI?s (0, x)−
∫ T

0

m(s) dI?s (0, z), (2.56)

∫ z

x

f(τ ?(0, y))1{τ?(0,y)<S(y)}dy =

∫ T

0

f(s) dD?
s(0, z)−

∫ T

0

f(s) dD?
s(0, x), (2.57)

and ∫ z

x

gx(T, y + µT + σWT )1{τ?(0,y)=T<S(y)} dy

=
[
g(T,XD?

T (z))− g(T,XD?

T (x))
]
. (2.58)

Recall the process (Ms)s≥0 of (2.32) such that

Ms = max
0≤θ≤s

(−µθ − σWθ), s ≥ 0,

and (cf. (2.31))
{Ms ≥ x} = {S(x) ≤ s} ∀s ≥ 0.

For all y ∈ [x, z) and s ∈ [0, τ ?(0, y)] we have

I?s (0, y) = (Ms − y)+ =

{
0, 0 ≤ t ≤ S(y)

Ms − y, S(y) ≤ s ≤ τ ?(0, y),
(2.59)

and

XD?

s (y) =

{
y + µs+ σWs, 0 ≤ s ≤ S(y)

µs+ σWs +Ms, S(y) ≤ s ≤ τ ?(0, y),
= (y∨Ms) +µs+σWs. (2.60)

Also, it follows by (2.60) and (2.59) that for all y ∈ [x, z)

XD?

s (y) = XD?

s (z) ∀s ≥ S(z). (2.61)

Moreover, recall that

S(x) ≤ S(y) ≤ S(z), (2.62)

τ ?(0, y) > S(y), (2.63)

With these observations at hand we can now show (2.56)-(2.58).
By (2.61) we have that dI?s (0, x) = dI?s (0, z) for all s ≥ S(z). Further, we have

that I?s (0, z) = 0 for all s ≤ S(z). Therefore, by (2.62) I?s (0, z) = I?s (0, x) = 0 for
s ≤ S(x), and the right-hand side of (2.56) rewrites as

∫ T

0

m(s) dI?s (0, x)−
∫ T

0

m(s) dI?s (0, z) =

∫ S(z)

S(x)

m(s) [dI?s (0, x)− dI?s (0, z)]

=

∫ S(z)

S(x)

m(s) dI?s (0, x) =

∫ S(z)

S(x)

m(s) dMs. (2.64)
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Here we have used (2.59) with y = x.
On the other hand, for the left-hand side of (2.56), we use the change of variable

formula of Section 4 in Chapter 0 of Revuz and Yor [82]. This leads to∫ z

x

m(S(y))1{τ?(0,y)≥S(y)} dy =

∫ z

x

m(S(y)) dy =

∫ S(z)

S(x)

m(s) dMs, (2.65)

where we use (2.63), the fact that {z} is a Lebesgue zero set, and that M is the
right-continuous inverse of S (see (2.31)). Combining (2.64) and (2.65) proves (2.56).

Equation (2.57) follows by observing that (2.61)�(2.62) imply that the processes
D?(0, z) and D?(0, x) coincide, and the left-hand side equals 0 by de�nition. Notice
that for such an argument particular care has to be put when considering z of (2.55)
as a starting point for the drifted Brownian motion. In particular, if the realization
of the Brownian motion is such that τ ?(0, z) < S(z), then by de�nition of z, the
drifted Brownian motion only touches the boundary at time τ ?(0, z), but does not
cross it. Hence, we still have D?

s(0, z) = 0 for all s ≤ S(z), which implies (2.61) and
therefore still D?

s(0, z) = D?
s(0, x). In turn, this gives again that (2.57) holds also

for such a particular realization of the Brownian motion.
Finally, to prove equation (2.58) remember that x ∈ {y ∈ R+ : τ ?(0, y) > S(y)}.

By de�nition of z we obtain τ ?(0, y) ≥ S(y) for all y ∈ [x, z) and the left-hand
side of (2.58) equals zero. By (2.61) the processes XD?

s (z) = XD?

s (x) coincides for
all s ≥ S(z), and S(z) ≤ T a.s. by Lemma A.1 in the Appendix. Therefore, the
right-hand side of (2.58) equals zero as well.

Step 4. For x ∈ {y ∈ R+ : τ ?(0, y) < S(y)}, (2.42) follows by the results
of Step 1. If, instead, x ∈ {y ∈ R+ : τ ?(0, y) > S(y)}, then we can integrate u
separately in the intervals [x, z] and [z, b(0)]. When integrating u in the interval
[x, z] we use the results of Step 3. On the other hand, integrating u over [z, b(0)]
we have to distinguish two cases. Now, if z belongs to {y ∈ R+ : τ ?(0, y) <
S(y)}, then we can still apply the results of Step 1 to conclude. If z belongs to
{y ∈ R+ : τ ?(0, y) > S(y), τ ?(0, q) < S(q) ∀q ∈ (y, b(0))}, we can employ the results
of Step 2 to obtain the claim. Thus, in any case, (2.42) holds.

We now prove that the two functions N andM of (2.29) and (2.43), respectively,
are such that N = M . To accomplish that we preliminary notice that by their
de�nitions and strong Markov property, one has that the processes

N(t+ s∧ τ ?(t, x), Rs∧τ?(t,x)(x))−
∫ s∧τ?(t,x)

0

m(t+ θ) dI0
θ (x), 0 ≤ s ≤ T − t, (2.66)

and

M(t+s∧τ ?(t, x), Rs∧τ?(t,x)(x))−
∫ s∧τ?(t,x)

0

m(t+θ) dI?θ (t, x), 0 ≤ s ≤ T−t, (2.67)

are F-martingales for any (t, x) ∈ [0, T ]×R+. Moreover, by (2.28) one has N(t, x) =

N(t, b(t))−
∫ b(t)
x

u(t, y) dy and, due to (2.42), M(t, x) = M(t, b(t))−
∫ b(t)
x

u(t, y) dy.
Hence,

Ψ(t) := M(t, x)−N(t, x), t ∈ [0, T ],
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is independent of the x variable. We now prove that one actually has Ψ = 0 and
therefore N = M .

Theorem 2.16. It holds Ψ(t) = 0 for all t ∈ [0, T ]. Therefore, N = M on [0, T ]×
R+.

Proof. Since (N−M) is independent of x, it su�ces to show that (N−M)(t, x) = 0
at some x for any t ≤ T . To accomplish that we show Ψ′(t) = 0 for any t < T , since
by (2.28) and (2.42) we already know that

Ψ(T ) = N(T, x)−M(T, x) = g(T, x)− g(T, x) = 0.

Then take 0 < x1 < x2, t0 ∈ [0, T ) and ε > 0 such that t0 + ε < T given
and �xed, consider the rectangular domain R := (t0 − ε, t0 + ε) × (x1, x2) such
that cl(R) ⊂ C (where C has been de�ned in (2.7)). Also, denote by ∂0R :=
∂R\ ({t0 − ε} × (x1, x2)). Then consider the problem

(P )

{
ht(t, x) = Lh(t, x), (t, x) ∈ R,
h(t, x) = (N −M)(t, x), (t, x) ∈ ∂0R,

where L is the second-order di�erential operator that acting on ϕ ∈ C1,2([0, T ]×R)
gives

(Lϕ)(t, x) = µ
∂ϕ

∂x
(t, x) +

1

2
σ2∂

2ϕ

∂x2
(t, x), (t, x) ∈ [0, T ]× R.

By reversing time, t 7→ T − t, Problem (P) corresponds to a classical initial
value problem with uniformly elliptic operator (notice that σ2 > 0) and parabolic
boundary ∂0R. Since N −M is continuous, and all the coe�cients in the �rst equa-
tion of (P ) are smooth (actually constant), by classical theory of partial di�erential
equations of parabolic type (see, e.g., Chapter V in the book by Lieberman [67])
problem (P ) admits an unique solution h that is continuous, with continuous deriva-
tives ht, hx, hxx. Moreover, by the Feynman-Kac's formula, such a solution admits
the representation

h(t, x) = E[(N −M)(t+ τ̂(t, x), Zτ̂(t,x)(x))],

where
τ̂(t, x) := inf{s ∈ [0, T − t) : (t+ s, Zs(x)) ∈ ∂0R} ∧ (T − t),

and Zs(x) = x + µs + σWs, s ≥ 0. Notice that we have τ̂(t, x) ≤ τ ?(t, x) a.s.,
since cl(R) ⊂ C. Also, the integral terms in (2.66) and (2.67) are equal since
dI0

θ (x) = dI?θ (t, x) = 0 for any θ ≤ τ̂(t, x) ≤ τ ?(t, x). Hence by the martingale
property of (2.66) and (2.67) we have

h(t, x) = (N −M)(t, x) in R,

and, by arbitrariness of R,

Ψ(t) = (N −M)(t, x) = h(t, x) in C.
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Therefore, since Ψ = N −M is independent of x, continuous in t and solves the �rst
equation of (P ) in C, we obtain Ψ′(t) = 0 for any t < T . Hence Ψ(t) = 0 for any
t ≤ T since Ψ(T ) = 0, and thus N(t, x) −M(t, x) = 0 for any t ≤ T and for any
x ∈ (0,∞).

In the following we show that the function N is an upper bound for the value
function V of (2.4). We �rst prove the following result.

Theorem 2.17. For any (t, x) ∈ R+ × [0, T ] the process

Ñs := N(t+ s, Rs(x))−
∫ s

0

m(t+ u) dI0
u(x), 0 ≤ s ≤ T − t, (2.68)

is an F-supermartingale.

Proof. It is enough to show that E
[
Ñθ

]
≤ E[Ñτ ] for all bounded F-stopping times

θ, τ such that θ ≥ τ (see Karatzas and Shreve [60], Chapter 1, Problem 3.26).
By the strong Markov property and the de�nition of N (2.29), we get that for

any bounded F-stopping time ρ one has

E[Ñρ] = E
[
N(t+ ρ,Rρ(x))−

∫ ρ

0

m(t+ s) dI0
s (x)

]
= E

[
−
∫ T−t

ρ

f ′(t+ s)[Rs(x)− b(t+ s)]+ds

−
∫ T−t

0

m(t+ s) dI0
s (x) + g(RT−t(x))

]
= N(t, x) + E

[∫ ρ

0

f ′(t+ s)
(
Rs(x)− b(t+ s)

)+
ds

]
=: N(t, x) + ∆ρ,

for any (t, x) ∈ [0, T ]×R+. Hence, taking θ, τ such that T − t ≥ θ ≥ τ we get from
the latter that E[Ñθ] = N(t, x) + ∆θ ≤ N(t, x) + ∆τ = E[Ñτ ], where the inequality
is due to the fact that f ′ ≤ 0 on S (cf. Corollary 2.8-(ii)). This proves the claimed
supermartingale property.

To proceed further, we need the following properties of the function N of (2.29).
Its proof is relegated to the Appendix.

Lemma 2.18. The function N ∈ C1,2([0, T )× (0,∞)) ∩ C0([0, T ]× R+).

Thanks to Lemma 2.18, an application of Itô's formula allows us to obtain the fol-
lowing (unique) Doob-Meyer decomposition of the F-supermartingale Ñ (cf. (2.68)).

Corollary 2.19. The F-supermartingale Ñ of (2.68) is such that for all (t, x) ∈
[0, T ]× R+ and s ∈ [0, T − t]

N(t+ s, Rs(x))−
∫ s

0

m(t+ θ) dI0
θ (x)

= N(t, x) + σ

∫ s

0

u(t+ θ, Rθ(x)) dWθ + Πs(t, x), (2.69)

where Π·(t, x) is a continuous, non-increasing and F-adapted process.
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Proof. By the Doob-Meyer decomposition, the F-supermartingale in (2.68) can be
(uniquely) written as the sum of an F-martingale and a continuous, F-adapted non-
increasing process (Πs)s≥0. Applying the martingale representation theorem to the
martingale part of Ñ , yields the decomposition

Ñs = N(t, x) +

∫ s

0

φθ dWθ + Πs(t, x),

for some φ ∈ L2(Ω × [0, T ],P ⊗ dt). Finally, an application of Itô's lemma shows
that φθ = σu(t+ θ, Rθ(x)) a.s.

Theorem 2.20. For any process D ∈ D(t, x) and any (t, x) ∈ [0, T ] × R+, the
process

Qs(D; t, x) :=

∫
[0,s]

f(t+ θ) dDθ −
∫ s

0

m(t+ θ) dIDθ +N(t+ s,XD
s (x)), (2.70)

s ∈ [0, T − t], is such that

E [Qs(D; t, x)] ≤ N(t, x), for any s ∈ [0, T − t]. (2.71)

Proof. The proof is organized in 3 steps.

Step 1. For D ≡ 0, the proof is given by Theorem 2.17.

Step 2. Let Ds :=
∫ s

0
zu du, s ≥ 0, where z is a bounded, non-negative, F-

progressively measurable process. To show (2.71) we use Girsanov's Theorem and
we rewrite the state process XD

s (x) = x + µs + σWs + Ds − IDs as a new drifted
Brownian motion re�ected at the origin. We therefore introduce the exponential
martingale

Zs = exp

(∫ s

0

zu
σ
dWu −

1

2σ2

∫ s

0

z2
u du

)
, s ≥ 0,

and we obtain that under the measure P̂ = ZTP, the process

Ŵs := Ws −
1

σ

∫ s

0

zudu, s ≥ 0,

is an F- Brownian motion.
We can now rewrite the process Q of (2.70) under P̂ as

Qs(D; t, x) =

∫
[0,s]

f(t+ θ) dDθ −
∫ s

0

m(t+ θ) dÎDθ +N(t+ s, R̂s(x)), (2.72)

for any s ∈ [0, T − t], where under P̂

X̂D
s (x) = x+ µs+ σŴs + ÎDs =: R̂s(x).

Here ÎD· is �at o� {s ≥ 0 : R̂s(x) = 0} and re�ects the drifted Brownian motion at
the origin. By employing (2.69), equation (2.72) reads as

Qs(D; t, x) = N(t, x) + σ

∫ s

0

u(t+ u, R̂u(x))dŴu + Π̂s(t, x), (2.73)
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for s ∈ [0, T − t], where we have set

Π̂s(t, x) := Πs(t, x) +

∫ s

0

(
f(t+ θ)− u(t+ θ, Rθ(x))

)
zθdθ, s ∈ [0, T − t].

Since Π̂ is non-increasing due to the fact that u ≥ f and Π·(t, x) is non-increasing,
we can take expectations in (2.73) so to obtain

E [Qs(D; t, x)] ≤ N(t, x), ∀s ∈ [0, T − t].

Step 3. Since any arbitrary D ∈ D(t, x) can be approximated by an increasing
sequence (Dn)n∈N of absolutely continuous processes as the ones considered in Step
2 (see El Karoui and Karatzas [39], Lemmata 5.4, 5.5 and Proposition 5.6), we have
for all n ∈ N

E [Qs(D
n; t, x)] ≤ N(t, x).

Applying monotone and dominated convergence theorem, this property holds for
Q(D; t, x) as well, for any D ∈ D(t, x).

By Theorem 2.20 and the de�nition of Q as in (2.70) we immediately obtain

V (t, x) = sup
D∈D(t,x)

J(t, x;D) = sup
D∈D(t,x)

E [QT−t(D; t, x)] ≤ N(t, x). (2.74)

Moreover, by de�nition (2.43) one has

M(t, x) = J(t, x;D?(t, x)) ≤ V (t, x). (2.75)

With all these results at hand, we can now �nally prove Theorem 2.6.

Proof of Theorem 2.6. By combining (2.74), (2.75), and Theorem 2.16 we obtain
the series of inequalities

N(t, x) ≥ V (t, x) ≥M(t, x) = N(t, x)

which proves the claim that V = M , and the optimality of D?. It just remains to
prove (2.12). To accomplish that we adapt and expand arguments as those used by
El Karoui and Karatzas in the proof of Corollary 4.2 in [40].

Observe that optimality of D? implies that for all x > b(t)

V (t, b(t)) + f(t)(x− b(t)) = V (t, x). (2.76)
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Using (2.29) and the fact that V = N as proved above, we then �nd from (2.76)

V (t, b(t)) = V (t, x)− f(t)(x− b(t))

= E
[
−
∫ T−t

0

f ′(t+ s)(Rs(x)− b(t+ s))+ ds−
∫ T−t

0

m(t+ s) dI0
s (x)

+ g(T,RT−t(x))− f(t)(x− b(t))
]

= E
[
−
∫ T−t

0

f ′(t+ s)
[
(Rs(x)− b(t+ s))+ − (x− b(t))

]
ds

−
∫ T−t

0

m(t+ s) dI0
s (x) + g(T,RT−t(x))− f(T )(x− b(t))

]
.

Recall (2.27), and observe that under the condition b(T ) <∞ we can write

E
[
g(T,RT−t(x))

]
= g(T, b(T )) + E

[(∫ RT−t(x)

b(T )

gx(T, y)dy

)
1{RT−t(x)>b(T )}

−
(∫ b(T )

RT−t(x)

gx(T, y)dy

)
1{RT−t(x)≤b(T )}

]
= g(T, b(T ))

+ E
[
f(T )

(
RT−t(x)− b(T )

)
1{RT−t(x)>b(T )} −

(∫ b(T )

RT−t(x)

gx(T, y)dy

)
1{RT−t(x)≤b(T )}

]
,

where the last equality follows from Remark 2.9. Therefore, we obtain that

V (t, b(t)) = E
[
−
∫ T−t

0

f ′(t+ s)
[
(Rs(x)− b(t+ s))+ − (x− b(t))

]
ds

−
∫ T−t

0

m(t+ s) dI0
s (x) + g(T, b(T )) + f(T )

(
RT−t(x)− b(T )

)
1{RT−t(x)>b(T )}

− f(T )
(
x− b(t)

)
−
(∫ b(T )

RT−t(x)

gx(T, y)dy

)
1{RT−t(x)≤b(T )}

]
.

Notice now that I0
s (x) → 0, Rs(x) → ∞, and (Rs(x) − b(t + s))+ − (x − b(t)) →

µs + σWs − b(t + s) + b(t) a.s. for any s ≥ 0 when x ↑ ∞ (cf. (2.27)). Then,
letting x→∞ in the last expression for V (t, b(t)), and invoking the monotone and
dominated convergence theorems, we �nd (after evaluating the expectations and
rearranging terms)

V (t, b(t)) = E
[
−
∫ T−t

0

f ′(t+ s)
(
µs+ σWs − b(t+ s) + b(t)

)
ds

+ g(T, b(T )) + f(T ) (µ(T − t) + σWT−t − b(T ) + b(t))

]
= −µ

∫ T−t

0

f ′(t+ s)s ds+

∫ T−t

0

f ′(t+ s)b(t+ s) ds

+ g(T, b(T )) + f(T )µ(T − t) + f(t)b(t)− f(T )b(T ).
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Remark 2.21. As a byproduct of the fact that V = N and of Lemma 2.18, we
have that V ∈ C1,2([0, T ) × (0,∞)) ∩ C0([0, T ] × R+). Moreover, from (2.11) and
(2.6) we have that V satis�es the Neumann boundary condition Vx(t, 0) = m(t) for
all t ∈ [0, T ].

Remark 2.22. The pathwise approach followed in this section seems to suggest
that some of the intermediate results needed to prove Theorem 2.6 remain valid
also in a more general setting in which pro�ts and costs in (2.4) are discounted at a
stochastic rate. We leave the analysis of this interesting problem for future work.

2.4 A Case Study with Discounted Constant Marginal Pro�ts
and Costs

In this section we consider the optimal dividend problem with capital injections

V̂ (t, x) := sup
D∈D(t,x)

E
[∫ T−t

0

ηe−rs dDs −
∫ T−t

0

κe−rs dIDs + ηe−r(T−t)XD
T−t(x)

]
= ertV (t, x), (2.77)

where we have de�ned

V (t, x) := sup
D∈D(t,x)

E
[∫ T−t

0

ηe−r(t+s) dDs −
∫ T−t

0

κe−r(t+s) dIDs

+ ηe−rTXD
T−t(x)

]
. (2.78)

It is clear from (2.78) and (2.3) that such a problem can be accommodated in our
general setting (2.4) by taking (cf. Assumption 2.1)

f(t) = ηe−rt, m(t) = κe−rt, g(t, x) = ηe−rtx, (2.79)

for some κ > η (see also Remark 2.3).
In V̂ of (2.77) the coe�cient κ can be seen as a constant proportional administra-

tion cost for capital injections. On the other hand, if we immagine that transaction
costs or taxes have to be paid on dividends, the coe�cient η measures a constant
net proportion of leakages from the surplus received by the shareholders.

Remark 2.23. Problem (2.77) is perhaps the most common formulation of the
optimal dividend problem with capital injections (see, e.g., Kulenko and Schmidli
[65], Lokka and Zervos [69], Zhu and Yang [96] and references therein). However, to
the best of our knowledge, no previous work has considered such a problem in the
case of a �nite time horizon, whereas problem (2.77) has been extensively studied
when T = +∞ (see, e.g., Ferrari [46] and references therein). In particular, it has
been shown, e.g., in [46] that in the case T = +∞ the optimal dividend strategy
is triggered by a boundary b∞ > 0 that can be characterized as the solution to a
non-linear algebraic equation (see Proposition 3.2 in [46]). In Proposition 3.6 of [46]
such a trigger value is also shown to be the optimal stopping boundary of problem
(2.80) below (when the optimization is performed over all the F-stopping times).
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Thanks to Theorem 2.6 we know that, whenever Assumption 2.5 is satis�ed, the
optimal control D? for problem (2.78) is triggered by the optimal stopping boundary
b of the optimal stopping problem

u(t, x) = sup
τ∈T (T−t)

E
[
e−rτη1{τ<S(x)} + e−rS(x)κ1{τ≥S(x)}

]
= sup

τ∈T (T−t)
E
[
e−rτη1{Aτ (x)>0} + e−rS(x)κ1{Aτ (x)≤0}

]
. (2.80)

In the following we study the optimal stopping problem (2.80) and verify the
requirements of Assumption 2.5.

Moreover, by taking the sub-optimal stopping time τ = 0 in (2.80) clearly gives
u(t, x) ≥ η for (t, x) ∈ [0, T ] × (0,∞). Therefore, we can de�ne the continuation
and the stopping region of problem (2.80) as

C := {(t, x) ∈ [0, T )×(0,∞) : u(t, x) > η}, S := {(t, x) ∈ [0, T ]×(0,∞) : u(t, x) = η}.

Also, notice that we have u(t, x) ≤ κ for (t, x) ∈ [0, T ]× R+ since η < κ.
Since the reward process φt := e−rtη1{t<S(x)} + e−rS(x)κ1{t≥S(x)} is upper semi-

continuous in expectation along stopping times (thanks to the fact that η < κ),
Theorem 2.9 in Kobylanski and Quenez [63] ensures that the �rst time the value
process (i.e. the Snell envelope of the reward process) equals the reward process is
optimal. In our Markovian setting we thus have that the stopping time

τ ?(t, x) := inf{s ∈ [0, T − t) : (t+ s, As(x)) ∈ S} ∧ (T − t), (2.81)

for (t, x) ∈ [0, T ]×R+, is optimal. Further, de�ning Zs(x) := x+ µs+ σWs, s ≥ 0,
the process

e−r(s∧τ
?(t,x)∧S(x))u(t+ (s∧ τ ?(t, x)∧S(x)), Z(s∧τ?(t,x)∧S(x))(x)), s ∈ [0, T − t], (2.82)

is an F-martingale (cf. Proposition 1.6 and Remark 1.7 in Kobylanski and Quenez
[63]).

The next proposition proves some preliminary properties of u.

Proposition 2.24. The value function u of (2.80) satis�es the following:

(i) u(T, x) = η for any x > 0 and u(t, 0) = κ for any t ∈ [0, T ];

(ii) t 7→ u(t, x) is non-increasing for any x > 0;

(iii) x 7→ u(t, x) is non-increasing for any t ∈ [0, T ].

Proof. We prove each item separately.

(i) The �rst property easily follows from de�nition (2.80).

(ii) The second property is due to the fact that T (T − ·) shrinks and the expected
value on the right-hand side of (2.80) is independent of t ∈ [0, T ].
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2.4 A Case Study with Discounted Constant Marginal Pro�ts and Costs

(iii) Fix t ∈ [0, T ], x2 > x1 ≥ 0 and notice that S(x2) > S(x1). Then, from (2.80)
we can write

u(t, x2)− u(t, x1)

≤ sup
τ∈T (T−t)

E
[
e−rτη1{τ<S(x2)} − e−rτη1{τ<S(x1)} + e−rS(x2)κ1{τ≥S(x2)} − e−rS(x1)κ1{τ≥S(x1)}

]
= sup

τ∈T (T−t)
E
[
1{S(x1)≤τ<S(x2)}

(
e−rτη − e−rS(x1)κ

)
+
(
e−rS(x2) − e−rS(x1)

)
κ1{τ≥S(x2)}

]
≤ sup

τ∈T (T−t)
E
[
e−rS(x1)(η − κ)1{S(x1)≤τ<S(x2)} +

(
e−rS(x2) − e−rS(x1)

)
κ1{τ≥S(x2)}

]
≤ 0,

where we have used that η < κ in the last step.

Since x 7→ u(t, x) is non-increasing for each t ∈ [0, T ], setting

b(t) := inf{x > 0 : u(t, x) ≤ η}, t ∈ [0, T ], (2.83)

it is clear that

C = {(t, x) ∈ [0, T )× (0,∞) : x < b(t)} , S = {(t, x) ∈ [0, T ]× (0,∞) : x ≥ b(t)} .

Moreover, the optimal stopping time of (2.81) reads

τ ?(t, x) := inf{s ∈ [0, T − t) : As(x) ≥ b(t+ s)} ∧ (T − t). (2.84)

In the following we will refer to b as to the free-boundary. The next theorem
proves preliminary properties of b.

Proposition 2.25. The free-boundary b is such that

(i) t 7→ b(t) is non-increasing;

(ii) One has b(t) > 0 for all t ∈ [0, T ). Moreover, there exists b∞ > 0 such that
b(t) ≤ b∞ for any t ∈ [0, T ].

Proof. We prove each item separately.

(i) The claimed monotonicity of b immediately follows from (ii) of Proposition
2.24.

(ii) To show that b(t) > 0 for any t ∈ [0, T ) it is enough to observe that u(t, 0) =
κ > η for all t ∈ [0, T ).

To prove b(t) <∞ notice that u(t, x) ≤ u∞(x) for all (t, x) ∈ [0, T ]×R+, where

u∞(x) := sup
τ≥0

E
[
ηe−rτ1{τ<S(x)} + κe−rS(x)

1{τ≥S(x)}
]
.

Hence, setting b∞ := inf{x > 0 : u∞(x) = η} (which exists �nite, e.g., by Proposition
3.2 in Ferrari [46]; see also Remark 2.23 above), we have b(t) ≤ b∞ for all t ∈ [0, T ].
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2.4 A Case Study with Discounted Constant Marginal Pro�ts and Costs

The proof of the next proposition is quite lenghty, and it is therefore postponed
in the Appendix in order to simplify the exposition.

Proposition 2.26. The function (t, x) 7→ u(t, x) is lower semicontinuous on [0, T )×
(0,∞).

The lower semicontinuity of u implies that the martingale of (2.82) has right-
continuous sample paths, and that the stopping region is closed. The latter fact in
turn plays an important role when proving continuity of the free-boundary, as it is
shown in the next proposition.

Proposition 2.27. The free-boundary b is such that t 7→ b(t) is continuous on
[0, T ). Moreover, b(T ) := limt↑T b(t) = 0.

Proof. We prove the two properties separately.

Here we show that b is continuous, and this proof is divided in two parts. We start
with the right-continuity. Note that, by lower semicontinuity of u (cf. Proposition
2.26), the stopping region S is closed. Then �x an arbitrary point t ∈ [0, T ), take
any sequence (tn)n≥1 such that tn ↓ t, and notice that (tn, b(tn)) ∈ S, by de�nition.
Setting b(t+) := limtn↓t b(tn) (which exists due to Proposition 2.25-(i)), we have
(tn, b(tn)) → (t, b(t+)), and since S is closed (t, b(t+)) ∈ S. Therefore, it holds
b(t+) ≥ b(t) by de�nition (2.83) of b. However, b(·) is non-increasing, and therefore
b(t) = b(t+).

Next we show left-continuity for all t ∈ (0, T ) and for this we adapt to our
setting ideas as those in the proof of Proposition 4.2 in De Angelis and Ekström
[32]. Suppose that b makes a jump at some t ∈ (0, T ). By Proposition 2.25-(i)
we have limtn↑t b(tn) := b(t−) ≥ b(t). We employ a contradiction scheme to show
b(t−) = b(t), and we assume b(t−) > b(t). Let x := b(t−)+b(t)

2
, recall Zs(x) =

x+ µs+ σWs, s ≥ 0, and de�ne

τε := inf{s ≥ 0 : Zs(x) /∈ (b(t−), b(t))} ∧ ε

for ε ∈ (0, t). Then noticing that τε < τ ?(t−ε, x)∧S(x), by the martingale property
of (2.82) we can write

u(t− ε, x) = E
[
e−rτεu(t− ε+ τε, Zτε(x))

]
= E

[
e−rεu(t, Zε(x))1{τε=ε} + e−rτεu(t− ε+ τε, Zτε(x))1{τε<ε}

]
≤ E

[
e−rεη1{τε=ε} + e−rτεκ1{τε<ε}

]
≤ e−rεη + κP (τε < ε) ,

where the last step follows from the fact that u ≤ κ, and that Zτε(x) ≥ b(t) on the
set {τε = ε}. Since e−rεη+ κP(τε < ε) = η(1− rε) + κo(ε) as ε ↓ 0, we have found a
contradiction to u(t, x) ≥ η. Therefore, b(t−) = b(t) and b is continuous on [0, T ).

To prove the claimed limit, notice that if b(T ) := limt↑T b(t) > 0, then any point
(T, x) with x ∈ (0, b(T )) belongs to C. However, we know that (T, x) ∈ S for all
x > 0, and we thus reach a contradiction.
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2.4 A Case Study with Discounted Constant Marginal Pro�ts and Costs

Thanks to the previous results all the requirements of Assumption 2.5 are sat-
is�ed for problem (2.80). Hence Theorem 2.6 holds, and one has that V of (2.78)
and u of (2.80) are such that Vx = u on [0, T ] × R+. In particular, by (2.77) and
Theorem 2.6 we can write

V̂ (t, x) = V̂ (t, b(t))− ert
∫ b(t)

x

u(t, y) dy,

where by (2.12), (2.79), and the fact that b(T ) = 0 we have

V̂ (t, b(t)) = ηb(t) +
µη

r

(
1− e−r(T−t)

)
− rη

∫ T

t

e−r(u−t)b(u)du.

Moreover, the optimal dividend distributions' policy D? given through (2.10) is
triggered by the free-boundary b whose properties have been derived in Theorem
2.27.

2.4.1 A Comparative Statics Analysis.

We conclude by providing the monotonicity of the free-boundary with respect to
some of the problem's parameters. In the following, for any given and �xed t ∈ [0, T ],
we write b(t; ·) in order to stress the dependence of the free-boundary point b(t) with
respect to a given parameter. Similarly, we write u(t, x; ·) when we need to consider
the dependence of u(t, x), (t, x) ∈ [0, T ] × R+, with respect to a given problem's
parameter.

Proposition 2.28. Let t ∈ [0, T ] be given and �xed. It holds that

(i) κ 7→ b(t;κ) is non-decreasing;

(ii) η 7→ b(t; η) is non-increasing;

(iii) r 7→ b(t; r) is non-increasing;

(iv) µ 7→ b(t;µ) is non-increasing.

Proof. Recalling that

u(t, x) = sup
τ∈T (T−t)

E
[
e−rτη1{τ<S(x)} + e−rS(x)κ1{τ≥S(x)}

]
, (t, x) ∈ [0, T ]× R+,

one can easily show that

(1) κ 7→ u(t, x;κ) is non-decreasing,

(2) η 7→ u(t, x; η)− η = supτ∈T (T−t) E
[
η
(
e−rτ1{τ<S(x)} − 1

)
+ e−rS(x)κ1{τ≥S(x)}

]
is

non-increasing,

(3) r 7→ u(t, x; r) is non-increasing.
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2.4 A Case Study with Discounted Constant Marginal Pro�ts and Costs

Moreover, let µ2 > µ1 and denote by S(x;µ2) (resp. S(x;µ1)) the hitting time of
the origin of the drifted Brownian Motion with drift µ2 (resp. µ1). Since S(x;µ2) ≥
S(x;µ1) a.s. we obtain

u(t, x;µ2)− u(t, x;µ1) ≤ sup
τ∈T (T−t)

E
[
e−rτη

(
1{τ<S(x;µ2)} − 1{τ<S(x;µ1)}

)
+ κ

(
e−rS(x;µ2)

1{τ≥S(x,µ2)} − e−rS(x;µ1)
1{τ≥S(x;µ1)}

) ]
≤ sup

τ∈T (T−t)
E
[
e−rτη1{S(x,µ1)≤τ<S(x;µ2)} − κe−rS(x;µ1)

1{S(x,µ2)>τ≥S(x,µ1)}

+ κ1{τ≥S(x;µ2)}
(
e−rS(x;µ2) − e−rS(x;µ1)

) ]
= sup

τ∈T (T−t)
E
[
1{S(x,µ1)≤τ<S(x;µ2)}

(
e−rτη − e−rS(x;µ1)κ

)
+ 1{τ≥S(x;µ2)}

(
e−rS(x;µ2) − e−rS(x;µ1)

) ]
≤ 0.

Given the previous monotonicity properties of u, we can now prove items (i)-(iv).

(i) Taking κ2 > κ1 and using (1) and (2.83) we have

b(t;κ2) := inf{x > 0 : u(t, x;κ2) ≤ η} ≥ inf{x > 0 : u(t, x;κ1) ≤ η} = b(t;κ1).

(ii) Taking η2 > η1 and using (2) and (2.83) we have

b(t; η2) := inf{x > 0 : u(t, x; η2)−η2 ≤ 0} ≤ inf{x > 0 : u(t, x; η1)−η1 ≤ 0} = b(t; η1).

(iii) Taking r2 > r1 and using (3) and (2.83) we have

b(t; r2) := inf{x > 0 : u(t, x; r2) ≤ η} ≤ inf{x > 0 : u(t, x; r1) ≤ η} = b(t; r1).

(iv) Taking µ2 > µ1 and that u(t, x;µ2)− u(t, x;µ1) ≤ 0 and (2.83) we have

b(t;µ2) := inf{x > 0 : u(t, x;µ2) ≤ η} ≤ inf{x > 0 : u(t, x;µ1) ≤ η} = b(t;µ1).

The last proposition allows us to draw some economic implications. Increasing
the parameters η, r, and µ, leads, at each time t, to an earlier dividends' distribution.
This result is quite intuitive since an higher interest rate r lowers future pro�ts due
to discounting, an higher η increases the marginal value of dividends, and an higher
µ increases the surplus' trend and lowers the probability of bankruptcy, hence of
capital injections. On the other hand, an increase of κ postpones the dividends'
distribution since capital injections become more expensive, and the fund's manager
thus acts in a more cautious way.

Proving the monotonicity of the free-boundary with respect to the surplus'
volatility σ seems not to be feasible by following the arguments of the proof of
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Proposition 2.28. One should then rely on a careful numerical analysis of the dy-
namic programming equation associated to the optimal dividend problem, and we
believe that such a study falls outside the scopes of this work. However, we con-
jecture that an increase of σ should postpone the dividends' distribution. Indeed,
the larger σ is, the higher becomes the risk of the need of costly capital injections.
As a consequence, the fund's manager wants to wait longer before distributing an
additional unit of dividends. Such a monotonicity of the free-boundary with respect
to σ has been recently proved by Ferrari in Proposition 4.1 of [46] in the case of a
stationary optimal dividend problem with capital injections.

2.5 Conclusion

In this part of the thesis, we proposed and solved a dividend problem with capital
injections over a �nite time horizon. Mathematically, it is formulated as a two-
dimensional singular stochastic control problem. Because the problem reads as a
re�ected follower problem with costly re�ection at the origin, we were able to extend
the model of El Karoui and Karatzas [40] by including costs for re�ection. More
precisely, we related the singular stochastic control problem to a more tractable
optimal stopping problem with absorption at the origin. The main result is the
following: If one is able to prove that the time-dependent free-boundary of the opti-
mal stopping problem is continuous and non-negative, it turns out that the optimal
dividend strategy is triggered by the free-boundary. In particular, it is optimal to
pay dividends if the surplus process X is above the free-boundary. This result is
derived by almost exclusively probabilistic arguments. Afterwards, we investigated
a common formulation of the optimal dividend problem with capital injections. In
this formulation, we were able to show that the free-boundary of the related opti-
mal stopping problem is continuous, non-increasing and non-negative. Hence, our
main result was applicable and characterized the optimal dividend strategy of the
control problem by the free-boundary of the optimal stopping problem. Moreover,
we studied the dependence of the free-boundary on some model parameters.
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3 Optimal Production under Regime Switching6

3.1 Problem Formulation

We assume a �rm that faces an uncertainty concerning the demand of its product,
which is modeled by a Brownian motion W and a continuous-time Markov chain ε
with �nite-state space. The Brownian motion W describes random �uctuations in
the demand, while the Markov chain ε describes uncertain long-term conditions. For
instance, one regime may represent a recessionary period with a low demand rate
for the product and the other regime may represent an expansionary period with
a high demand rate. For example, one regime may represent a high demand rate
for a medical item when there is an epidemic and the other regime may represent
a low demand rate for the same medical item in times without an epidemic. At
every point in time, the management of the �rm has full information about these
two sources of uncertainty.

Formally, we consider a complete probability space (Ω,F ,P), rich enough to
accommodate a standard Brownian motion W = {Wt, t ≥ 0} and a continuous-
time Markov chain ε = {εt, t ≥ 0} with state space S = {1, · · · , N}, N ≥ 2. We
assume that ε and W are independent and that the Markov chain ε has a strongly
irreducible generator Q = [ qij ]N×N , where qii = −λi < 0 and

∑
j∈S qij = 0 for

every i ∈ S. We denote by F = {Ft, t ≥ 0} the P-augmentation of the �ltration
{F (W,ε)

t , t ≥ 0} generated by the Brownian motion and the Markov chain.
We assume that the cumulative demand process D = {Dt, t ≥ 0} satis�es the

stochastic di�erential equation

dDt = µεt dt+ σεt dWt,

where the parameter µi represents the current drift of the demand and σi > 0 the
current volatility of the demand for each state i ∈ S.

Given a production strategy P , the inventory of a good X = {Xt, t ≥ 0} is given
by

dXt = −dDt + dPt = −µεt dt− σεt dWt + dPt, X0 = x.

The management of the �rm faces the problem of choosing a production strategy
P such that the inventory is close to an exogenously given target value Ii, depending
on the state of the economy, with proportional costs for production. Hence, the
manager wants to minimize the cost functional

J(x, i;P ) := E
[∫ ∞

0

e−δtαεt(Xt − Iεt)2dt+

∫ ∞
0

e−δtkεtdPt

]
,

for (x, i) ∈ R× S. That is, the manger aims at solving

V (x, i) := inf
P∈A

J(x, i;P ), (x, i) ∈ R× S. (3.1)

6This project started during a research visit at the University of Edmonton under the super-
vision of Abel Cadenillas.
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3.2 The Singular Stochastic Control Case

The set A denotes the set of all admissible production strategies of the �rm.
In this section, we consider two di�erent admissible sets. For both, we assume

that the production rate is non-negative. Hence, the production is irreversible mean-
ing that the inventory decreases only because of the demand. The di�erences be-
tween both cases lies in the upper bound for the production rate. At �rst, we
consider a model in which the production rate is unbounded from above. Then,
(3.1) becomes a singular stochastic control problem with regime switching. In the
second formulation, we consider an upper bound for the production rate and (3.1)
becomes a bounded-velocity control problem with regime switching. In both cases,
we apply the dynamic programming method to obtain an analytical solution for the
optimal production control and the value function.

From an economic point of view, the �rst case implies the possibility of an
immediate production of any amount of a good. This is a critical assumption, which
does not hold in many applications. Hence, we compare the solution with the case
of a bounded production rate at the end of this section.

3.2 The Singular Stochastic Control Case

In this section, we study the case of an unbounded production rate. The set of
admissible strategies is de�ned by the (non-empty) set

AU :=

{
P : Ω× R+ → R+ : F−adapted s.t.t 7→ Pt is a.s. non-decreasing,

left-continuous and P0 = 0 and s.t. J(x, i;P ) <∞.
}

Under these conditions, Problem (3.1) reads as follows.

Problem 3.1. The management aims at choosing the optimal production policy
P̂ ∈ AU , which solves the problem

V (x, i) := inf
P∈AU

J(x, i;P )

:= inf
P∈AU

E
[ ∫ ∞

0

e−δsαεs(Xs − Iεs)2ds+

∫ ∞
0

e−δskεsdPs

]
.

We now provide a preliminary growth property of the value function.

Lemma 3.2. The set of admissible strategies AU is non-empty and for all (x, i) ∈
R× S we have V (x, i) ≤ C(1 + x2) for some constant C > 0.

Proof. Taking the no-production strategy P 0 ≡ 0. First, we observe that by stan-
dard estimates, one obtains that J(x, i;P 0) ≤ C(1 + x2) for some constant C > 0.
Hence, P 0 is admissible and we get

0 ≤ V (x, i) ≤ J(x, i;P 0) ≤ C(1 + x2).
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Remark 3.3. For each admissible strategy P ∈ AU , we observe that∫ ∞
0

e−δsαεs(Xs − Iεs)2ds ≤ J(x, i;P ) <∞.

Since αi > 0 for all i ∈ S, we also obtain that

lim
T→∞

E
[
e−δTX2

T

]
= 0. (3.2)

The last equation becomes important in the proof of the veri�cation theorem 3.5.

We observe that Problem 3.1 is a stochastic singular control problem with regime
switching. We de�ne by ΛP := {t ≥ 0 : Pt+ 6= Pt} the set of times where P ∈ AU has
a discontinuity. The set ΛP is countable because P jumps only a countable number
of times during the interval [0,∞). Moreover, we denote by P d the discontinuous
part of P , that is, P d

t :=
∑

0≤s≤t, s∈Λ(Ps+ −Ps) and by P c the continuous part of P ,
that is, P c

t := Pt − P d
t .

3.2.1 Veri�cation Theorem

By the dynamic programming principle, we expect that V identi�es with a suitable
solution to the Hamilton-Jacobi-Bellman equation

min
{

(L − δ)v(x, i) + αi(x− Ii)2, v′(x, i) + ki
}

= 0, (3.3)

for any (x, i) ∈ R × S. L denotes the in�nitesimal generator of (X, ε) acting on
functions g(·, i) ∈ C2(R) and, for a given i ∈ S, it yields

Lg(x, i) :=
1

2
σ2
i gxx(x, i)− µigx(x, i)− λig(x, i) +

∑
i 6=j∈S

qijg(x, j). (3.4)

Equation (3.3) can be derived, assuming that an optimal control exists, by in-
vestigating the two possible actions at each time: (i) do not produce for a small
amount of time, and continue optimally; (ii) adjust the inventory by a lump sum
increase, and continue optimally. In Theorem 3.5, we proof that a solution to (3.3),
under some conditions, identi�es with the value function of Problem 3.1

We note that, due to (3.4), hte HJB equation (3.3) leads to a system of N
variational inequalities with state-dependent gradient constraints, which are coupled
through the transition rates qij.

From (3.3), we can de�ne, for each solution v to the HJB equation and regime
i ∈ S, the continuation region

Cv(i) :=
{
x ∈ R : (L − δ)v(x, i) + αi(x− Ii)2 = 0, ki + v′(x, i) > 0

}
and the intervention region

Σv(i) :=
{
x ∈ R : (L − δ)v(x, i) + αi(x− Ii)2 ≥ 0, ki + v′(x, i) = 0

}
.

The regions Cv(i) and Σv(i) provides a partion of R.
For a solution v to (3.3), one can construct a control P v, which holds the inven-

tory inside the continuation region.
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3.2 The Singular Stochastic Control Case

De�nition 3.4. An F-adapted, non-negative, and non-decreasing control process
P v is associated with the function v above if

(i) XP v

t := x−
∫ t

0

µεs ds−
∫ t

0

σεs dWs + P v
t ,

(ii) XP v

t ∈ C(εt), for every t ∈ ( 0,∞), P− a.s., (3.5)

(iii)

∫ ∞
0

1{XPv
s ∈C(εs)} dP

v
s = 0, P− a.s.

It turns out, see Theorem 3.5, that the associated control will identify the optimal
control for Problem 3.1, if one can construct a suitable solution to the HJB equation.
Moreover, Cv(i) identi�es the region in which the �rm is not producing. The region
Σv(i) instead identi�es the region, in which production is the optimal.

Next, we present a veri�cation theorem that provides su�cient conditions under
which a solution to the HJB equation (3.3) identi�es with the value function of
Problem 3.1.

Theorem 3.5. Let v(·, i) ∈ C2(R \ Ni), i ∈ S, where Ni are �nite subsets of R,
be a convex function on R with quadratic growth. Suppose that v satis�es the HJB
equation (3.3) for all (x, i) ∈ R × S. Then, for all admissible strategies P ∈ AU it
holds that

v(x, i) ≤ J(x, i;P ).

Moreover, if the associated stochastic control P v ful�lls

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]

= 0,

then

v(x, i) = J(x, i;P v).

Therefore, v coincides with the value function V of Problem 3.1 and the control
process P v is the optimal production policy.

Proof. Consider an admissible control P and the corresponding semimartingale

Xt = x−
∫ t

0

µεsds−
∫ t

0

σεsdWs + P c
t + P d

t .

Let v(·, i), i ∈ S, be a solution to the HJB equation (3.3) and de�ne f(·, ·, i),
i ∈ S, by f(t, x, i) = e−δtv(x, i). Following a procedure similar to Sotomayor and
Cadenillas [94], we get, by applying Itô's formula for Markov modulated processes
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(see also Björk [15]),

df(t,Xt, εt) =

(
1

2
σ2
εtfxx(t,Xt, εt)− µεtfx(t,Xt, εt) + ft(t,Xt, εt)

)
dt

+ fx(t,Xt, εt)σεt dWt + fx(t,Xt, εt) dP
c
t

+
(
f(t,Xt+, εt)− f(t,Xt, εt)

)
I{t∈Λ}

+

(
−λεtf(t,Xt, εt) +

∑
j 6=εt

qεtjf(t,Xt, j)

)
dt+ dM f

t

= e−δt (L − ρ) v(Xt, εt)dt− σεt e−δtvx(Xt, εt) dWt

+ e−δtvx(Xt, εt) dP
c
t + e−δt (v(Xt+, εt)− v(Xt, εt)) I{t∈Λ} + dM f

t ,

where the processM f = {M f
t , t ≥ 0} is a square integrable martingale when f(·, ·, i),

i ∈ S, is bounded (see equation (5) in [15]). We observe that v(·, i), i ∈ S, and
vx(·, i), i ∈ S, are not necessarily bounded. However, we assume that v(·, i), i ∈ S,
is convex. Let a and b be real numbers satisfying −∞ < a < X0 = x < b < +∞
and de�ne τa := inf{t ≥ 0 : Xt = a}, τb := inf{t ≥ 0 : Xt = b} and τ := τa ∧ τb.
Then, for every time t ∈ [ 0,∞), we have

e−δ(t∧τ)v(X(t∧τ)+εt∧τ ) = v(X0, ε0) +

∫ t∧τ

0

e−δs (L − δ) v(Xs, εs)ds

−
∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs +

∫ t∧τ

0

e−δsvx(Xs, εs)dP
c
s

+
∑

0≤s≤t∧τ, s∈Λ

e−δs (v(Xs+ , εs)− v(Xs, εs)) +M f
t∧τ −M

f
0 .

Taking conditional expectations, we have

E
[
e−δ(t∧τ)v(X(t∧τ)+ , εt∧τ )

]
= v(x, i) + E

[∫ t∧τ

0

e−δs (L − δ) v(Xs, εs)ds

]
− E

[∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs

]
+ E

[∫ t∧τ

0

e−δsvx(Xs, εs)dP
c
s

]
+ E

[ ∑
0≤s≤t∧τ, s∈Λ

e−δs (v(Xs+ , εs)− v(Xs, εs))

]
+ E

[
M f

t∧τ −M
f
0

]
. (3.6)

The HJB equation (3.3) guarantees that (L − δ) v(Xs, εs) ≥ −αεs(Xs − Iεs)2.
Moreover, v′(x, i) ≥ −ki for x ∈ R (recall equation (3.3)) and the mean value
theorem implies that v(y1, i)− v(y2, i) ≥ −ki(y1 − y2) for every y1, y2 ∈ R, y1 > y2,
and for every i ∈ S. Hence, replacing i = εt, y1 = Xt and y2 = Xt+, we obtain
v(Xt+, εt)− v(Xt, εt) ≥ −kεt(Xt+ −Xt). By observing that Xt+ −Xt = Pt+ − Pt we
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get from equation (3.6), that

E
[
e−δ(t∧τ)v(X(t∧τ)+ , εt∧τ )

]
≥ v(x, i)− E

[∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs

]
− E

[∫ t∧τ

0

e−δskεsdP
c
s

]
− E

[ ∑
0≤s≤t∧τ,s∈Λ

e−δskεs (Ps+ − Ps)

]

+ E
[
M f

t∧τ −M
f
0

]
− E

[ ∫ t∧τ

0

e−δsαεs(Xs − Iεs)2ds

]
= v(x, i)− E

[∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs

]
− E

[∫ t∧τ

0

e−δskεsdPs

]
+ E

[
M f

t∧τ−M
f
0

]
− E

[∫ t∧τ

0

e−δsαεs(Xs − Iεs)2ds

]
. (3.7)

We note that v(Xs, εs) and vx(Xs, εs) are bounded when s ∈ [ 0, t ∧ τ ]. Then,

{M f
t∧τ , t ≥ 0} is a square integrable martingale and, hence, E

[
M f

t∧τ −M
f
0

]
= 0, for

any t ≥ 0. Furthermore, σ2
εs e
−2δs(vx(Xs, εs))

2 is bounded when s ∈ [ 0, t ∧ τ ], and

E
[ ∫ t∧τ

0

σεs e
−δs vx(Xs, εs) dWs

]
= 0.

Letting a ↓ −∞ and b ↑ +∞, we get τa → +∞ and τb → +∞. Then, τ → ∞
and (3.7) leads to

v(x, i) ≤ E
[
e−δtv(Xt+, εt)

]
+ E

[∫ t∧τ

0

e−δskεsdPs

]
+ E

[∫ t∧τ

0

e−δsαεs(Xs − Iεs)2ds

]
. (3.8)

Since P is assumed to be admissible, we can combine (3.2) and the quadratic
growth of v to obtain

lim
t↑∞

E
[
e−δtv(Xt+ , εt)

]
≤ E

[
e−δt(1 +X2

t+)
]

= 0.

Taking t→∞, we get from (3.8)

v(x, i) ≤ E
[∫ ∞

0

e−δskεsdPs

]
+ E

[ ∫ ∞
0

e−δsαεs(Xs − Iεs)2ds

]
= J(x, i;P ).

Taking now the associated control P v, see De�nition 3.4, the inequality in (3.7)
and therefore also in (3.8) becomes an equality. Hence

v(x, i) = E
[
e−δtv(XP v

t +, εt)
]

+ E
[∫ t∧τ

0

e−δskεsdP
v
s

]
+ E

[∫ t∧τ

0

e−δsαεs(Xs − Iεs)2ds

]
. (3.9)
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By assumption, P v ful�lls

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]

= 0.

Taking t→∞, we obtain from (3.9) that

v(x, i) = E
[∫ ∞

0

e−δsαεs(X
P v

s − Iεx)2ds+

∫ ∞
0

e−δskεsdP
v
s

]
= J(x, i;P v).

3.2.2 Construction of the Solution

In this section, we construct a candidate value function v that solves the HJB
equation (3.3).

To construct such a solution, we conjecture, as stated in Theorem 3.5, that v is a
convex function with quadratic growth. We de�ne bi := sup{x ∈ R : vx(x, i) ≤ −ki}
for each i ∈ S. Inspired by the HJB equation (3.3), we expect v to solve

1

2
σ2
i vxx(x, i)− µivx(x, i)− δv(x, i) + αi(x− Ii)2 = λi v(x, i)−

∑
j 6=i

qij v(x, j)

for all i ∈ S and x ∈ [bi,∞). For all i ∈ S and x ∈ (−∞, bi), we expect v (due to
the conjectured convexity) to satisfy vx(x, i) = −ki.

For simplicity, we assume in the remainder of this section that the economy shifts
only between two regimes, i.e., S = {1, 2}. Under this assumption, the generator of
ε is given by

Q =

(
−λ1 λ1

λ2 −λ2

)
.

The relation between b1 and b2 depends on the relations among the di�erent
parameters. We only consider the case b1 < b2. The case b1 > b2 can be treated
similar. Due to our conjectures, we consider three possibilities for the initial level x
of the inventory: x ∈ (−∞, b1), x ∈ [ b1, b2), and x ∈ [ b2,∞).

For the construction, we need the following lemma, which we adapt from Remark
2.1 in Guo [50] (see also Lemma 3.1 in [94]).

Lemma 3.6. For i ∈ S, consider the real function φi(z) = −σ2
i z

2/2− µ̃iz+ (λi + δ)
where µ̃i is a function of µi. Since σ1, σ2, λ1 and λ2 are positive, the equation
φ1(z)φ2(z) = λ1λ2 has four real roots such that z1 < z2 < 0 < z3 < z4.

We start with the case x ∈ (b2,∞). By (3.3) we expect v to solve the system of
di�erential equations

0 = −(λ1 + δ)v(x, 1)− µ1vx(x, 1) +
1

2
σ2

1vxx(x, 1) + λ1v(x, 2) + α1(x− I1)2,

0 = −(λ2 + δ)v(x, 2)− µ2vx(x, 2) +
1

2
σ2

2vxx(x, 2) + λ2v(x, 1) + α2(x− I2)2.

(3.10)
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This system is a system of two second-order ODEs and, according to Lemma 3.6,
its solution is given by

v(x, 1) = A1 e
γ1(x−b2) + A2 e

γ2(x−b2) + A3 e
γ3(x−b2) + A4 e

γ4(x−b2)

+R1(x− b2)2 + S1(x− b2) + T1,

v(x, 2) = B1 e
γ1(x−b2) + B2 e

γ2(x−b2) + B3 e
γ3(x−b2) + B4 e

γ4(x−b2)

+R2(x− b2)2 + S2(x− b2) + T2,

where Aj are constants for each j = 1, 2, 3, 4 and

Bj =
φ1

1(γj)

λ1

Aj =
λ2

φ1
2(γj)

Aj. (3.11)

The real values γ1 < γ2 < 0 < γ3 < γ4 above are the real roots of the characteristic
equation φ1

1(γ)φ1
2(γ) = λ1λ2, where

φ1
i (γ) := −1

2
σ2
i γ

2 + µi γ + (λi + δ), i = 1, 2.

Furthermore, Ri, Si and Ti are the solution of the system

0 = −(λ1 + δ)R1 + λ1R2 + α1,

0 = −(λ1 + δ)S1 − 2µ1R1 + λ1S2 + 2α1(b2 − I1),

0 = −(λ1 + δ)T1 − µ1S1 + σ2
1R1 + λ1T2 + α1(b2 − I1)2,

0 = −(λ2 + δ)R2 + λ2R1 + α2,

0 = −(λ2 + δ)S2 − 2µ2R2 + λ2S1 + 2α2(b2 − I2),

0 = −(λ2 + δ)T2 − µ2S2 + σ2
2R2 + λ2T1 + α2(b2 − I2)2.

(3.12)

By Theorem 3.5, we conjecture that v(·, i) admits quadratic growth. Thus, we
set B3 = B4 = A3 = A4 = 0. Hence, the solution of the system (3.10) simpli�es to

v(x, 1) = A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1, (3.13)

v(x, 2) = B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2. (3.14)

Next, we consider x ∈ (b1, b2]. We expect v(x, 2) to satisfy vx(x, 2) = −k2.
Therefore, we de�ne v(x, 2) := −k2(x− b2) +D2 for a constant D2 ∈ R. Moreover,
v(x, 1) should satisfy

−(λ1 + δ)v(x, 1)− µ1vx(x, 1) +
1

2
σ2

1vxx(x, 1) + λ1v(x, 2) + α1(x− I1)2 = 0.

Solving this ODE, we obtain

v(x, 1) = Ã1 e
γ̃1(x−b2) + Ã2 e

γ̃2(x−b2) + R̃1(x− b2)2 + S̃1(x− b2) + T̃1, (3.15)

v(x, 2) = −k2(x− b2) +D2, (3.16)
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where γ̃1 < 0 < γ̃2 are the real roots of the equation

φ2
1(γ̃) := −1

2
σ2

1 γ̃
2 + µ1 γ̃ + (λ1 + δ) = 0.

Furthermore, R̃1, S̃1 and T̃1 are the solution of the system

0 = −(λ1 + δ)R̃1 + α1,

0 = −(λ1 + δ)S̃1 − 2µ1R̃1 − λ1k2 + 2α1(b2 − I1),

0 = −(λ1 + δ)T̃1 − µ1S̃1 + σ2
1R̃1 + λ1D2 + α1(b2 − I1)2.

Finally, for x ∈ (−∞, b1], we expect v to satisfy vx(x, i) = −ki. Therefore, we
set

v(x, 1) := −k1(x− b1) +D1, (3.17)

v(x, 2) := −k2(x− b2) +D2 (3.18)

for some constant D1 ∈ R.
It remains to �nd the free-boundaries b1 and b2, and the coe�cients and constants

in the equations (3.13)-(3.14),(3.15)-(3.16) and (3.17)-(3.18). Therefore, we impose
the smooth-�t conditions. Thus, we expect v to solve the system of equations

v(b2−, i) = v(b2+, i) for both i = 1, 2,
v(b1−, 1) = v(b1+, 1),
vx(b1+, 1) = −k1,
vx(b2+, 2) = −k2,
vx(b2−, 1) = vx(b2+, 1),
vxx(bi+, i) = 0 for both i = 1, 2.

(3.19)

If our candidate value function v satisfy system (3.19), it follows that v(·, i) ∈
C2(R \ b3−i), which is also required in Theorem 3.5.

Remark 3.7. Note that the system (3.19) is a non-linear system of eight equations
and eight unknowns. In the general case, we can neither provide existence nor
uniqueness of the solution. We investigate later a concrete example, in which we
solve the system numerically to provide the values of the free-boundaries and the
coe�cients.

3.2.3 Veri�cation of the Solution

In this subsection, we prove that our candidate value function v coincides with the
true value function of Problem 3.1.

To prove this, we need to verify our conjectures as well as the conditions of
Theorem 3.5. Therefore, we �rst sho that we can upgrade the regularity of our
candidate value function. Denote in the following the n-th derivative with respect
to x, n ≥ 3, by v(n)(x, i).
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Lemma 3.8. Let bi, i = 1, 2, Aj, j = 1, 2, Ãj, j = 1, 2, and Di, i = 1, 2, be the
solution of the system of equations (3.19). Let Bj, j = 1, 2, be de�ned by (3.11).
Then, the function v de�ned by

v(x, 1) :=


−k1(x− b1) +D1 x ∈ (−∞, b1),

Ã1 e
γ̃1(x−b2) + Ã2 e

γ̃2(x−b2) + R̃1(x− b2)2 + S̃1(x− b2) + T̃1 x ∈ [b1, b2),

A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1 x ∈ [ b2,∞),

and

v(x, 2) :=

{
−k2(x− b2) +D2 x ∈ (−∞, b2),

B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2 x ∈ [ b2,∞),

is such that v(·, 1) ∈ C∞(R \ {b1, b2})∩C4(R \ {b1})∩C2(R) and v(·, 2) ∈ C∞(R \
{b2}) ∩ C2(R). Moreover, for �xed i ∈ {1, 2} and x > bi, we have

− (λi + δ)vxx(x, i)− µiv(3)(x, i) +
1

2
σ2

1v
(4)(x, i) + λivxx(x, 3− i) + 2αi = 0. (3.20)

Proof. First, note that by construction and system (3.19), it follows that v(·, 2) ∈
C∞(R \ {b2}) ∩ C2(R). The regularity of v(·, 1) can be shown as follows. By con-
struction and system (3.19), v(·, 1) ∈ C∞(R \ {b1, b2}) ∩ C2(R \ {b2}) ∩ C1(R) and
solves, for x > b1,

−(λ1 + δ) v(x, 1)− µ1 vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2) + α1(x− I1)2 = 0.

Hence, we can rewrite this equation and obtain

vxx(x, 1) =
2

σ2
1

((λ1 + δ) v(x, 1) + µ1 vx(x, 1)− λ1 v(x, 2)) x > b1.

Since v(·, 2) ∈ C2(R) and v(·, 1) ∈ C1(R) by (3.19), we obtain that v(·, 1) ∈
C4((b1,∞)) by di�erentiating the last equation. Hence, we obtain that v(·, 1) ∈
C∞(R \ {b1, b2}) ∩ C4(R \ {b1}) ∩ C2(R). Furthermore, �xing i ∈ {1, 2} and x > bi,
we know that

−(λi + δ)v(x, i)− µivx(x, i) +
1

2
σ2

1vxx(x, i) + λiv(x, 3− i) + αi(x− Ii)2 = 0.

Therefore, the proven regularity allows us to di�erentiate this equation two times
with respect to x, and we get

−(λi + δ)vxx(x, i)− µiv(3)(x, i) +
1

2
σ2

1v
(4)(x, i) + λivxx(x, 3− i) + 2αi = 0.

The proven regularity allows us to apply Itô's formula for Markov-modulated
processes, as in the proof of Theorem 3.5, to vxx(·, i). This allows us to prove
convexity of the candidate for value function, see Theorem 3.10.

Before verifying that our candidate solution coincides with the true value function
of Problem 3.1, we check that the associate control P v ful�lls the assumption of the
Veri�cation Theorem 3.5
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Lemma 3.9. For the constructed candidate value function v, the associated control
P v given by De�nition 3.5, is such that

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]

= 0.

Proof. First, notice that, given the structure of our candidate value function v, P v

solves the Skorokhod re�ection problem

� XP v

t ≥ bεt P− a.s. for each t > 0,

�

∫ t
0
1{XPv>bεt} dP

v = 0 P− a.s. for each t > 0.

In particular, P v is the minimal e�ort needed to hold the inventory process X, given
the current state i ∈ S, above the free-boundary bi (see for example Karatzas and
Schreve [60] and Skorokhod [90] for classical references). Moreover, we note that
the candidate value function v is bounded from below by some constant C. Hence,
it holds that

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]
≥ lim

T→∞
e−δTC = 0.

Therefore, we only have to show the opposite direction. Since v has quadratic growth
by construction, it is enough to show that

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]
≤ lim

T→∞
C1e

−δTE
[
1 +

(
XP v

T

)2
]

= 0,

where C1 > 0 is a constant. De�ne µ̄ := maxi∈S |µi|, σ̄ := maxi∈S σi and

P̄t := sup
s≤t

(b2 − x)+ +

∫ s

0

µεu du+

∫ s

0

σεu dWu.

The process P̄ is a non-decreasing process such that X P̄
t ≥ b2 for all t > 0. In

particular, since b2 > b1 by assumption, and P v is the solution to the Skorokhod
re�ection problem above (hence it is the minimal process to keep the inventory above
bεt ≤ b2), it holds that XP v

t ≤ X P̄
t for all t ≥ 0. Moreover,

X P̄
t = x+ (b2 − x)+ + sup

s≤t

(∫ s

0

µεu du−
∫ t

0

µεu du+

∫ s

0

σεu dWu −
∫ t

0

σεu dWu

)
≤ x+ (b2 − x)+ + µ̄t+ 2σ̄ sup

s≤t
|Ws|.

Hence, for some constant C2 > 0, we have that

e−δTE
[(
XP v

T

)2
]
≤ e−δTE

[
b2

1 +
(
X P̄
T

)2
]

≤ e−δT

(
b2

1 + C2

(
x+ (b2 − x)+ + µ̄T

)2
+ 4σ̄2C2E

[(
sup
s≤T
|Ws|

)2
])

≤ e−δT
(
b2

1 + C2

(
x+ (b2 − x)+ + µ̄T

)2
+ 16σ̄2C2E

[
|WT |2

])
,
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where the last inequality follows by Doob's maximal inequality. Since E [|WT |2] =
T 2, it follows, by taking T →∞, that

lim
T→∞

e−δTE
[(
XP v

T

)2
]

= 0.

Hence,

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]
≤ lim

T→∞
C1e

−δTE
[
1 +

(
XP v

T

)2
]

= 0.

Theorem 3.10. Let bi, i = 1, 2, Aj, j = 1, 2, Ãj, j = 1, 2, and Di, i = 1, 2, be
the solution of the system of equations (3.19). Let Bj, j = 1, 2, be de�ned by (3.11).
Then, the function v given by

v(x, 1) :=


−k1(x− b1) +D1 x ∈ (−∞, b1),

Ã1 e
γ̃1(x−b2) + Ã2 e

γ̃2(x−b2) + R̃1(x− b2)2 + S̃1(x− b2) + T̃1 x ∈ [b1, b2),

A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1 x ∈ [ b2,∞),

and

v(x, 2) :=

{
−k2(x− b2) +D2 x ∈ (−∞, b2),

B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2 x ∈ [ b2,∞),

is the value function V of Problem 3.1 and the optimal production policy is given
by P v, described by De�nition 3.4

Proof. To prove that the function v de�ned above coincides with the value function
of Problem 3.1, it is enough to show that it satis�es the conditions of Theorem 3.5.
Note that v(·, i) is of quadratic growth by construction. We start showing that v is
convex. We know already that vxx(x, i) = 0 for all x ≤ bi and i ∈ {1, 2}.

By Lemma 3.8, we know that v(·, i) ∈ C4(R \ {bi}). Hence, for �xed i ∈ {1, 2}
and x > bi, we can apply Itô's formula for Markov modulated processes and obtain,
as in the proof of Theorem 3.5, for vxx(·, i) that

E
[
e−δτvxx(Xτ , ετ )

]
= vxx(x, i) + E

[∫ τ

0

e−δs (L − δ) vxx(Xs, εs) ds

]
,

where τ := inf{t ≥ 0 : Xt ≤ bεt}. We obtain that

(L − δ) vxx(Xx,i
s , εs) = −2αεs , ∀s < τ.

Hence,

vxx(x, i) = E
[
2

∫ τ

0

e−δsαεs ds+ e−δτvxx(Xτ , ετ )

]
. (3.21)

Since vxx(x, i) = 0 for all x ≤ bi by construction, (3.21) implies, together with
the fact that αi > 0, that vxx(x, i) > 0 for all i ∈ {1, 2} and x > bi. Moreover,
vxx(x, i) = 0 for all x ≤ bi by construction. This proves the convexity of v(·, i) for
i = 1, 2.

Next, we show that the candidate value function v satis�es the HJB equation
(3.3). By construction and system (3.19), we have that vx(x, i) = −ki for all x ≤ bi
and (L − δ) v(x, i) = 0 for all x ≥ bi. Therefore, we need to show that for i ∈ {1, 2}
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i) vx(x, i) ≥ −ki, x ≥ bi,

ii) (L − δ) v(x, i) + αi(x− Ii)2 ≥ 0, x ≤ bi.

Item i) follows from the convexity and equation three and four of system (3.19).
Now we show item ii). De�ne

g(x, i) := (L − δ) v(x, i) + αi(x− Ii)2.

From Lemma 3.8, we obtain that

g(·, 1) ∈ C0(R) ∩ C2(R \ {b1}), g(·, 2) ∈ C0(R) ∩ C∞(R \ {b2}).

Moreover, by construction we have that g(x, i) = 0 for all x ≥ bi and i ∈ S. We
want to show that g(x, i) ≥ 0 for all x ≤ bi and i ∈ {1, 2}.

Let x ∈ [b1, b2). We have v(x, 2) = −k2(x− b2) +D2. Hence,

g(x, 2) = µ2k2 − (δ + λ2)[−k2(x− b2) +D2] + λ2v(x, 1) + α2(x− I2)2,

gx(x, 2) = (δ + λ2)k2 + λ2vx(x, 1) + 2α2(x− I2),

and, due to the convexity,

gxx(x, 2) = λ2vxx(x, 1) + 2α2 > 0.

We want to show that g(x, 2) ≥ 0. Since g(b2−, 2) = g(b2+, 2) = 0, it is enough
to show that g(x, 2) is decreasing, i.e., gx(x, 2) ≤ 0. Since gxx(x, 2) ≥ 0, we have
that gx(x, 2) is increasing. Hence, gx(x, 2) ≤ gx(b2−, 2). Thus, it is enough to show
that

0 ≥ gx(b2−, 2) = k2(δ + λ2) + λ2vx(b2−, 1) + 2α2(x− I2). (3.22)

We investigate λ2vx(b2−, 1). By construction of v and the continuity of vx, we
obtain that

λ2vx(b2−, 1) = λ2vx(b2+, 1) = λ2[S1 +
4∑
i=1

γiAi] = λ2[S1 +
4∑
i=1

γi
φ1

2(γi)

λ2

Bi]

= λ2S1 +
4∑
i=1

γiBi[−
1

2
σ2

2γ
2
i + µ2γi + (λ2 + δ)]

= λ2S1 −
1

2
σ2

2

4∑
i=1

γ3
iBi + µ2

4∑
i=1

γ2
iBi + (λ2 + δ)

4∑
i=1

γiBi

= λ2S1 −
1

2
σ2

2v
(3)(b2+, 2) + µ2 (vxx(b2+, 2)− 2R2)

+ (λ2 + δ) (vx(b2+, 2)− S2)

≤ λ2S1 − 2µ2R2 − k2(λ2 + δ)− (λ2 + δ)S2, (3.23)

where the last step follows from the fact that vxx(b2+, 2) = 0 by the smooth-�t con-
ditions and v(3)(b2+, 2) ≥ 0. The fact that v(3)(b2+, 2) ≥ 0 follows from convexity.
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3.2 The Singular Stochastic Control Case

Assume, in the opposite, v(3)(b2+, 2) < 0. This implies, since vxx(b2+, 2) = 0, that
vxx(b2 + ε, 2) < 0 for ε small enough, which contradicts convexity. Hence, using
(3.12), we combine (3.22) and (3.23) to obtain

gx(b2−, 2) ≤ λ2S1 − 2µ2R2 + 2α2(b2 − I2)− (λ2 + δ)S2 = 0.

Therefore, we obtain, that

gx(x, 2) ≤ gx(b2−, 2) ≤ 0, x ≥ b1 (3.24)

and
g(x, 2) ≥ g(b2−, 2) = 0, x ≥ b1. (3.25)

Finally, we consider x < b1. From the construction of v, we obtain

g(x, i) = µiki − δv(x, i)− λiv(x, i) + λiv(x, 3− i) + αi(x− I)2,

gx(x, i) = δki + λiki − λik3−i + 2αi(x− I),

gxx(x, i) = 2αi > 0.

Hence, we have
gx(x, i) ≤ gx(b1−, i).

For i = 2, we obtain from (3.24) that gx(b1−, 2) = gx(b1+, 2) ≤ 0. Hence, by
(3.25), it holds that g(x, 2) ≥ g(b1−, 2) = g(b1+, 2) ≥ 0.

For i = 1, we note that g(x, 1) = 0 for all x ≥ b1. Thus, we have gx(x, 1) = 0 for
all x ≥ b1. Hence,

0 = gx(b1+, 1) =
1

2
σ2

1v
(3)(b1+, 1)− µ1vxx(b1+, 1)− (δ + λ1)vx(b1+, 1)

+ λ1vx(b1+, 2) + 2α1(b1 − I1). (3.26)

Next, we argue by contradiction that v(3)(b1+, 1) ≥ 0. Therefore, assume that
v(3)(b1+, 1) < 0. By the fact that vxx(b1+, 1) = 0, this implies that vxx(b1 +ε, 1) < 0
for ε small enough. This contradicts the convexity of v.

Using that vxx(b1+, 1) = 0, v(3)(b1+, 1) ≥ 0, and that vx(b1+, i) = −ki, we obtain
from (3.26)

0 ≥ (δ + λ1)k1 − λ1k2 + 2α1(b1 − I1). (3.27)

Let now x ≤ b1. Since gxx(x, 1) = 2α1 we have that

gx(x, 1) ≤ gx(b1−, 1) = (δ + λ1)k1 − λ1k2 + 2α1(b1 − I1) ≤ 0,

where the last inequality follows from (3.27). Hence, g(x, 1) is decreasing and by
continuity we have

g(x, 1) ≥ g(b1−, x) = g(b1+, x) = 0.

This implies that v is a solution to the HJB equation (3.3).
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3.2 The Singular Stochastic Control Case

Finally, we show that the associated control P v is admissible. From the con-
struction of P v, it is enough to show that J(x, i;P v) is �nite. Arguing as in the
proof of Theorem 3.5, we obtain

v(x, i) = E
[
e−δTv(XT+, εT )

]
+E

[∫ t

0

e−δsαεs (Xs − Iεs)
2 ds

]
+E

[∫ t

0

e−δskεS dP
v
s

]
.

(3.28)
From Lemma 3.9, we know that

lim
T→∞

E
[
e−δTv(XP v

T+, εT )
]

= 0.

Therefore, taking T →∞ in (3.28), leads to

∞ > v(x, i) = J(x, i;P v).

Hence, v and its associated control P v ful�ll all the conditions of Theorem 3.5,
and v is indeed the true value function.

Summarizing our results, we have proven that our candidate value function v
coincides with the true value function of Problem 3.1. Moreover, the associated
control P v is the optimal production strategy.

Therefore, the optimal production policy, given the regime is i, works as follows:
(a) do not produce as long as the inventory level is above the threshold bi, and (b)
adjust the inventory by a lump sum production to keep the inventory level above bi
whenever the inventory level falls below bi. We observe that the �rm also increase
production just because the regime is changing. This happens whenever the level of
the inventory lies in the interval (b1, b2) and the regime changes from i = 1 to i = 2.

Remark 3.11. We note that the veri�cation theorem implies that the system (3.19)
has at most one solution such that b1 < b2. If there would be two distinct solutions,
then both leads to the same value function, which is a contradiction.

3.2.4 Comparative Statics and Numerical Examples

In this subsection, we study the in�uence of some model parameters on the free-
boundaries bi, i ∈ S, which characterize the optimal production strategy. First, we
present the results that can be obtained analytically and afterwards those which
were derived numerically. To derive the analytical results, we use the link between
SSC and OS for monotone follower problems. Following the technique of switching
paths at appropiate random times, see Karatzas and Shreve [58], we obtain Vx(x, i) =
u(x, i), where

u(x, i) = sup
τ∈T

E
[∫ τ

0

e−δs2αεs(X
x,0
s − Iεs) ds− e−δτkετ

]
.

Here, T denotes the set of stopping times and Xx,0 the inventory process in absence
of any production. As a consequence from Vx(x, i) = u(x, i) it follows that

bi = sup{x ∈ R : u(x, i) ≤ −ki}. (3.29)
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3.2 The Singular Stochastic Control Case

Lemma 3.12. For each i ∈ S, the function x 7→ u(x, i) is non-decreasing.

Proof. The claim follows immediately from the fact that x 7→ Xx,0
s is non-decreasing.

In the following, we denote by bi(a) the free-boundary bi, given the parameter a.
Moreover, we denote by u(x, i; a) the function u(·, i) with respect to the parameter
a.

Lemma 3.13. For given i ∈ S = {1, 2}, the free-boundaries bi have the following
properties:

i) Ij 7→ bi(Ij) is non-decreasing for every j ∈ S,

ii) µj 7→ bi(µj) is non-decreasing for every j ∈ S,

iii) ki 7→ bi(ki) is non-increasing,

iv) k3−i 7→ bi(k3−i) is non-decreasing.

Proof. We de�ne

û(x, i) := u(x, i) + ki = sup
τ∈T

E
[∫ τ

0
e−δs2αεs(X

x,0
s − Iεs) ds

+
(

1− e−δτ
)
ki1{ετ=i} +

(
ki − e−δτk3−i

)
1{ετ=3−i}

]
.

One can easily show that

1) Ij 7→ u(x, i; Ij) is non-increasing for every j ∈ S,

2) µj 7→ u(x, i;µj) is non-increasing for every j ∈ S since µj 7→ Xx,0
t = x −∫ t

0
µεs dt−

∫ t
0
σεs dt is non-increasing,

3) ki 7→ û(x, i; ki) is non-decreasing,

4) k3−i 7→ û(x, i; k3−i) is non-increasing.

Thus, we can prove each result separately.

i) Taking j ∈ S, I1
j > I2

j and using (3.29), Lemma 3.12 and 1), we have

bi(I
2
j ) := sup{x : u(x, i; I2

j ) ≤ −ki} ≤ sup{x : u(x, i; I1
j ) ≤ −ki} =: bi(I

1
j ).

ii) Taking j ∈ S, µ1
j > µ2

j and using (3.29), Lemma 3.12 and 2), we have

bi(µ
2
j) := sup{x : u(x, i;µ2

j) ≤ −ki} ≤ sup{x : u(x, i;µ1
j) ≤ −ki} =: bi(µ

1
j).

iii) Taking k1
i > k2

i and using (3.29), Lemma 3.12 and 3), we have

bi(k
2
i ) := sup{x : û(x, i; k2

i ) ≤ 0} ≥ sup{x : u(x, i; k1
i ) ≤ 0} =: bi(k

1
i ).
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3.2 The Singular Stochastic Control Case

iv) Taking k1
3−i > k2

3−i and using (3.29), Lemma 3.12 and 4), we have

bi(k
2
3−i) := sup{x : û(x, i; k2

3−i) ≤ 0} ≤ sup{x : u(x, i; k1
3−i) ≤ 0} =: bi(k

1
3−i).

The results so far are obtained analytically. But to study the dependence of the
free-boundaries bi with respect to σi and λi, we have to apply numerical methods
in order to solve system (3.19). This is done by using Mathematica. Therefore, we
introduce a benchmark case with the following parameter values:

Regime 1: µ1 = 0.2, σ1 = 0.2, α1 = 0.2, I1 = 2, k1 = 2, λ1 = 0.2

Regime 2: µ2 = 1, σ2 = 0.2, α2 = 0.2, I2 = 2, k2 = 2, λ2 = 0.2

and a discount rate of δ = 0.2.
In this setting, the two regimes are clearly distinguishable by the drift. In par-

ticular, regime 1 is connected to a regime with lower demand. Hence we call it the
low regime. Regime 2 is connected to a regime with higher demand, called the high
regime.

Considering the above parameters, the solution to system (3.19) can be obtained
numerically and is given by

A1 = −0.206, A2 = −15.429, Ã1 = −0.308, Ã2 = 0.0, D1 = 5.844, D2 = 8.382.

For the free-boundaries, we obtain

b1 = 0, 914, b2 = 0.977.

Figure 1 illustrates the value function for both regimes.

1 2 3 4 5

4

6

8

10

v(x,1)

v(x,2)

Figure 1: Graphical illustration of the value function for the benchmark case.

Starting from the benchmark case, we study the dependence of b1 and b2 on the
uncertainty parameters σi. The results are presented in Figure 2.

One can see that both free-boundaries are decreasing in the volatility parameters
σi. Hence, a higher uncertainty in the demand lowers in both regimes the value
up to which the �rm would produce. Therefore, higher uncertainty leads to less
production. Moreover, if the uncertainty in the high regime is too high in comparison
to the one in the low regime, the role of the two regimes switches (see the empty
area in Figure 2).

Next, we investigate the dependence of the free-boundaries on λi.
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3.2 The Singular Stochastic Control Case

Figure 2: Graphical illustration of the dependence of the free-boundaries on σi. The
other parameters are assumed to be the same as in the benchmark case. In the
empty space in the right corner, the roles of state 1 and state 2 switches and b1

becomes bigger than b2. We let this part be empty.

Figure 3: Graphical illustration of the dependence of the free-boundaries on λi. The
other parameters are assumed to be the same as in the benchmark case.

In Figure 3 we see that both free-boundaries are increasing in λ1, but decreasing
in λ2. Hence, a higher probability of leaving the low regime increases both free-
boundaries, and leads to more production, because it is more likely to be in the
regime with higher demand. Analogously, if the probability of leaving the high
regime increases, it leads to lower production in both states.

For completeness, we introduce Figure 4, which shows the behavior of the free-
boundaries with respect to µi, see Lemma 3.13. More precisely,one see that both
free-boundaries converge to each other if the drift components become equal.
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Figure 4: Graphical illustration of the dependence of the free-boundaries on µi. The
other parameters are assumed to be the same as in the benchmark case.

3.3 The Bounded-Velocity Control Case

In this section we consider the model with bounded production rates. In this case,
the production process P = {Pt, t ≥ 0} is represented as dPt = pt dt, where p is
the production rate. Let Ki, i ∈ S, be positive real numbers. The set of admissible
strategies is de�ned by the (non-empty) set

AB :=

{
p : Ω× R+ → R+ : F−adapted s.t. p(ω, t) ≤ Kεt

}
.

We note that for an admissible control p, the inventory is given by

Xt = x+

∫ t

0

(ps − µεs) ds−
∫ t

0

σεs dWs

for every t ∈ [ 0,∞).
Under these assumptions, Problem 3.1 reads as follows.

Problem 3.14. The management aims at choosing the optimal production rate
p̂ ∈ AB, which solves the problem

V (x, i) := inf
p∈AB

J(x, i; p)

:= inf
p∈AB

E
[ ∫ ∞

0

e−δsαεs(Xs − Iεs)2ds+

∫ ∞
0

e−δskεspsds

]
.

Remark 3.15. We note that
J(x, i; p) <∞

for all control processes p ∈ AB. Moreover, as in the SSC case, see Lemma 3.2, it
holds that

0 ≤ V (x, i) ≤ C
(
1 + x2

)
(3.30)

for some constant C > 0.
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3.3 The Bounded-Velocity Control Case

3.3.1 Veri�cation Theorem

By the dynamic programming principle, we expect V to identify with a suitable
solution to the Hamilton-Jacobi-Bellman equation

inf
p∈[0,Ki]

{(Lp − δ) v(x, i) + kip}+ αi(x− Ii)2 = 0 (3.31)

for any (x, i) ∈ R× S. Lp denotes, given a production strategy p, the in�nitesimal
generator of (X, ε), acting on functions g(·, i) ∈ C2(R), and, for given i ∈ S, it yields

Lpg(x, i) :=
1

2
σ2
i gxx + (p− µi)gx − λig(x, i) +

∑
i 6=j∈S

qijg(x, j).

Since we consider here, in contrast to the SSC case, only controls of bounded-
velocity, the corresponding HJB equation (3.31) results in a system of N ODEs,
coupled through the transition rates qij, without gradient constrains.

Next, we present a veri�cation theorem that provides su�cient conditions under
which a solution to the HJB equation (3.31) identi�es with the value function of
Problem 3.14.

Theorem 3.16. Let v(·, i) ∈ C2(R \Ni), i ∈ S, where Ni are �nite subsets of R be
a solution to the HJB equation (3.31) for all (x, i) ∈ R×S. Moreover, assume that
v is convex with quadratic growth, so

|v(x, i)| ≤ C
(
1 + x2

)
.

Then, the control p̂ de�ned by

p̂t = arg inf
p∈[0,Kεt ]

{(Lp − δ) v(x, i) + kip},

t ∈ [ 0,∞), is the optimal control for Problem 3.14. Moreover, it holds that v(x, i) =
J(x, i; p̂) and v is equal to the value function V of Problem 3.14.

Proof. Consider an admissible control p = (pt){t∈[0,∞)}. Let v(·, i), i ∈ S be a
solution of the HJB equation (3.31) and de�ne the function f(·, ·, i), i ∈ S by
f(t, x, i) = e−δtv(x, i). Following a procedure similar to Sotmayor and Cadenillas
[94], an application of Itô's formula for Markov modulated processes (see also [15]),
leads to

df(t,Xt, εt) =

(
1

2
σ2
εtfxx(t,Xt, εt) + (pt − µεt)fx(t,Xt, εt) + ft(t,Xt, εt)

)
dt

− fx(t,Xt, εt)σεtdWt +

(
λεtf(t,Xt, εt) +

∑
εt 6=j∈S

qεtjf(t,Xt, j)

)
dt+ dM f

t .

= e−δt (Lp − δ) v(Xt, εt)dt− σεte−δtvx(Xt, εt)dWt + dM f
t .

Here, the processM f = {M f
t , t ≥ 0} is a square integrable martingale when f(·, ·, i),

i ∈ S, is bounded (see equation (5) in [15]).
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We observe that v(·, i) and vx(·, i) are not necessarily bounded. Let a and b be
real numbers such that −∞ < a < X0 = x < b < +∞ and de�ne τa := inf{t ≥ 0 :
Xt = a}, τb := inf{t ≥ 0 : Xt = b} and τ := τa ∧ τb. Then, for every t ∈ [0,∞), we
get

e−δ(t∧τ)v(Xt∧τ , εt∧τ ) = v(X0, ε0) +

∫ t∧τ

0

e−δs (Lp − δ) v(Xs, εs)ds

−
∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs +M f

t∧τ −M
f
0 .

Taking expectations, we have

E
[
e−δ(t∧τ)v(Xt∧τ , εt∧τ )

]
= v(x, i) + E

[∫ t∧τ

0

e−δs (Lp − δ) v(Xs, εs)ds

]
− E

[∫ t∧τ

0

σεse
−δsvx(Xs, εs)dWs

]
+ E

[
M f

t −M
f
0

]
. (3.32)

We note that v(Xs, εs), vx(Xs, εs) and σεse
−δs vx(Xs, εs) are bounded for every s ∈

[ 0, t ∧ τ ]. Therefore, {M f
t∧τ , t ≥ 0} is a square integrable martingale and

E
[ ∫ t∧τ

0

σεse
−δsv′(Xs, εs)dWs

]
= 0.

Then, using equation (3.31) and taking a ↓ −∞ and b ↑ ∞, which implies τ → ∞,
we get from (3.32) that

v(x, i) ≤ E
[
e−δtv(Xt, εt)

]
+ E

[∫ t

0
e−δsαεs(Xs − Iεs)2ds

]
+ E

[∫ t

0
e−δskεspsds

]
. (3.33)

Let now K̄ := maxi∈S Ki, σ̄ := maxi∈S σi and µ := min i ∈ Sµi. Then, it holds that

Xt = x+

∫ t

0

(ps − µεs) ds−
∫ t

0

σεs dWs

≤ x+ (K̄ − µ)t+ σ̄ sup
s≤t
|Ws|.

By the quadratic growth condition of v, we obtain that

E
[
e−δt|v(Xt, εt)|

]
≤ E

[
e−δtC

(
1 +X2

t

)]
≤ e−δtC

(
1 + C1

(
(x+ (K̄ − µ)t)2 + σ̄2E

[(
sup
s≤t
|Ws|

)2
]))

≤ e−δtC
(
1 + C1

(
(x+ (K̄ − µ)t)2 + 4σ̄2E

[
W 2
t

]))
= e−δtC

(
1 + C1

(
(x+ (K̄ − µ)t)2 + 4σ̄2t

))
→t→∞ 0.
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Taking t→∞ in (3.33), we observe from the last inequality that

v(x, i) ≤ E
[∫ ∞

0

e−δsαεs(Xs − Iεs)2ds+

∫ ∞
0

e−δskεspsds

]
= J(x, i; p).

In particular, the inequality in (3.33) becomes an equality for p = p̂. Hence v(x, i) =
J(x, i; p̂) = V (x, i).

3.3.2 Construction of the Solution

In this section we construct a candidate value function that satis�es the HJB equa-
tion (3.31).

We note that for t ∈ [ 0,∞),

p̂t = arg inf
p∈[0,K_εt]

{pt [kεt + vx(Xt, εt)]} =

{
Kεt if vx(Xt, εt) < −kεt ,
0 if vx(Xt, εt) ≥ −kεt .

(3.34)

Hence, the candidate for optimal control p̂ has the form p̂t = ϕ(Xt, εt) for t ∈ [ 0,∞),
where ϕ(·, i), i ∈ S, is a measurable function de�ned by

ϕ(x, i) :=

{
Ki if vx(x, i) < −ki,
0 if vx(x, i) ≥ −ki,

for x ∈ R. Hence, the candidate optimal control is of so-called bang-bang-type and
it switches, given the regime i ∈ S, between the extreme values 0 (no production)
and Ki (maximal production).

For simplicity, we assume, as in the SSC case, that the economy shifts only
between two regimes, that is, S = {1, 2}. Under this assumption, we have that

Q =

(
−λ1 λ1

λ2 −λ2

)
.

By (3.30), we conjecture that v is convex and admits quadratic growth. We de�ne
bi := sup{x ∈ R : vx(x, i) ≤ ki}. The relation between b1 and b2 depends on the
relations among the di�erent parameters. We only consider the case b1 < b2. The
case b1 > b2 can be treated similar. we expect the candidate value function v to
solve, for x ∈ (−∞, bi),

1

2
σ2
i vxx(x, i)+(Ki−µi)vx(x, i)−(λi + δ) v(x, i)+λiv(x, 3−i)+αi(x−Ii)2 +Kiki = 0

and, for x ∈ [ bi,∞),

1

2
σ2
i vxx(x, i)− µivx(x, i)− (λi + δ) v(x, i) + λiv(x, 3− i) + αi(x− Ii)2 +Kiki = 0.

Due to our conjectures, we consider three possibilities for the initial level of the
inventory: x ∈ (−∞, b1), x ∈ [ b1, b2), and x ∈ [ b2,∞).
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When x ∈ [b2,∞), equation (3.31) leads to the following system of di�erential
equations:

−(λ1 + δ) v(x, 1)− µ1 vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2) + α1(x− I1)2 = 0,

−(λ2 + δ) v(x, 2)− µ2 vx(x, 2) +
1

2
σ2

2 vxx(x, 2) + λ2 v(x, 1) + α2(x− I2)2 = 0.

(3.35)

Consider the characteristic equation for (3.35), φ1
1(γ)φ1

2(γ) = λ1λ2, where

φ1
i (γ) := −1

2
σ2
i γ

2 + µi γ + (λi + δ), i = 1, 2.

Lemma 3.6 proves that φ1
1(γ) φ1

2(γ) = λ1λ2 has 4 real roots: γ1 < γ2 < 0 < γ3 < γ4.
Then, the solution to the system of di�erential equations (3.35) is

v(x, 1) = A1 e
γ1(x−b2) + A2 e

γ2(x−b2) + A3 e
γ3(x−b2) + A4 e

γ4(x−b2)

+R1(x− b2)2 + S1(x− b2) + T1,

v(x, 2) = B1 e
γ1(x−b2) + B2 e

γ2(x−b2) + B3 e
γ3(x−b2) + B4 e

γ4(x−b2)

+R2(x− b2)2 + S2(x− b2) + T2,

where, for each j = 1, 2, 3, 4,

Bj =
φ1

1(γj)

λ1

Aj =
λ2

φ1
2(γj)

Aj. (3.36)

Furthermore, Ri, Si and Ti are the solution to the system

0 = −(λ1 + δ)R1 + λ1R2 + α1,

0 = −(λ1 + δ)S1 − 2µ1R1 + λ1S2 + 2α1(b2 − I1),

0 = −(λ1 + δ)T1 − µ1S1 + σ2
1R1 + λ1T2 + α1(b2 − I1)2,

0 = −(λ2 + δ)R2 + λ2R1 + α2,

0 = −(λ2 + δ)S2 − 2µ2R2 + λ2S1 + 2α2(b2 − I2),

0 = −(λ2 + δ)T2 − µ2S2 + σ2
2R2 + λ2T1 + α2(b2 − I2)2.

Recall that we conjecture that v(·, i) admits quadratic growth. Thus, we set B3 =
B4 = A3 = A4 = 0. Hence, the solution of the system (3.35) simpli�es to

v(x, 1) = A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1, (3.37)

v(x, 2) = B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2. (3.38)

Nest, we consider x ∈ [ b1, b2), Now, the HJB equation (3.31) reads as

0 = −(λ1 + δ)v(x, 1)− µ1 vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2) + α1(x− I1)2,

0 = −(λ2 + δ)v(x, 2) + (K2 − µ2)vx(x, 2) +
1

2
σ2

2vxx(x, 2) + λ2v(x, 1)

+K2k2 + α2(x− I2)2.

(3.39)
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Consider the characteristic equation for the system (3.39), φ2
1(γ̃) φ2

2(γ̃) = λ1λ2,
where

φ2
1(γ̃) := −1

2
σ2

1 γ̃
2 + µ1 γ̃ + (λ1 + δ),

φ2
2(γ̃) := −1

2
σ2

2 γ̃
2 + (µ2 −K2) γ̃ + (λ2 + δ).

From Lemma 3.6, φ2
1(γ̃) φ2

2(γ̃) = λ1λ2 has 4 real roots: γ̃1 < γ̃2 < 0 < γ̃3 < γ̃4.
Then, we �nd that the solution to the system of equations (3.39) is

v(x, 1) = Ã1 e
γ̃1(x−b1) + Ã2 e

γ̃2(x−b1) + Ã3 e
γ̃3(x−b1) + Ã4 e

γ̃4(x−b1)

+ R̃1(x− b1)2 + S̃1(x− b1) + T̃1, (3.40)

v(x, 2) = B̃1 e
γ̃1(x−b1) + B̃2 e

γ̃2(x−b1) + B̃3 e
γ̃3(x−b1) + B̃4 e

γ̃4(x−b1)

+ R̃2(x− b1)2 + S̃2(x− b1) + T̃2, (3.41)

where, for each j = 1, 2, 3, 4,

B̃j =
φ2

1(γ̃j)

λ1

Ãj =
λ2

φ2
2(γ̃j)

Ãj. (3.42)

Furthermore, R̃i, S̃i and T̃i are the solution of the system

0 = −(λ1 + δ)R̃1 + λ1R̃2 + α1,

0 = −(λ1 + δ)S̃1 − 2µ1R̃1 + λ1S̃2 + 2α1(b1 − I1),

0 = −(λ1 + δ)T̃1 − µ1S̃1 + σ2
1R̃1 + λ1T̃2 + α1(b1 − I1)2,

0 = −(λ2 + δ)R̃2 + λ2R̃1 + α2,

0 = −(λ2 + δ)S̃2 + 2(K2 − µ2)R̃2 + λ2S̃1 + 2α2(b1 − I2),

0 = −(λ2 + δ)T̃2 + (K2 − µ2)S̃2 + σ2
2R̃2 + λ2T̃1 +K2k2 + α2(b1 − I2)2.

Finally, for x ∈ (−∞, b1), the function v is assumed to solve the system

0 = −(λ1 + δ) v(x, 1) + (K1 − µ1) vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2)

+K1k1 + α1(x− I1)2,

0 = −(λ2 + δ) v(x, 2) + (K2 − µ2) vx(x, 2) +
1

2
σ2

2 vxx(x, 2) + λ2 v(x, 1)

+K2k2 + α2(x− I2)2.

(3.43)

Consider the characteristic equation for (3.43), φ3
1(γ̂) φ3

2(γ̂) = λ1λ2, where

φ3
i (γ̂) := −1

2
σ2
i γ̂

2 − (Ki − µi) γ̂ + (λi + δ).

From Lemma 3.6, φ3
1(γ̂φ3

2(γ̂) = λ1λ2 has 4 real roots: γ̂1 < γ̂2 < 0 < γ̂3 < γ̂4. Then,
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the solution to the system of di�erential equations (3.43) is given by:

v(x, 1) = Â1e
γ̂1(x−b1) + Â2e

γ̂2(x−b1) + Â3e
γ̂3(x−b1) + Â4e

γ̂4(x−b1)

+ R̂1(x− b1)2 + Ŝ1(x− b1) + T̂1,

v(x, 2) = B̂1e
γ̂1(x−b1) + B̂2e

γ̂2(x−b1) + B̂3e
γ̂3(x−b1) + B̂4e

γ̂4(x−b1)

+ R̂2(x− b1)2 + Ŝ2(x− b1) + T̂2,

where, for each j = 1, 2, 3, 4,

B̂j =
φ3

1(γ̂j)

λ1

Âj =
λ2

φ3
2(γ̂j)

Âj. (3.44)

Furthermore, R̂i, Ŝi and T̂i are the solution of the system

0 = −(λ1 + δ)R̂1 + λ1R̂2 + α1,

0 = −(λ1 + δ)Ŝ1 + 2(K1 − µ1)R̂1 + λ1Ŝ2 + 2α1(b1 − I1),

0 = −(λ1 + δ)T̂1 + (K1 − µ1)Ŝ1 + σ2
1R̂1 + λ1T̂2 +K1k1 + α1(b1 − I1)2,

0 = −(λ2 + δ)R̂2 + λ2R̂1 + α2,

0 = −(λ2 + δ)Ŝ2 + 2(K2 − µ2)R̂2 + λ2Ŝ1 + 2α2(b1 − I2),

0 = −(λ2 + δ)T̂2 + (K2 − µ2)Ŝ2 + σ2
2R̂2 + λ2T̂1 +K2k2 + α2(b1 − I2)2.

Recall that we are conjecturing that the function v admits quadratic growth.
Hence, we set Â1 = Â2 = B̂1 = B̂2 = 0. Therefore,

v(x, 1) = Â3e
γ̂3(x−b1) + Â4e

γ̂4(x−b1) + R̂1(x− b1)2 + Ŝ1(x− b1) + T̂1, (3.45)

v(x, 2) = B̂3e
γ̂3(x−b1) + B̂4e

γ̂4(x−b1) + R̂2(x− b1)2 + Ŝ2(x− b1) + T̂2 (3.46)

is the solution for the system (3.43), where (3.44) is satis�ed for j = 1, 2.
In order to �nd the thresholds b1 and b2, and the coe�cients in the functions

(3.37)-(3.38), (3.40)-(3.41) and (3.45)-(3.46), we impose the smooth-�t condition.
Thus, we expect v to solve, for each i = 1, 2, the system

v(bi−, i) = v(bi+, i),
v(b3−i−, i) = v(b3−i+, i),
vx(bi−, i) = −ki,
vx(bi+, i) = −ki,
vx(b3−i−, i) = vx(b3−i+, i).

(3.47)

The solution of the system (3.47) provides the values for b1, b2 and the values
for Aj, j = 1, 2, Ãj, j = 1, 2, 3, 4, and Âj, j = 3, 4. The values for the corresponding
Bj, B̃j and B̂j can be found from (3.36), (3.42), and (3.44).

Remark 3.17. Note that system (3.47) is a non-linear system of ten equations and
ten unknowns. As in the singular stochastic control case, we can neither provide
existence nor uniqueness of the solution. Therefore, we will solve this system nu-
merically to provide the existence of a solution and to study comparative statics for
the free-boundaries b1 and b2.

63



3.3 The Bounded-Velocity Control Case

3.3.3 Veri�cation of the Solution

In this subsection, we prove that our candidate value function v coincides with the
true value function V of Problem 3.14. First, we investigate the regularity of the
candidate for the value function.

Lemma 3.18. Let Aj, j = 1, 2, Ãj, j = 1, 2, 3, 4, and Âj, j = 3, 4, be the solution of

the system of equations (3.47). Let Bj, j = 1, 2, B̃j, j = 1, 2, 3, 4, and B̂j, j = 3, 4,
be de�ned by (3.36), (3.42) and (3.44). Suppose that b1 < b2 and that vxx(bi, i) ≥ 0.
Then, the function v given by

v(x, 1) =


Â3e

γ̂3(x−b1) + Â4e
γ̂4(x−b1) + R̂1(x− b1)2 + Ŝ1(x− b1) + T̂1 x ∈ (−∞, b1),

Ã1 e
γ̃1(x−b1) + Ã2 e

γ̃2(x−b1) + Ã3 e
γ̃3(x−b1) + Ã4 e

γ̃4(x−b1)

+R̃1(x− b1)2 + S̃1(x− b1) + T̃1 x ∈ [ b1, b2),

A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1 x ∈ [ b2,∞),

and

v(x, 2) =


B̂3e

γ̂3(x−b1) + B̂4e
γ̂4(x−b1) + R̂2(x− b1)2 + Ŝ2(x− b1) + T̂2 x ∈ (−∞, b1),

B̃1 e
γ̃1(x−b1) + B̃2 e

γ̃2(x−b1) + B̃3 e
γ̃3(x−b1) + B̃4 e

γ̃4(x−b1)

+R̃2(x− b1)2 + S̃2(x− b1) + T̃2 x ∈ [ b1, b2),

B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2 x ∈ [ b2,∞),

is such that v(·, i) ∈ C∞(R \ {b1, b2}) ∩ C4(R \ {bi}) ∩ C2(R).

Proof. By construction and the smooth-�t conditions, see (3.47), the candidate the
value function v is such that v(·, i) ∈ C∞(R \ {b1, b2}) ∩ C1(R). Remember that the
candidate for value function solves the HJB equations, e.g., for x ∈ [b2,∞), v solves

0 = −(λ1 + δ) v(x, 1)− µ1 v
′(x, 1) +

1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2) + α1(x− I1)2,

0 = −(λ2 + δ) v(x, 2)− µ2 vx(x, 2) +
1

2
σ2

2 vxx(x, 2) + λ2 v(x, 1) + α2(x− I2)2,

(3.48)

for x ∈ [ b1, b2), v solves

0 = −(λ1 + δ) v(x, 1)− µ1 vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2) + α1(x− I1)2,

0 = −(λ2 + δ) v(x, 2) + (K2 − µ2) vx(x, 2) +
1

2
σ2

2 vxx(x, 2) + λ2 v(x, 1)

+K2k2 + α2(x− I2)2,

(3.49)

and for x ∈ (−∞, b1), v solves

0 = −(λ1 + δ) v(x, 1) + (K1 − µ1) vx(x, 1) +
1

2
σ2

1 vxx(x, 1) + λ1 v(x, 2)

+K1k1 + α1(x− I1)2,

0 = −(λ2 + δ) v(x, 2) + (K2 − µ2) vx(x, 2) +
1

2
σ2

2 vxx(x, 2) + λ2 v(x, 1)

+K2k2 + α2(x− I2)2.

(3.50)
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Using vx(b2, 2) = −k2. we obtain from the second equation in (3.48) and (3.49)
that v(·, 2) ∈ C2((b1,∞)) and further, di�erentiating the �rst equation in (3.48)
and (3.49), that v(·, 1) ∈ C4((b1,∞)). A similar argument holds at the other
free-boundary. Using that vx(b1, 1) = −k1, combining the �rst equation in (3.49)
and (3.50) gives that v(·, 1) ∈ C2((−∞, b2)) and further, di�erentiating the sec-
ond equation in (3.49) and (3.50), that v(·, 2) ∈ C4((−∞, b2)). Hence, v(·, i) ∈
C∞(R \ {b1, b2}) ∩ C4(R \ {bi}) ∩ C2(R).

Theorem 3.19. Let Aj, j = 1, 2, Ãj, j = 1, 2, 3, 4, and Âj, j = 3, 4, be the solution

of the system of equations (3.47). Let Bj, j = 1, 2, B̃j, j = 1, 2, 3, 4, and B̂j,
j = 3, 4, be de�ned by (3.36), (3.42) and (3.44). Suppose that b1 < b2 and that
vxx(bi, i) ≥ 0. Then, the function v given by

v(x, 1) =


Â3e

γ̂3(x−b1) + Â4e
γ̂4(x−b1) + R̂1(x− b1)2 + Ŝ1(x− b1) + T̂1 x ∈ (−∞, b1),

Ã1 e
γ̃1(x−b1) + Ã2 e

γ̃2(x−b1) + Ã3 e
γ̃3(x−b1) + Ã4 e

γ̃4(x−b1)

+R̃1(x− b1)2 + S̃1(x− b1) + T̃1 x ∈ [ b1, b2),

A1 e
γ1(x−b2) + A2 e

γ2(x−b2) +R1(x− b2)2 + S1(x− b2) + T1 x ∈ [ b2,∞),

and

v(x, 2) =


B̂3e

γ̂3(x−b1) + B̂4e
γ̂4(x−b1) + R̂2(x− b1)2 + Ŝ2(x− b1) + T̂2 x ∈ (−∞, b1),

B̃1 e
γ̃1(x−b1) + B̃2 e

γ̃2(x−b1) + B̃3 e
γ̃3(x−b1) + B̃4 e

γ̃4(x−b1)

+R̃2(x− b1)2 + S̃2(x− b1) + T̃2 x ∈ [ b1, b2),

B1 e
γ1(x−b2) + B2 e

γ2(x−b2) +R2(x− b2)2 + S2(x− b2) + T2 x ∈ [ b2,∞),

is the value function V of Problem 3.14. Furthermore, p̂ de�ned by

p̂t =

{
Ki if εt = i and Xt ∈ (−∞, bi),
0 if εt = i and Xt ∈ [ bi,∞),

is the optimal production rate policy for Problem 3.14.

Proof. To prove that the candidate value function v de�ned above is the true value
function of Problem 3.14, it is enough to show that it satis�es all the conditions of
Theorem 3.16 and the conjectures we made in Section 3.3.2.

First, we show that v is convex. Given the regularity of v, see Lemma 3.18, we
can apply Itô's formula, for given i ∈ S and x 6= bi, as in the proof of Theorem 3.16,
to e−δsvxx(Xx,i

s , εs). Then, we get that

E
[
e−δτvxx(Xτ , ετ )

]
= vxx(x, i) + E

[∫ τ

0

e−δs (Lp − δ) vxx(Xs, εs) ds

]
,

where τ is a stopping time. In the following, we denote the n-th derivative with
respect to x of v(n)(x, i). Since v solves the Hamilton-Jacobi-Bellmann equation,
the regularity of v implies

1

2
σ2
i v

(4)(x, i) + (K − µi) v(3)(x, i)− (δ + λi)vxx(x, i) + λiv(x, 3− i) = −2αi
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when x < bi and

1

2
σ2
i v

(4)(x, i)− µi v(3)(x, i)− (δ + λi)vxx(x, i) + λiv(x, 3− i) = −2αi

when x ≥ bi.
Taking τ := inf{t ≥ 0 : (Xt, εt) ∈ {(b1, 1), (b2, 2)}}, we obtain, for i ∈ {1, 2} and
x > bi,

vxx(x, i) = E
[
2

∫ τ

0

e−δsαεs ds+ e−δτvxx(b1, 1)1{(Xx,i
τ ,ετ )=(b1,1)}

+e−δτvxx(b2, 2)1{(Xx,i
τ ,ετ )=(b2,2)}

]
.

We recall that we assume vxx(bi, i) ≥ 0 and αi > 0, i ∈ S. Hence, vxx(x, i) ≥ 0
(in particular vxx(x, i) > 0) and v(·, i) is convex. Since v is convex, it follows
immediately by construction that v solves (3.31), e.g., v solves

inf
p∈[ 0,Ki ]

{(Lp − δ) v(x, i) + kip}+ αi(x− Ii)2 = 0.

Moreover, the quadratic growth condition is also ful�lled by construction. Hence,
by Theorem 3.16, v identi�es with the true value function and p̂ is the optimal
control.

Remark 3.20. The assumption that vxx(bi, i) ≥ 0 is crucial for the proof. In the
SSC case, according to the smooth-�t conditions, see (3.19), we have that vxx(bi, i) =
0. While in the bounded case, it is a priori not clear whether the condition holds.
Therefore, at this point the assumption is not restrictive since a violation of it would
imply that v(·, i) is not convex, thus our construction would not be applicable.
We can show numerically, that the assumption holds for various parameter values.
Unfortunately, because of the complex structure of (3.47), it seems not possible to
prove a priori that a solution to (3.47) ful�lling the above assumption exists.

Summarizing our results, we have proven that our candidate value function v
coincides with the true value function of Problem 3.14. Moreover, the optimal
control is given by (3.34). Therefore, the optimal production policy, given the
regime i, works as follows: (a) do not produce when the inventory level is above the
threshold bi, and (b) produce with the maximum rate Ki whenever the inventory
level falls below bi. We observe that the �rm should also increase production because
the regime is changing. This happens when the level of the inventory lies in the
interval (b1, b2) and the regime changes from i = 1 to i = 2.

3.3.4 Comparative Statics and Numerical Examples

In this subsection, we study the in�uence of some parameters on the free-boundaries
bi. In contrast to the SSC case, our analysis is completely numerical, since there
is no link between our classical bounded-velocity stochastic control problem and an
OS problem. The numerical results are computed by using Mathematica.
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3.3 The Bounded-Velocity Control Case

Therefore, we basically consider the same benchmark case with the following
parameter values:

State 1: µ1 = 0.2, σ1 = 0.2, α1 = 0.2, I1 = 2, k1 = 2, λ1 = 0.2, K1 = 1,

State 2: µ2 = 1, σ2 = 0.2, α2 = 0.2, I2 = 2, k2 = 2, λ2 = 0.2, K2 = 1,

and a discount rate of δ = 0.2.
Again, we call state 1 the low regime and state 2 the high regime.
We obtain the following solution to the system (3.47):

Â3 = −14, 267, Â4 = 0, 001, Ã1 = −0.002, Ã2 = −1, 085, Ã3 = −0, 006,

Ã4 = 0, 000, A1 = −0, 138, A2 = −14, 465, b1 = 0, 976, b2 = 1, 201.

To verify that this solution leads to the true value function, we have to show
that vxx(bi, i) ≥ 0 holds true. Computing these expressions gives

vxx(b1, 1) = 0.055, vxx(b2, 2) = 0.100.

Therefore, the candidate value function v is indeed the true value function. Figure
5 visualizes the value function.

1 2 3 4 5

4

6

8

10

v(x,1)

v(x,2)

Figure 5: Graphical illustration of the value function for the benchmark case.
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Figure 6: Graphical illustration of the dependence of the free-boundaries on µi. The
other parameters are assumed to be the same as in the benchmark case..

In a �rst step, we study the dependence of the free-boundaries on µi. Figure 6
visualize that both free-boundaries increases if one of the drift components increases.
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Moreover, as expected, for the same drift the free-boundaries are equal. This result
is plausible, since a rise of µi increases the expected future demand causing the �rm
to compensate by expanding the production.

Next, we investigate the dependence of the free-boundaries on λi.

Figure 7: Graphical illustration of the dependence of the free-boundaries on λi. The
other parameters are assumed to be the same as in the benchmark case.

Figure 7 illustrates that both free-boundaries are increasing in λ1 and decreasing
in λ2. Hence, we obtain the same results as in the SSC case. The reason for this
behavior is quite clear. If the probability of leaving the low regime is increasing,
both free-boundaries increase because more time is spend in the high regime. If
instead the probability of leaving the high regime is increasing, more time is spend
in the low regime, thus production decreases.

Next, we study the dependence of the free-boundaries on σi.

Figure 8: Graphical illustration of the dependence of the free-boundaries on σi. The
other parameters are assumed to be the same as in the benchmark case.

Figure 8 presents our results showing an interesting e�ect. On the one hand,
both free-boundaries are decreasing in σ1 as in the SSC case, On the other hand,
they are increasing in σ2. This means that a higher uncertainty in the low regime
causes the �rm to reduce the production, but a higher uncertainty in the high regime
leads to more production. This is di�erent in comparison to the SSC case.

Finally, we investigate the dependence of the free-boundaries on ki. In the SSC
case, see Lemma 3.13, we see that ki 7→ bi(ki) is non-increasing while k3−i 7→ bi(k3−i)
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is non-decreasing. Figure 9 shows the numerical results of the dependence of free-
boundaries on ki in the bounded-velocity control case. One can see that, at least
in this parameter setting, the free-boundaries evolve in the same way as in the SSC
case.
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Figure 9: Graphical illustration of the dependence of the free-boundaries on ki. The
other parameters are assumed to be the same as in the benchmark case.

3.4 Comparison Between Di�erent Models

3.4.1 Comparison Between the Singular and the Bounded-Velocity Con-
trol Cases

In this section we compare the two di�erent cases investigated so far starting with
the two benchmark cases. We note that, apart from the additional parameters
K1 = K2 = 1, the benchmark cases coincide.

In the following, we denote by bUi the free-boundaries of the SSC case and by
bBi the free-boundaries of the bounded-velocity case. For the benchmark cases, we
obtain that

bB1 = 0, 976 > 0, 914 = bU1 and bB2 = 1.201 > 0, 977 = bU2 .

Hence, the �rm starts earlier to produce in the bounded-velocity control case com-
pared to the SSC case. This is reasonable, because in the SSC case the �rm can
produce instantaneously any amount of the good, hence it can tolerate a lower in-
ventory level. While in the bounded-velocity control case it can happen that the
inventory level decreases even though that the production is maximal.

Next, we denote by VB the value function of the bounded-velocity control case
and by VU the value function of the SSC case. If Ki is increasing, one expects that
the value functions of the bounded-velocity control case converges from above to the
value function of the SSC case. This is due to the fact that the bounded-velocity
controls are also admissible in the SSC case. This is illustrated in Figure 10, where
the relative distance between the value functions is shown with respect to several
values for Ki. For simplicity, we assume that K1 = K2 = K.

A similar result can be obtained for the free-boundaries, see Figure 11.
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Figure 10: Graphical illustration of the relative change of the value functions in the
di�erent settings for certain values of Ki. The other parameters are assumed to be
the same as in the benchmark case.
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Figure 11: Graphical illustration of the absolute di�erence of the free-boundaries in
the di�erent settings for several values of K. The other parameters are assumed to
be the same as in the benchmark case.

3.4.2 The Singular Stochastic Control Case: A Comparison with the
Single Regime Case

The problem of a single regime can be solved rather easily and therefore the deatls
are omitted. In particular, the free-boundary b in this problem can be calculated
explicitly:

b =
−δ(k − 2α

δγ1
) + 2µα

δ
+ 2αI

2α
,

where γ1 is the negative solution of 1
2
σ2γ2 − µγ − δ = 0. Denoting by bls the free-

boundary for the single regime case with the parameter values of the low regime
(µ = 0.2, σ = 0.2, δ = 0.2, α = 0.2, I = 2 and k = 2) and by bus the free-boundary
for the single regime case with the parameter values of the high regime (µ = 1.0,
σ = 0.2, δ = 0.2, α = 0.2, I = 2 and k = 2), Figure 12 shows the corresponding
values of the free-boundaries of the single regime and the two regime case.

One can see that the free-boundaries in the case with regime switching lie between
the ones of the corresponding single regime cases. To some extend, this can be
understood as an average e�ect. For example, if we extend the single regime model
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Figure 12: Graphical illustration of the di�erent free-boundaries of the one regime
and the two regime model. The parameters are assumed to be the same as in the
benchmark case.

(in the low regime) with a second regime (the high regime), the �rm reacts to the
new possibility of a higher demand rate by increasing the level above which the
inventory is supposed to be maintained.

3.4.3 The Bounded-Velocity Control Case: A Comparison with the Sin-
gle Regime Case

If there is no regime switching, the free-boundary b can be calculated explicitly:

b = −2Kαγ1γ2 − 2αγ1δ − 2αγ2δ − 2Iαγ1γ2δ + kγ1γ2δ
2 − 4αγ1γ2µ

2αγ1γ2δ
,

where γ1 is the positive solution of 1
2
σ2γ2 + (K − µ)γ− δ = 0 and γ2 is the negative

solution of 1
2
σ2γ2 − µγ − δ = 0.

Again, we consider the low regime (with parameter values µ = 0.2, σ = 0.2,
δ = 0.2, α = 0.2, I = 2, k = 2 and K = 1) and the high regime (with parameter
values µ = 1, σ = 0.2, δ = 0.2, α = 0.2, I = 2, k = 2 and K = 1). Denoting by bls
the free-boundary for the single regime case with the parameter values of the low
regime and by bus the free-boundary for the single regime case with the parameter
values of the high regime, the same average e�ect as in the SSC case occurs, see
Figure 13.

3.5 Conclusion

In this part of the thesis, we derived an analytical solution for the optimal production
problem of a �rm when it is confronted with an uncertain demand for its product.
Mathematically, the demand uncertainty is modeled by two components; a Brownian
motion capturing random short-term �uctuations in the economy and a continuous-
time Markov chain determining the uncertain long-term conditions. We investigated
two scenarios. One, in which a �rm can immediately produce any amount of a good
and one in which the production is expressed by a non-negative rate bounded from
above. From a mathematical point of view, the �rst case is modeled as a SSC
problem, while the second one is modeled as a classical stochastic control problem
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Figure 13: Graphical illustration of the di�erent free-boundaries of the no regime
and the two regime model. The parameters are assumed to be the same as in the
benchmark case.

with bounded-velocity controls. For both scenarios, we �nd an analytical solution
for the value function using a guess-and-verify approach. Moreover, the optimal
production strategy is characterized by constant free-boundaries. In particular, the
�rm starts to produce when the inventory falls below these free-boundaries. The
values of the free-boundaries are derived numerically. In the scope of a comparative
static analysis we studied the dependence of the free-boundaries on some model
parameters. The most remarkable result is that, in a particular benchmark case,
the free-boundaries of the two scenarios show a di�erent behavior with respect to the
uncertainty parameter in the high regime. More precisely, the free-boundaries are
decreasing in the SSC case, but increasing in the case of bounded-velocity controls.
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4 A Singular Stochastic Control Problem with In-

terconnected Dynamics 7

4.1 Problem Formulation

Let (Ω,F ,F := (Ft)t≥0,P) be a complete �ltered probability space rich enough to
accommodate an F-Brownian motion W := (Wt)t≥0. We assume that the �ltration
F satis�es the usual conditions.

Introducing the (nonempty) set

A := {ξ : Ω× R+ → R : (ξt)t≥0 is F-adapted and such that t 7→ ξt is a.s.

càdlàg and (locally) of �nite variation}, (4.1)

for any ξ ∈ A, we denote by ξ+ and ξ− the two non-decreasing F-adapted càdlàg
processes providing the minimal decomposition of ξ; i.e. ξ = ξ+ − ξ− and the (ran-
dom) Borel-measures induced on [0,∞) by ξ+ and ξ− have disjoint supports. In the
following, for any ξ ∈ A, we set ξ±0− = 0 a.s. and we denote by |ξ|t := ξ+

t + ξ−t , t ≥ 0,
its total variation.

For ξ ∈ A, (x, y) ∈ R2, and α > 0, we consider the purely controlled dynamics

Y y,ξ
t = y + ξ+

t − ξ−t , t ≥ 0, Y y,ξ
0− = y, (4.2)

as well as the di�usive{
dXx,y,ξ

t =
(
αY y,ξ

t − θXx,y,ξ
t

)
dt+ η dWt, t > 0,

Xx,ξ
0 = x,

(4.3)

where η > 0 is the volatility, α > 0 measures the strength of interaction, and θ ≥ 0.
If θ > 0, the process Xx,y,ξ evolves as an Ornstein Uhlenbeck process with mean
reversion speed θ, in the case θ = 0 it evolves as a drifted Brownian Motion; the
unique strong solution to (4.3) is given by

Xx,y,ξ
t =

{
xe−θt + e−θtα

∫ t
0
eθsY y,ξ

s ds+ ηe−θt
∫ t

0
eθs dWs, θ > 0,

x+ α
∫ t

0
Y y,ξ
s ds+ ηWt, θ = 0.

(4.4)

Remark 4.1. The assumption α > 0 is not necessary for the following analysis; all
results, up to small modi�cations, can be obtained with the same methods also for
α < 0. In order to simplify the exposition, we only consider α > 0.

This model can capture di�erent practical problems. For example, in the case
of an Ornstein Uhlenbeck process, see [44], one can say that Y y,ξ describes the
evolution of the key interest rate, purely controlled by a central bank, and Xx,y,ξ

gives the value of in�ation. Another reasonable application for our model might be
the problem of controlling the CO2 emissions of a company. Xx,y,ξ describes the

7This section is already published in two joint works with Giorgio Ferrari and Salvatore Fed-
erico, see [44] and [45].
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4.1 Problem Formulation

total CO2 emissions and Y y,ξ the number of production units that do not employ
fossil fuel. This number can adjusted by the manager and a�ects negatively (α < 0)
the equilibrium value of CO2 emissions of the �rm. For θ = 0, one can think about
the problem of controlling the position of a satellite, which is disturbed by random
�uctuations and can be adjusted by controlling its velocity. Alternatively, Xx,y,ξ

might describe a random demand of a product, whose instantaneous trend Y y,ξ can
be a�ected via production (see, e.g., the review [95]).

The controller is faced with the problem of choosing, for given (x, y) ∈ R2 and
ρ > 0, a process ξ ∈ A such that the cost functional

J(x, y; ξ) := E
[ ∫ ∞

0

e−ρtf(Xx,y,ξ
t , Y y,ξ

t ) dt+

∫ ∞
0

e−ρtK d|ξ|t
]

(4.5)

is minimized; that is, it aims at solving

V (x, y) := inf
ξ∈A

J(x, y; ξ), (x, y) ∈ R2. (4.6)

In (4.5) and in the following, the integrals with respect to d|ξ| and dξ± are
intended in the Lebesgue-Stieltjes' sense; in particular, for ζ ∈ {|ξ|, ξ+, ξ−}, we set∫ s

0
( · )dζt :=

∫
[0,s]

( · )dζt in order to take into account a possible mass at time zero of
the Borel (random) measure dζ. The function f : R2 → R+ satis�es the following
standing assumption.

Assumption 4.2. There exists constants p > 1, and C0, C1, C2 > 0 such that the
following hold true:

(i) 0 ≤ f(z) ≤ C0

(
1 + |z|

)p
, for every z = (x, y) ∈ R2;

(ii) for every z = (x, y), z′ = (x′, y′) ∈ R2,

|f(z)− f(z′)| ≤ C1

(
1 + f(z) + f(z′)

)1− 1
p |z − z′|;

(iii) for every z = (x, y), z′ = (x′, y′) ∈ R2 and λ ∈ (0, 1),

0 ≤ λf(z)+(1−λ)f(z′)−f(λz+(1−λ)z′) ≤ C2λ(1−λ)(1+f(z)+f(z′))

(
1− 2

p

)+
|z−z′|2;

(iv) x 7→ fy(x, y) is non-decreasing for any y ∈ R.

Remark 4.3. (i) By Assumption 4.2-(iii), f is convex and locally semiconcave;
then, by Corollary 3.3.8 in [22],

f ∈ C1,Lip
loc (R2;R) = W 2,∞

loc (R2;R).

(ii) A function f satisfying Assumption 4.2 is, for example,

f(x, y) = |x− x̂|p + |y − ŷ|p,

with p ≥ 2 even for some x̂, ŷ ∈ R.
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4.2 The Related Dynkin Game and Preliminary Properties of the Free-Boundaries

We now provide some preliminary properties of the value function, whose classical
proof exploits the linear structure of the state equations, e.g. for all (x, y), (x̂, ŷ) ∈
R2, ξ ∈ A and t ≥ 0, it holds, by using (4.4), that

Xx,y,ξ
t −X x̂,ŷ,ξ

t =

{
(x− x̂)e−θt + α

θ
(y − ŷ)(1− e−θt), θ > 0,

(x− x̂) + α(y − ŷ)t, θ = 0.

Proposition 4.4. Let Assumption 4.2 hold and let p > 1 be the constant appearing
in the assumption. There exist constants Ĉ0, Ĉ1, Ĉ2 > 0 such that the following hold:

(i) 0 ≤ V (z) ≤ Ĉ0

(
1 + |z|p

)
, for every z = (x, y) ∈ R2;

(ii) for every z = (x, y), z′ = (x′, y′) ∈ R2,

|V (z)− V (z′)| ≤ Ĉ1

(
1 + |z|+ |z′|

)p−1|z − z′|;

(iii) for every z = (x, y), z′ = (x′, y′) ∈ R2 and λ ∈ (0, 1),

0 ≤ λV (z)+(1−λ)V (z′)−V (λz+(1−λ)z′) ≤ Ĉ2λ(1−λ)(1+|z|+|z′|)(p−2)+ |z−z′|2.

In particular, by (iii), V is convex and locally semiconcave, hence, by Corollary 3.3.8
in [22],

V ∈ C1,Lip
loc

(R2;R) = W 2,∞
loc

(R2;R).

Proof. Due to (4.2) and (4.3), the properties of f required in (i), (ii) and (iii) of
Assumption 4.2 are straightly inherited by V (see, e.g., the proof of Theorem 2.1 of
[28], that can easily adapted to our in�nite time-horizon setting, or that of Theorem
2.1 in [24]).

4.2 The Related Dynkin Game and Preliminary Properties
of the Free-Boundaries

In this section, we derive a representation of Vy (the derivative in direction of the
controlled variable). In particular, we identify Vy with the value of a zero-sum game
of optimal stopping (Dynkin ame). This representation allows us to obtain further
properties of Vy and to obtain a decomposition of the state space by two curves (the
free-boundaries). Moreover, we derive preliminary properties of these curves. In
order to simplify the notation, in the following we write Xx,y, instead of Xx,y,0, to
identify the solution to (4.3) for ξ ≡ 0.

Theorem 4.5. Let (x, y) ∈ R2. Denote by T the set of all F-stopping times, and
for (σ, τ) ∈ T × T consider the stopping functional

Ψ(σ, τ ;x, y) := E
[ ∫ τ∧σ

0

e−ρt
(
fy(X

x,y
t , y) + αVx(X

x,y
t , y)

)
dt

− e−ρτK1{τ≤σ} + e−ρσK1{τ>σ}

]
, (4.7)
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4.2 The Related Dynkin Game and Preliminary Properties of the Free-Boundaries

where Vx is the partial derivative of V with respect to x (which exists continuous by
Proposition 4.4). One has that the game has a value, i.e.

inf
σ∈T

sup
τ∈T

Ψ(σ, τ ;x, y) = sup
τ∈T

inf
σ∈T

Ψ(σ, τ ;x, y),

and such a value is given by

Vy(x, y) = inf
σ∈T

sup
τ∈T

Ψ(σ, τ ;x, y) = sup
τ∈T

inf
σ∈T

Ψ(σ, τ ;x, y). (4.8)

Moreover, the couple of F-stopping times (τ ?(x, y), σ?(x, y)) := (τ ?, σ?) such that

σ? := inf
{
t ≥ 0 : Vy(X

x,y
t , y) ≥ K

}
, τ ? := inf

{
t ≥ 0 : Vy(X

x,y
t , y) ≤ −K

}
(4.9)

(with the usual convention inf ∅ = +∞) forms a saddle-point; that is,

∀τ ∈ T Ψ(σ?, τ ;x, y) ≤ Vy(x, y) = Ψ(σ?, τ ?;x, y) ≤ Ψ(σ, τ ?;x, y) ∀σ ∈ T .

The proof of Theorem 4.5 can be obtained by approximating our degenerate
singular stochastic control problem by a fully di�usive setting and applying the
results from Theorems 3.11 and 3.13 in [26]. The details are presented in Appendix
B.1

Remark 4.6. This game re�ects some interesting interpretations. The game is a
two-player zero-sum game, where both players play against each other and have the
possibility to stop the game. Player 1 can choose σ and Player 2 τ . If Player 1 stops
the game, she pays e−ρσK to Player 2 and if Player 2 stops �rst, she pays e−ρτK to
Player 1. As long as the game is running, Player 1 is paying Player 2 a running cost
at a rate fy(X

x,y
t , y) + αVx(X

x,y
t , y). The optimal strategy of the players can then

be seen as a dynamic equilibrium between acting (and hence paying the linear cost
K) and waiting (which results in the running cost), where τ is the optimal time to
increase Y and σ the optimal time to decrease Y .

It is remarkable that the running cost consists of two parts. The �rst part
describes an immediate change in the running cost function f of the control problem
if one would act on y. The second part re�ects that a changed level of y also modify
the evolution of Xx,y

t because of the interconnected dynamics. Hence, an indirect
change in the cost arises, which is given through the term αVx(X

x,y
t , y). Moreover,

the second part implies that the Dynkin game depends on the optimal strategies of
the control problem.

From (4.8), it follows that −K ≤ Vy(x, y) ≤ K for any (x, y) ∈ R2. This suggest
to de�ne the following partition of R2;

I := {(x, y) ∈ R2 : Vy(x, y) = −K} ,
C := {(x, y) ∈ R2 : −K < Vy(x, y) < K} ,
D := {(x, y) ∈ R2 : Vy(x, y) = K} .

(4.10)
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4.2 The Related Dynkin Game and Preliminary Properties of the Free-Boundaries

By continuity of Vy (see Proposition 4.4), one obtains that the I and D are closed
sets and C is open. Moreover, de�ning b1 : R→ R and b2 : R→ R as

b1(x) := inf{y ∈ R | Vy(x, y) > −K} = sup{y ∈ R | Vy(x, y) = −K}, x ∈ R,
(4.11)

b2(x) := sup{y ∈ R | Vy(x, y) < K} = inf{y ∈ R | Vy(x, y) = K}, x ∈ R,

(with the usual conventions inf ∅ =∞, inf R = −∞, sup ∅ = −∞, supR =∞) one
obtain the representation

C = {(x, y) ∈ R2 : b1(x) < y < b2(x)},

I = {(x, y) ∈ R2 : y ≤ b1(x)}, D = {(x, y) ∈ R2 : y ≥ b2(x)}.

The Dynkin game representation allows us to proof easily the following result.

Lemma 4.7. Vy(·, y) is non-decreasing for all y ∈ R.

Proof. From the convexity of V (see Proposition 4.4), we have that x 7→ Vx(x, y)
is non-decreasing and by Assumption 4.2-(iv) it holds that x 7→ fy(x, y) is non-
decreasing. Hence, by (4.7), α > 0 and the linear structure of Xx,y

t in x, we have
that x 7→ Ψ(σ, τ ;x, y) is non-decreasing for all y ∈ R and σ, τ ∈ T . The claim
follows then by (4.8).

Using the proved monotonicity of Vy as well as its continuity, we obtain the
following preliminary properties of b1 and b2.

Proposition 4.8. The following hold:

(i) b1 : R→ R ∪ {−∞}, b2 : R→ R ∪ {∞};

(ii) b1 and b2 are non-increasing;

(iii) b1(x) < b2(x) for all x ∈ R;

(iv) b1 is left-continuous and b2 is right-continuous.

Proof. (i) We argue by contradiction. Assume that there exists a x0 ∈ R such
that b1(x0) =∞. By (4.11), we have Vy(x0, y) = −K for all y ∈ R and hence

V (x0, y + y′) = V (x0, y)−Ky′

for all y, y′ ∈ R. Since V is non-negative and V (x0, y) ≤ J(x0, y; 0) < ∞, we
obtain

Ky′ ≤ V (x0, y) ≤ J(x0, y; 0) <∞

for all y, y′ ∈ R. Since the right-hand side is independent of y′, a contradiction
is obtained by choosing y′ su�ciently large. A similar argument shows that b2

takes values in R ∪ {∞}.

(ii) The claimed monotonicty follows immediately from their de�nition and Lemma
4.7.
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4.2 The Related Dynkin Game and Preliminary Properties of the Free-Boundaries

(iii) The fact that b1(x) < b2(x) for all x ∈ R follows from the convexity of V with
respect to y and the continuity of Vy(x, ·) for all x ∈ R.

(iv) We only prove the statement for b1, since the argument for b2 can be proved
analogously. By (ii) above, we have that b1(x) ≤ b1(x − ε) for all ε > 0.
Hence, b1(x) ≤ limε→0 b1(x − ε) = b1(x−). On the other hand, the sequence
(x − ε, b1(x − ε))ε>0 ⊂ I and, since I is closed, we get that (x, bx(x−)) ∈ I.
Therefore, b1(x) ≥ b1(x−) and combining the two results give b1(x) = b1(x−).

Let us now de�ne

b̄1 := sup
x∈R

b1(x), b1 := inf
x∈R

b1(x), b̄2 := sup
x∈R

b2(x), b2 := inf
x∈R

b2(x), (4.12)

together with the pseudo-inverses of b1 and b2 by

g1(y) := sup{x ∈ R : b1(x) ≥ y}, g2(y) := inf{x ∈ R : b2(x) ≤ y} (4.13)

(again, with the usual conventions inf ∅ = ∞, inf R = −∞, sup ∅ = −∞, supR =
∞).

The pseudo-inverses will play an important role later on, and we give some
preliminary properties of them.

Proposition 4.9. The following holds:

(i) g1(y) = inf{x ∈ R : Vy(x, y) > −K}, g2(y) = sup{x ∈ R : Vy(x, y) < K};

(ii) the functions g1, g2 are non-increasing;

(iii) g1(y) < g2(y) for any y ∈ R;

(iv) If b̄2 < ∞, then g2(y) = −∞ for all y ≥ b̄2 and if b1 > −∞, then g1(y) = ∞
for all y ≤ b1.

Proof. Item (i) follows from the de�nition of g1 and g2 and (ii) by Proposition 4.8-
(ii). Claim (iii) is due to (i), Lemma 4.7 and the continuity of Vy for all y ∈ R. We
show (iv) by contradiction. Assume that b̄2 <∞ and suppose that limy→∞ g2(y) =
ḡ > −∞. But then, it holds that

Vy(x, y) < K

for all x < ḡ and y ∈ R. Hence b2(x) = ∞ for all x < ḡ and a contradiction is
reached. An analogous argument proves the statement for g1.
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4.3 The Structure of the Value Function

4.3 The Structure of the Value Function

Up to now, we derived a representation of the derivative Vy of the value function of
the control problem and we decomposed the state space into three connected regions
de�ned in terms of Vy. This regions are separated by non-increasing curves. In this
section, we exploit these results to determine the structure of the value function V .
In particular, we investigate the corresponding HJB equation for our problem.

For any given and �xed y ∈ R, denote by Ly the in�nitesimal generator associated
to the uncontrolled process Xx,y,0. Acting on g ∈ C2(R;R) it yields, for x ∈ R,

(
Lyg

)
(x) :=

{
η2

2
g′′(x) + (αy − θx) g′(x), θ > 0,

η2

2
g′′(x) + αyg′(x), θ = 0.

Any solution β(·, y) to the second-order ordinary di�erential equation (ODE)(
Lyβ(·, y)

)
(x)− ρβ(x, y) = 0, x ∈ R,

can be written as

β(x, y) = A(y)ψ(x, y) +B(y)ϕ(x, y), x ∈ R.

The functions ψ and ϕ are the strictly increasing and decreasing fundamental so-
lutions to the ODE above and are given by (see page 279 and 280 in [52], among
others)

ψ(x, y) =

exp

(
− θ(x−αθ y)

2

2η2

)
D− ρ

θ

(
−x−α

θ
y

η

√
2θ
)
, θ > 0,

exp
(
x
η2

(
−αy +

√
(αy)2 + 2ηρ

))
, θ = 0,

(4.14)

and

ϕ(x, y) =

exp

(
− θ(x−αθ y)

2

2η2

)
D ρ

θ

(
−x−α

θ
y

η

√
2θ
)
, θ > 0,

exp
(
x
η2

(
−αy −

√
(αy)2 + 2ηρ

))
, θ = 0,

(4.15)

where

Dβ(x) :=
e−

x2

4

Γ(−β)

∫ ∞
0

t−β−1e−
t2

2
−xtdt, β < 0,

is the Cylinder function of order β and Γ( · ) is the Euler's Gamma function (see,
e.g., Chapter VIII in [9]). Moreover, ψ and ϕ are strictly convex.

By the dynamic programming principle, we expect that V identi�es with a suit-
able solution of the variational inequality

max

{
− vy(x, y)−K, vy(x, y)−K, [(ρ− Ly)v(·, y)](x)− f(x, y)

}
= 0, (4.16)

for all (x, y) ∈ R2.

79



4.3 The Structure of the Value Function

Assuming enough regularity for v for applying Itô's formula, (4.16) can be derived
by investigating the three possible cases for the control: (i) immediately adjust Y by
a lump sum increase with marginal cost K and continue optimally, (ii) immediately
adjust Y by a lump sum decrease with marginal cost K and continue optimally, and
(iii) wait for a small amount of time and continue optimally. A formal derivation of
the dynamic programming can be found in [49]. In principle, since the HJB involves
an ODE instead of a PDE, it might be possible to follow now a guess-and-verify
approach by imposing certain smoothness assumptions. However, it would be hard
to prove optimality of a candidate value function due to the interaction between X
and Y . Therefore, we use a direct approach as in [43] and show that V is a viscosity
solution to (4.16). This enables us to determine the structure of V (see Proposition
4.14 below) and to prove certain smoothness properties (cf. Theorem 4.16). This
will allow us later to derive necessary equations for the free-boundaries (cf. Theorem
4.26).

De�nition 4.10.

(i) A function v ∈ C0(R2;R) is called a viscosity subsolution to (4.16) if, for
every (x, y) ∈ R2 and every β ∈ C2,1(R2;R) such that v − β attains a local
maximum at (x, y), it holds

max

{
− βy(x, y)−K, βy(x, y)−K, ρβ(x, y)− [Lyβ(·, y)](x)− f(x, y)

}
≤ 0.

(ii) A function v ∈ C0(R2;R) is called a viscosity supersolution to (4.16) if, for
every (x, y) ∈ R2 and every β ∈ C2,1(R2;R) such that v − β attains a local
minimum at (x, y), it holds

max

{
− βy(x, y)−K, βy(x, y)−K, ρβ(x, y)− [Lyβ(·, y)](x)− f(x, y)

}
≥ 0.

(iii) A function v ∈ C0(R2;R) is called a viscosity solution to (4.16) if it is both a
viscosity subsolution and supersolution.

Following the arguments developed in Theorem 5.1 in Section VIII.5 of [49], one
can show the following result.

Proposition 4.11. The value function V is a viscosity solution to (4.16).

Remark 4.12. Recall that by Proposition 4.4-(iii) our value function V lies in the
class W 2,∞

loc (R2;R). Hence, by Lemma 5.4 in Chapter 4 of [97] it is also a strong
solution to (4.16) (in the sense, e.g., of [20]; see the same reference also for relations
between these notions of solutions); that is, it solves (4.16) in the pointwise sense
almost everywhere.

We have decided to employ the concept of viscosity solution since our analysis
will later make use of the variational inequality (4.16) on sets of null Lebesgue
measure (regular lines) (see Proposition 4.13 and Proposition 4.16 below). Because
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4.3 The Structure of the Value Function

the viscosity property holds for all (and not merely for a.e.) points of the state
space R2, the concept of viscosity solution is still able to provide information on V
on regular lines.

For later use, notice that the function

V̂ (x, y) := J(x, y, 0) = E
[ ∫ ∞

0

e−ρtf(Xx,y
t , y) dt

]
, (x, y) ∈ R2, (4.17)

is �nite by Assumption 4.2-(i) and standard estimates, and continuously di�eren-
tiable with respect to y and x, given the assumed regularity of fx and fy in As-
sumption 4.2-(iii). By Feynman-Kac's theorem, it follows that V̂ identi�es with a
classical particular solution to the inhomogeneous linear ODE

[(Ly − ρ)β(·, y)](x) + f(x, y) = 0, x ∈ R. (4.18)

Recall now the regions C, I and D from (4.10), and that Vy = −K on I, while
Vy = K on D. The next proposition provides the structure of V inside C.

Proposition 4.13. Recall (4.12) and let yo ∈ (b1, b̄2).

(i) The function V (·, yo) is a viscosity solution to

ρβ(x, yo)− [Lyoβ(·, yo)](x)− f(x, yo) = 0, x ∈ (g1(yo), g2(yo)). (4.19)

(ii) V (·, yo) ∈ C3,Lip
loc

((g1(yo), g2(yo));R).

(iii) There exist constants A(yo) and B(yo) such that for all x ∈ (g1(yo), g2(yo))

V (x, yo) = A(yo)ψ(x, yo) +B(yo)ϕ(x, yo) + V̂ (x, yo),

where the functions ψ and ϕ have been de�ned in (4.14),(4.15) and V̂ is as in
(4.17).

Proof. We prove each item separately.

Proof of (i). We show the subsolution property; that is, we prove that for any
xo ∈ (g1(yo), g2(yo)) and β ∈ C2((g1(yo), g2(yo));R) such that V (·, yo) − β(·, yo)
attains a local maximum at xo it holds that

ρβ(xo, yo)− [Lyoβ(·, yo)](xo)− f(xo, yo) ≤ 0.

First of all, we claim that

(Vy(xo, yo), β
′(xo), β

′′(xo)) ∈ D2,1,+
x V (xo, yo),

where D2,1,+V (xo, yo) is the superdi�erential of V at (xo, yo) of �rst order with
respect to y and of second order with respect to x (see Section 5 in Chapter 4 of
[97]). This means that we have to show that

lim sup
(x,y)→(xo,yo)

V (x, y)− V (xo, yo)− Vy(xo, yo)(y − yo)− β′(xo)(x− xo)− 1
2β
′′(xo)(x− xo)2

|y − yo|+ |x− xo|2
≤ 0.

(4.20)
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4.3 The Structure of the Value Function

In order to prove (4.20), notice �rst that V (xo, ·) is continuously di�erentiable,
and therefore

lim
y→yo

V (x, y)− V (x, yo)− Vy(xo, yo)(y − yo)
|y − yo|

= 0 uniformly in x ∈ (xo− 1, xo + 1).

(4.21)
Using now Lemma 5.4 in [97], we have that

(β′(xo), β
′′(xo)) ∈ D2,+

x V (xo, yo),

where D2,+
x V (xo, yo) denotes the superdi�erential of V (·, yo) at xo of second order

(with respect to x); i.e.

lim sup
x→xo

V (x, yo)− V (xo, yo)− β′(xo)(x− xo)− 1
2
β′′(xo)(x− xo)2

|x− xo|2
≤ 0. (4.22)

Adding and substracting V (x, yo) in the numerator of (4.20), and using (4.21) and
(4.22), we obtain (4.20).

Using again Lemma 5.4 in [97], we can then construct a function β̂ ∈ C2,1(R2;R)

such that V − β̂ attains a local maximum in (xo, yo) and(
β̂y(xo, yo), β̂x(xo, yo), β̂xx(xo, yo)

)
= (Vy(xo, yo), β

′(xo), β
′′(xo)). (4.23)

Since (xo, yo) ∈ C we know that −K < Vy(xo, yo) < K, and because V is a viscosity
solution to (4.16), we obtain by (4.23) that

ρβ(xo, yo)− [Lyoβ(·, yo)](xo)− f(xo, yo) ≤ 0,

thus completing the proof of the subsolution property. The supersolution property
can be shown in an analogous way and the proof is therefore omitted.

Proof of (ii). Let a, b ∈ R be such that (a, yo), (b, yo) ∈ C and a < b. Introduce
the Dirichlet boundary value problem{

(Lyo − ρ)q(x) + f(x, yo) = 0, x ∈ (a, b),

q(a, yo) = V (a, yo), q(b, yo) = V (b, yo).
(4.24)

Since f(·, yo) ∈ C1,Lip
loc ((g1(yo), g2(yo));R), by assumption, and V (·, yo) ∈ C([a, b];R),

by classical results problem (4.24) admits a unique classical solution q̂ ∈ C0([a, b];R)∩
C3,Lip
loc ((a, b);R). The latter is also a viscosity solution, and by (i) above and stan-

dard uniqueness results for viscosity solutions of linear equations it must coincide
with V (·, yo). Hence, we have that V (·, yo) ∈ C3,Lip

loc ((g1(yo), g2(yo));R) and V (·, yo)
is a classical solution to

[(Lyo − ρ)V (·, yo)](x) + f(x, yo) = 0, x ∈ (g1(yo), g2(yo)),

given the arbitrariness of (a, b) and the fact that C is open.

Proof of (iii). Since any solution to the homogeneous linear ODE (Lyo−ρ)q = 0 is
given by a linear combination of its increasing fundamental solution ψ and decreasing
fundamental solution ϕ, we conclude by (ii) and the superposition principle.
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We are now able to provide the structure of the value function V .

Proposition 4.14. De�ne the sets

O1 := {x ∈ R : b1(x) > −∞} O2 := {x ∈ R : b2(x) <∞}.

There exist functions

A,B ∈ W 2,∞
loc

((b1, b̄2);R) = C1,Lip
loc

((b1, b̄2);R), z1,2 : O1,2 → R

such that the value function de�ned in (4.6) can be written as

V (x, y) =


A(y)ψ(x, y) +B(y)ϕ(x, y) + V̂ (x, y) on C̄,
z1(x)−Ky on I,
z2(x) +Ky on D,

(4.25)

where C̄ denotes the closure of C,

z1(x) := V (x, b1(x)) +Kb1(x), x ∈ O1

and
z2(x) := V (x, b2(x))−Kb2(x), x ∈ O2.

Proof. We start by deriving the structure of V within C. Using Lemma 4.13, we
already know the existence of functions A,B : (b1, b̄2)→ R such that

V (x, y) = A(y)ψ(x, y) +B(y)ϕ(x, y) + V̂ (x, y), (x, y) ∈ C. (4.26)

Take now yo ∈ (b1, b̄2). Since g1(y) < g2(y) for any y ∈ R (cf. Proposition 4.9-(ii)), we
can �nd x and x̃, x 6= x̃, such that (x, y), (x̃, y) ∈ C for any given y ∈ (yo− ε, yo + ε),
for a suitably small ε > 0. Now, by evaluating (4.26) at the points (x, y) and (x̃, y),
we obtain a linear algebraic system that we can solve with respect to A(y) and B(y)
so to obtain

A(y) =
(V (x, y)− V̂ (x, y))ϕ(x̃, y)− (V (x̃, y)− V̂ (x̃, y)ϕ(x, y)

ψ(x, y)ϕ(x̃, y)− ψ(x̃, y)ϕ(x, y)
, (4.27)

B(y) =
(V (x̃, y)− V̂ (x̃, y)ψ(x, y)− (V (x, y)− V̂ (x, y))ψ(x̃, y)

ψ(x, y)ϕ(x̃, y)− ψ(x̃, y)ϕ(x, y)
. (4.28)

The denominators of the last two expressions do not vanish due to the strict mono-
tonicity of ψ and ϕ, and to the fact that x 6= x̃. Since yo was arbitrary and V ,
V̂ , Vy, and V̂y are continuous with respect to y, we therefore obtain that A and B
belong to W 2,∞

loc ((b1, b̄2);R) = C1,Lip
loc ((b1, b̄2);R). The structure of V in the closure

of C, denoted by C, is then obtained by Proposition 4.13 and by recalling that V is
continuous on R2 and that A, B, and V̂ are also continuous.

Given the de�nition of z1 and z2, the structure of V inside the regions I and D
follow by (4.10) and the continuity of V .
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Remark 4.15. Actually, by (4.27) and (4.28) one has that A and B belong toW 2,∞

up to b1 (resp. b̄2) if b1 (resp. b̄2) is �nite.

So far, we know that V ∈ C1,Lip
loc (R2;R) and we know it's structure. Therefore,

we have already a �rst-order smooth-�t condition for the value function. Now, the
provide also a second-order smooth-�t principle for the value function V . More
precisely, we show that Vyx is jointly continuous. Notice that

Vyx(x, y) = 0 ∀(x, y) ∈ R2 \ C.

The next result shows that one actually has continuity of Vyx on the whole R2.

Theorem 4.16. One has that

lim
(x,y)→ (xo,yo)

(x,y)∈C

Vyx(x, y) = 0 ∀(xo, yo) ∈ ∂C. (4.29)

Hence, Vyx ∈ C(R2;R).

Proof. We prove (4.29) only at ∂1C := {(x, y) ∈ R2 : Vy(x, y) = −K}, and we
distinguish two di�erent cases for (xo, yo) ∈ ∂1C.

Case (a). Assume that yo = b1(xo). De�ne the function

V̄ (x, y) := A(y)ψ(x, y) +B(y)ϕ(x, y) + V̂ (x, y), (x, y) ∈ R2, (4.30)

where A,B are the functions of Proposition 4.14. Then, one clearly has that V̄ ∈
C2,1(R2;R). Moreover, the mixed derivative V̄yx exists and is continuous. Since
V̄ = V in C̄, by Lemma 4.7 we conclude that V̄yx ≥ 0 in C. Then by continuity of
V̄yx, in order to show (4.29) it is enough to show that

V̄yx(xo, yo) ≤ 0.

Assume, by contradiction, V̄yx(xo, yo) > 0. Due to the continuity of V̄ , we can then
�nd an ε > 0 such that

V̄yx(x, y) ≥ ε ∀(x, y) ∈ Nxo,yo , (4.31)

where Nxo,yo is a suitable neighborhood of the point (xo, yo) ∈ ∂1C. Notice now that
V̄y(xo, yo) = Vy(xo, yo) = −K, because (xo, yo) ∈ ∂1C, and V̄ = V inNxo,yo∩C̄. Then,
by assumption that V̄yx(xo, yo) > 0, we can apply the implicit function theorem to
V̄y(x, y) +K, getting the existence of a continuous function ḡ1 : (yo− δ, yo + δ)→ R,
for a suitable δ > 0, such that V̄y(ḡ1(y), y) = −K in (yo − δ, yo + δ). Moreover,
taking into account the regularity of A,B, we have that ḡ1 ∈ W 1,∞(yo− δ, yo + δ) as

ḡ′1(y) = − V̄yy(g1(y), y)

V̄yx(g1(y), y)
a.e. in (yo − δ, yo + δ).

Hence, by (4.31) and the fact that A,B ∈ W 2,∞
loc ((b1, b̄2);R) (see also Remark 4.15

for the case yo = b1), there exists Mε > 0 such that

|ḡ1(y)− ḡ1(ỹ)| ≤Mε|y − ỹ| ∀y, ỹ ∈ (yo − δ, yo + δ). (4.32)
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Furthermore, recalling the de�nition of g1 in (4.13), ḡ1 and g1 coincide in (yo−δ, yo+
δ). Therefore, g1 is continuous in (yo − δ, yo + δ), and this fact immediately implies
that b1 - which is non-increasing by Proposition 4.8 - is actually strictly decreasing
in a neighborhood (xo − ϑ, xo + ϑ), for a suitable ϑ > 0. Hence, g1 = b−1

1 over
b1((xo − ϑ, xo + ϑ)), and from (4.32) we �nd

Mε|b1(x)−b1(x̃)| ≥ |ḡ1(b1(x))− ḡ1(b1(x̃))| = |x− x̃|, ∀x, x̃ ∈ (yo−δ, yo+δ). (4.33)

Recalling again that b1 is strictly decreasing in (xo− ϑ, xo + ϑ), hence di�erentiable
a.e. overthere, from (4.33), we obtain

∃ b′1(x) ≥ 1

Mε

∀x ∈ X , (4.34)

where X is a dense set (actually of full Lebesgue measure) in (x0 − ϑ, x0].
Consider now the function (x0 − ϑ, x0] 3 x 7→ V (x, yo) ∈ R+. Since b1 is strictly

decreasing, we have that the set K := {(x, yo) : x ∈ (x0− ϑ, x0]} ⊂ I, and therefore
by Proposition 4.14 that

V (x, yo) = −Kyo + z1(x) ∀x ∈ (x0 − ϑ, x0]. (4.35)

Furthermore, de�ning the function

(x0 − ϑ, x0]→ R, x 7→ z1(x) = V (x, b1(x)) +Kb1(x) = V̄ (x, b1(x)) +Kb1(x),

and applying the chain rule we get that

∃ z′1(x) = V̄x(x, b1(x)) + V̄y(x, b1(x))b′1(x) +Kb′1(x), ∀x ∈ X . (4.36)

Since by de�nition of b1 we have that V̄y(x, b1(x)) = Vy(x, b1(x)) = −K, we obtain
from (4.36)

z′1(x) = V̄x(x, b1(x)), ∀x ∈ X .
Using this result together with (4.35) we obtain existence of Vx(x, yo) for all x ∈ X
and moreover

Vx(x, yo) = z′1(x) = V̄x(x, b1(x)) ∀x ∈ X . (4.37)

Using again the chain rule in (4.37) we obtain existence of Vxx(x, yo) for all x ∈ X
and

Vxx(x, yo) = z′′1 (x) = V̄xx(x, b1(x)) + V̄xy(x, b1(x))b′1(x) ∀x ∈ X . (4.38)

Combining (4.38) with (4.34) and (4.31) one obtains

Vxx(x, yo) ≥ V̄xx(x, b1(x)) +
ε

Mε

∀x ∈ X . (4.39)

Using now that V is a viscosity solution to (4.16) (in particular a supersolution)
by Proposition 4.11, that Vxx exists for all points x ∈ X , and (4.37) and (4.39), we
obtain that

f(x, yo) ≤ ρV (x, yo)− [LyoV (·, yo)](x)

≤ ρV (x, yo)− [LyoV̄ (·, yo)](x)− 1

2
η2 ε

Mε

(4.40)
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for all x ∈ X . Since X is dense in (xo − ϑ, xo], we can take a sequence (xn)n∈N ⊂ X
such that xn ↑ xo. Evaluating (4.40) at x = xn, taking limits as n ↑ ∞, using the
left-continuity of b1, the fact that yo = b1(xo), and the fact that V̄ ∈ C1,2(R2;R),
we obtain

f(xo, yo) ≤ ρV̄ (xo, yo)− [LyoV̄ (·, yo)](xo)−
1

2
η2 ε

Mε

(4.41)

On the other hand, since ρV̄ (x, y) − [LyV̄ (·, y)](x) = ρV (x, y) − [LyV (·, y)](x) =
f(x, y) for all (x, y) ∈ C, using that V̄ ∈ C1,2(R2;R) and (xo, yo) ∈ C̄, we obtain by
continuity of V̄ that

f(xo, yo) = ρV̄ (xo, yo)− [LyoV̄ (·, yo)](xo). (4.42)

Combining now (4.42) and (4.41) leads to ε
Mε
≤ 0. This gives the desired contradic-

tion.

Case (b). Assume now that xo = g1(yo) and yo < b1(xo), with b1(xo) < ∞ due
to Proposition 4.8-(i). Notice that such a case occurs if the function b1 has a jump
at xo. De�ning the segment Γ := {(xo, y) : y ∈ [yo, b1(xo)]}, it follows that Γ ⊂ ∂1C.
Moreover, letting again V̄ as in (4.30), we have that Vy = V̄y = −K in Γ, so that

V̄y(x, y)+K = V̄y(x, y)− V̄y(xo, y) =

∫ x

xo

V̄yx(u, y) du, ∀y ∈ [yo, b1(xo)], ∀x ≥ xo. (4.43)

Using now that A′, B′ are locally Lipschitz by Proposition 4.14, we can take the
derivative with respect to y in (4.43) (in the Sobolev sense) and we obtain

V̄yy(x, y) =

∫ x

xo

V̄yxy(u, y) du for a.e. y ∈ [yo, b1(xo)], x ≥ xo.

The convexity of V and the fact that V̄ = V in C̄, yields V̄yy ≥ 0 (again in the
Sobolev sense) and therefore

0 ≤
∫ x

xo

V̄yxy(u, y) du for a.e. for a.e. y ∈ [yo, b1(xo)], x ≥ xo.

Dividing now both sides by (x − xo), letting x → xo, and invoking the mean value
theorem one has

0 ≤ V̄yxy(xo, y) for a.e. y ∈ [yo, b1(xo)].

This implies that V̄yx is non-decreasing with respect to y ∈ [yo, b1(xo)] and, since
V̄ = V in C̄ and Lemma 4.7, we get

0 ≤ V̄yx(xo, yo) ≤ V̄yx(xo, b1(xo))

If we now assume, as in Case (a) above, that V̄yx(xo, yo) > 0, then we must also
have V̄yx(xo, b1(xo)) > 0. We are therefore left with the assumption employed in the
contradiction scheme of Case (a), and we can thus apply again the rationale of that
case to obtain a contradiction. This completes the proof.

Lemma 4.17. It holds Vyxx ∈ L∞loc(R× (b1, b̄2);R).

Proof. Notice that ψyxx(x, y) ∈ L∞loc(R× (b1, b̄2);R), ϕyxx(x, y) ∈ L∞loc(R× (b1, b̄2);R)

and V̂yxx ∈ L∞loc(R2) by direct calculations, and Ay, By ∈ W 1,∞
loc ((b1, b̄2);R) by Propo-

sition 4.14. Hence, Vyxx ∈ L∞loc(R× (b1, b̄2);R) by (4.25).
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4.4 Further Properties of the Free-Boundaries

In this section, we show further properties of the free-boundaries and derive a system
of functional equations characterizing them. These equations are basically derived
by the smooth-�t conditions of the value function, see Theorem 4.16. For this, we
need the following additional assumptions on f :

Assumption 4.18.

(i) limx→±∞ fx(x, y) = ±∞.

(ii) fyx exists continuous.

(iii) One of the following holds true:

(a) x 7→ fy(x, y) is strictly increasing for any y ∈ R;
(b) fyx ≡ 0 and f(·, y) is strictly convex for any y ∈ R.

Remark 4.19. The functions f discussed in Remark 4.3 satisfy the previous as-
sumptions.

Proposition 4.20.

(i) Let Assumption 4.18-(i) hold. Then

b̄1 = lim
x↓−∞

b1(x) =∞, b2 = lim
x↑∞

b2(x) = −∞;

hence, by Proposition 4.8-(iii), one also has b1 = −∞ and b̄2 =∞.

(ii) De�ne

ζ1(y) := sup{x ∈ R : −αVx(x, y)− fy(x, y)− ρK ≥ 0}, y ∈ R,

ζ2(y) := inf{x ∈ R : −αVx(x, y)− fy(x, y) + ρK ≤ 0}, y ∈ R.
Then, for any y ∈ R, we have

g1(y) < ζ1(y) < ζ2(y) < g2(y).

Proof. We prove the two claims separately.

Proof of (i). Here we show that limx↓−∞ b1(x) =∞. The fact that limx↑∞ b2(x) =
−∞ can be proved by similar arguments. We argue by contradiction assuming
b̄1 := limx↓−∞ b1(x) < ∞. Take yo > b̄1, so that τ ? = τ ?(x, yo) = ∞ for all x ∈ R,
the latter being the stopping time de�ned in (4.9). Then, take xo < g2(yo) such that
(xo, yo) ∈ C. Clearly, every x < xo belongs to C, and therefore, by the representation
(4.25), we obtain that it must be B(yo) = 0; indeed, otherwise, by taking limits as
x → −∞ and using (4.15), we would contradict Proposition 4.4. Moreover, since
for any y ∈ R one has ψx(x, y) → 0 when x → −∞ (cf. (4.14)), we then have by
dominated convergence for θ > 0

lim
x→−∞

Vx(x, y0) = lim
x→−∞

V̂x(x, yo) = lim
x→−∞

E
[∫ ∞

0
e−(ρ+θ)tfx(Xx,yo

t , yo)dt

]
= −∞ (4.44)
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and for θ = 0

lim
x→−∞

Vx(x, y0) = lim
x→−∞

V̂x(x, yo) = lim
x→−∞

E
[∫ ∞

0
e−ρtfx(Xx,yo

t , yo)dt

]
= −∞. (4.45)

Now, setting
σ̂x := inf{t ≥ 0 : Xx,yo

t ≥ xo},

for x < xo, we have by monotonicity of fy(·, y) (cf. Assumption 4.2-(iv))

−K < Vy(x, yo) = inf
σ∈T

E
[ ∫ σ

0

e−ρt
(
αVx(X

x,yo
t , yo) + fy(X

x,yo
t , yo)

)
dt+ e−ρσK

]
≤ E

[ ∫ σ̂x

0

e−ρt
(
αVx(X

x,yo
t , yo) + fy(xo, yo)

)
dt+K

]
.

The latter implies

2K +
|fy(xo, yo)|

ρ
≥ −αE

[ ∫ σ̂x

0

e−ρtVx(X
x,yo
t , yo) dt

]
Hence, letting x ↓ −∞, using (4.44) in the case θ > 0 or (4.45) for the case θ = 0,
and invoking the dominated convergence theorem we get a contradiction.

Proof of (ii). Fix y ∈ R. Recall that Vy(·, y) ∈ C(R;R) by Proposition 4.4,
Vyx(·, y) ∈ C(R;R) by Theorem 4.16, and Vyxx(·, y) ∈ L∞loc(R;R) by direct calcula-
tions on the representation of V given in Proposition 4.14. Also, it is readily veri�ed
from (4.8) that −K ≤ Vy(·, y) ≤ K on R2. Then, the semiharmonic characteriza-
tion of [78] (see equations (2.27)�(2.29) therein, suitably adjusted to take care of
the integral term appearing in (4.8)), together with the above regularity of Vy(·, y),
allow to obtain by standard means that (Vy(·, y), g1(y), g2(y)) solves

(
Ly − ρ

)
Vy(x, y) = −αVx(x, y)− fy(x, y) on g1(y) < x < g2(y),(

Ly − ρ
)
Vy(x, y) ≤ −αVx(x, y)− fy(x, y) on a.e. x < g1(y),(

Ly − ρ
)
Vy(x, y) ≥ −αVx(x, y)− fy(x, y) on a.e. x > g2(y),

−K ≤ Vy(x, y) ≤ K x ∈ R,
Vy(g1(y), y) = −K and Vy(g2(y), y) = K,

Vyx(g1(y), y) = 0 and Vyx(g2(y), y) = 0.

(4.46)

In particular, we have that Vy(x, y) = K for any x > g2(y), and therefore from the
third equation in (4.46) we obtain

−ρK ≥ −αVx(x, y)− fy(x, y) =: Λ(x, y), ∀x > g2(y).

Since the mapping x 7→ Λ(x, y) is non-increasing for any given y ∈ R by the convexity
of V and the assumption on fy (cf. Assumption 4.2), we obtain that

g2(y) ≥ ζ2(y) = inf{x ∈ R : −αVx(x, y)− fy(x, y) + ρK ≤ 0}.
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4.4 Further Properties of the Free-Boundaries

To show that g2(y) > ζ2(y), we suppose that there exists some yo such that
g2(yo) = ζ2(yo). Then Vy(ζ2(yo), yo) = K. Let now τ ? := τ ?(ζ2(yo), yo) be the
optimal stopping time for the sup player when the Dynkin game (4.8) starts at time
zero from the point (ζ2(yo), yo), and for ε > 0 de�ne

qε := qε(ζ2(yo), yo) := inf{t ≥ 0 : X
ζ2(yo),yo
t ≥ ζ2(yo) + ε}.

Then by using that fy(·, yo)+αVx(·, yo) is non-decreasing and locally Lipschitz by
Assumption 4.2-(iii) and Proposition 4.4(iii), we have from (4.8) for some constant
C(yo) > 0

K = Vy(ζ2(yo), yo) ≤ E
[ ∫ τ?∧qε

0

e−ρt
(
fy + αVx

)
(Xζ2(yo),yo

s , yo)ds

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke−ρτ

?

1{τ?<qε}

]
≤
(
fy + αVx

)
(ζ2(yo) + ε, yo)

1

ρ
E
[
1− e−ρ(τ?∧qε)

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke−ρτ

?

1{τ?<qε}

]
≤ 1

ρ

[(
fy + αVx

)
(ζ2(yo), yo) + εC(yo)

]
E
[
1− e−ρ(τ?∧qε)

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke−ρτ

?

1{τ?<qε}

]
.

Using now that, by de�nition of ζ2, it must be
(
fy + αVx

)
(ζ2(yo), yo) = ρK, and

rearranging terms, we get that

0 ≤εC(yo)

ρ
E
[
1− e−ρ(τ?∧qε)

]
− 2KE

[
e−ρτ

?

1{τ?<qε}

]
. (4.47)

Notice now that (cf. eq. (4.3) in [31], among others)

E
[
e−ρτ

?

1{τ?<qε}

]
=
ψ(ζ2(yo), yo)ϕ(ζ2(yo) + ε, yo)− ψ(ζ2(yo) + ε, yo)ϕ(ζ2(yo), yo)

ψ(g1(yo), yo)ϕ(ζ2(yo) + ε, yo)− ψ(ζ2(yo) + ε, yo)ϕ(g1(yo), yo)

and

E
[
e−ρqε1{τ?>qε}

]
=

ψ(g1(yo), yo)ϕ(ζ2(yo), yo)− ψ(ζ2(yo), yo)ϕ(g1(yo), yo)

ψ(g1(yo), yo)ϕ(ζ2(yo) + ε, yo)− ψ(ζ2(yo) + ε, yo)ϕ(g1(yo), yo)
.

Then, because

1− e−ρ(τ?∧qε) = 1− e−ρτ∗1{τ?<qε} − e−ρqε1{τ?>qε},

using the last two formulas in (4.47) and performing a �rst-order Taylor's expansion
around ε = 0 of the terms on the right-hand side of (4.47), one �nds that the �rst
term on the right-hand side of (4.47) is positive and converges to zero as ε ↓ 0 with
order ε2, while the second term is negative and converges to zero with order ε. We
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4.4 Further Properties of the Free-Boundaries

thus reach a contradiction in (4.47) for ε small enough, and therefore it can not exist
yo at which g2(yo) = ζ2(yo).

The statement g1(y) < ζ1(y) can be shown analogously.
Moreover, by monotonicity and continuity of x 7→ −αVx(x, y)− fy(x, y) we have

for any y ∈ R that

ζ1(y) = sup{x ∈ R : −αVx(x, y)− fy(x, y)− 2ρK + ρK ≥ 0}
< sup{x ∈ R : −αVx(x, y)− fy(x, y) + ρK ≥ 0}
= inf{x ∈ R : −αVx(x, y)− fy(x, y) + ρK ≤ 0} = ζ2(y).

From Proposition 4.20-(i), we immediately obtain the following corollary.

Corollary 4.21. Let Assumption 4.18-(i) hold. Then the functions g1, g2 de�ned in
(4.13) are �nite.

Proposition 4.22. Let Assumption 4.18 hold. Then the functions b1, b2 are strictly
decreasing.

Proof. We prove the claim only for b1, since analogous arguments apply to prove it
for b2.

Case (a). We assume here that item (a) of Assumption 4.18-(iii) holds, i.e. that
x 7→ fy(x, y) is strictly increasing for any y ∈ R. By Proposition 4.14, we can
di�erentiate the �rst line of (4.25) with respect to y and get by Proposition 4.13-(i)
that Vy solves inside C the equation

[LyVy(·, y)](x)− ρVy(x, y) = −fy(x, y)− αVx(x, y). (4.48)

By continuity, (4.48) also holds on C, i.e.

[LyVy(·, y)](x)− ρVy(x, y) = −fy(x, y)− αVx(x, y) ∀(x, y) ∈ C.

In particular it holds on ∂1C := C ∩ I. Assume now, by contradiction, that the
boundary b1 is constant on (xo, xo + ε), for some xo ∈ R and some ε > 0. Then,
setting yo := b1(xo), we will have Vyxx(·, yo) = Vyx(·, yo) = 0 and Vy(·, yo) = −K on
(xo, xo + ε). Hence, we obtain from (4.48) that

− ρK = fy(x, yo) + αVx(x, yo), ∀x ∈ (xo, xo + ε),

and thus
− fyx(x, yo) = αVxx(x, yo), ∀x ∈ (xo, xo + ε).

But now αVxx(x, yo) ≥ 0 for any x ∈ (xo, xo + ε) by convexity of V (·, yo), while,
by assumption, fyx must be strictly positive on a subset of (xo, xo + ε) with positive
measure. Hence a contradiction is reached.
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4.4 Further Properties of the Free-Boundaries

Case (b). We assume here that item (b) of Assumption 4.18-(iii) holds, i.e. that
fyx ≡ 0 and that f(·, y) is strictly convex for any y ∈ R. Arguing exactly as in Case
(a), we obtain that

− ρK = fy(x, yo) + αVx(x, yo), ∀x ∈ (xo, xo + ε).

Hence, we obtain that

Vx(·, yo) ≡ −
ρK

α
− fy(x, yo)

α
, Vxx(·, y0) ≡ 0 on (xo, xo + ε).

On the other hand, by continuity of V (·, yo), it solves (4.19) on (xo, xo+ε). Therefore,
for θ > 0, we get

(αyo − θx)
[
− ρK

α
− fy(x, yo)

α

]
− ρV (x, yo) + f(x, yo) = 0, ∀x ∈ (xo, xo + ε)

and, for θ = 0,

yo

[
− ρK − fy(x, yo)

]
− ρV (x, yo) + f(x, yo) = 0, ∀x ∈ (xo, xo + ε).

But this implies that fxx(·, yo) ≡ 0 on (xo, xo+ε), which contradicts that f is strictly
convex.

From the result above, it immediately follows the next corollary.

Corollary 4.23. Let Assumption 4.18 hold. Then the functions g1, g2 de�ned in
(4.13) are continuous.

The next result will be of fundamental importance to show the locally Lipschitz
property of gi, i = 1, 2 and, in the next section, to determine a system of di�erential
equations for those curves.

Proposition 4.24. Let Assumption 4.18 hold. Then

∃ lim
(x,y)→ (xo,yo)

(x,y)∈C

Vyxx(x, y) 6= 0 ∀ (xo, yo) ∈ ∂C. (4.49)

Proof. We provide the proof only for any (xo, yo) ∈ ∂2C := C ∩ D, as the other case
can be treated similarly.

First of all, we notice that the limit in (4.49) exists since, by Proposition 4.14,
the function V : C → R can be di�erentiated twice with respect to x and once with
respect to y with continuity up to the boundary ∂C.

Case (a). We assume here that item (a) of Assumption 4.18-(iii) holds, i.e. that
x 7→ fy(x, y) is strictly increasing for any y ∈ R. Suppose, by contradiction, that
for some yo ∈ R one has

lim
(x,y)→ (g2(yo),yo)

(x,y)∈C

Vyxx(x, y) = 0. (4.50)
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Then taking limits as (x, y) → (g2(yo), yo) for (x, y) ∈ C in (4.19) we �nd, using
that Vyx(g2(yo), yo) = 0 by Proposition 4.16 and that Vy(g2(yo), yo) = K,

− ρK + fy(g2(yo), yo) = −αVx(g2(yo), yo). (4.51)

Since g2(yo) > ζ2(yo) by Proposition 4.20, and by de�nition of ζ2, it must be

−ρK + fy(x, yo) = −αVx(x, yo) ∀ x ∈ (ζ2(yo), g2(yo)),

which also implies that −αVxx(x, yo) = fyx(x, yo) for any x ∈ (ζ2(yo), g2(yo)). We
then conclude as in Step 1 of the proof of Proposition 4.22.

Case (b). We assume here that item (b) of Assumption 4.18-(iii) holds, which
implies that there exists q such that fy(x, y) = q(y) for any (x, y) ∈ R2. Suppose
again, with the aim of reaching a contradiction, that for some yo ∈ R one has (4.50).
Then taking limits as (x, y) → (g2(yo), yo) for (x, y) ∈ C in (4.19) we �nd, using
that Vyx(g2(yo), yo) = 0 by Proposition 4.16 and that Vy(g2(yo), yo) = K,

−ρK + q(yo) = −αVx(g2(yo), yo).

As before, because g2(yo) > ζ2(yo) by Proposition 4.20, and by de�nition of ζ2, it
must be

−ρK + q(yo) = −αVx(x, yo) ∀ x ∈ (ζ2(yo), g2(yo));

that is, V is an a�ne function of x in that interval. However, using the latter and
(4.19), we also have for θ > 0

ρK − q(yo)
α

(αyo − θx)− ρV (x, yo) = −f(x, yo) ∀ x ∈ (ζ2(yo), g2(yo)),

and for θ = 0

ρK − q(yo)yo − ρV (x, yo) = −f(x, yo) ∀ x ∈ (ζ2(yo), g2(yo)).

Hence, we reach a contradiction since f(·, yo) is strictly convex by assumption, while
V (·, yo) is a�ne.

Proposition 4.25. Let Assumption 4.18 hold. Then the functions g1, g2 are locally
Lipschitz.

Proof. De�ne the function

V̄ (x, y) := A(y)ψ(x, y) +B(y)ϕ(x, y) + V̂ (x, y), (x, y) ∈ R2, (4.52)

where A,B are the functions of Proposition 4.14. Then, one clearly has that V̄ ∈
C2,1(R2;R), and V̄ = V in R2 ∩ C̄. Moreover, the mixed derivative V̄yx exists and is
continuous, and standard di�erentiation yield

V̄yx(x, y) = Ay(y)ψx(x, y) +By(y)ϕx(x, y) +
(
A(y)ψyx(x, y) +B(y)ϕyx(x, y)

)
+ V̂yx(x, y).

Since Ay and By are locally Lipschitz by Proposition 4.14, and ψ and ϕ are smooth
(cf. (4.14) and (4.15)), we deduce that V̄yx(x, ·) is locally Lipschitz.

92



4.5 A System of Equations for the Free-Boundaries

Let now yo ∈ R. Then, for any given xo ∈ R such that (xo, yo) ∈ ∂C, we know by
Proposition 4.24 that V̄yxx(xo, yo) 6= 0, while V̄yx(xo, yo) = 0 by Theorem 4.16. By
the implicit function theorem (see, e.g., the Corollary at p. 256 in [29] or Theorem
3.1 in [75]) we therefore gain that for any i = 1, 2 there exists a unique continuous
function ḡi : (yo − δ, yo + δ) → (xo − δ′, xo + δ′), for suitable δ, δ′ > 0, such that
V̄yx(ḡi(y), y) = 0 in (yo − δ, yo + δ). Also, the aforementioned properties of V̄yxy and
V̄yxx imply that there exists C(yo) > 0 such that

|ḡi(y2)− ḡi(y1)| ≤ C(yo)|y2 − y1|, ∀ y1, y2 ∈ (yo − δ, yo + δ).

Recalling now that V̄yx(gi(y), y) = 0, we can identify ḡi = gi, i = 1, 2, in (yo −
δ, yo + δ) and therefore gi is locally Lipschitz therein. Given the arbitrariness of the
point (xo, yo) the proof is complete.

4.5 A System of Equations for the Free-Boundaries

Before proving the main result of this section (i.e. Theorem 4.26 below), we need to
introduce some of the characteristics of the process Xx,y. For an arbitrary xo ∈ R,
and for any given and �xed y ∈ R, the scale function density of the process Xx,y is
de�ned, for x ∈ R, as

Sx(x, y) :=

exp
{
−
∫ x
xo

2(αy−θz)
η2

dz
}
, θ > 0

exp
{
−2αyx

η2

}
, θ = 0,

(4.53)

while the density of the speed measure is

mx(x, y) :=
2

η2Sx(x, y)
, x ∈ R. (4.54)

Note that we set x0 = 0 in the case θ = 0. This simpli�es our calculations in Section
4.6. For later use we also denote by p the transition density of Xx,y with respect to
the speed measure; then, letting A 7→ Pt(x,A, y), A ∈ B(R), t > 0 and y ∈ R, be
the probability of starting at time 0 from level x ∈ R and reaching the set A ∈ B(R)
in t units of time, we have (cf., e.g., p. 13 in [17])

Pt(x,A, y) =

∫
A

p(t, x, z, y)mx(z, y)dz.

The density p can be taken positive, jointly continuous in all variables and symmetric
(i.e. p(t, x, z, y) = p(t, z, x, y)). Furthermore, our analysis will involve the Green
function G that, for given and �xed y ∈ R, is de�ned as (see again [17], p. 19)

G(x, z, y) :=

∫ ∞
0

e−ρtp(t, x, z, y)dt =

{
w−1ψ(x, y)ϕ(z, y) for x ≤ z,

w−1ϕ(x, y)ψ(z, y) for x ≥ z,
(4.55)

where w denotes the positive constant (normalized) Wronskian between ψ and ϕ
given by

w :=
ψx(x, z)ϕ(x, z)− ϕx(x, z)ψ(x, z)

Sx(x, z)
.

93



4.5 A System of Equations for the Free-Boundaries

Theorem 4.26. Let Assumption 4.18 hold and for any (x, y) ∈ R2 de�ne

H(x, y) := αVx(x, y) + fy(x, y) (4.56)

The free-boundaries g1 and g2 as in (4.13), and the coe�cients A,B ∈ W 2;∞
loc

(R;R)
solve the following system of functional and ordinary di�erential equations

0 =

∫ g2(y)

g1(y)

ψ(z, y)H(z, y)mx(z, y) dz −Kψx(g1(y), y)

Sx(g1(y), y)
−Kψx(g2(y), y)

Sx(g2(y), y)
, (4.57)

0 =

∫ g2(y)

g1(y)

ϕ(z, y)H(z, y)mx(z, y) dz −Kϕx(g1(y), y)

Sx(g1(y), y)
−Kϕx(g2(y), y)

Sx(g2(y), y)
, (4.58)

and

A′(y)ψx(g1(y), y) +B′(y)ϕx(g1(y), y) + V̂yx(g1(y), y)

+
[
A(y)ψyx(g1(y), y) +B(y)ϕyx(g1(y), y)

]
= 0

(4.59)

A′(y)ψx(g2(y), y) +B′(y)ϕx(g2(y), y) + V̂yx(g2(y), y)

+
[
A(y)ψyx(g2(y), y) +B(y)ϕyx(g2(y), y)

]
= 0.

(4.60)

Proof. Fix (x, y) ∈ R2, and, for n ∈ N, set τn := inf{t ≥ 0 : |Xx,y
t | ≥ n}, n ∈ N.

Propositions 4.4 and 4.16 guarantee that Vy and Vyx are continuous functions on
R2. Moreover, by Lemma 4.17, we have that Vyxx ∈ L∞loc(R2). Such a regular-
ity of Vy allows us to apply the local time-space calculus of [76] to the process
(e−ρsVy(X

x,y
s , y))s≥0 on the time interval [0, τn]. Taking expectations (so that the

term involving the stochastic integral vanishes) and noticing that P(Xx,y
s = g1(y)) =

P(Xx,y
s = g2(y)) = 0, s > 0, for any (x, y) ∈ R2, we obtain

E
[
e−ρτnVy(X

x,y
τn , y)

]
= Vy(x, y) + E

[ ∫ τn

0
e−ρs

[
(Ly − ρ)Vy(·, y)

]
(Xx,y

s ) 1{Xx,y
s 6=g1(y)}1{Xx,y

s 6=g2(y)} ds

]
= Vy(x, y)− E

[ ∫ τn

0
e−ρs

(
αVx(Xx,y

s , y) + fy(X
x,y
s , y)

)
1{g1(y)<Xx,y

s <g2(y)} ds

]
+ E

[ ∫ τn

0
ρKe−ρs1{Xx,y

s <g1(y)} ds−
∫ τn

0
ρKe−ρs1{Xx,y

s >g2(y)} ds

]
. (4.61)

Rearranging (4.61) we have

Vy(x, y) = E
[
e−ρτnVy(X

x,y
τn , y)

]
+ E

[ ∫ τn

0
e−ρs

(
αVx(Xx,y

s , y) + fy(X
x,y
s , y)

)
1{g1(y)<Xx,y

s <g2(y)} ds

]
− E

[ ∫ τn

0
ρKe−ρs1{(Xx,y

s ,y)∈I} ds+

∫ τn

0
ρKe−ρs1{(Xx,y

s ,y)∈D} ds

]
. (4.62)
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We now aim at taking limits as n ↑ ∞ in the right-hand side of the latter. To this
end notice that τn ↑ ∞ a.s. when n ↑ ∞, and therefore limn↑∞ E[e−ρτnVy(X

x,y
τn , y)] = 0

since Vy ∈ [−K,K]. Also, recalling (4.4), Proposition 4.4-(ii), and using standard
estimates based on Burkholder-Davis-Gundy's inequality, one has

E
[ ∫ ∞

0

e−ρs
(
α|Vx(Xx,y

s , y)|+ |fy(Xx,y
s , y)|

)
ds

]
< +∞.

Hence, thanks to the previous observations we can take limits as n ↑ ∞, invoke the
dominated convergence theorem, and obtain from (4.62) that

Vy(x, y) = E
[ ∫ ∞

0

e−ρsH(Xx,y
s , y)1{(Xx,y

s ,y)∈C} ds

]
− E

[ ∫ ∞
0

ρKe−ρs1{(Xx,y
s ,y)∈I} ds

]
+ E

[ ∫ ∞
0

ρKe−ρs1{(Xx,y
s ,y)∈D} ds

]
=: I1(x, y)− I2(x, y) + I3(x, y). (4.63)

With the help of the Green function (4.55) and Fubini's theorem, we can now
rewrite each Ii, i = 1, 2, 3, so to �nd

I1(x, y) = E
[ ∫ ∞

0

e−ρsH(Xx,y
s , y)1{g1(y)<Xx,y

s <g2(y)} ds

]
=

∫ ∞
0

e−ρs
(∫ ∞
−∞

H(z, y)1{g1(y)<z<g2(y)}p(s, x, z, y)mx(z, y) dz
)
ds

=

∫ ∞
−∞

G(x, z, y)H(z, y)1{g1(y)<z<g2(y)}mx(z, y) dz (4.64)

=
1

w
ϕ(x, y)

∫ x

−∞
ψ(z, y)H(z, y)1{g1(y)<z<g2(y)}mx(z, y) dz

+
1

w
ψ(x, y)

∫ ∞
x

ϕ(z, y)H(z, y)1{g1(y)<z<g2(y)}mx(z, y) dz,

I2(x, y) = E
[ ∫ ∞

0

ρKe−ρs1{(Xx,y
s ,y)∈I} ds

]
= ρK

∫ ∞
0

e−ρs
(∫ ∞
−∞

p(s, x, z, y)1{z≤g1(y)}mx(z, y) dz
)
ds

= ρK

∫ ∞
−∞

G(x, z, y)1{z≤g1(y)}m
′(z, y) dz (4.65)

=
1

w
ρKϕ(x, y)

∫ x

−∞
ψ(z, y)1{z≤g1(y)}mx(z, y) dz

+
1

w
ρKψ(x, y)

∫ ∞
x

ϕ(z, y)1{z≤g1(y)}mx(z, y) dz,
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and, similarly,

I3(x; y) = E
[ ∫ ∞

0

ρKe−ρs1{(Xx,y
s ,y)∈D} ds

]
=

1

w
ρKϕ(x, y)

∫ x

−∞
ψ(z, y)1{z≥g2(y)}mx(z; y) dz (4.66)

+
1

w
ρKψ(x, y)

∫ ∞
x

ϕ(z, y)1{z≥g2(y)}mx(z, y) dz.

Now, by plugging (4.64), (4.65), and (4.66) into (4.63), and then by imposing
that Vy(g1(y), y) = −K and Vy(g2(y), y) = K, we obtain the two equations

−K =
1

w
ψ(g1(y), y)

∫ g2(y)

g1(y)

ϕ(z, y)H(z, y)mx(z) dz − I2(g1(y), y) + I3(g1(y), y)

and

K =
1

w
ϕ(g2(y), y)

∫ g2(y)

g1(y)

ψ(z, y)H(z, y)mx(z) dz − I2(g2(y), y) + I3(g2(y), y)

Finally, rearranging terms and using the fact that (cf. Chapter II in [17])

ψx(·, y)

Sx(·, y)
= ρ

∫ ·
−∞

ψ(z, y)mx(z, y) dz

and
ϕx(·, y)

Sx(·, y)
= −ρ

∫ ∞
·

ϕ(z, y)m′(z, y) dz,

yield (4.57) and (4.58).
Equations (4.57) and (4.58) involve the coe�cients A(y) and B(y) through the

function H since Vx(x, y) = A(y)ψx(x, y) +B(y)ϕx(x, y) + V̂x(x, y), for any g1(y) <
x < g2(y), by (4.25). In order to obtain equations for A and B, we use (4.25) together
with the second-order smooth-�t principle Vyx(g1(y), y) = Vyx(g2(y), y) = 0, and we
�nd that, given the boundary functions g1 and g2, A and B solve the system of
ODEs (4.59) and (4.60).

Remark 4.27. Notice that equations (4.57) and (4.58) are consistent with those
obtained in Proposition 5.5 of [43]; in particular, one obtains, as a special case, those
in Proposition 5.5 of [43] by taking α = 0 in ours (4.57) and (4.58). However, the
nature of our equations is di�erent. While the equations in [43] are algebraic, ours
(4.57) and (4.58) are functional. Indeed, from (4.59) and (4.60) we see that A and
B depend on the whole boundaries g1 and g2 (and not only on the points g1(y) and
g2(y), for a �xed y ∈ R), so that, once those coe�cients are substituted into the
expression for Vx, they give rise to a functional nature of (4.57) and (4.58).

In contrast to the lengthy analytic approach followed in [43], Equations (4.57) and
(4.58) are derived via simple and handy probabilistic means using Itô's formula and
properties of linear regular di�usions. We believe that this di�erent approach has
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also a methodological value. Indeed, if we would have tried to derive equations for
the free-boundaries imposing the continuity of Vy and Vyx at the points (g1(y), y) and
(g2(y), y), y ∈ R, we would have ended up with a system of complex and unhandy
(algebraic and di�erential) equations from which it would have been di�cult to
observe their consistency with Proposition 5.5 of [43]. In the spirit of [3] (see also
[84]), we also would like to mention that (4.57) and (4.58) can be seen as optimality
conditions in terms of an integral representation based on the minimal y-harmonic
mappings ψ and ϕ for the underlying di�usion Xx,y. As such, those equations
could have been alternatively derived by applying the analytic representation of
y-potentials obtained in Corollary 4.5 of [66].

In Theorem 4.26 we provide equations for the free-boundaries g1 and g2 and for
the coe�cients A, and B, but we don't prove uniqueness of the solution to (4.57),
(4.58), (4.59) and (4.60). We admit that we do not know how to establish such a
uniqueness claim. The results so far holding both for θ = 0 and θ > 0. In the next
section, we will restrict our analyis only to the case θ = 0. Due to the more simpler
structure of ψ and φ (see (4.14), (4.15)), we can extend the results of Theorem 4.26.

4.6 A System of Di�erential Equations for the Free-Boundaries

In this section we derive, for the case θ = 0, a �rst-order system of nonlinear
di�erential equations for the free-boundaries g1 and g2, i.e. we will be able to write{

g′1(y) = G1(g1(y), g2(y), y),

g′2(y) = G2(g1(y), g2(y), y),

for some explicitly determined maps G1, G2, whose regularity will allow also to
establish a C1,Lip regularity for g1, g2. To the best of our knowledge, for a two-
dimensional degenerate singular stochastic control problem with interconnected dy-
namics as ours, a similar result appears here for the �rst time.

For a comment on the complexity in the case θ > 0, see Remark 4.29.
From (4.57), (4.58), (4.59) and (4.60), we obtain the following result.

Theorem 4.28. Let Assumption 4.18 hold and let θ = 0. Recall (4.14), (4.15),
(4.25). Let Moreover, for z ∈ R let

λ(z) :=
√
z2 + 2ρη2, (4.67)

r1(z) :=
−z +

√
z2 + 2ρη2

η2
> 0, (4.68)

r2(z) :=
−z −

√
z2 + 2ρη2

η2
< 0, (4.69)

and for y ∈ R, i, j = 1, 2, j 6= i,

γi(y) := − 2

η2

∫ g2(y)

g1(y)
e−rj(αy)u

(
fy(u, y)+αV̂x(u, y)

)
du+Kri(αy)

(
e−rj(αy)g1(y)+e−rj(αy)g2(y)

)
.
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Then, we obtain that

A(y)=−r2(αy)η2λ(αy)

8αρ

γ1(y)
(
e
− 2
η2
λ(αy)g1(y) − e−

2
η2
λ(αy)g2(y)

)
− 2λ(αy)γ2(y)

η2

(
g2(y)− g1(y)

)
sinh2

(
λ(αy)
η2

(
g2(y)− g1(y)

))
−
(
λ(αy)
η2

(
g2(y)− g1(y)

))2


(4.70)

B(y) = −r1(αy)η2λ(αy)

8αρ

γ2(y)
(
e

2
η2
λ(αy)g2(y) − e

2
η2
λ(αy)g1(y)

)
− 2λ(αy)γ1(y)

η2

(
g2(y)− g1(y)

)
sinh2

(
λ(αy)
η2

(
g2(y)− g1(y)

))
−
(
λ(αy)
η2

(
g2(y)− g1(y)

))2

 ,
(4.71)

A′(y) =
η2

2ρ
e

2αy

η2
g1(y)

[
M(g1(y), g2(y), y)

er1(αy)(g2(y)−g1(y)) − er2(αy)(g2(y)−g1(y))

]
(4.72)

B′(y) =
η2

2ρ
e

2αy

η2
g1(y)

[
N(g1(y), g2(y), y)

er1(αy)(g2(y)−g1(y)) − er2(αy)(g2(y)−g1(y))

]
, (4.73)

where

M(x1, x2, y) := r2(αy)
(
er2(αy)x1V̂yx(x2, y)− er2(αy)x2V̂yx(x1, y)

)
+ αA(y)r′2(αy)r2(αy)

(
er1(αy)x2+r2(αy)x1

(
r2(αy)x2 + 1

)
− er1(αy)x1+r2(αy)x2

(
r1(αy)x1 + 1

))
+ αB(y)r2

2(αy)r′2(αy)er2(αy)(x1+x2)(x2 − x1)

and

N(x1, x2, y) := r1(αy)
(
er1(αy)x2V̂yx(x1, y)− er1(αy)x1V̂yx(x2, y)

)
+ αB(y)r′2(αy)r1(αy)

(
er1(αy)x2+r2(αy)x1

(
r2(αy)x1 + 1

)
− er1(αy)x1+r2(αy)x2

(
r2(αy)x2 + 1

))
− αA(y)r2

1(αy)r′1(αy)er1(αy)(x1+x2)(x2 − x1).

Proof. Exploiting, given g1 and g2, (4.25), one has from (4.57) and (4.58) that A
and B solve the linear system

A(y)

[
α

∫ g2(y)

g1(y)

ψ(z, y)ψx(z, y)mx(z, y) dz

]
+B(y)

[
α

∫ g2(y)

g1(y)

ψ(z, y)ϕx(z, y)mx(z, y) dz

]
= K

[
ψx(g1(y), y)

Sx(g1(y), y)
+
ψx(g2(y), y)

Sx(g2(y), y)

]
−
∫ g2(y)

g1(y)

ψ(z, y)
(
fy(z, y) + αV̂x(z, y)

)
mx(z, y) dz,

(4.74)

A(y)

[
α

∫ g2(y)

g1(y)

ϕ(z, y)ψx(z, y)mx(z, y) dz

]
+B(y)

[
α

∫ g2(y)

g1(y)

ϕ(z, y)ϕx(z, y)mx(z, y) dz

]
= K

[
ϕx(g1(y), y)

Sx(g1(y), y)
+
ϕx(g2(y), y)

Sx(g2(y), y)

]
−
∫ g2(y)

g1(y)

ϕ(z, y)
(
fy(z, y) + αV̂x(z, y)

)
mx(z, y) dz.

(4.75)
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By using expressions for ψ, ϕ, Sx and mx (cf. (4.14), (4.15), (4.53) and (4.54))
one can explicitly evaluate the integrals appearing on the left-hand sides of (4.74)
and (4.75). Then, solving the latter two equations with respect to A and B one
�nds after some simple but tedious algebra (4.70) and (4.71). Notice indeed that
the denominator appearing in (4.70) and (4.71) is nonzero since g1 6= g2 and one has
sinh2(z)− z2 > 0 for any z 6= 0.

In order to �nd (4.72) and (4.73) we solve (4.59) and (4.60) with respect to A′(y)
and B′(y), and use (4.14), (4.15), (4.67), (4.68) and (4.69).

Remark 4.29. In the case of θ > 0, the uncontrolled process is of Ornstein-
Uhlenbeck type and this made it not possible to determine explicit expressions
for A(y) and B(y) as in (4.70) and (4.71) above. Indeed, the complex form of the
functions ψ and ϕ associated to the Ornstein-Uhlenbeck process does not allow to
conclude that the determinant of the coe�cients' matrix arising when one tries to
solve (4.74) and (4.75) with respect to A(y) and B(y) is nonzero.

We have now found explicit, given g1 and g2, formulas for A, B, A′ and B′.
Exploiting the connection between them, we obtain the following result for the
function g1 and g2.

Theorem 4.30. Let D := {(x1, x2, y) ∈ R3 : x1 6= x2} × R.
There exist explicitly computable8 functions Gi ∈ C0,Lip

loc
(D;R), i = 1, 2 such that{

g′1(y) = G1(g1(y), g2(y), y)

g′2(y) = G2(g1(y), g2(y), y).
(4.76)

In particular, gi ∈ C1,Lip
loc

(R;R) for i = 1, 2.

Proof. Recall Proposition 4.14 and (4.56). In particular, for any (x, y) such that
g1(y) ≤ x ≤ g2(y) � i.e. for any (x, y) ∈ C̄ � we have by (4.25)

Vx(x, y) = A(y)ψx(x, y) +B(y)ϕx(x, y) + V̂x(x, y),

with A,B belonging to W 2,∞
loc (R;R). De�ning then the function

H̄(x, y) = fy(x, y) + α
(
A(y)ψx(x, y) +B(y)ϕx(x, y) + V̂x(x, y)

)
, (x, y) ∈ R2,

one has H̄ = H on C̄.
Introduce now Φi : D → R de�ned as

Φ1(x1, x2, y) :=

∫ x2

x1

ψ(z, y)H̄(z, y)mx(z, y) dz

−Kρ
∫ x1

−∞
ψ(z, y)mx(z, y) dz −Kρ

∫ x2

−∞
ψ(z, y)mx(z, y) dz

8Cf. Remark 4.31.
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Φ2(x1, x2, y) :=

∫ x2

x1

ϕ(z, y)H̄(z, y)mx(z, y) dz

+Kρ

∫ ∞
x2

ϕ(z, y)mx(z, y) dz +Kρ

∫ ∞
x1

ϕ(z, y)mx(z, y) dz.

Observing that (cf. Chapter II in [17])

ψx(·, y)

Sx(·, y)
= ρ

∫ ·
−∞

ψ(z, y)mx(z, y) dz,
ϕx(·, y)

Sx(·, y)
= −ρ

∫ ∞
·

ϕ(z, y)mx(z, y) dz,

one can readily see that, by (4.57)-(4.58), for any y ∈ R one has

Φ1(g1(y), g2(y), y) = 0 and Φ2(g1(y), g2(y), y) = 0. (4.77)

Thanks to Assumption 4.2 and Proposition 4.14, one has that H̄ ∈ C1,Lip
loc (R2;R).

Hence, for any i = 1, 2, the map (x1, x2) 7→ Φi(x1, x2, y) belongs to C2(D;R) for each
y ∈ R and the map y 7→ Φi(x1, x2, y) belongs to C1,Lip

loc (D;R) for each (x1, x2) ∈ R2.
Recalling Proposition 4.25 we can take the total derivative on both terms appearing
in (4.77) we obtain for a.e. y ∈ R that∂Φ1

∂x1
(g1(y), g2(y), y) ∂Φ1

∂x2
(g1(y), g2(y), y)

∂Φ2

∂x1
(g1(y), g2(y), y) ∂Φ2

∂x2
(g1(y), g2(y), y)


︸ ︷︷ ︸

=:Λ(g1(y),g2(y),y)

g′1(y)

g′2(y)

 = −

∂Φ1

∂y
(g1(y), g2(y), y)

∂Φ2

∂y
(g1(y), g2(y), y)

 .

(4.78)
The determinant of the matrix Λ, denoted by |Λ|, is given by

|Λ|(g1(y), g2(y), y) =
(
H̄(g1(y), y) +Kρ

)(
H̄(g2(y), y)−Kρ

)
mx(g1(y), y)mx(g2(y), y)·

·
(
ψ(g2(y), y)ϕ(g1(y), y)− ψ(g1(y), y)ϕ(g2(y), y)

)
. (4.79)

We now aim at showing that |Λ|(g1(y), g2(y), y) does not vanish for any y ∈ R
under Assumption 4.18-(iii). On the one hand, if item (a) of that assumption holds,
i.e. x 7→ fy(x, y) is strictly increasing, then we have that x 7→ H(x, y) is such as
well. Since H̄ = H on C̄ and g2(y) > ζ2(y) > ζ1(y) > g1(y) by Proposition 4.20-(ii),
we have

H̄(g1(y), y) +Kρ < 0, H̄(g2(y), y)−Kρ > 0,

and
ψ(g2(y), y)ϕ(g1(y), y)− ψ(g1(y), y)ϕ(g2(y), y) > 0;

therefore, |Λ|(g1(y), g2(y), y) < 0. On the other hand, if item (b) of Assumption
4.18-(iii) holds, i.e. if fyx ≡ 0 and f(·, y) is strictly convex for any y ∈ R, we can
argue by contradiction as in Case (b) of the proof of Corollary 4.23. To this end,
suppose, for example, that H̄(g1(yo), yo) + Kρ = H(g1(yo), yo) + Kρ = 0, for some
yo ∈ R. Denoting fy(x, y) = q(y) it then follows that

−ρK + q(yo) = −αVx(x, yo) ∀ x ∈ (g1(yo), ζ1(yo)),

100



4.6 A System of Di�erential Equations for the Free-Boundaries

by de�nition of ζ1 (cf. Proposition 4.20); that is, V is an a�ne function of x in that
interval. However, using the latter and (4.19), we also have

αyo
(ρK − q(yo)

α

)
− ρV (x, yo) = −f(x, yo) ∀ x ∈ (g1(yo), ζ1(yo)),

and we reach a contradiction since f is strictly convex in x by assumption while V is
a�ne. The same argument also implies that H̄(g1(yo), yo) +Kρ 6= 0. We have then
proved that in any case one has |Λ|(g1(y), g2(y), y) 6= 0 under Assumption 4.18-(iii).

We can therefore invert the matrix Λ appearing in (4.78) and obtain that for a.e.
y ∈ R


g′1(y) =

[
∂Φ1

∂x2

∂Φ2

∂y
− ∂Φ2

∂x2

∂Φ1

∂y

]
(g1(y), g2(y), y)

|Λ|(g1(y), g2(y), y)
=: G1(g1(y), g2(y), y)

g′2(y) =

[
∂Φ2

∂x1

∂Φ1

∂y
− ∂Φ1

∂x1

∂Φ2

∂y

]
(g1(y), g2(y), y)

|Λ|(g1(y), g2(y), y)
=: G2(g1(y), g2(y), y)

(4.80)

Observe now that, given the aforementioned regularity of ∂Φi
∂xj

, i, j = 1, 2, and of
∂Φi
∂y

, i = 1, 2, we have Gi ∈ C0,Lip
loc (D;R); hence, gi ∈ C1,Lip

loc (R;R).

Remark 4.31. Notice that the right-hand sides of (4.80) are indeed functions only
of (g1(y), g2(y), y). To see that, it is enough to feed (4.70) and (4.71), and (4.72)
and (4.73) in the right-hand sides of (4.80), upon noticing that for any i, j = 1, 2,
∂Φi
∂xj

depend on A(y), B(y), while, for any i = 1, 2, ∂Φi
∂y

depend on A′(y), B′(y).

Remark 4.32. i) In the proof of Proposition 5.6 of [43] (see page 2213 therein;
see also Step 4 in the proof of Lemma 7 in [74] and the proof of Proposition 6
in [34]), a system of ODEs for the free-boundaries is determined with the aim
of proving that the free-boundaries belong to C1 and are strictly monotone.
In our problem, proving strict monotonicity of g1 and g2 would require to
establish a strict sign for G1 and G2 (cf. (4.80)). However, the interaction
between our dynamics � and the consequent dependency of ψ, ϕ, and mx on
y � makes the partial derivatives ∂Φi

∂y
appearing in (4.80) much more complex

than the analogous quantities in [43] or [74], and this in turn makes it unclear
that Gi < 0, i = 1.2 (although expected).

ii) System (4.76) provides a system of ODEs for the free-boundaries g1 and g2.
For a full characterization of the gis, one need to provide boundary conditions.
So far, it is not clear how to identify those. A possible idea might be to think
about the parameter α (the strength of interaction) as a variable. If one can
derive a system of ODEs in α, the case α = 0 could be used as a boundary
condition, since in this case the values for the boundaries are unique, see [43].
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4.7 A Discussion on Theorem 4.30 and on the Optimal Con-
trol

4.7.1 On Theorem 4.30

Given the full degeneracy of our setting, the fact that the free-boundaries gi, i = 1, 2,
belong to the class C1,Lip

loc (R;R) is, to the best of our knowledge, a remarkable result.
Indeed, the lack of uniform ellipticity of the di�usion coe�cient makes it already
di�cult to obtain a preliminary (locally) Lipschitz property of gis by invoking results
from PDE theory ([21] and [79], among others) or techniques as those in [91], [92],
and [93]. Also the probabilistic approach developed in [35] is not directly applicable
since our free-boundaries are associated to a Dynkin game rather than to an optimal
stopping problem.

It is also worth stressing that Theorem 4.30 not only provides regularity of the
free-boundaries, but also a system of ODEs. To the best of our knowledge, a similar
result appears here for the �rst time. Clearly, in order to provide a complete char-
acterization of gis, (4.76) should be complemented by boundary conditions. The
determination of those is a non trivial task. As a matter of fact, we have not been
able to identify a relevant value of y for which the values of the free-boundaries can
be determined. The only information available is that the free-boundaries diverge
for large (in absolute value) levels of y; but this is clearly not enough. Even enforc-
ing a �nite-fuel constraint like y ≤ Y y,ξ

t ≤ y a.s. for any t ≥ 0 would not help in
order to obtain boundary conditions. Indeed, di�erently to the case with monotone
controls (see [64]), here the drift process Y can be pushed back into (y, y) once any
of the boundary points of that interval is reached. Also, it is not clear to us how
to obtain some kind of asymptotic growth of the free-boundaries in order to restrict
the functional class where to look for uniqueness of (4.76).

4.7.2 On The Optimal Control

So far, we investigated the structure of the value function and the properties of
the free-boundaries gis characterizing the state space. A key question now is the
existence and uniqueness of an optimal control. Existence of an optimal control for
problem (4.6) can be shown relying on (a suitable version of) Komlós' theorem, by
following arguments similar to those employed in the proof of Proposition 3.4 in
[43] (see also Theorem 3.3 in [61]). In fact, one also has uniqueness of the optimal
control if the running cost function is strictly convex. In this section, we discuss
the structure of the optimal control by relating it to the solution of a Skorokhod
re�ection problem at ∂C, where C is given by (4.10). Moreover, we discuss conditions
under which a solution to the re�ection problem exists. First, we introduce the
corresponding Skorokhod re�ection problem.

Problem 4.33. Let (x, y) ∈ C be given and �xed. Find a process ξ̂ ∈ A such

that ξ̂0− = 0 a.s. and, letting (X̂x,y
t , Ŷ y

t )t≥0 := (Xx,y,ξ̂
t , Y y,ξ̂

t )t≥0 and denoting by
(ξ̂+
t , ξ̂

−
t )t≥0 its minimal decomposition, we have

(X̂x,y
t , Ŷ y

t ) ∈ C for all t ≥ 0, P− a.s.

102



4.7 A Discussion on Theorem 4.30 and on the Optimal Control

and

ξ̂+
t =

∫
(0,t]

1{X̂x,y
s ,Ŷ ys )∈I}dξ̂

+
s , ξ̂−t =

∫
(0,t]

1{X̂x,y
s ,Ŷ ys )∈D}dξ̂

−
s .

Before discussing the existence of a solution to problem (4.33), we provide a
veri�cation theorem which gives its optimality.

Theorem 4.34. Let (x, y) ∈ R2 and suppose that a solution ξ̂ = ξ̂+− ξ̂− to Problem
4.33 exists. De�ne the process ξ? := ξ?,+t − ξ?,−t , t ≥ 0, where

ξ?,+t := ξ̂+
t + (g1(y)− x)+, ξ?,−t := ξ̂−t + (x− g2(y))+, for all t ≥ 0,

and with ξ?0− = 0 a.s. Then ξ? is optimal for problem (4.6). Moreover, if f is strictly
convex, it is the unique optimal control.

Proof. Being the process ξ? clearly admissible, it is enough to show that

V (x, y) ≥ E
[ ∫ ∞

0
e−ρtf(Xx,y,ξ?

t , Y y,ξ?

t )dt+

∫ ∞
0

e−ρtKdξ?,+t +

∫ ∞
0

e−ρtKdξ?,−t

]
. (4.81)

To accomplish that, let (Kn)n∈N be an increasing sequence of compact subsets such
that

⋃
n∈NKn = R2, and for any given n ≥ 1, de�ne the bounded stopping time τn :=

inf{t ≥ 0 : (Xx,y,ξ?

t , Y y,ξ?

t ) 6∈ Kn} ∧ n. We already know by Proposition 4.14 that
V ∈ C2,1(C̄;R); moreover, by construction, the process ξ? is that (Xx,y,ξ?

t , Y y,ξ?

t ) ∈ C̄
for all t ≥ 0 a.s. Hence, we can apply Itô's formula on the (stochastic) time interval
[0, τn] to the process (e−ρtV (Xx,y,ξ?

t , Y y,ξ?

t ))t≥0, take expectations, and obtain (upon
noticing that the expectation of the resulting stochastic integral vanishes due to the
continuity of Vx)

V (x, y) = E
[
e−ρτnV (Xx,y,ξ?

τn , Y y,ξ?

τn )

]
− E

[ ∫ τn

0

e−ρt[(Ly − ρ)V (·, Y y,ξ?

t )](Xx,y,ξ?

t ) dt

]
− E

[ ∫ τn

0

e−ρtVy(X
x,y,ξ?

t , Y y,ξ?

t ) dξ?,ct

]
− E

[ ∑
0≤t≤τn

e−ρt
(
V (Xx,y,ξ?

t , Y y,ξ?

t )− V (Xx,y,ξ?

t , Y y,ξ?

t− )
)]

. (4.82)

Here ξ?,c denotes the continuous part of ξ?. Notice now that

[(Ly − ρ)V (·, Y y,ξ?

t )](Xx,y,ξ?

t ) = −f(Xx,y,ξ?

t , Y y,ξ?

t )

due to Proposition 4.13-(i) and the fact that V ∈ C2,1(C̄;R) by Proposition 4.14.
Therefore,

E
[ ∫ τn

0
e−ρt[(Ly−ρ)V (·, Y y,ξ?

t )](Xx,y,ξ?

t ) dt

]
= −E

[ ∫ τn

0
e−ρtf(Xx,y,ξ?

t , Y y,ξ?

t ) dt

]
. (4.83)
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Letting ∆ξ?,±t := ξ?,±t − ξ?,±t− , t ≥ 0, notice now that

V (Xx,y,ξ?

t , Y y,ξ?

t )− V (Xx,y,ξ?

t , Y y,ξ?

t− ) = 1{δξ?,+t >0}

∫ δξ?,+t

0

Vy(X
x,y,ξ?

t , Y y,ξ?

t− + u)du

− 1{δξ?,−t >0}

∫ δξ?,−t

0

Vy(X
x,y,ξ?

t , Y y,ξ?

t− − u)du. (4.84)

Since the support of the (random) measure induced on R+ by ξ?,+ is I, and that of
(random) the measure induced on R+ by ξ?,− is D, and Vy = −K on I and Vy = K
on D, we therefore conclude by using (4.84) that

E
[ ∫ τn

0
e−ρtVy(X

x,y,ξ?

t , Y y,ξ?

t ) dξ?,ct +
∑

0≤t≤τn

e−ρt
(
V (Xx,y,ξ?

t , Y y,ξ?

t )− V (Xx,y,ξ?

t , Y y,ξ?

t− )
)]

= −E
[ ∫ τn

0
e−ρt

(
K dξ?,+t +K dξ?,−t

)]
. (4.85)

E
[ ∫ τn

0
e−ρtVy(X

x,y,ξ?

t , Y y,ξ?

t ) dξ?,ct +
∑

0≤t≤τn

e−ρt
(
V (Xx,y,ξ?

t , Y y,ξ?

t )− V (Xx,y,ξ?

t , Y y,ξ?

t− )
)]

= −E
[ ∫ τn

0
e−ρt

(
K dξ?,+t +K dξ?,−t

)]
. (4.86)

Then using (4.83) and (4.85) in (4.82), we obtain

V (x, y) ≥ E
[ ∫ τn

0

e−ρtf(Xx,y,ξ?

t , Y y,ξ?

t ) dt+

∫ τn

0

e−ρtK dξ?,+t +

∫ τn

0

e−ρtK dξ?,−t

]
,

where the non-negativity of V has also been employed. Taking now limits as n ↑ ∞
in the right-hand side of the latter, and invoking the monotone convergence theorem
(due to non-negativity of f and of K) we obtain (4.81).

Finally, uniqueness of the optimal control can be shown thanks to the strict
convexity of f by arguing as in the proof of Proposition 3.4 in the Appendix A of
[43].

The following picture provides an illustrative description of the expected behavior
of the optimal control rule ξ?. This should be such that the jumps of the two-
dimensional process (Xx,y,ξ?

t , Y y,ξ?

t )t≥0 are induced by the optimal control only at
initial time, if the initial data (x, y) lie in the interior of I or D, or at those times at
which the process meets jumps of the free-boundaries. The size of those interventions
should be such that the process is immediately brought to the closest point on ∂C,
from where it evolves according to (4.2) and (4.3) and in such a way that it is kept
inside the closure of C in a minimal way.
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Question: does a solution to Problem 4.33 exist?

The latter is per se an interesting and not trivial problem, whose solution
in multi-dimensional settings strongly hinges on the smoothness of the re�ection
boundary itself; su�cient conditions can be found in the seminal papers [38] and
[68]. Unfortunately, our information on ∂C do not su�ce to apply the results of
the aforementioned works since we are not able to exclude horizontal segments of
the free-boundaries g1 and g2 (cf. Case (1) and Case (2) in [38]). Indeed, although
we can provide explicit formulas for the maps G1 and G2 appearing in (4.76), their
complex expressions makes it hard to show that they are strictly negative (see also
Remark 4.32).

An alternative and more constructive way of obtaining a solution to Problem
4.33 is the one followed in [26], where the needed re�ected di�usion is constructed
(weakly) by means of a Girsanov's transformation of probability measures (see Sec-
tion 5 in [26]). The next proposition shows that this is possible also in our problem
when f satis�es suitable additional requirements.

Proposition 4.35. Suppose that there exists C > 0 such that |fx| ≤ C, and
that fy(x, y) = β(y), for some strictly increasing function β : R → R such that
limy→±∞ β(y) = ±∞. Then there exists a weak solution (in the sense of weak solu-
tions to SDEs) to Problem 4.33.
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Proof. The proof is organized in two steps. For simplicity, we just perform the proof
in the case θ > 0, we case θ = 0 can be treated similary.

Step 1. We here show that b2 > −∞ and b̄1 < +∞. Using the convexity of
f(·, y), (4.4), and the assumed requirement on fx, one easily �nds for all (x, y) ∈ R2

that

V (x+ ε, y)− V (x, y)

ε
≤ sup

ξ∈A
E
[ ∫ ∞

0

e−(ρ+θ)tfx(X
x+ε,y,ξ
t , y)dt

]
≤ C

ρ+ θ
=: C ′.

Analogously, for any (x, y) ∈ R2,

V (x, y)− V (x− ε, y)

ε
≥ inf

ξ∈A
E
[ ∫ ∞

0

e−(ρ+θ)tfx(X
x−ε,y,ξ
t , y)dt

]
≥ −C ′.

Hence, by the existence of Vx(·, y), we have that |Vx| ≤ C ′.
Since, by assumption, fy(x, y) = β(y), for some strictly increasing function β :

R → R such that limy→±∞ β(y) = ±∞, it follows from arguments similar to those
employed to prove (ii) of Proposition 4.20 that

{(x, y) ∈ R2 : y ≥ b2(x)} ⊆ {(x, y) ∈ R2 : y ≥ β−1(ρK − αC ′)}.

Hence, b2 > −∞.
Analogously, one has that

{(x, y) ∈ R2 : y ≤ b1(x)} ⊆ {(x, y) ∈ R2 : y ≤ β−1(αC ′ − ρK)};

therefore, b̄1 < +∞.

Step 2. We here follow the approach developed in Section 5 of [26] in order to
construct a weak solution (in the sense of weak solutions to SDEs) to Problem 4.33.
Let B := (Bt)t≥0 be a standard Brownian motion on the �ltered probability space
(Ω,G,G := (Gt)t≥0,Q), where G satis�es the usual hypotheses. The smallest such
�ltration is the augmented �ltration generated by B, that we denote by F.

Following, e.g., the arguments of Section 4.3 in [43] one can construct a couple of
F-progressively measurable (since F-adapted and right-continuous) processes ξ? :=
(ξ?,+t , ξ?,−t )t≥0 such that{

dXt = −θXtdt+ ηdBt, t > 0, X0 = x ∈ R,
Y ?
t = y + ξ?,+t − ξ?,−t , t ≥ 0, Y ?

0− = y ∈ R,

(Xt, Y
?
t ) ∈ C for all t ≥ 0, Q− a.s., (4.87)

and

ξ?,+t =

∫
(0,t]

1{(Xs,Y ?s )∈I}dξ
?,+
s , ξ?,−t =

∫
(0,t]

1{(Xs,Y ?s )∈D}dξ
?,−
s . (4.88)

Since b2 > −∞ and b̄1 < +∞, one has that b̄1 ∨ y ≥ Y ?
t ≥ b2 ∧ y for all t ≥ 0, Q-a.s.
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It thus follows by Girsanov's theorem (Corollary 5.2 in Chapter 3.5 of [60]) that
the process

Wt := Bt +

∫ t

0

−α
η
Y ?
s ds, t ≥ 0,

is a standard Brownian motion on (Ω,FB,FB := (FBt )t≥0,P), where FB is the (un-
completed) �ltration generated by B, FB := FB∞, and P is a probability measure on
(Ω,FB) such that

dP
dQ

∣∣∣
FBT

= exp
(
−
∫ T

0

−α
η
Y ?
s dBs −

1

2

∫ T

0

α2

η2

(
Y ?
s

)2
ds
)
, T <∞.

Hence, P-a.s., (Xt, Y
?
t , ξ

?
t )t≥0 solves (4.2) and (4.3), and satis�es (4.87) and (4.88);

that is, it is a (weak) solution to Problem 4.33.

Remark 4.36. Notice that the result of Proposition 4.35 is particularly relevant in
the problem of optimal in�ation management discussed in the introduction. Indeed,
as a byproduct of Proposition 4.35 we have that the key interest rate stays bounded
under the optimal monetary policy of the central bank.

In general, the constructive approach of [26] also gives a strong solution to
Problem 4.33 if one can show show that the free-boundaries b1 and b2 are glob-
ally Lipschitz-continuous, a property that is assumed in [26]. In fact, in such a case,
after constructing pathwise the solution to Problem 4.33 when α = 0 in the dynam-
ics of X (see, e.g., Section 5 in [26] or Section 4.3 in [43] for such a construction),
one can still introduce back the linear term αY ? via a Girsanov's transformation.
The Lipschitz property of the free-boundaries does indeed guarantee that the ex-
ponential process needed for the change of measure is an exponential martingale.
Hence, a weak solution to Problem 4.33 exists and a strong solution could then be
obtained via a pathwise uniqueness claim whose proof uses, once more, the global
Lipschitz-continuity of the free boundaries (see Remark 5.2 in [26]).

It is worth noticing that in certain obstacle problems in Rd, d ≥ 1, the Lips-
chitz property is the preliminary regularity needed to upgrade - via a bootstrapping
procedure and suitable technical conditions - the regularity of the free boundary to
C1,δ-regularity, for some δ ∈ (0, 1), and eventually to C∞-regularity (see [21] and
[79], among others, for details; see also [35] for Lipschitz-regularity results related
to optimal stopping boundaries). In multi-dimensional singular stochastic control
problems, Lipschitz regularity of the free boundary has been obtained, e.g., in a
series of early papers by Soner and Shreve ([91], [92], and [93]), via �ne PDE tech-
niques, and in the more recent [18], via more probabilistic arguments. In all those
works the control process is monotone and the state process is a linearly controlled
Brownian motion. Obtaining global Lipschitz-continuity of the free-boundaries for
the two-dimensional degenerate bounded-variation control problem (4.6) is a non
trivial task that we leave for future research.

4.8 Conclusion

In this part of the thesis, we studied a two-dimensional singular stochastic control
problem with interconnected dynamics. We considered both, a drifted Brownian
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motion and an Ornstein-Uhlenbeck process, where the drift components can be ad-
justed. We solved the problem using a direct approach. First, we proved some
preliminary properties of the value function V such as di�erentiablility and convex-
ity. Moreover, we related Vy (the derivative of the value function with respect to the
controlled variable) to the value of a Dynkin game of optimal stopping (see Section
4.2). This allowed us to derive preliminary properties of the free-boundaries. Next,
we showed that V is a viscosity solution to the corresponding HJB equation, which
evolves as an ODE with gradient constraint. This fact enabled us to show that V
is also a classical solution to the HJB in the continuation region. Furthermore, we
upgraded the regularity of the value function V by proving a second-order smooth-
�t condition for the mixed derivative Vyx and that Vyxx 6= 0 at the free-boundaries.
These properties combined with the structure of V made it possible to derive a nec-
essary system of non-linear functional equations for the free-boundaries. Moreover,
the fact that Vyxx 6= 0 at the free-boundaries allowed us to apply the implicit func-
tion theorem and to prove a locally Lipschitz property of the free-boundaries (see
Proposition 4.25). If X evolves as a drifted Brownian motion, the Lipschitz property
makes it possible to di�erentiate the system of necessary functional equations and,
thus, to derive an explicitly computable system of �rst-order ODEs. This result is
the most remarkable one of this section. Unfortunately, so far we can not provide
any initial conditions for the system of ODEs. Hence, the question of uniqueness
still remains open. We let this problem left for future research. Finally, we discussed
the construction of the optimal control, which turns out to be the solution of a Sko-
rokhod re�ection problem at the free-boundaries. Under additional assumptions, we
proved that a weak solution to the Skorokhod re�ection problem exists, allowing to
construct the optimal control.
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Appendices

A Appendix Section 2

A.1 Proof of Corollary 2.13

Notice that from (2.22) we can write for any x > 0 and t ∈ [0, T ]

u(t, x) = E
[ ∫ T−t

0

−f ′(t+ θ)1{x+µθ+σWθ≥b(t+θ)}1{θ<S(x)} dθ

+m(t+ S(x))1{S(x)≤T−t} + gx(T,AT−t(x))

]
=

∫ T−t

0

−f ′(t+ θ)P
(
x+ µθ + σWθ ≥ b(t+ θ), S(x) > θ

)
dθ (A.1)

+ E
[
m(t+ S(x))1{S(x)≤T−t}

]
+ E

[
gx(T,AT−t(x))

]
,

where Fubini's theorem and the fact that f ′ is deterministic has been used for the
integral term above.

We now investigate the three summands separately. By using Proposition 3.2.1.1
in Jeanblanc et al. [52], and recalling that the stopping boundary b is strictly positive
by Assumption 2.5, we have

P
(
x+ µθ + σWθ ≥ b(t+ θ), S(x) > θ

)
= P

(
x+ µθ + σWθ ≥ b(t+ θ), inf

s≤θ
(x+ µs+ σWs) > 0

)
= P

(
µ

σ
θ +Wθ ≥

b(t+ θ)− x
σ

, inf
s≤θ

(µ
σ
s+Ws

)
> −x

σ

)
(A.2)

= N
( x−b(t+θ)

σ
+ µ

σ
θ

√
θ

)
− e−2µx

σ2N
(− b(t+θ)+x

σ
+ µ

σ
θ

√
θ

)
.

Here N ( · ) denotes the cumulative distribution function of a standard Gaussian
random variable. Note that the last term in (A.2) is continuously di�erentiable with
respect to x for any θ > 0.

For the second summand in the last expression on the right-hand side of (A.1)
we �rst rewrite S(x), for x ≥ 0, as

S(x) = inf{s ≥ 0 : x+ µs+ σWs = 0} = inf{s ≥ 0 :
µ

σ
s+Ws = −x

σ
}

L
= inf{s ≥ 0 : −µ

σ
s+ Ŵs =

x

σ
}

where Ŵ is a standard Brownian motion. Hence equation (3.2.3) in Jeanblanc et
al. [52] applies and allows us to write the probability density of S(x) as

ρS(x)(u) :=
dP(S(x) ∈ du)

du
=

x

σ
√

2πu3
e−

( xσ+
µ
σ u)

2

2u , u ≥ 0. (A.3)
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A.2 Proof of Lemma 2.18

For the third summand we notice that the absorbed process AT−t(x) of (2.5)
is the drifted Brownian motion started in x and killed at the origin. Denote by
ρA(t, x, y) its transition density of moving from x to y in t units of time. Then,
by employing the result of Borodin and Salminen [17], Section 15 in Appendix 1
(suitably adjusted to our case with σ 6= 1), we obtain

ρA (T − t, x, y) :=
dP(AT−t(x) ∈ dy)

dy

=
1√

2π(T − t)σ2
exp

(
−
(
µ(x− y)

σ2

)
− µ2

2σ2
(T − t)

)
×
(

exp

(
− (x− y)2

2σ2(T − t)

)
− exp

(
− (x+ y)2

2σ2(T − t)

))
. (A.4)

Feeding (A.2), (A.3) and (A.4) back into (A.1) we obtain

u(t, x) =

∫ T−t

0

−f ′(t+ θ)

[
N
( x−b(t+θ)

σ
+ µ

σ
θ

√
θ

)
− e−2µx

σ2N
(− b(t+θ)+x

σ
+ µ

σ
θ

√
θ

)]
dθ

+

∫ T−t

0

m(t+ u)ρS(x)(u) du+

∫ ∞
0

gx(T, y)ρA (T − t, x, y) dy,

and it is easy to see by the dominated convergence theorem that x 7→ u(t, x) is
continuously di�erentiable on (0,∞) for any t < T .

A.2 Proof of Lemma 2.18

By (2.28) and Corollary 2.13 the function N of (2.29) is twice-continuously di�eren-
tiable with respect to x on (0,∞). To show that N is also continuously di�erentiable
with respect to t on [0, T ) we express the expected value on the right-hand side of
(2.29) as an integral with respect to the probability densities of the involved pro-
cesses. We thus start computing the transition density of the re�ected Brownian
motion R of (2.33), which we call ρR. By Appendix 1, Chapter 14, in Borodin and
Salminen [17] (easily adapted to our case with σ 6= 1) we have

ρR(u, x, y) :=
dP(Ru(x) ∈ dy)

dy
=

1√
2πuσ2

exp

(
−µ
σ

(
x− y
σ

)
− µ2

2σ2
u

)
×(

exp

(
−(x− y)2

2σ2u

)
− exp

(
−(x+ y)2

2σ2u

))
− µ

2σ
Erfc

(
x+ y + µu√

2σ2u

)
,

where Erfc(x) :=
∫ x
−∞

1√
2π
e−

y2

2 dy for x ∈ R. Hence, by using Fubini's Theorem,
(2.29) reads as
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A.3 Proof of Proposition 2.26

N(t, x) = E
[
−
∫ T−t

0

(Rs(x)− b(t+ s))+ f ′(t+ s) ds−
∫ T−t

0

m(t+ s) dI0
s (x)

+ g(T,RT−t(x))

]
= −

∫ T

t

E
[

(Ru−t(x)− b(u))+
]
f ′(u) du

− E
[ ∫ T−t

0

m(t+ s) dI0
s (x)

]
+ E

[
g(T,RT−t(x))

]
= −

∫ T

t

(∫ ∞
0

(y − b(u))+ ρR(u− t, x, y) dy

)
f ′(u) du

− E
[ ∫ T

t

m(u) dI0
u−t(x)

]
+

∫ ∞
0

g(T, y)ρR(T − t, x, y) dy. (A.5)

Recalling that m is continuously di�erentiable by Assumption 2.1 and using an
integration by parts, we can write

E
[ ∫ T

t

m(u) dI0
u−t(x)

]
= E

[
m(T )I0

T−t(x)−
∫ T

t

I0
u−t(x)m′(u) du

]
= m(T )E

[
I0
T−t(x)

]
−
∫ T

t

E
[
I0
u−t(x)

]
m′(u) du

= m(T )E
[
0 ∨ (σξT−t − x)

]
−
∫ T

t

E
[
0 ∨ (σξu−t − x)

]
m′(u) du,

where we have used that I0
s (x) = 0 ∨ (σξs − x) with ξs := supθ≤s(−µ

σ
θ−Wθ). Since

(cf. Chapter 3.2.2 in Jeanblanc et al. [52])

P (ξs ≤ z) = N
(
z − µ

σ
s

√
s

)
− exp

(
2
µ

σ
z
)
N
(−z − µ

σ
s

√
s

)
,

we get

E
[
0 ∨ (σξu−t − x)

]
=

∫ ∞
x
σ

(σz − x)ρξ(u− t, z) dz,

where we have de�ned ρξ(s, z) := dP(ξs≤z)
dz

. Because ρξ(·, z) and ρR(·, x, y) are con-
tinuously di�erentiable on (0, T ], it follows that N(t, x) as in (A.5) is continuously
di�erentiable with respect to t, for any t < T . The continuity of N on [0, T ] × R+

also follows from the previous equations.

A.3 Proof of Proposition 2.26

Let (t, x) ∈ [0, T ) × (0,∞) be given and �xed, and take any sequence (tn, xn) ⊂
[0, T ) × (0,∞) such that (tn, xn) → (t, x). Then, let τ ? := τ ?(t, x) be the optimal
stopping time for u(t, x) of (2.84). From (2.80) and the fact that τ ? ≤ T − t a.s. we
then �nd

u(t, x)− u(tn, xn) ≤ E
[
ηe−rτ

?

1{τ?<S(x)} + κe−rS(x)
1{τ?≥S(x)}
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−ηe−r(τ?∧(T−tn))
1{τ?∧(T−tn)<S(xn)} − κe−rS(xn)

1{τ?∧(T−tn)≥S(xn)}
]

= E
[
1{τ?≤T−tn}

{
ηe−rτ

? (
1{τ?≥S(xn)} − 1{τ?≥S(x)}

)
+ κ

(
e−rS(x)

1{τ?≥S(x)} − e−rS(xn)
1{τ?≥S(xn)}

)}]
+ E

[
1{τ?>T−tn}

{
ηe−rτ

?

1{τ?<S(x)} − ηe−r(T−tn)
1{T−tn<S(xn)}

+ κ
(
e−rS(x)

1{τ?≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)}]
≤ E

[
1{τ?≤T−tn}

{
ηe−rτ

?

1{S(xn)≤τ?<S(x)}

+ κ
(∣∣e−rS(x) − e−rS(xn)

∣∣1{τ?≥S(xn)∨S(xn)} + e−rS(x)
1{S(xn)>τ?≥S(x)}

)}]
+ E

[
1{τ?>T−tn}

{
ηe−r(T−tn)

(
1{T−tn<S(x)} − 1{T−tn<S(xn)}

)
+ κ1{T−t>S(x)}

(
e−rS(x)

1{τ?≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)
+ κ1{T−t=S(x)}

(
e−rS(x)

1{τ?≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)
+κ1{T−t<S(x)}

(
e−rS(x)

1{τ?≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)}]
≤ E

[
ηe−rτ

?

1{S(xn)≤τ?<S(x)} + κ
(∣∣e−rS(x) − e−rS(xn)

∣∣+ 1{S(xn)>τ?≥S(x)}
)]

+ E
[
1{τ?>T−tn}

{
ηe−r(T−tn)

1{S(xn)≤T−tn<S(x)}

+ κ1{T−t>S(x)}
(
e−rS(x)

1{T−t≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)
+ κ1{T−t=S(x)} +κ1{T−t<S(x)}1{τ?≥S(x)}

}]
.

Rearranging terms and taking limit inferior as n ↑ ∞ on both sides one obtains

limn→∞u(tn, xn) ≥ u(t, x)− limn→∞E
[
ηe−rτ

?

1{S(xn)≤τ?<S(x)}

+ κ
(∣∣e−rS(x) − e−rS(xn)

∣∣+ 1{S(xn)>τ?≥S(x)}
) ]

− limn→∞E
[
1{τ?>T−tn}

{
ηe−r(T−tn)

1{S(xn)≤T−tn<S(x)}

+ κ1{T−t>S(x)}
(
e−rS(x)

1{T−t≥S(x)} − e−rS(xn)
1{T−tn≥S(xn)}

)
+ κ1{T−t=S(x)} + κ1{S(x)≤τ?≤T−t<S(x)}

}]
≥ u(t, x)− E

[
κ1{S(x)=τ?}

]
− E

[
ηe−r(T−t)1{T−t=S(x)} + κ1{T−t=S(x)}

]
= u(t, x)− κP (τ ? = S(x))−

(
ηe−r(T−t) + κ

)
P (T − t = S(x)) .
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A.4 Lemma A.1

The last inequality follows by interchanging expectations and limits by the dom-
inated convergence theorem, using that S(xn) → S(x), carefully investigating the
involved limits superior, and observing that {τ ? ≥ T − t} = {τ ? = T − t} since
τ ? ∈ Λ(T − t).

Using now that {T − t = S(x)} is a P-null set by (A.3), and the fact that
P (τ ? = S(x)) = 0 since the free-boundary is strictly positive on [0, T ), we then
obtain

limn→∞u(tn, xn) ≥ u(t, x),

which proves the claimed lower semicontinuity of u on [0, T )× (0,∞).

A.4 Lemma A.1

Lemma A.1. Recall that (cf. (2.55))

z = inf {y ∈ [0, b(0)] : τ ?(0, y) < S(y)} .

Then it holds that
S(z) ≤ T a.s.

Proof. In order to simplify exposition, in the following we shall stress the dependence
on ω only when strictly necessary. Suppose that there exists a set Ω0 ⊂ Ω s.t.
P(Ω0) > 0, and that for any ω ∈ Ω0 we have S(z) > T . Then take ω0 ∈ Ω0,
recall that Zs(x) = x + µs + σWs for any x > 0 and s ≥ 0, and notice that
min0≤s≤T Zs(z;ω0) = ` := `(ω0) > 0. Then, de�ning ẑ(ωo) := ẑ = z − `

2
, one has

min
0≤s≤T

Zs(ẑ;ω0) = min
0≤s≤T

(
z + µs+ σWs(ω0)− `

2

)
= `− `

2
=
`

2
> 0.

Hence, S(ẑ) > T ≥ τ ?(0, ẑ), but this contradicts the de�nition of z since ẑ < z.
Therefore we conclude that S(z) ≤ T a.s.
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B Appendix Section 4

B.1 Proof of Theorem 4.5

We want to suitably employ the results of Theorems 3.11 and 3.13 of [26]. However,
in contrast to the fully di�usive setting of [26], in our model the process Y is purely
controlled so that the two-dimensional process (X, Y ) is degenerate. The idea of the
proof is then to perturb the dynamics of Y (cf. (4.2)) by adding a Brownian motion
B := (Bt)t≥0 with volatility coe�cient δ > 0, so to be able to apply Theorems 3.11
and 3.13 of [26] for any given and �xed δ. The claims of Theorem 4.5 (in particular
(4.8)) will then follow by an opportune limit procedure as δ ↓ 0. We perform the
proof only for the case θ > 0, as the case θ = 0 follows by similar arguments.
Suppose that (Ω,F ,F,P) is rich enough to accommodate a second Brownian motion
B := (Bt)t≥0, independent of W . Then, given (x, y) ∈ R2, δ > 0, and ξ ∈ A (cf.
(4.1)), we denote by (Xξ;δ, Y ξ;δ) := (Xξ;δ

t , Y ξ;δ
t )t≥0 the unique strong solution to(

dYt
dXt

)
=

(
0 0
α −θ

)(
Yt
Xt

)
dt+

(
δ 0
0 η

)(
dBt

dWt

)
+

(
1
0

)
dξt. (B.1)

with initial data X0− = x and Y0− = y. In order to simplify the notation, in the
the rest of this proof we will not stress the dependency on (x, y) of the subsequent
involved processes. In the case ξ ≡ 0, we simply write (Xδ, Y δ) := (X0;δ

t , Y 0;δ
t )t≥0.

Notice that (B.1) can be easily obtained from equation (2.2) of [26] by taking
c = 1, by suitably de�ning the matrices b and σ therein, and by setting x1 = y and
x2 = x. Then we de�ne the perturbed optimal control problem

V δ(x, y) := inf
ξ∈A

E
[ ∫ ∞

0

e−ρtf(Xξ;δ
t , Y ξ;δ

t ) dt+K

∫ ∞
0

e−ρt d|ξ|t
]
.

By estimates as those leading to Proposition 4.4 it can be shown that there exist
constants C̃0, C̃1, C̃2 (which are independent of δ, for all δ su�ciently small) such
that for any λ ∈ (0, 1), any z := (x, y) ∈ R2 and z′ := (x′, y′) ∈ R2, we have

(i) 0 ≤ V δ(z) ≤ C̃0

(
1 + |z|

)p
,

(ii) |V δ(z)− V δ(z′)| ≤ C̃1

(
1 + |z|+ |z′|

)p−1|z − z′|,

(iii) 0 ≤ λV δ(z) + (1 − λ)V δ(z′) − V δ(λz + (1 − λ)z′) ≤ C̃2λ(1 − λ)
(
1 + |z| +

|z′|
)(p−2)+|z − z′|2,

where p > 1 is the same of Assumption 4.2. Hence V δ is convex and locally semi-
concave, and therefore V δ ∈ W 2,∞

loc (R2;R). In particular, there exists a version of
V δ ∈ C1,Lip

loc (R2;R).
Let (Xξ

t , Y
ξ
t )t≥0 := (Xξ;0

t , Y ξ;0
t )t≥0. By (4.2), (4.4), and (B.1) one easily �nds for

p ∈ [1,∞)

E[|(Xξ;δ
t , Y ξ;δ

t )− (Xξ
t , Y

ξ
t )|p] ≤ Ctδ

p, ∀ξ ∈ A and t ≥ 0,
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for some Ct that is at most of polynomial growth with respect to t. Using now the
latter and Assumption 4.2-(ii), it can be shown that V δ(x, y) → V (x, y) as δ ↓ 0
for each (x, y) ∈ R2. Let BN := {z ∈ R2 : |z| < N}, for some N > 0. Since items
(i)-(iii) above imply that V δ ∈ W 2,p(BN) for any p > 2 and W 2,p(BN) is re�exive,
there exists a sequence δn ↓ 0 as n ↑ ∞ such that V δn converges weakly inW 2,p(BN).
Because V δn → V pointwise and weak limits are unique, we have that V δn ⇀ V
weakly in W 2,p(BN). Since the embedding W 2,p(BN) ↪→ C1(BN) is compact for
p > 2 (2 being the dimension of our space), it follows that

V δn → V locally uniformly in R2, (B.2)

V δn
x → Vx locally uniformly in R2, (B.3)

and
V δn
y → Vy locally uniformly in R2. (B.4)

Moreover, by Theorem 3.11 in [26] (easily adjusted to take care of our general
convex function f satisfying Assumption 4.2, and upon noticing that b11 = 0 in our
setting, cf. (B.1)) we have that V δ

y is the unique (given V δ
x ) solution to the pointwise

variational inequality:
V δ
y ∈ W

2,q
loc (R2), ∀q ≥ 2, −K ≤ V δ

y ≤ K a.e. in R2,

(Ly − ρ)V δ
y ≤ −αV δ

x − fy(x, y) a.e. in Iδ,
(Ly − ρ)V δ

y ≥ −αV δ
x − fy(x, y) a.e. in Dδ,

(Ly − ρ)V δ
y = −αV δ

x − fy(x, y) a.e. in Cδ,

(B.5)

where we have set

Iδ :=
{

(x, y) ∈ R2 : V δ
y (x, y) = −K

}
, Dδ :=

{
(x, y) ∈ R2 : V δ

y (x, y) = K
}
,

and
Cδ :=

{
(x, y) ∈ R2 : −K < V δ

y (x, y) < K
}
.

De�ne
τ ?;δ := inf{t ≥ 0 : V δ

y (Xδ
t , Y

δ
t ) ≤ −K},

σ?,δ := inf{t ≥ 0 : V δ
y (Xδ

t , Y
δ
t ) ≥ K},

τ ? := inf{t ≥ 0 : Vy(Xt, y) ≤ −K},

σ? := inf{t ≥ 0 : Vy(Xt, y) ≥ K},

as well as, for a given M > 0,

τ δM := inf{t ≥ 0 : |Xδ
t |+ |Y δ

t | ≥M},

τM := inf{t ≥ 0 : |Xt|+ |y| ≥M}.
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Now, by (B.5) we know that for each δ > 0 given and �xed, V δ
y is regular enough

to apply a weak version of Itô's lemma (see, e.g., Theorem 8.5 at p. 185 of [13]) so
that for any stopping time ζ and some �xed T > 0 one obtains

V δ
y (x, y) =E

[
−
∫ τδM∧τM∧ζ∧T

0

e−ρs(Ly − ρ)V δ
y (Xδ

s , Y
δ
s ) ds

+ e−ρ(τδM∧τM∧ζ∧T )V δ
y

(
Xδ
τδM∧τM∧ζ∧T

, Y δ
τδM∧τM∧ζ∧T

)]
. (B.6)

Given an F-stopping time τ , set ζ := σ?,δ ∧ σ? ∧ τ in (B.6), and use that V δ

solves a.e. the variational inequality (B.5) to �nd

V δ
y (x, y) ≥ E

[ ∫ τδM∧τM∧σ
?,δ∧σ?∧τ∧T

0
e−ρs

(
αV δ

x (Xδ
s , Y

δ
s ) + fy(X

δ
s , Y

δ
s )
)
ds

+ e−ρ(τδM∧τM∧σ
?,δ∧σ?∧τ∧T )V δ

y

(
Xδ
τδM∧τM∧σ?,δ∧σ?∧τ∧T

, Y δ
τδM∧τM∧σ?,δ∧σ?∧τ∧T

)]
≥ E

[ ∫ τδM∧τM∧σ
?,δ∧σ?∧τ∧T

0
e−ρs(αV δ

x (Xδ
s , Y

δ
s ) + fy(X

δ
s , Y

δ
s )
)
ds (B.7)

+ 1{σ?,δ<τδM∧τM∧σ?∧τ∧T}
e−ρσ

?,δ
K − 1{τ≤τδM∧τM∧σ?,δ∧σ?∧T}e

−ρτK

+ 1{τδM∧τM∧σ?∧T<σ?,δ∧τ}
e−ρ(τδM∧τM∧σ

?∧T )V δ
y

(
Xδ
τδM∧τM∧σ?∧T

, Y δ
τδM∧τM∧σ?∧T

)]
.

Recalling (B.1), thanks to the estimates (i)-(iii) above, the uniform convergence
of V δn

y to Vy (cf. (B.4)), and the fact that there exists CT > 0 such that

E[ sup
0≤s≤T

|(Xδn
t , Y

δn
t )− (Xt, y)|q] ≤ CT δ

q
n,

with Xt := X0;0
t and 1 ≤ q <∞, it can be shown that (see Theorem 3.7 in Section 3

of Chapter 3 of Chapter [13] � in particular p. 322 � and especially Lemma 4.17 in
[27] for a detailed proof in a related but di�erent setting) τ δnM ∧τM∧σ?,δn∧σ?∧τ∧T →
τM ∧ σ? ∧ τ ∧ T as n ↑ ∞, P-a.s. Therefore, taking limits in (B.7) with δ = δn as
n ↑ ∞, using the latter convergence of stopping times and (B.2)-(B.3), one �nds

Vy(x, y) ≥ E
[ ∫ σ?∧τM∧τ∧T

0
e−ρs

(
αVx(Xs, y) + fy(Xs, y)

)
ds+ e−ρσ

?
K1{σ?<τM∧τ∧T}

− e−ρτK1{τ≤σ?∧τM∧T} + e−ρ(τM∧T )Vy(XτM∧T , y)1{τM∧σ?∧T<σ?∧τ}

]
.

Letting now M ↑ ∞ and T ↑ ∞ and invoking the dominated convergence theorem
we obtain

Vy(x, y) ≥ E
[ ∫ σ?∧τ

0

e−ρs
(
αVx(Xs, y) + fy(Xs, y)

)
ds

+ e−ρσ
?

K1{σ?<τ} − e−ρτK1{τ≤σ?}

]
, (B.8)
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for any F-stopping time τ .
Analogously, picking ζ = τ ?,δn ∧ τ ? ∧ σ, for any F-stopping time σ, in (B.6), and

taking limits as n ↑ ∞, and then as M ↑ ∞ and T ↑ ∞, yield

Vy(x, y) ≤ E
[ ∫ σ∧τ?

0

e−ρs
(
αVx(Xs, y) + fy(Xs, y)

)
ds

+ e−ρσK1{σ<τ?} − e−ρτ
?

K1{τ?≤σ}

]
. (B.9)

Finally, the choice ζ = τ ?,δn ∧ τ ? ∧ σ?,δn ∧ σ? leads (after taking limits) to

Vy(x, y) = E
[ ∫ σ?∧τ?

0

e−ρs
(
αVx(Xs, y) + fy(Xs, y)

)
ds

+ e−ρσ
?

K1{σ?<τ?} − e−ρτ
?

K1{τ?≤σ?}

]
. (B.10)

Combining (B.8), (B.9), and (B.10) completes the proof.

117



REFERENCES

References

[1] Akyildirim, E., Guney, I.E., Rochet, J.C., and Soner, H.M. (2014).
Optimal dividend policy with random interest rates. Journal of Mathematical Eco-
nomics 51, pp. 93�101.

[2] Al Motairi, H., Zervos, M. (2017). Irreversible Capital Accumulation with
Economic Impact. Applied Mathematics and Optimization 75, pp. 525�551.

[3] Alvarez, L.H.R. (2008). A Class of Solvable Stopping Games. Applied Math-
ematics and Optimization 58, pp. 291�314.

[4] Ata, B., Harrison, J.M., Shepp, L.A. (2005). Drift Control of a Brownian
Processing System. Annals of Applied Probability 15(2), pp. 1145�1160.

[5] Avanzi, B. (2009). Strategies for dividend distribution: a review. North Ameri-
can Actuarial Journal 13(2), pp. 217�251.

[6] Avanzi, B., Gerber, H.U., Shiu, E.S.W. (2007). Optimal dividends in the
dual model. Insurance: Mathematics and Economics 41(1), pp. 111�123.

[7] Baldursson, F.M. (1987). Singular stochastic control and optimal stopping.
Stochastics 21(1), pp. 1�40.

[8] Baldursson, F.M., Karatzas, I. (1996). Irreversible investment and industry
equilibrium. Finance and Stochastics 1, pp. 69�89.

[9] Bateman, H. (1981). Higher Transcendental Functions, Volume II. McGraw-
Hill Book Company, New York.

[10] Bellman, R. (1957). Dynamic Programming. Princeton University Press,
Princeton, New Jersey.

[11] Bene², V.E. (1973). Girsanov Functionals and Optimal Bang-Bang Laws for
Final Value Stochastic Control. Stochastic Processes and their Applications 2(2),
pp. 127�140.

[12] Bene², V.E., Shepp, L.A., Witsenhausen, H.S. (1980). Some Solvable
Stochastic Control Problems. Stochastics 4(1), pp. 39�83.

[13] Bensoussan, A., Lions, J.L. (1982). Applications of Variational Inequalities
in Stochastic Control. Studies in mathematics and its applications 12, North-
Holland Publishing Company, Amsterdam.

[14] Bensoussan, A., S.P. Sethi, R. Vickson, N. Derzko. (1984). Stochastic
Production Planning with Production Constraints. SIAM Journal on Control and
Optimization 22(6), pp. 920�935.

[15] Björk, T. (1980). Finite Dimensional Optimal Filters for a Class of Itô-
Processes with Jumping Parameters. Stochastics 4, pp. 167�183.

118



REFERENCES

[16] Blumenthal, R.M., Getoor, R.K. (1968). Markov processes and potential
theory. Pure and applied mathematics 29, Academic Press, New York.

[17] Borodin, A.N., Salminen, P. (2015). Handbook of Brownian Motion-
Facts and Formulae. 2nd Corrected Edition. Probability and Its Applications,
Birkhäuser Verlag, Basel.

[18] Budhiraja, A., Ross, K. (2008). Optimal Stopping and Free Boundary Char-
acterizations for Some Brownian Control Problems. Annals of Applied Probability
18(6), pp. 2367�2391.

[19] Cadenillas, A., Lakner, P., Pinedo, M. (2013). Optimal Production Man-
agement When Demand Depends on the Business Cycle. Operations Research
61(4), pp. 1046�1062.

[20] Caffarelli, L.A., Crandall, M.G., Kocan, M., �wiech, A. (1996).
On Viscosity Solutions of Fully Nonlinear Equations with Measurable Ingredients.
Communications on Pure Applied Mathematics 49(4), pp. 365�398.

[21] Caffarelli, L.A., Salsa, S. (2005). A Geometric Approach to Free Boundary
Problems. Graduate Studies in Mathematics 68. American Mathematical Society,
Providence, Rhode Island.

[22] Cannarsa, P., Sinestrari, C. (2004). Semiconcave Functions, Hamil-
ton�Jacobi Equations, and Optimal Control. Progress in Nonlinear Di�erential
Equations and Their Applications 58 Birkhäuser Verlag, Basel.

[23] Chaleyat-Maurel, M., El Karoui, N., Marchal, B. (1980). Ré�exion
discontinue et systémes stochastiques. Annals of Probability 8(6), pp. 1049�1067.

[24] Chiarolla, M.B., Haussmann, U.G. (1992). Geometric Approach to Mono-
tone Stochastic Control. Ph.D. Thesis, The University of British Columbia.

[25] Chiarolla, M.B., Haussmann, U.G. (1998). Optimal Control of In�ation:
a Central Bank Problem. SIAM Journal on Control and Optimization 36(3), pp.
1099�1132.

[26] Chiarolla, M.B., Haussmann, U.G. (2000). Controlling In�ation: the In-
�nite Horizon Case. Applied Mathematics and Optimization 41, pp. 25�50.

[27] Chiarolla, M.B., De Angelis, T. (2016). Optimal Stopping of a Hilbert
Space Valued Di�usion: An In�nite Dimensional Variational Inequality. Applied
Mathematics and Optimization 73(2), pp. 271�312.

[28] Chow, P.-L., Menaldi, J.-L., Robin, M. (1985). Additive Control of
Stochastic Linear Systems with Finite Horizon. SIAM Journal on Control and
Optimization 23(6), pp. 858�899.

[29] Clarke, F.H. (1990). Optimization and Nonsmooth Analysis. SIAM Classics
in Applied Mathematics 5.

119



REFERENCES

[30] Crandall, M.G., Lions, P.-L. (1983). Viscosity Solutions of Hamilton-
Jacobi Equations. Transactions of the American Mathematical Society 277(1),
pp. 1�42.

[31] Dayanik, S., Karatzas, I. (2003). On the Optimal Stopping Problem for
One-dimensional Di�usions. Stochastic Processes and their Applications 107(2),
pp. 173�212.

[32] De Angelis, T., Ekström, E. (2017). The dividend problem with a �nite
horizon. Annals of Applied Probability 27(6), pp. 3525�3546.

[33] De Angelis, T., Ferrari, G., Moriarty, J. (2015). A Non Convex Sin-
gular Stochastic Control Problem and its Related Optimal Stopping Boundaries.
SIAM Journal on Control and Optimization 53(3), pp. 1199�1223.

[34] De Angelis, T., Ferrari, G., Moriarty, J. (2019). A Solvable Two-
Dimensional Degenerate Singular Stochastic Control Problem with Non Convex
Costs. Mathematics of Operations Research 44(2), pp. 512�531.

[35] De Angelis, T., Stabile, G. (2019). On Lipschitz Continuous Optimal Stop-
ping Boundaries. SIAM Journal on Control and Optimization 57(1), pp. 402�436.

[36] de Finetti, B. (1957). Su un'impostazione alternativa della teoria collettiva
del rischio. Transactions of the XVth International Congress of Actuaries 2(1),
pp. 433�443.

[37] Dickson, D.C.M., Waters, H.R. (2004). Some optimal dividend problems.
ASTIN Bulletin: The Journal of the IAA 34(1), pp. 49�74.

[38] Dupuis, P., Ishii, H. (1993). SDEs with Oblique Re�ection on Nonsmooth
Domains. Annals of Probability 21(1), pp. 554�580.

[39] El Karoui, N., Karatzas, I. (1988). Probabilistic aspects of �nite-fuel, re-
�ected follower problems. Acta Applicandae Mathematica 11, pp. 223�258.

[40] El Karoui, N., Karatzas, I. (1989). Integration of the optimal risk in a
stopping problem with absorption. Séminaire de Probabilités, tome 23, pp. 405�
420.

[41] El Karoui, N., Karatzas, I. (1991). A new approach to the Skorohod prob-
lem and its applications. Stochastics and Stochastic Reports 34(1-2), pp. 57�82.

[42] Evans, L.C. (1980). On solving certain nonlinear partial di�erential equations
by accretive operator methods. Israel Journal of Mathematics 36, pp. 225�247.

[43] Federico, S., Pham, H. (2014). Characterization of the Optimal Boundaries
in Reversible Investment Problems. SIAM Journal on Control and Optimization
52(4), pp. 2180�2223.

120



REFERENCES

[44] Federico, S., Ferrari, G., Schuhmann, P. (2019). A Singular Stochastic
Control Problem with Interconnected Dynamics. Siam Journal on Control and
Optimization 58(5), pp. 2821�2853.

[45] Federico, S., Ferrari, G., Schuhmann, P. (2021). Singular Control of
the Drift of a Brownian System. Applied Mathematics and Optimization.

[46] Ferrari, G. (2019). On a class of singular stochastic control problems for
re�ected di�usions. Journal of Mathematical Analysis and Applications 473(2),
pp. 952�979.

[47] Ferrari, G., Schuhmann, P. (2019). An optimal Dividend Problem with
Capital Injections over a Finite Horizon. Siam Journal on Control and Optimiza-
tion 57(4), pp. 2686-2719.

[48] Fleming, W.H., Sethi, S.P., Soner,H.M. (1987). An Optimal Stochastic
Production Planning Problem with Randomly Fluctuating Demand. SIAM Journal
on Control and Optimization 25(6), pp. 1494�1502.

[49] Fleming, W.H., Soner, H.M. (2006). Controlled Markov Processes and Vis-
cosity Solutions 2nd Edition. Stochastic Modelling and Applied Probability 25,
Springer-Verlag, New York.

[50] Guo, X. (2001). An Explicit Solution to an Optimal Stopping Problem with
Regime Switching. Journal Applied Probability 38, pp.464-481.

[51] Jeanblanc-Piqué, M. Shiryaev, A. (1995). Optimization of the �ow of
dividends. Russian Mathematical Surveys 50(2), pp. 257�277.

[52] Jeanblanc, M., Yor, M., Chesney, M. (2009). Mathematical methods for
�nancial markets. Springer Finance Textbooks, Springer-Verlag, London.

[53] Jiang, Z., Pistorius, M. (2012). Optimal dividend distribution under Markov
regime switching. Finance and Stochastics 16, pp. 449�476.

[54] Karatzas, I., Ocone, D. (1992).The Resolvent of a Degenerate Di�usion on
the Plane, with Application to Partially Observed Stochastic Control. The Annals
of Applied Probability 2(3), pp. 629�668.

[55] Karatzas, I., Ocone, D. (1993). The Finite-Horizon Version for a Partially
Observed Stochastic Control Problem of Bene² and Rishel. Stochastic Analysis
and Applications 11(5), pp. 569�605.

[56] Karatzas, I., Ocone, D. (2002). A Leavable Bounded-Velocity Stochastic
Control Problem. Stochastic Processes and their Applications 99(1), pp. 31�51.

[57] Karatzas, I. (1983). A Class of Singular Stochastic Control Problems. Ad-
vances in Applied Probability 15, pp. 225�254.

121



REFERENCES

[58] Karatzas, I., Shreve, S.E. (1984). Connections between Optimal Stopping
and Singular Stochastic Control I. Monotone Follower Problems. SIAM Journal
on Control and Optimization 22(6), pp. 856�877.

[59] Karatzas, I., Shreve, S.E. (1985). Connections between optimal stopping
and singular stochastic control II. Re�ected follower problems. SIAM Journal on
Control and Optimization 23(3), pp. 433�451.

[60] Karatzas, I., Shreve, S.E. (1991). Brownian motion and stochastic calculus
(Second Edition). Graduate Texts in Mathematics 113, Springer-Verlag, New
York.

[61] Karatzas, I., Wang, H. (2005). Connections between bounded-variation con-
trol and Dynkin games. Optimal Control and Partial Di�erential Equations: In
Honor of Professor Alain Bensoussan's 60th Birthday, pp. 363�373, IOS Press,
Amsterdam.

[62] Khmelnitsky, E., Presman, E., Sethi, S.P. (2011). Optimal production
control of a failure-prone machine. Annals of Operations Research 182(1), pp.
67�86.

[63] Kobylanski , M., Quenez , M. (2012). Optimal stopping in a general frame-
work. Electronic Journal of Probability 17(72), pp. 1�28.

[64] Koch, T., Vargiolu, T. (2019). Optimal Installation of Solar Panels with
Price Impact: a Solvable Singular Stochastic Control Problem. Center for Mathe-
matical Economics Working Papers 627.

[65] Kulenko, N., Schmidli, H. (2008). Optimal dividend strategies in a Cramér-
Lundberg model with capital injections. Insurance: Mathematics and Economics
43(2), pp. 270�278.

[66] Lamberton, D., Zervos, M. (2013). On the Optimal Stopping of a One-
Dimensional Di�usion. Electronic Journal of Probability 18(34), pp. 1�49.

[67] Lieberman, G.M. (1996). Second order parabolic di�erential equations. World
Scienti�c, Singapore.

[68] Lions, P.L., Sznitman (1984). Stochastic Di�erential Equations with Re�ect-
ing Boundary Conditions. Communications on Pure and Applied Mathematics
XXXVII, pp. 511�537.

[69] Lokka, A., Zervos, M. (2008). Optimal dividend and issuance of equity poli-
cies in the presence of proportional costs. Insurance: Mathematics and Economics
42(3), pp. 954�961.

[70] Løkka, A., Zervos, M. (2011). Long-term Optimal Investment Strategies in
the Presence of Adjustment Costs. SIAM Journal on Control and Optimization
51(2), pp. 996�1034.

122



REFERENCES

[71] Lon, P.C., Zervos, M. (2011). A Model for Optimally Advertising and
Launching a Product. Mathematics of Operations Research 36(2), pp. 363�376.

[72] Ma, J. (1993). Discontinuous re�ection, and a class of singular stochastic con-
trol problems for di�usions. Stochastics and Stochastics Reports44(3-4), pp. 225�
252.

[73] Matoglu, M.O., Vate, J.V., Wang, H. (2015). Solving the Drift Control
Problem. Stochastic Systems 5(2), pp. 324�371.

[74] Merhi, A., Zervos, M. (2007). A Model for Reversible Investment Capacity
Expansion. SIAM Journal on Control and Optimization 46(3), pp. 839�876.

[75] Papi, M. (2005). On the Domain of the Implicit Function and Application.
Journal of Inequalities and Applications 3, pp. 221�234.

[76] Peskir, G. (2005). A Change-of-Variable Formula with Local Time on Curves.
Journal of Theoretical Probability 18(3), pp. 499�535.

[77] Peskir, G., Shiryaev, A. (2006). Optimal stopping and free-boundary prob-
lems. Birkhäuser Verlag, Basel.

[78] Peskir, G. (2008). Optimal Stopping Games and Nash Equilibrium. Theory of
Probability and Its Applications 53(3), pp. 558�571.

[79] Petrosyan, A., Shahgholian, H., Uraltseva, N. (2012). Regularity of
Free Boundaries in Obstacle-type Problems. Graduate Studies in Mathematics
136. American Mathematical Society, Providence, Rhode Island.

[80] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V.,
Mishchenko, E.F. (1962). The mathematical theory of optimal processes.
Interscience Publishers.

[81] Pierre, E., Villeneuve, S., Warin, X. (2016). Liquidity Management
with Decreasing-returns-to-scale and Secured Credit Line Finance and Stochas-
tics 20(4), pp. 809�854.

[82] Revuz, D., Yor, M. (1999). Continuous martingales and Brownian motion.
Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin Heidel-
berg.

[83] Rogers, L., Williams, D. (2000). Di�usions, Markov processes and martin-
gales 2nd edition. Cambridge Mathematical Library, Cambridge University Press,
Cambridge.

[84] Salminen, P. (1985). Optimal Stopping of One-dimensional Di�usions. Math-
ematische Nachrichten 124, pp. 85�101.

[85] Scheer, N., Schmidli, H. (2011). Optimal dividend strategies in a Cramer-
Lundberg model with capital injections and administration costs. European Actu-
arial Journal 1, pp. 57�92.

123



REFERENCES

[86] Schmidli, H. (2017). On capital injections and dividends with tax in a di�usion
approximation. Scandinavian Actuarial Journal 9, pp. 751�760.

[87] Schmidli, H. (2008). Stochastic control in insurance. Probability and Its Ap-
plications, Springer-Verlag, London.

[88] Sethi, S.P., Thompson, G.L. (2000). Optimal Control Theory, Applications
to Management Science and Economics (2nd edition). Kluwer Academic Publish-
ers, Boston.

[89] Shreve, S.E., Lehoczky, J.P., Gaver, D.P. (1984). Optimal consumption
for general di�usions with absorbing and re�ecting barriers. SIAM Journal on
Control and Optimization 22(1), pp. 55�75.

[90] Skorokhod, A. V. (1961). Stochastic Equations for Di�usion Processes in a
Bounded Region. Theory of Probability and Its Applications 6(3), pp. 264�274.

[91] Soner, H.M., Shreve, S.E. (1989). Regularity of the Value Function for a
Two-Dimensional Singular Stochastic Control Problem. SIAM Journal on Control
and Optimization 27(4), pp. 876�907.

[92] Soner, H.M., Shreve, S.E. (1991). A Free Boundary Problem Related to
Singular Stochastic Control. Stochastics Monographs 5, pp. 265�301.

[93] Soner, H.M., Shreve, S.E. (1991). A Free Boundary Problem Related to Sin-
gular Stochastic Control: parabolic case. Communications in Partial Di�erential
Equations 16(2-3), pp. 373�424.

[94] Sotomayor, L.R., Cadenillas, A. (2011). Classical and singular stochastic
control for the optimal dividend policy when there is regime switching. Insurance:
Mathematics and Economics 48(3), pp. 344-354.

[95] Urban, T.L. (2005). Inventory Models with Inventory-Level-Dependent De-
mand: A Comprehensive Review and Unifying Theory. European Journal of Op-
erational Research 162(3), pp. 792�804.

[96] Zhu, J., Yang, H. (2016). Optimal capital injection and distribution for growth
restricted di�usion models with bankruptcy. Insurance: Mathematics and Eco-
nomics 70, pp. 259�271.

[97] Yong, J., Zhou, X.Y. (1999). Stochastic Control - Hamiltonian Systems and
HJB Equations. Stochastic Modelling and Applied Probability, Springer-Verlag,
New York.

124


	Introduction
	An Optimal Dividend Problem with Capital Injections over a Finite Horizon This Section is already published in a joint work with Giorgio Ferrari, see FerrariSchuhmann.
	Problem Formulation
	The Main Result
	On the Proof of Theorem 2.6
	On a Representation of the Optimal Stopping Value Function
	Integrating the Optimal Stopping Value Function

	A Case Study with Discounted Constant Marginal Profits and Costs
	A Comparative Statics Analysis.

	Conclusion

	Optimal Production under Regime SwitchingThis project started during a research visit at the University of Edmonton under the supervision of Abel Cadenillas.
	Problem Formulation
	The Singular Stochastic Control Case
	Verification Theorem
	Construction of the Solution
	Verification of the Solution
	Comparative Statics and Numerical Examples

	The Bounded-Velocity Control Case
	Verification Theorem
	Construction of the Solution
	Verification of the Solution
	Comparative Statics and Numerical Examples

	Comparison Between Different Models
	Comparison Between the Singular and the Bounded-Velocity Control Cases
	The Singular Stochastic Control Case: A Comparison with the Single Regime Case
	The Bounded-Velocity Control Case: A Comparison with the Single Regime Case

	Conclusion

	A Singular Stochastic Control Problem with Interconnected Dynamics This section is already published in two joint works with Giorgio Ferrari and Salvatore Federico, see FedericoFerrariSchuhmann19 and FedericoFerrariSchuhmann20.
	Problem Formulation
	The Related Dynkin Game and Preliminary Properties of the Free-Boundaries
	The Structure of the Value Function 
	Further Properties of the Free-Boundaries
	A System of Equations for the Free-Boundaries
	A System of Differential Equations for the Free-Boundaries
	A Discussion on Theorem 4.30 and on the Optimal Control
	On Theorem 4.30
	On The Optimal Control

	Conclusion

	Appendices
	Appendix Section 2 
	Proof of Corollary 2.13
	Proof of Lemma 2.18
	Proof of Proposition 2.26
	Lemma A.1

	Appendix Section 4
	Proof of Theorem 4.5


